
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Honors Theses Lee Honors College

12-2-2014

ParWeb: a front-end interface for cluster computing. ParWeb: a front-end interface for cluster computing.

Jacob Potter
Western Michigan University, pttr.jcb@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Potter, Jacob, "ParWeb: a front-end interface for cluster computing." (2014). Honors Theses. 2517.
https://scholarworks.wmich.edu/honors_theses/2517

This Honors Thesis-Open Access is brought to you for
free and open access by the Lee Honors College at
ScholarWorks at WMU. It has been accepted for inclusion
in Honors Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/honors_theses
https://scholarworks.wmich.edu/honors
https://scholarworks.wmich.edu/honors_theses?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/honors_theses/2517?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

Web User Interface Framework for High Performance Cluster
Computing

1

WESTERN MICHIGAN UNIVERSITY

Web User Interface
Framework for High
Performance Cluster

Computing

Senior Design Fall 2014

Jacob Potter, Benjamin Johnson, Kyle Chipps

Web User Interface Framework for High Performance Cluster
Computing

2

Abstract

 The High Performance Computational Science Laboratory at Western Michigan University

operates a cluster of systems for use by students, professors, and professional

researchers. Currently users that want to access the cluster, known as “Thor”, require knowledge

of the Unix/Linux command line. They also require knowledge of operating a piece of software

known as TORQUE to correctly achieve results from the High Performance Computing Lab.

 The Web User Interface Framework for High Performance Cluster Computing alleviates the

need for intimate knowledge of a command line interface, and replaces the current interaction

interface with a more user friendly and graphical oriented system. This interface allows users

with little knowledge of Unix/Linux, TORQUE, and even computing clusters to run programs

specific to their research purposes with ease. The interface allows users to add, delete, and

retrieve results in a fluid, easy to navigate environment.

 The Web User Interface Framework for High Cluster Computing was designed, developed

and implemented using the Extreme Programming philosophy of software life cycles. The client

representing Western Michigan University’s High Performance Computing Science Lab, Dr.

John Kapenga is the main client to which all functional behavior of this interface is

described. By request of the High Performance Computing Science Lab the project will be

licensed under the GNU General Public License Version 2.

Web User Interface Framework for High Performance Cluster
Computing

3

Table of Contents
Abstract ... 2

Introduction ... 5

Background ... 9

HPCS... 9

Problem ... 11

Technical Background .. 12

Thor ... 13

Design Decisions .. 14

FORCE Project ... 18

Operating Systems .. 20

Web Servers .. 22

Web Applications Frameworks ... 23

Laravel .. 24

Ruby on Rails .. 25

Capistrano ... 26

Phusion Passenger ... 26

Devise ... 27

SSHKit .. 27

Implementation ... 28

Web User Interface Framework for High Performance Cluster
Computing

4

Introduction to Extreme programming ... 28

Risk ... 28

Stories ... 29

ParWeb User Stories ... 29

Testing... 33

Security ... 35

Legal ... 37

Resources .. 38

Summary ... 41

Glossary .. 42

References ... 42

Web User Interface Framework for High Performance Cluster
Computing

5

Introduction

 The Web Interface Framework for High Performance Cluster Computing is an interface for

connecting users to the High Performance Computational Science Laboratory at Western

Michigan University. Dr. John Kapenga represents the High Performance Computing Lab as our

client. The interface itself was built with stability, reliability, and usability as top priorities.

 High Performance Computing Lab (HPC) is located on the Parkview Campus of Western

Michigan University; however the lab itself is used by students and researchers from many

different areas of study. The HPC was created in 2012 with funding from the National Science

Foundation. The main goals of the HPC are to assist research primarily in the sciences; such as

physics, chemistry and of course computer science. Allowing users from all areas of expertise to

access such a resource is crucial to the advancement of all research done in these areas at

Western Michigan University.

 The HPC itself is comprised of many separate systems called “nodes” that are connected

through a network. The HPC uses a mixture of Graphical Processing Units (GPU) and other

servers for the cluster. There has been a steep rise in productivity, efficiency and power of

GPU’s in the last few years compared to their CPU counterparts. As a result the HPC uses

GPU’s to handle the bulk of its processing power.

 The specific setup of Western Michigan University’s High Performance Computing Cluster

is a set of 22 nodes of computing power. The main portion of the processing power the cluster

named “Thor” is comprised of 19 NVidia 2800GT Kepler GPU’s, with 1 Terabyte of available

temporary storage space to be used by processing. There are other nodes with more specific

Web User Interface Framework for High Performance Cluster
Computing

6

purposes, but all nodes using raid arrays and other preventative measures to keep Thor running

smoothly.

 The HPC uses a variety of technologies to operate its Thor. The main problem with the

HPC is user accessibility. Currently users that want to schedule and run jobs on the cluster need

a firm understanding of Unix/Linux environments and an understanding of the software used on

the cluster, TORQUE, SSH, SCP/SFTP. Current users are forced to learn these new

technologies, and run important tests and projects in an unfamiliar and occasionally a frustrating

environment. The goal of this Web Interface Framework is to alleviate the burdens from the

users who aren’t familiar with these environments and software. By building a user friendly

environment to use, any student, researcher or professor will be able to access the valuable

resources the HPC has to offer, in a quick, safe, and effective manner.

 It is important to note that, using a command line interface with Thor, and becoming an

expert with TORQUE is the most efficient and most powerful way to run applications in a cluster

environment. However it would be acceptable to lose a small amount of performance and

functionality to widen the user base exponentially.

 Thor uses a job scheduler known as TORQUE. This program handles interfacing between

users and clusters. A user normally connects using Secure Shell, and runs commands from a

command line. The Web Interface Framework will be communicating with TORQUE for the

user. This will allow more user accessibility and a graphical interface for interacting with Thor,

and potentially other cluster computing operations.

 There are existing projects with similar intentions available through open source, or

commercial means. The closest related project available is called FORCE written by Matteo

Web User Interface Framework for High Performance Cluster
Computing

7

Ragni. This project was developed for more advanced users of a TORQUE system, but is

nonetheless extremely valuable in providing information on how to communicate with a cluster

system.

 There is also a commercial product eQUEUE; it appears to provide many of the resources

and functions the HPC Lab wants, but at a cost. eQUEUE is also proprietary software, meaning

the software doesn’t adhere to the licensing requirements laid out by the client. eQUEUE will not

be discussed further in this report.

 The Web User Interface Framework for High Performance Cluster Computing was

designed, developed and implemented using an agile programming method known as Extreme

Programming. This method of professional software development stresses the importance of

communication between client and developing team. It also advocates for shorter release cycles,

and a different approach to day to day operations compared to the classic “Design, Implement,

Test, Release” software cycle.

 Extreme Programming has some unique concepts associated with it, and “stories” are the

fundamental basis of Extreme Programming. A “story” is created by a user, known as the

client. These stories are functional descriptions of what the client wants software to do. Stories

can be modified, added, or deleted at any point in the Extreme Programming

philosophy. However with each story follows another concept known as “risk”.

 Risk is defined in Extreme Programming as a measurement of the likelihood a particular

feature is feasible. The risk of a piece of functional behavior is generally not noted by the client,

and created by the development team. The goal of both developers and clients is to create

software according to the clients need, with the lowest risk possible. Risk is generally

implemented on a 1-10 scale. Risk can be reduced through use of another Extreme Programming

Web User Interface Framework for High Performance Cluster
Computing

8

principle known as “spikes”.

 In Extreme Programming, spikes are small, simple programs that produce a result which

can be used to identify risk of a story. These simple programs only purpose is to demonstrate

design decisions. The spikes themselves are usually not good enough to add into the final

product, but are essential to the overall design of a project.

 The resources needed to implement the Web User Interface Framework are all open source

and available, free of cost. All of the distributions, libraries and frameworks that are involved

with this interface have been chosen to produce an environment that is stable, user friendly and

reliable.

Web User Interface Framework for High Performance Cluster
Computing

9

Background

Some background information is required before diving into specifics of how this project

will be fully implemented, such as the client in question, the particular problem(s) being

addressed by this project, background of the system that will utilize this project, and other

existing solutions along with their applications and relation to this particular project. The client

associated with this project is the High Performance Computational Science Laboratory at

Western Michigan University (HPCS), working with Dr. John Kapenga directly. The problem

that was addressed by the software was usability of laboratory’s computing cluster by users

unfamiliar with the system, opening the benefits of high power computing to a larger scientific

community by building a framework that can be used on any such system. This is implemented

using a web user interface for cluster access and TORQUE scripting to run data through

programs written for the system in question. There exist projects that attempt to solve this issue

somewhat, each with their own merits and flaws. One such project is FORCE by Matteo Ragni,

which is an open source web based user interface for managing ‘jobs’ on the HPC cluster.

HPCS

The HPCS Lab is used by students, professors and researchers alike and is represented in

this project by Dr. John Kapenga, a computer science professor at Western Michigan University,

who will supervise the project to Release 1 and beyond. The following passage is the mission

statement from the HPCS website and will help give some more background to the goals of this

project:

HPCS houses a high performance computation cluster installed in 2012 with funding

from the National Science Foundation, to support interdisciplinary projects in

Web User Interface Framework for High Performance Cluster
Computing

10

computational science and engineering. The cluster provides a unique resource as a

hybrid computing environment for distributed computations between nodes, multi-

threading within individual nodes and massively parallel computations on graphics

processor cores.

Target work on the cluster includes basic computer science research with parallel

algorithm development and implementations, and furthermore projects in high energy

physics, composite materials research, carbon nanotubes modeling, computational fluid

dynamics, flexible body aerodynamics, and chemistry simulations for modeling the

nature of chemical bonding and for a computational study of enzymatic catalysis.

High performance computing also permeates many facets of education. Conforming to

WMU's mission as a learner-centered university, the HPCS infrastructure can set the

stage for developments in high performance computing education and training at the

institution, by facilitating training on cutting-edge computing facilities across multiple

departments in the CEAS and CAS colleges, and by engaging student participation in the

daily operation and maintenance of the system.
1

In the mission statement, it is stated that the cluster is used across the university by multiple

departments and colleges. Some of the research being conducted using the cluster includes

Exploiting Multi-Core/Hybrid Parallelism (Elise De Doncker, John Kapenga), Computational

Orthopedic Biomechanics (Peter Gustafson), High-Resolution Computational Fluid Dynamics

(William W. Liou), Computation of Feynman Loop Integrals by Iterated Adaptive Integration (E.

1
 "HPCS." High Performance Computational Science Laboratory. Western Michigan University,

2012. Web. 18 Mar. 2014. <https://cs.wmich.edu/~hpcs/>.

https://cs.wmich.edu/~hpcs/

Web User Interface Framework for High Performance Cluster
Computing

11

de Doncker) , Parallel Computation of Flexible Body Aerodynamics (Dewei Qi), Uses of

Multiprocessor Cluster Power in the PCI department (Paul Dan Fleming), and Supercomputing

for Chemical and Biological Problems (Yirong Mo). The experiments being conducted are

calculating large amounts of data which would be extremely difficult and time consuming

without the HPCS lab. As is evident, this cluster is used by people of many different fields,

educational backgrounds and familiarity with computing in general. This is where the problem

lies, how to make the cluster easily usable by the diverse range of possible users.

Problem

High power computing is beneficial not just to those in the Computer Science field, but to

those in Biology, Chemistry, Physics, Mathematics, and many, many others. However the

majority of possible users of this cluster system are not necessarily familiar with even basic

programming, let alone the extremely complex command line tools required for computing the

mass amounts of data the system is designed for. This particular problem is solved by having

applications written by developers for specific experiments, but this still presents another

problem. At the moment, if a user wants to have their data processed by a program on the cluster,

there is no simple interface for them to do so. In most cases they must send their data to an

administrator to create a TORQUE script to run this data through the software, and then send

them the results. This method is rather off-putting to possible users, and if there were a simpler

way to do this then the system itself would most likely see more widespread use. This is the

problem that this project addresses; a web based user interface makes the task of submitting data

to the cluster and getting results much simpler and more user friendly. However, before getting

into details about how this solution works, a basic understanding of high performance computing

Web User Interface Framework for High Performance Cluster
Computing

12

is required, which will be explained in terms of how it is related to this project and why are they

important.

Technical Background

High performance computing is the use of mass amounts of processors to cut the time

calculations of large amounts of data quite considerably. The way this is done is using several

computers, all with their own individual components (processors, RAM, hard drives, etc.) and

linking them together in such a way that they act as one system. This is what a computing cluster

is. Each computer in the system is called a computing node, which can be anything from a high

powered server to a personal computer. The nodes are connected by a high speed LAN, and uses

software to make the cluster behave as one computer. The use of several high performance nodes

in a cluster has many uses, but in the context of this project, clusters which take advantage of

parallel processing capabilities are the most relevant. In parallel computing, a program makes

use of multiple processors to run multiple computations at once, cutting processing time of a

program considerably and when combined with a cluster of computers each having several

processors, will yield a system that can compute large amounts of data quickly and efficiently. A

system with so many resources needs to be balanced well across the cluster, as to not overload a

single node. With this in mind, a cluster system is usually managed by software that allocates

computational tasks of a specified program into ‘jobs’ among the nodes of a system. This

software is usually controlled by scripts written by a user to run their own programs on the

cluster with certain specifications, usually containing some environment variables and some

UNIX BASH script. Some common batch control systems in use are OpenPBS and TORQUE.

Web User Interface Framework for High Performance Cluster
Computing

13

2
Today many modern high performance systems make use of GPU’s as opposed to traditional

CPU’s. Now GPU’s are designed for graphics, but the way the GPU processes data into

graphics is by arithmetic on several numbers at once, which usually correspond to locations on a

screen and other relevant data. However, through use of architectures like CUDA, these

properties of GPU’s and the fact that modern GPU’s are becoming quite more powerful than

their CPU counterparts, using GPU’s for these clusters allows even more data to be computed

efficiently.
3

Thor

The high performance computing cluster used by the laboratory is called Thor, which is

implemented with parallel processing across several computing nodes using GPU’s for

processing data. The specific setup of this cluster isn’t very relevant here, but the basic

architecture is; the cluster has 22 nodes using NVidia Kepler K20 GPU cards, with each node

containing a 1 Terabyte hard drive for temporary storage of computational work, 128-512GB of

RAM and 2-4 Sandy-Bridge Xeon Processors (the first two nodes – designated Node 0 and Node

1 – have four processors, Node 0 having 512GB of RAM, and Node 1 utilizing 256GB). The

cluster is bound together using an “Ethernet management network”. All nodes utilize a network

mounted directories on a RAID file server for storage. For user jobs, a main head node (Node 0)

2
 "TORQUE Resource Manager." TORQUE Resource Manager. Adaptive Computing, 2014.

Web. 18 Mar. 2014. <http://www.adaptivecomputing.com/products/open-source/torque/>.

3
 Jason Sanders, Edward Kandrot. CUDA by Example: An Introduction to General-Purpose GPU

Programming (1st ed.). Addison-Wesley Professional, 2010.

http://www.adaptivecomputing.com/products/open-source/torque/

Web User Interface Framework for High Performance Cluster
Computing

14

is “used to manage the entire cluster and share programs and data”. Thor uses the TORQUE

resource manager for control of batch jobs and distributing tasks among the nodes, and the use of

these TORQUE scripts is one of the central tenets of this project which is to create an interface

that automatically generates these scripts for multiple users and programs to run on said cluster.
4

Design Decisions

Now that some basic understanding of the system has been addressed, the solution to the

problem in question can be discussed. To start, consider figure 1 below, which gives a basic

layout of how a basic user currently utilizes the cluster. The user remotely logs in to the cluster

via SSH. The user must then use a command line text editor to create their own TorQUE scripts,

sftp/scp to upload their input data(if there is some), and then download their results manually

using sftp and scp). This method can present a rather troublesome learning curve as the user

would be required to be familiar with these command line tools, of the TorQUE job manager

(parameters, etc.), and UNIX/Linux in general.

4
 "Cluster Description." High Performance Computational Science Laboratory. Western

Michigan University, 2012. Web. 18 Mar. 2014. <https://cs.wmich.edu/~hpcs/cluster/>.

https://cs.wmich.edu/~hpcs/

Web User Interface Framework for High Performance Cluster
Computing

15

Figure 1

Figure 2 below illustrates how a ParWeb interface allows users to more easily utilize the cluster,

eliminating the learning curve. The user logs in to the web – interface, initializes a new job

(uploading input data if it exists), and then downloading results. The user has no need to know

TorQUE or any command line tools; they just need to be familiar with the interface layout which

will be easy to learn for any regular web user. The site saves the data on the web server and

automatically generates a TORQUE script and sends it to the cluster. The web server (hosted

separate from the cluster for portability) will run the TORQUE script along with the uploaded

data on the cluster, which will save the results in a directory on the web server. Part of the

TORQUE script generated will contain email information of the user, and will send them an

email (if this feature is enabled on TorQUE, handled by sysadmin). However, the user can also

Web User Interface Framework for High Performance Cluster
Computing

16

check the status directly in the interface, as well as view the results directly on the site and

download results as well.

Figure 2

This model cuts a lot of overhead out of the process, and will be useful for users that have little

knowledge of TORQUE scripting or even computers in general. This basic user interface is the

basis of the first release of this project. Future release hope to have more advanced TorQUE

control from the interface. As of now, the framework consists of some basic modules to facilitate

communication between the web server and cluster. The workflow of a ParWeb application

creation is as follows. There exists a cluster application that users need to access, a flu epidemic

simulation for example. Figure 3 below helps illustrate this workflow

Web User Interface Framework for High Performance Cluster
Computing

17

DEVELOPER WEB SERVER

USER

WWW

C1

USER PC

C2

C3
C4

Figure 3

A web developer will develop an interface from ParWeb to utilize the specific cluster application

(downloaded from the web-C1). The ParWeb framework at the moment is just a skeleton

application that utilizes SSH modules to communicate with the cluster, so a web developer just

needs to customize the initial ParWeb application to the cluster application in question (setting

cluster address, specifying file locations, TorQUE script contents, etc.). Once the application has

been setup, it is deployed to the web server-C2. A user may now access the cluster application

Web User Interface Framework for High Performance Cluster
Computing

18

via the web-C3&C4. The next release hopes to take advantage of Rails scaffolding, a simple

command to generate a skeleton application automatically.

FORCE Project

Upon initial research, the FORCE Project was found. The project was a good example of

interfacing with a TORQUE powered cluster, however it lacked the functionality that was

required. The original project functions more as a job manager than an end-user interface geared

more towards cluster administrators and advanced users. The interface has options to view the

queue and delete jobs, create TORQUE scripts using fields dependent on user entry, the ability

for the user to upload scripts already written, and a file directory interface to view and run

files/scripts already in the user space. The interface is specific to TORQUE scripts and really

isn’t customizable to other non-cluster uses. The biggest difference however, is the lack of auto-

generation of scripts for basic users, which counts this out as a possible solution to the main

problem this project resolves, usability. Without this auto-generation, the goal of making the

cluster utilizable to a larger group of users is rendered moot. Below are a few screenshots of the

original FORCE project, which will help illustrate some of the similarities between this project

and FORCE.
5

5
 Ragni, Matteo. github.com/MatteoRagni/Force. 18 July 2013. December

2014<https://github.com/MatteoRagni/Force>.

https://github.com/MatteoRagni/Force

Web User Interface Framework for High Performance Cluster
Computing

19

Figure 5 TORQUE Script Generation [v]

The screen shown in Figure 5 demonstrates the fields used to generate the TORQUE scripts in

FORCE. Parweb generates these scripts automatically as opposed to this implementation.

Figure 6 Queue [v]

Web User Interface Framework for High Performance Cluster
Computing

20

Figure 6 illustrates the job management available with FORCE. In this project, job deletion

control is lost, and users are allowed access only to job information for their own jobs.

Operating Systems

ParWeb needed to be keep as many things as uniform as possible. One such instance is

the decision of an operating system that ParWeb will run on. There are many different Operating

Systems to choose from and the decision process will be outlined in this section.

There are three main families of operating systems available to use on this project. Those

are: Microsoft, Apple and Linux. Choosing a family will determine the type of operating system

that will be used in this project. Each family has its strengths and weaknesses.

First up is Microsoft, specifically Windows Server. Virtually everyone is familiar with a

windows environment and using Windows may seem like the correct choice at a glance. Getting

to some details about the Windows Server Operating System, the GUI is easy to use, and the

server manager is easy to navigate and control. Windows Server is used in many enterprise

applications. Windows Server has a favorable release cycle, which releases major versions every

few years, and in between all the necessary security patches and general small enhancements.

However there are drawbacks with Windows Server that do not allow ParWeb to further consider

Windows Server for use. The first and main concern is the cost. For what ParWeb would need

Windows Server to do, the cost of a Windows Server license is over $500. There are different

types of licenses available from Microsoft; however none fit ParWeb for the following reasons.

First, Thor and the HPC Lab are almost exclusively Linux based. Implementing a Windows

Server in that environment would be more complex than necessary. The latest version of

Windows Server has many complaints from home server maintainers, to enterprise systems alike.

Web User Interface Framework for High Performance Cluster
Computing

21

Such as features that require .NET 3.5 may not work since Microsoft has moved to .NET 4.5 in

Windows Server. This outlines the difficulties in looking for plug-ins or add-ons that may help

the project move along. As such the use of a Microsoft based server environment was ruled out

almost exclusively because of cost and the environment Thor and the HPC Lab operates in.

 Then there is OS X Server edition, an operating system from Apple Inc. which is very

similar to the OS X desktop operating system, with added features that allow for server related

functions. OS X and OS X Server implement a Unix/Unix Like kernel which is an important

plus over Windows Server as it keeps the environment close to uniform. However the main

reason to use OS X Server over a Linux based operating system is if the use of Apple Products is

in the environment. Linux can do all the things OS X and OS X Server can do outside of clients

that don’t use Apple Devices. Since ParWeb does not contain “users” in the sense that it would

need to administer users on an enterprise like network, with specific file permissions and access

to software, the use of OS X Server was ruled out.

 That leaves Linux. Linux is used by the HPC Lab and Thor, and by the administrators

that maintain Thor and the Lab itself. It is very popular among many developers, both professors

and students alike. Linux is assembled under the free and open-source software ideology. Linux

is widely regarded as the most efficient for clusters and high performance computing. Many

clusters and supercomputers around the world use Linux. The source code for Linux is available

for any purpose that a user would need. Typically Linux is packaged with other software into

what is known as a “Linux Distribution”. There are many and more distributions to choose

from; however ParWeb was requested by the client for a specific distribution.

Web User Interface Framework for High Performance Cluster
Computing

22

At the request of the client, the web interface framework was built to run on an Ubuntu

14.04 machine. This version was also chosen by the client. Ubuntu is a “debian based”

operating system, developed both by open source developers and Canonical Ltd. This operating

system fits well with the decision to keep all the software from this project Free and Open

Source. Ubuntu is one of the most popular Linux distributions both by “debian based” and

overall standards. Versions of Ubuntu are generally updated every six months; however Ubuntu

does release LTS (Long Term Support) versions periodically. Ubuntu 14.04 is considered an

LTS Operating System. This furthers the notion that the system will be stable operating under

Ubuntu 14.04. Unlike its Windows and Apple counterparts there is no cost for this operating

system, and it has one of the largest Linux market shares.

In the end the cost, implementation, familiarity, and the uniform of environments were

the most important factors in choosing an operating system. Of these a Linux based operating

system is a clear winner. Of the thousands of Linux distributions, the client, Dr. John Kapenga

and the HPC Lab requested Ubuntu 14.04 LTS to act as a medium between users and Thor.

Web Servers

 ParWeb does not make use of an entire operating system. In fact, it mainly uses one key

part of a server. That part would be the Web Server. A web server is a system that process

requests over HTTP. There are three main web servers available. The two web servers that

share the majority of the market share are Apache and Information Internet Services. Nginx is

another web server that isn’t as popular as the previous two; however was still very much a

viable option for ParWeb.

Web User Interface Framework for High Performance Cluster
Computing

23

 The first web server ParWeb ruled out was Information Internet Services (IIS). This web

server is from Microsoft, and shipped with the Windows Server operating system. IIS has been

around a long time and is one of the most popular web servers in production today. However to

use IIS you must purchase the Windows Server operating system, which rules this out as an

option for ParWeb.

 Apache is the worlds most used web server. It began in 1995 as a project based on

NCSA HTTPd Server. Shortly after its creation, it was the most popular HTTP Server. Apache

is shipped with many Linux Distributions as the default web server. This is also the case with

Ubuntu 14.04. One of the most important features that Apache holds over IIS is the amount of

plug-ins and extensions made available at no cost. The extensions to Apache enhance its ability

to be used with numerous amounts of applications and services. With the default web server on

Ubuntu being Apache, and the administrators at the HPC Lab suggesting Apache, ParWeb was

designed for an Apache Web Server.

 Another notable mention in web servers is Nginx. Ngnix shares many same concepts

with Apache. It is open-source under the BSD License. It has been known to have a

performance advantage over Apache, (and IIS) however it does not have the features and user

base that Apache does. However in the future releases of ParWeb, it could be that switching to

Nginx would be favorable.

Web Applications Frameworks

 ParWeb was not built from a blank screen. ParWeb was built on a web application

framework. This design was decided at the beginning with the client and the HPC Lab involved.

There are thousands of frameworks available in almost any language today. The languages that

Web User Interface Framework for High Performance Cluster
Computing

24

the HPC Lab preferred we use was PHP or Ruby. These restrictions were placed because of the

hardware, and software that had been decided. Choosing the best framework for a project can

make the project go smoothly. Deciding on a framework that does not give you the features you

need would cause more problems than it solves, generally. The important factors in choosing a

framework are things like, a strong user base, good documentation, testing suites, integrated unit

testing, regular security updates and developer interaction. Good frameworks are actively

developed on and easy to use and understand. Of the frameworks in PHP and Ruby, the main

two contenders are Laravel and Ruby on Rails.

Laravel

 Laravel is a free and open source PHP Framework. Laravel is based on the development

model of a MVC Framework. Its source code can be read on GitHub, and of the web

applications using PHP Frameworks is one of the most popular. Laravel has a built in packaging

system that allows code to be easily added to other applications. Laravel allows for database

migration and unit testing within the framework. Laravel is a powerful tool in building web

applications by making a lot of the development side of building web applications easy. The

syntax is clean and easy to understand, by following some of the extensive documentation that is

available for laravel; it is possible to go from nothing to running project in very little time. There

are active developers that are updating the code base to Laravel very frequently. Laravel is still

fairly new, as the initial release was in 2012. It has grown very quickly, but Laravel's main

competition seems to be with the older, but more popular Ruby on Rails.

Web User Interface Framework for High Performance Cluster
Computing

25

Ruby on Rails

 The Ruby on Rails Framework was initially release in 2005, but in the last few years has

seen exponential growth. The Rails Framework is built on Ruby, a programming language.

One of the main tenants of Ruby is convention over configuration. Basically this means that the

programmer need not spend time configuring files for setup. Ruby and Rails follow this

principle very well. Rails, like Laravel utilizes the MVC pattern to organize its application.

Rails is RESTful by default and its program structure is similar across any type of project. Rails

and Ruby both are very well documented, and both have been on the forefront of development

since their beginnings. Rails has very well built testing suites for any application that gets

created. This makes it easier to rapidly create good working applications. Rails has specific

rules about naming schemes and syntax that allow for a uniform style to be followed in all Rails

projects, making it easy to hand to another group of developers and keep active development up.

There are negatives to Ruby on Rails; the learning curve of this framework tends to be quite

high, because of all the rules about naming of files, databases and classes. Ruby on Rails does

not support all types of website hosts (it does support Apache). The scalability of Ruby on Rails

is not as good as Laravel as of yet. Scaling up Ruby on Rails applications is possible, but harder

to do than other frameworks.

 In conclusion the choice between Laravel and Rails is very close. Both offer many strong

concepts and tools for web applications. ParWeb would have run on either, with no problems.

However in the light of an exponentially expanding user base, immaculate documentation, and

easy to understand syntax, Ruby on Rails was chosen for this project.

Web User Interface Framework for High Performance Cluster
Computing

26

Capistrano

 There is a small amount of work to be done when deploying a Ruby on Rails application.

Fortunately there are tools to make this as quick and simple as possible. One of those tools is

Capistrano. This tool allows a developer to automate steps during a deploy process such as,

copying code from a development machine to a production server, updating system and server

configurations, and the restarting server. Capistrano also allows for setting up of databases,

manage the application server, and manage Ruby versions, along with a myriad of other features.

Capistrano is widely used by the Rails community and is actively developed on.

Phusion Passenger

 Getting the code to the server is one part. Actually running the application is another,

and that is where Phusion Passenger comes in. Of the two main web servers that Ruby on Rails

supports, Apache and Ngnix, there needs to be some modules that allow those services to use

Ruby on Rails applications. With a Laravel application, one would install mod_php on the web

server, which would allow the application and the web server to interact cleanly. This is exactly

what Phusion Passenger does. Passenger allows a Rails application to run effectively on a web

server. When Rails applications are running, they run as a persistent process, as starting from

scratch takes a large amount of overhead. What Passenger will do is keep track of the Rails

stack in such a way that creating additional processes is faster than waiting for a new instance to

start from the beginning. Passenger does this by re-using the Rails stack and managing shared

memory.

Web User Interface Framework for High Performance Cluster
Computing

27

Devise

 Devise is a module for Ruby on Rails applications that allow a developer to add

authentication to an application. It is comprised of ten modules that handle everything from

database encryption and decryption, to IP Address tracking and resetting password functionality.

ParWeb uses devise to handle user creation and authentication in a clean and simple manner.

Devise is very feature rich and has many uses, however not all the features need to be used, and

many can be included for future development. This speaks to the flexible nature of Devise, in

that it allows a developer to use only the parts any one application requires, with the possibility

of adding more features in later.

SSHKit

 SSHKit is a part of the Capistrano package. It is a feature of Capistrano that allows the

running of commands on one or more servers. The main communication of ParWeb and Thor

uses this feature to pass files, and run jobs on the cluster. With SSHKit, ParWeb can use

SSH/SFTP/SCP easily on any server that allows that kind of interaction.

Web User Interface Framework for High Performance Cluster
Computing

28

Implementation

Introduction to Extreme programming

Extreme programming is the software development strategy that requires balancing both

the customers’ requests and the development teams time to build a piece of software that meets

the user's needs. Extreme programming works to meet the need of both “business” and

“development” where development is the team of programmers and business is the customer that

is requesting the applications and features. In any project, communication is vital and extreme

programming uses communication as one of the many core building blocks to help verify the

success of a project. Another core concept of extreme programming that may differ from a

“regular” software development cycle is the use of short release cycles to help reduce the risk

involved with implementing a certain feature.

Risk

By assigning a risk value to each feature we can determine a realistic time frame that a

requested feature can be solved in. Risk is assigned on a scale from one to ten where a very low

risk task would have a value of one and a high risk task would have a value of ten. For example

development is given a large file of customers with their name, address, amount of money owed

to the company, sorting this file by name alphabetically then sending a bill to each customer

starting at the beginning of the list could be a simple task for any part of the development team

and could be categorized with a risk value of one to five (assuming the file is small enough). But

often times there are risks that are not seen by the business side that are very apparent to the

development side for example if business wanted us to sort this file so that they could find the

shortest route to take to each customers address and hand deliver the bill this could easily be an

Web User Interface Framework for High Performance Cluster
Computing

29

example of a NP-hard problem and a risk value of nine or more would have to be assigned to it

once again depending upon file size.

Stories

Stories are given by the business side and they are functional examples of what each

feature should do and any requirements that the overall system will need to have. If each feature

has an appropriately assigned risk value then this can give both parties a better idea of the time it

will take to implement a feature if development is having a problem understanding the story they

can always ask business to rewrite it and if it is too big development can break that story into

smaller stories. If business has a new feature or change they want to make to an old story they

can go ahead and rewrite it at any time. The time unit measurement used for estimating a story

are referred to as “ideal engineering hours” which can be defined by the time it would take to

implement just that feature with no interruptions.
6

ParWeb User Stories

1. A feature that is of great importance to the customer is the ability for our framework to

work with an apache web server on an Ubuntu Server. This is a very low risk and easy to

implement feature since apache is an open source and free of cost web server things like

documentation and general information can easily be found on the Internet. The same

goes for the Ubuntu operating system so a risk value of three is assigned here. The time it

6
 Kent Beck, Cynthia Andres. Extreme Programming Explained: Embrace 2nd Edition.

Addison-Wesley Professional, 2004.

Web User Interface Framework for High Performance Cluster
Computing

30

takes to implement this requested feature is only about 3 hours which come from the time

it will take to document the configurations of the server and web server.

2. The client has also requested that our framework be very lightweight and that it requires

little overhead and server resources along with the use of apache for lightweight and

portability the client has asked that we use Ruby on Rails. Although there is no problem

in using these technologies there is always going to be a very large risk involved with

learning a new programming language. The risk value that was assigned here is a seven

since some of the group has experience with similar languages while others have none.

The learning of a new programming language could take a whole semester since each

member of the development team has mastered at least one programming language this

should only take 40 hours for each member to learn.

3. The client has requested that the framework be stateless or RESTful, this means the

developer can send a GET, POST, DELETE, or PUT request to a server URL then the

server will respond depending upon the verb and URL requested. This will give the

person who is developing the application the ability to easily send information using a

JSON format and require that the server store no information related to the client. This

will be assigned a risk value of nine since the design and implementation of a RESTful

API is something that can rise to many opinions and spark much debate. The risk value is

also very low since Ruby on Rails is RESTful by default.

4. One functional behavior that our framework will implement is the ability to easily

upload, monitor, and view output files from a program that is ran on the cluster itself.

Since this is a rather large story we can break it down into fewer easier to work with

stories instead.

Web User Interface Framework for High Performance Cluster
Computing

31

a. The ability to easily upload data to the cluster comes with risk value of 5 since

there are libraries for this openly available in Rails the but making library

functions work for what we need will take some time and code. The amount of

time allowed for the implementation of this feature is one day or twenty four

hours.

b. Being able to view the output files from the web interface will be a little easier to

implement and has low risk value of one this should only take about three hours

since the aforementioned libraries have very similar functions. A picture of what

this may look like can be found in figure 9 below.

Figure 9 Parweb Output page

Figure 9 shows the user the results of their run job, the user will also have the option of

downloading the results in the appropriate file format specified by the cluster application.

Web User Interface Framework for High Performance Cluster
Computing

32

5. The client requested that the transferring of any kind of data be done via SSL since the

apache web server is being used and enabling SSL on apache can be done through the

editing of a configuration file the risk value assigned here is one. Once again the

documentation of the configuration files will be needed so time allocated for this story is

one hour.

6. Although we decided for release one that using SSH to authenticate will be ok, in our

version of release two there will need to be a user database where a access hierarchy can

be stored in order to verify what users can run what application with what privileges i.e.

if you’re a student you will not be allowed to run an application that uses every node

while a professor may have this kind of access. Since the implementation of this will be

completely from scratch a risk value of six is assigned here and it will take about 35

engineering hours.

Web User Interface Framework for High Performance Cluster
Computing

33

Testing

 The testing suite in Rails was built along with Rails, not as a side project or as a feature

later in development. Testing was always important to the Rails Development team. Every new

Rails Application has a testing suite built in. There are three different environments in a Rails

application, testing, development, and production. The default suite allows for testing of the

controller, view and model, separately so that, each component of the MVC framework is tested

independently. To test a Rails application good test data needs to be added to the test database.

 To add test data to a Rails testing suite, sample data needs to be added. This sample data

is called a “Fixture” in the Rails environment. Fixtures allow for adding data to the testing

database with predefined data. Fixtures are written in YAML Ain’t Markup Language (YAML),

which allows for a human readable format of data that integrates with the testing suite quickly

and cleanly.

 Unit testing is done to test models. When models are created with the scaffolding feature

of Ruby on Rails, it is possible to test those models by adding tests to the file that gets created in

the model directory of the testing structure. Run the tests using the “rake test” command and a

summary of what passed and failed will be output on the terminal. There are many assert

functions available in the Rails testing classes. They are all documented on the Ruby on Rails

guide site.

 Testing controllers is a little different than testing models. Testing controllers is called

functional testing. Some questions that can be answered using these functional tests are: was the

web request successful, was the user redirected to the correct page, and was the user

Web User Interface Framework for High Performance Cluster
Computing

34

authenticated correctly. The tests themselves are similar in layout to the tests in the model. It is

possible to use get, post, put, delete, head, and patch requests in functional tests.

 After testing the controller and model, the view can be tested using a variety of methods

included in the testing suite such as “assert_template” method. This allows a developer to know

what gets sent to the user after an interaction. It is also possible to test the layout of a page using

that same method with some parameters specifying the layout.

Web User Interface Framework for High Performance Cluster
Computing

35

Security

 Like in any web application, the security must be thoroughly looked at before deploying

the application to production. It is very important to keep the web application secure for all the

users involved. However Ruby on Rails has many built in features that mitigate or completely

remove common threats to web applications, threats like SQL Injection, and session hijacking.

This section will briefly go over how Rails protects against a variety of attacks.

 The first is session hijacking. HTTP is a stateless protocol, and sessions make it stateful.

Without states users would have to authenticate on every request. Sessions start by a user

authenticating with a server, and once that authentication takes place, the session becomes valid.

The session identifier is stored in a cookie that is passed between the user and the server. If an

attacker were to gain access to that cookie, the session for the attacker would appear to be as the

valid user. There are a few ways for an attacker to gain access to a cookie. An attacker can sniff

out packets over an insecure connection, use XSS, cross site scripting attacks, or find a public

terminal with a user’s cookies still stored on the machine. Rails uses CookieStore by default for

session storage, making sessions cookie based. The session hash is saved on the client-side

rather than a session id. By adding “reset_session” to the Sessions Controller, Rails will issue a

new session identifier after a successful logon, which helps against fixed session identifier

attacks.

 Another type of attack is called Cross-Site Request Forgery (CSRF). This attack works

by adding malicious code or a link in a page that accesses a web application, and also that the

web application believes the user to be authenticated. To protect against this attack, Rails uses a

required security token that the web application knows but no other sites. By adding

Web User Interface Framework for High Performance Cluster
Computing

36

“protect_from_forgery” in the controller, Rails will automatically include a security token in all

forms and Ajax requests. If the security token doesn’t match, the session gets reset.

 Another important attack that is specific to this application is adding executable code in

file uploads or downloads. For example if a user intends to download a file from the server, that

user, on a vulnerable system could ask for a file outside of the document root folder. By using

basic sanitization techniques, this can be avoided. Rails has methods that allow a developer to

check if files are in certain directories. It allows a developer to control where users can

download or upload files from or to.

Web User Interface Framework for High Performance Cluster
Computing

37

Legal

The Web User Interface Framework for High Performance Cluster Computing Project by

request of the High Performance Computing Lab of Western Michigan University will be

classified under the GNU General Public License Version 2, 1991. The High Performance

Computing Lab of Western Michigan University has stated that a Non-Disclosure Agreement is

not needed for this particular project. The license itself states the main reason why any project

would want to use the GNU General Public License in the Preamble:

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Lesser General Public License instead.) You can apply it to

your programs, too.

 When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.
7

The GNU General Public License provides the High Performance Computing Center the

freedom to continue to add and remove to the project as they see fit.

7
 Free Software Foundation, Inc. The GNU General Public License version 2 (GPLv2). June

1991. <http://www.gnu.org/licenses/gpl-2.0.html>.

http://www.gnu.org/licenses/gpl-2.0.html

Web User Interface Framework for High Performance Cluster
Computing

38

Resources

The Web User Interface Framework for High Performance Cluster Computing has a list

of specific resources needed to operate correctly. The following is a list of required modules.

A Debian based GNU/Linux Distribution:

Debian is an operating system preconfigured with software, most of which is also

classified under the GNU General Public License. This operating system is an

effort built by a group known as “The Debian Project”. The Debian Operating

System's initial release was August 16th, 1993, and builds upon a rigorous

definition of specific rules about what this operating system is allowed to contain.

The rules “The Debian Project” adheres to is a set of rules defined in the “Debian

Social Contract”. The rules that most pertain to this project are as follows,

“Debian will remain 100% free”, “and We will not hide our problems”.

The first rule, pertaining to the cost of Debian is important to this project because

this will help the longevity of this project. The second rule is especially useful

when reporting bugs and finding work-around for any and all problems related to

all the supported libraries and packages that are included with all Debian

Distributions.

Overall the Debian system puts stability and reliability as top priorities. These

priorities define the goals of this project perfectly. The Web User Interface

Framework for High Performance Cluster Computing's top goals is to be stable

Web User Interface Framework for High Performance Cluster
Computing

39

and reliable. All of the libraries, modules and distributions reflect those goals.
8

HTML 5:

Hypertext Markup Language is used for presenting content on a website. From its

beginnings in 1990, the HTML project has had the goal of being easy to read,

while being efficient for computers and other devices. HTML 5 is the newest

release of this language and provides many useful tools such as API's and error

handling that previous versions do not have. (This project uses Twitter Bootstrap)

Ruby:

Dynamic, object oriented programming language. Designed in 1995 with the

phrase “convention over configuration” at the front. Ruby’s goals are about

making programming interesting and fun for developers, and at the same time

including an easy to learn syntax that is both efficient and clean.

Ruby on Rails:

An open-source web application framework. Based on the MVC pattern of

development and released initially in 2005. Ruby on Rails has gained popularity

over the last few years over other web application frameworks, like Laravel and

other PHP based frameworks. Many large sites like, Github and AirBnB use

Ruby on Rails.

OpenSSL:

8
 Debian group, "About Debian." Debian. N.p., 8 12 2013. Web. 18 Mar 2014.

<http://www.debian.org/intro/about>.

http://www.debian.org/intro/about

Web User Interface Framework for High Performance Cluster
Computing

40

OpenSSL is an open-source version of SSL. It provides cryptographic functions

and validation for web servers.

JQuery 1.9:

JQuery is a JavaScript library for client side scripting in HTML. This library

provides the necessary functions needed to be done on the client side. JQuery is

supported on Firefox, Chrome, Safari, Opera and Internet Explorer. (Required for

Bootstrap.)

TORQUE 2.5.12:

TORQUE is a resource management system for controlling processes on high

performance computing clusters. TORQUE was based on the original PBS

project which was related to high performance computing job management.

TORQUE is also open source and one of the leading job management software

packages for clusters available.

Other Software/Packages/Libraries Required:

a. bootstrap.css

b. bootstrap.js

c. devise authentication library

d. Capistrano deployment toolkit

e. Ssh toolkit

Web User Interface Framework for High Performance Cluster
Computing

41

Summary

 In conclusion, what this project hopes to achieve is simplicity, making the use of a highly

valuable asset in the scientific community more available and usable to a broader user base. The

framework that will be the final result of this project will be a powerful tool for universities,

research facilities, and corporations alike. Its basic functionality can be used for a broad array of

applications, and is lightweight, efficient, and simple enough for the best usability. But is this

vision possible? Can this project reach its goals and have a stable release? The answer to that

question is yes. Whether or not it has all of the wanted features/abilities in the final product is not

so concrete. As development goes on the goals and design of this project are more likely to

change, and they must as in real life, things change, requirements change, options change.

However if the current development plan is followed and stays on schedule, a tangible timeframe

appears. The time that is most likely to see a first release depends on two options. The first

option on the table now is to just release an end-user interface for the first release instead of a

full development framework, leaving the framework to be developed for a later release. If this

option is chosen, a release could be seen in a few weeks. However this release would have many

flaws as it is still heavily based on the FORCE project and does not have substantial unit testing

completed. This gives us the second option, a core framework with limited capability, which

would only be useful to an advanced developer, but would allow for more testing. The largest

drawback to this option is time, as it would require much redesign and starting some code from

scratch, and would take at least 1-3 months. In any case the project is feasible, and with

dedication and a lot of man-hours, should see completion within the year.

Web User Interface Framework for High Performance Cluster
Computing

42

Glossary

Torque – resource manager providing control over jobs spread across multiple nodes

Node – single system in a cluster of computers

Extreme Programming – agile programming philosophy of software development

Cluster – set of nodes comprised into a single network connected system

GPU – Graphical Processing Units

Thor – Western Michigan University’s High Performance Computing Cluster

Unix/Linux – Operating Systems, mainly open source based.

Interface – method of communication between a user and a system

Framework – general purpose software that can be molded to suit custom needs

Np hard - Non-deterministic Polynomial-time hard, informally, at least as hard as the hardest

problems in all Non-deterministic Problems"

REST- Representational state transfer

API- Application programming interface

References

SEE FOOTNOTES FOR EXTERNAL REFERENCES

	ParWeb: a front-end interface for cluster computing.
	Recommended Citation

	FinalReport.docx

