8-1979

Traceability in Graphs

Ronald J. Gould

Western Michigan University

Follow this and additional works at: http://scholarworks.wmich.edu/dissertations

Part of the Mathematics Commons

Recommended Citation

http://scholarworks.wmich.edu/dissertations/2672

This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
TRACEABILITY IN GRAPHS

by

Ronald J. Gould

A Dissertation
Submitted to the
Faculty of The Graduate College
in partial fulfillment
of the
Degree of Doctor of Philosophy

Western Michigan University
Kalamazoo, Michigan
August, 1979
ACKNOWLEDGEMENTS

I wish to thank the many faculty members of S.U.N.Y. College at Fredonia and Western Michigan University for their help in shaping my mathematical life. I would like to express my gratitude to my advisor, Professor Gary Chartrand for his guidance, encouragement, and infinite patience, and to my readers, Dr. John Roberts, Dr. S. F. Kapoor, and Dr. Christian Hirsch. Special thanks are extended to Dr. Albert Polimeni for introducing me to the study of graphs.

Ronald J. Gould
To my family,

for missing me when I wasn't there,

yet always being there for me.
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.
GOULD, RONALD JAMES
TRACEABILITY IN GRAPHS.
WESTERN MICHIGAN UNIVERSITY, PH.D., 1979
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PRELIMINARIES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Definitions and Notation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Historical Background</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>The Degree Set of a Homogeneously Traceable Nonhamiltonian Graph</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>SOME SUFFICIENT CONDITIONS FOR TRACEABILITY IN GRAPHS</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>k-Traceable Graphs</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Hamiltonian Graphs of Small Diameter</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>A Sufficient Condition for a Graph To Be k-Traceable</td>
<td>26</td>
</tr>
<tr>
<td>III</td>
<td>LINE GRAPHS AND THE HAMILTONIAN INDEX</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Traceability in Line Graphs</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>An Extension of a Theorem of Chartrand and Wall</td>
<td>34</td>
</tr>
<tr>
<td>IV</td>
<td>TRACEABILITY IN THE SQUARE OF A TREE</td>
<td>47</td>
</tr>
<tr>
<td>V</td>
<td>A GENERALIZATION OF HOMOGENEously TRACEABLE GRAPHS</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Initially k-Path Traceable Graphs</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Initially k-Path Traceable Nonhamiltonian Graphs</td>
<td>65</td>
</tr>
</tbody>
</table>
CHAPTER I

PRELIMINARIES

In the first section of this chapter we present some of the basic definitions, notation, and conventions that will be used throughout this dissertation. The second section provides a brief historical sketch of the problem of traceability in graphs for the purpose of highlighting some of the areas of interest related to this topic. The third section begins our discussion of traceability in graphs.

Section 1.1

Definitions and Notation

We begin by presenting some of the basic definitions and notation which are fundamental to this dissertation. In addition, more specialized definitions will be introduced as needed. All other terms will be defined as in Bezhad, Chartrand, and Lesniak-Foster [2].

As usual, |S| denotes the cardinality of a set S. We shall use \(V(G) \) and \(E(G) \) to denote the vertex set and edge set of a graph \(G \), respectively; \(|V(G)| \) is called its order and \(|E(G)| \) its size.

The neighborhood \(N(v) \) of the vertex \(v \) is the set of all vertices adjacent to \(v \), while the closed neighborhood is \(N[v] = N(v) \cup \{v\} \).
If $e = uv$ is an edge of a graph G and $u \notin V(G)$, we say the edge e is subdivided when it is replaced by the vertex u and edges uw and vw. If every edge of G is subdivided, the resulting graph is called the subdivision graph $S(G)$ of G.

The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph. Analogously, the edge connectivity $\kappa_1(G)$ is the minimum number of edges whose removal disconnects G. Any vertex whose removal disconnects G is called a cut vertex of G, while any edge whose removal disconnects G is termed a bridge.

A connected graph is eulerian if it possesses a circuit which contains every edge of G.

The join $G_1 + G_2$ of two graphs G_1 and G_2 with disjoint vertex sets is that graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uw | u \in V(G_1) \text{ and } v \in V(G_2)\}$.

Section 1.2

Historical Background

The first general discussion of traceability in graphs was given in 1855 by Thomas Penyngton Kirkman (see [1]). He considered the question of whether the graph of a polyhedron always contains a circuit which passes through each vertex once and only once. He claimed the condition he presented was sufficient to guarantee such a circuit could always be found. Unfortunately, his claim was false.
At approximately the same time, another mathematician, William Rowan Hamilton, was interested in a similar question. Hamilton reportedly introduced a game that consisted of a solid dodecahedron with each vertex representing an important city of the time. The object of the game was to produce a round trip through the city by following the edges of the dodecahedron, the only restriction being that each city could be visited only once. This is equivalent to finding a cycle containing every vertex in the graph of the dodecahedron. In honor of Hamilton, a graph containing a cycle through all its vertices is called a Hamiltonian graph.

Thus began one of the most widely investigated concepts in graph theory. Although many sufficient conditions have been determined, there is no known characterization of Hamiltonian graphs. This is considered by many to be one of the most famous unsolved problems in graph theory today. Thus it is not surprising that certain subclasses of Hamiltonian graphs and certain classes of non-Hamiltonian, "nearly" Hamiltonian, and "highly" Hamiltonian graphs have been investigated.

One of the best known variations on the Hamiltonian theme is that of traceable graphs. A graph is traceable if it contains a Hamiltonian path, that is, a path containing each vertex of the graph. Since every Hamiltonian graph is traceable, it was natural that these graphs would gain attention.

Recently, interest has grown in a class of "nearly" Hamiltonian graphs called hypohamiltonian graphs. A graph G is hypohamiltonian if it is not Hamiltonian but if $G - v$ is Hamiltonian for
every vertex v of G. Herz, Goudin, and Rossi [16] showed, for example, that hypohamiltonian graphs exist and that the Petersen Graph (see Figure 1.1) is the hypohamiltonian graph of smallest order. A great deal of additional work has been done on this topic.

![Figure 1.1: The Petersen Graph](image)

In one sense, a more general class of graphs was introduced by Skupień [22]. A graph G is called homogeneously traceable if for each $v \in V(G)$, there is a hamiltonian path in G with initial vertex v. Every hamiltonian graph is homogeneously traceable, thus hamiltonian graphs are a subclass of the family of homogeneously traceable graphs. Further, since every hypohamiltonian graph is homogeneously traceable, we see that hamiltonian graphs form a proper subclass of homogeneously traceable graphs.

Recently, Gimbel [11] has developed a computer algorithm to determine homogeneously traceable graphs. Also, Simões-Periera and Zamfirescu [21] have investigated the existence of homogeneously traceable nonhamiltonian digraphs without 2-cycles.

Another variation involves "highly" hamiltonian graphs. A graph G is hamiltonian connected if for every two vertices u and v of G there is a $u - v$ hamiltonian path in G. The close ties between hamiltonian connected, hamiltonian, and traceable graphs can be seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in the following results, the last two of which are due to Ore [18] and the first is a consequence of his work.

Theorem 1A (Ore)

Let \(G \) be a graph of order \(p \geq 3 \). If for all distinct non-adjacent vertices \(u \) and \(v \)

- (a) \(\deg u + \deg v \geq p - 1 \), then \(G \) is traceable,
- (b) \(\deg u + \deg v \geq p \), then \(G \) is hamiltonian, or
- (c) \(\deg u + \deg v \geq p + 1 \), then \(G \) is hamiltonian connected.

We begin our investigation of traceability in graphs by examining the structure of homogeneously traceable nonhamiltonian graphs.

Section 1.3

The Degree Set of a Homogeneously Traceable Nonhamiltonian Graph

In [4] it was shown that homogeneously traceable nonhamiltonian graphs exist for all orders \(p \) except \(3 \leq p \leq 8 \). In the construction presented, every homogeneously traceable nonhamiltonian graph of order 9 and greater contained a vertex of degree two. R. Frucht (personal communication) asked if there exist homogeneously traceable nonhamiltonian graphs with only large degrees. Of course the Petersen Graph is cubic. In this section we give a complete answer to this question.

The following result was established in [22] and will be useful.
Lemma 1B (Skupièn)

If \(G \) is homogeneously traceable of order \(p \geq 3 \), then \(G \) is 2-connected.

It is convenient to construct a class of graphs for use in the remainder of this section. Define the graphs \(H_{2n+1}, n \geq 1 \), to consist of two disjoint cycles, \(C: u_1, u_2, \ldots, u_{2n+1}, u_1 \) and \(C': v_1, v_2, \ldots, v_{2n+1}, v_1 \) and for each \(i = 1, 2, \ldots, 2n+1 \) join \(u_i \) and \(v_i \) by a path \(P_i \) of length two. Denote the vertex of degree two on \(P_i \) by \(t_i \). These graphs (see Figure 1.2) are homogeneously traceable and nonhamiltonian for each \(n \geq 1 \).

![Figure 1.2: The graph \(H_{2n+1} \)](image)

The degree set of a graph \(G \) is the set of degrees of the vertices of \(G \).

Theorem 1.1

Suppose \(S = \{n_0, n_1, \ldots, n_k\} \) is a set of \(k + 1 \) (\(\geq 1 \)) positive integers and \(n_i \geq 2 \) for all \(i \) (\(0 \leq i \leq k \)). Then \(S \) is the degree set of a homogeneously traceable nonhamiltonian graph unless \(S = \{2\} \).

Proof: Without loss of generality we assume that \(n_0 < n_1 < \cdots < n_k \). Suppose \(S = \{2\} \). Then by Lemma 1B, \(G \) is 2-connected. Since \(G \) is
2-regular of order at least 3, the graph G is a cycle and hence is hamiltonian. Thus $\{2\}$ is not the degree set of a homogeneously traceable nonhamiltonian graph. We now consider the converse. Suppose $S \neq \{2\}$. We distinguish three cases.

Case 1: Suppose $3 \in S$. If $S = \{3\}$, the Petersen Graph satisfies the theorem. If $S = \{2, 3\}$ the graph H_3 suffices. Now if $3 \in S$ but $S \neq \{3\}$ and $S \neq \{2, 3\}$ consider the graph H_ℓ where ℓ is odd and $\ell \geq \max(3, k)$. We now construct a graph H from H_ℓ.

If $n_0 \neq 2$, then $n_0 = 3$ and each u_ℓ and v_ℓ, $\ell = 1, 2, \ldots, k$, has degree 3. For each $\ell = 1, 2, \ldots, k$, replace the vertex t_ℓ (and its incident edges) by $M_\ell = K_{n_\ell + 1} - e$, where $e = x_\ell y_\ell \in E(K_{n_\ell + 1})$, that is, a copy of the complete graph on $n_\ell + 1$ vertices minus one edge. Then insert the edges $u_\ell x_\ell$ and $v_\ell y_\ell$. If $\ell > k$, repeat this argument with M_k replacing each t_j, $k + 1 \leq j \leq \ell$. Then $\deg_H u_\ell = \deg_H v_\ell = 3$ and $\deg_H x = n_\ell$ for each $x \in V(M_\ell)$, $\ell = 1, 2, \ldots, k$, and if $\ell > k$, $\deg_H x = n_k$ if $x \in V(M_k)$, $k + 1 \leq \ell \leq \ell$. Thus H has degree set S.

To see that H is homogeneously traceable, note that each M_ℓ is hamiltonian connected since $\deg_H v \geq (|V(M_\ell)| + 1)/2$ for each $v \in V(M_\ell)$, $\ell = 1, 2, \ldots, \ell$. Thus by Theorem IA [18], M_ℓ is hamiltonian connected. To find a hamiltonian path beginning with vertex u_ℓ or v_ℓ, $\ell = 1, 2, \ldots, \ell$, consider the path P in H_ℓ beginning at u_ℓ (or respectively v_ℓ) with vertex t_ℓ replaced by a hamiltonian path through M_ℓ, $\ell = 1, 2, \ldots, \ell$. Further, we can find a hamiltonian path with initial vertex $x \in V(M_\ell)$, $\ell = 1, 2, \ldots, \ell$, by beginning with the hamiltonian path P_1 in H_ℓ with initial vertex t_ℓ. If t_ℓ is
followed by u_i on P_1, then replace t_i by a hamiltonian $x - x_i$ path in M_i; similarly, if t_i is followed by v_i, replace t_i by a hamiltonian $x - y_i$ path in M_i. Replace each t_j, $j \neq i$, by a hamiltonian $x_j - y_j$ or $y_j - x_j$ path in M_j, the replacement matching the order of u_j and v_j on P_1. Since each M_i, $i = 1, 2, \ldots, \ell$, is hamiltonian connected and since there are hamiltonian paths in H_ℓ with initial vertex t_i and second vertex either u_i or v_i, such substitutions yield a hamiltonian path in H with initial vertex t_i. Thus H is homogeneously traceable.

To see that H is not hamiltonian, suppose to the contrary that H is hamiltonian. Then we could start and end some hamiltonian cycle with some vertex $x \in V(M_i)$. Note that the vertices of any M_i must be consecutive (although their particular order may vary) in any hamiltonian cycle of H, since the edges $u_i x_i$ and $y_i x_i$ must be used. However, replacing the subsequence of vertices in M_i with x_i, we produce a hamiltonian cycle in H_ℓ, which is impossible since H_ℓ is nonhamiltonian. Thus H is homogeneously traceable nonhamiltonian with degree set S.

In $n_0 = 2$, we repeat the last argument with vertices t_j ($j = 2, 3, \ldots, \ell$), leaving t_1 unchanged. Then $\deg_H t_1 = 2$ and again H has a degree set S. An analogous argument shows H is homogeneously traceable and nonhamiltonian.

Case 2: Suppose $S = \{n_0, n_1, \ldots, n_k\}$ and $n_i \geq 4$ for $i = 0, 1, \ldots, k$. Again consider the graph H_ℓ where ℓ is odd and $\ell \geq \max(3, k)$. We next construct a graph H from H_ℓ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Remove vertex u_i ($i = 1, 2, \ldots, \lambda$) and its incident edges and in each case insert a copy of the graph $L_i = K_{n_i + 1} - \{x_i, y_i, w_i\}$, $x_i, y_i, w_i \in V(L_i)$. Then remove each vertex u_i, $i = 1, 2, \ldots, \lambda$, and replace it with a copy of $M_i = K_{n_i + 1} - \{r_i, s_i, t_i\}$ for $r_i, s_i, t_i \in V(M_i)$. Now insert the edges $x_i w_{i+1}$ and $r_i s_{i+1}$ for $i = 1, 2, \ldots, \lambda - 1$ and $x_i w_1$ and $r_i s_1$.

Remove each vertex t_i and its incident edges, $i = 1, 2, \ldots, \lambda$, and insert a copy of $G_i = K_{n_i + 1} - \{a_i, b_i, c_i, d_i\}$ where $a_i, b_i, c_i, d_i \in V(G_i)$. Then add the edges $f_i a_i, f_i c_i, s_i b_i$, and $s_i d_i$ ($i = 1, 2, \ldots, \lambda$). If $\lambda > \kappa$, then let $G_i = G_k$ for each $i = k + 1, k + 2, \ldots, \lambda$.

As before, the graphs $G_i, M_i, \text{ and } L_i$, $i = 1, 2, \ldots, \lambda$, are hamiltonian connected. An argument analogous to that used in the last case shows that H is homogeneously traceable. Further, since at most one of the edges $f_i a_i$ and $f_i c_i$ (and, similarly, $s_i b_i$ and $s_i d_i$) can appear on any hamiltonian path or cycle for each i, an analogous argument shows that H is not hamiltonian. Since H has degree set S, Case 2 is completed.

Case 3: Suppose $S = \{2, n_1, n_2, \ldots, n_k\}$ and $n_i \geq 4$ for $i = 1, 2, \ldots, \kappa$. Here we proceed exactly as in Case 2 except vertex t_1 is not changed and the additional edge $f_1 s_1$ is inserted. The graph H (see Figure 1.3) so constructed has degree set S. However, the edge $f_1 s_1$ can appear on no hamiltonian path; so the argument of Case 2 shows H to be homogeneously traceable and nonhamiltonian.
Figure 1.3: The graph \mathcal{H} (dashed lines represent missing edges in a complete graph).
CHAPTER II

SOME SUFFICIENT CONDITIONS FOR
TRACEABILITY IN GRAPHS

Section 2.1

k-Traceable Graphs

Homogeneously traceable graphs can be generalized in a variety of ways. We consider one of those ways in this section. A graph G of order $p \geq 2$ is k-traceable ($1 \leq k \leq p$) if G is traceable from at least k of its vertices. Thus a graph G of order p is homogeneously traceable if and only if G is p-traceable. Every traceable graph is 2-traceable and hence we shall primarily consider k-traceable graphs for $k \geq 2$. Further, a graph is termed strictly k-traceable if it is k-traceable but not $(k+1)$-traceable.

For each integer $p \geq 2$ and each integer k, $2 \leq k \leq p$, the existence of a strictly k-traceable graph of order p is shown by considering the graph formed by identifying an end vertex of the path P_{p-k+1} of order $p - k + 1 (\geq 2)$ with a vertex of the complete graph K_k of order k. The graph thus formed is traceable from one vertex of P_{p-k+1} and $k-1$ vertices of K_k, but from no other vertices. It is also possible to find 2-connected graphs that are strictly k-traceable for each $k \geq 3$.
Example 2.1

The graph G_1 of Figure 2.1(a) has order $p_1 = n + \ell + 5 \geq 8$ ($n \geq 3$, $\ell \geq 0$) and is traceable from exactly the vertices of $V(G_1) = \{w, u_1, u_2, \ldots, u_{\ell}\}$. Varying the values of n and ℓ yields graphs of order $p_1 \geq 8$ traceable from exactly k vertices for each k, $7 \leq k \leq p_1 - 1$. The graph G_2 (with $\ell \geq 0$) of Figure 2.1(b) has order $p_2 \geq 6$ and is traceable from exactly four vertices, namely x_1, x_2, x_3, and x_4. Variations of G_2 are possible to produce graphs traceable from exactly five and six vertices. This is done by subdividing the edge w_0x_1 and both w_0x_1 and w_0x_2, respectively.

![Diagram of graphs G1 and G2](image)

Figure 2.1: (a) G_1, a 2-connected strictly k-traceable graph, $k \geq 7$, of order $p_1 = n + \ell + 5$ ($n \geq 3$, $\ell \geq 0$). (b) G_2, a 2-connected strictly 4-traceable graph of order $p_2 = \ell + 6$ ($\ell \geq 0$).
We now examine some sufficient conditions for a graph to be k-traceable.

Theorem 2.1

Let G be a graph of order $p \geq 3$. If G is traceable from a vertex of degree k then G is $(k+1)$-traceable.

Proof: Let G be a graph of order $p \geq 3$ and suppose that G is traceable from a vertex v_1 of degree k. If $k = 1$ the result is clear; so assume $k \geq 2$ and let $P:v_1, v_2, \ldots, v_p$ be a hamiltonian path with initial vertex v_1. Suppose that $N(v_1) = \{v_2, v_{i_2}, v_{i_3}, \ldots, v_{i_k}\}$ where $2 < i_2 < \cdots < i_k$. If $v_p \in N(v_1)$ then G is hamiltonian and the result is clear; thus assume $v_p \notin N(v_1)$.

For each edge v_1v_r, $2 \leq r \leq k$, it is possible to find a vertex, namely v_{i_r-1}, that is the initial vertex of a hamiltonian path, namely $P':v_{i_r-1}, v_{i_r-2}, \ldots, v_1, v_{i_r}, v_{i_r+1}, \ldots, v_p$.

Thus G is traceable from each of the vertices v_{i_r-1}, $r = 2, 3, \ldots, k$, as well as from v_1 and v_p and hence G is $(k+1)$-traceable.

Corollary 2.2

If G is traceable and $\delta(G) \geq n \geq 1$, then G is $(n+1)$-traceable.

We note that Corollary 2.2 implies that there are no 2-connected graphs that are traceable from exactly two vertices.

We next turn our attention to graphs that are traceable from as few vertices as possible.
Theorem 2.3

If G is a graph with $\delta(G) = n \geq 2$ that is strictly $(n+1)$-traceable, then either $G = K_{n+1}$ or $G = H + \overline{K}_{n+1}$ for some graph H of order n.

Proof: Let G be a graph of order p with $\delta(G) = n$ that is traceable from exactly $n + 1$ vertices, $n \geq 2$. Clearly $p \geq n + 1$. If $p = n + 1$, then $G = K_{n+1}$.

Now suppose $p > n + 1$ and let $P: v_1, v_2, \ldots, v_p$ be a hamiltonian path in G. Since G is traceable from exactly $n + 1$ vertices and $\delta(G) = n$, it follows by Theorem 2.1 that $\deg v_1 = \deg v_p = n$.

Let $N(v_1) = \{v_2, v_{i_2}, v_{i_3}, \ldots, v_{i_n}\}$ where $2 < i_2 < i_3 < \cdots < i_n$. By the proof technique of Theorem 2.1, it follows that G is traceable from the vertices $v_1, v_{i_2-1}, v_{i_3-1}, \ldots, v_{i_n-1}$, and v_p. Since $\deg v_p = n$, an argument analogous to the one above shows that if $v_p v_s \in E(G)$ then v_{s+1} is the initial vertex of a hamiltonian path in G. However, if $s \neq p - 1$ or $s \neq 1$, we have that $s + 1 = i_j - 1$ for some j, $2 \leq j \leq n$, for otherwise G would be $(n+2)$-traceable. Further, suppose $v_1 v_j, v_p v_s \in E(G)$ where $s \leq j - 2$, and v_1 and v_p are not adjacent to any of the vertices $v_{s+1}, v_{s+2}, \ldots, v_{j-1}$. Then G is traceable from v_{s+1} and unless $s = j - 2$, G would be $(n+2)$-traceable. Because s was arbitrary, it follows that for each $k > 2$ such that $v_1 v_k \in E(G)$, $v_p v_{k-2}$ is an edge of G. Next note that with this configuration G is traceable from v_{k-3} and v_{k+1} as well, since $v_{k-3}, v_{k-4}, \ldots, v_1, v_k, v_{k-1}, v_{k-2}, v_p, v_{p-1}, \ldots, v_{k+1}$ is a hamiltonian path. Thus $v_p v_2$ and $v_1 v_{p-1}$ are edges of G and $i_2 + 2 = i_3$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[i_3 + 2 = i_4, \ldots, i_{n-1} + 2 = i_n \] and \(i_n = p - 1 \) so that \(i_2 = 4 \).

Hence, \(N(v_i) = \{v_2, v_4, v_6, \ldots, v_{2n}\} = N(v_p) \) and \(p = 2n + 1 \).

Further, \(G \) is traceable from each of the vertices \(v_1, v_3, v_5, \ldots, v_p \). Now applying the same arguments to the hamiltonian path with initial vertex \(v_1 (r = 3, 5, 7, \ldots, p - 2) \) and terminal vertex \(v_p \), we see that \(N(v_1) = N(v_p) = N(v_r) \) for each \(r = 3, 5, 7, \ldots, p - 2 \); that is, each vertex in the set \(V_1 = \{v_1, v_3, \ldots, v_p\} \) is adjacent to each vertex in the set \(V_2 = \{v_2, v_4, \ldots, v_{p-1}\} \). If any two vertices of \(V_1 \) are adjacent, then a vertex of \(V_1 \) has degree greater than \(n \); thus \(\langle V_1 \rangle = \overline{K}_{n+1} \). No hamiltonian path begins with a vertex of \(V_2 \), for otherwise \(K(n, n+1) \) is hamiltonian. Thus, additional edges among the vertices of \(V_2 \) induce no new hamiltonian paths so that \(G = H + \overline{K}_{n+1} \), where \(\overline{K}_{n+1} = \langle V_1 \rangle \) and \(H = \langle V_2 \rangle \).

We now observe that if \(G \) is 2-connected and traceable from exactly three vertices, then \(G = K_3, G = K(2, 3), \) or \(G = K_2 + \overline{K}_3 \); that is, there are only three graphs that are 2-connected and strictly 3-traceable.

We complete this section by noting that among graphs of order 6 or less that are 2-connected, various restrictions exist as to the number of vertices from which the graph is traceable (see [13, pp. 215-24]). However, we have demonstrated that for graphs of order \(p \geq 7 \), there exist 2-connected strictly \(k \)-traceable graphs for each \(k, 4 \leq k \leq p \). The table on page 16 summarizes these possibilities.
<table>
<thead>
<tr>
<th>Order</th>
<th>Possible Values of (k) for 2-Connected Strictly (k)-Traceable Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3, 5</td>
</tr>
<tr>
<td>6</td>
<td>4, 6</td>
</tr>
<tr>
<td>(p \geq 7)</td>
<td>4 (\leq k \leq p)</td>
</tr>
</tbody>
</table>

Section 2.2

Hamiltonian Graphs of Small Diameter

Graph theory literature abounds with sufficient conditions for hamiltonian graphs. Since every hamiltonian graph is homogeneously traceable, the aforementioned conditions are also sufficient for a graph to be homogeneously traceable. In this section we present a new sufficient condition for a graph to be hamiltonian and thus for a graph to be homogeneously traceable.

We begin by stating two well-known sufficient conditions for a graph to be hamiltonian.

Theorem 2A (Ore [18])

If \(G \) is a graph of order \(p \geq 3 \) such that \(\text{deg} u + \text{deg} v \geq p \) for all nonadjacent vertices \(u \) and \(v \), then \(G \) is hamiltonian.

Theorem 2B (Dirac [9])

If \(G \) is a graph of order \(p \geq 3 \) such that \(\text{deg} v \geq p/2 \) for every vertex \(v \) of \(G \), then \(G \) is hamiltonian.

Although Dirac's theorem precedes Ore's theorem, it follows as a corollary of Ore's theorem. These results have another common
element. If \(\deg v \geq p/2 \) for every vertex \(v \) of a graph \(G \) or if
\(\deg u + \deg v \geq p \) for every pair of nonadjacent vertices \(u \) and \(v \) of \(G \),
then \(\text{diam } G \leq 2 \). That is, both conditions imply the graph has a
small diameter. However, not all hamiltonian graphs of diameter 2
satisfy the conditions of Ore's theorem.

Example 2.2

Consider the graph \(G \) obtained by taking a copy of \(K_3 \) with
vertices \(x_1, x_2, \) and \(x_3 \) and a copy of \(K_{p-3} \) (\(p \geq 7 \)) and joining each
\(x_i \) (\(i = 1, 2, 3 \)) of \(K_3 \) to a distinct vertex \(w_i \) (\(i = 1, 2, 3 \)) of \(K_{p-3} \).

The graph \(G \) thus formed is hamiltonian. However, \(G \) fails to
satisfy the conditions of Ore's theorem, since \(\deg x_1 = 3 \) and if
\(w \in V(G) - \{x_1, x_2, x_3, w_1, w_2, w_3\} \), then \(\deg w = p - 4 \). Further,
\(x_1 \) and \(w \) are nonadjacent and \(\deg x_1 + \deg w = p - 1 < p \).

We now investigate another sufficient condition for a graph
of small diameter to be hamiltonian. We begin with a lemma.

Lemma 2.4

If \(G \) is a 2-connected graph of order \(p, 3 \leq p \leq 8 \), contain-
ing no induced subgraph isomorphic to \(K(1, 3) \), then \(G \) is hamiltonian.
Further, if \(p \geq 9 \), then \(G \) contains a cycle of length at least 8.

Proof: For \(3 \leq p \leq 6 \), the result follows by investigating each
graph individually (see [13], pp. 215-24, for example). If \(p = 7 \)
and \(G \) is not hamiltonian, let \(C: u_0, u_1, \ldots, u_k, u_0 \) be a longest
cycle in \(G \). (Such a cycle \(C \) exists since \(G \) is 2-connected.)
Further, because G is connected there exists $x \in V(G) - V(C)$ such that x is adjacent to a vertex of C. Without loss of generality, assume $xu_1 \in E(G)$ [otherwise, relabel the cycle so that $xu_1 \in E(G)$]. Since C is a longest cycle of G, the edges xu_0 and xu_2 are not in G or a longer cycle would result. But then since G contains no induced subgraph isomorphic to $K(1,3)$, the edge u_0u_2 must be in G.

Since G is 2-connected, there exists a path P from x to u_k that avoids u_1. Let u_i be the first vertex of P on C and let P' denote the $x - u_i$ subpath of P. Clearly $i \neq 0, 2$ or a cycle longer than C would be obtained. Also note that the vertex preceding u_i on P' is not a vertex of C and so it cannot be adjacent to u_{i-1} or u_{i+1}, or again a cycle longer than C would result. But then $u_{i-1}u_{i+1} \in E(G)$, for otherwise G would contain an induced $K(1,3)$.

If $k = 3$, then $u_i = u_3$ and the graph G contains a cycle longer than C, namely the cycle u_0, u_1, P', u_2, u_0. Therefore, $k > 3$ and we now have two possibilities, namely $k = 4$ and $k = 5$.

If $k = 4$, then $u_i = u_3$ or $u_{i-1} = u_4$. If $u_i = u_3$, then the cycle $u_0, u_2, u_1, P', u_4, u_0$ is longer than C. If $u_i = u_4$, then note that the edge $u_{i-1}u_{i+1}$ is actually $u_{i-1}u_5$. Hence the cycle $u_0, u_2, u_1, P', u_4, u_3, u_0$ is longer than C. In each case, a contradiction is obtained, so $k = 5$.

Since $k = 5$ and $p = 7$, the path P' is actually the edge xu_3.

Again we have choices for u_i. If $u_i = u_3$, then $u_4, u_2, u_1, x, u_3, u_4, u_5, u_0$ is a hamiltonian cycle. If $u_i = u_4$, then $u_3u_5 \in E(G)$ so that $u_0, u_2, u_1, x, u_4, u_3, u_5, u_0$ is a hamiltonian cycle. If $u_i = u_5$, then $u_4u_5 \in E(G)$ so that $u_0, u_5, x, u_1, u_2, u_3, u_4, u_0$ is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a Hamiltonian cycle. In all cases we have a contradiction. Thus G is Hamiltonian.

Now suppose that $p = 8$ and that G is not Hamiltonian. Let $C: u_0, u_1, u_2, \ldots, u_k, u_0$ be a longest cycle of G. If $k \leq 6$, the techniques of the case $p = 7$ show a longer cycle can be obtained. Thus suppose $k = 6$, i.e., $C: u_0, u_1, u_2, \ldots, u_6, u_0$. Without loss of generality assume $\alpha \in V(G) - V(C)$ is adjacent to u_3. Since $\delta(G) \geq 2$, α is adjacent to some other vertex as well. If α is adjacent to u_2 or u_4, then a Hamiltonian cycle is easily obtained. Since α is adjacent to neither u_2 nor u_4, $u_2u_4 \in E(G)$ or G would contain an induced $K(1, 3)$.

Now suppose α is adjacent to u_1. Then α is not adjacent to u_0 and hence $u_0u_2 \in E(G)$. But then $u_0, u_2, u_1, \alpha, u_3, u_4, u_5, u_6, u_0$ is a Hamiltonian cycle of G. Thus $\alpha u_1 \notin E(G)$ and by symmetry $\alpha u_5 \notin E(G)$.

Finally, suppose $\alpha u_0 \in E(G)$. Then αu_1 and αu_6 are not edges of G and u_1u_6 is an edge of G. However, $u_0, u_1, u_6, u_5, u_4, u_2, u_3, \alpha, u_0$ is then a Hamiltonian cycle of G. By symmetry $\alpha u_6 \notin E(G)$. But then α cannot be adjacent to any vertex of G different from u_3. Since $\delta(G) \geq 2$, a contradiction is produced.

Hence if $p = 8$, G must be Hamiltonian, and so for each p, $3 \leq p \leq 8$, G is Hamiltonian.

Now suppose $p \geq 9$. The arguments given for $p = 8$ can be used to show that a cycle of maximum length in G must have at least eight vertices. This is done by replacing the edge αu_1 by an $\alpha - u_1$ path P' where $V(P') \cap V(C) = \{u_4\}$. ■
With the aid of Lemma 2.4 we now prove the main result of this section.

Theorem 2.5

If \(G \) is a 2-connected graph of order \(p \geq 3 \) with \(\text{diam} \; G \leq 2 \) and \(G \) contains no induced subgraph isomorphic to \(K(1, 3) \), then \(G \) is hamiltonian.

Proof: If \(3 \leq p \leq 8 \), we apply Lemma 2.4. If \(p \geq 9 \), then by Lemma 2.4 we know \(G \) contains a cycle of length at least 8. Let \(C:u_0, u_1, u_2, \ldots, u_k, u_0 \) be a cycle of maximum length in \(G \). (Thus \(k \geq 7 \)).

If \(C \) is a hamiltonian cycle of \(G \), then the proof is complete; so assume \(C \) is not a hamiltonian cycle. Since \(G \) is connected, there exists a vertex \(x \in V(G) - V(C) \) such that \(x \) is adjacent to a vertex \(u_i \) of \(C \). Without loss of generality we may assume \(4 \leq i < k \).

Note that because \(C \) is a cycle of maximum length in \(G \), the vertex \(x \) is not adjacent to consecutive vertices of \(C \). Further, the edge \(u_{i-1}u_{i+1} \) must be in \(G \) or else \(G \) would contain an induced \(K(1, 3) \).

Now consider the distance \(d(x, u_{i-2}) \) between \(x \) and \(u_{i-2} \). If \(d(x, u_{i-2}) = 1 \), then the edges \(xu_{i-3} \) and \(xu_{i-1} \) are not in \(G \) and because \(G \) contains no induced \(K(1, 3) \), the edge \(u_{i-3}u_{i-1} \) is in \(G \) (see Figure 2.2).

![Figure 2.2](image-url)
But then

\[u_0, u_1, u_2, \ldots, u_{i-3}, u_{i-2}, x, u_i, u_{i+1}, \ldots, u_k, u_0 \]

is a cycle that includes each vertex of \(C \) and \(x \), contradicting the
fact that \(C \) is a cycle of maximum length. Thus \(d(x, u_{i-2}) = 2 \). A
similar argument shows no \(x - u_{i-2} \) path containing a vertex of
\(V(G) - V(C) \) different from \(x \) exists in \(G \). Thus any \(x - u_{i-2} \) distance
path must be of the form \(x, u_j, u_{i-2} \), where \(u_j \in V(C) \). (Note that
\(j \neq i - 1 \) and \(j \neq i + 1 \).)

Case 1: Assume that \(i + 1 < j < k \). Since \(x \) is not adjacent
to consecutive vertices of \(C \), \(xu_{j-1} \) and \(xu_{j+1} \) are not edges of \(G \)
(subscripts expressed modulo \(k + 1 \)). Then since \(G \) contains no
induced \(K(1, 3) \), the edge \(u_{j-1}u_{j+1} \) belongs to \(G \). However, if
\(i + 1 < j < k \), then

\[u_0, u_1, u_2, \ldots, u_{i-2}, u_{j-1}, x, u_i, u_{i-1}, u_{i+1}, u_{i+2}, \]

\[\ldots, u_{j-1}, u_{j+1}, u_{j+2}, \ldots, u_k, u_0 \]

is a cycle in \(G \) longer than \(C \), which is a contradiction, while if
\(j = k \), then \(u_{k-1}u_0 \in E(G) \) and

\[u_0, u_1, u_2, \ldots, u_{i-2}, u_k, x, u_i, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_{k-1}, u_0 \]

is a cycle in \(G \) longer than \(C \), once again producing a contradiction.

Case 2: Suppose that \(0 \leq j < i - 1 \). We again note that the
edges \(xu_{j-1} \) and \(xu_{j+1} \) are not in \(G \) so that the edge \(u_{j-1}u_{j+1} \) must be
in \(G \) since \(G \) contains no induced \(K(1, 3) \). If \(0 < j < i - 1 \), then

\[u_0, u_1, u_2, \ldots, u_{j-1}, u_{j+1}, u_{j+2}, \]

\[\ldots, u_{i-2}, u_j, x, u_i, u_{i-1}, u_{i+1}, u_{i+2}, \]

\[\ldots, u_k, u_0 \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
is a cycle in G longer than C, which is contradictory. If $j = 0$, then

$$u_0, x, u_i, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_k, u_1, u_2, \ldots, u_{i-2}, u_0$$

is a cycle in G longer than C, again producing a contradiction.

Thus the only remaining possibility is $j = i$.

Case 3: Assume that x, u_i, u_{i-2} is the only $x - u_{i-2}$ path of length 2. By symmetry, x, u_i, u_{i+2} is the only $x - u_{i+2}$ path of length 2. Since G is 2-connected, there exists an $x - u_0$ path that does not contain u_i. Let u_ℓ be the first vertex of C on this path and let P denote the $x - u_\ell$ subpath. Assume $0 \leq \ell < i - 2$. If

$$\ell = i - 3,$$

then $u_{i-4}u_{i-2} \in E(G)$ and

(1) $u_0, u_1, u_2, \ldots, u_{i-4}, u_{i-2}, P, u_i, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_k, u_0$

is a cycle in G longer than C. Thus $0 \leq \ell < i - 3$. But then $d(x, u_{i-3}) = 2$ for otherwise we may replace P in (1) by u_{i-3}, x to obtain a contradiction.

Again we note that any $x - u_{i-3}$ distance path must be of the form x, u_j, u_{i-3} where $u_j \in V(C)$ and that $u_{j-1}u_{j+1} \in E(G)$. If

$0 \leq j < i - 3$, we then see that

$$u_0, u_1, u_2, \ldots, u_{j-1}, u_{j+1}, u_{j+2}, \ldots, u_{i-3}, u_j, x, u_i, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_k, u_0$$

is a cycle in G longer than C [see Figure 2.3(a)]. Further, if

$$i + 1 < j \leq k,$$

then the cycle

$$u_0, u_1, u_2, \ldots, u_{i-3}, u_j, x, u_i, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_{j-1}, u_{j+1}, u_{j+2}, \ldots, u_k, u_0$$
is longer than \(C \) [see Figure 2.3(b)]. Since \(j \neq i - 1 \) and \(j \neq i + 1 \), and all other possibilities have led to a contradiction, we conclude that the only \(x - u_{i-3} \) distance path must be of the form \(x, u_i, u_{i-3} \).

(Note that if \(i + 2 < k \leq k \), a similar argument would hold by symmetry.)

The above process can be repeated showing \(u_i u_r \in E(G) \) for each \(r, \ell + 1 \leq r \leq i - 2 \). But then,
\[u_0, u_1, \ldots, u_{i-1}, \overline{P}, u_i, u_{i+1}, u_{i+2}, \ldots, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_k, u_0 \]

is a cycle in \(G \) longer than \(C \) [see Figure 2.3(c)]. Thus a contradiction is reached in all cases so that \(G \) is hamiltonian.\[\]

We also note that Goodman and Hedetniemi [12] have shown that if \(G \) is 2-connected and contains no induced subgraph isomorphic to either \(K(1, 3) \) or \(K(1, 3) + x \) \((x \in E(G))\), then \(G \) is hamiltonian. The graph of Example 2.2 fails to satisfy the conditions of this result. However, the cycles \(C_n, n \geq 8 \), satisfy the conditions of the theorem of Goodman and Hedetniemi, but fail to satisfy the conditions of Theorem 2.5.

Corollary 2.6

If \(G \) is a 2-connected graph of order \(p \geq 3 \) containing no induced subgraph isomorphic to any tree of order 4, then \(G \) is hamiltonian.

Proof: Since \(G \) contains no induced subgraph isomorphic to \(P_4 \), the diameter of \(G \) is at most 2. Further, \(G \) does not contain the tree \(K(1, 3) \) as an induced subgraph. Thus, by Theorem 2.5, \(G \) is hamiltonian.\[\]

Corollary 2.7

If \(G \) is a connected graph of order \(p \) containing no induced subgraph isomorphic to \(K(1, 3) \) and \(\text{diam} \ G \leq 2 \), then \(G \) is \((p-1)\)-traceable. In fact, for \(p \geq 3 \) either \(G \) is hamiltonian or \(G = K_1 + (K_r \cup K_s) \) for \(r, s \geq 1 \).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Proof: If \(p = 2 \), then since \(G \) is connected, \(G = K_2 \) and the result holds. Thus assume \(p \geq 3 \). If \(G \) is 2-connected, the result follows from Theorem 2.5.

Thus assume \(\kappa(G) = 1 \) and that \(v \) is a cut-vertex of \(G \). Since \(G \) contains no induced \(K(1, 3) \), the graph \(G - v \) has exactly two components \(C_1 \) and \(C_2 \). If \(|V(C_1)| = |V(C_2)| = 1 \), then \(G = P_3 \) and \(G \) is \((p-1)\)-traceable. Thus assume that at least one of \(C_1 \) and \(C_2 \) has two or more vertices, say \(|V(C_2)| \geq 2 \). Let

\[V(C_2) = \{w_1, w_2, \ldots, w_s\}, \quad s \geq 2, \]

and let

\[V(C_1) = \{u_1, u_2, \ldots, u_r\}, \quad r \geq 1. \]

Note that each vertex of \(C_2 \) is adjacent to \(v \); for if \(w_i \) (\(1 \leq i \leq s \)) is not adjacent to \(v \), then \(d(u_i, w_i) > 2 \), yielding a contradiction. Further, \(\langle V(C_2) \rangle = K_s \), for if any two vertices of \(C_2 \) are not adjacent, say \(w_i \) and \(w_j \), then \(\langle \{u_i, v, w_i, w_j\} \rangle = K(1, 3) \), again producing a contradiction. A similar argument holds if \(|V(C_1)| \geq 2 \). Thus the graph \(G \) has the form \(G = K_1 + (K_r \cup K_s) \), where \(r, s \geq 1 \), and so \(G \) is traceable from each vertex of \(V(G) - \{v\} \); thus \(G \) is \((p-1)\)-traceable. \(\blacksquare \)

We have already noted that the graph of Example 2.2 does not satisfy the conditions of Ore's theorem. However, it does satisfy those of Theorem 2.5. We next show that there exist graphs which satisfy the conditions of Ore's theorem but not those of Theorem 2.5.
Example 2.3

Let $G = K(4, 5)$ with partite sets $\{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ and $\{u_1, u_2, u_3, u_4\}$ and let H be the graph with $V(H) = V(G)$ and $E(H) = E(G) \cup \{\omega_1\omega_2, \omega_3\omega_4, \omega_4\omega_5\}$. Note that deg $u_i = 5$ ($i = 1, 2, 3, 4$) and deg $\omega_j = 5$ ($j \neq 4$) and deg $\omega_4 = 6$. Thus for any nonadjacent vertices r and s in H, deg $r +$ deg $s \geq 10 > |V(H)| = 9$, so H satisfies the conditions of Ore's theorem. However, $\langle u_1, \omega_1, \omega_3, \omega_5 \rangle = K(1, 3)$, so H does not satisfy the conditions of Theorem 2.5.

Finally, we note that many theorems in the literature imply Ore's theorem without implying that the diameter of the graph is at most 2. Among such well-known results are those of Posa [19] and Chvátal and Erdös [8].

We conclude this section by noting that the conditions of Theorem 2.5 cannot be relaxed to include graphs of diameter 3. However, another possibility still remains.

Conjecture: If G is a 2-connected graph of order $p \geq 3$ with $\text{diam} G \leq 3$ and G contains no induced subgraph isomorphic to $K(1, 3)$, then G is homogeneously traceable.

Section 2.3

A Sufficient Condition for a Graph To Be k-Traceable

Corollary 2.6 of Section 2.2 gives a sufficient condition for a graph to be homogeneously traceable. In a certain sense, this result is not ideal, since the same condition also implies that a
graph is hamiltonian. In this section we present a sufficient condi-
tion for a graph to be homogeneously traceable that does not imply
the graph is hamiltonian. We first present a sufficient condition
for a graph to be \(k\)-traceable, \(k \geq 4\).

Theorem 2.8

Let \(G\) be a graph of order \(p \geq 6\). If the vertex set of \(G\)
can be partitioned into two sets, \(S_0\) and \(S_1\), such that

1. \(<S_i>\) is hamiltonian \((i = 0, 1)\), and
2. \(k_i > 0\) vertices of \(S_i\) are adjacent to vertices of \(S_{i+1}\)
 (subscripts expressed modulo 2), where \(k_i < |S_i|\)

then the graph \(G\) is \((k_0 + k_1 + 2)\)-traceable.

Proof: Let \(G\) be a graph of order \(p \geq 6\) such that \(V(G) = S_0 \cup S_1, \)
\(S_0 \cap S_1 = \emptyset\), and \(<S_i>\) is hamiltonian \((i = 0, 1)\), where \(k_0 > 0\)
vertices of \(S_0\) are adjacent to vertices of \(S_i\) while \(k_1 > 0\) vertices
of \(S_1\) are adjacent to vertices of \(S_0\).

Let \(C_0 : v_1, v_2, \ldots, v_k, v_1 (k \geq 3)\) and \(C_1 : w_1, w_2, w_3, \)
\(\ldots, w_k, w_1 (\ell \geq 3)\) be hamiltonian cycles in \(<S_0>\) and \(<S_1>\), respec-
tively. Suppose that the vertex \(v_i\) \((1 \leq i \leq k)\) is adjacent to the
vertex \(w_j\) \((1 \leq j \leq \ell)\). Then we note that hamiltonian paths with
initial vertex \(v_{i-1}\) and \(v_{i+1}\) exist in \(G\), namely

\[
\begin{align*}
v_{i-1}, & v_{i-2}, v_{i-3}, \ldots, v_1, v_k, v_{k-1}, \ldots, v_i, w_j, w_{j+1}, \\
& \ldots, w_k, w_1, w_2, \ldots, w_{j-1}
\end{align*}
\]

and

\[
\begin{align*}
v_{i+1}, & v_{i+2}, \ldots, v_k, v_1, v_2, \ldots, v_i, w_j, w_{j+1}, \\
& \ldots, w_k, w_1, w_2, \ldots, w_{j-1}.
\end{align*}
\]
Thus, if \(k_0 \) distinct vertices of \(S_0 \) are adjacent to vertices of \(S_1 \), then \(G \) must be traceable from at least \(k_0 + 1 \) vertices. Since a similar argument holds for each vertex of \(S_1 \) adjacent to a vertex of \(S_0 \), \(k_1 + 1 \) additional vertices may serve as the initial vertices of a hamiltonian path. Thus \(G \) is traceable from at least \(k_0 + k_1 + 2 \) vertices.

A special case of this result yields a sufficient condition for a graph to be homogeneously traceable.

Corollary 2.9

If \(G \) is a graph of order \(p \geq 6 \) and if the vertex set of \(G \) can be partitioned into two sets, \(S_0 \) and \(S_1 \), such that

1. \(\langle S_i \rangle \) is hamiltonian (\(i = 0, 1 \)), and
2. at most one vertex of \(S_i \) is not adjacent to a vertex of \(S_{i+1} \)

(subscripts expressed modulo 2),

then \(G \) is homogeneously traceable.

Proof: Let \(|S_0| = r \) and \(|S_1| = s \), where \(p = r + s \). By Theorem 2.8, \(G \) is traceable from at least \((r - 1) + (s - 1) + 2 = p \) vertices. Thus \(G \) is homogeneously traceable.

Note that Corollary 2.9 does not imply that the graph in question is hamiltonian.

Example 2.4

Consider the graph \(G \) of Figure 2.4. Let \(S_0 = \{v_1, v_2, v_3\} \) and \(S_1 = V(G) - S_0 \). Then \(\langle S_0 \rangle = C_5 \) and \(\langle S_1 \rangle = C_8 \), and so
both are hamiltonian. Further, each vertex of S_0 is adjacent to a vertex in S_1, while only v_7 of S_1 is not adjacent to a vertex of S_0. Thus, by Corollary 2.9, we see that G is homogeneously traceable. However, the graph G is hypohamiltonian and so is not hamiltonian.

![A Hypohamiltonian Graph of Order 13.](image)

Figure 2.4: A Hypohamiltonian Graph of Order 13.
CHAPTER III
LINE GRAPHS AND THE HAMILTONIAN INDEX

Section 3.1

Traceability in Line Graphs

With every nonempty graph G there is associated a graph $L(G)$, called the line graph of G, having the property that there exists a one-to-one correspondence between $E(G)$ and $V(L(G))$ such that two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent.

A set F of edges of a graph G is a dominating set of edges if every edge of G either belongs to F or is adjacent to an edge of F. If $C = \langle F \rangle$ is a circuit, then C is called a dominating circuit of G. Thus, a circuit C is a dominating circuit of G if every edge of G is incident with a vertex of C. Similarly, if $T = \langle F \rangle$ is a trail, then T is a dominating trail if every edge of G is incident to a vertex of T.

Harary and Nash-Williams [14] have characterized those graphs G for which $L(G)$ is hamiltonian.

Theorem 3A (Harary and Nash-Williams)

Let G be a graph without isolated vertices. Then $L(G)$ is hamiltonian if and only if $G = K(1, n)$ for some $n \geq 3$ or G contains a dominating circuit.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Since a hamiltonian cycle of a graph G is a dominating circuit for G, the property of a graph being hamiltonian is preserved under the line graph function. We will show that the property of being homogeneously traceable is also preserved under the line graph function. To this end the following theorem will be useful.

Theorem 3.1

Let G be a traceable graph and let $X = \{v_1, v_2, \ldots, v_k\}$ ($k \geq 2$) be the set of all vertices from which G is traceable. Then $L(G)$ is traceable from at least $\sum_{i=1}^{k} \deg v_i - |E(H)|$ distinct vertices, where $H = \langle X \rangle$.

Proof: Let G be a graph and let $X = \{v_1, v_2, \ldots, v_k\}$ ($k \geq 2$) be the set of initial vertices of the set of all hamiltonian paths in G. Let v be an arbitrary vertex of X and let $T:v = x_0, x_1, \ldots, x_p$ be an arbitrary hamiltonian path in G with initial vertex v. Further, let e be an arbitrary edge incident with v. Define the path P_0 in $L(G)$ to be:

$$
P_0 = \begin{cases}
 u_e, u_z, x_i & \text{if } e \notin E(P) \\
 u_e & \text{if } e \in E(P)
\end{cases}
$$

where u_f is the vertex of $L(G)$ corresponding to the edge f of G under the line graph function. For each i, $1 \leq i \leq p - 1$, define the path P_i in $L(G)$ to be $P_i : u_{e_1}, u_{e_2}, \ldots, u_{e_{j_i}}, u_{z_i}$, where $e_1, e_2, \ldots, e_{j_i}$ is an arbitrary ordering of the edges of $E(G) - E(P)$ incident with x_i, that are not incident with any x_j, $0 < j < i$. Note that for some i there may be no such edges and in this case P_i is
merely the vertex $u_{x_i x_{i+1}}$. Finally, define P_p to be the vertex $u_{x_i x_p}$ if the edge $x_i x_p$ exists in G.

We can now define a path P^* in $L(G)$ with initial vertex u_v to be $P^* : P_0, P_1, P_2, \ldots, P_{p-1}, P_p$ if P_p is defined and $P^* : P_0, P_1, P_2, \ldots, P_{p-1}$ otherwise. We note that P^* is a hamiltonian path of $L(G)$, since each edge of G is incident with one of the vertices and hence lies on some P_i.

Since v was an arbitrary vertex of X and e was an arbitrary edge incident with v, we have that $\sum_{i=1}^{k} \deg v_i$ such hamiltonian paths exist in $L(G)$. However, corresponding to each edge of the form $v_i v_j$ ($v_i, v_j \in X$) we have constructed two hamiltonian paths in $L(G)$ with initial vertex $u_{v_i v_j}$. Thus, if $H = \langle X \rangle$, then $L(G)$ is traceable from at least $\sum_{i=1}^{k} \deg v_i - |E(H)|$ distinct vertices.

Remark: Theorem 3.1 is best possible in the sense that there exist graphs that have $\{v_1, v_2, \ldots, v_k\}$ ($k \geq 2$) as the set of initial vertices of hamiltonian paths and such that $L(G)$ is traceable from exactly $\sum_{i=1}^{k} \deg v_i - |E(H)|$ vertices. One such graph is that of Figure 3.1(a), which is traceable from $v_1, v_2,$ and v_3. We note that $\sum_{i=1}^{3} \deg v_i - |E(H)| = 4$ in this case and that $L(G)$ [see Figure 3.1(b)] is traceable from exactly four vertices, namely $u_1, u_2, u_3,$ and u_4.

![Figure 3.1](image-url)

(a) (b)

Figure 3.1: (a) The Graph G; (b) $L(G)$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Remark: If a graph F contains a dominating trail, then $L(F)$ is traceable, so one might naturally ask if a theorem similar to Theorem 3.1 exists under the hypothesis of dominating trails or dominating paths rather than hamiltonian paths. To see that this is not the case, consider the graph M obtained by identifying endpoints of three copies of the path P_7 (see Figure 3.2). This graph has dominating paths with initial vertices v_i ($i = 1, 2, \ldots, 12$) and $\sum_{i=1}^{12} v_i = |E(M)| = 18$. However, $L(M)$ is traceable from exactly 12 vertices, namely w_i ($i = 1, 2, \ldots, 12$).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.2}
\caption{Figure 3.2}
\end{figure}

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.2

If G is a nontrivial homogeneously traceable graph, then $L(G)$ is homogeneously traceable.

Proof: Suppose G is a nontrivial homogeneously traceable graph with $p \geq 2$ vertices and q edges. Then G is traceable from each vertex of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$V(G)$ and by Theorem 3.1, $L(G)$ is traceable from at least

$$\sum_{i=1}^{p} \deg_G v_i - |E(G)| = 2q - q = |V(L(G))|$$

distinct vertices. That is, $L(G)$ is homogeneously traceable.\textbf{■}

Section 3.2

An Extension of a Theorem of Chartrand and Wall

For each integer $n > 1$, the nth iterated line graph $L^n(G)$ of a graph G is defined to be $L(L^{n-1}(G))$ where $L^1(G) = L(G)$.

Chartrand and Wall [7] determined conditions under which the second iterated line graph is hamiltonian.

\textbf{Theorem 3B (Chartrand and Wall)}

If G is a connected graph with $\delta(G) \geq 3$, then $L(G)$ contains a dominating circuit and so $L(L(G))$ is hamiltonian.

It is evident from Theorem 3B that for many graphs $L^2(G)$ is hamiltonian. Following Chartrand and Wall [7], we define the hamiltonian index $h(G)$ of a graph G to be the smallest nonnegative integer n such that $L^n(G)$ is hamiltonian. Thus Theorem 3B can be restated to say, if G is a connected graph with $\delta(G) \geq 3$, then $h(G) \leq 2$. Chartrand [3] showed that $h(G)$ exists for most connected graphs.

\textbf{Theorem 3C (Chartrand)}

If G is a connected graph that is not a path, then $L^n(G)$ is hamiltonian for some $n \geq 0$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Our goal is to extend Theorem 3B and, with it, gain some insight into the hamiltonian index of a homogeneously traceable graph.

It is a simple observation that \(L(K(1, n)) = K_n \), for \(n \geq 1 \).

Corresponding to any vertex in a graph \(G \) with \(\text{deg} \ v \geq 2 \) is a complete subgraph \(K(v) \) in \(L(G) \), formed by taking the line graph of the star \(K(1, \text{deg} \ v) \) at \(v \). With this in mind, we now present a generalization of Theorem 3B.

Theorem 3.3

If \(G \) is a connected graph of order at least 3 such that no bridge in \(G \) is incident to a vertex of degree 2 and no path in \(G \) contains three or more consecutive vertices of degree 2, then \(L(L(G)) \) is hamiltonian.

Proof: We show that \(L(G) \) contains a dominating circuit. We proceed by induction on \(n \), the number of vertices of degree 2. Assume first that \(G \) contains no vertices of degree 1.

Suppose \(n = 0 \). Then our conditions reduce to those of Theorem 2B and hence \(L(G) \) contains a dominating circuit.

Now suppose \(n = 1 \). Then we form a subgraph \(H \) of \(L(G) \) as follows. For each vertex \(v \) of \(G \), form \(K(v) \). If \(\text{deg}_G v = d \geq 3 \), then \(K(v) = K_d \) and hence contains a spanning cycle \(C(v) \). If \(\text{deg}_G v = 2 \), then \(K(v) = K_2 \). Then let

\[
V(H) = V(L(G)) \quad \text{and} \quad E(H) = \bigcup_{v \in V(G)} E(C^*(v)),
\]

where \(C^*(v) = \begin{cases} C(v) & \text{if } \text{deg}_G v \geq 3 \\ K(v) & \text{if } \text{deg}_G v = 2. \end{cases} \)
Note that each vertex of \(H \) belongs to exactly two of the subgraphs \(C^*(v) \), while each edge belongs to exactly one. Thus if vertex \(u \) of \(H \) belongs to \(C^*(v_1) \) and \(C^*(v_2) \) where \(\deg_G v_1 \geq 3 \) and \(\deg_G v_2 \geq 3 \), then \(\deg_H u = 4 \). Otherwise, exactly one of \(v_1 \) and \(v_2 \) has degree 2 in \(G \) so that \(\deg_H u = 3 \). Further, since \(G \) has exactly one vertex of degree 2, the graph \(H \) contains exactly two vertices of degree 3 and these vertices are adjacent.

Let \(\omega_1 \) and \(\omega_2 \) be two vertices of \(H \). Then for some vertices \(v_1 \) and \(v_2 \) of \(G \) (not necessarily distinct), \(\omega_1 \) is a vertex of \(C^*(v_1) \) while \(\omega_2 \) is a vertex of \(C^*(v_2) \). Since \(G \) is a connected graph, there is a \(v_1-v_2 \) path \(P \) in \(G \). Then the subgraph \(H' \) of \(H \) defined by

\[
\begin{align*}
V(H') &= \bigcup_{v \in V(P)} V(C^*(v)) \quad \text{and} \quad E(H') = \bigcup_{v \in V(P)} E(C^*(v))
\end{align*}
\]

is a connected subgraph of \(H \) containing \(\omega_1 \) and \(\omega_2 \). Thus the edge-connectivity \(\kappa_1(H) \) of \(H \) is at least 1.

Suppose \(\kappa_1(H) = 1 \). Then \(H \) contains a bridge \(e = wx \).

Clearly \(e \not\in E(C^*(v)) \) where \(\deg_G v \geq 3 \). Thus \(e \in E(L(v)) \) where \(\deg_G v = 2 \). But the only edges of \(L(G) \) not in \(H \) are diagonals of \(C^*(v) \) where \(\deg_G v \geq 3 \). Thus, each \(\omega-x \) path in \(L(G) \) must contain \(e \); that is, \(e \) is a bridge of \(L(G) \). But \(L(G) \) contains a bridge if and only if \(G \) contains a vertex of degree 2 lying on no cycle. However, by hypothesis, this is not possible; hence, \(\kappa_1(H) \geq 2 \).

We now form the graph \(H^* = H - e \) and note that \(\kappa_1(H^*) \geq 1 \) and each vertex of \(H^* \) now has even degree. Hence \(H^* \) is eulerian and so contains a eulerian circuit \(D \). Further, \(V(D) = V(H^*) = V(H) = V(L(G)) \) and so \(D \) is a dominating circuit of \(L(G) \).
Now suppose that if a graph satisfies the hypothesis of the theorem and has \(t \geq 1 \) vertices of degree 2, then its line graph contains a dominating circuit. Let \(G \) satisfy the hypothesis and have \(t + 1 \geq 2 \) vertices of degree 2.

Case 1: Suppose \(G \) contains two adjacent vertices \(u_1 \) and \(u_2 \) of degree 2. Form a new graph \(G' \) from \(G \) by deleting the edge \(e = u_1u_2 \) and identifying the vertices \(u_1 \) and \(u_2 \), denoting the new vertex by \(u \). The graph \(G' \) is connected and has no bridge incident to a vertex of degree 2 and no path with more than two consecutive vertices of degree 2. Further, \(G' \) contains \(t \) vertices of degree 2, so by the induction hypothesis, \(L(G') \) contains a dominating circuit \(D' \).

Suppose that \(u_0 \) is the other vertex of \(G \) adjacent to \(u_1 \), while \(u_3 \) (\(\neq u_1 \)) is adjacent to \(u_2 \). In \(L(G) \), let \(v_{ij} \) correspond to the edge \(u_iu_j \) of \(G \) (\(i, j \in \{0, 1, 2, 3\}, i \neq j \)). In \(G' \), vertex \(u \) is adjacent to \(u_0 \) and \(u_3 \) so in \(L(G') \) let \(w_{01} \) and \(w_{23} \) correspond to the edges \(uu_0 \) and \(uu_3 \) of \(G \), respectively (see Figure 3.3).

![Figure 3.3](https://via.placeholder.com/150)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
If D' contains the subpath $P': w_0, w_2$, then form a circuit D in $L(G)$ from D' by replacing P' by the path v_{01}, v_{12}, v_{23} and replacing all other vertices of D' by the corresponding vertices of D. Since D' is a dominating circuit in $L(G')$, the circuit D is a dominating circuit in $L(G)$.

If D' does not contain the subpath P', then since D' is a dominating circuit of $L(G')$, it follows that D' contains at least one of w_0 and w_2. If D' contains both w_0 and w_2, then let D be the circuit of G obtained from D' by replacing each vertex of D' by the corresponding vertex of D. Otherwise, without loss of generality, let D' contain w_2 but not w_0. Further, let w_1, w_2, \ldots, w_m ($m \geq 2$) be the vertices of $L(G')$, other than w_2, that are adjacent to w_0. Then $\langle\{w_1, w_2, \ldots, w_m\}\rangle = K_m$.

Each of the edges w_kw_0 ($k = 1, 2, \ldots, m$) must be incident with a vertex of D'. If some path w_i, w_j ($1 \leq i < j \leq m$) is a subpath of D', form a new circuit D'' from D' by replacing w_i, w_j, by w_i, w_0, w_j and replacing each of the other vertices of D' by the corresponding vertices of $L(G)$. If no path w_i, w_j is a subpath of D', then each of the vertices w_k ($k = 1, 2, \ldots, m$) must lie on D' (since D' is a dominating circuit). Form the circuit D'' by replacing some vertex w_ℓ ($1 \leq \ell \leq m$) by the path w_ℓ, w_0, w_j, w_i.

In all cases, D'' now contains both w_0 and w_2 and is a dominating circuit of $L(G')$. We now form a circuit D from D'' by replacing w_0 by v_0 and w_2 by v_2. Then D is a dominating circuit of $L(G)$ since each edge of $L(G')$ is incident with a vertex of D'' and the new edges v_0v_{12} and v_1v_{23} are now incident to vertices of D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Case 2: Suppose no two vertices of degree 2 in G are adjacent. Let u_1 be a vertex of G having degree 2, adjacent to vertices u_0 and u_2. Form a new graph G' from G by removing u_1 and its incident edges and inserting the edge u_0u_2 if it does not already exist. Every vertex of degree 2 in G' lies on some cycle since, by hypothesis, no bridge is incident with a vertex of degree 2. Further, G' contains t vertices of degree 2. Thus, by the induction hypothesis, $L(G')$ contains a dominating circuit D'. Let the vertices ω_1, ω_2, ..., ω_k ($k \geq 2$) in $L(G)$ correspond to the edges e_1, e_2, ..., e_k incident to u_0 (and different from u_0u_1) in G and let the vertices ρ_1, ρ_2, ..., ρ_m ($m \geq 2$) in $L(G)$ correspond go the edges f_1, f_2, ..., f_m incident to u_2 (and different from u_1u_2) in G. Let the vertex ω_02 in $L(G')$ correspond to the edge u_0u_2 in G' (see Figure 3.4).

(a) the structure in G

(b) the corresponding structure in $L(G)$

(c) the structure in G'

(d) the corresponding structure in $L(G')$

Figure 3.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Subcase 2a: Suppose the dominating circuit D' of $L(G')$ contains a subpath of the form w_i, w_0, w_j where $1 \leq i, j \leq k$, with $i \neq j$. Form a new circuit D in $L(G)$ from D' by replacing w_0 by v_0 and replacing each remaining vertex of D' by the corresponding vertex in $L(G)$. If each of the edges r_jv_{12} ($1 \leq j \leq m$) is on D or is incident to a vertex of D, then D is a dominating circuit of $L(G)$. Otherwise, if one of the edges r_i, r_j ($i \neq j$, $1 \leq i, j \leq m$) lies on D, then replace the subpath r_i, r_j by the path r_i, v_{12}, r_j. If no edge r_i, r_j lies on D then at least one of the vertices r_i ($1 \leq i \leq m$) must lie on D, since D' is a dominating circuit of $L(G')$; so replace r_i by the path r_i, v_{12}, r_j where $1 \leq j \leq m$ and $i \neq j$. Then D is a dominating circuit of $L(G)$ since each of the edges of the form r_i, v_{12} ($1 \leq i \leq m$) and the edge v_0, v_{12} is incident to the vertex v_{12} of D. Further, all other edges of $L(G')$ are incident to a vertex of D' so that the corresponding edges of $L(G)$ are incident to a vertex of D. Note that an analogous argument holds if a subpath of the type r_i, w_0, r_j lies on D'.

Subcase 2b: Suppose D' contains exactly one subpath of the form w_i, w_0, r_j ($1 \leq i \leq k, 1 \leq j \leq m$). Form a circuit D of $L(G)$ from the circuit D' of $L(G')$ by replacing the subpath w_i, w_0, r_j by the path w_i, v_0, v_{12}, r_j. Then D is a dominating circuit of $L(G)$. A similar argument holds if D' contains exactly one subpath of the form r_j, w_0, w_i.

Subcase 2c: Suppose D' contains $s \geq 2$ subpaths of the form w_i, w_0, r_j or r_j, w_0, w_i ($1 \leq i \leq k, 1 \leq j \leq m$). Then with each such subpath, the vertex w_0, of course, lies on D'. These
occurrences of w_{q_2} divide D' into $s + 1$ subtrails $T_1, T_2, \ldots, T_{s+1}$.
Without loss of generality, we can assume w_{q_2} is not the initial vertex of D' so that D' can be described as the circuit

$$T_1, w_{q_2}, T_2, w_{q_2}, T_3, \ldots, w_{q_2}, T_{s+1}.$$

The subtrails T_1 and T_{s+1} have, respectively, as terminal and initial vertices, either some w_t $(1 \leq t \leq k)$ or some r_j $(1 \leq j \leq m)$, while for $2 \leq t \leq s$, the trail T_t has both initial and terminal vertices from the set \{w_1, w_2, \ldots, w_k, r_1, r_2, \ldots, r_m\}. There are $2s - 2$ such initial and terminal vertices, $s - 1$ of which are chosen from \{w_1, w_2, \ldots, w_k\} and $s - 1$ of which are chosen from \{r_1, r_2, \ldots, r_m\}.

Let T_k^{-1} denote the trail obtained by traversing T_k in reverse order. We now form a new circuit D^* in $L(G')$ from D' as follows. Traverse T_1, w_{q_2}, T_2. Next traverse T_k or T_k^{-1} ($k \geq 3$) where the initial vertex of this trail is of the same type (either w_t or r_j) as the terminal vertex of T_2. Now repeat the above procedure using any trail T_k or T_k^{-1} that has not yet been traversed. We continue this procedure until all subtrails T_j ($1 \leq j \leq s + 1$) have been used. We have now created a circuit in $L(G')$ having at most one subpath of the form w_t, w_{q_2}, r_j or r_j, w_{q_2}, w_t; hence, we can apply Subcase 2b to the circuit D^* to obtain the desired dominating circuit in $L(G)$.

Subcase 2d: Suppose $w_{q_2} \notin V(D')$. Since D' is a dominating circuit of $L(G')$, each of the edges $w_iw_{q_2}$ $(1 \leq i \leq k)$ and $r_jw_{q_2}$ $(1 \leq j \leq m)$ must be incident to a vertex of D'. If D' contains a
subpath \(w_i, w_j \) (or \(r_i, r_j \)) then form a circuit \(D \) in \(L(G) \) by replacing \(w_i, w_j \) by the path \(w_i, v_{01}, w_j \) (or replace \(r_i, r_j \) by \(v_{12}, r_j \)).

Then \(D \) is a dominating circuit of \(L(G) \). If \(D' \) contains no subpaths of the form \(w_i, w_j \) or \(r_i, r_j \), then each of the vertices \(w_1, w_2, \ldots, w_k \) and \(r_1, r_2, \ldots, r_m \) must lie on \(D' \). Then replace some vertex \(w_i \) (1 \(\leq i \leq k \)) on \(D' \) by the path \(w_i, v_{01}, w_j, w_i \) where 1 \(\leq j \leq k \), \(i \neq j \) or, similarly, replace some \(r_s \) with 1 \(\leq s \leq m \) by \(r_t, v_{12}, r_t, r_s \) where 1 \(\leq t \leq m \), \(s \neq t \). The circuit \(D \) is a dominating circuit of \(L(G) \) since the edge \(v_{01}v_{12} \) is incident with a vertex of \(D \) and since all edges of \(L(G') \) are incident with a vertex of \(D' \), the corresponding edges of \(L(G) \) are incident with a vertex of \(D \).

Thus in all cases \(L(G) \) contains a dominating circuit. Hence, if \(G \) satisfies the hypothesis of the theorem, but contains no vertices of degree 1, then \(L(G) \) contains a dominating circuit, so that by Theorem 3A, \(L(L(G)) \) is hamiltonian.

Assume now that \(G \) contains vertices of degree 1. Since \(G \) has no bridge incident to vertices of degree 2, if \(\deg_G v = 1 \), then \(v \) is adjacent to a vertex \(u \) of degree 3 or more. Let vertices \(v_1, v_2, \ldots, v_k \) (\(k \geq 2 \)) also be adjacent to \(u \).

Suppose that \(H = G - v \) has no vertices of degree 1. Then, by the previous case of the proof, \(L(H) \) contains a dominating circuit \(C \). If \(x \in V(L(G)) \) where \(x \) corresponds to the edge \(e = uv \) in \(G \), we show \(x \) can be included on a dominating circuit of \(L(G) \).

Let the vertices \(x_1, x_2, \ldots, x_k \) in \(L(G) \) correspond to the edges \(uv_1, uv_2, \ldots, uv_k \) in \(G \). Note that \(xx_j \) is an edge of \(L(H) \) for \(j = 1, 2, \ldots, k \). If \(C \) contains the subpath \(x_i, x_j \) (\(i \neq j \), 1 \(\leq i \),
43

\(j \leq k \), then replace this subpath by the path \(x_i, x, x_j \). If \(C \) contains no such subpath, then at least one of the vertices \(x_i \) must be on \(C \) (since the edges \(x_i x_j \) exist). Then replace the vertex \(x_i \) by the path \(x_i, x, x_j, x_i \). In either case, the new circuit formed is a dominating circuit of \(L(H) \).

Note that if more than one vertex of degree 1 is incident with vertex \(u \), then the vertices of \(L(G) \) corresponding to the edges incident with these vertices may be traversed consecutively. That is, in the dominating circuit constructed above, replace \(x \) by \(x, y_1, y_2, \ldots, y_n \) where the vertices \(x, y_1, y_2, \ldots, y_n \) correspond to the edges incident to \(u \) and the vertices of degree 1 adjacent to \(u \).

Repeating the above procedure for each such occurrence of vertices of degree 1 yields the desired dominating circuit of \(L(G) \). Thus, \(L(L(G)) \) is hamiltonian.

Several results can now be obtained as a consequence of Theorem 3.3. For the first result, we also employ a result of Chartrand and Stewart [6].

Theorem 3.3 (Chartrand and Stewart)

If \(G \) is a \(k \)-connected graph \((k \geq 1)\), then \(L(G) \) is \(k \)-connected.

Corollary 3.4

If \(G \) is a 2-connected graph with at most \(n \) (\(\geq 2 \)) consecutive vertices of degree 2 on any path in \(G \), then \(L^n(G) \) is hamiltonian.
Proof: If G contains a path with at most n (≥ 1) consecutive vertices of degree 2, then necessarily $L(G)$ contains a path with at most $n - 1$ consecutive vertices of degree 2. Hence, $L^{n-2}(G)$ has at most two consecutive vertices of degree 2 on any path. By repeatedly applying Theorem 3D, $L^{n-2}(G)$ is 2-connected and hence has no bridges. Thus, by Theorem 3.3, $L(L^{n-2}(G)) = L^n(G)$ is hamiltonian.

This result is best possible in the sense that there exist 2-connected graphs with $n ≥ 2$ consecutive vertices of degree 2 such that $L^{n-1}(G)$ is not hamiltonian.

Example 3.2

Consider the graph G of Figure 3.5(a). The graph G is clearly 2-connected and contains at most two consecutive vertices of degree 2 on any path. However, $L(G) = L^{n-1}(G)$ ($n = 2$) is not hamiltonian, in fact, $L(G)$ in Figure 3.5(b) is homogeneously traceable and non-hamiltonian.

We next note that Theorem 3.3 allows us to bound the hamiltonian index of any homogeneously traceable graph.
Corollary 3.5

If G is a homogeneously traceable graph of order $p \geq 3$, then $L(L(G))$ is hamiltonian; that is, $h(G) \leq 2$.

Proof: Since G is homogeneously traceable of order $p \geq 3$, G is 2-connected. If G is hamiltonian, then $L^2(G)$ is hamiltonian. If G is not hamiltonian, then G contains no path with three or more consecutive vertices of degree 2, because no vertex is adjacent to two or more vertices of degree 2. Hence, by Theorem 3.3, $L(L(G))$ is hamiltonian. \[\blacksquare\]

Corollary 3.5 is best possible, since there exist homogeneously traceable nonhamiltonian graphs such that $L(G)$ is also homogeneously traceable and nonhamiltonian. The graph H of Figure 3.6(a) is homogeneously traceable nonhamiltonian and has a homogeneously traceable line graph $L(H)$ [Figure 3.6(b)]. However, $L(H)$ is not hamiltonian.

![Graphs](a) H, a homogeneously traceable nonhamiltonian graph (b) $L(H)$, also nonhamiltonian

Figure 3.6

Finally, we note that Theorem 3B follows as a corollary to Theorem 3.3 as well.
Corollary 3.6 (Chartrand and Wall)

If G is a connected graph with $\delta(G) \geq 3$, then $L(L(G))$ is hamiltonian.
CHAPTER IV

TRACEABILITY IN THE SQUARE OF A TREE

The square of a connected graph G is a graph G^2 where $V(G^2) = V(G)$ and such that $uv \in E(G)$ if and only if $1 \leq d(u, v) \leq 2$ in G. Since G^2 contains G as a subgraph, it follows that G^2 is hamiltonian (k-traceable for some k) whenever G is hamiltonian (k-traceable).

Nash-Williams and Plummer independently conjectured that the square of a 2-connected graph is hamiltonian. In 1974 Fleischner [10] proved this conjecture to be correct.

Theorem 4A (Fleischner)

Let G be a 2-connected graph. Then G^2 is hamiltonian.

Various theorems have employed Theorem 4A to obtain stronger results. For example, it has been shown [5] that the square of a 2-connected graph is hamiltonian connected.

Theorem 4B (Chartrand, Hobbs, Jung, Kapoor, Nash-Williams)

Let G be a 2-connected graph. Then G^2 is hamiltonian connected.

Harary and Schwenk [14] determined all trees with a hamiltonian square and investigated some properties of such trees.
Theorem 4C (Harary and Schwenk)

Let T be a tree of order $p \geq 3$. The following statements are equivalent:

1. T^2 is hamiltonian.
2. T does not contain $S(K(1, 3))$ as a subgraph.
3. T minus its end vertices is a path.

Theorem 4D (Harary and Schwenk)

If T is a tree and T^2 is hamiltonian, then any hamiltonian cycle contains exactly two edges of T, and these are the terminal edges of a longest path. Moreover, the terminal edges of every longest path lie on some hamiltonian cycle.

The object of this chapter is to explore the concept of k-traceability in the square of a graph. By Theorem 4A, the square of any 2-connected graph of order p is k-traceable for each k, $1 \leq k \leq p$. Thus, for the remainder of this chapter, we shall concentrate on k-traceability in the square of the most important class of graphs with connectivity 1, namely trees. To this end, some terminology will be helpful.

A tree $T = T(n_1, n_2, \ldots, n_j), j \geq 3$, with $n_1 \geq n_2 \geq \ldots \geq n_j$ is called star-like if it is isomorphic to the graph formed by joining an end-vertex of each of the paths $P_{n_1}, P_{n_2}, \ldots, P_{n_j}$ to a vertex (which we commonly denote r).

If T is a tree, a root of T is any vertex r such that $\deg r \geq 3$. A branch at r is any component of $T - r$, for some root r.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The *initial vertex* of a branch is the unique vertex of the branch adjacent to the root. An *i*-root is a root with exactly *i* nontrivial branches, that is, an *i*-root is a root of an induced $S(K(1, i))$ but not an $S(K(1, i + 1))$. We say the tree T has a *trunk* if there is a path \mathcal{J} in T, whose initial and terminal vertices are *i*-roots, $i \geq 3$, and which contains each *i*-root with $i \geq 3$. The path \mathcal{J} constitutes the trunk of T. At this time, an example is appropriate.

Example 4.1

In the tree T of Figure 4.1(a) are five roots r_j, $j = 1, 2, 3, 4, 5$. The root r_5 is a 1-root while r_1, r_3, and r_4 are 4-roots and r_2 is a 5-root. The tree T also has a trunk since the $r_1 - r_4$ path contains every *i*-root of T, $i \geq 3$. We also note that r_2 has seven branches while r_1, r_4, and r_5 have four branches and r_3 has five branches. (See Figure 4.1 on the following page.)

We now begin our investigation with a lemma.

Lemma 4.1

If T is star-like with *i*-root r ($i \geq 3$), then no hamiltonian path in T^2 can begin and end in the same branch at r.

Proof: Let T be star-like with nontrivial branches B_1, B_2, \ldots, B_n, $n \geq 3$. Without loss of generality, assume T^2 has a hamiltonian path beginning in B_1 which proceeds through B_2, B_3, \ldots, B_n and eventually concludes in B_1. Note that each nontrivial branch after B_1 can be entered and exited only once. If the branches are encountered in the
order $B_1, B_2, \ldots, B_n, B_1$, there are n branch changes and $n \geq 3$. But in order to reenter B_1, either its initial vertex u_1 or r must not yet have been traversed. However, entering and exiting both of the branches B_2 and B_3 requires the use of both the initial vertex of the branch and the root r, and since $n \geq 3$ it will be impossible to reenter B_1.

Clearly we cannot begin in a trivial branch for this would imply T^2 was hamiltonian; however, this contradicts Theorem 4C.\[\square \]
Corollary 4.2

If T is a tree and r is an i-root of T ($i \geq 3$), then no hamiltonian path in T^2 can begin and end in the same branch at r.

Example 4.2

Now consider the tree T_1 of Figure 4.1(b). We note that T_1 contains four roots r_j, $j = 1, 2, 3, 4$. However, T_1 has no trunk since no path can contain all of the roots r_1, r_3, and r_4. Further, since each is a 4-root, no hamiltonian path in T^2_1 can begin and end in the same branch at r_1 (or r_3, or r_4).

Lemma 4.3

If T is a tree containing an i-root r ($i \geq 3$), then T^2 is not traceable from r.

Proof: Let T be a tree with i-root r ($i \geq 3$) and let B_1, B_2, \ldots, B_i be the nontrivial branches of T at r. If there is a hamiltonian path in T^2 with initial vertex r, then each branch at r can be entered and exited exactly once. But entering and exiting any such branch requires traversing its initial vertex and r. Hence, at most two nontrivial branches about r can be traversed. But r has at least three nontrivial branches. Thus T^2 is not traceable from r. \blacksquare

Lemma 4.4

If T is star-like with root r, then T^2 is traceable from:

(1) every vertex, if T has no i-root, $i \geq 3$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(2) \(V(T) - \{ r \} \), if \(r \) is a 3-root.

(3) \(V(T) - N[r] \), if \(r \) is a 4-root.

(4) no vertex, if \(r \) is an \(i \)-root, \(i \geq 5 \).

Proof: Let \(T \) be star-like with root \(r \). If \(T \) contains no \(i \)-root, \(i \geq 3 \), then \(T \) contains no induced \(S(K(1, 3)) \), so by Theorem 4C, \(T^2 \) is hamiltonian. Therefore, \(T^2 \) is traceable from each vertex; thus (1) holds.

If \(r \) is a 3-root, let \(B_1, B_2, \) and \(B_3 \) be the nontrivial branches at \(r \) and let \(v_1, v_2, \ldots, v_c \) be the trivial branches at \(r \), if any exist. Let \(u_{i,j} \) be on the branch \(B_i \) and such that \(d(r, u_{i,j}) = j \).

By Lemma 4.3, \(T^2 \) is not traceable from \(r \). Let \(u_{1,o} \) be an arbitrary vertex on \(B_1 \). We construct a hamiltonian path in \(T^2 \) with initial vertex \(u_{1,o} \) in the following manner.

Let the path \(P_1 \) in \(B_1 \) be

\[
\begin{align*}
&u_{1,o}, u_{1(o+2)}, u_{1(o+4)}, \ldots, u_{1(n_1)}, u_{1(n_1-1)}, u_{1(n_1-3)}, \\
&\quad \ldots, u_{1(o-1)}, u_{1(o-3)}, \ldots, u_{11}
\end{align*}
\]

if \(s \) and \(n_1 \) have the same parity, and let \(P_1 \) be

\[
\begin{align*}
&u_{1,o}, u_{1(o+2)}, u_{1(o+4)}, \ldots, u_{1(n_1-1)}, u_{1(n_1)}, u_{1(n_1-2)}, u_{1(n_1-4)}, \\
&\quad \ldots, u_{1(o-1)}, u_{1(o-3)}, \ldots, u_{11}
\end{align*}
\]

if \(s \) and \(n_1 \) are of opposite parity. Similarly, define a path \(P_2 \) in \(B_2 \) to be

\[
\begin{align*}
&u_{2,1}, u_{2,3}, u_{2,5}, \ldots, u_{2(n_2)}, u_{2(n_2-1)}, u_{2(n_2-3)}, \ldots, u_{22}
\end{align*}
\]

if \(n_2 \) is odd, and let \(P_2 \) be defined as
if \(n_2 \) is even. Note that an analogous path \(P_3 \) with initial vertex \(u_{31} \) and terminal vertex \(u_{32} \) exists in \(B_3 \).

We now construct a hamiltonian path in \(T^2 \) with initial vertex \(u_{1,0} \) to be

\[
P; P_1, P_2, r, v_1, v_2, \ldots, v_t, P_3
\]

if there are nontrivial branches and to be

\[
P; P_1, P_2, r, P_3,\text{ otherwise.}
\]

Since \(u_1 \) was an arbitrary vertex in \(B_1 \), \(T^2 \) is traceable from each vertex of \(B_1 \) and because \(B_1 \) was an arbitrary nontrivial branch, \(T^2 \) is traceable from each vertex in \(B_1, B_2, \) and \(B_3 \). Note that \(P \) also shows \(T^2 \) is traceable from \(v_i \) and since, if trivial branches exist, they may be initially traversed in any order, followed by the vertices of \(B_1, r, \) and the vertices of \(B_2 \) and \(B_3 \), we conclude that \(T^2 \) is traceable from each vertex of \(\mathcal{V}(T) - \{r\} \).

Next suppose \(r \) is a 4-root with nontrivial branches \(B_1, B_2, B_3, \) and \(B_4 \) and let \(u_{i,j} \) be the vertex on branch \(B_i \) a distance \(j \) from \(r \). Again let \(v_1, v_2, \ldots, v_t \) (\(t \geq 0 \)) be the vertices which constitute the trivial branches at \(r \), if any. Again, by Lemma 4.3, no hamiltonian path can begin at \(r \). Now suppose a hamiltonian path begins with a vertex in \(N(r) \), then before a vertex in the second nontrivial branch is traversed, the vertex \(r \) must be traversed. However, it is then impossible to enter and exit the three remaining nontrivial branches. Thus \(G \) is not traceable from any vertex in \(N[r] \).
An argument similar to that given when \(r \) is a 3-root shows any other vertex of \(T \) can be the initial vertex of a hamiltonian path in \(T^2 \).

Finally, suppose \(r \) is an \(i \)-root (\(i \geq 5 \)), with nontrivial branches \(B_1, B_2, \ldots, B_i \). Since \(r \) must be traversed within the first three branch changes, it is impossible to traverse vertices in five or more nontrivial branches. Thus \(T^2 \) is not traceable if \(r \) is an \(i \)-root where \(i \geq 5 \).

Corollary 4.5

If \(T \) is a tree and \(T \) contains \(S(K(1, 5)) \) as an induced subgraph, then \(T^2 \) is not traceable.

We next turn our attention to exactly which trees \(T \) have a traceable square and which vertices can be the initial vertices of a hamiltonian path in \(T^2 \).

Define the graph \(F_0 \) to be the graph obtained by taking two copies of \(S(K(1, 3)) \) and joining the roots in each copy by an edge [see Figure 4.2(a)]. Define the graph \(F_i, i \geq 1 \), to be the graph obtained by taking a copy of \(F_0 \) and \(i \) vertices, \(\omega_1, \omega_2, \ldots, \omega_i \). Subdivide the edge joining the two roots of \(F_0 \) a total of \(i \) times and join each of the vertices to one and only one of \(\omega_1, \omega_2, \ldots, \omega_i \) [see Figure 4.2(b)].
Theorem 4.6

If \(T \) is a tree, then \(T^2 \) is traceable if and only if \(T \) contains a trunk and \(T \) does not contain an \(S(K(1, 5)) \) or any \(F_i \), \(i = 0, 1, 2, \ldots \) as a subgraph.

Proof: Let \(T \) be a tree such that \(T^2 \) is traceable and suppose \(T \) does not contain a trunk. Then there exist roots \(r_1, r_2, r_3 \), each with three or more nontrivial branches, which do not lie on a path.

Hence, there exists a root \(r \) such that the \(r - r_i \) paths \(P_i \) (\(i = 1, 2, 3 \)) are all disjoint, except for \(r \). Let \(B_2 \) be the branch at \(r \) containing \(r_2 \) and without loss of generality assume \(B_2 \) is intermediate to a hamiltonian path \(P \) in \(T^2 \); that is, the path \(P \) neither begins nor ends in \(B_2 \).

Then either the vertices of \(B_2 \) must all be traversed after \(B_2 \) is entered, in which case Corollary 4.2 is violated, or \(B_2 \) must be exited, entered, and exited again. But this is also impossible, as no branch can be entered and exited twice. Hence \(T \) contains a trunk, which we denote by \(\mathcal{F} \).
Now note that \(T \) contains no \(S(K(1, 5)) \), by Corollary 4.5, so suppose \(T \) contains \(F_i \), for some \(i \geq 0 \).

Case 1: Suppose \(T \) contains \(F_0 \). Let \(r_1 \) and \(r_2 \) be the roots of \(F_0 \) and suppose \(B_1, B_2, \) and \(B_3 \) are branches at \(r_1 \) not containing \(r_2 \), while \(B_4, B_5, \) and \(B_6 \) are branches at \(r_2 \) not containing \(r_1 \).

Without loss of generality, suppose vertices in \(B_1 \) are traversed prior to those in \(B_2, B_3, \ldots, B_6 \). In particular, then, \(P \) cannot end in \(B_1, B_2, B_3, \) or at \(r_1 \); otherwise, \(P \) would begin and end in the same branch at \(r_2 \) (that containing \(r_1, B_1, B_2, B_3 \)), contradicting Corollary 4.2.

Also, the branch \(B^* \) at \(r_1 \) containing \(B_4, B_5, \) and \(B_6 \) cannot be entered twice; hence, the branches \(B_1, B_2, B_3 \), and the vertex \(r_1 \) must be completely traversed before \(B^* \) is entered. However, as \(B_1, B_2, B_3 \), and \(B^* \) are all branches at \(r_1 \), this implies that \(r_1 \) is not the last vertex traversed before \(B^* \) is entered. Hence, \(r_2 \) is the first vertex traversed in \(B^* \). But then it is impossible to traverse the remaining three branches at \(r_2 \), which implies \(T^2 \) is not traceable, contradicting the hypothesis. Thus, \(F_0 \) is not a subgraph of \(T \).

Case 2: Suppose \(T \) contains some \(F_i, i \geq 1 \). Let \(r_1 \) and \(r_2 \) be the 4-roots of \(F_i \), while \(v_1, v_2, \ldots, v_i \) are the 2-roots of \(F_i \) lying consecutively on the \(r_1 - r_2 \) path in \(F_i \). Let \(w_j \) be adjacent to \(v_j \) in \(F_i \) \((j = 1, 2, \ldots, i)\). An argument analogous to that of Case 1 shows \(v_1 \) is the first vertex traversed in the branch at \(r_1 \) containing \(r_2 \).

But then \(w_1, w_2, w_3, \ldots, v_i, w_i \) must be traversed in order. Hence, \(r_2 \) must be traversed prior to any vertex of \(B_4, B_5, \) or \(B_6 \). But then it is impossible to completely traverse these branches,
contradicting the fact that T^2 is traceable. Hence, T does not contain any F_i, $i \geq 1$.

Now suppose T is a tree containing a trunk that contains no $S(K(1, 5))$ or F_i, $i \geq 0$. Let $\mathcal{J}: v_1, v_2, \ldots, v_k$ be the trunk of T. Since T has a trunk, each branch B disjoint from \mathcal{J} contains no $S(K(1, 3))$. Hence, by Theorem 4C, B^2 is hamiltonian. Further, by Theorem 4D, each terminal edge is contained in some hamiltonian cycle; that is, we can find a hamiltonian cycle of B^2 containing an edge incident with the initial vertex of B. Thus, each such branch can be entered, traversed, and exited as the end vertices of the hamiltonian path in B^2, created by removing the terminal edges that lie on a hamiltonian cycle, are at a distance 1 or 2 from the root of B.

Let B_1 be a branch at v_1. Let x_1 be a vertex in B_1 a distance 2 from v_1. By previous remarks there exists a hamiltonian path in B_1^2 beginning at x_1 and ending at x_2, the initial vertex of F_1. Next, traverse all trivial branches at v_1 and x_3, the initial vertex of B_2. Again, there is a hamiltonian path in B_2^2 with initial vertex x_3 and terminal vertex x_4, where $d(x_4, v_1) = 2$. Next, traverse v_1. Finally, if a third branch, disjoint from \mathcal{J}, exists at v_1, we traverse it, ending at the initial vertex and then traverse v_2. If no third branch exists at v_1, we again traverse v_2. Since T contains no F_0, there are at most two nontrivial branches at v_2 which can be traversed. Continue these arguments at v_3, v_k, \ldots, v_k. Since T contains no F_i, we may enter and traverse one of the branches at v_k before traversing v_k itself. This leaves at most two remaining nontrivial branches which clearly can be traversed. Hence T^2 is traceable. ■
Lemma 4.7

Let T be a tree that contains no $S(K(1, 3))$. Then for each vertex v, there exists a hamiltonian path in T^2 with initial vertex v and whose terminal vertex is an end-vertex of T.

Proof: By Theorem 4C, T minus its end-vertices is a path, say $P; v_1, v_2, \ldots, v_k$. For each vertex v_t ($t = 1, 2, \ldots, k$), let $W_t = \{x | \deg x = 1$ and $xv_t \in E(T)\}$.

Case 1: Suppose $v = v_t$, $1 \leq t \leq k$. We construct a hamiltonian path in T^2 by traversing in order v_t, the vertices of W_{t-1}, v_{t-2}, W_{t-3}, and so on until either v_1 or the vertices of W_1 have been traversed, say v_1. Then traverse the vertices of W_1, v_2, W_3, and so on until the vertices of W_t have been traversed. (Otherwise, traverse v_1, W_2, v_3, etc.) In either case, we now traverse vertices in the order $v_{t+1}, W_{t+1}, v_{t+2}, W_{t+2}, \ldots, v_k, W_k$. If $W_k \neq \emptyset$, we have ended with a vertex of degree 1. If $W_k = \emptyset$, then $\deg v_k = 1$ and v_k terminates the path.

Case 2: Suppose $v \in W_t$, $1 \leq t \leq k$. Then traverse the remaining vertices of W_t, v_{t-1}, W_{t-2}, and so on as before. Using an approach similar to Case 1, we can then construct a path that ends with a vertex of W_k, if $W_k \neq \emptyset$, or at v_k, otherwise.

Suppose the tree T contains a trunk \mathcal{T}. By an end branch of T we mean a branch B at an end-vertex of \mathcal{T} such that $V(B) \cap V(\mathcal{T}) = \emptyset$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Theorem 4.8

Let T be a tree that contains 3-roots but no i-roots, $i \geq 4$, and suppose T^2 is traceable. Then T^2 is traceable from the vertex v if and only if v lies in an end branch of T.

Proof: Let T be a tree that contains 3-roots but no i-roots, $i \geq 4$. Further, suppose T^2 is traceable. Then T contains a trunk J. If J consists of a single 3-root r, then either T is star-like or each nontrivial branch that is not a path contains no $S(K(1, 3))$. If T is star-like, the result follows from Lemma 4.4. Otherwise, let v be in a branch B at r. By Lemma 4.7, there is a hamiltonian path in B^2 with initial vertex v and terminal vertex x, where $d(x, r) \leq 2$. We can then traverse r and all trivial branches at r. Now, by the proof techniques of Theorem 4.6, we know we can traverse the vertices of the two remaining nontrivial branches. Thus, T^2 is traceable from v. Note that, by Lemma 4.3, T^2 is not traceable from r. Thus, the result holds.

Next, suppose J contains a nontrivial trunk v_1, v_2, \ldots, v_l $(l \geq 2)$. If v does not lie in an end branch of T, but v is traceable from v, then the branches at one end-vertex of J must be traversed prior to those at the other. But this implies that a hamiltonian path in $S(K(1, 3))$ can begin and end in the same branch, contradicting Lemma 4.1. Thus, T^2 is traceable from v if and only if v lies in an end branch of T. □
Corollary 4.9

Let T be a tree such that T^2 is traceable. Then T^2 is traceable from a vertex v if and only if v lies in an end branch of T and v is not adjacent to a 4-root.

Proof: If T is star-like, we apply Lemma 4.4. If T contains only 3-roots, then the result follows by Theorem 4.8. If T contains exactly one i-root r, $i \geq 3$, and r is a 4-root, then an argument analogous to that in Theorem 4.8 can be used; however, as in Lemma 4.4, v cannot be adjacent to r. For the general case, an analogous proof technique again applies, noting that we must begin in an end branch of T and that if v is the initial vertex of an end branch at a 4-root, we cannot traverse all branches at that root. \[\Box\]
CHAPTER V

A GENERALIZATION OF HOMOGENEOUSLY TRACEABLE GRAPHS

Section 5.1

Initially k-Path Traceable Graphs

In Chapter II we mentioned that homogeneously traceable graphs could be generalized in a variety of ways. In this chapter we introduce another generalization and consider some properties of these graphs.

A graph G is called k-path traceable ($k \geq 0$) if each path in G of length at most k is contained on a hamiltonian path. Roberts [20] and Kronk [17], among others, have obtained sufficient conditions for a graph to be k-path traceable. A slightly more restrictive definition yields a new class of graphs.

A graph G is initially k-path traceable ($k \geq 0$) if each path in G of length at most k, with initial vertex v say, can be extended to a hamiltonian path of G having initial vertex v.

A graph is initially 0-path traceable if and only if it is homogeneously traceable. It is also readily seen that every initially k-path traceable graph is k-path traceable.

Both Roberts [20] and Kronk [17] noticed that if G is a graph such that $\deg u + \deg v \geq p + k$ for all nonadjacent vertices u and v, then G is $(k+1)$-path traceable. Further, this condition
also implies that \(G \) is \(k \)-hamiltonian (that is, for every subset \(S \) of \(V(G) \) with \(|S| \leq k \), \(G - S \) is hamiltonian), which, in turn, implies that \(G \) is initially \(k \)-path traceable.

The following example shows that initially \(k \)-path traceable graphs form a proper subclass of the \(k \)-path traceable graphs.

Example 5.1

Let the graph \(G \) be formed by taking a copy of \(K_n \) \((n > k + 2\) and \(k \geq 0)\) and a vertex \(v \), then joining \(v \) to \(k + 2 \) distinct vertices of \(K_n \). The only nonadjacent vertex pairs are \(v \) and a vertex \(w \) of \(K_n \) not in \(N(v) \). Since \(\deg v = k + 2 \) and \(\deg w = p - 2 \) (where \(p = n + 1 \)), we have that \(\deg v + \deg w = p + k \). This implies that \(G \) is a \((k+1)\)-path traceable graph. However, \(G \) is not initially \((k+1)\)-path traceable, since the path \(w_1, w_2, \ldots, w_{k+2} \), of length \(k + 1 \) [where \(N(v) = \{w_1, w_2, \ldots, w_{k+2}\} \)], cannot be extended to a hamiltonian path.

The next result provides a sufficient condition for a graph to be initially \(k \)-path traceable.

Theorem 5.1

Let \(G \) be a graph of order \(p \geq 6 \). If there exists a partition of \(V(G) \) into two subsets \(S_0 \) and \(S_1 \) such that

- (a) \(\langle S_i \rangle \) is \(k \)-hamiltonian \((i = 0, 1)\) and
- (b) each vertex of \(S_i \) is adjacent to at least \(k + 1 \) vertices of \(S_{i+1} \) (subscripts modulo 2), then \(G \) is initially \(k \)-path traceable.
Proof: Let G be a graph of order $p \geq 6$ and suppose there exists a partition of $V(G)$ into two subsets S_0 and S_1 that satisfy conditions (a) and (b) of the hypothesis. Further, let P be an arbitrary path of length at most k. If $V(P) \subseteq V(S_i)$ ($i = 0$ or 1), the result is clear. Thus, suppose $V(P) \not\subseteq V(S_i)$, that is, $V(P)$ contains vertices of both S_0 and S_1.

Without loss of generality, suppose $P: v_0, v_1, \ldots, v_k$ and that $v_0 \in S_0$. Let $H_0 = S_0 \cap V(P)$ and $H_1 = S_1 \cap V(P)$. Note that $|H_0| \leq k$ and $|H_1| \leq k$.

Suppose $v_k \in S_0$. Since $\langle S_0 \rangle$ is k-hamiltonian, $\langle S_0 - H_0 \rangle$ contains a hamiltonian cycle $C:w_1, w_2, \ldots, w_k, w_1$ and v_k must be adjacent to a vertex on this cycle; say v_k is adjacent to w_1. Further, note that since w_k is adjacent to at least $k + 1$ vertices of S_1; w_k is adjacent to a vertex of $S_1 - H_1$. Since $\langle S_1 - H_1 \rangle$ is hamiltonian, let $C_1:x_1, x_2, \ldots, x_n, x_1$ be a hamiltonian cycle of $\langle S_1 - H_1 \rangle$. Further, without loss of generality, assume that w_k is adjacent to x_1. Then $v_0, v_1, \ldots, v_k, w_1, w_2, \ldots, w_k, x_1, x_2, \ldots, x_n$ is a hamiltonian path in G with initial subpath v_0, v_1, \ldots, v_k.

An analogous argument holds if $v_k \in S_1$. Thus, G is initially k-path traceable.

We note that if $k = 0$, Theorem 5.1 yields a slightly weaker version of Corollary 2.9.

Theorem 5.2

Let G be a graph of order $p \geq 6$. If for each path P of length at most k, there exists a partition of $V(G)$ into two subsets S_0 and S_1.
such that (i) \(\langle S_0 \rangle \) has a hamiltonian cycle containing \(P \), (ii) each vertex of \(S_0 \) is adjacent to a vertex of \(S_1 \), and (iii) \(\langle S_1 \rangle \) is homogeneously traceable. Then \(G \) is initially \(k \)-path traceable.

Proof: Let \(P:v_0, v_1, \ldots, v_m \), where \(0 \leq m \leq k \), be an arbitrary path of length at most \(k \) in the graph \(G \) and let \(S_0 \) and \(S_1 \) be a partition of \(V(G) \) satisfying the hypothesis of the theorem. Then a hamiltonian path with initial subpath \(P \) is determined by following the hamiltonian cycle \(C:v_0, v_1, \ldots, v_m, x_1, x_2, \ldots, x_n, v_0 \) of \(\langle S_0 \rangle \), until \(x_n \) is traversed, then traversing any edge \(x_ny_1 \), where \(y_1 \in S_1 \). Now complete the hamiltonian path in \(G \) by traversing the remainder of the path \(P^*:y_1, y_2, \ldots, y_k \), the hamiltonian path in \(\langle S_1 \rangle \). Since \(P \) was arbitrary, \(G \) is initially \(k \)-path traceable.

Let \(k(G) \) denote the number of components of the graph \(G \). Skupień [22] noticed that if \(G \) is homogeneously traceable and \(S \) is a cutset of \(G \), then \(k(G - S) \leq |S| \). Since every initially \(k \)-path traceable graph \((k \geq 0) \) is homogeneously traceable, we have the following.

Lemma 5.3

If \(G \) is initially \(k \)-path traceable \((k \geq 0) \) and \(X \) is a cutset for \(G \), then \(k(G - X) \leq |X| \).
Section 5.2

Initially k-Path Traceable Nonhamiltonian Graphs

Since homogeneously traceable nonhamiltonian graphs exist, initially k-path traceable nonhamiltonian graphs exist, at least when $k = 0$. In this section we consider initially k-path traceable nonhamiltonian graphs for values of $k > 1$.

We observe that every hypohamiltonian graph is initially 1-path traceable nonhamiltonian. Further, it is straightforward to show that the Petersen Graph is initially 3-path traceable and non-hamiltonian. Thus, infinitely many initially k-path traceable nonhamiltonian graphs exist for $k = 1$ and some exist for values of $k > 1$. It is not known in general for what values of $k > 1$ initially k-path traceable and nonhamiltonian graphs exist.

We now examine some properties of initially k-path traceable and nonhamiltonian graphs.

Theorem 5.4

If G is an initially k-path traceable nonhamiltonian graph ($k \geq 1$) of order $p \geq 4$, then G is 3-connected.

Proof: Let G be an initially k-path traceable ($k \geq 1$) nonhamiltonian graph of order $p \geq 4$. Then, since G is homogeneously traceable, G is 2-connected. Suppose, in fact, that $\kappa(G) = 2$ and that $\{u, v\}$ is a cutset for G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
By Lemma 5.3, $G - \{u, v\}$ has exactly two components. Let C_1 and C_2 be the components of $G - \{u, v\}$. Further, suppose w_1 and w_2 are adjacent to u, where $w_1 \in C_1$ and $w_2 \in C_2$.

Since G is initially 1-path traceable, uw_1 is the initial edge of some hamiltonian path P in G. But then there exists a $u - v$ subpath P_1 of P such that $V(P_1) = C_1 \cup \{u, v\}$. Similarly, uw_2 is the initial edge of some hamiltonian path, so that there exists a $u - v$ path P_2 where $V(P_2) = C_2 \cup \{u, v\}$. But then, by following P_1 and P_2, we obtain a hamiltonian cycle of G. Thus, G is 3-connected.

Corollary 5.5

If G is an initially k-path traceable nonhamiltonian (p, q) graph ($k \geq 1$), then

(a) $\delta(G) \geq 3$ and

(b) $|q| \geq \left\lfloor \frac{3p}{2} \right\rfloor$.

Note that the bound obtained in Corollary 5.5(b) is achieved when $p = 10$ since the Petersen Graph is initially 3-path traceable and nonhamiltonian and contains exactly $\left\lfloor \frac{3p}{2} \right\rfloor = \left\lfloor \frac{3 \cdot 10}{2} \right\rfloor = 15$ edges.

In [4] it was shown that if G is a homogeneously traceable nonhamiltonian graph of order p, then $\Delta(G) \leq p - 4$. We now extend this theorem for initially k-path traceable nonhamiltonian graphs when $k \geq 1$.

Theorem 5.6

If G is an initially k-path traceable ($k \geq 1$) nonhamiltonian graph of order $p \geq 9$, then $\Delta(G) \leq p - 6$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Proof: Let \(G \) be an initially \(k \)-path traceable \((k \geq 1)\) nonhamiltonian graph of order \(p \geq 9 \). Since \(G \) is homogeneously traceable and nonhamiltonian, \(\Delta(G) \leq p - 4 \).

Suppose \(\Delta(G) = p - 4 \) and \(\deg v_1 = p - 4 \). Further, let \(P: v_1, v_2, \ldots, v_p \) be a hamiltonian path in \(G \). Since \(G \) is nonhamiltonian, \(v_p \) is not adjacent to \(v_1 \). Let \(v_i \) and \(v_j \) be the other two vertices not adjacent to \(v_1 \) and suppose \(i < j < p \).

Case 1: Suppose \(i = p - 2 \). Then \(j = p - 1 \) and by Corollary 5.5(a) \(\delta(G) \geq 3 \). Thus, \(\deg v_p \geq 3 \) and there exists some \(k \), \(2 \leq k \leq p - 3 \), such that \(v_i v_{k+1} \) and \(v_k v_p \) are edges of \(G \). But then we see that \(v_1, v_2, \ldots, v_k, v_p, v_{p-1}, \ldots, v_{k+1}, v_1 \) is a hamiltonian cycle in \(G \), contradicting the assumption that \(G \) is nonhamiltonian.

Case 2: Suppose \(3 \leq i < p - 2 \) and \(j = p - 1 \). Again, since \(\deg v_p \geq 3 \), we see that unless \(v_p \) is adjacent to exactly \(v_{p-1}, v_{p-2} \), and \(v_{i-1} \), \(G \) is hamiltonian. But since \(\deg v_{p-1} \geq 3 \), there exists a vertex \(v_t (t \neq p - 2 \) and \(t \neq p) \) adjacent to \(v_{p-1} \). If \(t < i - 1 \), then \(v_p, v_{p-1}, v_t, v_{i-1}, \ldots, v_1, v_{i+1}, v_{i+2}, \ldots, v_{p-2}, v_p \) is a hamiltonian cycle in \(G \). While, if \(i \leq t \leq p - 3 \), then \(v_{t+1}, v_{t+2}, \ldots, v_{p-2}, v_p, v_{p-1}, v_t, v_{t-1}, \ldots, v_1, v_{i+1} \) is a hamiltonian cycle in \(G \).

Finally, suppose \(t = i - 1 \). Since \(\deg v \geq 3 \), there exists a vertex \(v_w (w \neq i + 1 \) and \(w \neq i - 1) \) adjacent to \(v_i \). If \(w < i - 1 \), then \(v_i, v_w, v_{w-1}, \ldots, v_1, v_{w+1}, \ldots, v_{i-1}, v_p, v_p, v_{p-2}, \ldots, v_i \) is a hamiltonian cycle in \(G \) (see Figure 5.1).

If \(i + 1 < w \leq p - 1 \), then the hamiltonian cycle \(v_w, v_i, v_{i+1}, \ldots, v_{w-1}, v_1, v_2, \ldots, v_{i-1}, v_{p-1}, v_p, v_{p-2}, v_{p-3}, \ldots, v_w \) exists in \(G \) (see Figure 5.2).
If \(\omega = p \), then \(v_p v_i \) and \(v_i v_{i+1} \) are edges of \(G \) and \(G \) is again hamiltonian. Thus, all possibilities lead to a contradiction.

Case 3: Suppose \(j = i + 1 < p - 1 \). Unless \(v_p \) is adjacent to precisely \(v_{p-1}, v_i, \) and \(v_{i-1} \), we find a vertex \(v_k \) such that \(v_i v_k \) and \(v_{k-1} v_p \) are edges of \(G \); which implies \(G \) is hamiltonian. Otherwise, we then see that \(v_j, v_{j+1}, \ldots, v_{p-1}, v_1, v_2, \ldots, v_{i-1}, v_p, v_i \) is a hamiltonian cycle in \(G \), and again we have a contradiction.

Case 4: Suppose \(3 < i < j < p - 1 \). Then \(\deg v_p = 3 \) and \(v_p \) is adjacent to \(v_{p-1}, v_{i-1}, \) and \(v_{j-1} \), or \(G \) is hamiltonian. Since \(\deg v_i \geq 3 \), there is a vertex \(v_\omega \) (\(\omega \neq i - 1 \) or \(\omega \neq i + 1 \)) that is
adjacent to \(v_i \). If \(w < i - 1 \), then \(v_i, v_w, v_{w-1}, \ldots, v_1, v_{w+1}, v_{w+2}, \ldots, v_{i-1}, v_p, v_{p-1}, \ldots, v_i \) is a hamiltonian cycle. If \(i + 1 < w \leq j \) (or \(j + 1 < w \leq p \)), then \(v_i, v_w, v_{w+1}, \ldots, v_p, v_{i-1}, v_{i-2}, \ldots, v_1, v_{w-1}, v_{w-2}, \ldots, v_i \) is a hamiltonian cycle.

If \(w = j + 1 \), then there exists a vertex \(v_k \) (\(k \neq j + 1 \) or \(k \neq j - 1 \)) that is adjacent to \(v_j \). If \(1 \leq l < i - 1 \), then \(v_j, v_k, v_{k-1}, \ldots, v_1, v_{k+1}, \ldots, v_{i-1}, v_p, v_{p-1}, \ldots, v_{j+1}, v_i, v_{i+1}, \ldots, v_p, v_{j-1}, \ldots, v_1, v_{i-1}, \ldots, v_j \) is a hamiltonian cycle. If \(i + 1 < l < p \), then \(v_j, v_l, v_{l+1}, \ldots, v_1, v_{j+2}, \ldots, v_p, v_{j-1}, v_{j-2}, \ldots, v_i, v_{j+1}, v_j \) is a hamiltonian cycle of \(G \), and we have reached a contradiction.

Thus, all cases have led to a contradiction so that \(\Delta(G) < p - 4 \).

Next, suppose that \(\deg v_1 = p - 5 \) and again let \(P: v_1, v_2, \ldots, v_p \) be a hamiltonian path in \(G \). Let \(v_i, v_j, v_k, \) and \(v_p \) be the vertices not adjacent to \(v_1 \), where \(1 < i < j < k < p \). We again examine the possible location of these vertices.

Case A: Suppose \(i = p - 3 \) so that \(j = p - 2 \) and \(k = p - 1 \). Then if \(v_p \) is adjacent to any vertex \(v_m \), \(2 \leq m < p - 4 \), \(G \) contains a hamiltonian cycle. Thus, \(3 \leq \deg v_p \leq 4 \), and \(v_p \) is adjacent to a subset of \(\{v_{p-4}, v_{p-3}, v_{p-2}, v_{p-1}\} \).

If \(v_p v_{p-4} \notin E(G) \), then \(v_{p-3} \) is adjacent to no \(v_y \), \(2 \leq w < p - 4 \), or a hamiltonian cycle exists in \(G \), namely \(v_{p-3}, v_y, v_{w-1}, \ldots, v_1, v_{w+1}, \ldots, v_{p-4}, v_p, v_{p-1}, v_{p-2}, v_{p-3} \). Since \(\deg v_{p-3} \geq 3 \), at least one of \(v_p \) or \(v_{p-1} \) is adjacent to \(v_{p-3} \).
If \(v_p v_{p-3} \in E(G) \), then \(v_{p-2} \) is adjacent to no \(v_w \),
\(2 \leq w < p - 4 \), or again a hamiltonian cycle exists. But then since
\(\kappa(G) \geq 3 \), we see that \(v_{p-1} v_w \in E(G) \) for some \(w < p - 4 \), or else
\(\{ v_{p-4}, v_{p-3} \} \) would be a cutset for \(G \). However, then
\[v_{p-2}, v_{p-1}, v_w, v_{w-1}, \ldots, v_1, v_{w+1}, \ldots, v_{p-4}, v_p, v_{p-3}, v_{p-2} \]
is a hamiltonian cycle.

Thus, \(v_p v_{p-3} \notin E(G) \), so that \(v_p v_{p-2} \) must be an edge of \(G \),
since \(\deg v_p \geq 3 \). We know \(v_{p-3} \) must also be adjacent to \(v_{p-1} \) and
since \(\kappa(G) \geq 3 \), \(v_{p-1} \) must be adjacent to some \(v_w \) where \(2 \leq w < p - 4 \).
But then
\[v_{p-2}, v_p, v_{p-4}, \ldots, v_{w+1}, v_1, v_2, \ldots, v_w, v_{p-1}, v_{p-3}, v_{p-2} \]
is a hamiltonian cycle.

Finally, if \(v_p v_{p-4} \notin E(G) \), then both \(v_p v_{p-3} \) and \(v_p v_{p-2} \) must
be edges of \(G \). Again, at least one of \(v_{p-3}, v_{p-2}, \) or \(v_{p-1} \) is adjac­
ent to a vertex \(v_w \), \(1 \leq w < p - 4 \). If either \(v_{p-1} \) or \(v_{p-2} \) is adjac­
ent to such a vertex, \(G \) is hamiltonian. If \(v_{p-3} v_w \in E(G) \), then
\(\kappa(G) < 3 \) unless one of \(v_p, v_{p-1}, \) or \(v_{p-2} \) is adjacent to a \(v_{w'} \),
\(1 \leq w' \leq p - 4 \). This contradicts our assumption, so in all cases \(G \)
is hamiltonian.

Case B: Suppose \(i < p - 3 \) and \(j = p - 2 \) (thus \(k = p - 1 \)).
If \(v_p \) is adjacent to any vertex other than \(v_{p-1}, v_{p-2}, \) or \(v_{i-1} \), then
the arguments of Case A apply. Thus, \(N(v_p) = \{ v_{p-1}, v_{p-2}, v_{i-1} \} \).
Since \(\deg v_i \geq 3 \), there exists a vertex \(v_w \) (\(w \neq i - 1 \) and \(w \neq i + 1 \))
adjacent to \(v_i \). If \(1 \leq w < i - 1 \) or \(i + 1 < w \leq p - 2 \), we find
hamiltonian cycles as before. If \(w = p - 1 \), then since \(\deg v_{p-2} \geq 3 \),
there exists a vertex \(v_r \) (\(r \neq p - 3 \) and \(r \neq p - 1 \)) such that
If $r = p$, then

$$v_{p-2}v_r \in E(G).$$

If $i < r < p - 3$, then

$$v_{p-3}, v_{p-2}, \ldots, v_{i+1}, v_{i+2}, \ldots, v_{r-1}, v_r, v_{r+1}, \ldots, v_{p-2}, v_{p-1}$$

is a Hamiltonian cycle. If $i \leq r < p - 3$, then

$$v_r, v_{r-1}, \ldots, v_{i+1}, v_{i+2}, \ldots, v_{p-2}, v_{p-1}, v_p, v_{p-1}, v_i, v_{i+1}, \ldots, v_{p-2}, v_r$$

is a Hamiltonian cycle and all possibilities lead to a contradiction.

Case C: Suppose $i < j - 1 < p - 3$ and $k = p - 1$. Since

$\deg v_p \geq 3$, v_p is adjacent to at least one of v_{i-1} or v_{j-1}. If

$v_p v_{i-1} \in E(G)$, then since $\deg v_i \geq 3$, there exists a vertex v_w

($w \neq i - 1$ and $w \neq i + 1$) adjacent to v_i. The techniques of the
last cases show all possibilities for w lead to a Hamiltonian cycle.

In exactly the same manner, we obtain a Hamiltonian cycle if

$v_p v_{j-1} \in E(G)$.

Case D: Suppose $i + 1 = j < p - 2$ and $k = p - 1$. Again, v_p
can be adjacent only to v_{p-1} and v_{p-2}, as well as at least one of

v_{i-1} or v_i. Suppose $v_p v_i \in E(G)$. Since $\deg v_j \geq 3$, there exists a
vertex v_w ($w \neq i - 1$ or $w \neq i + 1$) such that $v_w v_j \in E(G)$. If

$1 \leq w < i - 1$ or $i + 1 < w < p$, G is Hamiltonian, since

(3) $v_i, v_w, v_{w-1}, \ldots, v_1, v_{w+1}, v_{w+2}, \ldots, v_{i-1}, v_p, v_{p-1}, \ldots, v_j$

and

(4) $v_j, v_w, v_{w+1}, \ldots, v_p, v_{i-1}, v_{i-2}, \ldots, v_1, v_{w-1}, \ldots, v_j$

are Hamiltonian cycles. If $w = i - 1$, then

$$v_i, v_{i-1}, v_{i-2}, \ldots, v_1, v_{j+1}, \ldots, v_p, v_j$$

is a Hamiltonian cycle.

Suppose $v_r v_{i-1} \in E(G)$. There exists a vertex v_r adjacent to

v_i ($r \neq i - 1$ or $r \neq i + 1$). If $1 \leq r < i - 1$ or $j + 1 < r \leq p - 1$,
we obtain hamiltonian cycles similar to (3) and (4). If \(r = p \), \(G \) is hamiltonian by previous work, so suppose \(r = j + 1 \). We again consider a vertex \(v_r \) adjacent to \(v_j \). The techniques of the previous cases again show that each possible value for \(t \) leads to a hamiltonian cycle.

Case E: Suppose \(i + 1 = j < k - 1 < p - 2 \). Then \(v_p \) is adjacent to at least one of \(v_{i-1} \) or \(v_{k-1} \). Suppose \(v_p v_{k-1} \in E(G) \). Then since \(\deg v_k \geq 3 \), there is a vertex \(v_w \) (\(w \neq k - 1 \) and \(w \neq k + 1 \)) adjacent to \(v_k \). If \(1 \leq w < i - 1 \), we obtain the hamiltonian cycle

\[v_k, v_w, v_{w-1}, \ldots, v_1, v_{w+1}, \ldots, v_{k-1}, v_p, v_{p-1}, \ldots, v_k. \]

If \(j \leq w < k - 1 \), then a similar hamiltonian cycle is obtained. If \(k + 1 < w \leq p \), then

\[v_k, v_w, v_{w+1}, \ldots, v_p, v_{k-1}, \ldots, v_1, v_{w-1}, \ldots, v_k \]

is a hamiltonian cycle.

Thus, suppose \(w = i \). Then let \(v_r \) be adjacent to \(v_j \) (\(r \neq j - 1 \) and \(r \neq j + 1 \)). If \(1 \leq r < i - 1 \), then

\[v_r, v_i, v_{r+1}, \ldots, v_1, v_{r+1}, \ldots, v_i, v_k, v_{k+1}, \]

\[\ldots, v_p, v_{k-1}, v_{k-2}, \ldots, v_j \]

is a hamiltonian cycle. If \(r = i - 1 \), then

\[v_r, v_k, \ldots, v_p, v_{k-1}, \ldots, v_{j+1}, v_1, v_2, \ldots, v_{i-1}, v_j, v_i \]

is a hamiltonian cycle. If \(j + 1 < r < k - 1 \), then

\[v_j, v_r, v_{r+1}, \ldots, v_{k-1}, v_p, \ldots, v_k, v_i, v_{i-1}, \]

\[\ldots, v_1, v_{r-1}, \ldots, v_j \]
is a hamiltonian cycle. If \(r = k - 1 \), then
\[
\{ j, v_{k-1}, v_p, v_{p-1}, \ldots, v_k, v_i, v_{i-1},
\ldots, v_1, v_{k-2}, \ldots, v_j
\]
is a hamiltonian cycle. If \(r = k \), then
\[
\{ j, v_k, v_{k+1}, \ldots, v_p, v_{k-1}, \ldots, v_{j+1}, v_1, v_2, \ldots, v_j
\]
is a hamiltonian cycle. If \(k + 1 \leq r < p - 1 \), then
\[
\{ 1, v_2, \ldots, v_i, v_k, v_{k+1}, \ldots, v_p, v_j, v_{j+1},
\ldots, v_{k-1}, v_p, v_{p-1}, \ldots, v_{r+1}, v_1
\]
is a hamiltonian cycle. If \(r = p - 1 \), then since \(v_p \) must be adjacent to one of \(v_{i-1} \) or \(v_i \), we again find that \(G \) is hamiltonian.

If \(v_p v_{i-1} \in E(G) \), then a similar analysis of the adjacencies of \(v_i, v_j \), and \(v_1 \) shows \(G \) is hamiltonian.

Case F: Suppose \(i + 1 = j \) and \(j + 1 = k < p - 1 \). Then \(v \) is adjacent to at least two of \(v_{i-1}, v_i \), and \(v_j \). An analysis similar to the previous cases again shows a hamiltonian cycle must exist.

Case G: Suppose \(i < j - 1 \) and \(j + 1 = k \). This case is similar to Case D.

Case H: Suppose \(i < j - 1 < k - 2 \). Then \(v_p \) must be adjacent to at least two of \(v_{i-1}, v_{j-1}, \) and \(v_{k-1} \). If \(v_p v_{i-1} \in E(G) \), then since \(\text{deg } v_i \geq 3 \), there exists a vertex \(v_w \) \((w \neq i - 1 \text{ and } w \neq i + 1)\) such that \(v_w \) is adjacent to \(v_i \). If \(1 \leq w < i - 1 \), or if \(i + 1 < w \leq j \), or if \(j + 1 < w \leq k \), or if \(k + 1 < w \leq p \), then \(G \) is found to be hamiltonian, as before. If \(v_p v_{j-1} \in E(G) \), then since \(\text{deg } v_j \geq 3 \), there exists a vertex \(v_r \) adjacent to \(v_j \) \((r \neq j - 1 \text{ and } r \neq j + 1)\).
If $r = i - 1$, then note that v_i must be adjacent to a third vertex v_j. If $1 \leq s < i - 1$, or if $i + 1 < s \leq j - 1$, then G is hamiltonian. Hence, all cases are concluded and $\Delta(G) \leq p - 6$.

It is not known in general if any initially k-path traceable and nonhamiltonian graphs $(k \geq 1)$ actually contain vertices of degree $p - 6$.

Corollary 5.7

If G is initially k-path traceable and nonhamiltonian $(k \geq 1)$, then $G = K_2$ or $|V(G)| \geq 10$.

Proof: If G is initially k-path traceable and nonhamiltonian, then, in particular, G is homogeneously traceable nonhamiltonian. Then, $G = K_1$, $G = K_2$, or $|V(G)| \geq 9$. But, since $k \geq 1$, $G \neq K_1$.

Now suppose $|V(G)| = 9$. Then, by Theorem 5.6, $\Delta(G) \leq 9 - 6 = 3$. By Corollary 5.4, $\delta(G) \geq 3$. Thus, G is 3-regular and has order 9, which is impossible. Hence, $|V(G)| \geq 10$.

We conclude by noting that except for K_2, the Petersen Graph has the minimum order for an initially k-path traceable graph $(k \geq 1)$ as well as the minimum size.
BIBLIOGRAPHY

75

