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Abstract

The regularity lemma (also known as Szemerédi’s Regularity Lemma) is one of the most

powerful tools used in extremal graph theory. In general, the lemma states that every

graph has some structure. That is, every graph can be partitioned into a finite number

of classes in a way such that the number of edges between any two parts is “regular.”

This thesis is an introduction to the regularity lemma through its proof and applications.

We demonstrate its applications to extremal graph theory, Ramsey theory, and number

theory.
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Chapter 1

Introduction

Combinatorics is a branch of mathematics that can be loosely defined as the study of

counting discrete structures. Many simple questions can be posed in combinatorics, in-

cluding enumerating how many ways to arrange a set of objects, or counting the number

of ways to choose a subset of a structure. Here are some introductory combinatorial

problems:

1. Given a team of 12 basketball players, how many ways can we assign these players

to 5 positions on the court?

2. How many ways can you put 6 balls in 14 boxes, where each box can have at most

one ball?

3. If there are 30 colors of paint, what is the total number of ways one can distribute

these colors to 9 rooms, ensuring that each room gets painted?

Although “counting” may sound easy, the level of difficulty rises quickly as the problems

add more variables and conditions. It is often found that the ideas and techniques of

combinatorics are being used not only in the traditional areas of mathematical appli-

cation, namely computer science and physical sciences, but also in the social sciences,

information theory and the biological sciences [4]. For example, determining the pre-

cise order of nucleotides within a DNA molecule, called DNA sequencing, is a typical

problem where combinatorial methods are successfully applied.

A graph is a set of points and a set of lines, where a line connects two points. It

is standard to call points vertices and lines edges. Extremal graph theory is a part

of combinatorics. It was first considered a topic to be studied as its own subject by

Paul Turán in 1940. Paul Erdős pioneered the subject through the problems, papers,

and lectures he produced [1]. Extremal graph theory problems can take two forms.

1
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First, given a certain quality of a graph, such as the number of vertices or edges, what

properties does the graph have? Otherwise, given a property, how many edges or vertices

can a graph have while still forbidding the property [6]? A classic example of the first

form, proved by Mantel in 1907, is the following:

Mantel’s Theorem (1907). Every graph with n vertices and at least n2

4 edges contains

a triangle.

This problem falls under the first form because given a certain number of vertices and

edges, a graph is guaranteed to have the property that it contains a triangle. Man-

tel’s theorem was generalized by Turán in 1941, bringing extremal graph theory to the

forefront of mathematical research.

Turán’s Theorem (1941). If G is a graph with n vertices that does not contain Kr,

then G has at most n2(r−2)
2(r−1) edges.

Notice that this theorem was a solution to the second form of extremal graph problems.

Many problems in extremal graph theory are concerned with finding the maximum

number of edges a graph with n vertices can have while forbidding a certain type of

subgraph. One of the most successful techniques used in solving these kind of problems

is the so-called regularity method.
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Szemerédi’s Regularity Lemma

The regularity method, developed by Szemerédi, is a vital tool used in extremal graph

theory. This lemma first appeared as a part of a larger result by Szemerédi [11]. The

basic idea of the regularity lemma is that every graph has some structure, which can

be approximated as some collection of random graphs with uniformly distributed edges.

More precisely, all of the vertices of a graph G can be put into a finite number of classes.

Most of these classes are “regular,” meaning the number of edges between two subsets

of the classes is about the same as the number of edges between the whole classes [2].

The regularity method is of great importance when solving extremal problems, since it

provides structure to graphs that have seemingly little structure.

2.1 Definitions, Notations, and Examples

Before we can state and prove Szemerédi’s Regularity Lemma, we must first define a

few terms. First, we will define a few basic definitions in graph theory, and then what

it means for a graph to have “regular” parts.

A graph is a collection two sets G = (V,E) with V := V (G) denoting a set of vertices

and E := E(G) denoting a set of edges. Vertices can be thought of as nodes or points

and edges can be thought of as lines connecting the vertices. The elements of E are

2-element subsets of V , so E ⊆ [V ]2. An edge e is typically denoted xy (or yx), where

{x, y} ∈ e. The following are a few examples of graphs:

3
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A vertex v is incident with an edge e if v ∈ e, or the edge has an endpoint v. Two

vertices x, y are adjacent if xy ∈ E(G). The vertex x is called a neighbor of y if the

two vertices are adjacent. For example, in graph H above, all vertices are adjacent to all

other vertices, so every vertex has every other vertex as a neighbor. When all vertices

are adjacent to one another, the graph is called complete and is denoted Kr, where

r = |V (G)|. So, H is K6.

The degree of a vertex v, denoted d(v), is the number of neighbors v has. The mini-

mum degree of a graph G is δ(G) := min{d(v) : v ∈ V }, and the maximum degree

of G is ∆(G) := max{d(v) : v ∈ V }.

Now, we will define what it means for a graph to be “regular.” Let G = (V,E) be a graph

and X,Y be disjoint subsets of V . Let e(X,Y ) denote the number of edges between X

and Y . Then,

d(X,Y ) :=
e(X,Y )

|X| · |Y |

is the density of the pair (X,Y ). Notice that the density must always be a real number

between 0 and 1, since 0 ≤ e(X,Y ) ≤ |X| · |Y |.

A pair (A,B) of disjoint subsets of V is an ε-regular pair for some ε > 0 if for all X ⊆ A
with |X| ≥ ε|A| and Y ⊆ B with |Y | ≥ ε|B|, it follows that |d(X,Y )− d(A,B)| < ε.

A

X

B

Y

d(X,Y )

d(A,B)
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Notice that |X| ≥ ε|A| and |Y | ≥ ε|B|. This is because if we considered sets too small,

say |X| = 1 = |Y |, then the density of the pair (X,Y ) would be either 1 or 0, and thus

|d(X,Y )− d(A,B)| = d(A,B), which might not be less than ε.

Let V = V0 ∪ V1 ∪ ... ∪ Vk be a partition of the vertices of graph G. This parition is an

ε-regular partition of G if the following are true:

(i) |V0| ≤ ε|V |

(ii) |V1| = |V2| = ... = |Vk| = |V |−ε|V |
k

(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

The set V0 is called the exceptional set. This set exists so that the other partition sets

can have the same number of vertices. These vertices are not considered when looking

at the density of G, since they are not ε-regular and there are so few.

Example. We will show that any ε-regular pair in a graph is also ε-regular in the

complement of the graph.

Consider the ε-regular pair (X,Y ) in a graph G and let A ⊆ X and B ⊆ Y with

|A| ≥ ε|X| and |B| ≥ ε|Y |. Let d(X,Y ) be the density between X and Y in G, and let

d(A,B) be the density between A and B in G. Also, let dc(X,Y ) be the density between

X and Y in Gc, and let dc(A,B) be the density between A and B in Gc.

Notice, dc(X,Y ) = 1− d(X,Y ) and dc(A,B) = 1− d(A,B). Now,

|dc(X,Y )− dc(A,B)| = |1− d(X,Y )− 1 + d(A,B)| = |d(X,Y )− d(A,B)| < ε.

So, (X,Y ) is an ε-regular pair in Gc.

Now that we have an idea of what regular means in the context of graphs, we can prove

the following proposition about ε-regular pairs. This proposition states that if a pair

(A,B) is a ε-regular pair, then most of the vertices in A are neighbors with almost the

density times the size of B number of vertices in B. We will use this proposition later

in the first application we consider.

Proposition 2.1. Let (A,B) be an ε-regular pair, of density d say, and let Y ⊆ B have

size |Y | ≥ ε|B|. Then all but fewer than ε|A| of the vertices in A have (each) at least

(d− ε)|Y | neighbors in Y .
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Proof. Let X be the set of vertices in A with at most (d − ε)|Y | neighbors in Y . So,

e(X,Y ) < |X|(d− ε)|Y |. Now,

d(X,Y ) <
|X|(d− ε)|Y |
|X||Y |

= d− ε = d(A,B)− ε.

Solving for ε yields

ε < d(A,B)− d(X,Y ) ≤ |d(A,B)− d(X,Y )|.

Since (A,B) is an ε-regular pair and |Y | ≥ ε|B|, it must follow that |X| < ε|A|. Other-

wise, (A,B) would not satisfy the definition of ε-regular. So, all but fewer than ε|A| of

the vertices in A have at least (d− ε)|Y | neighbors in Y .

2.2 Szemerédi’s Regularity Lemma

Szemerédi’s Regularity Lemma. For all ε > 0 and every integer m ≥ 1, there exists

an integer M such that for any graph G with |V (G)| ≥ m, there exists an ε-regular

partition P = {C0, C1, . . . , Ck} with m ≤ k ≤M .

This lemma states that for any ε > 0, every graph has a partition into a bounded number

of ε-regular sets. If the number of sets was not bounded above by M , then any graph

could be trivially partitioned into singletons. This lemma is powerful for larger graphs.

We will now begin to prove the regularity lemma, using several preliminary lemmas.

Let G be a graph with |V (G)| = n. For disjoint sets A,B ⊆ V we define

q(A,B) :=
|A||B|
n2

d2(A,B).

For partitions A of A and B of B we let

q(A,B) :=
∑

A′∈A,B′∈B
q(A′, B′).

For a partition P = {C1, ..., Ck} of V (G) we let

q(P) :=
∑
i<j

q(Ci, Cj).
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Notice, q(P) is bounded above by 1. This is because of the following:

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci||Cj |
n2

d2(Ci, Cj)

=
∑
i<j

|Ci||Cj |
n2

e(Ci, Cj)
2

(|Ci||Cj |)2

≤
∑
i<j

1

n2

(|Ci||Cj |)2

|Ci||Cj |

=
1

n2

∑
i<j

|Ci||Cj |

≤ 1.

Since every refinement of q increases by a constant and is bounded above by 1, there

must be a finite number of refinements for the partition to be ε-regular.

If P has εk2 or more irregular pairs (Ci, Cj) we may take the pairs (X,Y ) of subsets of

(Ci, Cj) which violate the regularity and make X and Y into partition sets of their own.

Now, Lemma 2.2 will show that this refines P into a partition P ′, where q(P ′) is greater

than q(P). To prove this, we will use the Cauchy-Schwarz Inequality.

Cauchy-Schwarz Inequality.

∑
a2
i

∑
b2i ≥

(∑
aibi

)2
.

Lemma 2.2. (i) Let C,D ⊆ V be disjoint. If C is a partition of C and D is a partition

of D, then q(C,D) ≥ q(C,D).

(ii) If P, P ′ are partitions of V and P ′ refines P, then q(P ′) ≥ q(P).

Proof. (i) Let C = {C1, . . . , Ck} and D = {D1, . . . , D`}.

C D

C1

C2

Ck

D1

D2

D`
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By the definition of q(C,D) and q(Ci, Dj),

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1

n2

∑
i,j

e(Ci, Dj)
2

|Ci||Dj |
.

Letting ai = e(Ci, Dj)/
√
|Ci||Dj | and bi =

√
|Ci||Dj |, the Cauchy-Schwartz In-

equality yields

∑
i,j

(
e(Ci, Dj)√
|Ci||Dj |

)2∑
i,j

(√
|Ci||Dj |

)2

≥

∑
i,j

e(Ci, Dj)

2

∑
i,j

e(Ci, Dj)

|Ci||Dj |
≥

(∑
i,j e(Ci, Dj)

)2∑
i |Ci|

∑
j |Dj |

.

Notice that the sum of the edges between Ci and Dj for all i, j is the number of

edges between C and D. Also, the sum over i, j of |Ci| and |Dj | is |C| and |D|
respectively. Knowing this and the inequality we get from Cauchy-Schwartz, we

have

1

n2

∑
i,j

e(Ci, Dj)
2

|Ci||Dj |
≥ 1

n2
·

(∑
i,j e(Ci, Dj)

)2∑
i |Ci|

∑
j |Dj |

=
1

n2
· e(C,D)2∑

i |Ci|
∑

j |Dj |

=
e(C,D)2

n2|C||D|

= q(C,D).

So, q(C,D) ≥ q(C,D), where C is a partition of C and D is a partition of D.

(ii) Let P := {C1, . . . , Ck} and let Ci be the partition of Ci induced by P ′, for i =

1, . . . , k.

V

C1

C2

Ck

Ci
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Using the definition of q(P) and the inequality from part (i), we have

q(P) =
∑
i<j

q(Ci, Cj)

≤
∑
i<j

q(Ci, Cj)

≤ q(P ′)

Notice that the last inequality holds because q(P ′) is the sum over i, j of the

values of q within the part Ci and between parts Ci and Cj , so q(P ′) =
∑

i q(Ci) +∑
i,j q(Ci, Cj). Therefore, q(P ′) ≥ q(P).

Next, we will prove that the index q(C,D), where C and D are refinements of C and D,

increases q(C,D) by at most ε4 |C||D|
n2 .

Lemma 2.3. Let ε > 0 and let C,D be disjoint subsets of V . If (C,D) is not ε-regular,

then there exists partitions C = {C1, C2} of C and D = {D1, D2} of D so that

q(C,D) ≥ q(C,D) + ε4 |C||D|
n2

.

Proof. Suppose (C,D) is not an ε-regular pair. So, there exists sets C1 ⊆ C and D1 ⊆ D
with |C1| > ε|C| and |D1| > ε|D| so that η =: |d(C1, D1)−d(C,D)| ≥ ε. Let C2 =: C\C1

and D2 =: D\D1, and let C =: {C1, C2} and D =: {D1, D2}.

Now, define the following notation:

ci := |Ci| dj := |Dj | eij := e(Ci, Dj)

c := |C| d := |D| e := e(C,D).

We will now show that q(C,D) ≥ q(C,D) + ε4 |C||D|
n2 .

First, using the definition of q(C,D),

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1

n2

∑
i,j

e2
ij

cidj

=
1

n2

 e2
11

c1d1
+
∑
i+j>2

e2
ij

cidj
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Now, using the Cauchy-Schwartz Inequality with a = eij/
√
cidj and b =

√
cidj , we have

the following:

1

n2

 e2
11

c1d1
+
∑
i+j>2

e2
ij

cidj

 ≥ 1

n2

(
e2

11

c1d1
+

∑
i+j>2 e

2
ij∑

i+j>2 cidj

)

=
1

n2

(
e2

11

c1d1
+

(e− e11)2

cd− c1d1

)
.

Now, we will solve η = d(C1, D1)− d(C,D) for e11:

η = d(C1, D1)− d(C,D)

η =
e11

c1d1
− e

cd

e11 =
(
η +

e

cd

)
c1d1

e11 = ηc1d1 +
ec1d1

cd
.

Substituting this for e11, he have

1

n2

(
e2

11

c1d1
+

(e− e11)2

cd− c1d1

)
=

1

n2

[
(ηc1d1 + (ec1d1)/(cd))2

c1d1
+

(e− ηc1d1 − (ec1d1)/(cd))2

cd− c1d1

]

=
1

n2

[
η2c1

1d
2
1 + (2ηec2

1d
2
1)/(cd) + (e2c2

1d
2
1)/(c2d2)

c1d1

+
(e(cd− c1d1)/(cd)− ηc1d1)2

cd− c1d1

]

=
1

n2

[
η2c1d1 +

2ηec1d1

cd
+
e2c1d1

c2d2

+

e2(cd−c1d1)2

(c2d2)
− 2eηc1d1(cd−c1d1)

(cd) + η2c2
1d

2
1

cd− c1d1


=

1

n2

[
η2c1d1 +

2ηec1d1

cd
+
e2c1d1

c2d2
+
e2(cd− c1d1)

c2d2

−2eηc1d1

cd
+

η2c2
1d

2
1

cd− c1d1

]
=

1

n2

[
0 +

e2

cd
+ η2c1d1 +

2η2c2
1d

2
1

cd− c1d1

]
≥ 1

n2

[
e2

cd
+ η2c1d1

]
.
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Since |C1| > ε|C|, |D1| > ε|D|, and |η| > ε, we have[
e2

cd
+ η2c1d1

]
≥ 1

n2

[
e2

cd
+ η2 · ε|C| · ε|D|

]
≥ 1

n2

[
e2

cd
+ ε4cd

]
= q(C,D) + ε4 cd

n2
.

So, we have the desired conclusion to the lemma.

Now, in the Key Lemma, we will show that if P ′ is a refinement of P, then the increase

of the index is bounded below by some constant which only depends on ε.

Key Lemma. Let 0 < ε ≤ 1/4 and let P = {C0, C1, . . . , Ck} be a partition of V

with exceptional set C0 with |C0| ≤ εn and |C1| = |C2| = · · · = |Ck| := c. If P is

not ε-regular, then there exists P ′ = {C ′0, C ′1, C ′2, . . . , C ′`} where k ≤ ` ≤ k4k, so that

|C ′0| ≤ |C0|+ n/2k, |C ′1| = |C ′2| = · · · = |C ′`|, and q(P ′) ≥ q(P) + ε5/2.

Proof. Assume P is not ε-regular. Then, at least εk2 pairs (Ci, Cj) are not ε-regular, so

we refine these pairs as follows. For each pair (Ci, Cj) which is not ε-regular, Lemma 2

states that there exists partitions Cij of Ci and Cji of Cj so that q(Cij , Cji) ≥ q(Ci, Cj)+

ε4c2/n2. So, for each Ci, there exists a minimum parition, call it Ci, with |Ci| ≤ 2k−1.

This is because for some Ci, each Cj such that (Ci, Cj) is not ε-regular, Cij could parition

Ci into at most twice as many parts.

Let C0 =: {{v} | v ∈ C0}, and let C := ∪ki=0Ci. Notice,

|C0|+ |C1|+ · · ·+ |Ck| ≤ |C0|+ k2k−1 ≤ k2k.

Also,

q(C) =
∑

1≤i<j
q(Ci, Cj) +

∑
1≤i

q(C0, Ci) +
∑
0≤i

q(Ci).

Note that

∑
0≤i

q(Ci) = q(C0) +
∑
1≤i

q(Ci)

≥ q(C0).
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Since Ci is a partition of Cij , Cj is a partition of Cji, and Ci is a partition for {Ci},
Lemma 2(i) gives that

∑
1≤i<j

q(Ci, Cj) +
∑
1≤i

q(C0, Ci) +
∑
0≤i

q(Ci) ≥
∑

1≤i<j
q(Cij , Cji) +

∑
1≤i

q(C0, {Ci}) + q(C0)

≥
∑

1≤i<j

(
q(Ci, Cj) +

ε4c2

n2

)
+
∑
1≤i

q(C0, {Ci}) + q(C0)

≥
∑

1≤i<j
q(Ci, Cj) +

(
εk2
) ε4c2

n2

+
∑
1≤i

q(C0, {Ci}) + q(C0)

= q(P) +
ε5c2k2

n2

≥ q(P) +
ε5

2
.

Now, we need to ensure that our refinement will have partitions of equal size. Let

C ′1, C
′
2, . . . , C

′
` be a collection of disjoint sets of size d :=

⌊
c/4k

⌋
so that every C ′i is

contained in some C ∈ C\{C0} and C ′0 := V \
⋃
C ′i. So, P ′ = {C ′0, C ′1, . . . , C ′`} is a

partition of V . Also, P ′ refines C, so Lemma 2.2(ii) yields q(P ′) ≥ q(C) ≥ q(P) + ε5/2.

Since each C ′i is also contained in one of C1, . . . , Ck and no more than 4k sets C ′i can be

contained in any one of the same Cj from the definition of d, it follows that k ≤ ` ≤ k4k.

So C ′1, C
′
2, . . . , C

′
` use all but at most d vertices for each set Ci 6= C0 in C. Thus,

|C ′0| ≤ |C0|+ d|C|

= |C0|+
c

4k
|C|

≤ |C0|+
c

4k
k2k

= |C0|+
ck

2k

≤ |C0|+
n

2k

The last inequality holds since ck is all of the vertices except those in the exceptional

set. Therefore, P ′ satisfies the conditions in the lemma.

We are now set up to choose a value for M , and then apply the Key Lemma to any

graph until we obtain an ε-regular partition. The following is the proof of Szemerédi’s

Regularity Lemma.
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Proof. Let G be a graph of orfer n with vertex set V . Let 0 < ε ≤ 1/4 and let m be a

positive integer. Let s := 2/ε5 be an upper bound on the number of applications of the

Key Lemma, and recall that q(P) ≤ 1.

Now, we must choose M . Consider the function f : x → x4x. Take M to be the

maximum of f5(k) and 2k/ε. If n ≤ M , then the partition of the graph into single

vertices satisfies the conditions, so let n > M . Let C0 ⊆ V be minimal such that k divides

|V \C0|, and consider any partition {C1, . . . , Ck} of the vertices where |Ci| = |V \C0|/k.

We must now show |C0| ≤ εn. Notice, |C0| < k and the exceptional set grows by at

most n/2k each iteration of the Key Lemma. So, to obtain k + sn/2k ≤ ε/n, choose k

large enough so 2k−1 ≥ s/ε. Then,

ε

2
≥ s

2k

ε ≥ s

2k
+
ε

2

εn ≥ sn

2k
+
εn

2
.

Recall that n > 2k
ε , since M cannot exceed this by definition and M is strictly larger

than n. This implies that k < nε
2 , so it must follow that εn > sn

2k
+ k. This means that

|C0| does not exceed εn. Now, we are set up to apply the Key Lemma until the partition

is ε-regular.
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Other Forms of the Regularity

Lemma

Since the regularity lemma is such a powerful tool used in combinatorics, it has been

adapted to many different forms to be better suited for different situtions. In this section,

we will introduce two alternate forms of the lemma.

3.1 Degree Form

The degree form of the regularity lemma is frequently used in problems for which having

more edges can only be beneficial. This form considers a subgraph G′ of the graph G

which we want to regularize. In G′, there are no edges within any parts, all pairs are

ε-regular, and all pairs have either a density of 0 or a sufficiently large density. Typically,

the graph G′ is easier to work with, which is why degree form can be preferred when it

is applicable.

Degree Form of the Regularity Lemma. For every ε > 0, there exists M dependent

only on ε such that if G is any graph and d ∈ [0, 1], then there exists a partition

V = V0 ∪ V1 ∪ · · · ∪ Vk of the vertices of G and a subgraph G′ ⊂ G with the following

properties:

(i) k ≤M ,

(ii) |V0| ≤ ε|V |,

(iii) all parts Vi for i ≥ 1 are of the same size m ≤ dε|V |e,

(iv) degG′(v) > degG(v)− (d+ ε)|V | for all v ∈ V (G),

14
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(v) e(G′(Vi)) = 0 for all i ≥ 1,

(vi) all pairs G′(Vi, Vj) for 1 ≤ i < j ≤ k are ε-regular with each having density either

0 or greater than d.

This form of the regularity lemma can be derived from Szemerédi’s Regularity Lemma

by using a “cleaning procedure.”

3.2 Many Colors

In graph theory, it is common to consider coloring problems. In such problems, we will

colors the vertices or edges of a graph and study what properties such graphs can have.

Since it is common to work with colored graphs, there is a version of the regularity

lemma which accounts for graphs with colored edges.

The many colors regularity lemma states that any graph colored with r colors can be

partitioned in a way such that all but at most εk2 pairs are epsilon regular for all r

colors. That is, if we only consider the red edges, then all but at most εk2 pairs are

ε-regular with respect to the red edges. The following is a formal statement of this form

of the lemma.

Many Colors Regularity Lemma. For all ε ≥ 0 and integers r, m, there exists an

M such that if the edges of a graph G with n vertices are r-colored, then the vertex set

V (G) can be partitioned into sets V0, V1, ..., Vk, for some m ≤ k ≤ M , so that |Vi| = n
k

for every i ≥ 1, and for all but at most εk2 pairs (Vi, Vj), X ⊂ Vi and Y ⊂ Vj of size

|X|, |Y | > εn we have |dv(X,Y )− dv(Vi, Vj)| < ε for v = (1, . . . , r).

The proof for the Many Colors Regularity Lemma is similar to the proof of the lemma

without colors. To account for the different colors, we use a different index which sums

over all the colors. If P = {V0, V1, . . . , Vk} is a partition of G and v ∈ (1, . . . r), then

q(P) =
1

k

∑
v

k∑
i=1

k∑
j=i+1

d2
v(Vi, Vj)

is the index used to prove the Many Colors Regularity Lemma.
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Applications

In this chapter, we will show how the regularity lemma can be applied to problems in

extremal combinatorics, Ramsey theory, and number theory. In the following applica-

tions, we use all three forms of the regularity lemma we have discussed thus far. First,

we will consider the problem of triangle free graphs, which is a straight-forward applica-

tion of the regularity lemma. Then, we illustrate how the regularity lemma can be used

to prove Roth’s theorem from number theory. Finally, we will look at a few results in

Ramsey theory and the study of Turán numbers.

4.1 Triangle Free Graphs

The first application of the regularity method we are going to consider is about triangle

free graphs. The theorem roughly states that if a graph contains at most some constant

times n3 triangles, then there exists at most a constant times n2 edges which can be

removed from the graph to make it triangle free.

Triangle Free Graphs Theorem. For every constant c > 0 there exists a constant

a > 0 with the following property. If G is any graph with n vertices that contains at

most an3 triangles, then it is possible to remove at most cn2 edges from G to make it

triangle-free.

Proof. Apply the Regularity Lemma with ε = c/4 and m = c obtaining a partition

V = {V0, V1, ..., Vk} of the vertices of G with all but at most cn/4 pairs (Vi, Vj), where

0 < i < j ≤ k, are c/4-regular. Now, we remove all edges between pairs which fail to be

c/4-regular, which is at most

k2 c

4

(
n− |V0|

k

)2

≤ cn2

4

16
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edges. Now, we remove all of the edges between pairs which have density less than c/2,

which is at most (
k

2

)
c

2

(
n− |V0|

k

)2

≤ cn2

4

edges. Finally, we remove all edges within each part. This is at most

k

(n−|V0|
k

2

)
≤ k ·

(
n−|V0|
k

)2

2

≤ kn2

2k2

≤ n2

2m

=
cn2

2

edges. So, in total we removed at most cn2 edges. Call this new subgraph with edges

removed G′.

Now, we must show that G′ is triangle free. Assume, to the contrary, that G′ has a

triangle. In particular, G′ has a triangle with each vertex in a different part, say Vi,

Vj , and V`. If there exists such a triangle, then (Vi, Vj), (Vj , V`), and (Vi, V`) must be

c/4-regular and have density at least c/2. Since (Vi, Vj) is a c/4-regular pair, all but

at most (c/4)|Vi| vertices in Vi have at least (c/2− c/4)|Vj | neighbors in Vj , this set of

vertices in Vj be denoted by V ′j . Similarly, all but at most (c/4)|Vi| vertices in Vi have

at least (c/2− c/4)|V`| neighbors in V`, and call this set V ′` . Now, since c/2− c/4 = c/4,

all but at most (c/4)|V ′i | vertices in Vi have at least (c/2− c/4)|V ′` | neighbors in V ′` .

So, Vi ∪ Vj ∪ Vk has at least the following number of triangles:

(
1− 2c

4

)(
1− c

4

)( c
2
− c

4

)3
(
n− |V0|

k

)3

≥
(

1− 2c

4

)(
1− c

4

)( c
2
− c

4

)3
(
n− cn/4

k

)3

=

(
1− 2c

4

)(
1− c

4

)( c
2
− c

4

)3 (1− c/2)3

k3
n3

Now, since c and k do not depend on n, if

a =

(
1− 2c

4

)(
1− c

4

)( c
2
− c

4

)3 (1− c/2)3

k3
− δ

for some small δ, then G would contain less triangles than Vi ∪ Vj ∪ Vk, which is a

contradiction. Note that a is positive, since c < 1. If c ≥ 1, then it is trivial to remove

at most n2 edges to make G triangle free. So, G′ must be triangle free and thus it is

possible to remove at most cn2 edges from G to make it triangle free.
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The converse of this statement is known as the Triangle Removal Lemma, since it states

that if it is necessary to remove at least cn2 edges from G to make it triangle-free, then

G contains at least an3 triangles. We will use the Triangle Removal Lemma in the

following application.

4.2 Roth’s Theorem for 3-Term Arithmetic Progressions

A k-term arithmetic progression, or an APk, is a sequence of k numbers such that

the difference of any successive numbers is constant. A subset A of the natural numbers

has positive upper density if

lim
n→∞

|A|
n

> 0.

In 1936, Erdős and Turán conjectured that every subset of the natural numbers with

positive upper density contains arbitrarily long arithmetic progressions [8]. This conjec-

ture was proven by Szemerédi in 1975 [11]. His proof was one of the first applications

of the regularity lemma. The special case for AP3 of this theorem was first proven by

Klaus Roth in 1953 [9]. Roth’s proof for this theorem utilized analytic number theory.

In the following statement of the theorem, [n] will be used to denote the set {1, 2, . . . , n}.

Roth’s Theorem for 3-Term Arithmetic Progressions (1953). For all ε > 0 there

exists N(ε) such that for all n ≥ N any set S ⊆ [n] with |S| ≥ εn contains an AP3.

Proof. Let S ⊆ [n] such that |S| ≥ εn, and assume that S contains no AP3. We will

begin by constructing a 3-partite graph G = A∪B∪C from S. Let V (A) = {a : a ∈ [n]},
V (B) = {b : b ∈ [2n]}, and V (C) = {c : c ∈ [3n]}. Now, define the edges in the following

way, where a ∈ V (A), b ∈ V (B), and c ∈ V (C):

E(G) ={ab : b− a ∈ S} ∪ {bc : c− b ∈ S} ∪ {ac : c− a ∈ 2S}

Now, the vertices a, b, and c form a triangle in G if and only if a+ k = b, a+ k+ ` = c,

and k + ` ∈ 2S. For every vertex a and k ∈ S, there exists a triangle with vertices a,

a + k, and a + 2k. Notice that these triangles are pairwise edge-disjoint. So, at least

c ∈ V (C) vertices in G must be removed to make the graph triangle free. Since |S| ≥ εn,

|S|n ≥ εn2. Hence, by the Triangle Removal Lemma, G contains at least γn3 triangles,

for some constant γ. Since there exists at least γn3 triangles, there must be a nontrivial

solution to a+ b = c. This is a contradiction, so S must contain an AP3.
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4.3 Erdős and Stone’s Theorem

The following theorem published by Paul Erdős and Arthur Stone in 1946 [7] generalizes

Turán’s graph theorem to the extremal number of graphs containing no Kr
s , which is

a complete r-partite graph where each part has s vertices. The Embedding Lemma,

Turán’s Theorem [12], and Lemma 4.1 will be used to prove the Erdős-Stone theorem.

Embedding Lemma. For all d ∈ (0, 1] and ∆ ≥ 1, there exists ε0 > 0 with the property

that if G is any graph, H is a graph with ∆(H) ≤ ∆, s ∈ N, and R is any regularity

graph of G with parameters ε ≤ ε0, ` ≥ 2s
d∆ , and d, then H ⊆ Rs implies H ⊆ G.

Turán’s Theorem (1941). For all integers r, n with r > 1, every graph G which is

Kr free with n vertices has at most tr−1(n) = r−2
r−1 ·

n2

2 edges.

Lemma 4.1.

lim
n→∞

tr−1(n)

(
n

2

)−1

=
r − 2

r − 1
.

In the following proof, we will use the regularity lemma to create a regularity graph.

Then, using Turán’s theorem, we will show that the regularized graph contains a com-

plete graph on r vertices as a subgraph. If such a subgraph exists in the regularized

graph, then the embedding lemma will give us that Kr
s is contained in the original graph,

as desired.

Erdős-Stone Theorem (1946). For every ε > 0 and integers r ≥ 2 and s ≥ 1, there

exists integer n0 so that every graph G with n ≥ n0 vertices and at least tr−1(n) + εn2

edges contains Kr
s as a subgraph.

Proof. Let r ≥ 2 be given. If s = 1, then Turán’s Theorem yeilds that Kr ⊆ G. So let

s ≥ 2 and set γ > 0. Let G be a graph of order n. Notice that if |E(G)| ≥ tr−1(n) +γn2

then γ < 1 because if γ ≥ 1, then |E(G)| > n2.

Let d := γ and ∆ := ∆(Kr
s ). The Embedding Lemma gives an ε0 > 0. Now, let m > 1

γ

and ε > 0 where ε ≤ ε0, ε < γ
2 < 1, and

δ := 2γ − ε2 − 4ε− d− 1/m > 0.

This is possible because m > 1
γ implies that

2γ − d− 1

m
> 2γ − γ − γ = 0.

Given ε and m, Szemerdi’s Regularity Lemma outputs an integer M . Let

n >
2Ms

d∆(1− ε)
=

2Ms

γ∆(1− ε)
.
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Notice that this is at least m since δ, 1−ε < 1. So Szemerdi’s Regularity Lemma gives an

ε-regular partition {V0, V1, ..., Vk} of G where m ≤ k ≤M and |V1| = |V2| = ... = |Vk| = `

for some `. Notice that n ≥ k`, since k is the number of ε-regular partitions and ` is the

number of verticies in each set Vi with i ∈ (1, ..., k). Also, notice that

` =
n− |V0|

k

≥ n− εn
M

= n

(
1− ε
M

)
≥ 2Ms

d∆(1− ε)

(
1− ε
M

)
=

2s

d∆
.

Let R be the regularity graph of G with parameters ε, `, and d. Given these parameters,

the Embedding Lemma yields that if Kr ⊆ R, then Kr
s ⊆ G. To show that Kr ⊆ R, we

will first show that R has more than tr−1(k) edges. Then, Turn’s Theorem will give us

Kr ⊆ R.

We will count the number of edges in G to show that there is a sufficient number. First,

within V0 there are at most
(|V0|

2

)
≤ 1

2(εn)2 edges. Between V0 and Vi, for i ∈ (1, ..., k),

there are at most |V0|k` ≤ εnk` edges. There are at most εk2 pairs (Vi, Vj), for i, j ∈
(1, ..., k), which are not ε-regular. Between such pairs there is at most `2 edges, so

between all pairs which are not ε-regular, there are at most εk2`2 edges. The ε-regular

pairs with density less than d have at most d`2 edges between them, so altogether there

are at most 1
2k

2d`2 edges between pairs with insufficient density in G. Within a set Vi

there are trivially at most
(
`
2

)
≤ 1

2`
2k edges. The rest of the edges are between ε-regular

pairs with density at least d, which are also edges in Rs. Every edge in R corresponds

to at most `2 edges in G, so there are at most |E(R)|`2 edges of this kind. By adding it

all, we get

|E(G)| ≤ 1

2
(εn)2 + εnk`+ εk2`2 +

1

2
k2d`2 +

1

2
`2k + |E(R)|`2.
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Solving for |E(R)| gives

|E(R)| ≥
|E(G)| − 1

2(εn)2 + εnk`+ εk2`2 + 1
2k

2d`2 + 1
2`

2k

`2

=
1

2
k2

(
|E(G)| − 1

2(εn)2 − εnk`− εk2`2 − 1
2k

2d`2 − 1
2`

2k
1
2k

2`2

)

≥ 1

2
k2

(
tr−1(n) + γn2 − 1

2(εn)2 − εnk`
1
2n

2
− 2ε− d− 1

k

)

≥ 1

2
k2

(
tr−1(n)

1
2n

2
+ 2γ − ε2 − 4ε− d− 1

m

)

=
1

2
k2

(
tr−1(n)

(
n

2

)−1(
1− 1

n

)
+ δ

)
.

Lemma 1 can be applied to obtain

1

2
k2

(
tr−1(n)

(
n

2

)−1(
1− 1

n

)
+ δ

)
>

1

2
k2

(
r − 2

r − 1

)
≥ tr−1(k).

By Turán’s Theorem, Kr ⊆ R, and so Kr
s ⊆ Rs. By the Embedding Lemma, Kr

s ⊆ G.

4.4 Chvatál, Rödl, Szemerédi, and Trotter’s Theorem

The following theorem from Chvatál, Rödl, Szemerédi, and Trotter from 1983 [5] is

a significant result in Ramsey theory. It states that for every graph with bounded

maximum degree has a diagonal Ramsey number which is linear in the order of the

graph. The diagonal Ramsey number Rr(H) is the maximum number n such that there

exists an r-edge-coloring of the complete graph Kn which contains no monochromatic

copy of H as a subgraph. To prove this theorem, we will utilize Turán’s Theorem and

the Many Colors Form of the Regularity Lemma.

Chvatál, Rödl, Szemerédi, and Trotter (1983). For every positive integer ∆ and

r ≥ 2, there is a c(∆, r) such that Rr(H) ≤ c|H| for all graphs H with ∆(H) ≤ ∆.

Proof. Let ∆ ≥ 1 and r ≥ 2 be given, and define m := Rr(K∆+1). For d := 1
r and ∆,

the Embedding Lemma gives ε0. Choose ε ≤ ε0 be small enough so that 2ε < 1
m−1 −

1
m .
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Notice that ε < 1. Now, let M be given by the Many Colors Regularity Lemma with

inputs ε and m. Everything defined thus far depended only on ∆ and r, so choose

c := 2Mr∆

1−ε .

Let H be a graph with ∆(H) ≤ ∆ and s := |H|, and let G be a graph with order

n ≥ c|H|. The Many Colors Regularity Lemma gives that G has an ε-regular partition

{V0, V1, ..., Vk} with exceptional set V0 and |V1| = ... = |Vk| = l where m ≤ k ≤ M and

|dv(X,Y )− dv(Vi, Vj)| < ε for v = 1, ..., r. Notice,

l =
n− |V0|

k
≥ n(1− ε)

M
≥ cs1− ε

M
=

2s

(1
r )∆

=
2s

d∆
.

Let R be the regularity graph of G with parameters ε, l, and 0. By definition, R has k

vertices. Observe that

|E(R)| ≥
(
k

2

)
− εk2

=
1

2
k2

(
1− 1

k
− 2ε

)
>

1

2
k2

(
1− 1

k
− 1

1−m
+

1

m

)
>

1

2
k2

(
1− 1

k
− 1

1−m
+

1

k

)
=

1

2
k2

(
m− 2

m− 1

)
≥ t(k,m− 1).

By Turan’s Theorem, R has Km as a subgraph.

Now, color the edges of R by coloring an edge corresponding to a pair with color v ∈
{1, ..., r} where dv(Vi, Vj) ≥ 1

r . That is, the edge density in the v-th color is greater

than or equal to density d. For each color, let Rv denote the subgraph of R induced

by the v-th color (with parameters ε, l, and 1
r ). Since m := Rr(K∆+1), Km contains a

monochromatic copy of K∆+1, say the v-th color. Since χ(H) ≤ ∆ + 1, H ⊂ (K∆+1)s,

and thus H ⊂ (Rv)s.

Since ε ≤ ε0, l ≥ 2s
d∆ , and d ∈ (0, 1], H ⊂ G by the Embedding Lemma.

4.5 Ramsey-Turán for K4

The study of Ramsey-Turán numbers is motivated by Ramsey theory and the study of

Turán numbers. Given integers n and s, the Ramsey-Turán number RT (n,H, s) is the
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maximum number of edges in a graph G with n vertices and independence number at

most s so that G does not contain H as a subgraph. The following theorem was proven

by Szemerédi in 1972 [10]. The basic idea of this theorem is if G is a graph with no K4

as a subgraph and at most o(n) independent vertices, then G has less than 1/8n2 +o(n2)

edges. In the proof, we will use the term cluster graph. Let G be a graph with partition

V = V0 ∪ V1 ∪ · · · ∪ Vk, and let d be a number between 0 and 1. The cluster graph R

of G has k vertices corresponding to the k parts of V , and there exists the edge ij if the

corresponding parts Vi and Vj have density at least d.

Ramsey-Turán for K4, Szemerédi (1972). Let G be a graph with n vertices with

no K4 as a subgraph and only o(n) independent vertices. Then, |E(G)| < 1
8n

2 + o(n2).

Proof. Let G be a graph with n vertices. Assume, to the contrary, that |E(G)| >
1
8n

2 + 4εn2. Also, let α(G) ≤ ε2

M(ε)n − 1 and n ≥ M(ε)
ε , for ε > 0 and M(ε) obtained

from applying Degree Form to G with the parameter d = 2ε. Let G′ denote the graph

G in Degree Form, and let G′′ = G′ − V0 be the usual pure graph. Also, let R be the

cluster graph of G′′. Notice,

E(G′′) > E(G)− (d+ 3ε)
n2

2
.

Notice, by the assumption of the size of E(G),

E(G′′) >
1

8
n2 + 4εn2 − (d+ 3ε)

n2

2

=
1

8
n2 + 4εn2 − (2ε+ 3ε)

n2

2

=
1

8
n2 +

3

2
εn2

>
1

8
n2 + εn2.

Now, use the fact that k ≤M(ε) to simplify α(G):

α(G) < ε2

[
n

M(ε)
− 1

]
≤ ε2

[n
k
− 1
]

< ε2
(n
k

)
≤ ε2m

Proceed with two cases:

Case 1. Suppose there are more than k2

4 edges in R. By Turán’s Theorem, R contains a

triangle. Let the vertices of said triangle in R correspond to the clusters V ′i , V ′j , and V ′`
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in G′′. Let H be the graph consisting of the clusters A, B, and C in G, corresponding

to V ′i , V ′j , and V ′` respectively with the edges within the clusters put back.

By Proposition 2.1, all but at most ε|A| vertices of A have at least ε|B| neighbors in

|B| and all but at most ε|A| vertices of A have at least ε|C| neighbors in |C|. So, all

but at most 2ε|A| vertices in A have at least ε|B| neighbors in |B| and ε|C| neighbors

in |C|. Choose a to be one of these vertices in A. Let the neighborhood of a in B

and C be called B′ and C ′ accordingly. Since (B,C) is an ε-regular pair, (B′, C ′) is an

ε-regular pair. So, all but at most ε|B′| = ε2|B| vertices in B′ have at least ε|C ′| = ε2|C|
neighbors in C ′. So, let b be such a vertex in B′. Let the neighborhood of b in C ′ be

called C ′′. Since α(G) < ε2m = ε2|C|, there must be two adjacent vertices in C ′′, call

them c1 and c2. Now, there must exist a K4, consiting of vertices a, b, c1, and c2.

Case 2. Suppose there are at most k2

4 edges in R. Notice,

∑
1≤i<j≤k

d(Vi, Vj) =
E(G′′)

m2

≥ E(G′′)
k2

n2

>

(
1

8
+ ε

)
k2.

Note that the last inequality follows from the observation that E(G) > (1
8 + ε)n2. So,

the average of the densities which are not zero is at least:

d =
(1/8 + ε)k2

k2/4
=

1

2
+ 4ε.

Since the average is at least d, there is at least one pair (Vi, Vj) which has density

greater than d. Let H be the graph consisting of this regular pair with the edges inside

the two clusters put back, call this pair (A,B). Note that |A| = |B| = m. Notice that

α(H) ≤ α(G) < εm < 6εm. Let β = d − ε = 1
2 + 3ε, so α(H) < (2β − 1)m. Notice

that since α(H) < εm, there are at most εm independent vertices in A,so there exists at

least m− εm adjacent vertices in A. Also notice that since d ≥ 1
2 + 4ε, all but at most

εm vertices in A are adjacent to at least 1
2 + 4ε vertices in B. Choose two such vertices

in A, and call them a1 and a2. Now, these vertices must have at least 4εm of the same

neighbors in B, call this set B′. Now, since α(H) < εm, at most εm vertices in B′ are

non-adjacent. So, there are at least two vertices in B′ which are adjacent, call them b1

and b2. Now, there exists a K4 as a subgraph of G, with vertices a1, a2, b1, and b2.

Since in both cases there exists a K4 as a subgraph of G, there must be less than
1
8n

2 + o(n2) edges in G.
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This result was proven to be optimal by Bollobás and Erdős in 1976 [3]. To prove this,

they constructed a graph with o(n) independent vertices and 1
8n

2 − o(n2) edges.



Bibliography

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.

[2] , Modern Graph Theory, Springer, New York, 1998.
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