Habitat Suitability Survey of Downy Woodpeckers in Gourdneck State Game Area

Emma Fojtik
Geography: Environmental Analysis and Resource Management
Senior Honors Thesis
April 17th, 2015
Outline

• Introduction
• Purpose/Hypothesis
• Literature Review
• Methodology
• Results and discussion
• Conclusion
Introduction

• Area with decreased habitat through human modification
• Habitat Suitability of Downy Woodpecker

• Habitat Restoration at Gourdneck State Game Area
 • Loss of habitat through habitat restoration

• Study examines suitability of excluded restoration parcel in Gourdneck State Game Area
Purpose/Hypothesis

• Is a remaining parcel of forested land within Gourdneck State Game Area a suitable habitat for Downy woodpeckers?

• Hypothesis:
 • The study site is 100% suitable habitat for the Downy woodpecker according to the Habitat Suitability Index Model
Literature Review
Landscape Change and Human Modification

• Three processes related to landscape change (Bennett and Saunders 2010)
 1. original vegetation decreases resulting in habitat loss
 2. habitat left intact after initial changes is subject to further subdivision, resulting in fragmented landscapes and increases in edge effect
 3. new land uses replace vegetation once present

• As human modification of landscapes increase, amount of suitable habitat decreases
Downy Woodpecker General Research

“one of our most useful species ever” (Beal 1911)

Insects 76%

Plants/fruit 24%

Artist depiction of male and female Downy woodpecker
Habitat Suitability Index Model

Two Variables: Basal Area and Number of Snags

(Schroeder, R. L. 1982)
Basal Area

Basal Area – “The area of exposed stems of woody vegetation”
(Schroeder, R.L. 1982)

(Schroeder, R. L. 1982)
Number of snags

Snag – “Trees in which at least 50% of the branches have fallen, or are present and no longer bear foliage” (Schroeder, R. L. 1982)
Data Collection

• Model requires 0.4 hectares, or 1 acre, or land to be measured
 • Determined ten – 1/10th acre sample plots (Washington State University Extension)
 • 11.3 meter radius circle plots
Study Site - Measurement Collection

• Basal Area
 • Each tree in each sample plot; measured Diameter at Breast Height (DBH) using DBH Tape

• Number of Snags
 • Each tree over 15cm DBH - a snag or not
 • Recorded as YES or NO
Data Analysis

Basal Area – Variable 1

- To get Basal Area from DBH
 - Equation 1: $0.005454 \times DBH^2 = \text{Basal Area}$
- Converted all DBHs recorded to Basal Area
 - Sum all basal area calculations over entire study site

Number of Snags – Variable 2

- Simply counted how many of the trees were recorded as snags
- Because a total of 1 acre was measured, no extrapolation of the final count was necessary
Results

- Basal Area = 31.03 m2/ha, ~ 46% Suitability

(Schroeder, R. L. 1982)
Results

• Number of Snags = 15 per 0.4 ha, 100% Suitability

(Schroeder, R. L. 1982)
Discussion

• Hypothesis Analysis
 • The study site will hold 100% suitable habitat for the Downy woodpecker according to the Habitat Suitability Index Model

Results:

 Basal Area ~ 46%
 Number of Snags ~ 100%

Hypothesis cannot be accepted
Discussion continued

- Basal Area ~ 46% suitability

- HSI model does state, “stands with basal areas greater than 30 m²/ha, or about 50% suitability, are assumed to have moderate value for Downy woodpeckers.” (Schroeder, R. L. 1982)

- Although hypothesis was not accepted, study site still holds moderate value for food life requisite and high value for reproductive life requisite.
Discussion continued

• If management would like to create optimal habitat
 • Decrease amount of Basal Area of parcel
 • Optimal densities ~ 10 to 20 m2/ha
 • Reduction of 11 m2/ha of Basal Area, or 35% reduction, to reach 100% suitability for Variable 1

• Caution! Must not reduce number of snags or viable snags!
Creating Optimal Habitat

- If the five largest snags and ten largest non-snags were cut down, basal area would be reduced to 18.3966 m²/ha, making the site 100% suitable in basal area.
- By reducing the number of snags from fifteen to ten, the suitability stays at 100% for number of snags

(Schroeder, R. L. 1982)
Conclusion

• Despite habitat restoration in larger parcel, Downy woodpeckers do have suitable habitat available to them in SGA

• Study could be expanded to other areas of SGA
 • Parcel immediately west of study site seemed to have smaller basal area (viewed through aerial photography) could hold more suitable habitat

• Study could be expanded to entire SGA
 • SGA is large and could hold much more suitable habitat for Downy woodpecker
Limitations

• Lack of Suitability Models
 • Only one suitability model available for Downy woodpecker

• Time
 • Limited amount of time for study
 • Potential for larger study site, entire SGA

• Lack of Accessibility
 • Restricted by land cover, mostly wetland and brush
Acknowledgements

• **Dr. Lisa DeChano-Cook** for all of her advising, proofreading, guidance, and encouragement on the entire project from start to finish!

• **Dr. Lucius Hallett** for his constructive criticism and guidance throughout the thesis!

• **Dr. Kathleen Baker, Dr. Dave Lemberg, and Dr. Heather Petcovik** for equipment

• Lee Honors College

• My Dad for taking a walk in the woods with me and helping me complete my measurements!

• My Mom for her encouragement and attendance today!
Thank you for coming!