Programming the Generalization of Greeting Responses in Retarded Children: A Comparative Study

Benjamin B. Wu
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses
Part of the Psychoanalysis and Psychotherapy Commons

Recommended Citation
Wu, Benjamin B., "Programming the Generalization of Greeting Responses in Retarded Children: A Comparative Study" (1975).
Master's Theses. 2525.
https://scholarworks.wmich.edu/masters_theses/2525
PROGRAMMING THE GENERALIZATION
OF GREETING RESPONSES
IN RETARDED CHILDREN: A COMPARATIVE STUDY

by

Benjamin B. Wu

A Thesis
Submitted to the
Faculty of The Graduate College
in partial fulfillment
of the
Degree of Master of Arts

Western Michigan University
Kalamazoo, Michigan
December 1975
ACKNOWLEDGEMENTS

I would like to express my gratitude to Drs. Malcolm Robertson and Galen Alessi for their assistance as advisors in the preparation of this thesis. My thanks also go to the staff of the Special and Elementary components of the Kalamazoo Valley Multihandicap Center and also to Ms. Anita Wallerstein, whose invaluable assistance in the collection of data helped complete this thesis. And finally, I wish to thank the chairman of my committee, Dr. Brian Iwata, for giving me the guidance and training necessary to complete this thesis. His patience and encouragement were deeply appreciated.

Benjamin B.C. Wu
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in “sectioning” the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from “photographs” if essential to the understanding of the dissertation. Silver prints of “photographs” may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MASTERS THESIS M-7954

WU, Benjamin Bun Chuen,
PROGRAMMING THE GENERALIZATION OF GREETING RESPONSES IN RETARDED CHILDREN: A COMPARATIVE STUDY.

Western Michigan University, M.A., 1975
Psychology, clinical

Xerox University Microfilms, Ann Arbor, Michigan 48106
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II METHOD</td>
<td>8</td>
</tr>
<tr>
<td>Subjects</td>
<td>8</td>
</tr>
<tr>
<td>Setting</td>
<td>8</td>
</tr>
<tr>
<td>Response Measurement</td>
<td>9</td>
</tr>
<tr>
<td>Procedure</td>
<td>12</td>
</tr>
<tr>
<td>III EXPERIMENTAL DESIGN</td>
<td>16</td>
</tr>
<tr>
<td>IV RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>V DISCUSSION</td>
<td>24</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>32</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION

Interest in the application of behavior modification techniques to language disorders has grown steadily over the last few years. Some disorders which previously required long term treatment and some which had been considered as untreatable, have been recently shown to be amenable to behavior modification techniques (Lahey, 1973; Sloane & MacAulay, 1968). There has also been a growth of behavioral data in the experimental analysis of language development in the retardate. Guess, Sailor, Rutherford, and Baer (1968) utilized imitation and differential reinforcement to establish generative use of the plural morpheme in a severely retarded girl who had only a small vocabulary of simple words and phrases. Guess (1969) used operant techniques to establish the receptive identification of singular-plural items in two retarded boys, and demonstrated that the training of receptive language skill does not necessarily enhance acquisition of the same behavior at the productive level. Guess and Baer (1973) obtained similar results indicating that productive speech and receptive language may be functionally independent in severely retarded individuals. Schumaker and Sherman (1970) trained three retarded children to produce past and present tense...
forms of verbs in response to verbal requests. The children correctly produced past and present tense forms of untrained verbs within one inflectional class. It was considered that generative use of verb inflections was obtained.

The above studies and others of a similar nature used the concept of response class to demonstrate the generative nature of speech and language in the retarded population. Most of these studies have employed a reinforcement and imitation procedure in demonstrating that teaching a small number of examples from a linguistic class would result in generalization to other untaught members of the same class. The studies have demonstrated that speech and language skills can be trained to a high degree through the use of operant techniques. However, most of the studies assessed generalization from trained to untrained items in the same experimental setting. Few, if any, assessed the extent to which expressive language generalized to a more natural setting. Generalization of appropriate speech has not received the experimental attention necessary to establish it as a reliably scheduled outcome of speech training. As noted by Garcia (1974), though there are reports of newly trained speech being used in other situations outside the training situation
(Risley & Wolf, 1967; Sloane, Johnston, & Harris, 1968), experimental and reliable documentation have not yet been provided.

Many operant language studies have indicated that generalization of newly acquired skills does not automatically occur. Jackson and Wallace (1974), in training voice loudness in a severely retarded aphonic female, noted that the failure of the subject to speak loudly in environments other than the training setting might be due to the dissimilarity of the stimulus conditions in the training and testing environment. To overcome this problem, the authors attempted to promote generalization by increasing the number of common elements between the classroom and the experimental setting. One such procedure was having teachers and aides in the classroom prompt and reinforce appropriate talking and social behavior. This procedure resulted in improved voice loudness on the part of the subject in the classroom. On the other hand, Barton (1970), who studied language conditioning and generalization, obtained poor results even though she had structured the generalization sessions to be as similar as possible to the experimental sessions. The probable cause of the poor generalization results was attributed to interactive effects between differences in reinforcement schedules of the
experimental and generalization sessions and other variables such as the subject's poor attention span during the generalization sessions and the subject's neurological impairment.

The concomitant goal of any behavior change program should be the use of these newly acquired skills in contexts other than those originally trained. Of particular importance is the area of social skills where the individual might be required to use the newly developed behavior in a large variety of situations and with a number of different people. The need for programming generalization has been emphasized by Baer, Wolf and Risley (1968); Lovaas, Koegel, Simmons, and Long (1973); Lovaas and Simmons (1969) and others. Several studies have attempted to analyze the conditions under which generalization will occur with systematic programming. Kale, Kaye, Whelan, and Hopkins (1968) studied generalization of social greeting responses across three withdrawn chronic schizophrenics. The authors used prompts and cigarettes as reinforcers to increase the rate of greetings to one experimenter. The reinforcers were gradually faded so that the greeting response came under the control of the experimenter's approach. However, little or no generalization was obtained with persons other than the original experimenter. To overcome this problem, the
authors employed five additional trainers who reinforced the greeting response. The additional trainers trained all subjects concurrently. This procedure produced generalization to a new "test" person. However, since the addition of new trainers also resulted in an increase in the number of training trials, it is unknown as to whether or not additional trainers are a critical element in the programming of generalization. Redd (1970) and Redd and Birnbrauer (1969) studied conditions under which retarded children's cooperative play generalized to individuals who were not involved in training sessions. The results indicated that when the children emitted generalized play behavior, they were discriminating among "test" individuals who were carrying the reinforcer cup. They were selectively responding to people who walked into the playroom carrying the cup from which edible reinforcers were distributed. Garcia (1974) used differential reinforcement and imitation to train two retarded children in using three sequential verbal responses to the display of a picture and questions related to that picture. Minimal generalization was obtained during the probe sessions with new experimenters. Generalization of the trained speech form was finally observed for non-training individuals after several individuals had conducted
training on the same verbal response. Stokes, Baer, and Jackson (1974) utilized prompting and shaping procedures to develop handwaving as a greeting response in four institutionalized retarded subjects. Results indicated that training by one experimenter was not sufficient for generalization of the handwaving response to other individuals who were not involved in the training sessions. To obtain generalization of the handwaving response, the authors initiated training of all the subjects by a second experimenter concurrent with maintenance training of the subjects by the first experimenter. After training by the second experimenter, high levels of generalization to individuals not involved with training the target behavior were obtained. This study attempted to show the independence of time/trials factors from the generalization programming procedures. Examination of the results indicate this might not have been achieved, since no controls were implemented for the number of trials presented per trainer and the data also suggests that the generalization levels might have increased without the introduction of an additional experimenter.

The above studies have shown that training by five concurrent trainers and training by one additional trainer have produced high generalization levels.
However the studies allowed for a possible confounding of additional training trials with the generalization procedures. None of the studies cited have attempted to determine the relative effectiveness of a different number of trainers on generalization. The present study looked at the effects produced by a different number of trainers on generalization of a greeting response by employing a multiple-baseline design across seven subjects. The increasing lengths of time before introduction of additional trainers and the fact that each subject received the same amount of training trials everyday controlled for the possible confounding of time and trials with the generalization-programming procedures.
METHOD

Subjects

Subjects consisted of seven male retarded children ranging from nine to thirteen years of age. All were classified as "trainable mentally retarded" and attended the Kalamazoo Valley Multihandicap Center in Kalamazoo, Michigan. All of the subjects had appropriate daily living skills such as toileting and eating skills. Some of the subjects were also in programs designed to eliminate inappropriate behaviors such as aggression and temper tantrums. The subjects were selected on the basis of two criteria:

1. They did not have any physical disability which prevented them from emitting the target response.

2. They did not emit the target behavior at the onset of the study.

Setting

The study was conducted at the Kalamazoo Valley Multihandicap Center which provides educational programming for multiplihandicapped children from one to twenty-five years of age. Each child attended school six hours a day and each day was divided into twelve half-hour sessions during which the child received
training in several areas of academic and daily living skills.

Response Measurement

Definition

The target response was a verbal greeting defined as a subject's saying "Hi" or "Hello" to another person. The responses emitted by each subject were classified as follows:

1. Correct response - a greeting in the form of "Hi" or "Hello" emitted spontaneously within five seconds after a trainer or prober has stood within three feet of the subject.

2. Incorrect response - a response which, when emitted by the subject, did not fulfill the two conditions stated under the category of "Correct response".

3. No response - a situation in which the subject emitted no response or walked away from the prober after the prober has stood for five seconds three feet in front of the subject.

The subject's daily acquisition and generalization data were converted into percentages. The daily acquisition rate for each subject was obtained by dividing the number of correct responses by the total number of trials and multiplying by 100. The daily
generalization rate was obtained by dividing the total number of spontaneous responses to probers by the total number of probes conducted and multiplying by 100.

**Training trials**

All trainers followed the same procedure in training each subject to acquire a spontaneous greeting response. A shaping and fading procedure was utilized in training the acquisition of the response. Each trainer was given a written description which listed in detail the steps involved in the teaching of the greeting response (see Appendix A). Training sessions were conducted daily in therapy booths or behind cardboard partitions in the various classrooms. Each subject received sixteen training trials per day. The experimental phase of this study consisted of four different phases.

**Generalization probes**

Generalization of the greeting response was measured by daily probes conducted with all the subjects. All probes were conducted by persons other than those engaged in training the target subject. Each prober made sure that the subject being probed had not seen him for the previous two minutes. The prober then stood within three feet in front of the subject and waited for five
seconds for the appropriate response. If the subject emitted the correct response, the prober responded with "Hi, child's name." If the subject emitted an incorrect or no response, the prober ignored the subject and walked away. If the subject was interacting with another staff member, the prober made sure that the staff member concerned knew that a probe trial would be conducted after two minutes. The staff member would terminate whatever was going on until the probe trial was over. Six to nine generalization probes were conducted with each subject daily. The probers were allowed to choose the subjects they wished to conduct probe trials on. The choice of different subjects was made daily.

Reliability

Reliability checks were conducted, on the average, every sixth experimental session for all training and generalization trials. Designated observers would conduct reliability checks with all the probers and trainers. The independent observer would sit or stand at least five feet away from the probe situation and score the subject's response. An agreement was scored if both the prober and the independent observer agreed on the scoring of a response. Reliability percentages were calculated by dividing the number of agreements by
the number of agreements plus disagreements and multiplying by 100. Reliability ranged from 90% to 100% for the seven subjects, with a mean of 95%.

Procedure

Baseline

Generalization probes were conducted with all subjects to determine the extent to which they produced spontaneous verbal greetings under natural conditions. All probers followed the same procedure as outlined under "Generalization trials".

Phase 1

Sessions were conducted inside the classroom's therapy booths or behind cardboard partitions. The booths' doors were closed and the cardboard partitions were arranged such that the subjects were not able to see any ongoing activity in the classroom. The trainer sat in front of the subject and worked with the subject on the assigned activity for that half-hour or hour. Occasionally the trainer interrupted the assigned activity to carry out the training procedure. The trainer held an edible reinforcer (M & Ms, pretzels, etc.) in front of the subject's face and said "Say "Hi", child's name." When the subject emitted a correct response, he
was immediately given the reinforcer and praised. Each training trial was separated from another by a minimum of two minutes. When the subject was able to say "Hi" with an 85% accuracy level for two consecutive experimental sessions, phase II was initiated.

**Phase II**

The training booths' doors or the cardboard partitions were gradually opened wider, allowing a larger view of the ongoing activity in the classroom. The trainer said to the subject, "I am going out of the booth now and when I come back, I want you to say "Hi"." The trainer then went out of the booth, initially for two seconds, and re-entered. On re-entering the therapy booth, the trainer held the edible reinforcer in front of the subject's face (standing approximately three feet from the subject) and waited five seconds for the subject to say "Hi". If the subject emitted a correct response, he was immediately given the reinforcer and praised. If the subject emitted any other response, he was verbally prompted to give the correct one. The trainer gradually increased the amount of time he stayed out of the booth to a maximum of one minute. Each average increase in time spent out of the booth was approximately five seconds more than the previous time.
The trainer also faded the reinforcer through space from in front of the subject's face to the trainer's side. The objective was to have the subject emit a correct response immediately after the trainer had re-entered the booth. Two consecutive sessions of 85% accuracy led to the initiation of the next phase.

**Phase III**

The therapy booths' doors were completely opened and the cardboard partitions were arranged so that the majority of the ongoing activity in the classroom could be observed by the subjects. Before going out of sight of the subject, the trainer would say "I am going out of the booth and when I come back I want you to say "Hi"." The trainer then left the subject for a minimum of one minute. He then came back and stood three feet in front of the subject and waited five seconds for a response. If the subject emitted a correct response, the trainer immediately gave him an edible reinforcer and praise. If the subject emitted any other response, the trainer prompted him to say "Hi".

**Phase IV**

Each subject received, in this phase, a total of four training trials per day instead of the total of sixteen trials. The procedure followed was exactly
the same as the procedure described in Phase III. Phase IV was also known as the maintenance phase.
EXPERIMENTAL DESIGN

The present study utilized a multiple baseline design across subjects (Baer et al., 1968). Following the collection of baseline data, the seven subjects were randomly assigned to four different experimental treatments (see Figure 1, p. 17). Subject 1 received training by only one trainer throughout the study. Subjects 2 and 3 initially underwent training by a single trainer but they also received training from an additional trainer concurrent with the first trainer during the later stages of this study. Subjects 4 and 5 received training from two trainers simultaneously. Subjects 6 and 7 underwent training with four trainers simultaneously.

The actual amount of training received by each subject was controlled by dividing the number of training trials allowed per day (16 trials) by the number of trainers. Thus, Subject 1 received sixteen trials per day from one trainer whereas Subject 4 received eight training trials from each of two trainers and Subject 6 received four trials from each of four trainers per day.
Fig. 1. Multiple baseline across subjects receiving training from a different number of trainers.
RESULTS

Figures 2, 3, and 4 (p. 21, 22, and 23) show the generalization of greeting responses across the seven subjects. The responses were recorded as the percent of correct responses to daily probes averaged across two days. In every case training resulted in an increase in generalization after near-zero baselines. However, variability was seen in some of the data, and not all increases were durable across time.

Figure 2 (p. 21) show the generalization data for Subject 1, who had undergone training with one trainer throughout the entire study, and Subjects 2 and 3, each of whom had initially been trained by one person and with an additional trainer added later. Subject 1 showed a steady and consistent increase in the rate of generalization. Subject 2 also exhibited an initial increase during training by one trainer. The addition of the second trainer did not result in an immediate increase in generalization. However, an increase was observed as the study progressed. Subject 3 showed improved but variable generalization during the one trainer condition; generalization immediately increased to near 100% levels with the addition of the second trainer.

Subjects 4 and 5, whose data are shown in Figure 3
received training by two persons throughout the study. Both subjects exhibited increased rates of generalization during the training phase, although this effect is more apparent with Subject 4.

Data for Subjects 6 and 7, who received training by four persons throughout the study, are presented in Figure 4 (p. 23). Implementation of the training procedure produced high rates of generalization with Subject 6, whereas the data for Subject 7 showed a less immediate and more variable effect.
Figure 2. Percent correct greeting responses during daily probes for Subjects 1, 2, and 3. Each data point represents an average across two sessions.
PERCENT CORRECT GREETING

BASELINE ADDITIONAL TRAINER

X = 6.8

SUBJECT 2

PERCENT CORRECT

BASELINE ONE TRAINER ADDITIONAL TRAINER

X = 1

X = 13

X = 86

SUBJECT 3

SESSIONS
Fig. 3. Percent correct greeting responses during daily probes for Subjects 4 and 5. Each data point represents an average across two sessions.
Fig. 4. Percent correct greeting responses during daily probes for Subjects 6 and 7. Each data point represents an average across two sessions.
DISCUSSION

A multiple baseline design across subjects was used to examine the relative effects of different numbers of trainers on generalization of a greeting response in retarded children. The results strongly indicate a successful programming of generalization of greeting responses across seven subjects. Each subject evidenced no shift from near-zero baseline levels before training and no subject failed to shift following training. Generalization to the probers was also evident in settings other than that in which training took place. A number of anecdotal reports indicated that the greeting response occurred in other settings as well, eg. the playground of the center, an ice cream parlor, in a shopping mall, etc.

Subjects 3, 4 and 6 evidenced a generalization rate as predicted, i.e. the Subjects undergoing training with one trainer and then with another trainer would show a slow initial generalization rate. On the addition of another trainer, the Subjects would show an immediate increase of generalization; the Subjects undergoing training by 2 trainers simultaneously would show a faster generalization rate than the Subjects undergoing training with one trainer and then an
additional one; Subjects undergoing training with four trainers simultaneously would show a faster generalization rate than the two previous conditions. Subject 3 showed improved but variable generalization after receiving training with one trainer and immediately increased to near 100% levels with introduction of the second trainer. Subject 4 evidenced an immediate and faster rate of generalization than Subject 3 with the initial introduction of two trainers. The generalization rate stabilized at around an average of 85%. Subject 6, who received simultaneous training by four trainers, evidenced an initially fast rate of generalization.

However no replication was observed in the other subjects with respect to Subjects 3, 4, and 6. Subject 2 showed the opposite trend of Subject 3's data. He had a much higher initial rate of generalization when undergoing training by one trainer and evidenced no increase in generalization with the addition of a new trainer until two weeks before the study's termination. One possible explanation might be inconsistencies in the training situation experienced by Subject 2. Upon addition of the second trainer for Subject 2, the first trainer left the center and a new person had to substitute for her. Two weeks later, due to uncontrollable circumstances, the additional trainer
also had to leave and this resulted in another change of trainers. The new trainers were handicapped in working with Subject 2 because they have never worked with him and they were not familiar with the training procedure for the greeting response. This unexpected change of trainers and its results might have had a damping effect on any possible upward trends expected after the addition of an additional trainer for Subject 2 (see Figure 2).

Subject 5 replicated, to a certain degree, Subject 4's performance. The only difference seemed to be a temporary initial lag in generalization. However, the generalization curve showed an upward trend which did not reverse, even at the termination of the study. One explanation for the initial lag in generalization might be due to individual differences between Subjects 4 and 5. Subject 4 was a very garrulous child whereas Subject 5 was a very quiet child who usually only answered when spoken to. Subject 4 therefore had a much higher probability of being reinforced for the appropriate response than Subject 5. This higher probability of being reinforced might have resulted in the target behavior coming under control of more natural contingencies at a faster rate.
Subject 7, who underwent training simultaneously with four trainers, showed a minimal increase in generalization after training began. This might have been due to the inconsistency with which some of the trainers conducted their training (e.g., there were several days on which one or more of the trainers did not complete their assigned number of training trials). Subject 7 therefore, did not always receive his maximum sixteen training trials per day.

Thus, the lack of replication might have been due to behavioral differences among subjects, occasional changes in trainers and inconsistencies in the training situation.

Due to the lack of replication obtained, nothing definitive can be said on the effect of different number of trainers on generalization of a greeting response. However, these results suggest that training by a second person would enhance generalization (see Figure 2) when low levels of generalization are obtained with one trainer. On the other hand, it is not clear if training simultaneously with four trainers would result in better generalization than subjects who received training simultaneously from two trainers or those who received training initially from one trainer followed with training from an additional trainer. Subject 3's
results agreed with the findings of Stokes et al. (1974). In that study, it was found that training and maintenance of a greeting response by one trainer was not sufficient for generalization of the response to other individuals not involved directly with training. High levels of generalization were obtained after a second experimenter trained and maintained the response in conjunction with the first trainer.

Future research could look at the feasibility of dual programming - the splitting up of programs for underachievers on a large scale basis. Instead of the usual one-to-one situation where one teacher works with one individual on certain tasks, effects of a different number of teachers working with the same child on the same program should be examined. One approach could be the structuring of programs such that programs overlap each other in the teaching of certain skills. For example, if a child was being taught color discrimination by one teacher and counting from one to three by another teacher, both teachers might structure their programs such that color discrimination could be repeated during the teaching of counting from one to three and vice versa. An example might be requiring the child to count three blue blocks rather than just counting three blocks.
Researchers could also look at the effects of reinforcement applied to a small number of generalization probes. A systematic analysis of the above would enable us to look at the functional introduction, through training, of a child's social response into a natural shaping environment.
References


Applied Behavior Analysis, 1973, 6, 131-165.


Sloane, H. N., and MacAulay, B. D. (Eds.) Operant procedures in remedial speech and language training.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX A

Instructions for training Subjects 1 through 7.
To All Trainers, Please Read Carefully!

**Phase 1**

If your sessions are conducted inside the booths, the door should be kept closed. If you are working within the confinement of cardboard partitions, make sure the partitions are arranged such that the child cannot observe the activities in the classroom.

Training Procedure:

1. Present the edible reinforcer to the child. The reinforcer should be about half a foot in front of the child's face.
2. Say to the subject, "Say "Hi", child's name."
3. Correct response - present edible immediately concurrent with praise.
4. Incorrect or No response - verbally prompt the subject. If correct response after being prompted, present edible reinforcer and praise.
5. If the subject can say "Hi" with 85% accuracy or more for two consecutive sessions when presented with the edible reinforcer, please ask for procedures for Phase II.

If there are any questions, please do not hesitate to ask me.

THANKS!
Phase II

If your training sessions are conducted within a booth, gradually open the door wider and wider. If your training sessions are conducted within the confinement of cardboard partitions, arrange it such that one of the partitions are opened wider and wider.

Training Procedure

1. Before you go out of the booth, say to the subject, "I am going out of the booth now and when I come back, I want you to say "Hi"."

2. Go out of the booth initially for two seconds only.

3. Re-enter the booth and stand 3 feet in front of the subject holding the edible reinforcer in front of his face.

4. Correct response - reinforce with edible and praise. If incorrect or no response, verbally prompt the subject to say "Hi".

5. Increase the time spent out of the booth by increases of 5 seconds up to a maximum of one minute.

6. Also start fading the edible reinforcer through space to the side of your body.

7. If the subject says "Hi" with 85% accuracy for two consecutive sessions, go to Phase III.
Phase III

The booth's door or cardboard partition should be completely open by now.

Training Procedure

1. The edible reinforcer should be faded to your side as soon as possible.

2. The time that you spend out of the booth or outside the partitions should be a minimum of one minute by now.

3. Before going out of the booth or outside the partitions, you say to the subject, "I am going out of the booth (or just "going out" if you work within cardboard partitions) and when I come back, I want you to say "Hi".

4. Stay out of sight of the subject for a minimum of one minute.

5. Re-enter the booth and stand 3 feet in front of the subject and wait for 5 seconds for a response.


7. Remember that the edible reinforcer should be at your side and you stay away for one minute!

8. 85% accuracy for two consecutive sessions, advance to Phase IV.
**Phase IV**

Everything in this phase is the same as Phase III except the number of training trials conducted. Please see me for the number of training trials that you should conduct with your subject daily.

Thank you!