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DISTRIBULTON FREL TNTERVAL EETIMATION
OF Ti TARGEST ¢ -QUANTILY
William E. Plouff, Sp.A.

Western Michigan University, 1974

Several procedurses based on order statistics from
unbalanced samples are given for the interval estimation
of the largest @ -quantile of several continvous distribu-
tions. Infimum of probability coverags is discussad for
these procedures for one-sided and two-sided intervals.
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I. INTRODUCTION

Statistical problems concerned with the ordering of
several unknown parameters have been of wide interest.
There are numerous types of problems. One of these is the
problem of estimating the largest parameter. Both point
and interval estimation problems have been considered by
several authors. This paper will focus on a procedure
based on order statistics in a distribution-free setting
given by Rizvi and Saxena [1l]. They considered the inter-
val estimation of the largest o-quantile of several con-
tinuous distributions using equal size samples from each
population. An extension of this procedure to the case of
unbalanced sample sizes will be the first of two main dis-
cussions in this paper. The second will concern an im-
provement of the procedure for the specific case when the
parameter of interest is the median and the distributions
are assumed to be symmetric.

Alam [2], Bechofer [3], Blumenthal and Cohen [4], and
Dudewicz [5] have considered point estimation of the largest
parameter. Estimating the largest mean from k (k = 2)
populations was often the problem considered, particularly
for k normal distributions.

Saxena and Tong [6] considered the construction of a
fixed-width confidence interval for the largest mean of

k (k 2 1) normal populations, with known variances, based
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on the largest sample mean. Their procedure used symmetric
intervals of a fixed length about the maximum of a set of
consistent estimators of the Xk unknown parameters. The
infimum of probability coverage for these intervals was
discussed for the special case when the parameter of in-
terest is a location parameter. Many of the techniques
used in the proofs of theorems in [6] were used later by
Rizvi and Saxena [l], and will be used in Chapter 2 when
we discuss the extension of [l] to the case of unbalanced
sample sizes.

Dudewicz [7] and [8] developed a procedure for obtain-
ing two-sided confidence intervals for ranked means by
using the k (k =2 1) sample means in yet a-different way.
He argued his confidence intervals were better than those
described by Saxena and Tong in [6]. Tong [15] later
argued that a class of hybrid estimators should be con-
sidered when discussing the kX (k 2 1) sample problem of
estimating the largest population mean.

Saxena [9] also discussed random-width confidence
intervals for the largest variance from k (k 2 1) normal
distributions. The use of consistent estimators and
several procedural methods were similar to those in [6].

Tong [10] extendeé the idea of estimating the largest
of k (k 2 1) means of k normal distributions for the
case of unknown common variances. A multi-stage procedure

was used in which an estimate of the variance was found.
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Tong [ll] later discussed an improvement of the usage of
symmetric intervals for the largest mean of k (k 2 1)
normal distributions.

Alam, Saxena, and Tong [12] extended confidence inter-
val ideas for location and scale parameters to a more
general setting of k (k 2 1) wunivariate distributions,
indexed by a real parameter € . They used the maximum of
individual observations from the Xk populations to con-
struct a confidence interval for the maximum parameter from
the set of k parameters. The authors' approach involved
the finding of two strictly increasing continuous functions
and their corresponding inverses, which would satisfy cer-
tain conditions. With appropriate restrictions on these
functions and the original univariate distributions the
authors obtained several general theorems. The proofs of
these theorems contained techniques similar to those in
[6,7].

It was stated in [12] that a family of distributions
with the monotone likely ratio property would satisfy the
necessary conditions for the theorems if the parameter of
interest is a location or scale pgrameter. The largest
mean of a family of normal distributions was considered by
the authors in an example. Consistent estimators were
used as estimates for the population means. If the X{s
and F(-,ei)‘s in [12] are replaced by the sample means

and their corresponding cdf's the results are precisely
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those stated in [6 and 11].

In the references cited thus far, the main emphasis
has been on finding confidence intervals for the largest
parameter from Xk wunivariate distributions, each indexed
by a corresponding parameter. Location and scale para-
meters were usually the parameters of interest; the confi-
dence intervals were often centered around consistent
estimators, or some other single function, from each popu-
lation sample. Order statistics were not used in the
procedure. The theorems and other main results in the
papers were not given in detail since it was the techniques
in the proofs and the general procedures that were impor-
tant, not the actual results. 1In Rizvi and Saxena [1l] and
in our extension, in Chapter 2, of their ideas the distri-
bution—-free setting and the usage of order statistics led
to results which are often very different than those in
the papers previously mentioned.

In a univariate setting, discussions comparing confi-
dence intervals for the median of a symmetric distribution
arising from the sign test statistic (which is equivalent
to the usual order statistic approach) and the Wilcoxon
test statistic have been givén by many authors, including
Gibbons [13]. For many types of distributions, it is well
known that for the one sample case the confidence interval
related to the Wilcoxon test statistic has shorter expected

length than the one related to the sign test statistic.
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The methods in [1l] for finding a confidence interval for
the largest &-gquantile can be thought of in terms of confi-
dence intervals related to the sign test statistic. It
would seem natural when considering the largest of the
medians of k (k 2 1) symmetric distributions to attempt
to parallel the procedures in [1l] using confidence intervals
related to the Wilcoxon test. In Chapter 3 we will discuss
difficulties that arise in such an attempt.

Noether [14] described a confidence interval for the
median of a symmetric distribution which was better than
the one related to the sign test statistic. His (g,h)
intervals are related to both the sign test and Wilcoxon
test. In Chapter 3 we will show how his procedure can be
extended to the k-sample problem. The resulting confidence
intervals should have shorter expected length than those
of Rizvi and Saxena [1l] for the largest median of k

(k 2 1) symmetric population distributions.
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II. DISTRIBUTION-FREE INTERVAL ESTIMATION OF THE
LARGEST «o—-QUANTILE FOR k UNBALANCED SAMPLES

The purpose of this section is to extend the procedure
of Rizvi and Saxena [1l] to the case of kX (= 1) unbalanced
samples.

Consider %k (=2 1) distributions with unknown con-
tinuous cumulative distribution functions Fi , 1 =1,2,
...,k . Let x (Fi) denote the unique &-quantile

o

(0 <o <1) of Fi . If Xa(Fi) is not unique it can be

defined to be so in the usual manner. Define

8 =max x _(F,) . For a specified constant vy , a
1sisk .

random interval I is desired such that

(1) inf pr{e € 1} =2 v ,
Q

where ( denotes the set of all possible k—tuples

(Fl’Fz""'Fk) . Let X X2 .1-..,X_ . denote the

1,i’ i n,i

order statistics of a random sample of size n; from the
i*® gistribution, i = 1,2,...,k .

The procedure in [l] for determining an interval I is
based on the order statistics of random samples of equal
sizes from each F; . i=1,2,...,k . Intervals of the

form (Ys’Yt) are found where Y = max X , 1l srsn.

¥ jgigk To*

The statistic Y., l1srsn, does not have a meaningful

interpretation as an endpoint for a confidence interval for
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# if the k samples are unbalanced. If we let the sample
sizes be arbitrary a procedure using "proportional" order

statistics seems reasonable. Consider the following simple
example of our meaning of the term "proportional."

If n, =10, n, = 15, and n., = 20 we refer to

2 3

X2,1' X3'2 and 34'3 as the two-tenths "proportional

order statistics from the first three samples.

1

In general, let p and v represent fractions such
that 0 <y <o <vs<1, where the e—quantile is the
quantile of interest. Let the uth proportional order

tatistic from sa e i b .= . and the
s isti om sampl e Yuni'l X[“ni]'l

vth proportional order statistic from sample i be

Yvni,i = X[vni]+l,i where [ ] represents the greatest

integer function. For simplicity, here and in the

following discussion wn, means [uni] and vn, means

[vni]+l . Define Y = max Y n..i and
1sisk  HPi’
Y =max Y . . We will be able to develop a procedure
v . vn., i
1<isgk i

for the unbalanced case in a manner similar to some extent

to the procedure in [1] for the balanced-case.

Define YO = -» and Yl =wo , PFor p <o <v, let
I= (Y“,YV) be the random interval under consideration.
With Gun i(p) denoting the incomplete beta function
i’
(o) nj p uni—l n,-un,
G . (p) = un.( ) j \ (1-w) aw ,
wng i i\wn, 0
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where wn; means [uni] as before and

ni P vni-l n,-vn,
vn.,i(p) = vni(vn.) f v (1-w) dw .,
i i 0
where vn, means [vni] + 1, the cdf of Yuni,i is
Guni.i (Fi(y)) and the cdf of Yvni.i is Gvni.i (Fi(y))‘

Using the convention G, .(¢) =1 and G, .(-) = 0 the

0,1 1,1
probability of coverage of © by I can be stated as

Pr(GEI)==Pr(Y“SS)—Pr(YVSG)

(ii) =Pr(Yun.'i$8,l=l,2,...,k)—Pr (Yvn_,ise,:L:l,z,...,k)
1 1
k k
=i£l Guni,i(Fi(e)) - i_El G\)ni,i(Fi(e)) -

Note the above procedure and statement concerning proba-
bility of coverage are precisely the same as those in [1]
if the k sample sizes are equal.

Using the convention Goli(-) = 1 and Gl'i(-) =0,
and noting that o <F,(8) s 1, for all i, we can

state the following.

Theorem 2.1 (one-sided intervals):

(a) For w =10, v< 1, that is, with I = (—G,Yv) ’

inf Pr{6 €1} =1 -G .
vn,,,1
Q i

(o) where
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it € {1,2,...,k] 1is chosen so that

() = Gvn . (&) , for all i ; and

vn, ,,1i’ 0

i
(b) for p>0, v=1, that is, with I = (Yu,m) ’
inf pr{6 € I} =1 G, .. 4 (@ .
Q i=1 MP4
Proof: (a) and (b) follow readily from (ii), thus the

details are omitted. #

Tables of the incomplete beta function or equivalently
cumulative binomial tables can be used to evaluate the
right hand side of (a) and (b). For (a) of Theorem 2.1 we

choose v to be the smallest fraction such that

1-6, ;. (@ =2y . For agiven @, vy must satisfy
i’
ni
0<y<1l-a+ . Note that for u < ' that
Guni,i(') uu'ni,i(') . Therefore in (b) of Theorem 2.1

we choose L to be the largest fraction such that
k N

1 (@) > v, with 0<y"¥<(1- (1-0a) 4},
i=1

G'n i
KD,

for all i . It is clear from the above upper bounds on

v that for fixed kX and « , I can satisfy (i) for any
value of vy between 0 and 1 , provided

mxn{nl,nz,...,nk} is large enough.

The amount of effort to find p or v for a given

set of values k,oz,y,nl,nz,...,nk is often not as short

as for the balanced case considered in [1]. The
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10

expressions (a) and (b) are more complicated for unbalanced
cases and usually more trial-and-error calculations are
required before the desired u or v is arrived at. 1In
searching for an appropriate 4 and v such that (i)

holds, we can alternately express Gun i in terms of the
il

cumulative binomial distribution

i
n,, . n,~-j
DIRCEE
Guni:i(a) ‘L. 5 ) (1-o) .
J—Mni
G . (¢) can be expressed in a similar manner. (Keep in

\)ni, 1
nmind wny is rounded down and vn, is rounded up in our
convention.)

Let's consider finding v in Theorem 2.1 (a) for a
specified k,y,o and nl,nz,...,nk . We need to use a
trial-and-error procedure of examining VO, VR, e e e, VR
for various values of v . This involves checking the

binomial cdf tables to determine Gvn i for each ni and
il

v, i=1,2,...,k . We need to find the appropriate
smallest v and the particular n, such that (a) of
Theorem2.1is satisfied. For many v's it will follow

that n. . of (a) will be min{nl,nz,...,nk} . This is not
always the case, however, due to the effects of the round-
ing off procedure for the vni‘s and the discreteness of
the binomial distribution. One can use min[nl,nz,...,nk]

to get an initial value for v , then check (a) and
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11

adjust v slightly if necessary.

If the sample sizes are appropriately large to allow
a normal approximation to the binomial cdf, the continuous
property of the normal distribution allows the following
simplification of the above trial-and-error procedure.
Assuming

(_ Vni - nid
Gvn.,i(a)zN Vnia(l-a)) !

1

for all i ,» it follows that

G (¢} 2 G .(¢¢) , for all 1, = ni,S n, foralli.

vn.,,i’ vn.,1i
l|l ll

Thus for the normal approximation we can find the appro-

priate v by considering

\)niu —nind

w(- ;ﬁjfg?if§f> <1-vy with

n.
i

= min{nl,n2,...,nk} .

Let's now consider finding & in (b) of Theorem 2.1
for a specified k,v,¢ and NNy, eeesDy . A procedure
somewhat similar to that for part (a) can be used. The
trial-and-error procedure to find u involves working with

a product of k-terms, all dependent on u . Finding the

largest u such that

k
n G ,i(“) 2y

i=1 HPy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is somewhat tedious since the precise relationship between
the individual factors varies for different p's . This
is again due to the discreteness of the binomial cdf and
the rounding off of the uni's .

A number of methods have been attempted to find a
simpler procedure to determine the largest  such that
(b) of Theorem 2.1 holds. If a single function of the
ni's can be used to determine # , only a single bino-
mial cdf value would need to be considered. The following
methods seem reasonable but have not yielded exact results:
(1) Choose u such that G ., (o) = Yl/k where

u‘nilll

n., = min [nl,nz,...,nk} . This procedure often
1<isk

leads to very conservative probability statements,
especially if the sample sizes are small or vary from
one another to any great extent.

1/k

(2) Choose 1 such that G () = v . The

n; Zn:
1 i

k k

’

Generalized HOGlders Inequality can be used to make

infimum statements. The resulting statement for (b)

of Theorem 2.1 may be good or poor depending again on

the relationship of the sample sizes.

If the normal approximation to the binomial cdf is
good (i.e. if the sample sizes are large enough), the
trial-and-error procedure to find p for a specified

k,v,¢ and ny,Ny,...,0y 1In () of Theorem 2.1 does
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13

become easier by using the following approach. Assume that
ny s n, s ,.. s n, - We note that from our assumption of

good normal approximations

k k pni - nje k
.H Gun.,i(d)m.H N(-Vnia(l-a)):=.n N( d(l -o) nl oL / .

i=1

Let

Finding the smallest zq (hence the largest u) such that

k

I N(zl-VELL) =2 vy 1is an easier task than the procedure
i=1 1

described using the binomial cdf tables. Note, if hfézil,
1
for all 1i , z, ® z*¥ where z*is a value such that
N(z*) = Yl/k . If N@f= #% 1 for at least one value of
1l

i, 1ie€/{1,2,...,k} , we should try values for =z such

1

that z, < z%*

1

We have noted that the previously discussed method of
obtaining one-sided confidence intervals using proportional
order statistics can involve lengthy trial-and-error calcu-
lations. We will now describe another method, involving
intervals defined in a different way, which requires sim-
pler calculation for its execution. We'll see that often

the resulting one-sided intervals will involve the same
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order statistics for the two procedures. We will indicate
that for most sets of sample sizes neither of the two
procedures will be preferable, prior to a particular sam-
pling. We will use the term "preferable" as Wilks [16]
and Rizvi and Saxena [1l] do. We will want to choose u
and v in Theorem 2.1 such that the rank difference

(vni - uni) is minimized for a preassigned vy for each
i, i=1,2,...,k . In the following procedure we will
choose m, and &i such that the rank difference (%i-—mi)
is minimized for each i, 1 =1,2,...,k, for a pre-
assigned ¥ used in the next theorem.

Henceforth for notational purposes, we will refer to
the previous procedure as the u,v proportional procedure.
The following procedure will be called the m,? procedure.

To describe the one~sided m,f{ procedure consider

the following. Let Ym i denote the mith largest order

i'

statistic for the ith population (with sample size ni).

We choose m, to be the largest rank such that

1/k .
Gmi,i(a) 2y for each 1 . Let Y&i,i

th

denote the

L.

i largest order statistic from the ith population and

choose &i to be the smallest rank such that

GL i(a) S 1 -y for each i . Define

i
Ym = max Ym i and YL = max Y£ i - Use the
1sisk i’ 1<i<k i’
convention Yo,i = —-» and Yni+l.i = o , for all i .

ced with permission of the copyright owner. Further reproduction prohibited without permission.

14



The one-sided intervals arising from this procedure are of
the type I = (Y_,») or I = (_Q’YL) . Noting that

(-) =0 and ¢ = Fi(e) < 1 for

each 1 we state

Theorem 2.2 (one-sided intervals):

(@) For m; =0, 4, sn;, forall i, that is, with

I = (-CO'Y%) ’

inf Pr{8 €1} =1-G, .. (@) 2 v where i* € (1,2,...,k]
Q pwet

is chosen so that

G£.*'i*(a) =G, ’i(a) , for all i

i i

and

~e

(b) for m, 21, &i = ng + 1, for all i , that is,

with I= (Y rw)
m

k

inf Pr{6 €I} = 1 G
Q i=

Proof: (a) and (b) follow directly from the way we defined

m, and &i for each i, i=1,2,...,k . #

Note for (a) and (b) to be meaningful we need the

. 1/k nj
requirement that for (a) 0 <y < (1 - (l-e¢) 7) , Ffor
all i, for a given ¢ , and for (b) that

N: g
0<y<1l-« 1 for a given o . It is clear from upper
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bounds on vy that for fixed k and v« (i) can hold
for any value of Yy Dbetween O and 1, provided

min{nl,n ,...,nk} is large enough.

2
To show the confidence intervals (Ym,m) and
(-w,Yé) from the m,f procedure can often be very similar
to (Yu,w) and (:;TYv) , respectively, from the u,v
proportional procedure we'll compare them when the sample
sizes are sufficiently large to allow the use of normal
approximations for the binomial cdf's involved. In doing
this we will look at several numerical examples for various
sets of sample sizes.
In comparing (—w,YL) to (—w,Yv) we see the two

procedures involved are similar since only one term is

involved in the infimum statement. We find vn. is

usually &i Comparing (Ym,m) to (Yu,m) is more

. -
difficult. Using the notation

~ I § .
Guni'i(d) N(zl Jil) , for all i , where

’

—-ute
Zy < e (l-a) ) JEI and Gm.,i(a) ~ N(Jnia(l—a)

1

for all i , it follows from the two procedures that

N(Zl)'N<zl'J§% ) cees N<21'J§% > = v and N{(z*) = Yl/k '

-mj +tnjo
where z* = ———— , for all 1i .
Jhia(l-a)
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i 11 ifi h £ z*¥ < = HE If th
It is easily verified that 2z, z 2z = ZIJEI . e

n.
sample sizes satisfy Jﬁi ~ 1 for all i it follows that
1

the confidence intervals for the two procedures are similar.
The following examples illustrate the relationships
of the rank of the order statistics obtained by the two
procedures for various applications of part (b) of
Theorems 2.1 and 2.2. We will use the normal approximation
procedures.
We use a correction factor of .5 when using normal

approximations.

Exl. ILet n, =16, n, =25, n_, =36, n, =49, o =1/2,

1 2 3 4

4

vy = .90. Then zy = 1.56 and 'E Gpn.,i(a) = ,90.
i=1 i

For zq = 1.56 we get u = .30 . Then

[unl] =5 m = 4

[unz] = 8 m, = 8

[un3] = 11 m, = 12

[un4} = 15 m, = 18 .

Ex2. Let n:L = 80, n2=90, n3=90, n4=lOO, o=.3, = .80

Then z, = 1.52, p = .22 and

[unl] = 18 m, = 18

[unz] = 20 m, = 20

[pn3] = 20 my = 20

[un4] = 23 m, = 23 .
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Ex3. Let n, = 160, n, = 180, ny = 200, n, = 220, o = .3
y = .955 .
Then zy =1.38 , oy = .25 and
[unl] = 40 m, = 39
[unz] = 45 m, = 45
[pn3] = 50 m, = 50
[un4] = 55 m, = 56 .
Ex4. Let n, = 80, n, = 90, n, = 90, n, = 100, ¢ = .75,
vy = .943 .
Then zy = 2.065 , p = .65 and
[unl] = 52 m = 51
[unz] = 59 m, = 58
[knjg] = 59 my = 58
[pn4] = 65 m, = 65 .

We've seen the u,v proportional procedure and the
m,f{ procedure yield similar intervals for (a) of
Theorem 2.1 and (a) of Theorem 2.2. From the normal
approximation discussion for intervals of the form (Yu,m)
from (b) of Theorem 2.1 and of the form (Ym,m) from (b)
of Theorem 2.2 we know that in most cases neither proce-
dure is preferable. 1In one of the four numerical examples
we see that one method is preferable to the other. This

occurs in the last example, the u,v proportional method
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is preferable. This follows since each rank of the indi-
vidual order statistics for the proportional method is
greater than or equal to the rank of the corresponding
order statistic from the m,f{ procedure. Theoretically,
from the inequalities zl‘S z* < 2 it follows that either
procedure might be preferable for a particular set of
values k,¢,y and NysNyyeee,y o but it seems reasonable
that in most cases neither procedure is preferable. TFor
this reason, the m,{ procedure for finding one-sided
random intervals satisfying (i) is often desirable because
of the simpler calculations for its execution.

We now discuss two-sided intervals. We introduce the

following terminology. Let Ys i be the sith order

:

i
statistic from sample i and define Y _=max Y ..
. s.,1
lsisgk i
Let Yt i be the tith order statistic from sample i and
il

define Y,  =max Y . . For interval I = (Y ,Y, ) ,

t 1si<k ti,l : st

it follows in a manner similar to (ii) that

k : k
(iii) Pr(9 €1) = .G i(Fi(G)) - 016

. (P, (8 .
i=1l i i=l Ti l( l( )

Consider minimization over Q of Pr{e € I} for two-sided

random intervals.

Theorem 2.3 (two-sided intervals): For 1 < s; < ti < n. ,

for all i , that is, with I = (Ys.Yt) ,
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r
inf Pr{® € I} 2 min{ T G 8 ()
Q i=1 ®g,'Pi

i
where the minimum is over all choices of r =1,2,...,k

and (By,....B ] € (1,2,...,k) .

ggggg:’ The proof follows a pattern similar to Theorem 2
in [1]. Adapting the discussion in [1] to our problem we
get the following:

k

lei,i(Fi(e)) _izthi’i(Fi(e)) .

)} =

=N

(iv) Pr{e € (YS,Yt .
i

We see Pr{6 € I} involves Fi's evaluated at the

constant 6 , and Fi(e) z¢g for i=12,...,k . We

can write Fi(e) = o + 6i ; where 0 s éi s 1~-o . This

enables us to reparameterize (iv) as a function of the

Gi's . Without loss of generality we can assume Fk(e) = «.

Thus the problem of minimization of (iv) over |

Q= {(Fl,Fz,...,Fk): F, is continuous for each i } is

reduced to its minimization over [(61,...,6k_l): 0 =6, s

1
l—a’ i=1’2’.-¢’k-1} .

k-1 k-1
Pr{e € I} =G () T G . (@+8.) -G () T G . (@+6.)
R R T BT
(v)
= J(8y,.--,8, ;) , say.
For some j , fix & 5. & 8 and

177 %9-10 0541 0 k-1

consider aJ/aaj . Using Gr i(p) written in its form

i
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as the incomplete beta function we define

n ri~l n-xr
5,1 (P) =G5 & 5 () = ri(ri)p (1-p)

1 0sps1.

We can observe that 9% i(p)lg (p) is increasing in
il

Si:i

p for ti > s; since

ni ti—l ni—ti
ti(ti>p (1-p) ti—si si—ti
= Cp (1-p)
S.- n.-s.
(Zi)p 7 (1-p) 170E
i
, t.-s.
= cof/R |1 i
1-p

which increases as p increases since p is positive,
C , a constant, is positive and ti - s, >0 .

k
Let A =1 G i(cz-i-é.)
i=1,i#j Si’ *

k
and B = 1 Gt.,i

(a+5.) .
i=1,i#j °i 1

We can obtain from {v) that

r' =

dJ
= =A -g c(a+6.)1 1 ~ .
996. s, | Agsi,i(a+6j)

B

f

gt_'i(a+6j)

Since NCTIN) is increasing it follows that the
.1 3
ll

expression in the brackets is decreasing in 6j . Hence
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we conclude that %% has either the same sign at every
J

value of éj or at most one change of sign from positive

to negative and consequently inf6 J 1is either at
J
Gj =0 or éj =1 - o . This holds for every 3j . There~

fore, the infimum of J 1is achieved when a certain number

of 4&.'
J

statement of TheorémZ;Bthus follows. #

s are zero and the rest are equal to 1 - o . The

Note that for fixed k¥ and « , I can satisfy (i)

provided vy 1lies between 0 and
r ng r n.

min { I [(l - (1-a) ] - T o~} . This minimum can be
1<r<k i=1 i=1l
made arbitrarily close to 1 by taking the ni's large
enough.

Let s, be un., and t. Dbe wvn, £for each i in

i i i i

(iii), where u and v are from the u,v proportional

procedure. It follows from (iii) and Theorem 2.3 that for

I=(Y,Y)
r r
(vi) inf Pr{6 €I}zmin ( MG, o (@) - TG g ()],
0 i=1 7,1 i=1 "8/ i

There are many u's and v's that would yield a
value greater than vy , for a specified vy , if used in
the right hand side of (vi). At the end of this chapter

we will discuss an algorithm for finding x and v in
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an optimal way, similar to Rizvi and Saxena's optimum dis-
cussion in [1].

Typically, the minimum of the right hand side of (vi)
occurs when r =k . To find ¥ and v such that the
right hand side of (vi) is greater than or equal to some

specified Yy a convenient starting point is to choose a

Yl and yz such that Yl - yz = v ., Then yu is deter-
k

mined such that IG, (o) = vy by the procedure
i=1 #Pyet 1

described for finding u for Theorem 2.1 (b) (let Yy =V
in that discussion). 1In a similar manner v is determined,
making v as large as possible, such that

k

.E Gvn.,i(d) = Y2 -
i=1 i

Using these values for u and v the right side of (vi)
is evaluated to check if the resulting value is greater
than or equal to the specified vy . If it is not or if
the infimum statement that results from (vi) is too con-
servative a slight adjustment of y and Vv 1is necessary.
Note the interval determined in this way is not necessarily
optimal.

Let's now define a two-sided random interval for the
m,{ procedure. For a given Yy , we choose a

Y1
such that Yy - Yo =¥ and yll/k - yzl/k 2 v . For

and
\p)
each i, 1i1i=1,2,...,k, choose m, as the largest

integer such that Gm i(a) P Yll/k , and choose Li as
il
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1/k

_the smallest integer such that G, i(a) < ¥y .

LI 4

i
With this selection of mi and &i for each 1i ,

we can state the following.

Theorem 2.4 (two-sided intervals):

For 1 < m < Li < ni , for all i , that is, with

1= (¥,,Y,) .,

inf Pr{e € 1} 2 v .

Proof: We substitute m for s and 4 for t
— Bi B. B. B.

i i i
for each Bi in (vi). By the way we define m and

B.

i
LB for each Bi it follows that

i
inf Pr{e € I} 2 min {Wll/k)r - (Yzl/k)r} .
Q 1srsk
In turn, inf Pr{6 € I} = min{y Vk _ Y 1/k s Yo~ Yol
0 1 Y2 17 "2

by lines (3.5) and (3.6) in [1]. Thus by the selection of

Yy and Yo o Theorem 2.4 follows. #*

The two procedures discussed above for finding two-
sided random intervals can be compared in a manner similar
to the earlier comparison of the one-sided intervals in
(b) of Theorem 2.1 and (b) of Theorem 2.2. Using normal
approximation arguments, it follows that in most cases

neither procedure is preferable, prior to a particular
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sampling. Each procedure can be preferable for certain
cases by making suitable selections of k,v,o¢ and n,m,,
...,nk . In most cases, intervals found by the two
procedures are very similar if both procedures use the
same Yy and Yy such that Yy =Yy TV - For this
reason, we see the m,?{ procedure for finding a two-sided
interval satisfying (i) is often desirable because of the
simpler calculation for its execution.

We conclude our discussion of two-sided random inter-
vals by discussing an optimum two-sided random interval
for the 4u,v proportional procedure.

For specified k,y,o and n,,n n, we can find

2,..-,

the p and v that satisfies inf Pr{8 € (Yu,Yv)} >y
0

in an optimum way by using the same type of algorithm as

Rizvi and Saxena did in [1]. The procedure will be exactly

the same as theirs if the sample sizes are all equal.
Consider ¢ such that 0 s p =y + e = 1 . Denote

by Q(u,e) the infimum of Pr{Yu <8 <Y over (0 as

p+€}
given by Theorem 2.3. For every fixed ¢ , let u'(e)
be the value of 4 for which Q(up'(e),e) = max Q(u,e) .

1sy=<l-¢
Choose the smallest ¢ , call it e' , such that
Q(u'(e'),e') 2 vy . Then the optimum choice of the random
interval satisfying the inf Pr(e € (Yu'Yv)] 2 vy is

Q

(Y Do

u'(€')'Yu'(€') + ¢
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III. DISTRIBUTION-FREE INTERVAL ESTIMATION OF THE
IARGEST MEDIAN FOR k SYMMETRIC DISTRIBUTIONS

In chapter two we discussed an extension of Rizvi and
Saxena's procedure in [1l] for finding confidence intervals
for the maximum &-quantile in a distribution-free setting.
We considered the case of k unbalanced samples.

We now turn our attention to a different problem. We
assume equal sample sizes, restrict the discussion to k
(k 2 1) unknown symmetric distribution and focus on find-
ing a better confidence interval (in terms of shorter
expected length) for the maximum median.

For kX =1, confidence intervals for the median
arising from order statistics related to the Wilcoxon signed
rank test often have shorter expected length than those
using order statistics related to the sign test. Therefore,
it is natural to extend usage of Wilcoxon "order statistics
to the k~sample problem to parallel Rizvi and Saxena's
extension using sign test "order statistics."

We will discuss a "Wilcoxon procedure" which enables us
to find better confidence intervals for the largest median
of k (k = 1) symmetric distributions when considering
one-sided random intervals. However, due to the complexity
of the Wilcoxon statistic distribution under alternative

hypotheses an attempt to use maximum Wilcoxon

26
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“"order statistics" in a method similar to Rizvi and
Saxena's two-sided random intervals for the k sample
problem does not prove to be successful. A procedure for
finding two-sided random intervals based on a procedure of
Noether [14] will be discussed. An indication of its
improvement over the Rizvi and Saxena method, in terms of
intervals of shorter expected length, will also be given.

Consider kX (k 2 1) unknown symmetric distributions
with continuous cdf's Fi' i=12,...,k . Let ei be
the median for the ith distribution, 1 = i <k , and

define 6 =max ©, . For a specified vy we want to find
l<i<k

an interval I such that

(i) inf Pr{e € I} = v

Q
where (Q denotes the set of all k-tuples (Fl'Fz""'Fk)'
Let xl,i’ Xz,i""’xn,i represent a sample from popula-

. . < i <
tion 1, 1 i k . Let uj,&,i j,i + X&,i) ’

1sjsisn, 1=<is<k. Suppose the ordered sums

= 1/2(x

are denoted by

j.L,1i
. < < ... < ) = n(n+l)
Wl,l W2,1 WM,l where M > .
Wr i is the rth order statistic from the Ei%ill
»
averages of the x. i's , jJ=1,2,...,n for a fixed 1 ,
’
l1sisk. Let Wr = max W_ . . Define WO = —-» and
1sisk T+t
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WM+l = o ., For s <t consider random interval I =

(Ws’Wt) . We discuss a procedure for finding s and t

such that (i) holds.

Define D. . =x. . - 8 , and define
J,1 J.1
1 if D. i >0
Z.. i = Je (note since the distributions
3o 0 if D. . <0
Js2
are continuous Pr(Dj i = 0) = 0) . lLet
+ n
T. = L Z. . r(|p, .|}, where r(|D. ;|) is the rank
1 j:l j'l j’l J'l

of the absolute value of D. i if the absolute values of

7

the Dj i's are ordered. From Gibbons [13], page 117, it

follows that

(ii) Pr(e <W, ;) =Pr-t <t

and

(iii) Priw, , <8) =Pr(r,” <m-s) .

When ei =06 , values of s and t can be found from

the Wilcoxon tables so that
+
Pr(M - t < Ti <M-358) 2vy,

for some specified v .
The probability of coverage of & by I = (Ws,Wt)

is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr(6 € I) = Pr(WS < 8) - Pr(W_ < 8)
(iv)
x k
= iglpr(ws'i < 9) - iElpr(wt'l < 9) .

For one-sided random intervals the minimization of

Pr{6 € I} over Q is given by Theorem 3.1.

Theorem 3.1 (one-sided intervals):

() For s >0, t=M+ 1, that is, with I=(Ws,m)

(v) inf Py{8 € I} {Pr[T+ <M - s]]k . and

(b) for s =0, t <M, that is, with I = (—w,Wt) R

(vi) inf Pr{(s € I} = 1 - Pr(TH <M - t) ,

Q

where ot has the null hypothesis distribution of

the Wilcoxon statistic based on n observations.

Proof: The statements of (a) and (b) follow immediately

from (ii) and (iii) since ei <8, for all i, and we

0 <9) =1 and PriW <98)=0. #

defined Pr{w M +1

< ¢ < .
Note that for s t, Pr(Ws,i g) =2 P (Wt,l

for all i . Therefore, in (a) we choose s from the

< 8)

Wilcoxon Signed Rank Test Statistic tables to be the

largest integer such that the right hand side of (v)
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exceeds the specified vy . This can be done for any v
such that 0 <y < {1 - (1—1/2)M}k . In (b) of Theorem 3.1
we choose t from the Wilcoxon Signed Ranks Test Statistic
tables to be the smallest integer such that the right hand
side of (vi) exceeds vy with 0 <y <1 - (1/2)M. From
the upper bounds on vy we see that for fixed n (hence
for fixed M) I can satisfy Pr{6 € I} = y for any
value of vy between O and 1 if n is taken large enough.
Let's consider the minimization of (iv) for two-sided
random intervals. Let Bi be defined as the difference
o - ei r for i1 =1,2,...,k . If we assume § = Bk ’ Qe

can write (iv) as

k-1
Pr(Ws S 6 s Wt) = Pr(Ws’ks ek)iglPr(Ws'iSQi+ Bi)

. k-1
(vii) —Prmt*éekngrwmisei+%)

where 0 < Bi <6, i=1,2,...,k-1.

Since we do not have a convenient form for the distribution

’

of Wr,i when Bi >0, 1lsr =M and 1 =isk-1
statements involving (vii) are difficult to handle. For
this reason, we will discuss a procedure based on ideas
in a paper by Noether [14].

Noether discusses what he calls (g,h) intervals for

the median of a symmetric distribution with continuous
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cumulative distribﬁtion function F(x) and center of
symmetry T . For notational purposes, Xy is introduced
as the ith ordered observation from a random sample of size
n and nO as the hypothesized value of T . Noether
begins his discussion with the sign test based on the two

n
statistics S =.Z, t. and S, = £  (1-t.) , where
- J=1 73 +  §=1 J

t. = tj(no) = 1 or 0 depending on whether for the jth

J

largest absolute difference ]xi - ﬂol ;X is smaller
or greater than ﬂo . The hypotheses T = ﬂo is rejected
in favor of the alternative 1T # ﬂo if the smaller of S_
and S_ is sufficiently small, say less than or equal to
some value ¢ . The interval of acceptable T7-values is

h

bounded by x and x the dth smallest and dt

d n+l-d '’
largest sample observations, where d = ¢ + 1 . This is
equivalent to the usual sign test procedure.

Noether's generalization of the sign test intervals
to what he calls (g,h) intervals consists of thé follow-
ing. Let m be an integer such that 2 S m=<n . We
look only at the m largest differences ]xi - ﬂO] and
m
define T_ = t; and T = Z (1 - t.) . The

j=1 J j=1 ]
hypothesis 17 = ﬂo is rejected in the smaller of the two

TR

statistics is less than or equal to a specified value c .
The lower bound for acceptable ”o values when testing

M= ﬂo is shown to be the sample average l/2(xg+xn+l_h).
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where g=c+1 and h=m- c ; the upper bound is

1/2(xh + xn+l—g) . The resulting confidence interval is

1/2(x_ + x ) .

g n+l—h) << l/2(xh tx

n+l-g

Note when m = n this interval corresponds to the interval
associated with the sign test. The significance level for
the test with critical value c¢ is séo b(s,m,1/2) ,

where b(s,m,1/2) is the binomial probability of s
successes in m independent trials with success proba-
bility 1/2.

In terminology somewhat different from Noether, let's
consider a random sample of size n , call the observa-
tions 29025000202 s from a symmetric population with
continuous cumulative distribution function F(x) and
center of symmetry some value, say 0. Pick T >0 (7
could be chosen less than 0 and the following discussion
could be handled in a similar way). Define tj(ﬂ) =1 o0x0
depending on whether for the~jth largest absolute difference
!zi ; n z, is smaller or greater than 1T . We con-

sider only the m largest absolute differences |z, - 1]

i
and define

m m
T"=Zt. and T = Z(l—tj) .
=1 j=1

We note T and T+ would be of the same form as T_

and T, in Noether if the tj's were defined in terms of
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ordered observations, say XyoXgreeosX instead of the
unordered observations ZyiZorecesZ -

The notation T+ = k indicates k of the tj's
are zaro among the tj's that correspond to the m lar-
gest ]zi - M|'s . Since the tj's are not known to be
independent, as they are in Noether's discussion under
the null hypothesis, our evaluation of Pr(T+ = k) will
involve conditional probabilities. Let Y* be the mth
largest !zi -1, i=1,2,...,n . Then
pr (T’ = k|Y* =y) is the probability that of the m
observations from the conditional distribution of =z

given z 1is outside of (N - y,NM +y) we have k of

these in [N + y,®) . 1In terms of the ¢df F(z) we have

+ _ —F ( M+ rE(N-y) X
pr(r'=k|vry) = (§) [T n—y)J B

Let h(y) denote the density function of Y* . We could
write h(y) in explicit form as an order statistic proba-
bility density function. We won't, however, since it will
not be used in the following‘discussion. We will merely
state that the range of y is (0,«) . With the above
notation it follows

+_ ="°° m\[1-F (+y) ]k
Pr(T =k) Jo <k> 1-F (THy) +F (M-y) J ~

F(N-v) -k
T F (M () By .
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From this we see

X
= c) ‘f Z ( ) ijégz;w(n-y)}

-k

[F M=v)
1-F (M+y) +F (T-y)

The binomial expression in the square brackets has a

supremum over y expressible as

c
z (?) (p*)k(l—p*)m_k for some p* < 1/2
k=0

Therefore,

pr(rtsc) sj [Z (3) o0 Fa-pn™*  niyiay

i
>0

(&) @) ¥ (1-p5) ™% f: h(y)ay
0

(7)) ®a-p™ k|

i
T 0

If we write p* as 1/2 - B, for some B such that

0 = Bs=s1/2, we note

C
pr(r'sc) s ) (M2 - pFaz + o™k .
k=0
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In a similar manner we can show

-k
- _ (m\[F(N-y) ]k =F (+y
Pr (T =k) IY*=y) = (k) 1-F (M+y) +F (M-y) [l—F ﬂ+y)+F(n—Y)]m

It follows that

c

pr(r < c) s ) (F)a-onFen™k
=0

C
=) Mz +nFaez - "
k=0

where p* and B are defined as before.

Note we elected to discuss Pr(T+ < ¢) and Pr(T <g¢)
using tj's defined in terms of unordered observations
from the symmetric population distribution. As previously
mentioned, defining the tj's in terms of ordered or
unordered observations doesn't alter T+ or T .

As in Noether's notation, let KyrXgreoesX, be the
ordered observations, g=c¢c +1 and h=m-c¢c . The
statement 1/2(xg + Xn+l-h) > T indicates 1T is closer
to the (c + 1)st smallest observation than to the (m-c)th
largest observation in the sample. Thus at least (m-c)

of the m largest ]zi - N|'s have tj's with value 0,

so T < c . Therefore,
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Pr(1/2 (xg+xn+l_h) >17) =Pr (T < c)

(viii) g-1
<Y Maz+nFasz - p™x.

=0

) < 7 indicates T 1is
th

Similarly, 1/2 (xn + Xn+l-—g
closer to the gth largest observation than to the h
smallest observation. Thus at least m - ¢ of the m

largest lzi - N|'s have corresponding tj's with value

+
1, s0 T £ ¢ . Therefore,

Pr(l/2(x +x 4y ) < 1) =pPr (T’ s ¢)

g-1
<) (Maz-pFaz+n™" .
k=0
From this it follows
: g-1
Pr(1/20 +x ) > W2l- ) (Rlaz-n*azes™™
k=0
m
=1- ) (P aseenFa/2-p™"
k=m-g-1
(ix)
m-g
= ) (a2 a/2-m™F
k=0
h-1 ‘
=) (M a2 a/2-p™k .
k=0
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Note if we had selected 1 < 0 in the above discus-
sion the expressions for Pr(T s c) and Pr(T+ < ¢)
would remain the same except that p* would be greater
than 1/2. Thus the roles of (1/2 - 8) and (1/2 + B)
would be interchanged.

For the case k =1, we see from (viii) and (ix)

that for T greater than the population median

Pr(l/2(xg-Fxn+l_h) <M< 1/2(x +x ))

n+l-g
h-1
> ;) (Maz+a*az-n™"
k=0
g-1
- Marz+sakaz-pnm .
k=0

Let's now consider extending the above ideas to
determine a two-sided random interval for the maximum
median of k (k 2 1) symmetric distributions with con;
tinuous cdf's., Fix m, 2 =m=<n , and note g.+ h =

m+ 1 . Define 6 =max 6, , where 6, 1is the popula-
1sisk *

tion median of the ith distribution. Let Wg i =
’

. * . = , .
1/2(xg,1 xn+1-h,i) and Wh’l l/2(xh’l + xn+l—g,1)

for each i is1=s<k where X, .,Xa :reeesX
° ! ! 1,i’"2,1i’ ’n,i

denote the ordered observations from sample i. Define

W =max W_, . and W, =max W, . . Using this
1sisk 9-% hoog<isx Rl

notation we can state the following.
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Theorem 3.2 (two-sided intervals): For 1 g <h =m

where g =c+1 and h=m- c , that is, with

I= (ngwh) ’

h-1 g-1
inf Pr(e€1) = min( (1/2)" Y (®-a2™) (B),
s=0 s=0
h-l g-1
[ ] @] @]
s=0 s=0
Proof:

- Pr(Wh'i s e' 1= l,2,ooo,k) -

Using (viii) and (ix) with 8 = Bj for all j such that
ej # 8 , and using Noether's discussion when ej = 9

(thus Bj = 0) , it follows

h-1
T (m s m-s
prevy 59 = ) (D)2 + 8%z - )
s=0
. g—l
™ s m—s
and Pr (W, ;<8) = Zo(s)(l/z +8)°%(1/2 - 8y
s=

for each j . In turn
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h-1
k -
Pr(w, ;<8,i=1,2,...,%)2 1 ) (T)(1/2+8,)%(1/2-p)™°
l_ls=0
and
g-1
Pr (W, .<6,i=1,2 k)S}ISI z (m>(1/2+5 )% (1/2-8.)""%
VS S s i i .
s=0
Therefore,
h-1
k
priger} = I Z (2)(1/2+si)s(1/2—si)m S
i=1 &
s=0
h-1
k
T /m s m-s
- 1y (BaseesSarz-s)™c .
i=1 s=0

To find the infimum of the right hand side of this expres-
sion we use the results of Theorem 2 in Rizvi and Saxena

directly. The statement of Theorem 3.2 thus follows. #

Note if 7 was chosen less than 0 in the above dis-
cussion that Theorem 3.2 would be altered since the values
(1/2 + Bi) and (1/2 - B;) would be interchanged in the
discussion. To use Rizvi and Saxena's argument we would
interchange the values by making the lower sums into
appropriate upper sums. Resultingly, Theorem 3;2 would
be changed only to the extent that the products in the
infimum probability statement would involve upper sums.

The above procedure for two-sided intervals is

equivalent to Rizvi and Saxena's for the case m=n
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For the case k = 1 , Noether discusses a method of choosing
g and h . Based on this method, he gives an efficiency
discussion of his (g,h) intervals relative to the sign
test interval. When m < n , he shows for many types of
continuous distributions his method yields intervals with
shorter expected length than the corresponding sign test
intervals. It is natural to expect this property to carry
over to the k sample problem, thus yielding random inter-
vals of shorter expected length for the maximum median

using our procedure than for Rizvi and Saxena's procedure

in [1].
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