Torsion Element Test
Bench Design

By: Richard Blischke, Trevor Gick, and Steve Johnson
Sponsor: ROSTA USA, Ian Osborn
Faculty Advisor: Dr. Johnson Asumadu
Western Michigan University Department Of Electrical and Computer Engineering
ROSTA Element Description

- Outer body secured to fixed point
- Inner element connected to moving part
- Rubber inserts
- Primary uses include vibration damping and suspension elements

Picture Taken from ROSTA Product Catalog
Examples of Use

- Lever bearing in concrete mixer
- Pressure rollers in saw device
- Pendulum on harrow rollers
- Conveyor-belt scraper
- Handle-bar insulation
- See-saw support

Picture Taken from ROSTA Product Catalog
Example of Use
Project Need

- Test and certify new and existing elements
- Test range of angles and torque applied
- Display angle vs. torque in graphical form

Picture Taken from ROSTA Product Catalog
Original Specifications

• Capable of testing elements with a maximum torque of 700 N·m to 6500 N·m at ±30° of rotation
• Able to accommodate element from 50 millimeters to 100 millimeters in diameter and 250 to 450 millimeters in length
• Device must measure torque and angular displacement of test elements
• Torque measured at every ½ degree of rotation or better
• Display results graphically with ±1 N·m sensor accuracy
• Standard office computer for data collection
 – Labview software is required to be used for user interface
• All inclusive budget is around $5,000
Updated Specifications

- Torque and Angle sensing accuracy must be within <1.5% of the actual values for angles above 5°
- The element must be displaced by a 5° push and 30° pull
- Budget was increased as project continued
 - Driving Factors: Mechanical Design (Steel), Data Acquisition
- All else remained the same
Design - Overview

- **Mechanical Structure**
 - Designed by ROSTA
 - Multiple Configurations and Torque Arms

- **Hydraulic System**
 - Cooperatively Designed
 - Digital Control of Direction
 - Manual Flow Adjustment

- **Electrical System**
 - Designed and Assembled by Senior Design Team
 - Test Control
 - Sensor Measurement
Design - Block Diagram
Design - Hydraulics

- Hydraulic Power Unit
- Solenoid Valves
 - Forward Reverse Control
- Flow Control
 - Manually adjusted needle valve

Hydraulic Power Unit Mounted on Device
Design - Sensor Measurement

• Analog - Load Cells
 – Measures Force on Hydraulic Cylinder
 – Tensile and Compressive Measurement
 – High Accuracy
 • ±0.03% Linearity
 • ±0.02% Hysteresis
 • ±0.01% Repeatability
 – 3000 and 1500 pound ratings used
 – 3mV/V Output, 10-15V excitation
Design - Sensor Measurement

• Digital - Linear Encoder
 – 6 Channel Quadrature
 – Proprietary Magnetic Tape
 – 10..30V HTL push-pull
 – 10μm resolution
 – Measures Hydraulic Cylinder Travel

HK Series Linear Encoder
(image courtesy Baumer)
Data Acquisition System - Hardware

Analog:
- NI-9218 2-Channel Universal Analog Input Module
 - Sample Rate: 51.2kS/s per channel
 - DSUB Connectors
 - ±16.3 V measurement range
 - 24-bit Resolution
 - 12 V Excitation Voltage
- Two National Instruments cDAQ-9171 single slot chassis are used to house the modules

Digital:
- NI-9375 16 Channel Digital Input and 16 Channel Digital Output Module
 - 12 V and 24 V signal levels
 - Sinking Input, Sourcing Output
 - 24 V Output levels are possible with external power supply
User Interface - Description

- Analog DAQ Channel Settings
 - Continuous samples
 - 10 Hz sample frequency
 - 1500 Samples
 - Max Voltage: 45 mV
 - Min Voltage: 0 mV
- Labview block diagram converts electrical signal taken from the load cell and converts to a torque in ft*lbs based on mechanical system configuration
- Prints the output onto a graph and displays numerical values on an indicator
- Data can be exported to Excel

- Digital DAQ Settings
 - 6-Channels used for encoder input
 - 3-Channel used to output signal for control
- Edge counter created in Labview to work with encoder output
User Interface - Analog Input Block Diagram
User Interface - Front Panel, Setup Page
User Interface - Front Panel, Run Page

![User Interface - Front Panel, Run Page](image-url)
Performance Results - Simulated Analog Signal

- Simulated voltages from 36mV to 16mV using DC source in lab
- Read inputs from the DAQ and exported the data to Excel
<table>
<thead>
<tr>
<th>Simulated Sensor Output Voltage (mV)</th>
<th>Expected Sensor Force (lbs)</th>
<th>Expected Torque</th>
<th>Average Torque Measured (Ft*lbs)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3000.0</td>
<td>4921.28</td>
<td>4912.24</td>
<td>0.18%</td>
</tr>
<tr>
<td>35</td>
<td>2916.7</td>
<td>4784.58</td>
<td>4742.65</td>
<td>0.88%</td>
</tr>
<tr>
<td>34</td>
<td>2833.3</td>
<td>4647.88</td>
<td>4656.39</td>
<td>-0.18%</td>
</tr>
<tr>
<td>33</td>
<td>2750.0</td>
<td>4511.17</td>
<td>4481.84</td>
<td>0.65%</td>
</tr>
<tr>
<td>32</td>
<td>2666.7</td>
<td>4374.47</td>
<td>4395.91</td>
<td>-0.49%</td>
</tr>
<tr>
<td>31</td>
<td>2583.3</td>
<td>4237.77</td>
<td>4226.58</td>
<td>0.26%</td>
</tr>
<tr>
<td>30</td>
<td>2500.0</td>
<td>4101.07</td>
<td>4141.59</td>
<td>-0.99%</td>
</tr>
<tr>
<td>29</td>
<td>2416.7</td>
<td>3964.37</td>
<td>3968.04</td>
<td>-0.09%</td>
</tr>
<tr>
<td>28</td>
<td>2333.3</td>
<td>3827.66</td>
<td>3795.59</td>
<td>0.84%</td>
</tr>
<tr>
<td>27</td>
<td>2250.0</td>
<td>3690.96</td>
<td>3710.87</td>
<td>-0.54%</td>
</tr>
</tbody>
</table>
Performance - Device Build
Performance - Device Build
Performance - Device Operation
Performance - Device Operation
Evaluating Performance

• Approximately 90% Complete
 – Output Torque Vs. Angle of Displacement Graph in Labview
 – Complete system testing is required
 – Test operation and calibration of sensors

• Difficulties
 – Encoder vs. DAQ
 – LabView Programming Environment
 – Component delays
 – Mechanical Structure Not On-Site
Recommendations

• Change Digital DAQ to utilize onboard encoder functionality
• Calibrate sensors for measurement accuracy
• Replace Manual Hydraulic Flow Control with PWM Proportional Valve
Questions?