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Abstract 
 
The Fundamentals of Laparoscopic Surgery (FLS) box trainer currently offers medical 

students the opportunity to practice their dexterity with laparoscopic surgical tools and accustom 
themselves to the disconnect between their actions and their visible frame of reference. However, 
at this stage the box trainer offers few ways to test, practice, or improve upon important factors 
in laparoscopic surgery including disturbance of and pressure applied to patient tissue. The 
purpose of this project was to add sensory interfaces to the FLS box trainer to offer more 
concrete feedback for medical students practicing the required tasks, consolidate the information 
gathered by the sensors, and export it to the box trainer’s computer for the study and use of the 
medical student. The system developed placed a force sensor at the handle of the grasper tool 
which measures the force applied to the tool by the student, an accelerometer at the student’s 
wrists to measure their orientations while using the tools, and a timer in the software to record 
the time it took the students to complete each task. The system was implemented using an 
STM32F4 Discovery Board microcontroller with an ARM Cortex-M4 processor. The 
communication between the microcontroller and the PC was facilitated using ST software and 
the Discovery Board’s embedded debugger and programmer STLink. Data from the sensors is 
saved to the box trainer PC using this connection. All specifications have been addressed and 
completed. The result is an extension to the box trainer which properly reads applied force, wrist 
orientation, and elapsed time of box trainer tests. Each sensor was properly calibrated. The 
program was compiled and included in this document. Medical students can now better see and 
understand how they are doing in real time while completing the required tasks. 
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1.0 Introduction 
 
1.1 Background 

 
Laparoscopic surgery is a form of surgery that is minimally invasive and has proven to 

have many distinct benefits.  Laparoscopic surgery is performed using long and skinny tools that 
are inserted into small incisions in the abdomen wall. Some of the main advantages of this 
technique include smaller scars, shorter recovery time, shorter hospital stays for patients [1]. 
However, laparoscopic surgery requires skilled surgeons in order to effectively perform 
minimally invasive procedures. Specific psychomotor skills are necessary to perform the surgery 
because the surgeons are using tools to operate on tissue they have to see with a camera [2]. As 
detailed by Westebring, “the indirect vision through an endoscope (camera), and the indirect 
manipulation of tissue are the main causes of perception problems”, which makes laparoscopic 
surgery a difficult procedure to master [3]. 

These disadvantages created a need for there to be a system where surgical students and 
practicing surgeons can easily and safely improve their laparoscopic surgery skills. The 
Fundamentals of Laparoscopic Surgery (FLS) program was created in 2004 to educate and test 
surgical residents and practicing surgeons [4]. Part of the examination process for the FLS 
program includes a physical test using an intelligent surgical box trainer. The box trainer 
essentially simulates laparoscopic surgery by offering various tasks that testers have to complete. 
All tasks are completed using the same tools that are used during surgery. The box trainer helps 
to build necessary psychomotor skills without practicing on a human individual.  

The FLS program now certifies surgeons and “since the inception of FLS, more than 
9,000 surgical residents, fellows, and practicing physicians have successfully completed the FLS 
program [4].” This provides insight into the importance of this technology and shows that this 
growing technology could benefit a large amount of people if further improvements to the 
system were made.  
 
1.2 Need Statement 

 
Even though intelligent surgical box trainers have proven to be effective tools to improve 

laparoscopic surgical skills, there are many shortcomings that need to analyzed. If there was a 
simpler way to analyze performance on an exam, testers could refer to their results to increase 
their abilities. Also, if the process was easier to analyze, the tests could be practiced without the 
need for a practicing surgeon to oversee the process. This would save money and would help 
surgical residents and practicing surgeons harness their laparoscopic skills anytime they wish.  

A system of sensors needs to be implemented in the FLS box trainer system so 
information regarding applied force of the grabber tool, wrist movement, and test duration can 
interface with a microcontroller. The microcontroller needs to upload the performance feedback 
to a computer so it can be analyzed by test takers.  
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2.0 System Overview 
 
The block diagram in ​Figure 1​ displays the system that this group was in charge of 

designing to add to the FLS box trainer to provide better feedback for the practicing surgeons. 

Figure 1: System Block Diagram 
 

2.1 Requirement Specifications 
 
In order to meet the needs of the WMU ECE Department and the WMU School of 

Medicine, the design for the improved FLS Trainer must include both hardware and software 
components. The scope of the hardware side of the design includes three sets of sensors that 
should measure the student performance parameters asked for in the need statement; a 
microcontroller that will intercept signals from these sensors, parse them, and log them in a data 
file; and interfacing components. The scope of the software side of the design includes 
programming the microcontroller to accept the three sensor signals, organize the data collected 
from those inputs, and store this data in a comprehensive format that will be saved on the FLS 
Trainer desktop. 

The following specifications are organized into three basic categories. The first analyzes 
the needs and specifications for the sensors measuring the wrist orientations of the student, the 
force the student applies to the grasper, and the time elapsed during the FLS Training test. The 
second specifies the requirements for the microcontroller and software. The third captures any 
other miscellaneous conditions that must be met by the system design. Furthermore, 
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specifications were designated as being requirements, goals, or preferences with the letters [R], 
[G], and [P] respectively. 
 
2.1.1 Sensory Interface Specifications 

a. Sensor able to accurately measure pressure from 0.1 to 4 PSI [R]​ As it is discussed in the 
Literature Survey, human tissue is at risk of damage when more than 2.2 pounds per 
square inch of pressure is applied for a prolonged period of time. The pressure applied by 
the grasper tips should not exceed this number in a successful trial on the FLS Trainer. 
This sensory interface specifications would be considered a requirement because of the 
need for students to know how much pressure they are using. 

b. Sensor able to accurately measure a radial orientation range of 210º [R]​ The FLS 
Trainer system requires a sensor that can accurately measure the orientation of a student’s 
wrist throughout the test in order to ensure that the student’s performance is 
ergonomically sound. As will be discussed in the Literature section, the maximum 
possible angular deviation of the wrist and elbow combined amounts to around 200º. This 
sensory interface specifications would be considered a requirement because of the need 
for students to know their wrist orientation. 

c. Sensor able to mark the beginning and ending of an FLS Trainer test [R]​ The design is 
required to include a means by which to measure the time taken to complete the FLS 
Trainer test. This can be accomplished with a simple pushbutton that the student can tap 
at the start and conclusion of their test. The sensory interface specifications would be 
considered a requirement because of the need for students to know how long it took them 
to complete the test. 

d. All sensors must weigh less than 1 oz [R]​ The FLS Trainer is meant to simulate the real 
experiences and challenges of performing laparoscopic surgery, so the design should not 
impede the student’s movements in any way. For this reason, the sensors placed on the 
student’s wrist and graspers must be as small as possible both in terms of volume and 
weight. This specification would be considered a requirement because the ability for the 
students to be tested without distraction is an important aspect of this design. 

e. Discernable analog or digital signals from sensors to microcontroller [R]​ The sensors 
must generate signals that the microcontroller is capable of reading and storing. This is 
considered a requirement because of the need for the sensors to interact with the 
microcontroller and store data. 

 
2.1.2 Processing and Logging Specifications 

a. Microcontroller system [R]: STM32F4 Discovery Board [P]​ The sponsor for this project 
indicated a preference for the STM32F4 Discovery Board as the microcontroller used in 
the design. The STM32F4 is more than capable of the required tasks. The use of a 
microcontroller would be considered a requirement because of the need to control and 
send signals to the sensors. The use of the STM32F4 Discovery Board would be 
considered a preference since other microcontrollers could be used. This was a preference 
given by the project sponsor.  

i. 5 VDC power source [R] 
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This microcontroller is powered from 5 VDC through a USB port. The local desktop 
computer of the FLS Trainer can supply this power. This is considered a requirement 
since the microcontroller being used needs 5 VDC to power it. 

ii. C programming [R] 
The software interface of the STM32F4 allows for programming the microcontroller 
directly using C language. This is considered a preference since the microcontroller 
being used is programmable with either C or assembly language. 

b. Serial connection required from microcontroller to PC [R] 
The sponsor also requested that the data transfer from the STM32F4 to the FLS Trainer 
desktop occur through a serial connection. Because there is a need for the medical 
students to see their results in real-time and for the microcontroller to have self-testing 
capabilities, the collection of sensory data to send it to a computer is considered a 
requirement. 

c. Data stored in accessible format [R] (excel file [P]) 
The overarching purpose of this design is to provide additional feedback from the FLS 
Training tests to students and evaluators. This requires that these parties be able to access 
the gathered information in a clear and comprehensive manner. The collection of sensory 
data to send to a computer is considered a requirement, whereas the ability to display this 
data in an Excel file would be considered a preference since there could be other means 
of displaying the data. 

 
2.1.3 System Specifications 

a. The microcontroller and other auxiliary electronics should be contained in a 
nonconductive enclosure [R]  
As this design is intended to serve supportive rather than primary functions, the physical 
components should be as out-of-the-way as is feasible. Containing all the hardware 
(besides the sensors, which must necessarily interact with the user) in a single enclosure 
accomplishes this. Specifying that the enclosure is nonconductive reduces the likelihood 
of interference or electrical damage to the equipment. Because the nonconductive 
enclosure is for safety purposes, this would be considered a requirement. 

b. The enclosure should be mounted on the FLS Trainer cart [R]​ for safety and 
convenience. Because this specification is for safety purposes, this would be considered a 
requirement. 

c. The enclosure should weigh less than 1 lb. [G]​ for efficiency and to minimize the device 
footprint. Because the weight of the enclosure does not necessarily affect the 
performance it would be considered a goal.  

d. Components should ideally require 3.3 VDC or 5 VDC power [G]​, which can be supplied 
using wall outlet converters. If this is not feasible, additional power converters/sources 
will need to be added to the enclosure. This is a goal set by the project advisor. 
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3.0 Hardware 
 
3.1 Detailed Design Concept 

 
Figure 2​ ​illustrates the high level design concept for the box trainer sensory interfaces. 

This block diagram shows how the system interacts with the box trainer. As students or other 
users of the FLS Trainer system begin the test, their movements excites sensors integrated into 
the system. The signals generated by these sensors are processed by the Discovery Board 
microcontroller and stored in the Discovery Board memory. The values in these memory 
locations are viewable and stored in a log file with a program on the local PC for the user’s 
review.  

 
Figure 2: High Level Block Diagram 

 
The hardware portion of the design consists of a microcontroller, a USB A to mini-B 

cable, a USB to serial cable, and three sensors (with their hardwire connections to the 
microcontroller). The software portion is a program written in C with IAR Embedded 
Workbench and extended ST libraries, which interfaces with the Discovery Board. 
 
3.2 System Design Analysis 
 
3.2.1 Discovery Board 

 
The design uses an STM32F4 Discovery Board microcontroller, as specified by the 

sponsor. Each of the sensors discussed above is hardwired to the GPIO ports of the 
microcontroller using a UL certified 4-pair CAT5e 24-AWG signal cable. The force sensors 
outputs are connected to pins PB6 and PB7 of the Discovery Board. The accelerometer outputs 
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are connected to pins PC0, PC1, PC2, PC3, PC4, and PC5. The push button output is connected 
to pin PD0.  The force sensors’ supply voltage is connected to a 5 VDC wall adapter. The 
accelerometer and push button are powered by 3.3 VDC. A system ground connects all these 
sensor ground pins with the Discovery Board ground and the power supply grounds. The 
Discovery Board is powered from the local PC using a USB-A to mini-B cable. This cable also 
enables communication between the Discovery Board and the PC using the board’s ST Link. The 
information gathered from the sensors is tracked and logged using STMStudio.  
 
3.2.2 Force Sensors 

 
The force sensor selected at the recommendation of the sponsor is the SingleTact tactile 

capacitive force sensor that can measure up to 22 pounds of force on an 8 millimeter sensor, 
amounting to a 282.37 psi capacity [5]. This force sensor is placed at the handle of each grasper 
tool. More about of how the grasper tool will interact with the force sensor will be discussed in 
section 3.2.7. Each sensor requires four conductors for power and signal transfer.  The device 
generates an analog signal between 0 and 2 V in response to pressure and accepts supply 
voltages between 3.7 and 12 V [5]. This analog signal runs to a precalibrated I​2​C interface board, 
which converts the 0-2V analog signal to a 0x000 to 0xFF digital output. The interface board 
connects the sensor to power and output SCL and SDA signals with force information to the 
Discovery Board. ​Table 1​ contains the pinout information for the sensor. ​Figure 3​ shows the 
hardware configuration for a force sensor. The software configuration will be detailed in section 
5.0.  

 

Figure 3: Hardware Configuration for a Force Sensor 
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3.2.3 Accelerometers 

 
A three axis accelerometer is used to determine the orientation of the student’s wrist. The 

design attaches an accelerometer to a wristband that will be worn during the FLS Trainer 
exercise. The wristband must be situated on the student’s arm in such a way that the 
accelerometer z-axis (labeled on the chip) is pointed upward when the student’s wrist is relaxed. 
In this way, the angular orientation of the students’ wrists are standardized and may be evaluated 
against a standard set by the instructor. 

The accelerometer selected based on provided specifications is an ADXL335 
accelerometer with solderable breakout board. This sensor is sewn into a wristband, and the 
wristband is marked clearly with indications for how it should be situated on the user’s wrist. 
The accelerometer requires five conductors for signal and power transfer. It can measure 
acceleration with a maximum full-scale range of ±3g, accepts power supply voltages ranging 
from 1.8V to 3.6V, and generates three analog output signals. ​Table 2​ contains the pinout 
information for this sensor. This design use the ground pins, the supply voltage pins, and the 
three output pins. 
 
3.2.4 Push Button 

 
The push button is used to start and stop the testing procedure. The main purpose of this 

normally open switch is to operate a timer that monitors the duration of the test while initializing 
the collection of data from the other two sensors. This specific push button was selected because 
it is very similar to the push buttons located on the discovery board and is easy to integrate in a 

circuit built on a breadboard.  
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The biggest issue with the push button is that it needs to be pressed by the user with the 
grasper tool, inside the box trainer. A push button cap was designed to make this an easier task 
for the user, since the push button is less than a quarter inch in diameter. Using AutoCAD’s 3D 
modeling feature, a push button cap was designed to have a inverse dome face on the top of the 
cap. This will make it easier for users to push the button, because wherever they press the cap, 
the grasper tool will slide to the center of the cap and the push button will be pressed. The 3D 
printer in the ECE Senior Design Lab was used to print the push button caps used for the project. 
The push button cap is mounted on the outside of the non-conductive enclosure the will house 
the circuit inside the box trainer. 

Figure 4: Push Button  
 
3.2.5 Non-conductive enclosure 
 

A specification for the project is that all of the electronics and microcontroller must fit 
inside the box trainer inside a non-conductive enclosure. Since specific dimensions are needed 
for the enclosure and a 3D printer is easily accessible, the non-conductive enclosure was 
modeled in AutoCAD and printed using a 3D printer. The 3D printer available in the ECE Senior 
Design Lab prints using ABS and PLA plastic. Both of these plastics can be specially made to be 
conductive, but in most cases, it serves as an insulator that is used to support electronics. The 
enclosure consists of two halves of a plastic shell that will serve as the non-conductive enclosure. 
Figure 5 ​displays the 3D model made in AutoCAD of the non-conductive enclosure. The push 
button cap is located on the outside of the enclosure, but all other electronics, except the force 
sensor and accelerometers, will be located inside this enclosure. 
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Figure 5: 3D printed Enclosure 

 
3.2.6 Grasper Tools 

 
A capacitive force sensor delivers the most robust and reliable performance for the 

purposes of this design. Because placing the force sensor on the tip of the graspers interferes 
with the user's performance, a capacitive force sensor is, instead, installed at the handle of the 
grasper. The team used another force sensor temporarily placed at the the tip of the grasper to 
determine the relationship between force applied at the handle of the grasper and the force of the 
grasper’s pincers. Force measuring tools were used to apply a known force at the handle, and the 
resulting force at the pincers of the grasper was recorded. The team used this data to develop a 
mathematical relationship between the two forces. In this way, the pressure applied by the 
grasper can be measured without interfering with the use of the FLS Trainer. The relationship 
was accounted for in the software, so that any changes can be implemented without replacing 
parts. As shown in ​Figure 6​, Westebring used an applied force model to create equations for the 
relationship between grip force and force applied to the tissue [3]. This will be a helpful starting 
point to develop the applied force calculations.  
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3.2.7 Training Box and set-up 
 
Figure 7 and Figure 8 give a general layout for the FLS Trainer system, including the 

additions from this design. 
 

 
Figure 7: FLS System Layout 
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Figure 8: System Design Layout 

4.0 Design and Performance 
4.1 Schematics and Design 
 

Figure 9​ ​details​ ​the schematic for the entirety of the system. The connections from the 
Discovery board to the force sensor, accelerometer, and push button are all properly shown. Both 
force sensors are powered from the 5VDC bus and communicate along the same I​2​C bus. Both 
accelerometers are powered from the 3VDC bus and send signals to three ADC GPIO pins each. 
The test push button and calibration buttons are wired to digital input GPIO pins. The LED 
indicator is wired to a digital output GPIO pin. The Discovery board and other components will 
all be put inside a non-conductive enclosure that will go inside the FLS training box. The push 
button will be on the outside of this enclosure able to be reached by the medical student’s tools 
that are being used to complete the activity. The accelerometers will be on a wrist band on the 
student’s wrists and the force sensors will be on the grasper tools, but both of them will be wired 
as shown. 
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Figure 9: Schematic for the Entire System 
 
 
4.2 System Integration 
 

To properly complete this project the sensors and the timer must be recording data at the 
same time and outputting this data to a log while the student is doing the task. A program called 
STM Studio was used to output the data and display the variables in real-time. STM Studio can 
interface with the Discovery Board using ST-LINK development tools [8].  

All of the components and circuitry, outside of the force sensor and the accelerometer, 
will be confined inside a non-conductive enclosure inside the FLS box trainer. The start button 
will be on top of this box so the students can push it with the grasper tool. The accelerometer will 
be on the student’s wrists attached to a wrist band with cables going to the non-conductive 
enclosure inside the box trainer. The force sensors will be on the grasper tools with cables going 
to the non-conductive enclosure inside the box trainer. The particular pin assignments for each of 
the peripheral devices is detailed in ​Table 3.​ This setup will allow the students to know how 
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much force they are using, the orientation of their wrists, and how much time it took them to 
complete the task.  
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5.0 Software 
The software portion of the sensor interface design can be divided into four separate 

parts. The first part consists of the pushbutton and the timer. The second part handles the 
accelerometer data. The third handles communication with the force sensors. The fourth handles 
communication with the PC. Below is a summary flow chart outlining the structure of the main 
program. Sections 11.1.1 and 11.1.2 contain the main and ISR .c files used to implement the 
system given the tools available. Sections 11.2.1 and 11.2.2 contain the main and ISR .c files 
used to implement the system given ideal conditions (two full sets of grasper tools, force sensors, 
and accelerometers).  
 

5.1 Timer and Pushbutton 
 
The pushbutton is connected pin PD0, which is configured to digital input mode. This 

program uses the Discovery Board’s timer module, specifically Timer 5. Timer 5 is a 32-bit 
timer that increments at a rate half that of the HCLK frequency. With the HCLK frequency set to 
100 MHz, timer 5’s frequency is 50 MHz. In output compare mode, Timer 5’s interrupts can be 
triggered every 1 ms by configuring its period to coincide with the number of timer cycles that 
occur in 1 ms. The details of this calculation can be found in 11.1.1. When this interrupt is 
triggered, the Discovery Board jumps to the TIM5 ISR, which increments a millisecond counter, 
then uses this millisecond counter to create a standard counter that logs time in minutes, seconds, 
and milliseconds. In this same ISR, the routine checks the status of pin PD0 - the pushbutton 
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input. If the button has been pressed, the ISR saves the counter value to memory. This ISR 
continues to run every millisecond, and when the pushbutton is pressed a second time, the 
counter value is saved to a different memory location. The difference between these two times is 
taken and saved to a third memory location.  

 
5.2 Accelerometers 

 
This section of the software uses the Discovery Board’s ADC modules to digitize the 

analog accelerometer signals. Since the accelerometers experiences a constant 1g acceleration 
downward, the x, y, and z components of the accelerometer outputs indicate how much of that 1g 
is experienced in each of the three directions. This information can be directly translated to an 
angle value. The three ADC modules are initialized to 12-bit resolution, conversion triggered by 
a timer 2 channel 2 interrupt, 3 cycle sampling, and 5 cycle delays between sampling. They are 
configured to handle two channels each, in independent scan mode. Each ADC handles the x, y, 
or z signals from both accelerometers.  

The ADC Handler copies the conversions from each accelerometer to memory in an array 
of 1000 (1 per millisecond, so the array is completely refreshed every second) so that the main 
program can access these values. The main does most of the work of this program. It uses the 
array as the basis for an averager to minimize the effects of high frequency noise. The maximum 
and minimum values of each of the three (x, y, and z) signals are stored in the program, and these 
values are used to transform the average outputs into standardized values that can be compared 
to one another. Since the angle being measured is the angle of the x axis with respect to the 
horizontal about the y axis, the two values that are used to calculate the angle of the 
accelerometer are the x- magnitude and the magnitude of the vector sum of the y- and z- values. 
Once both of these magnitudes are calculated, the ISR uses the math.h library to find the 
arctangent of the ratio of these two values. This gives the angle of the accelerometer in radians, 
though some conditional logic is necessary to avoid error due to the limitations of the arctangent 
function because of the ambiguity of the sign of both arguments. This radian value is then 
transformed to degrees.  
 
5.3 Force Sensors 
 

The Discovery Board communicates with the force sensors using an I​2​C bus. When using 
I​2​C, there is usually one master device and up to 128 slave devices. In this project’s case, the 
master device is the Discovery Board and the slave devices are the force sensors. The bus has 
two signal lines: SCL, which is the clock signal and SDA, which is the data signal. In general, 
the SDA line turns on or off when the SCL is low, and when SCL is high, whichever is the 
receiving device will read the data on SDA. The two exceptions to this are the start (SDA goes 
from low to high before SCL turns off) and stop (SDA goes from high to low before SCL turns 
off) sequences. These sequences indicate the beginning or end of a communication from a 
device. 

Each of the slave devices on an I​2​C will have a 7-bit (though sometimes 10-bit) address, 
hence the 128 (2​7​) possible devices. This address is how the master device indicates that the 
slave is being communicated to. The default slave address for the SingleTact force sensor is 
0x04, though it is reconfigurable. In general, any communication on an I​2​C bus will be 8 bits of 
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data from one device to another, followed by an acknowledge bit from the receiving device to 
indicate that the instruction was understood. To write to a slave device, the following sequence 
of events must occur on the bus: 

 
1. Send start sequence 
2. Send I​2​C slave address followed by a read/write bit 0 (when writing to a slave, this bit 

should be 0, when reading from a slave, this bit should be 1) 
3. Send internal address of the slave’s register to which the user will write 
4. Send data to be written to this register 
5. Send stop sequence 

 
To read from a slave device, the following sequence of events must occur on the bus: 
 

1. Send start sequence 
2. Send I​2​C slave address followed by a read/write bit 0 (when writing to a slave, this bit 

should be 0, when reading from a slave, this bit should be 1) 
3. Send internal address of the slave’s register from which the user will read 
4. Send start sequence 
5. Send I​2​C slave address followed by a read/write bit 1 
6. Read data from the specified register 
7. Send stop sequence 

  
The main c file in 11.2.1 was only implementable after reconfiguring the addresses of 

both sensors. As both sensors had a default address of 0x04, with both of them on the same I​2​C 
bus, both would have responded to the same directives, and their outputs would have been 
indistinguishable from one another. After this readdressing side-steps this problem, the main file 
first initializes the Discovery Board’s I2C1 module with the standard 100 kHz SCL speed, 50% 
duty cycle, and 7-bit slave address mode. Then, the communication standards specified above, 
along with information in the SingleTact user manual were used to create functions that could 
read or write to the force sensors as needed. The program uses these functions to read registers 
132 and 133 of the force sensors’ interface boards. These registers contain the most significant 
byte and least significant byte (respectively) of the board’s 9-bit digital conversion of the force 
sensor’s analog output. The valid range of this digital value spans from 0x100 to 0x2FF, which 
coincides with analog outputs from 0.5V to 1.5V, which mark the lower and upper barrier of the 
sensor’s full scale range: 0 lbs and 22 lbs. The factory calibration ensures that these values 
indicate endpoints to a linear digital-value-to-force relationship. The program in 11.2.1 retrieves 
the digital output of the force sensor and linearly transforms this digital value to a weight 
measurement.  
 
5.4 Calibrations 
 

Every sensor requires calibration to be able display useful and accurate results. The 
variation that necessitates calibration may be a result of environmental differences from where 
the sensor was made to where it is being used, manufacturing variability, and noise effects. 
Every calibration requires a standard reference to be able to calibrate the sensor against. This 

20 



 

section details the calibration methods developed to ensure that the sensors and push button were 
accurately measuring [6]. 

The push button and timer system relies on internal clocks with constant, specified 
frequencies, so it did not require calibration in the traditional sense. Rather, the selected HCLK 
frequency and APB2 prescaler were used to determine what value should be programmed to the 
timer’s auto-reload register. The rest of the process was internal to the Discovery Board. To 
verify that Timer 5 was accurately clocking milliseconds as they passed, and that the subsequent 
logic was accurately logging these increments as seconds and minutes as time passed, a 
stopwatch was used. The button and the stopwatch were initiated and stopped at the same time. 
The time elapsed as measured by the stopwatch was compared to that of the Discovery Board to 
ensure that the clock, prescaler, auto-reload, and interrupt settings all resulted in an accurate 
measurement of time in minutes, seconds, and milliseconds.  
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The calibration of the accelerometers required a bit more intervention. This sensor is 
internally calibrated during production, although mechanical misalignment can negatively affect 
the accuracy of the sensor’s calibration. The mechanical misalignment can be calibrated out of 
the system. These accelerometers do produce analog outputs proportional to the acceleration they 
experience, but the X, Y, and Z outputs are not proportional to one another. That is to say, if the 
X and Y axes both experience 0.6g, the voltage at their output pins will fit their respective 
voltage vs. acceleration curves, but their values will not be equal. To properly calibrate these 
sensors, the signals were conditioned to be proportional to one another. Assuming no external 
disturbances, the voltage at any of the three outputs is at a maximum when its respective axis is 
experiencing 1g (the unit vector pointing straight up from the ground). The outputs are at a 
minimum when the axes are experiencing -1g (the unit vector pointing straight to the ground). To 
begin the calibration process, the digital conversions of the sensor outputs in each of these 
positions are saved to memory (maxX, maxY, maxZ, minX, minY, minZ). Subtracting the axes 
minimums from their maximums yields the range of outputs that the sensor will output in 
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response to angle changes. These ranges are used to normalize incoming digital conversions to 
values between -100 and +100. This normalization accounts for any disproportion in the sensors’ 
analog outputs, and because the normalized values are centered about 0, they can be immediately 
applied to the trigonometry that yields the angle measurement. To confirm this angle 
measurement and check to see if the sensor was properly calibrated, a protractor was used to 
situate the sensor at different angles. The first test began at 0͒ and subsequent tests checked angle 
measurements every 45͒ to makes sure the sensor was supplying accurate data [7]. In addition to 
checking the accuracy of the final angle calculation, the analog output was also checked at the 
sensor terminals and their corresponding digital conversion values corresponded linearly to the 
acceleration they experienced. (There was no way to directly measure the acceleration 
experienced by the sensor. Instead, a level and protractor were used to determine the exact 
angular position of the accelerometer with respect to the direction of gravity. Then the x, y, and z 
vector components of the 1g vector the accelerometer experienced directly downward were 
determined using trigonometry.) 
 

Like the accelerometers, the force sensors are calibrated during production, and the I​2​C 
interface boards are pre-calibrated and matched with their sensor to minimize any deviation from 
the ideal linear output. This provides better accuracy and linearity than a standard sensor. A 
digital scale was used to confirm that the sensor was properly calibrated. The sensor’s output 
varies from 0 V to 2 V DC in response to applied force. The interface board converts this analog 
output to a 10-bit digital output from 0x000 to 0x3FF. Analog output voltages from 0.5 V to 1.5 
V correspond to the sensor’s full scale range (FSR). The sensor used in this design is rated for up 
to 22 lbs., so the full scale range varies from 0 lbs to 22 lbs. The corresponding FSR output of 
the interface board varies from 0x100 to 0x2FF. These weight-output relationships were used to 
convert the interface board’s output from a 10-bit integer to a weight. To verify that this method 
was accurate,weight was applied to the force sensor, using the digital scale to independently 
measure the applied weight. The analog and digital outputs of the sensor and interface board 
were scaled according to the FSR and compared to the scale reading [5]. 
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6.0 Bill of Materials 
 
Table 4: Bill of Materials 

Item Number ordered Part number Cost 

Accelerometer 3 ADXL335 $44.85 

Force Sensor 2 S8-100N $149.90 

Discovery Board 
Microcontroller 

1 STM32F407VG  $19.90 

8 Pin Male DIN 
Connectors 

3 CP-1080-ND $4.20 

8 Pin Female DIN 
Connector 

3 CP-3180-ND $4.11 

O Ring Kit 1  $8.00 

Push Buttons 100 PTS645 $10.41 

  Total $241.37 
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7.0 Conclusions 
 
Table 5: Specification Results 

Specification 
R, G, 
or P Result % complete 

Sensor able to 
accurately measure 
pressure from 0.1 to 
4 PSI 

R The force sensor is currently being worked on to 
measure to the nearest tenth. 

90 

Sensor able to 
accurately measure 
a radial orientation 
range of 210º 

R The accelerometer is capable of measuring wrist 
orientation for 0° to 180° and 0° to -180°, 
measuring a total of 360°. This is almost done 
being calibrated 

100 

Sensor able to mark 
the beginning and 
ending of an FLS 
Trainer test 

R The push button mark the start and stop times of 
the test. The difference between the two is 
calculated to display the total elapsed time. 

100 

All sensors must 
weigh less than 1 oz 

R All sensors used weigh less than 1 oz. 100 

Discernable analog 
or digital signals 
from sensors to 
microcontroller 

R All signals are being transferred from the sensors 
to the microcontroller accurately. 

100 

Microcontroller 
system STM32F4 
Discovery Board 

R 
P 

The microcontroller is used to integrate all sensor 
data into one program. The STM32F4 was the 
microcontroller used for this project. 

100 
 
100 

5 VDC power 
source 

R A 120 VAC to 5 VDC power converter is used to 
power the circuit and microcontroller. 

100 

C programming R The language used to program the STM32F4 is the 
C programming language. 

100 

Serial connection 
required from 
microcontroller to 
PC 

R The ST-Link is being used. 100 

Data stored in 
accessible format 
Excel file 

R 
P 

Using STMStudio to export it to an excel file 100 

The microcontroller 
and other auxiliary 
electronics should 
be contained in a 
nonconductive 

R The microcontroller and the other electronics fit in 
the nonconductive enclosure that was 3D printed. 

100 
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enclosure 
The enclosure 
should be mounted 
on the FLS Trainer 
cart 

R The nonconductive enclosure is will be velcroed to 
the inside of the training box. 

100 

The enclosure 
should weigh less 
than 1 lb 

G The nonconductive enclosure the was 3D printed 
is less than a pound. 

100 

Components should 
ideally require 3.3 
VDC or 5 VDC 
power 

G All components that require voltage not in this 
range will be stepped up or stepped down. 

100 

 

Table 4 above displays the results of each specification that was given in this project. 

 

7.1 Performance Measurement and Test Results 
 

The actually testing procedure was designed to be straightforward and easy for the user to 
understand. The designed non-conductive enclosure fits easily in the box trainer behind the task 
that is setup. Wires for the sensors, power, and computer communications run from the 
enclosure, outside the back of the box trainer, and then up to the grasper tools. The following is 
the standard order of procedure the user must abide by to ensure proper operation: 

 
1. Put on the wristband so that the accelerometer is comfortably positioned on the wrist, 

below the thumb. 
2. Flip the main power switch to the “on” position to supply power to the external circuit. 
3. Hold the wrist in the base position (with thumb facing up). 
4. Press buttons labeled “X” to calibrate the accelerometer x-axis base positions. 
5. Press buttons labeled “Y” to calibrate the accelerometer y-axis base positions. 
6. Press buttons labeled “Z” to calibrate the accelerometer z-axis base positions. 
7. Grab the grasper tools and hold them in ready position. 
8. Press push button cap with right grasper tool to begin data collection when ready to start 

task (green LED will turn on to show that test in session). 
9. Perform the tasks necessary of the box trainer procedure. 
10. Press push button cap with right grasper tool to end data collection when ready to finish 

task (green LED will turn off to show that test is no longer in session). 
 
During and after the testing procedure, the user can attain sensory feedback using STMStudio. 
While the box trainer task is being performed, STMStudio can be set up so that the user can view 
sensory data real time. After the task is completed, the collected data can be viewed using 
STMStudio, or exported as a log file so it can be analyzed using another program. 

Each specification has been met with minimal deviations to how it was originally 
detailed. There was a change in how the microcontroller is communicating with the PC. Instead 
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of using a serial connection STLink is being used, which is an in-circuit debugger and 
programmer for the Discovery board. Also, instead of exporting the data to an excel document, 
STMStudio is being used. All of the given specifications have been attempted and completed. 
The most underdeveloped of the specification results is the approximation of the force applied by 
the grasper tool as the force applied at its handle. This approximation could be improved by 
determining the relationship between the force applied at the handle where the force sensor is 
and the force applied at the end of the tool using two force sensors. The relationship is rather 
linear, but outside factors such as the topography of the object being manipulated by the grasper 
tool or how the medical student holds the grasper tool can effect the force applied at the end of 
the tool. 

The final, non-conductive enclosure is shown in Figure 13. This holds the Discovery 
board, the push button that will start the timer, and all the other external circuitry. One the top of 
the enclosure is an LED that will show while the timer is running and the push button cap that 
can be easily reached by the grasper tool to start the task. On the side of the enclosure is the start 
switch that will energize the entire system along with the six calibration buttons used to calibrate 
the accelerometer. 
 

Figure 13: The Non-conductive Enclosure 
 
 

Overall, the microcontroller was programmed successfully to gather and coordinate the 
sensory interfaces, implemented the capacitive force sensor and interface board in accurately 
measuring the force on the grasper tool, converted the accelerometer data to wrist orientation, 
and used STMStudio to read and record sensor interface information. 

27 



 

 
7.2 Concluding Statements 

 
At the completion of the design project, several items will be turned over to the sponsor 

as elements of the whole design. Hardware items delivered will include an augmented FLS 
Trainer system, a nonconductive enclosure containing vital equipment, and hardwire connections 
between these elements. The augmented FLS Trainer system consists of a standard box trainer 
with the addition of sensors. There will be motion sensors permanently mounted to the inside of 
the FLS Trainer box, force sensors permanently connected to the inside trainer’s grasper handles 
(positioned so as to not obstruct students’ hand movements during use), and wristbands with 
calibrated inclinometers to be worn while using FLS Trainer. The nonconductive enclosure will 
include an STM32F4 Discovery Board. The sensors will be connected to the ADC pins of the 
Discovery Board using 28 AWG signal cabling. The Discovery Board will be connected to the 
FLS Trainer PC using a male to male USB cable.  

The software component of the design will be directly written to the Discovery Board, 
but a copy of the original code (in C) will be made available to the sponsor for reference and 
possible future editing. The code will be thoroughly annotated to maximize readability and 
facilitate any necessary changes should the need arise.  

Supplementary deliverables include complete literature and ordering information for all 
three sensors, the STM32F4 Discovery Board, and all signal cabling. Contact information for all 
team members, the Project Proposal, and the final project paper will also be available to the 
sponsor, should he request it.  
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7.3 Recommendations for Further Study 

 
There are several improvements that could be implemented into this project that could 

enhance the performance and usefulness of this project. One suggested upgrade would be to use 
both an accelerometer and gyroscope to accurately record wrist orientation. By just using an 
accelerometer, the data will not be completely accurate. The accelerometer is sensitive to 
vibration and noise, especially high frequency noise. Since a gyroscope measures rotation, it is 
less sensitive to the linear mechanical motions that affects the accelerometer. However, 
gyroscopes are affected by different problems such as low frequency noise and drift.  Once the 
gyroscope and accelerometer data is averaged, the results become more accurate [9].  

The design could also be improved by having the accelerometer and force sensor 
wirelessly communicate with the microcontroller. This would allow a greater range of motion for 
the test taker and it would make the test feel more like actual surgery. This would require, 
however, small transmitters and receivers to be utilized along with the microcontroller and the 
sensors. Making improvements to the test, while causing little to no change in the procedure, is 
the ultimate goal for a project like this. 

Another improvement that can be made is to increase the precision for force sensor by 
using the digital scaling value. It is possible to make the digital scaling value more accurate by 
adjusting it in 0.01 increments. This would be useful so the practicing student can have the most 
accurate data available. 

Currently, the push button timer only measures the start and stop time to tell the 
practicing student how long they took to complete the task. A continuously updating timer would 
be the next logical step. The student should be able to have the option to know at all times how 
long it has taken them to complete the task thus far. 

Finally, a self-test and calibration board could be very useful to receive the most accurate 
results and to allow the student to easily set up the activity. The user would interface with the 
program using the LEDs and switches.​ ​These LEDs and switches would be arranged on a board, 
as seen in Figure 15 for clarity. Once the sensors have been initially calibrated, the program 
would run a check on the signals received from the sensors immediately after the power switch 
are both turned on. This check would compare the signals with the calibrated values stored as 
arrays in the program. If the self-check yields any concerning results, the corresponding 
‘Calibration Mode’ LED will either flash continuously (indicating a possible loose connection) 
or blink (indicating that the sensor likely needs recalibration). At this point, based on the results 
of the self-test, the user can use the switches to indicate whether she/he will calibrate one of the 
sensors or proceed with the FLS trainer test (the Data Acquisition Mode in the software). ​Table 5 
details the switch sequences recognizable by the program. The sequence of the switches will 
indicate which function to proceed with. 
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Figure 15: Self-Test and Calibration Board 
 

Table 6: Switching Calibration 

 

8.0 Literature Review 
 
Several different search engines for research were utilized including WMU library 

databases and Google. All gathered resources were selected to provide detailed information 
about specific elements of the design. This section contains summaries of each item of literature 
and a brief overview of how they contribute to the progress of the design project. 

“What is Laparoscopic Surgery” was obtained to gain general insight on what 
laparoscopic surgery is and how it is beneficial. For this design project, the purpose is to better 
equip surgeons for surgery, so a thorough understanding of laparoscopic surgery is a necessity 
[1].  

Laparoscopic surgery has its limitations, however, and in some situations, inhibits the 
surgeon from being able to get their hands on specific organs. Since it is difficult to copy what 
the human hand is capable of in surgery, a lot of surgeries cannot be performed using 
laparoscopic methods. If surgeons were able to have more control over, as well as a better 
understanding of, the applied force by the instruments used during the procedure, it may improve 
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the range of surgeries that could be completed [1]. This information supplies the designers with a 
higher understanding of what specifications the design will need to satisfy. 

To further specify the importance of what needs to be designed for this project, areas of 
imminent improvement were examined. In “Haptics in minimally invasive surgery - a review”, 
feedback was researched to try to determine the largest disadvantages of laparoscopic surgery. 
Of the several issues, the biggest was the inability to gauge the applied force of the grabber tool 
on tissues. The way to determine the applied force at the end of tool based upon the force at the 
grip was calculated [3]. This information will be helpful in selecting the correct capacitive force 
sensors to use in the design. 

Although the importance of monitoring the applied force on the tissues was stressed 
throughout the article, a solution was not considered. This opens the door to be creative and 
consider if this design can satisfy the requirements of the desired in this article. 

The design is centered around making improvements to the Fundamentals of 
Laparoscopic Surgery (FLS) intelligent surgical box trainer. In “FLS Trainer System and 
Accessories,” the FLS Trainer System and its importance was briefly explained. The trainer 
System is essentially a device “that facilitates the development of psychomotor skills and 
dexterity required during the performance of basic laparoscopic surgery [2].” 

It was important for this information to be gathered so that readers can have a solid 
explanation of what the design is centered around. This  helps develop a background knowledge 
of the FLS system and laparoscopic surgery. Having a solid background knowledge of 
information discussed in this report makes the concepts and designs easier to understand. 

To further understand the development of the intelligent surgical box trainer, it is helpful 
to understand the history of development of the FLS educational trainer system. Since new 
improvements are to be made on the box trainer, a thorough background understanding of the 
system is important. The FLS educational system was developed in 2004 to help educate surgical 
residents and practicing surgeons in a safe and effective manner. Since that time, over 9,000 
people have been certified to perform laparoscopic surgery through the program. Over the years, 
the surgical box trainer has been integrated with growing technology to further improve its 
ability to educate. With many designers creating new ways to improve the system, the 
effectiveness of the program has continued to increase [4]. 

Simulations are used in many different fields to educate students and trainees in a 
situation similar to what they will be going through in their field. In [10], the authors specifically 
talk about simulations needed in surgical education. This is needed to give patients better care. 
Surgical students should not have to learn on real people if they can perfect their skills through 
simulations. This document also talks about other positives of simulations such as students can 
practice on their own time and it can cost less than getting time to practice in an actually 
operating room [10].  

The paper then discusses how the laparoscopic surgery simulations still need 
improvements. The user gets little feedback and the image seen on the observation screen is 
two-dimensional. It also mentions that there are both high-fidelity and low-fidelity simulations 
for laparoscopic surgery. The FLS Trainer box is considered a low-fidelity training simulation, 
but it is still very helpful in training surgical students. The training box is portable and can be 
used at home for practice. Some simulation exercises that can performed with this training box 
include peg transfer, pattern cutting, clipping and dividing, and more. The more precise and fast 
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the student is, the higher the student’s score will be. Multiple studies have shown that practicing 
with the box trainer and other simulations improve skills [10].  

The document used to research the preferred microcontroller for this design is the User’s 
Manual to the STM32F4 Discovery board. It provides a general explanation for what the 
Discovery Board is, its functions, how to use it, and what it includes. The Discovery Board has a 
high performance microcontroller. The user can easily develop programs in C and implement 
them with this board. It has an ARM Cortex M4 32-bit core with a 1 Mbyte Flash Memory and a 
192-Kbyte RAM (random access memory) [11]. 

One item that the board includes is a ST-LINK/V2 embedded debugging tool. It also has 
a 2 ST MEMS (microelectromechanical sensors) digital 3-axis accelerometers. MEMS can 
include inclinometers, digital compasses, inertial modules, force sensors, humidity sensor, and 
microphones. Other things the board includes is a digital microphone (audio sensor), one audio 
DAC (Digital-to-Audio Converter), 8 LEDs, two push buttons, Ethernet connectivity, and USB 
(universal serial bus) OTG (on the go) FS (full speed) with micro-AB connectivity. Of the 8 
LEDs, one is used for USB communication, one is used for power on, four of them are available 
for the user to program, and two of them are used for USB OTG. Of the 2 push buttons, one of 
them is labelled USER and the other is labelled RESET. The board’s power is supplied through 
the USB or external power sources of either 3V or 5V. The Board comes with STM32 
comprehensive software HAL (Heuristically programmed ALgorithmic computer) but can also 
interface with other software packages [11]. 

To use the Discovery board the user must have a Windows operating system to program 
(either XP 7, 8, or 10) and a USB type A to a Mini-B cable [11]. 

The User’s Manual for the Discovery Board describes many things such as how to get 
started, the system requirements, and the development toolchains that are supported. Toolchains 
are software development tools. The user manual also describes the hardware and the layout of 
the board. The board has a 100-pin LQFP (Low-profile quad flat package), which is an 
integrated circuit that has high I/Os while also having low profile requirements. I/Os either 
transfers data to or from a peripheral choice or computer. There are many figures to describe the 
layout of the board. It also talks in depth about the embedded ST-LINK/V2, the drivers, the 
power supply and power selection, and the pin outs. It explains the audio capability, the OTG, 
the motion sensor, the jumper (JP1), and the OSC (oscillator) clock supply [11]. 

Grand Valley State University students conducted a study on the Fundamentals of 
Laparoscopic Surgery (FLS) Trainer box and force sensors. They found a need to make 
improvements on the hardware and software of the box. With the FLS Trainer box, there is no 
way to record and display the forces applied by the surgeon during the task. Tracking force is 
important because if less force is used during surgeries outcomes generally show better results. 
When less force is used, there is less tissue damage and less blood loss [12].  

In this study, the students added force sensing capabilities and a hand sensor module. The 
LCD display and original modules were not changed. The main board platform that was in the 
box was changed so that there was a force sensor on each of the four corners. With these sensors, 
relative force magnitudes could be measured at each corner. The students also added a wireless 
transceiver to the main board. With this it can send signals between itself and a new hand sensor 
that was also added by the students [12].  

The hand sensor was a main change that the Grand Valley State students added to the 
FLS Trainer box. They wanted to add a hand sensor to measure the handedness. Handedness is 
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the use of one hand over the other. They added the wireless hand sensor module to one of the 
surgical instruments. This is so they could tell which hand was being used and when the hand 
was used. This module has a wireless transceiver, a chip antenna, an accelerometer, and a 
microcontroller communicating between the wireless chip and the accelerometer. The instrument 
that it is attached to is like the ones surgeons use. The four sensors that are on the four corners of 
the main board can interact with the hand sensor to tell which hand is being used and what force 
is being applied [12]. 

Arizona State University students conducted a study on the Fundamentals of 
Laparoscopic Surgery (FLS) Trainer box and motion sensors. They wanted to add a multi-sensor 
feedback system that would give the surgical students feedback while they were going through 
the training. This would improve the training process [13]. 

The main part of this paper talked about the hardware changes that they made. They 
added two more cameras to look at the hand movements. One camera was a USB webcam and 
the other was a kinetic camera. There were also data gloves that could be used to contribute to 
motion tracking. There was also a PC used to collect all the data and a frame grabber used to 
connect the video camera to the PC [13].  

With these additions, the surgical students can look back at their work and know how 
they performed. To do so they must register and log in. By logging in, the training system can 
then know whose results are whose. The motion data collected can be graphed on the computer. 
Data can be collected from each test a surgical student does. Past graphs can be compared to 
their present test to display if the surgical students are getting better. There is also live-feedback 
collected, such as skill-related attributes, velocity, and smoothness [13].  

One of the fundamental requirements of the design is to be able to indicate when the 
student using the FLS Trainer is applying too much pressure on the grasper. Though it is difficult 
to define the exact pressure at which human tissue will be damaged if the pressure is applied (the 
number will vary based on tissue type and strength, length of time exposed to the pressure, 
material applying the pressure, etc.) in general, a laproscopic surgeon should not exceed a force 
of 2.2 pounds per square inch on his or her grasper [14]. The pressure applied by an FLS Trainer 
user can be determined using a simple force sensor. However, there are several technologies 
employed in pressure sensing, each with their benefits and drawbacks. The most commonly used 
technologies are potentiometric, capacitive, inductive, and piezoelectric force sensors [15]. The 
sponsor for this design, Dr. Grantner, has indicated that capacitive force sensors will be the most 
accurate, robust, and cost-effective option for this design.  

In order to develop a method for tracking the wrist orientation of a student using the FLS 
Trainer, two items needed further inquiry: how are wrists expected to move during this exercise, 
and what is the appropriate method to measure such movements? In the course of completing an 
FLS Trainer test, it is reasonable to assume that the motion of one’s hands will be the result of 
elbow and wrist movements only. An index detailing the normal ranges of joint motion indicates 
that the human elbow can move the hand (about the axis of the forearm) a total range of 180​°​, 
and that the wrist can move the hand a further 20​° [16]. This would indicate that a student’s wrist 
orientation can move about a 200° range on average.​ A 3-axis accelerometer is a device that can 
measure the static acceleration of gravity in every direction as well as the dynamic acceleration 
that can be from motions or vibration. This is the instrument this design must utilize to catalog 
the wrist orientations of students completing the FLS Training System. The accelerometer being 
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used in this project will be small and low-powered to fit the requirements. It measures 
acceleration with a minimum full-scale range of ±3g. [7].  

9.0 Alternative Designs 
 
Coming up with alternative methods to complete a design is an essential part to every 

project. The paragraphs below discuss alternative microcontroller boards and sensors that could 
be used to complete this project if the original products chosen were to fail.  

One alternative for the STM32F407VG Discovery Board microcontroller is the 
STM32F411VET6 Disco Board microcontroller. These microcontrollers are from the same 
manufacturer and are very similar. One of the main differences is that the Disco board has an 
additional 3D digital linear acceleration sensor and a 3D digital magnetic sensor. These 
additional sensors are not necessary for this project. If there was a need for these sensors in a 
later design, the Disco board microcontroller could be used. 

Another alternative for the Discovery Board could be Amtel’s Inertial One Sensor Board 
AVRSBIN1. This microcontroller has all of the sensor interfaces that would be needed to 
complete this project. The datasheet describes one of its main features as having a full 
nine-degree-of freedom inertial sensing. The software and development tools are readily 
available through Atmel. However, the Discovery Board was chosen for reasons such as the 8 
LEDs that will assist in programming and knowing if the board is responding, the three different 
interfaces available, and the features that make the board easy to debug and program. 

There are also possible alternatives to the accelerometer sensor used. Instead of using an 
accelerometer, an inclinometer could have been used. An inclinometer is an instrument capable 
of measuring angles between body parts that may be used to examine the motion of the body 
[17]. A possible inclinometer that could be selected based on provided specifications is a 
ADIS16203/PCBZ-ND Programmable 360° Inclinometer with evaluation board. This instrument 
could be utilized in this design to catalog the wrist orientations of students completing the FLS 
Training System. An inclinometer develops a signal using an internal pendulum, which varies 
based on the inclination of the device [18]. An inclinometer was not used in this design because 
the accelerometer could be used in the same way and the accelerometer was less expensive. 

 There is also room for expansion in eliminating the use of STMStudio for information 
storage. The Discovery Board has four universal asynchronous receiver/transmitter (UART) 
modules available for serial communication if the USB is dedicated to another task. The 
Discovery Board and the local FLS Trainer PC could communicate using a USB to serial UART 
cable. The UART modules and conversion cable could be used to send the sensor and timer 
information to the local PC independent of any outside software.  
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11.0 Main Code 
11.1 Final code 
The following contains the program used to implement the design.  
 
11.1.1 Final main .c code 
/* Box Trainer Main */ 
 
/* Header Files */ 
#include "main.h" 
#include "math.h" 
  
/* Definitions */ 
GPIO_InitTypeDef GPIO_InitStructure; 
NVIC_InitTypeDef NVIC_InitStructure; 
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 
TIM_OCInitTypeDef TIM_OCInitStructure; 
ADC_InitTypeDef ADC_InitStructure; 
ADC_CommonInitTypeDef ADC_CommonInitStructure; 
I2C_InitTypeDef I2C_InitStructure; 
 
 
void GPIODConfig(void);  
 
void TIM2Config(void); 
void TIM5Config(void); 
void ADC1Config(void);  
void ADC2Config(void);  
void ADC3Config(void);  
void I2C1Config(void);  
void AccelCalib(void);  
float AngleCalc(int levelX[1000], int levelY[1000], int levelZ[1000]);  
void Write_SingleTact(void);  
void ReadRQ_SingleTact(void);  
void Read_SingleTact(void);  
void command_out(int c); 
 
extern int levelX1[1000], levelY1[1000], levelZ1[1000], levelX2[1000], levelY2[1000], 
levelZ2[1000];  
int Cx[4], sumX=0, sumY=0, sumZ=0, avgX, avgY, avgZ; 
int minX=3460, minY=1402, minZ=1185;  
int maxX=3804, maxY=2777, maxZ=3154; 
int rangeX, rangeY, rangeZ;  
float zeroX, zeroY, zeroZ;  
float valX, valY, valZ;  
float x2, y2, z2, result, ratio, angle, degree, degree1, degree2 store; 
int WST_reg, WST_n, WST_data, RRQST_reg, RRQST_n; 
float weight1, weight2;  
/* SingleTact slave address = 0x05 for FS1, 0x06 for FS2 
   when writing to TCN75A, R/W bit is 0 -> address 0x08 
   when reading from TCN75A, R/W bit is 1-> address = 0x09 
   the R/W bit is sent automatically using stm32f4xx_i2c.c */  
uint8_t SingleTact = 0x0A, data_MSB, data_LSB;  
uint16_t output1, output2;  
  
int main(void) 
{ 
  
  GPIODConfig(); 
  TIM2Config(); 
  TIM5Config(); 
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  ADC1Config();  
  ADC2Config();  
  ADC3Config();  
  I2C1Config();  
  
  while(1)  
  { 
    /* ACCELEROMETER OPERATION */ 
 
    AngleCalc(levelX1, levelY1, levelZ1);  
    degree1 = degree;  
  
    AngleCalc(levelX2, levelY2, levelZ2);  
    degree2 = degree;  
  
  
    command_out(0x80); 
 
  
 
    /* FORCE SENSOR OPERATION */  
 
    /* Read request force sensor 1 */  
    SingleTact = 0x0A; 
    RRQST_reg = 132;  
    RRQST_n = 2;  
    ReadRQ_SingleTact();  
  
    /* Read force sensor */  
    Read_SingleTact();  
    output1 = ((data_MSB << 8) + data_LSB);  
    weight1 = ((float) output1 - 0x100) * 22 / 0x1FF; 
  
    /* Read request force sensor 2 */ 
    SingleTact = 0x0C; 
    ReadRQ_SingleTact();  
  
    /* Read force sensor */  
    Read_SingleTact();  
    output2 = ((data_MSB << 8) + data_LSB);  
    weight2 = ((float) output2 - 0x100) * 22 / 0x1FF; 
  } 
} 
 
 
void GPIODConfig(void) 
{  
  /* GPIOD peripheral clock enable */ 
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); 
 
  /* Configure PD0 in input mode for pushbutton and calibration buttons */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 
| GPIO_Pin_7 | GPIO_Pin_8;  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 
  GPIO_Init(GPIOD, &GPIO_InitStructure); 
  
  /* Configure PD1 in output mode for LED */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;  
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 
  GPIO_Init(GPIOD, &GPIO_InitStructure); 
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} 
 
void TIM2Config(void) 
{ 
  NVIC_InitTypeDef NVIC_InitStructure;  
 
  /* TIM2 clock enable */ 
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); 
  
  /* GPIOA peripheral clock enable */ 
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 
  
  /* Configure PA1 to alternate function 1 (TIM2_CH2) */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 
  GPIO_Init(GPIOA, & GPIO_InitStructure); 
  
  /* Connect TIM2 channels to PA1-AF1 */ 
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM2); 
  
  /* Enable TIM2 global interrupt and set priority to 0 */ 
  NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; 
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00; 
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
  NVIC_Init(&NVIC_InitStructure); 
  
  /* Period = (TIM2 f)/(desired interrupt f)  
            = (84 MHz)/(1/1 ms) 
            = 84000 
            = Auto Reload Value + 1 
     when fHCLK = 168 MHz & APB1Prescaler = 4 */ 
 
  /* Configure Time Base for TIM2 */ 
  TIM_TimeBaseStructure.TIM_Period = 83999;  
  TIM_TimeBaseStructure.TIM_Prescaler = 0;  
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;  
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  
  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); 
  
  /* Configure TIM2 for output trigger */ 
  TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update); 
  
  /* Enable TIM2 counter and IT */ 
  TIM_Cmd(TIM2, ENABLE); 
  TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE); 
} 
 
void TIM5Config(void) 
{ 
  /* TIM5 clock enable */ 
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); 
 
  /* GPIOA peripheral clock enabled in TIM2Config */ 
 
  /* Configure PA2 to alternate function 2 (TIM5_CH3) for INPUT signal */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 
  GPIO_Init(GPIOA, & GPIO_InitStructure); 
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  /* Connect TIM5 channels to PA2-AF2 */ 
  GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_TIM5); 
 
  /* Enable TIM5 global interrupt and set priority to 0 */ 
  NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn; 
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00; 
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
  NVIC_Init(&NVIC_InitStructure); 
  
  /* Period = (TIM5 f)/(desired interrupt f) 
            = (84 MHz)/(1/1 ms) 
            = 84,000 
            = Auto Reload Value + 1 
  when fHCLK = 168 MHz & APB1Prescaler = 4 */ 
 
  /* Configure Time Base for TIM5 */ 
  TIM_TimeBaseStructure.TIM_Period = 83999; 
  TIM_TimeBaseStructure.TIM_Prescaler = 0; 
  TIM_TimeBaseStructure.TIM_ClockDivision = 0; 
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 
  TIM_TimeBaseInit(TIM5, &TIM_TimeBaseStructure); 
 
  /* Configure TIM5 for output compare mode at Channel 3 */ 
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing; 
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 
  TIM_OCInitStructure.TIM_Pulse = 0; 
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; 
  TIM_OC3Init(TIM5, &TIM_OCInitStructure); 
  TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Disable); 
 
  /* Enable TIM5 counter and IT */ 
  TIM_Cmd(TIM5, ENABLE); 
  TIM_ITConfig(TIM5, TIM_IT_CC3, ENABLE); 
} 
 
void ADC1Config(void) 
{ 
  /* GPIOC peripheral clock enable */ 
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);  
  
  /* ADC1 peripheral clock enable */  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); 
  
  /* Configure PC0 to analog input mode for ADC1 channel IN10 */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_5; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; 
  GPIO_Init(GPIOC, &GPIO_InitStructure); 
  
  /* ADC common initalization  
     single ADC mode 
     no DMA access              */ 
  ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; 
  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; 
  ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; 
  ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; 
  ADC_CommonInit(&ADC_CommonInitStructure); 
  
  /* ADC1 initialization 
     12 bit conversion length 
     regular channel conversion sequence (no scan mode)  
     right aligned data */ 
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; 
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  ADC_InitStructure.ADC_ScanConvMode = ENABLE; 
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; 
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; 
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; 
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 
  ADC_InitStructure.ADC_NbrOfConversion = 2; 
  ADC_Init(ADC1, &ADC_InitStructure); 
  
  /* ADC1 regular Channel 10 configuration (3 cycle sampling time) */ 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_3Cycles); 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 2, ADC_SampleTime_3Cycles); 
  
  /* Enable ADC1 */ 
  ADC_Cmd(ADC1, ENABLE); 
  
  /* Enable NVIC */ 
  NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQn; 
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
  NVIC_Init(&NVIC_InitStructure); 
  
  /* Configure ADC1 interrupt to end of each conversion of a regular group */ 
  ADC_EOCOnEachRegularChannelCmd(ADC1, ENABLE); 
  ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE); 
} 
 
void ADC2Config(void) 
{ 
  /* GPIOC peripheral clock enabled in ADC1Config */ 
  
  /* ADC2 peripheral clock enable */  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE); 
  
  /* Configure PC1 to analog input mode for ADC2 channel IN11 */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_4; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; 
  GPIO_Init(GPIOC, &GPIO_InitStructure); 
  
  /* ADC common initalization  
     single ADC mode 
     no DMA access              */ 
  ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; 
  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; 
  ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; 
  ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; 
  ADC_CommonInit(&ADC_CommonInitStructure); 
  
  /* ADC2 initialization 
     12 bit conversion length 
     regular channel conversion sequence (no scan mode)  
     right aligned data */ 
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; 
  ADC_InitStructure.ADC_ScanConvMode = ENABLE; 
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; 
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; 
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; 
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 
  ADC_InitStructure.ADC_NbrOfConversion = 2; 
  ADC_Init(ADC2, &ADC_InitStructure); 
  
  /* ADC2 regular Channel 11 configuration (3 cycle sampling time) */ 
  ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_3Cycles); 
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  ADC_RegularChannelConfig(ADC2, ADC_Channel_14, 2, ADC_SampleTime_3Cycles); 
  
  /* Enable ADC2 */ 
  ADC_Cmd(ADC2, ENABLE); 
  
  /* Enable NVIC */ 
  NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQn; 
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
  NVIC_Init(&NVIC_InitStructure); 
  
  /* Configure ADC2 interrupt to end of each conversion of a regular group */ 
  ADC_EOCOnEachRegularChannelCmd(ADC1, ENABLE); 
  ADC_ITConfig(ADC2, ADC_IT_EOC, ENABLE); 
} 
 
void ADC3Config(void) 
{ 
  /* GPIOC peripheral clock enabled in ADC1Config */  
  
  /* ADC3 peripheral clock enable */  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE); 
  
  /* Configure PC2 to analog input mode for ADC3 channel IN12 */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; 
  GPIO_Init(GPIOC, &GPIO_InitStructure); 
  
  /* ADC common initalization  
     single ADC mode 
     no DMA access              */ 
  ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; 
  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; 
  ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; 
  ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; 
  ADC_CommonInit(&ADC_CommonInitStructure); 
  
  /* ADC3 initialization 
     12 bit conversion length 
     regular channel conversion sequence (no scan mode)  
     right aligned data */ 
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; 
  ADC_InitStructure.ADC_ScanConvMode = ENABLE; 
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; 
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; 
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; 
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 
  ADC_InitStructure.ADC_NbrOfConversion = 2; 
  ADC_Init(ADC3, &ADC_InitStructure); 
  
  /* ADC3 regular Channel 12 configuration (3 cycle sampling time) */ 
  ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_3Cycles); 
  ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 2, ADC_SampleTime_3Cycles); 
  
  /* Enable ADC3 */ 
  ADC_Cmd(ADC3, ENABLE); 
  
  /* Enable NVIC */ 
  NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQn; 
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
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  NVIC_Init(&NVIC_InitStructure); 
  
  /* Configure ADC3 interrupt to end of each conversion of a regular group */ 
  ADC_EOCOnEachRegularChannelCmd(ADC1, ENABLE); 
  ADC_ITConfig(ADC3, ADC_IT_EOC, ENABLE); 
} 
  
/* Allows global variables to be visible using Live Watch */ 
void command_out(int c) 
{ 
  GPIOB->BSRRH = GPIO_Pin_1; //set pin RS low 
  GPIOD->ODR = (c << 8);  
} 
 
void I2C1Config(void) 
{ 
  /* I2C1 peripheral clock enable */  
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE); 
  
  /* GPIOB peripheral clock enable */  
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);  
  
  /* Configure PB6 and PB7 to alternate function 4 for I2C1 SCL and SDA */ 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 
  GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 
  GPIO_Init(GPIOB, &GPIO_InitStructure); 
  
  /* Configure PB6 & PB7 to I2C1 alternate function (AF4) */ 
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1); 
  GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_I2C1); 
  
  /* Configure I2C1  
     100 kHz SCL speed 
     50% duty cycle 
     7-bit slave address mode */ 
  I2C_InitStructure.I2C_ClockSpeed = 100000; 
  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C; 
  I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2; 
  I2C_InitStructure.I2C_OwnAddress1 = 0x00; 
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable; 
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; 
  I2C_Init(I2C1, &I2C_InitStructure); 
  
  /* Enable I2C1 */  
  I2C_Cmd(I2C1, ENABLE);  
} 
 
void AccelCalib(void) 
{ 
  if((((GPIOD->IDR) >> 3) & 0x01 != 0) 
  { 
    if(avgX > maxX)  
    { 
      maxX = avgX;  
    } 
  } 
  
  if((((GPIOD->IDR) >> 4) & 0x01 != 0) 
  { 
    if(avgY > maxY)  
    { 
      maxY = avgY;  
    } 
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  } 
  
  if((((GPIOD->IDR) >> 5) & 0x01 != 0) 
  { 
    if(avgZ > maxZ)  
    { 
      maxZ = avgZ;  
    } 
  } 
  
  if((((GPIOD->IDR) >> 6) & 0x01 != 0) 
  { 
    if(avgX < minX)  
    { 
      minX = avgX;  
    } 
  } 
  
  if((((GPIOD->IDR) >> 7) & 0x01 != 0) 
  { 
    if(avgY < minY)  
    { 
      minY = avgY;  
    } 
  } 
  
  if((((GPIOD->IDR) >> 8) & 0x01 != 0) 
  { 
    if(avgZ < minZ)  
    { 
      minZ = avgZ;  
    } 
  } 
} 
  
float AngleCalc(int levelX[1000], int levelY[1000], int levelZ[1000]) 
{ 
  /* Averagers for x, y, and z accelerometer conversions */ 
    for(int a=0; a<1000; a++) 
    { 
      sumX += levelX[a];  
    } 
  
    avgX = sumX/1000;  
    sumX = 0;  
  
    for(int b=0; b<1000; b++) 
    { 
      sumY += levelY[b];  
    } 
  
    avgY = sumY/1000; 
    sumY = 0;  
  
    for(int c=0; c<1000; c++) 
    { 
      sumZ += levelZ[c];  
    } 
  
    avgZ = sumZ/1000;  
    sumZ = 0;  
  
    if((((GPIOD->IDR) >> 3) & 0x3F) != 0) AccelCalib();  
  
    rangeX = maxX - minX;  
    rangeY = maxY - minY;  
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    rangeZ = maxZ - minZ;  
  
    zeroX = (float) minX + (0.5 * rangeX);  
    zeroY = (float) minY + (0.5 * rangeY);  
    zeroZ = (float) minZ + (0.5 * rangeZ);  
 
    /* Normalizes and centers about zero the conversion values */  
    valX = (((float) avgX) - ((float) zeroX)) * (100 / (maxX - zeroX));  
    valY = (((float) avgY) - ((float) zeroY)) * (100 / (maxY - zeroY));  
    valZ = (((float) avgZ) - ((float) zeroZ)) * (100 / (maxZ - zeroZ));  
 
    /* Transforms three-basis x,y,z vectors to two-basis x,(y+z) vectors*/ 
    x2 = valX * valX;  
    y2 = valY * valY;  
    z2 = valZ * valZ;  
    result = sqrt(y2 + z2);  
 
    if (valZ < 0) result = result * -1;  
    ratio = valX / result;  
  
    /* Finding angle and accounting for arctan limitations */ 
    if(valX>0 && result<0) 
      angle = 3.141592654 + atan(ratio);  
    else if(valX<0 && result<0) 
      angle = atan(ratio) - 3.141592654; 
    else  
      angle = atan(ratio);  
  
    degree = angle * 180 / 3.141592654; 
  
    return degree; 
} 
  
/* 12C write operation for Single Tact force sensor (pg 11) */  
void Write_SingleTact(void) 
{ 
  /* wait until I2C1 is not busy anymore */  
  while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)); 
  
  /* Send start sequence */  
  I2C_GenerateSTART(I2C1, ENABLE); 
  /* Wait for EV5 (slave start acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)); 
 
  /* Send SingleTact slave address + R/W bit (write = 0) */  
  I2C_Send7bitAddress(I2C1, SingleTact, I2C_Direction_Transmitter); 
  /* Wait for EV6 (slave address acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)); 
 
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send 0x02 to sensor (byte 0 of the Write Operation Data Packet) */  
  I2C_SendData(I2C1, 0x02); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send register block offset (byte 1 of the Write Operation Data Packet) */  
  I2C_SendData(I2C1, WST_reg); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send number of bytes to write, max 28 (byte 2 of the WODP) */  
  I2C_SendData(I2C1, WST_n); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
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  /* Send data to write (byte 3 to (N-1) of the WODP) */  
  I2C_SendData(I2C1, WST_data); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send end of packet delimiter (byte N of the WODP) */  
  I2C_SendData(I2C1, 0xFF); 
 
  /* Send stop sequence */  
  I2C_GenerateSTOP(I2C1, ENABLE); 
}  
 
/* 12C read request operation for Single Tact force sensor (pg 12) */  
void ReadRQ_SingleTact(void) 
{ 
  /* wait until I2C1 is not busy anymore */  
  while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)); 
  
  /* Send start sequence */  
  I2C_GenerateSTART(I2C1, ENABLE); 
  /* Wait for EV5 (slave start acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)); 
 
  /* Send SingleTact slave address + R/W bit (write = 0) */  
  I2C_Send7bitAddress(I2C1, SingleTact, I2C_Direction_Transmitter); 
  /* Wait for EV6 (slave address acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)); 
 
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send 0x01 to sensor (byte 0 of the Read Request Operation Data Packet) */  
  I2C_SendData(I2C1, 0x01); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send register block offset (byte 1 of the RRODP) */  
  I2C_SendData(I2C1, RRQST_reg); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send number of bytes to read, max 32 (byte 2 of the RRODP) */  
  I2C_SendData(I2C1, RRQST_n); 
  
  /* Wait for EV8 (data has been written to data register and shifted out */  
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING)); 
  /* Send end of packet delimiter (byte 3 of the RRODP) */  
  I2C_SendData(I2C1, 0xFF); 
 
  /* Send stop sequence */  
  I2C_GenerateSTOP(I2C1, ENABLE); 
}  
 
void Read_SingleTact(void) 
{ 
  /* Send second start sequence */  
  I2C_GenerateSTART(I2C1, ENABLE); 
  /* Wait for EV5 (slave start acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)); 
  
  /* Send SingleTact slave address + R/W bit (read = 1) */  
  I2C_Send7bitAddress(I2C1, SingleTact, I2C_Direction_Receiver); 
  /* Wait for EV6 (slave address acknowledge) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)); 
 
  /* Enable master ACK */  
  I2C_AcknowledgeConfig(I2C1, ENABLE); 
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  /* Wait for EV7 (ready to read data received from the slave) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED)); 
  
  /* Copy latest byte read from I2C1 to temp_uh */  
  data_MSB = I2C_ReceiveData(I2C1); 
 
  /* Disable master ACK */  
  I2C_AcknowledgeConfig(I2C1, DISABLE); 
  
  /* Wait for EV7 (ready to read data received from the slave) */  
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED)); 
  
  /* Copy latest byte read from I2C1 to temp_lh */  
  data_LSB = I2C_ReceiveData(I2C1); 
 
  /* Send stop sequence */  
  I2C_GenerateSTOP(I2C1, ENABLE); 
} 

 
 
11.1.2 Final ISR 
/* Box Trainer ISR */  
 
/* Header Files */  
#include "stm32f4xx_it.h" 
 
/* Definitions */  
int levelX1[1000], levelY1[1000], levelZ1[1000], levelX2[1000], levelY2[1000], levelZ2[1000]; 
int i=0, j=0, k=0, l=0, m=0, n=0;  
uint16_t ms_counter = 0; 
uint8_t sec_counter = 0; 
uint8_t min_counter = 0; 
int flag = 0, adc1cnt = 0, adc2cnt = 0, adc3cnt = 0;  
uint16_t start_time_ms = 0; 
uint8_t start_time_sec = 0; 
uint8_t start_time_min = 0; 
uint16_t end_time_ms = 0; 
uint8_t end_time_sec = 0; 
uint8_t end_time_min = 0; 
uint16_t elapsed_time_ms = 0; 
uint8_t elapsed_time_sec = 0; 
uint8_t elapsed_time_min = 0; 
 
void TIM2_IRQHandler(void) 
{ 
  /* Check TIM2 capture/compare register interrupt bit status */  
  if(TIM_GetITStatus(TIM2, TIM_IT_CC2) == SET) 
  { 
    /* Clear TIM2's CCR interrupt bit */  
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC2); 
  
    /* Enables ADC1 software start conversion of regular channels */ 
    ADC_SoftwareStartConv(ADC1); 
  
    /* Enables ADC2 software start conversion of regular channels */ 
    ADC_SoftwareStartConv(ADC2); 
  
    /* Enables ADC3 software start conversion of regular channels */ 
    ADC_SoftwareStartConv(ADC3); 
  } 
} 
 
void ADC_IRQHandler(void) 
{ 
  /* Check ADC1 end-of-conversion interrupt flag */ 
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  if(ADC_GetITStatus(ADC1, ADC_IT_EOC) == SET) 
  { 
    /* Clear interrupt flag */  
    ADC_ClearITPendingBit(ADC1, ADC_IT_EOC); 
  
    if(adc1cnt%2 == 0) 
    { 
      /* Copy ADC conversion to level */  
      levelX1[i] = ADC_GetConversionValue(ADC1); 
  
      i++;  
      if(i==1000) i=0; 
    } 
  
    else  
    { 
      /* Copy ADC conversion to level */  
      levelX2[l] = ADC_GetConversionValue(ADC1); 
  
      l++;  
      if(l==1000) l=0; 
    } 
  
    adc1cnt++; 
  } 
  
  /* Check ADC2 end-of-conversion interrupt flag */ 
  if(ADC_GetITStatus(ADC2, ADC_IT_EOC) == SET) 
  { 
    /* Clear interrupt flag */  
    ADC_ClearITPendingBit(ADC2, ADC_IT_EOC); 
  
    if(adc2cnt%2 == 0) 
    { 
      /* Copy ADC conversion to level */  
      levelY1[j] = ADC_GetConversionValue(ADC2); 
  
      j++;  
      if(j==1000) j=0; 
    } 
  
    else 
    { 
      /* Copy ADC conversion to level */  
      levelY2[m] = ADC_GetConversionValue(ADC2); 
  
      m++;  
      if(m==1000) m=0; 
    } 
  } 
  
  /* Check ADC3 end-of-conversion interrupt flag */ 
  if(ADC_GetITStatus(ADC3, ADC_IT_EOC) == SET) 
  { 
    /* Clear interrupt flag */  
    ADC_ClearITPendingBit(ADC3, ADC_IT_EOC); 
  
    if(adc3cnt%2 == 0) 
    { 
      /* Copy ADC conversion to level */  
      levelZ1[k] = ADC_GetConversionValue(ADC3); 
  
      k++;  
      if(k==1000) k=0;  
    } 
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    else 
    { 
      /* Copy ADC conversion to level */  
      levelZ2[n] = ADC_GetConversionValue(ADC3); 
  
      n++;  
      if(n==1000) n=0;  
    } 
  } 
} 
 
 
 
void TIM5_IRQHandler(void) 
{ 
  if(TIM_GetITStatus(TIM5, TIM_IT_CC3) != RESET) 
  { 
    TIM_ClearITPendingBit(TIM5, TIM_IT_CC3); 
  
    ms_counter++;  
  
    if(ms_counter == 1000) 
    { 
      sec_counter++;  
      ms_counter = 0;  
    } 
  
    if(sec_counter == 60) 
    { 
      min_counter=min_counter+1;  
      sec_counter = 0;  
    } 
  
    if((GPIOD->IDR & 0x0001) && (flag == 0)) 
    { 
       start_time_ms = ms_counter;  
       start_time_sec = sec_counter;  
       start_time_min = min_counter;  
  
       GPIOD->BSRRL = GPIO_Pin_1;  
       flag = 1;  
     } 
  
     if((!(GPIOD->IDR & 0x0001)) && (flag == 1)) 
     { 
       flag = 2;  
     } 
  
     if((GPIOD->IDR & 0x0001) && (flag == 2)) 
     { 
       end_time_ms = ms_counter;  
       end_time_sec = sec_counter;  
       end_time_min = min_counter;  
  
       GPIOD->BSRRH = GPIO_Pin_1;  
       flag = 3;  
     } 
  
     if((!(GPIOD->IDR & 0x0001)) && (flag == 3)) 
     { 
       flag = 0;  
     } 
  
    if(end_time_ms > start_time_ms) 
    { 
      elapsed_time_ms = end_time_ms - start_time_ms;  
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    } 
  
    else if (end_time_ms < start_time_ms) 
    { 
      elapsed_time_ms = (1000 - start_time_ms) + end_time_ms;  
    } 
  
    else 
    { 
      elapsed_time_ms = 0; 
    } 
  
    if(end_time_sec > start_time_sec) 
    { 
      elapsed_time_sec = end_time_sec - start_time_sec;  
    } 
  
    else if (end_time_sec < start_time_sec) 
    { 
      elapsed_time_sec = (1000 - start_time_sec) + end_time_sec;  
    } 
  
    else 
    { 
      elapsed_time_sec = 0; 
    } 
  
    if(end_time_min > start_time_min) 
    { 
      elapsed_time_min = end_time_min - start_time_min;  
    } 
  
    else if (end_time_min < start_time_min) 
    { 
      elapsed_time_min = (1000 - start_time_min) + end_time_min;  
    } 
  
    else 
    { 
      elapsed_time_min = 0; 
    } 
  } 
} 

 

12.0 Appendix: Data Sheets 
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