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and .,.  denotes the dot product ,  is a strictly convex and differentiable function. Both 

The Euclidean distance and the Kullback-Leibler divergence can be derived from the 

Bregman divergence, if the convex function is considered as  


d

i i pppp
1

2
,)(  that 

will lead to the Euclidean distance, while if the convex function is considered as 

 


d

i ii ppp
1

log)( that will lead to the Kullback-Leibler divergence as illustrated in 

figure 22.  

 

Figure 22:  The univariate Bregman divergence interpretation as the vertical distance 

between the potential function   and the hyperplane at q 

The Bregman divergence can be symmetrized as follows: 
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The Kullback-Liebler divergence can be symmetrized in the same manner of the 

Bregman divergence as follows: 

                                                         )||()||(, pqKLqpKLqpJ                                   (6.12) 

The J-divergence has a major drawback: the output can be undefind if  p≠0 and q=0. To 

overcome these drawbacks, [133] proposed a Jensen-Shannon divergence (JSD) by 

depending on the KL-divergence as: 
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Thus the original k-mean is modified into a meta-algorithm called Bregman k-mean. 

Barnerjee [132] proved that the mean is the minimizer of the clustering set of the 

expected Bregman divergence. The centroid of the point set can be defined as minimum 

average distance 
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where F
Rc  and F

Lc represent the sided centroid (where L stands for left and R for right) 

and the centroid Fc represents the symmetrized Bregman centroid and n represents the 

number of RPs in the cluster [95]. The Bregman k-means positioning method was 

proposed in order to improve the accuracy. 

Algorithm 1. The k- mean Bregman positioning method 

1- Record The RSS measurement during the offline phase at known locations to create 

a database of fingerprinting maps. 

2- Initialize the c centroid for each clustering group.  

3- Calculate the distance between the RPs and the centroid using Eq. 19-20.  

4- Assign each RP to the nearest centroid of the cluster. 

5- Repeat step 2, 3, and 4 until there are no changes in each cluster centroid. 

6- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the distance between the RSS of unknown location and the centroid 

of each cluster using Euclidean distance.   

 Determine the kNN number of the cluster that RSS of online phase belong to.  

7- Estimate the maximum outputs using eq. 19.  
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6.4 Implementation and Experiment Results 

The proposed algorithm is implemented inside the College of Engineering and 

Applied Sciences (CEAS) at Western Michigan University (WMU). The area has a three 

big rooms and large lounge for studying with a long corridor in the area 23.5 m × 16.5 

m. An android operating system was used to collect the data and test the algorithm using 

a Java software by using an Eclipse framework version 4.2, that has been installed on 

HP Pavilion for localization estimation. The APs were Cisco Linksys E2500 Dual-Band 

in the area of interest. In the training (offline) phase the person that holding the phone 

during collecting the data may increase the variance of the signal; also the people that 

passing during the process of collecting data can play a role in signal variation. In 

response a realistic scenario was created to provide a better distribution of the Wi-Fi 

signal. The RSS signal was recorded at four different orientations (45 °, 135 °, 225 °, 

and 315°) with a delay 10 seconds for ten scan at each direction. After that an average 

value were taken for the different direction and the ten recording to generate the 

fingerprinting map.  

In general, the accuracy can be affected by the number of APs that were used. The 

impact of the number of APs and the number of RPs have been investigated in the 

estimation process of the object. In order to investigate the accuracy of the proposed 

algorithms, different algorithms have been implemented and compared with our 

proposed algorithm such as k-mean and affinity propagation. Figure 23 illustrates the 

localization distance error with different numbers of APs when using 6 cluster with 5 
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nearest neighbors to estimate the location of the object. The highest accuracy obtained 

when a 22 APs was used, which was 1.063m for Bregman k- mean algorithms, 1.2175m 

for k-mean with probability function, and 1.2885m when k-mean with kNN algorithm. 

Furthermore, a better accuracy was obtained when a 15 nearest neighbor was used; for 

instance, the localization distance error was 0.98m for Bregman k-mean algorithm, 

1.05m for k-mean with probability function, and 1.16m when k-mean with kNN 

algorithm as shown in figure 24.  

 

Figure 23: Localization distance error of k-mean Bregman versus different      

algorithms with different number of APs with 5 NN 
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Figure 24: Localization distance error of k-mean Bregman versus different      

algorithms with different number of APs with 15 NN 

 

There is some other positioning approach such affinity propagation [14] reported 

results are higher localization distance error. Furthermore, that our proposed algorithms 

showed higher accuracy of the other algorithms as shown in Table I. 

Table 4: Localization distance error of k-mean Bregman versus different 

algorithms  

Technique Median [m] 

k-mean+kNN  2.6 

K-means + Prob. Dist 3.11 
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Affinity Prop. + Knn  2.66 

Bregman k-mean 1.005 

 

6.5 Conclusion 

Indoor positioning systems are a very useful navigation tool in many applications in 

life. It can bring the power of the GPS indoors. In this paper, a WLAN positioning 

approach was proposed due to the tremendous number of APs in our environment 

provide an easier way to investigate the fingerprinting approach, called the Bregman k-

means, that is the original k-means algorithm is extended into a meta-algorithm. The 

results that were obtained throughout our implementation showed that the Bregman k-

mean outperforms the k-mean with kNN, k-mean with probability distribution, and the 

Affinity propagation algorithms. The best results were when 6 clustering was used with 

15 NN. Nevertheless, now we are in the process to investigate the error modeling versus 

WiFi signal variation in space and time 
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                                             CHAPTER VII 

A JENSEN-BREGMAN DIVERGENCE FOR A  WLAN INDOOR 

POSITIONING SYSTEM USING RECEIVED-SIGNAL-STRENGTH 

 

7.1 Introduction  

Nowadays, the automatic location of a user is a hot topic in research. [102] 

estimated the global indoor localization market around $935.05 million in 2014, and by 

2019 it is expected to be around $4,424.1 million. The Compound Annual Growth Rate 

(CAGR) is expected to be 36.5% from 2014 to 2019. The estimation of mobile locations 

has an important role in many computing applications. In general, the Global Positioning 

System (GPS) is one of the most common location systems, but GPS cannot be used 

inside buildings since it can’t perform a line-of-sight (LOS) with satellites and cannot 

determine the floor. Therefore, a large number of technologies were developed to create 

a high accuracy indoor positioning system (IPS): for example, Bluetooth, radio-

frequency identification (RFID), wireless local area network (WLAN or Wi-Fi), 

magnetic field variations, ultrasound, ZigBee, LED light. Wi-Fi is the most common 

technique used in IPS. Because of the low cost, the existence of WLAN infrastructure 

and most of the smart phones can obtain the RSS from the access points (APs) of 

WLANs [103] [108].  

The IPS algorithm that uses RSS-based indoor localization can be classified into 

two main types: the log-distance propagation model (PM) algorithms based on the 

signal, and fingerprinting indoor localization based on the data collection. The IPS based 

on signal propagation is divided into lateration and angulation. The main idea in 

lateration estimation is to calculate the distance between the smartphone and the access 
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point (AP) by using geometry and signal measurement information, such as the time of 

arrival (TOA) of the signal from the APs, the time difference of arrival (TDOA) of the 

signals from the APs, and the angle of arrival (AOA) of the signals from the APs. In 

general, the propagation signal suffers from the non-line-of-sight (NLOS), multipath 

signal due to the walls, movement of people, and furniture. Also, the accuracy could be 

decreased if one or more coordinates of the APs haven’t been accurately calculated. All 

these drawbacks made the estimation of the object using signal propagation a difficult 

task [104]. Therefore, to reduce the effect of these drawbacks, an implementation of the 

fingerprint-based signal has been proposed to estimate the location of the object [105]. 

Location fingerprinting was deployed because it doesn’t require infrastructure, just the 

existing WLAN in the building and the smartphone, by depending on the 

characterization and spectrum of the RSS from the APs to the location to estimate the 

location coordinates.  

The fingerprint-based technique has been divided into phases: the offline and 

online phases. In the offline phase the entire area of interest is divided into a rectangular 

set of grid points, and at each point, a site survey is taken by recording the RSS from 

the APs and stored in a database called a radio map. In the online phase, the smartphone 

will collect the RSS from APs and then send it to the server to compare the predefined 

fingerprint of the offline phase with the RSS in online phase to estimate the location on 

the grid map as shown in figure 25. 
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(a) 

 

(b) 

Figure 25: (a) The offline and online stages of location Wi-Fi based fingerprinting 

architecture and (b) radio map fingerprint of Wi-Fi IPS 

kNN is one of the simplest ways to estimate the location by depending on the Euclidean 

distance to measure the similarity/dissimilarity between the offline and online phases. 

Even though this algorithm is easy to implement, it has low accuracy. Other methods 

like statistical learning and Bayesian modeling also have been used to estimate the 

Test PointReference Point

54,71,69
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location of the object. The location accuracy is one of the most fundamental metrics in 

IPS to measure the reliability of the system by reporting the error distance between the 

actual location and our estimated location [103]. 

Recently an important issue has been raised about the variation of the signal 

propagation: how can it change over time at the same place due to multiple factors such 

as physical obstructions, RF equipment, and the presence of human bodies? As a result, 

that can lead to attenuation and multipath issues, and this will make gradual changes in 

the signal which can reduce the accuracy of localization systems [106]. Values stored in 

the fingerprint maps represent the mean value of RSSI. Some approaches suppose that 

the RSSI distribution is a Gaussian [107] while other approaches assume a non-

Gaussian, such as in [84]. However, using a Wi-Fi system to estimate the location of the 

object has many advantages, such as the availability and low cost to build a system 

compared to other technologies. But, on the other hand, there are some problems that 

we have to take into account, such as Wi-Fi hardware variance problems. Since the RSSI 

signal uses both off-line and on-line phases, this variance will affect the pattern of the 

signal, which will lead to the degradation of the accuracy of the location systems. Some 

experiments have been done to investigate this variance. It was reported in [106] that by 

using different smartphones to collect the RSSI data at the same time at the same 

location, some phones consistently reported a higher value of RSSI than the others. The 

orientation of the user can be a part of the variance of the RSSI signal because the human 

body can be a signification attenuator, as shown in figure 26, with the difference as 

much as 10 for same location different direction. 
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Figure 26: RSSI values recorded from different APS when facing North and South. 

The variation can be up to 10 dBm [106]. 

This variance hardware problem also has been noticed even in Cisco location 

systems, because some signal was omitted when a different device was used in the 

online phase than was used in the offline phase. In this work, we propose: 

 A Jensen-Bregman Divergence (JBD) for a WLAN-based method and Kullback-

Leibler Multivariate Gaussian MVGLK . We perform the matching stage using 

probability kernels as a regression scheme. 

 A procedure with high characterization distribution to be used. RSS value was 

taken in four different orientations (45 °, 135 °, 225 °, and 315°) to prevent body-

blocking effects, with a scan for 100 seconds at each direction to reduce the 

effect of signal variation. 

 JBD and MVGLK  results outperform the results of PNN and kNN with respect to 

accuracy and the average error distance, which indicates that the proposed 



87 
 

combining scheme is more effective in sensitive environments of WLAN-based 

positioning systems. 

7.2 Related Work  

The global navigation satellite systems (GNSS) like GLONASS, GALILEO or GPS 

work in the outdoor environment, but the accuracy may dramatically drop in indoor 

environments due to many parameters such as penetration loss, refraction, multipath 

propagation, and absorptions. Therefore, the necessity of developing a system that can 

work in an indoor environment with high accuracy has become imperative [108]. In the 

last decade, many techniques were proposed for IPS. In the model-based techniques, the 

location is estimated by depending on the geometrical model, such as in log-distance 

path loss (LDPL), where a semi-statistical function will be built by depending on the 

relationship between the RF propagation function and the RSS value. Several 

approaches have been proposed that are a trade-off between the accuracy and the cost, 

such as ToA, TDoA, AoA, and Multidimensional scaling (MDS). The MDS is a set of 

statistical techniques that is used to visualize the information in order to find the 

similarities/dissimilarities in the data. The matrix in MDS begins with item-item 

dissimilarities, the radio propagation attenuation between AP-AP to measure the 

distance [109]. The fingerprinting-based technique depends on matching algorithms, 

such as kNN, that have been used in RADAR [30], which is a pioneer of the fingerprint 

in IPS. After that, many developed kNN algorithms have been proposed to find the 

similarity/dissimilarity in metrics which usually is done by using the Manhattan distance 

or the Euclidean distance, such as in [110-112]. [113] proposed a new version of kNN 

that is more efficient than the probabilistic methods, Neural networks, and the traditional 
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kNN, by depending on the decision tree of the training phases and taking the average of 

measures of RPs instead of having the whole dataset to estimate the location of the 

object. [114] performed a modified deterministic kNN technique with Mahalanobis, 

Manhattan, and Euclidian distances; their results showed that the Manhattan distance 

had higher accuracy than the others. Recently, the use of probabilistic distribution 

measurements in many IPS applications was increased. [98] Pioneered the use of the 

probabilistic distribution measurement in IPS. They propose a probabilistic framework 

by using a Bayesian network to estimate the location. In [36] a modified probability 

neural network (MPNN) was used to estimate the coordinates of the object. The results 

showed that the performance of MPNN is better than the triangulation methods. In [81] 

a kernel method was proposed to estimate the location of the object by using a histogram 

of the RSSI at the unknown location. In [82] the probability density function (PDF) was 

estimated by using the Kullback-Leibler divergence (KLD) framework as a composite 

hypothesis testing between the fingerprinting database and the test point. While in [83] 

they assumed that the RSSI distribution is multivariate Gaussian, and they used the KLD 

to estimate the impact of the RPs on the test point to estimate the probability of the 

closest one and then find the coordinates of the test point.  

In [84] the RSS of the Bluetooth localization technique was used to establish the 

fingerprint and then the KLD was used in the probabilistic kernel regression to estimate 

the location of the object. The results showed around 1 m accuracy in an office 

environment. In general, the KLD kernel regression has better performance in 

multimodal distribution. In [89] the KLD was used to estimate the probabilistic kernel 
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of both Gaussian and non-Gaussian distribution to compare between them and find their 

limitation. 

5.3 Indoor Positioning System 

We begin with a typical WLAN scenario, where a person carries a smartphone 

device that has a WLAN access, taking RSS measurements from the different APs at 

the College of Engineering and Applied Sciences (CEAS) at Western Michigan 

University (WMU). There is a common assumption that the RSSI coming from multiple 

APs is distributed as a multimodal signal as mentioned in [110]. However, the signal 

recorded quite different values for the same device at the same location, varying between 

two values different by as much as 10 dB. The values have been recorded for 35 minutes 

during rush hour for a single AP, for the same location, and then samples were taken 

from them as shown in figure 27. 

 

Figure 27: Signal-to-Noise Ratio (SNR) of the RSSI Variation Distribution over time 
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There are a lot of parameters that can affect the shape of the signal, like reflection 

and diffraction. Furthermore, the number of passing people have an impact on the shape 

of the signal. Nevertheless, we were looking for a scenario that could provide a better 

distribution of the Wi-Fi signal. During the offline phase, a realistic scenario was created 

that takes the variation of the signal into account, also, the effect of the body of person 

that holds the phone, and the passing of the people that can change the variation of the 

signal; however, in order to reduce the variation of the signal and the effect of the body, 

a recording of the RSS was taken in four directions (45 °, 135 °, 225 °, and 315°) . At 

each RP, a raw set of RSS was collected as a time sample from the APs in the area of 

interest that is denoted as  ,100,,.....,1),()(

,  ttq ji   where t represents the number of 

time samples and )(  is the orientation direction. After that, the average and covariance 

matrix of the RSS were taken for the four different directions and the ten scans to create 

the fingerprinting database, known as the radio map; the radio map is represented by 

)(Q [86]: 
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where  

 
t

jiji q
q

q
1
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,
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, )(
1


 , where t=10 and have been chosen randomly from the 100 

time samples so we can obtain the average of the RSS sample over the time domain for 

different APs, NjLi ,....2,1,,.....2,1  , where N represents the number of RPs, and L is the 

number of the APs [49]. The variance vector of each RP can be defined as: 
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where )(
,


 ji  is the variance for AP i at RP j with orientation )(  , so the database table of 

the radio map is (
)()( ,,,   jjjj qyx ), and the 
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In the online phase, the RSS measurement will be denoted as: 

                                              rLrrr pppp ,,2,1 ,.......,,                                              (7.5) 

 

7.4 Kullback-Leibler Multivariate Gaussian Model 

Recently another approach has been used in fingerprinting-based methods to estimate 

the position of the objects, the Multivariate Gaussian model (MvG), to exploit the 

interdependencies within the RPs, such as the model of the signal, the geometry that can 

be quantified to find the correlations among the RPs. Milioris [116] proposes a 

Kullback-Leibler multivariate Gaussian to measure the similarity between the RSS 

measurement of test points and the RPs that is defined as:   
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where S represents the matrix of RSS values from the different APs at specific locations, 

j represents the cell of the fingerprint location where: 
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j    the mean of Jth column of the RSS measurement, and  
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 j  represents the 

covariance matrix, where  is the determinant of  . Now a probability kernel-based 

approach will be derived from the MVGLK . The Kernel regressions scheme allows us to 

estimate the PDF of the training datasets and the TP from the online phase that will be 

used to estimate the location of the object. The MVGLK  is used to measure the distance 

between the likelihood of the input sample and the RPs in order to find which class it 

belongs to. The RSS distribution can be defined as: 
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where σ is the kernel smoothing factor. The probability will be equal to 1 if p = q, and 

the output will decrease when the difference between p and q becomes larger. 
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Algorithm 1. The Kullback-Leibler multivariate Gaussian positioning method 

1. During the offline phase, the RSS measurement was taken at different places at 

know locations, ten scans with 10 seconds time delay to generate the radio map 

2. During the online phase, the RSS measurement will be taken of the unknown 

location of the smartphone.  

3. During online phase, the following steps will be performed: 

 A database for each RP will be set that have the RSS measurement with their 

location. 

 The RSS measurement from APs of the smartphone that have unknown 

location will be set in the same way as the database of the offline phase with 

respect to the similar MAC address. 

 Estimate the minimum Kullback-Leibler multivariate Gaussian using 

equation 7.8.  

 Repeat the step above for different APs until the minimum distance will be 

obtained.  

4. Transfer the maximum outputs to the Output Layer. 

                

7.5 Bregman Formulation  

 Analysis the data that is suffered from the interference and corrupted data is kind 

of impossible without interpreting the data that have been randomly obtained from 

unknown distribution with unknown parameters the most common assumption that have 

been used in many researches that the signal is Gaussian distribution. However, this 
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assumption is inappropriate with RSS from the WLAN. The Gaussian distribution is 

considered as a member of the family of the exponentials distributions. Furthermore, 

the Bregman divergence and the exponential families have a strong relationship [133]. 

The log-likelihood of an exponential family will be considered as a sum of a Bregman 

divergence, However the Bregman divergence doesn’t depend on the distribution 

parameter. The Bregman divergence can provide a likelihood distance of the exponential 

family, this property has been used to generalize the Principal Component Analysis 

(PCA) to the exponential family. However, the Bregman divergence is not a symmetric 

and doesn’t satisfy the triangle inequality so it’s not a metric. A Bregman divergence 

measures the distortion between classes that is defined by a Jensen convexity gap that 

is induced by a strictly convex function as:    

                              qppqpqpD ),()()(),(                                     (7.9) 

where .,.  denotes the inner product and  
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where )( p  denotes the gradient operator of  at point q: 
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The case of Bregman divergence is not a metric. However, as proved in section 3.2 that 

the Jensen-Bregamn  divergence (JBD) is a symmetric and it can be a metric. JBD is 

induced by a strictly convex function generator that unifies the celebrated information-

theoretic Jensen-Shannon divergence with the squared Euclidean and Mahalanobis 

distance:  
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as kNN [10], compressive sensing [76] and the kernel-based method [77], illustrated in 

Table I. 

Table 5:  Localization distance error of different proposed algorithms  

Technique Median [m] Accuracy 90% [m] 

kNN  1.8 3.7 

Kernel-based  1.6 3.6 

CS-based  1.5 2.7 

KLMVG 1.02 2.13 

kJSD 0.98 1.93 

 

 

Figure 29: Localization distance error of different proposed algorithms with different number 

of APs with 5 NN 
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Figure 30: Localization distance error of different proposed algorithms with different number 

of APs with 20 NN 
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Figure 31: Localization distance error of different proposed algorithms with different number 

of APs with 80 NN 

7.7 Conclusion 

Indoor positioning systems bring the power of GPS and maps indoors. It can be 

a very useful navigation tool in many applications in life; for instance, emergency 

healthcare services, or for impaired vision people, or for use in unfamiliar buildings 

where people can get disoriented or lost easily, such as in mall, airport, subways. A 

fingerprint map was created for a segment of the college of engineering to utilize the 

relation of the RSS reading. Different algorithms were used and compared with different 

approaches such as kNN and PNN. The different performances were obtained for a 

number of the APs. The results were quite adequate for the indoor environment with an 

average error less than 1 meter. The kJBD had the highest accuracy when 80 NN with 

22 APs among the other approach. Now we are in the process of investigating position 

prediction error distributions and need to quantify the localization variation of the WiFi 

signal distribution in space. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

 

8.1 Summary and Conclusion  

Fingerprint-based schemes have become widely proposed for indoor positioning 

systems. Furthermore, the fact that a large number of access points (AP) exist in indoor 

environments provides a convenient and economic context for investigating 

fingerprinting-based approaches.  

The use of a Wi-Fi system to estimate the location of the object has many 

advantages such as its availability and lower cost when compared with other technology-

based systems. On the other hand, it also presents certain problems that need to be taken 

into account such as Wi-Fi signal variation due to hardware differences and the very 

dynamic indoors environment. Since RSSI-based systems use both off-line and on-line 

phases, this variance would impact the accuracy of positioning system results. To 

address the issues of signal variation, the effect of the user’s body and the interference 

caused by the presence of other people in the vicinity, signal acquisition was performed 

by recording the RSS in four directions (45 °, 135 °, 225 °, and 315°). 

In this dissertation, several approaches were investigated by building on convex 

optimization models and the Bregman divergence was a natural tool to be selected. Since 

Bregman divergence family is well suited as distance measure tool, it was instinctive to 

combine these measures with probabilistic neural network (PNN) as a framework to 
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measure the localization distance error. It was also as important to investigate Jensen-

Bregman Divergence (JBD) since JBD is induced by a convex function generator and 

unifies the squared Euclidean and Mahalanobis distances with the information-theoretic 

Jensen-Shannon divergence. Finally, this investigation included a study of the number 

of the access points and location spacing versus localization accuracy. 

The proposed algorithms were implemented using the College of Engineering 

and Applied Sciences (CEAS) at Western Michigan University (WMU) as the indoor 

environment testbed. A simulation of the multivariate Kullback-Leibler divergence 

(KLMVG) under the Probability Neural Network (PNN) scheme and k-Nearest Neighbors 

(k-NN) was implemented to compare and allow for validation of the proposed 

framework using the Bregman divergence family. The JBD algorithm produced the 

smallest localization error and outperformed the other algorithms in terms of complexity 

and execution time.  Therefore, the proposed framework, which is based on 

fingerprinting methods and convex optimization for minimization of the disparity 

measure, is a promising positioning system that is worthy of further exploration.  

8.2 Future Work  

Building on the proposed system, the following is a list of recommended future 

directions: 

1. Pursue an investigation into the possibility of quantifying the variation in WiFi 

signal distribution versus space using clustering methods that allow the system 

to learn the number of clusters and the best number of nearest neighbors. 
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2. Automate data collection via a robot that can collect the data and develop a 

mechanism to keep the fingerprint map updated without any loss of service.  

3. Develop better AP selection and feature extraction mechanisms to reduce 

computing complexity, storage needs, time, and effort.  
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