Design and Fabrication of an Instrumented Cane for the Blind

Aaron Dean
Nathan Wortman
Jim Bowman

Advised by Dr. Koorosh Naghshineh

Sponsored by Drs. Dae Kim and Robert Wall Emerson
WMU Department of Blindness and Low Vision Studies
Presentation Overview

• Introduction and Background
• Scope and Project Requirements
• Component Selection
• Design Implementation
 • Component Validation
 • Cane Assembly
 • Vibration Characterization
 • Muscular Exertion Validation
• Experimental Trial
• Conclusions and Future Work
Introduction and Background

Wooden
Fiberglass
Aluminum
Carbon Fiber

What makes a good cane?
What is known

Cane performance - Ability to detect drop offs and obstacles

<table>
<thead>
<tr>
<th>Performance</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Rigidity</td>
<td>● Weight</td>
</tr>
</tbody>
</table>

Two-point Touch and Constant Contact
Scope and Project Requirements

- Ongoing research into cane effectiveness
- Interest in Vibration characteristics
 - Resonant Frequencies
 - Damping
- Previous experimentation very simplified
Design Objectives

The Department of Blindness and Low Vision Studies set a primary and secondary goal for our project:

- Vibration and Force Analysis
- Muscle Exertion Measurement

Additional desired operating conditions:
- Wireless
- Lightweight
- No restriction of user’s motion
PCB 352C22 Uniaxial Accelerometer

- ½ Gram
- About the size of a raisin
- Already owned by WMU
- ±800 g pk range
- 10 mV/g sensitivity
PCB 208B02 Force Gauge

- 22.7 g (AA battery or 4 quarters)
- Size: 0.625” (Whopper Candy)
- Already owned by WMU
- 100 lb range
- 50 mv/lb sensitivity
NI-9234 Analog Input Module

- Already owned and used by WMU
- 5 oz. in weight
- Automatic filtering
- 4 Channels
- Reliable
- 51.2 kHz sampling rate
NI-9191 Wireless Chassis

- 8 oz.
- $380
- Automatic buffering
- Reliable
- Range: 30 m indoor or 100 m line of sight
Talentcell 12 V, 6 Amp-hour Lithium Ion Battery

- 1 lb
- $30
- 8 hour life
- 5” x 3.4” x 1”
Muscle Exertion

- Electromyographic sensors
- Technique for evaluating and recording muscular activity
- Sensors detect the voltage generated by muscles
Myo Armband

- $200
- Bluetooth (no loose wires)
- Easy to wear
- 93 g (slightly less than an Iphone)
Design Implementation

- Component Validation
- Tabletop Wireless validation
- Sensor Calibration
 - Measure Accelerometer sensitivity
 - Confirm Force gauge nominal sensitivity
Force gauge sensitivity to oblique impact

It is important to know how accurate the force gauge is when impacted at an angle.

<table>
<thead>
<tr>
<th>Angle (degrees)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.09</td>
</tr>
<tr>
<td>10</td>
<td>1.32</td>
</tr>
<tr>
<td>20</td>
<td>8.29</td>
</tr>
<tr>
<td>30</td>
<td>29.76</td>
</tr>
<tr>
<td>40</td>
<td>17.21</td>
</tr>
</tbody>
</table>
Cane Assembly

- Accelerometers attached to cane
- Force gauge mounting scheme
 - Custom Tip
- Fishing Vest
Vibration Characteristics

- Cane was tested for resonant frequencies using mounted sensors.
- Performed with and without force gage.
- Cantilevered and held in hand.
Results
Results
Results
Results

![Graph showing frequency vs. dB Ref (Rms) for 101.97 m gal N, with labeled peaks at 1, 2, 3, 4, and 5.]
Myo Testing

- Duration Test
- Gripmaster Test
- Cane Tap Test
- Real Time Demo
Experimental Trial with Blind Participant

- As a proof of concept, force and acceleration data was collected with a blind participant.
- Observations about the data show that the system is working correctly.
- Four conditions tested:
 - Two-touch, carpet
 - Constant contact, carpet
 - Two-touch, concrete
 - Constant contact, concrete
Results

Magnitude of force and vibration

Two-Touch method, carpet

Constant Contact method, carpet
Results (continued)

Natural Frequencies agree between laboratory and experimental conditions.

- 20 Hz
- 70 Hz
- 145 Hz
Conclusions

An instrumented cane was designed and fabricated

- Vibration and force measurements
- Wireless
- Muscle exertion
- Ergonomic
- Proof of concept
Future Work

This project created a new research tool to investigate the blind cane. Some possible areas of research include:

- Impact of tip force on drop-off discrimination
Future Work (continued)

- Relation between cane tap and vibration felt in the hand
- Determination of ground surface
- Vibration parameters and cane effectiveness
Acknowledgements

- James Bowman and Nathan Wortman
- Dr. Koorosh Naghshineh
- Dr. Dae Kim
- Dr. Robert Wall Emerson
- WMU Department of Mechanical and Aerospace Engineering
Questions?
References

- http://www.flexvoltbiosensor.com/
- https://noexcuseshealth.wordpress.com/2013/03/13/forearm-exercise-wrist-curls/
Experimental Trial Results

Muscle Exertion: