Western Michigan University ScholarWorks at WMU

Masters Theses

Graduate College

8-1971

Elastic Scattering of Alpha Particles from ¹²C

Hsi-chiu Liu Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Nuclear Commons

Recommended Citation

Liu, Hsi-chiu, "Elastic Scattering of Alpha Particles from ¹²C" (1971). *Masters Theses*. 2895. https://scholarworks.wmich.edu/masters_theses/2895

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmuscholarworks@wmich.edu.

ELASTIC SCATTERING OF ALPHA PARTICLES FROM 12C

Ъу

Hsi-chiu Liu

A Thesis Submitted to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts

Western Michigan University Kalamazoo, Michigan August 1971

:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

· .

ACKNOWLEDGEMENTS

I wish to express my gratitude to Professor Gerald Hardie for his patient and tireless guidance and assistance in performing the experiment and in preparing the thesis. I also wish to thank Professors L. D. Oppliger, E. M. Bernstein, R. E. Shamu and Dr. J. J. Ramirez for their assistance and advice in making the measurements. Thanks are due to Mr. Jon Sledder for writing the phase shift analysis program under the direction of Professor Oppliger. Appreciation is also tendered to Professors Bernstein and Oppliger and to Dr. Ramirez for a great deal of assistance in the phase shift analysis.

My thanks also go to the Physics Department for the financial benefits of a research fellowship, and to the Western Michigan University Computer Center for their assistance with the calculations.

Hsi-chiu Liu

ii

MASTERS THESIS

. .

Li Idivian

3

M-2942

LIU, Hsi-chiu, 1932-ELASTIC SCATTERING OF ALPHA PARTICLES FROM ¹²C.

Western Michigan University, M.A., 1971 Physics, nuclear

University Microfilms, A XEROX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PLEASE NOTE:

÷

!

* 2

ø

Some pages have light and indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

. •

CHAPTER		PAGE
I	INTRODUCTION	1
II	EXPERIMENTAL ARRANGEMENT	2
	Target	2
	Accelerator	2
	Scattering Chamber	3
	Detectors	4
	Electronics	4
III	DATA REDUCTION	7
	Excitation Functions	7
	Angular Distributions	9
	Differential Cross Sections in the Laboratory System	10
	Differential Cross Sections in the Center of Mass System	12
IV	PHASE SHIFT ANALYSIS THEORY	14
v	PHASE SHIFT ANALYSIS	18
	Procedure	18
	Results	22
VI	DISCUSSION AND CONCLUSIONS	41
APPENDIX I	EXCITATION FUNCTIONS	43
APPENDIX I	I ANGULAR DISTRIBUTIONS	60
	BIBLIOGRAPHY	85

.

FIGURES AND TABLES

•

FIGURE		PAGE
1	Electronics Layout for Data Measurements	5
2	Target Positions in Taking Excitation Functions	8
3	Target Positions in Taking Angular Distributions .	8
	TABLE 1Comparison of the Angular Distributionsbetween the Present Data and ThosePreviously Reported	13
4	Variation in Phase Angles near the Resonance energy	17
5	Experimental and Calculated Total Reaction Cross Sections	21
6 - 16	Fits to Angular Distributions	24 - 34
17 - 20	Energy Dependence of Phase Angles	35 - 38
21 - 22	Energy Dependence of γ_{ℓ}	39 - 40
	TABLE 2 Levels in ¹⁶ 0	42

iv

1 •,

•

.

INTRODUCTION

The elastic scattering of alpha particles from 12 C has been investigated in many laboratories.^{1,2} Recently, by studying the 12 C(\ll ,p) and 12 C(\ll ,no) reactions, Bernstein <u>et al</u>³ found an isospin-mixed doublet near an excitation energy of 18 Mev in 16 O. These states are excited by alpha particles with laboratory energies of 13.97 and 14.60 Mev. Hence, it is worthwhile to make a careful study in this region in an attempt to obtain more information about the states in this doublet. Using the Western Michigan University Van de Graaff accelerator, the elastic scattering process was studied in the bombarding energy range from 13 to 16 Mev. Sixteen excitation functions and twenty five detailed angular distributions were measured and these data will be presented in the thesis.

In addition to obtaining the data, a phase shift analysis of the angular distributions was started. Such an analysis will provide information regarding states in 16 O which have excitation energies between 17.05 and 18.89 Mev. Preliminary fits have been obtained to the angular distributions in the range from 17.05 to 17.89 Mev. These fits and the phase shifts will be displayed. The properties of three levels found in 16 O as a result of the phase shift analysis will be presented.

EXPERIMENTAL ARRANGEMENT

Target

A self-supporting carbon foil target of $50 \ \mu g/cm^2$ thickness was used in this experiment. The carbon was evaporated onto a glass slide by the Yissum Research Development Co. (Cat. No. 1604B). The carbon foil was separated from the slide by immersion into distilled water. The foil, which floated on the surface, was then lifted by an aluminum target holder of 7/8 inches by 5/8 inches with a 3/8 inch diameter hole in the middle. The film adhered to the mount and was ready for use after a short drying time. Efforts had been directed to select the most uniform portion of the film and to obtain the smoothest possible target surface.

The major contaminants in this 12 C target are 16 O, 1 H and 13 C. The 16 O and 1 H may have come from the water used in floating off the film. The abundance of 13 C in natural C is 1.11%. These contaminants were identified in the spectra of scattered particles. The abundances of the contaminants are not large and, at most angles, the elastic scattering peaks due to the contaminants could be separated from the elastic scattering peak due to 12 C.

Accelerator

A beam of alpha particles was obtained from the Western Michigan University Model EN Tandem Van de Graaff accelerator. Helium gas was

fed into the duo-plasmatron ion source. Hydrogen was used as an exchange gas in the electron pickup canal. The duo-plasmatron ion source and the deflection of the beam into the accelerator has been discussed in some detail by Carter and Davis.⁴ The He⁻ ions coming from the ion source were first accelerated through a high potential difference of four or more millions of volts towards a high voltage terminal. At the high voltage terminal of the accelerator, located at the center of the machine, the beam passed through a stripping canal containing oxygen gas. Some of the beam then emerged from this canal as doubly-charged positive ions. The ions emerging from this canal were then accelerated through the same potential difference. The beam was then momentum analyzed by a magnet which was formerly calibrated by determining the threshold of the ²⁷Al(p,n) reaction as well as the thresholds of other reactions.⁵ A switching magnet directed the analyzed beam into the scattering chamber. Energies ranging from 13 to 16 Mev were used in the experiment and beam currents were normally between 20 and 50 nanoamperes.

Scattering Chamber

The target and alpha-particle detectors were located in a 17inch scattering chamber (Ortec Model 600 Series No. 25). In this experiment, the chamber pressure was kept at about 10^{-5} microns with a diffusion pump. The detectors were mounted on a turntable inside the chamber. The entire assembly could be rotated from the outside without breaking the vacuum seal of the chamber. Also the target, located at the center of the chamber, could be independently rotated

from the outside. At the entrance to the chamber, the alpha beam was collimated by using two collimators, 0.107 inches in diameter, and separated by 17.25 inches.

Detectors

The elastically scattered alpha particles were detected at three angles simultaneously by using three solid state semiconductor detectors. They were mounted on the turntable in the chamber and separated by 20° (see Figure 1). A collimator of 3/16 inches in diameter was inserted in front of each detector. The distance from the collimator to the target was 5 and 61/64 inches. The half angle subtended at the target by the collimator aperture was 0.9°. With an 241 Am source positioned in the chamber, the resolutions of these three detectors for 5 Mev alpha particles were determined to be 27-, 34and 32-kev.

At small angles, the elastic scattering due to impurities is difficult to separate from the elastic scattering due to 12 C. Hence the detector with the best resolution was used at the most forward angles. The resolution of 27 kev was achieved by cooling the detector to about -7°C with a thermoelectric device.

Electronics

The pulses from each detector were amplified by an Ortec Model 109A preamplifier and an Ortec Model 451 amplifier. These amplified pulses were monitored by a nuclear data Model ND-510 multichannel analyzer, an oscilloscope readout being used with the analyzer (see

Figure 1. Electronics layout for data measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1). An Ortec Model 420A single channel analyzer was used to select an energy region about the elastic peak. The energy range of this window was preset using an Ortec Model 204 precision pulse generator (not shown in Figure 1). The pulses from the single channel analyzer which accompanied the detection of pulses within the energy "window" were then counted by an Ortec Model 484 scaler. The number of alpha particles passing through the target was determined by integrating the beam current with a Brookhaven Model 1000 current integrator. After the pre-selected amount of charge had been collected, a signal from the Ortec Model 431 preset scaler stopped the counting scalers.

Keeping the accumulated charge at a constant amount of 0.48 microcoulombs, excitation functions of the elastic scattering were measured at sixteen angles over a laboratory energy range from 13 to 16 Mev. The data were taken in energy steps of about 30 kev except over the range from 14.344 to 14.639 Mev where steps of 15 kev were taken. Using the same target and under the same conditions, twenty five angular distributions were measured with an angular step of 2.5° at the laboratory angles ranging from 11.5° through 166.5°. All data were taken using three detectors simultaneously. For the angular distributions, the settings of the laboratory angles of the three detectors were so arranged that the angles of the middle detector overlapped with the angular ranges of the other two detectors. This was done to help normalize the data from the three detectors.

DATA REDUCTION

Excitation Functions

Three detectors were used so that three excitation functions would be obtained at the same time. Excitation functions were determined at laboratory angles of 14.5, 23, 34.5, 43, 54.5, 63, 72, 84, 92, 104, 115, 125, 135, 145, 155 and 165 degrees. The laboratory energy of the incident alpha particles was increased from 13.191 to 15.646 Mev in steps of about 30 kev, except between 14.344 and 14.639 Mev, where steps of about 15 kev were taken. As shown in Figure 2, two different target positions were used.

Since the solid angles subtended by the three detectors at the target were different, data collected by detectors 2 and 3 (see Figure 1) were multiplied by the ratios of the solid angles of dectors 2 to 1 and dectors 3 to 1 respectively. To obtain these ratios, each detector in turn was placed at a laboratory angle of 119° and the counting rates for the elastic scattering of 14.738 Mev alpha particles were determined. In this manner, solid angle ratios of 1.10 ± 0.01 and 0.98 ± 0.009 were obtained for detectors 2 to 1 and detectors 3 to 1 respectively.

Since the beam did not strike exactly the same area on the target for the two positions shown in Figure 2, the target thicknesses were slightly different for the two positions. Data collected with the detector in the position shown in Figure 2(b) were normalized to the position shown in Figure 2(a) in the following

Figure 2. Target positions in taking excitation functions (a) for forward-angle measurements (b) for back-angle measurements

Figure 3. Target positions in taking angular distributions (a) for forward-angle measurements (b) for back-angle measurements

manner. Detector 1 was set at a laboratory angle of 84° and the counting rate determined with the target in the two different positions. This was done at several beam energies. The target thickness at position (a) divided by the target thickness at position (b) was determined to be 0.95 + 0.02.

In this manner the 16 excitation functions were normalized to correspond to a single detector and single target position.

Angular Distributions

Twenty five angular distributions were measured in the laboratory energy range from 13.191 to 15.646 Mev. The three detectors were rotated in 2.5° steps from a laboratory angle of 11.5° to 166.5°. This resulted in some overlaps of the angular ranges covered by the three detectors. These overlap regions were quite useful in insuring that the energy windows were not inadvertently placed over the wrong peak, which occassionally occured in an angular region in which the ${}^{12}C(\alpha, \alpha){}^{12}C$ cross section was low. This overlap also provided a check on the normalization to a single detector solid angle. Again, there were two target positions (see Figure 3). The target position in Figure 3(a) is the same as that in Figure 2(a), but the position shown in Figure 3(b) differs by 180° from that of Figure 2(b). So, a different ratio, 1.03 + 0.02, was obtained in the same way as before to normalize the target position shown in Figure 3(b) to that shown in Figure 3(a). Unfortunately, normalizations due to different solid angles and different target positions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were not the only ones necessary.

At the end of the experiment, it became clear, from discrepancies between the angular distributions and excitation functions, that carbon had been continuously accumulated on the target over the long period necessary to obtain the angular distribution data. To correct for the increased target thickness due to the carbon buildup, the angular distributions were normalized to the excitation functions.

Differential Cross Sections in the Laboratory System

Because it would be very difficult to measure the thickness of our target, conversion of the counting rates to cross sections was done by using the ${}^{12}C(p,p){}^{12}C$ cross section measurements of Moss and Haeberli⁶ at 5 Mev. The experimental arrangement used to measure the ${}^{12}C(\alpha,\alpha){}^{12}C$ counting rates was used to measure the ${}^{12}C(p,p){}^{12}C$ counting rates at 5 Mev and these results were compared with the following cross sections quoted by Moss and Haeberli:

 $\sigma_{\rm cm}(84.7^{\circ}) = 36.6 \pm 1.46 \text{ mb/sr}$

 $\sigma_{\rm cm}(133.7^{\circ}) = 33.8 \pm 1.35 \text{ mb/sr}$

The angles are in the center-of-mass system. We wish to determine $K_{\mathbf{p}}$ defined by

$$\mathbf{O}_{lab}(\mathbf{\mathscr{V}}) = K_p X (counts)_{lab}$$

This can be written as

$$K_{p} = \frac{\mathcal{O}_{cm}(\theta)}{\mathcal{O}_{cm}(\theta)} \times (counts)_{lab}$$

where θ is the $\frac{\partial cm(\theta)}{\partial lab(\Psi)}$ in the center-of-mass system corresponding to Ψ in the labortory system. Using our counting rates and the cross sections of Moss and Haeberli, we obtained

$$K_{\rm D}(\Theta = 84.7^{\circ}) = 0.00260 + 0.00010$$

$$K_{\rm D}(\theta = 133.7^{\circ}) = 0.00286 + 0.00011$$

The averaged value of 0.00273 ± 0.00007 was used.

Next K_{∞} , the factor for converting counting rates to cross sections in the alpha particle scattering experiment, was calculated from K_p by

$$K_{\mathbf{x}} = \frac{\mathbf{I}_{\mathbf{p}}}{\mathbf{I}_{\mathbf{x}}} K_{\mathbf{p}}$$

where I_p and $I_{\boldsymbol{\kappa}}$ represent, respectively, the total number of protons and the total number of alpha particles collected during a single counting rate measurement. $K_{\boldsymbol{\kappa}}$ was determined to be 0.0273 \pm 0.0007.

In the 12C(p,p)12C measurements, the target used was not the one used in the $12C(\alpha, \alpha)12C$ measurements. Hence, a $12C(\alpha, \alpha)12C$ excitation function was obtained with the new target and, by comparing the results with the corresponding ones obtained with the old target, a K_c appropriate for the old garget was obtained. This result is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which was used to convert the counting rate data to cross sections.

Differential Cross Sections in the Center of Mass System

The cross sections in the laboratory frame of reference were then converted to the center-of-mass system using a computer program which generated the appropriate conversion ratios. A tabulation of these cross sections is given in Appendices I and II. In Table 1, the present results are compared with those of Carter, Mitchell and Davis.² Their results were presented graphically and the entries in Table 1 were obtained from these graphs. The agreement is generally quite good.

The total uncertainty in the cross sections is about 5% which includes a contribution of 1% for normalizing the various detectors to a single detector, a contribution of 2% for normalizing to a single target position, a contribution of 4% due to the uncertainties in the cross sections which were used to convert our relative cross sections to absolute cross sections, and a contribution of the statistical flunctuations. The total uncertainties, as listed in Appendices I and II, are calculated using the following formula:

(total uncertainty) = (cross section) X $\left((1/100)^2 + (2/100)^2 + (4/100)^2 + (\sqrt{N}/N)^2 \right)^{1/2}$

Not included in the errors given in the Appendices are systematic errors due to the presence of contaminants. Contributions to the counting rates due to contaminants will result in systematically

high cross sections at the forward angles. Also no attempt was made to correct the data for the angular range accepted by the detectors.

TABLE 1

Comparison of the Angular Distributions between the Experimental Data and Those from the Previous Work of Carter² at a Laboratory Alpha-particle Energy of 14.019 Mev

θcm	CM cross section (Carter)	CM cross section (Experimental)
(deg)	(mb/sr)	(mb/sr)
30	270	275.0
45	13	12.0
60	75	68.0
75	8	8.5
90	20	19.8
105 .	18	20.2
120	9	5.0
135	19	19.0
150	0.4	0.5
165	120	109.0

PHASE SHIFT ANALYSIS THEORY

In a quantum mechanical treatment of the scattering process, an incident beam of uncharged particles, far from the scatterers, may be represented by a plane wave, e^{ikz}, propagating in the direction of increasing z. Far from the scatterer, the beam scattered into a small solid angle may be represented by a plane wave. The plane wave can be expanded in a series of partial waves,⁷ each characterized by a particular value of angular momentum (\mathbf{g}) . The interaction between a scatterer and an incoming particle is then represented by a shift in the phase of each outgoing partial wave with respect to the incident partial wave. It is, therefore, fruitful to parameterize the experimental scattering data in terms of phase shifts. The resultant phase shifts then provide information about the nuclear interaction. In the present case, the incident particles are charged, which result in more cumbersome expressions, since the Coulomb field must be taken into consideration. Nevertheless, a phase shift analysis is still possible and the expressions given below are correct for charged particles.

The cross section, $\frac{d \sigma}{d \mathbf{x}}(\theta)$, is obtained from the amplitude, $f(\theta)$, by the formula

$$\frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\boldsymbol{\mathcal{R}}}(\boldsymbol{\theta}) = \left| f(\boldsymbol{\theta}) \right|^2$$

with θ representing the scattering angle in the center-of-mass system. For spin zero charged particles (alpha particles in this case)

on spin zero nuclei (12 C nuclei in this case), the scattering amplitude can be written as a sum of two terms, one term (f_c) accounting for the Coulomb potential and the second term (f_n) accounting for the nuclear potential. These amplitudes are given by the following expressions:

$$f_{c}(\theta) = -\frac{1}{2k} \eta \csc^{2} \frac{\theta}{2} \exp\left[i\eta \ln \csc^{2} \frac{\theta}{2}\right]$$

$$f_{n}(\theta) = \frac{i}{2k} \sum_{\boldsymbol{g}=0}^{L} (2\boldsymbol{g} + 1) P_{\boldsymbol{g}} (\cos\theta) e^{i\boldsymbol{g}} (1 - e^{2id\boldsymbol{g}})$$

where k = mv/h = wave number of the incident particle

- m = mass of incident particle
- v = velocity of the incident particle in the center-of-mass
 system
- $d_{\mu} = nuclear phase shifts$ $q = ZZ'e^{2}/hv$ fn = Planck constant divided by 2_{π} Ze = charge of incident particle
 Z'e = charge of target nucleus $d_{\mu} = Coulomb \text{ phase shift} = 2 \sum_{j=1}^{p} \arctan(q/j), \text{ with } d_{o} = 0$ Fq = Legendre polynomial of order l, and
 L = the maximum value of l.

When the energy of the incident alpha particles is sufficiently large for inelastic events to occur, the phase shifts are complex and will be written

$$d_{g} = \delta_{g} + i\beta_{g}$$

The term e^{2idg} in the expression for f_n is now written as $f_g e^{2id_g}$ with $Y_g = e^{-2\beta_g}$. The imaginary part of the phase shift accounts for the loss of particles from the elastic scattering channel. The total reaction cross section is given by

$$\mathbf{O}_{RT} = \frac{\pi}{k^2} \sum_{k=0}^{\infty} (2k+1)(1 - |\mathbf{Y}_k|^2)$$

A value of unity for a Y_2 then indicates that no inelastic scattering takes place for that partial wave.

Since angular momentum and parity are conserved in nuclear reactions and since, in the present experiment, the projectile and the target both have spin zero, the spin and parity of a level excited in the compound nucleus (¹⁶0 in the present case) are given by J = 1 and $\pi = (-1)^4$. The behavior of the 1^{th} phase shift as a function of energy in the vicinity of a compound nucleus resonance depends on the ratio Γ_e/Γ , where Γ_e is the elastic width and Γ the total width⁸ of the resonance. On Figure 4 is shown the change in the 1^{th} phase shift with energy in the vicinity of an isolated level with J = 1 for several values of Γ_e/Γ . In principle, then, a phase shift analysis will provide J values for levels in the compound nucleus and an estimate for Γ_e/Γ .

Figure 4. Variation in phase angles near the resonant energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PHASE SHIFT ANALYSIS

Procedure

In seeking a set of phase shifts which will fit an angular distribution, the computer program minimizes an error function, X^2 , defined by

$$x^{2} = \left[\frac{\sigma_{TT}^{\prime} - \sigma_{ET}^{\prime}}{\Delta_{ET}}\right]^{2} + \sum_{s=1}^{N} \left[\frac{\left(\frac{d\sigma}{ds}\right)_{TS} - \left(\frac{d\sigma}{ds}\right)_{ES}}{\Delta_{ES}}\right]^{2}$$

where σ_{TT} = calculated total reaction cross section σ_{ET} = experimental total reaction cross section A_{ET} = uncertainty in experimental total reaction cross section $(\frac{d \sigma}{d A})_T$ = calculated elastic scattering cross section $(\frac{d \sigma}{d A})_E$ = experimental elastic scattering cross section A_E = uncertainty in experimental elastic scattering cross section, and

N = total number of scattering angles.

The computer program, BIG, was written by Mr. Jon Sledder under the supervision of Professor Larry Oppliger. Dr. Juan Ramirez added a subroutine which compares the experimental angular distribution with the angular distribution given by the phase shifts found in the search by plotting both distributions on the same graph. The program was used on the WMU PDP 10 time-sharing Computer.

The phase shift analyses were performed on the experimental angular distributions given in Appendix II. However the uncertainties used were, over part of the angular range, different from those

listed in Appendix II. Since the peaks due to the elastic scattering from ¹³C and ¹⁶O were not resolved from the peak due to the elastic scattering from ¹²C at small angles, and since it would be difficult to correct the data for the presence of these isotopes, the uncertainties were taken to be 50% for center-of-mass angles less than 41.55°. Also since no correction was made to the data for the finite angular resolution of the detector system and since this correction would have the largest effect in the regions of sharp minima, when the uncertainties listed in Appendix II dropped below 1.0 mb/sr, the uncertainties used to obtain a X^2 fit were set at 1.0 mb/sr. These are in no sense realistic errors but were used to deemphasize these angular regions to avoid a false X² minimum. After a X^2 minimum was obtained, the experimental and theoretical angular distributions were compared visually to ensure that the fits at the forward angles and the minima in the angular distribution were reasonable. If they were not, another X^2 minimum was sought. Also since there are sixty three scattering angles and only one total reaction cross section, a low value for X^2 could be obtained which yielded an unreasonable value for the reaction cross section. Such fits were also rejected and other fits obtained.

The experimental "total" reaction cross section used was the sum of the cross sections for the ${}^{12}C(\boldsymbol{\varkappa},p)$, ${}^{12}C(\boldsymbol{\varkappa},n)$ and ${}^{12}C(\boldsymbol{\varkappa},\boldsymbol{\varkappa}_1)$ reactions. The ${}^{12}C(\boldsymbol{\varkappa},p)$ and ${}^{12}C(\boldsymbol{\varkappa},n)$ total cross sections were obtained by fitting the differential cross sections of Bernstein <u>et al</u>³ with a series of Legendre polynomials.⁹ As is well known, the

coefficient of the zeroeth order Legendre polynomial is simply related to the total cross section. The ${}^{12}C(\boldsymbol{<},\boldsymbol{<}_1)$ total cross section was obtained by making a Legendre polynomial fit to the angular distributions of Carter <u>et al.</u>¹⁰ The Legendre polynomial fits were made using the computer program LEGFIT supplied by Dr. Juan Ramirez. The total reaction cross sections used in the X² analysis are shown in Figure 5.

It is helpful to think of a X^2 surface generated by permitting all the phase shifts used in the analysis to take on their full range of values. A very large number of local minima can be found in such a surface. It is not only impossible, but unenlightening to investigate all of these minima as a large number would give acceptable fits to an experimental angular distribution. In fact, as pointed out by Gersten,¹¹ for the case of spin-zero particles on spin-zero nuclei, 2^{L+1} sets of phase shifts can be found which will give the identical angular distribution and total cross section, where L is the maximum value of the angular momentum. The problem is to find "physically meaningful" phase shifts. Jolivette 12 has shown that if a set of "unphysical" phase shifts are obtained as a function of energy, then partial waves with *l*-values neighboring a partial wave going through a resonance will also exhibit resonancelike behavior. Jolivette then suggests that the physical set is the one which exhibits the fewest resonant states. A similar procedure was employed in the present analysis. It was insisted that a partial wave vary slowly and smoothly with energy unless it is going

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

١

Ì

21

through a resonance. If it is going through a resonance then it must behave in a reasonable manner, or else another solution was found. An attempt was made to avoid "resonances" for which there was no physical evidence.

The analysis was started at the lowest-energy angular distribution. Starting phase shifts were generated using the optical potential obtained by Brady <u>et al</u>¹³ from a study of the ${}^{12}C(\alpha, \alpha_o)$ process at a laboratory energy of 8.00 Mev. A fit was then obtained by varying these phase shifts. The first nine partial waves were used in the present analysis. This means that eighteen parameters (since the phase shifts are complex) were varied to obtain a fit. After an acceptable fit was obtained, the next higher-energy angular distribution was studied. After this next angular distribution was fitted, the behavior of the phase shifts as a function of energy was noticed to see if the above criteria were satisfied. If they were, the next angular distribution was selected for study. If they were not, other sets of phase shifts were sought until the above criteria were met.

Results

Eleven angular distributions in the laboratory energy range from 13.191 to 14.311 Mev were fitted in the present analysis. The data points (dots) and the fits (solid curves) are shown in Figures 6 to 16. The corresponding cross sections are shown in Figure 5. The energy dependence of the real part of the phase shifts are shown in

Figures 17 to 20. A parameter $\mathbf{y}_{\mathbf{z}}$ is defined by $\mathbf{y}_{\mathbf{z}} = e^{-2\beta_{\mathbf{z}}}$ where $\boldsymbol{\beta}_{\mathbf{z}}$ represents the imaginary part of the phase shift, and the energy dependence of the $\mathbf{y}_{\mathbf{z}}$ are shown in Figures 21 and 22.

24

Figure 6. Fit to angular distribution at an alpha-particle energy of 13.191 Mev(• Experimental, - Calculated fit)

ૢૺૣૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ

Figure 7. Fit to angular distribution at an alpha-particle energy of 13.285 Mev(• Experimental, -- Calculated fit)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10. Fit to angular distribution at an alpha-particle energy of 13.761 Mev(• Experimental,-Calculated fit)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 11. Fit to angular distribution at an alpha-particle energy of 13.858 Mev(• Experimental,- Calculated fit)

Figure 13. Fit to angular distribution at an alpha-particle energy of 14.019 Mev(• Experimental,-Calculated fit)

Figure 14. Fit to angular distribution at an alpha-particle energy of 14.083 Mev(• Experimental,—Calculated fit)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 17. Energy dependence of phase angles for $\boldsymbol{g} = 0$, 1, and 3

Figure 18. Energy dependence of phase angles for $\mathcal{L} = 2$

Figure 19. Energy dependence of phase angles for $\ell = 4$

Figure 20. Energy dependence of phase angles for g = 5, 6, 7 and 8

Figure 21. Energy dependence of $\mathbf{Y}_{\mathbf{g}}$ for $\mathbf{g} = 0, 1, 2, \text{ and } 3$

Figure 22. Energy dependence of $\mathbf{Y}_{\mathbf{g}}$ for $\mathbf{g} = 4, 5, 6, 7$ and 8

DISCUSSION AND CONCLUSIONS

Although the phase shift analysis is far from being completed, some comments can be made and some conclusions can be drawn. It has been possible to obtain good fits to the eleven angular distributions in the energy range from 13.19 to 14.31 Mev. These fits have been obtained with a set of phase shifts which vary smoothly and, except for three resonances, slowly with energy. This small number of resonances is a result of strenuous efforts to keep this number as small as possible.

A compilation¹⁴ of information on the ($\propto + 12$ C) system indicates eight levels in the region of the present phase shift analysis. One resonance at an incident alpha-particle energy of 13.26 Mev with a width of 110 kev, one at 13.86 Mev with a width of 165 kev and one at 13.95 Mev with a width of 110 kev were reported^{2,10} as evident in the elastic channel. However, the three resonances determined by the present analysis are not at these energies and do not have these widths.

The present analysis indicates a 4⁺ resonance at an incident alpha-particle energy of 14.12 \pm 0.05 Mev. Not only does \mathbf{d}_4 display typical resonance behavior, but \mathbf{Y}_4 dips, indicating appreciable strength in other channels.

The plot of σ_2 as a function of energy (Figure 18) indicates the presence of two closely spaced 2⁺ levels. The lack of information on the behavior of σ_2 at lower energies and the closeness of

these two levels makes difficult an estimate of their positions and widths. However, the lower 2^+ resonance is evident in excitation functions taken at center-of-mass angles of 70.26°, 80.29° and 148.64°. From a study of the behavior of σ_2 with energy and these excitation functions, the lower 2^+ resonance was determined to be at 13.45 \pm 0.05 Mev. The higher 2^+ level is at 13.80 \pm 0.10 Mev. All three of these levels have widths between 200 and 300 kev.

The above information is summarized in Table 2 below.

TABLE 2 Levels in ¹⁶0

Excitation	energy(Mev)	Con (key)	Ţπ
Reference	Present work		•
17.11		110	(1 ⁻ , 2 ⁺ , 0 ⁺)
17.17		200	2 ⁺
	17.25 <u>+</u> 0.04	188 <u>+</u> 38	2 ⁺
17.29		<100	
17.35		150	
	17.51 <u>+</u> 0.08	188 <u>+</u> 38	2 ⁺
17.56		165	(4 ⁺)
17.62		110	
17.7			0+, 2+
	17.75 <u>+</u> 0.04	188 <u>+</u> 38	4+
17.82		225	4+

APPENDIX I

•

EXCITATION FUNCTIONS OF 120(ALPHA, ALPHA) 120

. . . .

ENERGY = LABORATORY ENERGY OF ALPHA PARTICLES AT CENTER Of target.

ANGOM = CENTER OF MASS ANGLES.

K-SEC = CENTER OF MASS CROSS SECTIONS.

ERROR = TOTAL UNCERTAINTY IN CROSS SECTIONS.

ANGCM = 19.29 DEG

The second second

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERFOR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MBZSR)
13,191	2642.448	93.678	14.458	1857.279	35.284
13.223	1946.449	89,371	14.475	1797.931	82.565
13.254	1873.734	85.238	14.491	1717.249	78.867
13,285	1773.622	81.451	14.527	1823.606	83.741
13.317	1051.317	75.846	14.524	2027.217	93.272
13.348	1728.466	78.465	14.548	1985.475	91.225
13.380	1647.552	75.673	14.557	1942.621	80,195
13 412	16.9.744	73.528	14.573	1903.214	67.389
3.413	1037.053	75.192	14.506	1367.921	35.772
13.475	1621.489	74.479	14.639	1839.664	84.477
13 507	1037.754	75.226	14.672	1682.327	dć,432
13 538	1651.736	76.323	14.725	1644.921	64.715
13 570	1075.127	75.983	14.738	1315.329	53.323
3 622	16 4 795	77 105	14.772	1729.829	19.242
13 634	1744 536	83 116	14.305	1743 807	82.094
13 666	1794.777	82.420	14.838	1694.727	17.835
33 498	1728.780	82 674	14.871	1699.365	18.046
13 709	1827 656	R3 007	14.904	1629.334	74.332
13 761	10.50 664	84 677	14.938	1-13.435	24.112
12 704	1877 371	86 205	14.971	1533 771	13,200
13 826	1973 831	98 334	15.325	1545.212	21.922
13 858	1945 720	02 253	-5.038	4552 753	71.238
17 20%	1949 230	90.200 00 771	18 871	1751 298	71.263
10.090	1925 342	28 423	15.175	1555 796	7- 45
13 054	1947 210	87 563	15 139	1857 842	71.552
13.907	1707-012 0047 64A	07.400	17.100	1553 871	71.383
10.900	20117・214	92.027	15 206	1523 516	59,852
14 051	2112 267	97.207 96.06%	15 230	1582 555	/2.603
14 024	222.007	75,700 36 010	15 273	1571 215	72.175
14,200	2156 614	00 160	15 200	1584 225	72.771
14.110	2200.011	120 162	15 3/3	1207.222	74 772
14.140	22.2.0000	105 740	12.040	- 515 456	60 Koo
14.101 14.101		102.307	10.074	1574 444	78 474
14.210	20001104	105.975	10.460	1207.177	68 624
14,240	29811129	100,024	10+442	1490.720	
14.270	2402.070	101.000	12.470	1440.001	
	2230.077	102.001	10.010	1924-241	64 300
24.344	2100.410 D006 404	100.35/	12.244	1070.207	67.822 67.302
14.3/0	2000,004	97./51 00 00/	10.7/8	10/7.042	63.070 A3 575
14.407	12/2.200	YU.YUC	12.012	1000.000	63 627 63 627
14,422	176/ 246	80.491	12.040	1987.162	03,04/
14,442	1059.541	82.845			

ANGEM = 37.49 DEG

٠

.

.

· .

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(M8/SR)
13.191	225.579	12.514	14.453	132.557	6.250
13.223	213.863	9.977	14.475	136.945	6.451
13,254	199.535	9.319	14.491	134.646	ó.340
13,282	158.377	8.829	14.507	143.473	6.750
13.317	173.871	8.144	14.524	144.941	6.318
13.348	227.765	12.614	14.540	146.182	6.875
13.380	245.272	11.453	14.557	145.475	6,383
13 4-2	243.858	12.268	14.573	145.398	6,339
13 443	275.202	12.779	14.525	145.186	6.329
13 475	285.202	13.246	14.639	145.633	5.395
13 597	295 528	13.722	14.572	141.274	6.642
13 538	512 827	14 329	14.725	137.991	5,409
13 572	522 174	14 041	14.735	134.452	6.154
13 602	333 273	15 447	+4 770	119 014	5.629
17 474	530 430	15 310	14 825	127 413	5.2.7
17,507	436 3 37	15 593	14 338	08 553	4.601
17.408	335 344	15 544	14.000 44 871	127 234	4.743
13,390	424 £84	エン・シャマ イド スフフ	TH•017	07 049	4.553
17 741		15 575	74.232 T4.234	04 392	4.445
13,704	53-027	15 349	14.200	04 4/4	4.517
13,777	300 059	15 045	15.025	23.413	4.455
17 958	3024.400 302 707	14 831	15 235	37 200	4.542
13,399	512 712	14 4+4	15 271	0A 430	4 586
17 002	010./TA	13 770	12+4/2	90.409 08 708	4 7.2
13.724	258.104	10.0/9	19.109	- 74 - 743	2 387
13.927	409.209	12.510	12+105	127.270	2 323
13.960	2/3.93/	12.071	12+1/2	120,020	4,700 5,140
14.019	403.0/5	12.232	12+240	107.000	2.114
14.251	422.083	11.894	17.239	110.077	5.245
14.283	244.832	11.390	12.2/3	100.092	2.004 = 345
14.110	201.208	10.772	17.00/	102.010	2.12.2
14,148	422.135	10.390	12.34.6	104.110	4.074
14,181	212.346	9.93/	12.3/4	97.182	4.020
14.213	285.884	9.611	12.428	67.524	241
14.240	281.093	9.415	12.442	67,638	4.098
14.275	164.934	8.651	15.476	/5.108	3./20
14.311	174.475	8.171	15.510	71.64/	3,45/
14.344	153.787	7.632	15.544	68,824	3.327
14.370	148.792	6.994	15.578	67.536	5.573
14.409	142.259	6.603	15.512	70.602	3.439
14.420	138.480	6.522	15.646	70.493	3,679
14.442	134.513	6.344			

. 45 ANGOM = 45.39 DEG

(MEV) (BASR) (MEV) (MBASR)	(MB/929) 1.929 1.722 1.433
	1.909 1.722 1.433
-10-191 - C9-044 - 1-984 - 14-496 - C/-741 -	1.722 1.433
13.223 34.998 1.782 14.475 33.725	1,433
13.254 34.015 1.737 14.491 27.357	
13.282 56.344 1.844 14.527 54.231	2.557
13.317 36.465 1.853 14.524 69.945	3.333
13.348 39.692 1.993 14.543 53.293	2.51
13.382 38.360 1.923 14.557 44.741	2.232
13 492 86 216 1,829 14,573 39 535	1 921
13 443 (5 447 1.873 14.676 32 888	1 421
13 475 33 325 1 736 14,630 20 549	T • 0 5 T
13 507 34 334 1 509 14 670 06 357	
13 R3N - 20 49E - 1 401 - 47 70E - 26 600	
13 S70 14 37A 1 38A 41 77C 06 453	
	1.040
	1.749
	1.200
13.500 15.472 0.575 14.538 32.290	1.72.
13.590 11.143 0.678 14.571 33.222	1.720
13.729 7.105 6.450 14.904 53.057	1.275
13.701 3.898 2.317 14.988 34.740	1.773
15./94 2.525 2.245 14.971 35.344	1.544
13.820 1.949 2.204 15.005 37.327	1.880
13.655 1.759 3.192 15.335 37.352	1.891
13,890 2.763 4.252 15.071 37.727	1.9.2
13.922 5.295 2.38/ 15.125 35.726	1.815
13.954 3.711 2.557 15.138 35.844	1.321
13.986 11.212 2.676 15.172 34.188	1.745
14.219 15.112 0.861 15.226 34.122	1.741
14.251 19.526 1.266 15.239 32.532	1.568
14.283 27.788 1.449 15.273 30.859	1.591
14.110 52.239 1.655 15.327 38.798	1,583
14.146 35.155 1.927 15.343 27.478	1.435
14.181 42.036 2.106 15.374 27.081	1,417
14.213 42.933 2.149 15.408 25.691	1,362
14.240 42.761 2.143 15.442 24.149	1.281
14,278 42,467 2,126 15,476 24,563	1.320
14.311 41.657 2.289 15.512 24.211	1.275
14.344 43.278 2.215 15.544 24.278	1.257
14,376 42.156 2.020 15.578 24.097	1.279
14,429 38.448 1.941 15.612 25.753	1.355
14.420 41.635 2.386 15.546 25.943	1.364
14.442 43.070 2.316	•

-

ANGOM = Do.15 DEG

ENERGY	X-SEC	EKROR	ENERGY	X-SEC	ERROR
(MEV)	(K3/SR)	(MSZSR)	(MEV)	(MBZSR)	(28783)
13,191	22.395	1.239	14.453	35.242	1.8.3
13,225	23.052	1.239	14.475	25.545	1,508
13.254	22.774	1.133	14.491	55.488	2.735
13.285	22.563	1:216	14.507	57.693	2,875
1 7 317	22 355	1 114	14.524	29 799	0 04 5
13 348	>> 377	1 225	14.547	31 453	
13 782	24 630	1 1 7 3	14 557	26 288	1.000
	11.000	1 4 7 C	14 577		1+921
10.415 17.645	21.347	1.140	14.773	20.799	1.2.4
13.440	一日 二十二 プロ	1 202	14.025	20.247	1.103
13,4/5	09.917	1.093	14.539	19.1/2	1.259
13.50/	29.407	1.070	14.072	1/.202	2.967
13.536	17.165	2.955	14.705	10.510	2.034
13,570	16.236	3.922	14.733	16.218	2,921
13.602	15.372	3.914	14.772	15.132	0.0 <u>1</u> 9
13.634	16.564	0.937	14.805	15.999	£,0 <u>51</u>
13.666	17.134	2.965	14.938	16.437	2.931
13,698	19.662	1.382	14.871	15.653	2.304
13.729	24.545	1.329	14.934	16.455	2.932
13.761	20.942	1.555	14.932	15.125	0.877
13.794	\$7.539	1.929	14.971	12.362	2.381
13.826	44.427	2.226	15.005	15.125	2.872
13 458	395	2.316	15.033	15.288	S.863
13 890	18 417	2.479	15.271	12 612	0 751
13 002	-3-70a	2 621	15.175	12 574	7.0
13 054	32 385	2 867	15.138	11 072	0 7 9 9
13 096	5- 3 74	2.007	15 170	12.57C	
10.900		3 353	15 076		じょこうどう ちょうつ
14,017	DD-/49	2.232	12.200		
14.051	2.003	3.723	12.239	0.132	8,725
14,250	/5./08	3.555	10.2/3	8.822	2.269
14.110	7.719	3.755	15.327	0.961	2.473
14.148	7.574	3.748	15.342	5.050	0.433
14.181	75.972	3.675	15.374	5.266	0.393
14.213	78.649	3.431	15,428	4.755	2.365
14,246	5.219	3.181	15.442	4.246	2.339
14.278	55.378	2.729	15.475	3.790	2.315
14.311	52.167	2.490	15.510	3.736	2.312
14.344	47.124	2.350	15.544	3.353	2.291
14,376	46.796	2.335	15.578	3.171	2.261
14.429	41.912	2.110	15.612	3.663	2,328
14.425	39.798	2.213	15.546	3.809	3.315
14,442	37.065	1.837			
	/				

ANGON = 72.26 DEG

•

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(ME/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13.191	43.675	2.229	14.456	23.231	1.113
13.223	-2.261	2.051	14.475	15.754	2,962
13.254	39.063	1.950	14.491	15.225	2.502
13,285	39.362	2.210	14.507	13.023	0.784
13.317	44.877	2.264	14.524	12.688	0 740
13.348	48.714	2,403	14.547	12 568	0.743
13.360	21.271	2,558	14.557	12 108	0 7/0
13.412	22.292	2.596	14.573	12 433	2.174C
13.445	-3.412	2,519	14 606	14 146	0.100 0.070
13.475	-2.232	2.571	14 630	14 266	2.009
3 507	20 173	2 462	14 470	15 445	2.544
- 3 - 3 - 3 - 3	-7.1270 	2 - 2 - 6	14.0/2	14.045	0.929
13 57%	17.975	2.013		14.900	
13 202	-3.370		14.738	14.040	2.545
-3.000	70.000 70.000	<.UD⊥ ○ an7	14.//2	12.605	2.912
	39.222	2.200	14.525	19.184	0.935
13.000	37.522	2.022	14.838	15.464	0.943
-3.570	48.501	2.067	14.871	10.464	2.948
23.729	44.397	2.262	14.904	15.242	1.031
13.701	-4.198	2.233	14.738	15.022	1.363
13.794	-7.754	2.397	14.971	19.222	1.077
13.826	49.333	2.455	15.005	19.741	1.121
13.858	48.553	2.433	15.338	19.901	1.129
13.890	44.557	2,250	15.371	19.561	2.293
13.922	40.941	2.283	15.135	17.903	1.015
13.954	37.784	1.937	15.138	19.921	1.189
13,985	16 . 985	1.901	15.172	22.587	1.147
14.319	36.125	1.861	15.226	21,123	1.105
14.351	54.787	1.799	15.239	19.122	1.372
14,283	32.923	1.712	15.273	23.622	1.142
14.116	33.248	1.725	15.327	19.761	1.192
14.143	51.730	1.658	15.340	21.659	
14.181	21.292	1.628	15.374	21 519	
14,213	29.312	1.532	15.478	22 300	- 005
14,245	29.172	1,539	15 442	24 936	エ・ニアン
14.278	37 731	1.579	15 476	24.020	
14 311	20 400	1 541	12.44/0	27+2//	1.012
14 744	57.172 77.037	1 425	12.770	20.210	1.475
14 376	57 · 770 54 · 775	1 734	エン・フィタ	27.012	1.240
14 100		1 120	12.2/3	01.010 71 070	1.555
12 405	23.014 31 771	1 77/	17.512	31.230	1.635
1 1 1 1 2 2	22./30	1 070	12.040	36.124	1.724
14.446	22.778	1.232			-

.

ANGCM = 80.29 DEG

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(PB/SR)	(MBZSR)	(MEV)	(MB/SR)	(MB/SR)
13.191	4.179	2.357	14.458	5.737	2.439
13,223	3.724	0.331	14.475	3.139	2,293
13.254	3.377	0,311	14.491	5.369	2.422
13,28>	5.239	0.414	14.527	8,895	2.599
13.317	7.686	0.539	14.524	8.855	0.597
13.348	9.396	3.624	14.542	6.617	8.585
13.382	11.756	0.738	14.557	9.180	2.613
13.412	12 233	3.761	14.573	9.2%1	2.614
3 445	11 670	0.734	14.626	9.972	2.629
13 475	11 843	2.742	14.639	9.440	0.40A
13 507	11.040	7 724	14 672	9 306	2 634
13 538	LL+7/2 c 704	9 649	14.072	9 526	0.630
23.330	7 • / C L n = 1 2 7	0.0,40	14.732	0 KT 3	8 · COM
13 600	0.107	2.511	14.732	0.052	2.00-
13 474	C • 2 7 2	2 707	14.//2	- 3 136	2.02
17 446	4.020	0.092	14.027	11 202	
17 /09	5.04/	0.400	14.000	11.020	2 . 7 2.2
13,590	6.907	2.520	14.8/1	11.190	2 • 7 2 2
-3.729	5.77/	2.400	14.904	TO:/AT	2.037
13.761	5.694	0.43/	14.938	10.040	2.523
13,794	5.672	0.435	14.971	14.207	월•5년4 6 3 m m
13.820	4.525	0.3/5	15.305	12.82/	0.932
13,858	3.897	2.341	15.238	10.1/3	2.929
13,890	2.752	0.275	15.371	12.802	2.931
13,922	1.494	0.193	13.125	12.56/	2.921
13,954	3.714	Ø.125	15.138	15.996	2.987
13,986	0.563	0.113	15.172	16.151	2.947
14.019	2.779	8.135	15.206	10.821	3.973
14.251	1.104	0.163	15.239	18.836	1.074
14.083	2.338	0.249	15.273	18.921	1.377
14.116	3.507	2.319	15.307	18.726	1.067
14.148	5.478	3.425	15.340	18,463	1,25ó
14.181	8.226	0.564	15.374	20.113	1.134
14.213	9.525	0.629	15.408	22.849	1.163
14,246	12.276	3.753	15.442	21.694	1.207
14,278	13.164	0.306	15.476	23.837	1.307
14.311	13.726	2.632	15.518	24.747	1.350
14.344	12.925	3.794	15.5-4	27.431	1.475
14,376	12.535	2.776	15.578	28.637	1.533
14.409	11.323	2.717	15.612	29.705	1,580
14.420	9,894	2.643	15.645	31.610	1.569
14.442	7.383	2.524			

ANGCM = 92.50 DEG

۰.

.

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MBZSR)	(MEV)	(MEZSR)	(MS/SR)
13.191	13.262	0.828	14.458	1.895	2.159
13,223	14.117	2.369	14.475	3.214	2.314
13.254	13.474	0.838	14.491	15.426	0.931
13.282	10.379	2.712	14.507	14.379	0.331
13.317	7.642	0.552	14.524	3.980	0.352
13 348	5.330	2.430	14.542	1.785	2.222
13 380	3.047	0.303	14.557	2.190	0,244
13 412	3 4%4	2.325	14.573	1.381	2.192
13 663	2 505	0.276	14.526	3.976	2.154
13 475	3 870	2.348	14.539	3.419	0.124
13 507	2.009	3 411	14.672	3.476	0.122
13 338	4.722 5.717	9 252	14.705	2 620	2.144
13 570	2.720	0.4JZ 0.287	14.738	0.881	0.151
17 202		7 531	14.772	3 714	2.134
10.004	0.427 6.007	0.272	14 825	3 691	Ø 1=1
10.007	5.700	0.012 0.420	1002	1 924	a 163
13.555	5./54	0.007	14.000	2 273	0,200
13.590	11.254	0.732	14.071		0.10/
10./29	12.327	2.152	14.704	4.971 7.740	2 4 7 0
13.751	↓ 2 • 4 2 / /	2,/00 0 01	14.700	0.702 Noba	2 · ± 0 ? 7 · 1 / 4
13,794	24.293	0.891	15.7/1	2.007	0.170
13.520	15.3/8	0.727 1.007	12.000	0.090 7 A76	2 • <u>-</u> C <u>-</u> 7 • C <u>-</u> C
13.850	10.008	1.050	12.000	2,270	2.20
13.892	19.616	1.127	10.071	2.300	2 • • 7 • * 2 • • 7 • *
13.922	19.259	1.114	12.102		10 + 20 - 10 - 10 10 - 10 - 10 - 10 - 10 10 - 10 -
13.954	21.137	1,223	12.100	2,420 1 700	A • 10 0 0 0 0 0 7
13.950	20.663	1,1/8	12.1/2	4.3D/ 7.700	- 2 • 2 ⊃ ⊃
14.219	22.377	1.167	15.280	0.309	2.007
14.251	21.306	1.235	15.239	9.309	2.021
14.283	20,116	1.153	15.273	0.425	8.123
14.110	22.326	1.161	15.327	2.224	2.2-
14,148	17.592	1.034	15.342	2.262	8.050
14.181	15.069	8.914	15.374	2.167	8.265
14.213	11.189	0.727	15.425	₹,190	2.668
14.246	8.308	0.610	15.442	2.214	P. 072
14.278	5.856	0.462	15.475	0.286	0.053
14.311	3.697	2.341	15.510	3.452	2.123
14,344	2.023	2.238	15.544	0.500	0.111
14.376	1.271	0.167	15.575	2.524	2.115
14.409	0.143	2.058	15.512	1.271	2.167
14.420	2.248	0.034	15.646	1.214	2.179
14.462	2.714	0.134			

ANGCM = 103.38 DEG

.

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MBZSR)
13.191	27.657	1.435	14.458	12.091	2.799
13.223	29.627	1.629	14.475	17.699	1.269
13.254	28.314	1.565	14.491	23.143	1.32-
13 285	26.317	1.474	14.527	14.397	2.914
13 317	10 943	1.175	14.524	11 490	0 740
17 728	16 165	3 006	44 543	11 025	0.775
13 387	12.240	7 835	14 557	11 371	• • • • • · · · · · · · · · · · · · · ·
		2.322	17.227	TT+517	2 • 7 2 7
10.414	J. C + 1 / 4	2.000		<u>⊥</u> ∠∀⊂	
13,443	31.10/	2.700	14.020	9.004	
13.4/2	12.201	0.504	14.009	5.591	2.043
13,52/	_1.353	2.762	14.672	9.547	2.673
13.538	12.593	2.626	14.705	10.423	2.710
13.570	22.423	2.815	14.738	9.032	2.592
13.602	14.238	0.895	14.772	10.122	3.701
13,634	15.386	1.235	14.805	9.200	2.645
13.660	19.614	1.163	14.938	10.231	2.727
13.695	21.912	1.263	14.371	9.903	2.692
13.729	28.879	1.454	14.924	3.239	2.010
13.761	26.973	1,525	14.9.5	7.552	7.571
13 704	20 150	1 627	14.971	5 257	
13 206	40 037	1 648	15.075	7 324	2 - 2 - 1 2 - 5 = 1
17 968	. 744	1 728	15 0334	5 046	2 10
17 000		1 740	12.000	0.040	2.4492 3.520
13.092	32.000	1 (0)	10 • 07 1	0.3/4	4 • 7 1 •
-3.922	QV.∀D/ 30.400		12+135	0.120	2.540
13.924	22.420	1.550	12.105	2.820	2,479
13.980	0.011	1.651	12.1/2	0.3/4	0.210
14.219	26.043	1.462	15.236	1.249	0.555
14.351	28.533	1.575	15.239	1,277	2,557
14,283	23.472	1.341	15.273	7.742	2.581
14.115	21.037	1.227	15.307	8.535	8.522
14,148	18.192	1.092	15.342	17.231	€.7€7
14.181	17.754	-1.371	15.374	10.778	0.734
14.213	13.459	0.865	15.408	11.517	2.772
14,245	5.891	3.542	15.442	12.228	0.825
14 278	d . 297	2.672	15.476	11.955	0.702
14,311	5,237	0,522	15.510	12,502	2.8-9
14 744	5.000	2.485	15.54	12 056	0.407
1/ 376	5 600	0.402	15 572	12 930	
14.3/0	9.070 9 090	0.473 7.400	15 410	12.300	v • C ひ ~ カージ / D
14,407	5.207	2.007 7 c74	12.215	10.222	0.044
4.427	1.005	ピ・ワイ4	12.040	14.951	8.931
14.442	10.970	8,744			

ANGOM = 111.47 DEG

.

.

•

•

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	("5/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13.191	15.542	2.953	14.458	10.045	3.718
13,225	15.777	1.248	14.475	10.712	0.751
13.254	16.536	1.236	14.491	13.418	2.735
13.28>	17.238	1.369	14.527	13.772	0.754
13.317	5.027	2,953	14.524	74.182	2.922
13.348	3.327	8.882	14.540	13.367	
13.382	0.378	3.759	14.557	13.095	5 AA 5
13 412	8.871	2.655	14.573	12.311	2.533
13.445	6.882	2.554	14.625	9.807	2.700
13 475	5.452	0.477	14.539	9 475	0.483
13 507	2 918	2 446	14.672	9 449	C 434
	2 888	2 245	12.735	7 004	0.000 6.4-5
13 870	5 431	2 373	14 732	7 845	
13 472	2.504 2.501	2.070	12 772	7 434	マ・ビビン ・ 男:
	2 · 2 2 4	2 2 2 2 4	11 905	7.00-	0.0%4 0.500
17 446	0.040 7.54.	2.334	14.005	6 707	2,200
13 408	2 • 201 2 • 201	0.350	14.000	0.077 S 041	2.220
13.090	4.7990	(A 12 2 2	74+2/7	2.251	
17 741	0.020	2 4 9 3	上午・予ジー	2.207	
	9.294 	9.000 14. T / E	14+900		2 • 3 · 4 2 • 2 · 4
-0./94	11.704 	0.700	14.9/1	0.00%	2.000
-0,820 17 520	11.400	8./57 C 7/5	10.000	2.622	2.204
-3.570	10.934	2./07	17.200	1 - 2 L V	8.243
-3.890	12.021	J. 740 2 747		1.320	2.211
13.922	17.718	0./10	12+1-2	6.990	
33.994	5.328	2.530	12.138	1.325	0.157
13.950	7.785	6.662	15.1/2	1.23/	0.201
14.219	6.578	2.538	15.286	1.358	3.211
14.251	5,854	0,495	15.239	2.535	2.322
14.285	5.552	2.482	15.273	2.686	2.313
14.116	5.492	2.479	15.327	2.987	8.333
14.148	5.222	2.463	15.342	4.617	0.429
14,181	5.522	2.482	15.374	5.281	2.467
14.213	5.703	3.490	15.428	5.643	0.457
14.246	5.220	0.453	15.442	5.431	2.475
14,278	5.371	3.472	13.476	5.638	0.542
14.311	5.341	3.475	15.510	7.051	2.5c4
14.344	4.617	2.429	15.544	7.182	2.571
14,376	5.824	0.497	15.578	5.311	8.655
14.409	- 6.21 5	2.518	15.612	13.290	0.733
14,425	7.513	0.587	15.646	11.527	2.792
14,442	8.238	0.526			

.

ANGCM = 122.89 DEG

۰.

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	- (MB/SR.	(MEV)	(MB/SR)	(MB/SR)
13,191	28.499	1,644	14.458	5.027	3.643
13.225	31.934	1.526	14.475	10.236	2.761
13.254	25.869	1.520	14.491	6.764	2.538
13.28>	25.659	1.510	14.527	3,924	0.692
13.317	35,919	2.245	14.524	13.355	2.918
13.348	01.163	1.773	14.542	14,267	.943
13.352	39.987	1.761	14.557	15.285	1.149
13.412	29.831	1.727	14.573	15.774	1.377
13.445	28.218	1.632	14.526	19.244	1.2.5
13.475	25.834	1.519	14.639	9.735	1,200
13.527	25.526	1.555	14.672	19 770	1.230
13.538	24.643	1,462	14.705	16.473	1.163
13.572	>>> 434	1,355	14.758	20.647	1.273
13.622	19,130	1.232	14.772	19 0.34	1.10~
13.634	16.896	1.792	14.825	19 244	1.235
13.605	14 127	0.956	14.839	2: 172	1 207
13 498	14 734	0.835	14.871	20. 957	1 2 2 2
13 729	0 464	2.721	14.904	21 769	1 355
13 761	17 130	2.755	14.939	22.700	1 265
13.794	10 867	2.793	14.971	16 788	1 1/2
13 826	13 531	% Q27	15.025	18 754	1 1 2 3
13 858	17 916	7 015	15.038	19 255	1 215
13 892	38 424	1 220	15 971	20.422	1 2/2
13 922	10 584	2 879	15.105	20.210	1 280
13 054	12.JUG	2 397	15.138	17 527	1 100
13 086	17 304	2 764	15 172	16 125	1 · 222
14 219	20.000	0.679	15.2%6	15 084	エ・ジロン 1 つえる
14 251	5.020 5.202	2.495	15.230	14 197	1.050 1.050
14 283	7 006	2.416	15.273	11 778	0 840
14 116	1 823	2.265	15.307	11 147	0.327
14 148	2 774	2 168	15.347	3 710	0.733
14 181	0 1 <u>7</u> 2	2 272	15 374	9.576	W 735
14 213	C • 1 = 0 7 454	2.128	15 478	13 130	0.755
14 246	1 207	0.120 Ø 001	18 420	10.100	0 + 1 2 L
14 278	1+47/	Ø 201	15 474	7 442	2.0004
14 711	2.100	2 - 271 7 - 353	15.510	7.044 Jan 5	2.025
14 344	C+010 A AR7	2 447	17.716	7.017 7.101	8.074L 0.770
14 376	4.00/ / 877	2 468	18 579	10.414	V. 170
12 200	4.00/ 4 7/E	0 524	12.7/0	0.000 1.407	
14 405	0.040 7 Eit	2.227	+3 K/4	7 77 7	0.07/ 7 400
16 662	2.207 6.870	2+0_7 2/ 583	17.040	1.114	2.027
****	0.079				

.

ANGCM = 132.60 DEG

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(Mg/SR)	(MBZSR)	(MEV)	(MB/SR)	(MB/SR)
13,191	47.152	2.561	14.458	23.536	1.451
13.223	45.949	2,505	14.475	26.864	1.512
13,254	44.225	2.425	14.491	22.052	1.380
13,285	41.419	2.294	14.527	12.871	0.929
13.317	43.945	2.412	14.524	23.947	1.471
13 348	42.541	2.347	14.540	38.392	1.777
13 380	45.629	2.491	14.557	35.294	2.003
13 412	48.796	2 438	14.573	42 215	2.220
13 445	46 773	2 511	14.626	44 787	2.444
13 475	48.435	2 621	14.639	44 346	2,473
13 527	47 513	2 578	14.672	47 553	2 580
13 538		2.74.7	14.775	50 360	$2 \cdot 2 \cdot$
13 57%	22.000	2.710	10 739	57 507	2 • 7 2 9
13 602	21 386	2.767	+ 4 770	55 203	2.00047
13 474	74,000	2 + 4 Q Z 7 + 4 1	14 275	22.07U 88 700	2.727
10.007	30.272	2.101	T4.007	57 204	3 · 1 8 0 7 / 7 7 3 3
17 108	37.125 70 500	2.094	14.000	27.290	3+432 7 893
13.690	02.798	1.001	14:071	22,3/9	3,202
10,727	00.002	1.//5	14+704	2/19/0	3.000 - 177
13.701	21.100	1.650	14.905	27.202	3 • 1 24
13,/95		1.021	14.971	00.200	3+104
10,520	32.001	1./00	17.007	68.745	3+191
13.570.	30.112	1.704	10.000	00.424	3.177
13.892	28.829	1.703	10.0/1	27.242	3.120
13,922	25.784	1.610	15.125	53.419	3.000
13.954	23.071	1.469	12.100	57.290	3•40≤ - 2°2
13,980	21.1/0	1.305	10.1/2	54.287	2.883
14.219	17.553	1.179	12.200	51,242	2./51
14.251	15.116	1.042	15.239	49.31/	2.562
14.285	12.705	0.818	15.273	47.473	2.576
14.110	5.894	0.555	15.307	42.822	2.359
14.148	3.007	2.373	15.340	44.025	2.416
14.181	2.085	0.304	15.374	42.376	2.245
14.213	2.366	0.327	15.408	42.357	2.265
14.246	3.969	0.438	15.432	37.168	2.095
14.278	6.415	0,586	15.476	38.010	2.135
14,311	8.260	2.688	15.510	36.447	2.262
14.344	11.989	0.384	15.544	35.083	1.998
14.375	14.635	1.018	15.578	32.678	1.885
14.409	15.116	1.042	15.612	31.555	1.832
14,425	17,883	1,179	15.646	30.031	1.760
14.442	22.133	1.384			

ANGEM = 140.86 DEG

-

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13,191	30.252	1.811	14.458	19.914	1.3:4
13 223	28.454	1.726	14.475	22.616	1.445
13 254	25.173	1.569	14.491	15,418	1.092
13 285	21.352	1.385	14.527	12,586	3.943
17 717	25.173	1.569	14.524	23.285	1,473
13 348	26 926	1.653	14.542	30.937	1.330
17 78%	×1 150	1 854	14.557	35.714	1.952
17 272	010172 NG 684	2 115	- 4 - 573	33.624	1.971
10.414	34 300	2 2 2 8	14.5%5	39.468	2.245
10.440	30.020	2.070	14.630	43 926	2.314
10.477	27+273	2.200	14 670	A4 517	2 496
13.50/	3/.232	2.100	T4.015	4017	2.140
13.530	31,205	2.177	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47.202	2.373
13.5/0	34.002	2.000	14.700		
13.682	32.995	1.942	14.7/2	キャ・フロと	2.752
13.634	28.559	1.733	14.007	43.783	2,442
13,666	28.924	1.748	14.000	41.529	2.000
13.698	24.499	1.535	14.5/1	40,210	2.701
13.729	24.858	1.554	14.974	44.682	2.40
13.761	22.792	1.454	14.933	44.51/	2.445
13.794	22.295	1.432	14.971	42.716	2.207
13,826	21,127	1.374	15.225	42.421	2.524
13,858	19.524	1.310	15.235	42.087	2.524
13.890	17.711	1.206	15.071	46.752	2.587
13.922	17,666	1.234	15.125	45.131	2.511
13.954	15.014	1.072	15.138	44.727	2.492
13,986	12.946	2,967	15.172	41.176	2.320
14.219	11.103	3.879	15.206	40.861	2.311
14.251	9.395	0.730	15.239	37.535	2.155
14.283	7.237	2.659	15.273	33,983	1.955
14,116	5.574	0.562	15.307	34.972	2.235
î4,148	4,391	2.468	15.340	34.927	2.333
14 181	3.551	2.432	15.374	29.668	1.784
14 215	4.540	0.498	15.408	35.017	2.337
14 245	5.689	0.581	15.442	39.702	1.833
14 278	7.642	2.683	15.475	29,938	1.797
14 311	8,922	0.753	15.512	28,250	1-707
14.014	92880	2,826	15.544	28.095	1.7: 🕤
14 276	12 946	2.067	15.578	25.611	1.633
- 1 - 179	12 845	1,012	15.612	24.249	1.515
	10.0-0	1 040	15.646	23,243	1.475
14,422	14.707	1 4 2 9			<u> </u>
14.442	76.100	1.100			

ANGCM = 148.64 DEG

•

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13,191	5.776	0.593	14.453	2.493	0.370
13,223	3.884	2.475	14.475	5.834	2.471
13.254	3.237	0.428	14.491	3.187	8.474
13.28>	3.535	0.450	14.507	4.293	0.488
13.317	4.482	0.515	14.524	5.229	2.5:3
13.348	7.223	2.685	14.542	5.428	2.50
13.382	8.415	8.753	14.557	6.175	2.522
13.412	12.059	3.845	14.573	2.428	2.575
13.445	9.662	0.823	14.626	6.224	8.625
13.472	0.712	2.825	14.639	0.424	2.635
13 537	5.565	2.762	14.572	6.374	2.634
13 538	E 555	0.762	14.735	4.233	2.444
13 = 72	7 917	2.702	14.738	4.932	0.5:4
13 692	6 374	0.727 0 634	14.772	4 392	0.503
17 674	/ 734	0 531	14.885	4 133	0 400
17 446		0.001	14 838	5 535	2.443
17 408	0.700 0 03 e	2 4 3 5	14.000	5 655	2 • 7 2 G
10.070	2.700	0.407 0 345	17 G 7	× 336	2.436
17 741		2 7 6 6	1 - • 72 - 	× 247	0 • TQU 7 ± < 1
13.701	2.552	2.300	1.4 974	3 535	2 • 7 2 3 2 · Δ 2 •
17 906	1.094	4·2/1 0 000	174771	4 382	
10.020	V.047 4 795	2.207	12.062	3 634	C • 200
13.500	1.075	v.237 7.197	15.000	4 435	2 454
17 002	3.07/ 7.7/7	2.106	12.071	2 133	2 400
10.925	0.797	0 · 1 7 0	120102	7.100	0 307
13,927	2.598	0.174	11日 11日の	2.207	
13.950	2.349	2.133 a 000	10.1/2		4 + 4 3 7
14.019	2.54/	0.209	12.200	2.492	2.3/5
14.051	1.295	2.201 3.070	12.239	3.535	2.470
24.000	2,/9/	0.202	12.2/3	1.044	
14,110	0./4/	2.195 a. 023	15.327	2.242 1.000	6.002 7.705
4.140	2.797	0,202	12.344	1.992	6.325
14,181	2.946	0.221	10.074	1.474	0.251
14,213	8.498	0.159	15.428	1.542	8.317
14.240	2.349	0.133	15.442	1.494	0.281
14.278	2.493	0.159	15.476	1.693	2.322
14.311	2.448	8.150	15.510	1.246	2,233
14.344	2.498	0.159	15.544	1.494	2.281
14.376	2.249	2.112	15.578	2.141	0.341
14.429	0.299	0.123	15.612	2.392	2.362
14,420	1.245	2.255	15.646	3,834	2.471
14.442	2,739	0.390			

•

ANGCM = 156.23 DEG

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MR/SR)	(MB/SR)	(MEV)	(NB/SR)	(MBZSR)
13.191	25.322	1.723	14.458	47.292	2.695
13.225	33.392	2.038	14.475	45.369	2.652
13.254	36.595	2.191	14.491	37.193	2.2:3
13.282	47.782	2.718	14.527	23.510	1.541
13.317	-7.183	2.693	14.524	25.465	1.452
13.346	44,143	2.547	14.547	32.282	
13.382	34.359	2,085	- 4 - 5 - 7	3: 817	
13.412	27.928	1.775	-4-573	31 080	
13.445	22.752	1.524	14.676	31 274	4 977
13 475	17.918	1.283	14.630	28 451	1 R C 4
13 52/	-2 388	1 1 7 3	- 4 - 672	22.042	1
3 538	14 804	2 0 74	12.772	20.200	2 + 4 C C + - G C +
13 570	12.0021	2 873		52.202	
13 692	10 160	2.070	17•722 •7 770	32.20-	2.142
17 474	10 370	8 607	14.472	20.720	2
13.007	12.019	0.997	14+962 44-970	37.900	2.345
17 408	24.460	1.000	14.000	42.004	2.014
10.090	14.49/	1.207	14.5/1	47,229	2.240
13 741	12,000	1.820	14.724	40.500	2 • 7 6 7
	. 3 . 924	1.23%	14.935	44.900	2.243
LC./97	12.11/	1.220	14.9/1	40.260	2.54/
13.820	1/.569	1.2/0	10.005	50.604	2.551
13.500	19.210	1.374	12.015	54,655	2.553
13.590	17.918	1.200	15.2/1	40,965	2.582
13.926	19.492	1.353	15.105	48.486	2.752
13.994	19.547	1.307	12.130	49.518	2.823
13.980	19.166	1.340	15.172	42.337	2.603
14.219	13.248	1.243	15.206	47.563	2.728
14.251	11.294	0.939	15.239	40.585	2.662
14.285	8.633	2.791	15.273	46.206	2.544
14.110	5.353	0.655	15.307	47.835	2.721
14,148	5.227	2,635	15.340	43,654	2.525
14.181	8.253	0.769	15.374	47.823	2.653
14,213	9.719	0.852	15.428	47.455	2.723
14.240	14.551	1.111	15.442	51.201	2.378
14.278	18.569	1.316	15.476	51.038	2.871
14.311	22.898	1.491	15.510	53.264	2.975
14.344	27.419	1.751	15.544	52,450	2.937
14.370	35.835	2.155	15.578	51.292	2.374
14.4-29	38.227	2.258	15.612	49.572	2.822
14.425	38.984	2.304	15.546	46.297	2.039
14.442	47.346	2.698			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

ANGCM = 163.10 DEG

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERRCR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13.191	148.893	7.430	14.458	213.493	12.393
13.223	149.726	7,467	14,475	223.659	12.845
13.254	135.508	8.194	14.491	192.894	9.343
13.282	134.853	9.083	14.507	113.747	5,312
13.317	179.101	8.819	14.524	144.129	7.211
13.345	156.147	8.223	14.542	173 034	2 5/0
13.382	138.617	5.957	14.557	175 502	5 633
13 412	117 465	5 043	14 573	187 787	
13 24.5	127 937	5 544	14 676	194 407	9+410 0 370
13 275		4 043	14.020	107.020	94072 94072
13 597	20.777	.	14.007	190.244	9.459
17 5767	20.244	4.034	14.572	222.9/0	9.910
12.500	54.35 <u>1</u>	4.452	14.725	213.252	12.387
13.572	52.409	4.274	14.738	214.535	12.446
13.522	23.131	4.398	14.772	221.684	12.774
13,634	/6.215	4.075	14.865	235.245	11.387
13.665	53.712	4.425	14.839	239.254	11.571
13,698	83.315	4.393	14.371	249.859	12.267
13.729	17.903	4.156	14.924	251.834	12.155
13.761	79.646	4.237	14.933	256.307	12,363
13.794	89.522	4.693	14.971	259.735	12.523
13.826	99.339	5.147	15.005	258.050	12.443
13.858	93.817	5.123	15.238	262.540	12.554
13.890	123.426	5.335	15.271	255.843	12.342
13.922	98.203	5.086	15.125	247.593	11.965
13.954	92.974	4.761	15.138	245.780	11,024
13,986	62.266	4.350	15.172	247.129	11,942
14,219	64.425	3.532	15.226	238.937	11.544
14.251	53.388	3.214	15.239	232.635	1 . 275
14.285	42.931	2.523	15.273	226 796	1 370
14 116	33.926	2 295	15.327	220.790	17 800
14 148	34 275	2 111	48 320	227.445	14 305
14 161	63 766	2 861	15 372	227.172	
14 013	A 600	3 373	12.074		12 - / 31
14 246	77 907	3.072		222,001	12.020
14.240	13.023	3.930	12.4-2	234.929	11.382
17.2/9	70.000	4.99/ 4 aost	12.4/5	237.228	11.579
14.011	1// 1/2	D.03D	12.210	232.232	11.251
24.544	100.112	0.842	12.244	234,454	11.361
14.3/0	-54.520	5,149	15.578	222.439	12.829
14,489	192.231	9.422	15.612	212.796	10.366
14.425	194.554	9.528	15.646	222.273	9.782
14.442	205.941	10.051			

ANGCM = 169.95 DEG

ENERGY	X-SEC	ERROR	ENERGY	X-SEC	ERROR
(MEV)	(MB/SR)	(MB/SR)	(MEV)	(MB/SR)	(MB/SR)
13,191	326,274	15.602	14.458	452.658	21.397
13,223	331.021	15.819	14.475	471,948	22.231
13.254	358.281	17.269	14.491	379.152	18.027
13.285	377.509	17.951	14.577	253.803	12.277
13.317	378.147	17.614	14.524	341.791	16.313
13.346	339.722	16.215	14.542	393.391	15.683
13,380	292.199	14.039	14.557	428.624	19.377
13.412	267.372	12.900	14.573	416.879	19.757
13 443	230.747	11.631	14.606	425 919	20.217
13.475	221.978	10.816	14.639	435.256	22.599
13.507	207.557	10.154	14.572	452.902	21.425
13.538	275.184	10.245	14.705	473.428	22.348
13.572	278.227	10.185	14.738	484.057	22.837
13 692	221.512	12.766	14.772	518.680	24.424
13 634	231.046	9,855	14.825	534.014	25.127
13 666	140 820	9.799	14.838	552.391	25.9.9
13 698	107 201	9 673	14.971	557 319	26.105
13 729	200 803	9.844	14.904	557.198	26.193
13 761	212 303	10 372	14.938	566 508	26.515
13 704	218 512	10.657	14.971	562 796	26,445
13 826	227.516	11.070	15.005	549.263	25.733
13 858	226 177	11 229	15.238	562 240	26.329
13 892	223.813	10.863	15.271	544.482	25.627
13 022	218 875	10.673	15,105	547 279	25 735
13 054	225.793	10 273	15,138	531 276	25,001
13 085	184 434	9 792	15.172	529 694	24,929
14 019	156 383	7 802	15.226	516 611	24.329
14 751	134.599	7.277	15.239	511 274	24.975
14 285	112 250	5 678	15.273	469 168	23.971
14 115		5 1 9 2	15.327	485 438	23.337
14 148	100 479	5 318	15.34%	494 219	23.322
14 181	118 230	6 245	15.374	481 027	20+0, 5
14 21.5	145 266	7 281	15 406	288 XQC	22.707
14.210	166 747	0 103	15 442	460.495	23,840
14 078	234 742	11 243	15 476	492.472	22.00
14 311	201./17 274 KGO	13 798	15 512	405 278	22.707
1/ X/A	514 94R	14 010	15 547	470 020	20.092
1/ 776	340 MEX	エマ・アとく イアーウォマ	15 572	7/6.902 ABO 501	24 701
14,070	402.004 40x 2xx	10 400	T3+2/3	777.271 AII 704	61+701 20 A27
14.407	410 104	10 040	10.012	431./20	エビ・サンイ 10 0/2
14.4 6 2	717.171	17,002 17,002	73+240	420.400	72.270
14.446	737.017	20.000			

. -

APPENDIX II

ANGULAR DISTRIBUTIONS OF 120(ALPHA, ALPHA)120

ENERGY = LABORATORY ENERGY OF ALPHA PARTICLES AT CENTER OF TARGET. ANGCM = CENTER OF MASS ANGLES. X-SEC = CENTER OF MASS CROSS SECTIONS. ERROP = TOTAL UNCERTAINTY IN CROSS SECTIONS.

ENERGY = 13.191 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERRCP
(DEG)	(ME/SR)	(MEZSR)	(DEG)	(MB/SR)	(MB/SR)
15,310	4826,222	221.304	110.937	15.623	0.924
18.632	2132,612	97.868	113.442	<u>15.11</u> 9	2.926
21.948	1051.833	48.344	115.362	14.981	2.926
25.232	531.571	23.126	118.242	20.555	1.197
28.520	273.792	12,551	122.583	25.428	1,434
31.620	159.391	7.447	122.892	25.928	1.615
35.060	112.623	5.213	125.152	37.324	2.224
38.310	62.562	3.929	127.390	43.484	2.298
41.540	59.119	2.854	129.582	45.655	2.416
44.750	38.616	1.915	131.742	49.493	2.554
47.948	22.663	1.182	133.870	47.758	2.522
51.120	16.360	0.892	135.960	44.394	2.376
54.278	16.447	0.898	138.020	39.891	2.176
57.420	23.821	1.241	140.350	34.924	1.952
62.500	32.626	1.651	142.050	23.433	1.422
63.580	40.606	2.022	144.032	18.329	1.182
66.630	42.597	2.117	145.970	10.672	0.808
59.660	39,834	1,993	147.380	5.687	2.543
72.650	29.323	1.498	149.772	3.177	0.385
75.610	18.656	1.022	151.642	4.375	2.471
78.550	7.310	0.513	153.490	11.152	2.858
81,450	1.358	2.166	155.312	24.373	1,519
84.310	2.416	0.289	157.112	42.324	2.280
37.150	3.716	0.312	158.892	66.627	3.512
89.940	11.394	8.724	162.660	96.443	4.804
92.700	22.651	1.141	162.412	135.399	6.694
95.430	25.325	1.363	164.140	171.773	8.371
98,112	32.602	1.614	165.870	205.671	9.933
100.762	29.762	1.580	167.580	263.322	12,584
103.380	24.642	1.348	169.282	319.866	15,182
125.952	22.534	1.163	178.978	366,338	17.318
128.480	19.578	1.125			

ENERGY = 13.285 MEV

•

ANGCM	X-SEC	ERROR	ANGOM	XHSEC	ERRCR
(DEG)	(MBZSR)	(MBZSR)	(DEG) -	(MBZSR)	(MB/SP)
15.310	4513.045	197.785	110.952	18.227	1.0+3
18,632	1935.242	91.112	113.442	17.849	1.252
21.942	976.942	41.699	115.860	19.453	1.135
25.230	455.112	21.041	118.240	22.241	1.273
28.522	245.425	11.386	120.580	27.937	1.547
31.822	151.635	7.089	122.890	32.928	1.603
35.260	109.238	5.138	125.152	37.392	2.222
38.310	61.681	3.885	127.390	43.771	2.326
41.540	58.113	2.826	129.580	45.420	2.391
44.750	39.515	1,954	131.740	44.242	2.345
47.948	24.063	1.245	133.870	44.345	2.359
>1.122	16.128	0.860	135.962	43.254	2.169
54.270	15.556	2.859	138.322	35.518	1.947
57.422	21.399	1.128	142.252	27.560	1.622
62.522	31.599	1.622	142.250	19.327	1.215
53.580	39.398	1.952	144.330	12.769	0.925
66.630	=1.473	2.252	145.978	ó.768	8.555
59.66Ø	39.391	1.956	147.882	4.228	3.451
12.658	11.759	1.622	149.722	4.658	2.451
75.610	18.724	1.222	151.642	9.429	3.757
78.550	9.531	3.594	153.490	19.625	1.275
51.450	2.812	2.256	155.310	36.899	2.126
54.310	2.641	8.111	157.110	61.981	3.282
87.150	3.182	0.253	158.892	98.759	4.619
59.940	8,962	2.582	162.662	127.678	6.324
92.720	13.996	2.920	162.412	171.569	8,347
95.438	21.803	1.196	164.148	216.423	12.413
98.110	26.311	1.412	165.870	268.526	12.889
222.760	26.192	1.411	167.582	326.445	14.553
103.380	24.556	1.341	169.280	362.424	17.125
105.950	22.223	1.239	172.972	426.484	22.360
105.482	9.798	1.131			
	-				

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

ENERGY = 13.443 MEV

-

ANGCM	x-SEC	ERROR	ANGOM	X-SEC	ERROR
(JEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.31K	3957.44 <u>1</u>	182.850	112.982	7.259	2.517
18,630	1898.273	87.123	113.443	7.924	2.567
21.942	963.625	44.293	115.850	10.336	2.692
25,230	543.397	25.059	118.242	16,566	2.995
28.520	335.386	15.525	122.552	23.574	1.335
51.822	224.252	18.413	122.890	- 29.499	1.622
33.26V	146.680	6.859	125.132	36.684	1.957
38,312	25.573	4.656	127.3-2	46.726	2.526
41.540	64.377	3.269	129.580	49.623	2.458
44.758	18.369	1.897	131.742	51.872	2.689
47.940	21.094	1.133	133.872	51.206	2.667
51.120	12.235	0.69 3	135.968	50.878	2.661
54.272	13.724	7.765	138.322	46.032	2.445
27.42Z	22.548	1.177	142.252	48.728	2.2
60.522	35.762	1.789	142.353	33.843	1.896
63.580	45.378	2.234	144.332	15.763	1.193
56.530	49.842	2.442	145.9°8	15.252	2.927
69.660	47.544	2.342	147.882	13.622	Ø.951
12.650	41.117	2.248	149.772	8.663	2.784
75.610	29.664	1.524	151.642	7.709	2.656
78.550	17.492	0.964	153.492	11.285	2.542
81.452	8.291	0.523	155.312	18.854	1.235
84.310	2.054	2.212	157.112	32.628	1.827
37.152	8.428	2.287	158.892	47.272	2.594
69.940	2.331	2.232	162.662	71.477	3.722
92.700	6.179	0.442	162.410	108.317	5.055
95.430	9.692	2.623	164.142	125,272	6.213
98.110	11.739	8.722	165.870	165.050	8.247
120.760	13.052	0.791	167.552	196.549	9.493
123.382	11.847	2.737	169.232	237.850	11.397
125.950	9.50 <u>1</u>	2.629	172.972	255.488	12.210
128,482	7.358	2.527			

.

.

EMERGY = 13.572 MEV

.

.

ANGOM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(ME/SR)	(MB/SR)	(DEG)	(MBZSR)	(Me/sr)
15.312	4244.686	194.654	112.98%	3.870	2.354
18.630	1935.966	87.481	113.448	4.266	0,381
21.940	1069.360	49.143	115.862	5.122	2.432
25.230	652.358	32.022	118.240	3.658	2.522
28.520	424.838	18.693	122.580	16.769	1.225
31,500	261.338	12.117	122.890	24.142	1.412
35.060	158.999	7.432	125.150	28.693	1.602
38.310	99.736	4.716	127.398	39.094	2.294
41.540	58.722	2.836	129.580	43.994	2,332
44.750	33.655	1.549	131.742	45.829	2.472
47.943	13.682	2.765	133.870	48.548	2.558
51.128	6.937	2,445	135.960	46.765	2.4+5
54.278	9.525	2.574	138.022	45.156	2.422
57,422	18.458	0.994	142.252	39.335	2.156
52.500	28.157	1.446	142.052	31.171	1.786
63.580	38,899	1,943	144.232	24.930	1.459
66.630	43.367	2.152	145.972	17.272	1,138
69.660	41.325	2.247	147.883	12.381	3.822
72.650	34.142	1.735	149.772	4.622	2.482
75,610	22.771	1.213	151.640	2.283	Ø.329
78.550	13.969	0.806	153.492	2,724	2,352
61.450	6.367	0.444	155.312	7.299	2.655
54.310	2.253	0.215	157.112	15.432	1.13=
87.150	2.174	2.224	158.892	32.288	1.929
<u> 99.940</u>	5.824	2.426	152.562	50.354	2.764
92.780	18.432	0.661	162.412	74.383	3.854
95.430	13.955	0.831	164.140	101.298	5.122
98.110	16.322	2.948	165.872	129.347	6.428
100,760	15.480	3.914	167.580	161.624	7.917
123.380	13.253	0.S05	169.280	202.368	9.771
105.950	10.234	2.673	170.978	236.385	11.358
108,482	5.932	8.462			

•

ENERGY = 13.761 MEV

•

ANGOM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MR/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.312	3303.241	151.593	110.982	9.161	2.525
18.632	1832.189	84.097	113.442	6.719	0.506
21.940	1143.916	52.557	115.360	3.366	8.328
25.230	7%1.655	32.291	118.240	4.039	2.372
28,520	425.654	18.727	122.583	6.225	2.436
31.802	238.686	11.377	122.890	11.255	2.758
35.260	122.869	5.772	125.152	15.622	0.977
38.310	39.191	2.852	127.392	21.733	1.275
41.540	22.768	1.147	129.582	25,589	1 444
44.750	4.732	2.332	131.742	25.942	1.632
47.940	2.195	0.220	133.872	29.494	1.643
51.120	7.993	0.495	135.963	32.334	1.711
54.270	18.975	1.012	138.322	29.119	1.663
57.428	32.636	1.545	142.052	24.767	1.466
50.500	44,444	2.190	142.050	19.702	1.232
63.560	52.541	2.473	144.232	13.780	2.952
66.630	49.541	2.431	145.972	8.948	0.729
<i>59.65</i> 0	44.275	2.183	147.880	3.378	8.447
72.650	32.368	1.671	149.772	1.341	2.277
75.610	22.839	1.118	151.640	2.443	2.135
78,550	12.316	2.628	153.493	2.804	2.363
81.450	2.302	2.254	155.310	9.344	0.759
84.310	1.297	0.151	157.112	19.907	1.298
67.150	4,593	0.356	158.892	37.265	2.132
89.940	11.023	2.677	160.663	55.955	3.356
92.722	18.979	1.057	162.410	81.217	4.125
95.430	25,282	1.346	164.142	105.582	5.3:4
98.110	29.505	1.556	165.870	136.059	6.722
100.760	31.134	1.638	167.550	159.574	7.828
103.380	27.484	1.474	169.283	193.586	9.374
125.950	22.863	1.172	172.972	235.308	11,339
108.482	15.492	0,925			

ENERGY = 13.858 MEV

. •

-

.

ANGOM	X+SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(Mg/SR)	(MBZSR)	(DEG)	(MB/SR)	(MB/SR)
15.310	37-4.936	172.662	112.983	11.949	8.759
18.630	21 2.521	96.483	113.440	6.266	0.573
21.940	1204.851	55.347	115.360	5,451	2.443
25,230	739.988	34.245	118.240	6.510	2.524
28.520	432.641	19.870	120.580	9.592	2.666
31 822	225.795	18.530	122.892	<u>1</u> 3.779	2.878
35.260	123.926	4.899	125.158	18.502	1.125
38.310	42.374	1,972	127.390	25.299	1.429
41.542	9.327	2.575	129.582	27.443	1.546
44 750	1,495	0.157	131.742	31,056	1.723
47 942	6.378	0.413	133.972	32.526	1.800
51 122	-7.842	0.955	135.962	33.192	1.699
54 270	34.219	1.713	138.323	28.071	1.629
57 400	43.046	2.351	140.050	23.702	1.411
60 500	56.534.	2.743	142.752	18.275	1.163
63 580	40.342	2.921	144.232	11.836	0.850
66 632	56 282	2,738	145.972	6.551	2.575
69 663	15 572	2.249	147.882	3.377	0.389
72 652	×2 722	1.662	149.772	2.622	Z.158
75 610	18 247	3.987	151.642	3.994	2.224
78 550	2 273	2.519	153.492	5.643	2.544
81 450	- 793	2,191	155.310	13.261	2,959
84 310	2.106	0.214	157.112	26.223	1.588
87 150	7 336	2.473	158.392	43.788	2.431
39 942	12 842	7.57	160.662	65,922	3,466
92 70M	22 527	1.219	162.412	94.762	4.823
95 432	20 184	1.533	153.143	123.695	6.142
38 110	27.362	1.756	165.872	153.885	7.763
120 760	31 725	1.768	167.582	192.872	9.237
122,700	59.620	1.617	169.283	222.694	12.702
175 057	30.039 37 294	1.329	172.973	268.895	12.825
4 28 282	5	1.258			
100.400	20.002				

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.
ENERGY = 13.954 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERRCR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3689.789	169.221	118.952	9.857	Ø.65%
18.632	2144.232	98.394	113.442	5.875	2.462
21.940	1242.795	57,287	115.860	4.281	0.380
25,232	732,585	33.615	118.243	3.59 2	8.455
28.520	395.959	18.282	120.590	7.981	2.565
31.822	164.491	8.592	122.890	12.989	2.841
35.262	69.269	3.311	125.132	15.932	1.238
38.312	10.534	1.032	127.392	21.324	1,255
41,542	2.433	0.211	129.580	24.229	1,343
44,750	5.328	2.362	131.742	26.321	1.504
47.942	17.441	2.935	133.872	25.387	1.515
51.120	32.551	1.640	135.963	24.463	1.433
24.270	46.450	2.275	138.022	21.820	1.316
57.420	58.848	2.848	140.350	17.785	1.132
60.500	62.844	3.034	142.332	12,998	2,902
63.580	5 2.35 Ø	2.924	144.030	7.527	0.626
66.630	52.628	2.571	145.972	3.581	2.471
69.66Z	38,907	1.944	147.852	2.485	2.327
72.652	24.822	1.298	149.772	0.510	8.144
/5.610	11.961	0.723	151.542	2.442	2.332
78.550	3.125	0.269	153.490	6.710	0.607
81.452	0.169	0.255	155.312	13.905	Ø.994
34.310	3.253	0.281	157.112	20.269	1.697
87.150	9.645	2.636	158.892	44.735	2,473
89,940	19.332	1.254	162.660	62.817	3.325
92.700	27.663	1.459	162.410	91.110	4,638
95.430	35.302	1.823	164.142	107.398	5.394
98.110	37.350	1.903	165.870	143.121	7.042
130.760	35.647	1.844	167.520	171.643	8.353
103.380	31.089	1.642	169.232	203.975	9.847
135.950	22.230	1.234	178.972	238.743	11.445
128,482	16.905	2.998			

ENERGY = 14.019 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(JE/SR)	CMEZSR	(DEG)	(MB/SR)	(MEZSP)
15.310	3785.565	173.622	110.983	7.496	0.556
18,632	2212.411	121.532	113.442	4.263	2.375
21,940	1372.592	62.960	115.862	2.326	2.273
25.230	/-5.029	34.427	118.242	3.460	2.34%
28.522	387.781	17.920	120.582	5.125	2.452
31.622	143.331	7.635	122.892	9.361	2.545
35.260	58.257	2.819	125.150	13.391	2.8**
38.310	12.748	2.723	127.390	16.338	1.208
41.540	2.236	0.210	129.582	18.376	1.143
44.750	18.976	0.643	131.742	18.668	1.166
47.940	27.351	1.425	133.872	18.884	1,185
01.120	45.022	2.221	135.960	19.252	1.201
54. <u>2</u> 70	>9.246	2.877	138.322	17.238	1.111
57.400	57.476	3.258	142.053	13,149	2.923
68.520	57.894	3.280	142.050	9.602	2.75:
63.550	67.918	2.953	144.030	5.129	2.670
56.530	21.363	2.527	145.972	3.017	2.376
09.662	37.561	1.896	147.880	1.630	2.271
/2,650	23.965	1.273	149.773	2.557	0,157
75.518	11.117	2.675	151.642	2,257	0.314
75.550	2.593	2.254	153.492	4.517	6.404
S1.45Ø	2.519	0.101	155.310	11.139	2.873
84.310	3.389	2.293	157.112	16.383	1.151
87.150	18.212	2.647	158.890	30.519	1.345
89.940	19.302	1.105	162.562	47.133	2.673
92.722	27.972	1.492	162.413	59.468	3.216
95.430	32.825	1.684	164.143	74.616	3.924
98. <u>11</u> 0	34,474	1.823	165.870	109.523	5.34
102.762	32.265	1.706	167.580	125.741	6.202
123.380	27.366	1.508	169.253	151.777	7.405
125.952	22.145	1.155	178.972	173.146	8.343
128,480	13.153	ଡ.୫2୨			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

ENERGY = 1-.083 MEV

ANGCM	X-SEC	ERROR	ANGOM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MEZSR)	(MB/SF)
15.310	4240.780	194.474	118.983	6.514	2.499
18,630	2235.332	122.573	113.402	2.815	2.297
21.942	1331.562	61.162	115.852	0,837	2.153
25,230	751.352	34.575	118.240	3.864	0.155
28,520	383.193	17.705	120.582	2.261	0.253
51.822	137.322	7.341	122.890	3.821	2.374
35.260	-6.171	2.255	125,150	7.224	2.550
38.310	5.934	2.443	127.392	8.436	2.633
41.542	6.383	2.418	129.582	9,958	2.722
44.752	28.132	1.265	131.742	12.327	2.749
47.940	41.740	2.263	133.872	12.572	2.747
51.120	5.755	2.709	135.962	9.629	0.724
54.278	72.191	3.374	138.322	3.612	8,609
57.400	/2.515	3,483	142.352	7.126	0.605
60.520	71.117	3.422	142.350	5.991	2.5:5
63.580	51.625	2.990	144.032	3.729	2.4.5
66.63Ø	-8.235	2.369	145.978	3.352	2.345
59.66 0	4.111	1.732	147.882	1,497	2.254
12.650	22.345	1.192	149.772	1.235	0.212
75.610	11.145	2,672	151.642	1.355	2.245
78.550	4.214	8.333	153.490	2,399	2.378
81.452	2.349	2.232	155.312	5,917	Z.578
54.310	5.169	0.389	157.110	12.398	2.834
87.150	11.671	2.711	158.893	17.750	1,181
39,940	19,221	1.372	162.660	25.635	1.6(4
92.700	24.360	1,339	162.412	34.559	2.036
95.430	31.181	1.638	164.143	43.421	2.691
98.110	32.456	1.702	165.870	62,323	3.344
122.762	31.512	1.665	167.580	76.897	4.225
123.382	23.292	1.373	169.280	97.653	2.967
135.950	17.889	1.042	172.972	125.367	6.254
128.480	11.322	0,735	_		

68

ENERGY = 14.148 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(NB/SR)	(ME/SR)
15.312	4302.755	220.887	112.980	ó,163	2.474
18.630	2492.859	114.373	113.442	2.923	2.298
21.942	1389.915	63.831	115.860	1.257	2.187
25.230	776.628	35.727	118.240	0.182	2.272
28.520	358.984	16.592	122.580	2,348	2.295
31.800	144.155	6.747	122.592	0.773	0.151
35.262	36.534	1.815	125.150	1.424	2.212
38.310	7.439	2.463	127.390	2.256	0.263
41.540	13.338	3.729	129.580	2.815	2.319
44.750	32.892	1.556	131.740	3.401	Ø.361
47.940	52.977	2.481	133.870	3,921	0.397
51.120	63.655	3.256	135.962	3.540	0.379
54.278	59.585	3.345	138.323	3.983	8.4-1
57.420	69.183	3.324	140.250	3.956	2.4.4
62.500	63.377	3.061	142.050	3.382	0.382
63.580	54.784	2.659	144.232	2.659	0.336
66.630	43.354	2.147	145.972	1.932	2.285
59.560	51.484	1.635	147.850	2.233	7.007
72.650	20.632	1,127	149.772	0.359	2.121
75.612	12.451	3.728	151.542	2.652	2.145
78,550	7.138	2.476	153.490	1.280	0.217
81.452	5.717	2.429	155.310	3.522	2.413
84.310	7.173	0.485	157.110	8,259	2.758
87.15Ø	12.742	2.652	158.890	11.667	2.894
89.940	16.292	0.928	160.663	28.956	1.364
92.722	22.758	1,142	162.410	31,469	1.874
95.430	23.328	1.265	164.143	46.449	2.583
98.110	22.937	1.254	165.870	59.524	3.197
130.760	21.972	1,213	167.550	73.445	3.846
103.380	19.386	1.299	169.282	87.172	4.486
125.950	12.544	3.783	178.973	129.597	5.522
128.480	9.569	0.641			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ENERGY = 14.311 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERRCR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SP)
15,310	4065.331	187.362	110.982	5.455	8.451
18.630	2293.650	125.257	113.440	4.720	8,415
21.940	1322.793	59.760	115.362	3.632	2.357
25.230	650.243	29.949	118.242	3.379	0.347
25.520	293.325	13.594	122.580	3.217	0.329
31.800	109,955	5.191	122.843	3.838	3.384
35.260	32.328	1.530	125.150	4.272	6.414
38.310	12.361	3,707	127.398	6.236	0.531
41.540	20.578	1.091	129.580	7.523	0.607
44.750	34.312	1.726	131.740	9.188	0.701
47.942	45.338	2.235	133.870	9.851	0.741
21.128	52.692	2.484	135.960	11.375	2.827
54.270	52.338	2.457	138.020	11.593	8.84e
57.400	45,279	2.232	140.052	12.464	2.7⊆4
62,522	41.352	2.064	142.252	8.232	2.684
63.580	37.826	1.867	144.030	5,661	8.544
65.630	31.956	1.633	145.972	3.028	8.383
69.550	29.668	1.535	147.382	2.892	2.278
72.650	24.541	1,307	149.772	0.304	0.115
75.610	22.464	1.117	151.642	2,392	2.320
78.550	15.391	0.533	153.492	7.007	0.652
81.450	11.215	8.698	155.310	16.301	1.147
64.310	7.912	2.533	157.113	33.282	1.975
87.150	5.065	0.393	158.892	52.401	2,583
39.940	3.735	3.325	150.552	76.035	3.983
92.700	3.567	0.319	162.413	114.266	5,743
95.430	3.973	3.344	164.142	145.341	7,190
98.110	5.333	2.423	165.870	173.167	8.725
130.760	6.317	2.473	167.580	220.995	12.677
103.380	6.132	2.473	169.283	256.732	12.322
105.950	6.322	0.487	170.978	315.004	15.045
138.482	5.941	3.472			

70

- -

ENERGY = 14.425 MEV

-

ARGEM	X-SEC	ERROR	ANGOM	X-SEC	ERROR
(DEG)	(BHE/SR)	(MB/SR)	(DEG)	(ME/SR)	. (MB/SR)
15.310	4104.819	190.995	112.993	7.262	2.525
18.630	2224.039	121.144	113.442	9.5 14	2,449
21.942	1188.761	54.616	115.862	5.508	2.453
25.232	255.492	26.055	118.243	5.604	2.454
28.520	246.491	11.435	123.580	5.269	2.439
31.322	91.625	4.348	122.893	6.191	2.5.5
35.262	25.852	1.323	125.150	0.235	2.503
38.312	12.914	0.725	127.392	11.187	2.775
41.540	22.589	1.175	129.580	13.362	2.35 9
44.752	35.537	1.773	131.740	10.124	1.829
47.942	43.314	2.133	133.872	17.740	1.116
21.120	42.302	2.389	135.962	17.046	1.092
54.270	41,793	2.268	138.022	18.620	1.104
27.480	38.189	1.925	140.053	10.227	1.255
60,500	33.782	1.735	142.050	11.900	2.858
63,580	30.131	1.542	144.333	8.247	2.574
66.632	26.551	1.377	145.972	4.656	2.476
69.662	23.679	1.248	147.830	1.829	C.2P3
72.650	21.527	1.155	149.772	2.240	6.319
75.610	17.179	0.953	151.542	6.241	2.572
78.550	12.561	0.745	153.490	14.473	1.225
81.450	8.554	0.552	155.312	<u>33.1</u> 25	1.934
84.310	5.123	3.384	157.110	61.626	3.271
37.152	1.690	0.193	158.890	93.799	4.765
69,940	8.229	0.268	160.660	143.496	7.254
92.700	0.432	0.094	162.410	194.545	9.412
95.430	1.858	2.212	164.140	245,046	11.734
98,110	3.970	2.342	165.870	312.852	14.753
120.760	5.588	8.430	167.580	379.881	17,929
103.380	7.192	2.517	169.280	443,715	22.860
125.950	7.596	8.542	172.970	522.038	24,450
138.480	7.231	2.521			

.

ENERGY = 14.475 MEV

ANGCM	X-SEC	ERROR	ANGOM	X-SEC	ERROR
(JEG)	(*3/SR)	(MB/SR)	(DEG)	(NB/SR)	(MB/SR)
15.310	3758.769	172.409	112.980	12.370	2.729
15.632	2016.632	92.575	113.442	8.442	0.62
21,942	1087.537	50.022	115.862	7.240	8.543
25.230	>15.678	23,795	118.240	3.218	2.628
28.522	228.183	12.621	120.580	6.096	2.521
31.802	52.398	3,939	122.892	11.269	2.799
35.262	27.512	1.420	125.153	12.943	0. 840
58.312	15.045	2.343	127.302	18.420	1.168
41.540	22.544	1.136	129.582	23.497	1.475
44.752	21.347	1.143	131.743	27.825	1,629
47.940	32.237	1.635	133.872	29.141	1.712
51.128	34.235	1.740	135.960	32.945	1.7-5
54.278	32.115	1.553	135.020	29.176	1.723
57,423	27.789	1.449	140.350	25.845	1.574
60.500	<1.585	1.164	142.350	19.215	1.203
63.580	17.522	7.975	144.032	13.765	1.722
<i>66.630</i>	19.433	1.371	145.970	8.365	8.724
69.660	17.253	8.972	147.880	5.549	5.436
72.650	14.773	2.852	149.770	3.824	2.499
75.610	12.333	0.653	151.640	3.990	2.777
78.552	6.840	3.444	153.492	23.472	1.374
81.450	2.841	2.274	155.310	42.329	2.334
84.31Ø	2.862	3.143	157.112	65.339	3.51 %
87.152	2.215	0.269	158.890	109.435	5.590
89.940	1.902	0.224	162.563	156.304	7.722
92.720	5.346	0.426	162.412	176.667	8,565
95.430	6.238	3.579	164.142	273.302	13.108
98,110	12.528	0.794	165.870	336.952	16.035
100.760	14.516	0.596	167.580	413.366	19.545
123.382	24.777	0.915	169.283	479.824	22.56?
105.950	14.863	3.925	172.973	512.445	24.309
128.480	13.316	0.842			

ENERGY = 14.491 MEV

ANGCM	X-SEC	ERROR	ANGCH	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3628.232	169.165	112.953	11.572	8.787
18,630	2046.328	93.938	113.442	8.37 5	8.626
21.940	1071.376	49.261	115.852	4,903	0.445
25.232	>37.602	24.821	118.248	4.753	2.441
28.520	232.578	10.828	120.580	5.449	2.487
31.502	· · · · 961	3,829	122.890	5.911	C.573
35.262	22.182	1.175	125.150	12.851	2.78:
38.310	13.951	8.652	127.390	14.670	2.984
41.540	19.862	1.071	129.582	15.279	1.169
44.750	36.233	1.829	131.742	21.418	1.325
47.942	58.274	2.477	133.870	25.181	1.517
51.120	45.171	2.291	135.962	24.131	1.470
54.272	-5.658	2.272	138.322	24.393	1,498
57.422	37.782	1.911	142.252	23.302	1.311
60.500	24.244	1,751	142.350	15.162	1.110
63.582	22.473	1.213	144.032	11.195	2.870
66.63Z	19.910	1.095	145.970	6.446	2.616
69.66 2	14.432	2.341	147.850	4.295	2.475
72.650	9.481	2.629	149.772	4.812	8.527
75.612	6.522	0.472	151.642	6.528	2.753
78.550	2.918	0.276	153.490	20.466	1.378
81.450	2.744	2.259	155.310	37.914	2.224
84.310	4.892	0.392	157.113	60,981	3.312
87.150	9.043	3.627	158.892	84.355	4.474
89.942	14.652	3.882	160.660	123.229	6.223
92,720	12.506	1.078	162.413	163.186	8.051
95.430	23.835	1.325	164.143	223.655	10,835
98.112	27.311	1.494	165.873	283.364	13.583
130.762	27.101	1.490	167.580	356.789	16.957
123.382	24.727	1.354	169.280	432.750	22.354
105.950	21.281	1,231	172.970	489.299	23.243
128.482	16.265	1.021			

.

ENERGY = 14.537 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(ME/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3537.443	164.546	110.980	11.789	3.772
18.630	1962.495	93.362	113.442	13.428	0.711
21.940	1136.766	50.868	115.860	8.310	0.611
25,230	544.317	25.395	118.24%	8.119	2.528
28.520	232.131	10.697	120.530	6.884	8.549
31.800	67.294	3.225	122.890	7.495	2.587
35.360	21.681	1.139	125.150	9.632	2.724
38.310	21.979	1.154	127.390	10.351	2.745
41.54Z	39.108	1.945	129.550	11.733	2.823
44,750	59.532	2.885	131.740	12.637	2,876
47.940	09.732	3.354	133.872	15.587	1.229
51.120	59.394	3.329	135.960	16.192	1.266
24.278	61.252	2,972	138.020	17.967	1.161
57.420	49.699	2.444	140.050	16.222	1.273
50.500	38.353	1.925	142.050	15.361	1.348
63.580	25.363	1.353	144.232	12.172	0.897
66,630	17.925	ଷ୍ଟ୍ରେର	145.970	8.504	8.711
69.560	12.332	2.731	147.582	5.485	2.544
72.650	9.122	3.579	149.772	3.962	0.453
15.610	6.983	2.642	151.642	4.319	2.482
78,552	6.859	8.474	153.492	7.916	2.722
81.450	7.447	2,526	155.312	16.625	1.163
84.310	8.879	0.581	157.110	31.105	1.872
87.150	11.362	3.735	158.390	52.262	2.364
59.940	13.613	3.817	162.660	74.416	3.929
92.702	16.179	2.943	162.410	106.051	5.376
95.432	16.710	2.973	164.140	141.298	6,995
98.110	22.957	1.178	165.872	175.864	8.599
100.760	19.432	1.113	167.580	219.079	10,589
123.380	19.126	1.124	169.282	262.825	12.739
135.950	16.165	0.971	172.972	320.380	15.246
128.482	15.089	0.925			

.

ENERGY = 14.524 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MS/SR)	(DEG)	(MB/SR)	(M8/SP)
15.312	3814.388	174.948	110.980	13.021	2.836
18.630	2099.182	96.348	113.440	12.998	2.341
21.942	1144.713	52.610	115.860	12.266	2.302
25.230	553.598	25.523	118.240	12.528	0.831
28.520	234.169	10.885	120.580	12.250	2.825
31.800	82.555	3.937	122.890	12.607	0.353
35.260	29.410	1.498	125.150	16,080	1.826
38,312	25.332	1,311	127.390	10.645	1,158
41,548	43.216	2.137	129.580	19.290	1.196
44.750	58,313	2.832	131.740	23.634	1.413
47,940	62.853	3,243	133.670	25.171	1.541
51,120	58.563	2.849	135.960	27.682	1.522
54.270	46.455	2.295	138.023	27.194	1.628
57,400	35,195	1.780	142.052	25.546	1.538
62,500	26.050	1.361	142.050	21.720	1.364
63,562	19.706	1.238	144.030	15,636	1.076
66.63Ø	14.466	8.829	145.972	12.273	2.903
59.55Z	11.394	0.687	147.880	7.397	0.659
72.650	12,921	2.667	149.770	4.430	0.486
75.610	12.046	2.629	151.643	4,939	0.524
78.350	9.486	3.605	153.490	9.352	0.785
81.450	7,827	0.528	155.312	19.423	1.307
84.310	6.692	0.475	157.110	36.324	2.126
87.150	5.214	3.403	153.890	59.941	3.238
89,940	4.797	3.385	160.660	92.833	4.7ć7
92.700	5.189	2.423	162.412	133.343	6.541
95.430	7.666	2.541	164.143	180.983	8.837
98.110	8.005	2.561	165.870	225,951	12.908
100.760	9.782	0.655	167.580	276.784	13.246
103.390	13.678	2.849	169.250	324.524	15.441
105,950	12.368	0.792	172.972	385.599	18.247
108.480	13.161	0.836			

75

ENERGY = 14.540 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15,310	4033.120	184.982	110.980	13.733	0.883
18.630	2144.956	98.455	113.442	13.212	0.865
21.940	1198.754	55.296	115.860	11.932	8.828
25.230	569.037	26.248	118.240	13.249	2.872
28.520	251.171	11.674	120.582	14.702	0.959
31.828	93.161	4.433	122.890	15.528	1.236
35.960	36.316	1.825	125.150	18.654	1.167
38.310	26.410	1.370	127.390	24.848	1.471
41.542	35.897	1.810	129.580	27.809	1.623
44.750	45.700	2.263	131.743	34.266	1.924
47.940	49.282	2.430	133.870	34.405	1.949
51.120	45.524	2.260	135.960	37.387	2.298
54.270	37.139	1.875	138.020	36.652	2.274
57.422	26.794	1.403	140.050	33.783	1.949
60.500	19,959	1.388	142.050	29.633	1.763
63.580	13.885	0.808	144.030	21.481	1.382
66.630	12.646	2.752	145.970	16.190	1.131
69.660	11.623	8.707	147.382	3.896	2.759
72.650	12.321	8.744	149.772	4.390	0.407
75.610	12.124	0.737	151.642	4.684	2.521
78.550	9.928	2.635	153.492	9.915	2.835
81.450	7.528	0.537	155.310	22.607	1.458
84.310	4.532	0.371	157.112	43.627	2.497
87.150	2.342	8.279	158.892	73.584	3.901
89,940	2.434	0.257	162.660	110.651	5.620
92.720	3.299	0.313	162.413	174.614	8.571
95.430	4.962	- 0.410	164.142	216.583	12.525
98.110	7.348	0.539	165.870	274.561	13.173
100.760	10.020	2,677	167.582	324.174	15.456
123.380	12.349	2.798	169.282	392.558	18.597
125.950	12.333	8.823	172.972	462.207	21,795
128.480	12.935	2.838			

•

ENERGY = 14.590 MEN

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(ME/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15,310	3001.943	155.365	112.980	13.162	8.677
18.630	1922.211	58.224	113.440	9.526	0.652
21.942	1009.173	49.134	115.360	12.462	2.704
25.232	216.242	23.787	118.242	12.283	0.798
25.520	227.770	12.577	122.583	14.831	2.929
51.800	37.515	4.154	122.392	21.254	1.241
35.060	33.459	1.532	125.152	24.191	1.387
58.312	29.995	1.352	127.393	31.370	1.733
41.543	24.222	1.239	129.580	35.577	1.935
44.752	30.017	1.517	131.740	41.633	2.225
47 948	32.347	1.625	133.670	43.114	2.322
51.122	20.174	1.483	135.962	45.222	2.409
54.273	24.075	1.250	135.220	46.224	2.454
27.400	17.563	3.951	140.050	41.568	2.257
52.502	12.953	2.733	142.252	33.922	1.923
53,582	10.520	3.626	144.030	25.837	1.537
56.632	11.064	3.654	145.970	16.536	1.293
69.663	12.346	3.723	147.380	13.568	2.805
2.652	12,364	3.722	149.7/3	4.850	2.403
25.612	11.783	8.697	151.642	3.526	C.4:3
78.552	9,482	2.591	153.492	9.971	0.792
81.452	6.943	3.471	155.310	23.686	1.483
84.312	3.740	8.310	157.112	42.976	2.399
87.150	1.847	0.202	158.893	75.268	3.941
39,942	1.259	2.164	162.663	112.423	5.623
92.722	1.835	8.207	162.412	169.095	3.234
95.432	3.597	0.314	164.142	224.187	12.769
98.110	4.583	2.372	165.872	280.582	13.362
122.762	7.986	2.550	167.582	355.321	16.795
123.382	12.247	2.665	169.283	429.356	22.193
125.950	12.518	3.634	173.972	493.658	23.145
135.482	18.153	3.671			

-

•

ENERGY = 14.672 MEV

.

•

.

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(ME/SR)	(MBZSR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3633.676	158.967	113.982	9.235	0.651
18.632	2039.766	92.252	113.440	7.994	8.594
21.940	1122.224	51,489	115.860	8.643	0.634
25.230	234.6 80	24.657	118.240	11.132	2.765
28.522	237,519	11.040	122.582	15.034	0.962
31.820	73.212	3.509	122.892	19.622	1.222
35.262	25.993	1.341	125.153	25.687	1.533
35.310	13.519	0.765	127.392	34.880	1.925
41,540	18.857	1.015	129.582	42.118	2.271
44.750	25.221	1.312	131.740	49.262	2.612
47.948	28.144	1.448	133.872	54.538	2.86ó
51.128	25.265	1.318	135.902	56.188	2.953
54.270	20.154	1.284	138.323	55.253	2.922
57.432	14.976	2.845	142.352	50.757	2.722
62.522	11.327	8.675	142.052	41.362	2.204
63.580	11.309	2.678	144.032	30.594	1.759
66.630	12.295	2.718	145.972	19.547	1.278
69.662	13.223	8.774	147.352	10.431	8.827
72.650	14.259	2.827	149.772	2.651	2.367
75.612	14.37B	3.522	151.543	1.692	2.285
78,552	11.132	2.684	153.492	7.548	2.784
81.450	7.277	3.522	155.310	20.213	1.343
84.312	3.813	8.325	157.112	47.288	2.167
87.150	1.325	3.175	158.892	83.829	4.132
89,942	0.529	2.119	162.562	119.821	6.015
92,700	1.573	2.195	162.413	127.010	6.353
95.430	3.834	0.340	164.142	253.605	12.175
98.112	5.703	0.445	165.372	317.797	15.125
100.760	8.623	0.599	167.580	394.000	18.626
103.382	10.216	0.583	169.283	178.000	9.534
125.952	9.727	0.563	178.972	453.912	21.476
128.482	12.421	2.705			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•••• • • • •

ENERGY = 14.738 MEV

.

ANGEM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3479.7=5	159.604	112.980	7.509	0.552
13.630	1942.536	59.161	113.442	7.772	0.571
21.940	1034.811	49.856	115.860	9.390	2.653
25,232	516.925	23.832	118.240	10,913	2.743
28,520	220,528	10.251	120.580	15.894	0.989
31,822	77.495	3.696	122.390	23.203	1.333
35.260	21.772	1.137	125.152	33.241	1.681
38.312	12.113	0.689	127.393	39.570	2.123
41.540	18.185	2.974	129.580	46.991	2.475
44.750	25.956	1.335	131.740	53.863	2.803
47.940	28,188	1.441	133.870	60.310	3.1:3
51,120	25.289	1.300	135.960	64.038	3.292
54.272	19.793	1.057	138.020	58.354	3.839
37.422	13.576	3.772	142.352	52,840	2.794
60.502	11.653	2.692	142.350	43.874	2,387
63.58Z	11.254	0.666	144.232	30.510	1.771
<i>66.630</i>	12.775	0.740	145,973	19.209	1.243
69.662	14.303	8.815	147.882	10.557	2.315
72.650	15.082	0.855	149.772	2.588	2.352
75.610	14.205	0.808	151.540	1.964	2.324
78,550	11.385	8.685	153.493	9.273	2.755
81.452	7.411	2.499	155.310	25.332	1.573
84.310	3.765	2.315	157.110	55.737	3.329
87.150	1.123	0.155	158.892	92.705	4.726
89.940	3.685	2.120	162.668	145.785	7.175
92.700	1.672	8.198	162.410	223.299	9.814
95,430	4.367	2.361	164.140	272,536	12.915
98.110	6.498	2.477	165.872	351.907	16.653
100.760	9.326	3.623	167.580	427.395	22.122
123,380	12.310	5.676	169.280	517.398	24.251
105.950	10.650	2.697	170.970	612.342	28.515
108.48Z	9.824	3.661			

79

ENERGY = 14.805 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MBZSR)	(MBZSR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3283.416	150,605	112.982	5.748	0,514
18.632	1712.297	78.611	113.440	5.543	0.455
21.940	937.932	43.125	115.860	6.995	0.537
25,230	438.363	20.234	118.242	9.660	2,679
28.522	161.587	5.458	120.550	14.272	0.903
31.820	57.882	2.797	122.890	22.025	1.289
35.262	15.522	0.849	125.150	30.855	1.711
38.312	11.656	0.669	127.390	38.346	2.065
41,540	18.987	1.013	129,550	47.863	2.519
44.750	25.957	1,337	131.740	53.124	2,772
47.940	27.361	1.484	133.870	58.159	3.013
51.126	24.342	1.253	135.960	59.880	3.123
34.270	17.792	2.965	138.020 -	59.021	3.073
57.428	13.232	3.755	140.250	48.648	2.623
68.500	16.099	2.612	142.250	40.355	2.227
63.580	12.261	2.510	144.038	28.300	1.669
66.630	11.393	2.700	145.973	17.886	1.178
69.660	14.372	2.320	147.850	7.726	0.665
72.653	14.122	3.811	149.778	1.767	2.285
75.512	14.211	0.819	151.542	1.636	0.276
78,550	11.181	2.679	153.490	10.513	2.834
61,452	8.273	2.533	155.312	32.257	1.811
84.310	4.357	0.348	157.110	58.626	3.147
87.150	1.747	0.202	158.390	96.415	4.901
89.940	2.552	2.127	160.660	144.582	7.124
92.700	1.937	3.215	152.410	226.955	9.995
95,432	3.527	0.315	164.140	249.699	11.964
98,110	6.422	2.473	165.872	345.394	16.359
102.762	8,629	0.589	167.580	429.555	20.223
123.380	11.695	2.745	169.280	521.811	24.457
125,950	9.282	2.632	178.972	669.328	28.473
108.480	8.529	2.620			

ENERGY = 15.305 MEV

.

..

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MS/SR)	(MB/SR;	(DEG)	(MB/SR)	(MB/SR)
15.31%	3268.522	149.936	110.982	2,785	0.301
18.632	1715.835	78,782	113.440	1.823	0.239
21.940	929.911	42.759	115.862	2.964	0.321
25.230	424.623	19.614	118.242	7.263	0.569
28.520	177.998	8.313	120.582	13.106	0.871
31.800	56.502	2.744	122.890	22.347	1.322
35.260	21.169	1.120	125.150	32.704	1.817
38.310	19.553	1.347	127.390	45.081	2.422
41.540	29.583	1.512	129.580	55.195	2.882
44.750	35.045	1.755	131.742	63.852	3.290
47.940	33.819	1.711	133.870	68.216	3.501
51 122	27.612	1.428	135.960	68.021	3.523
54.278	19.094	1.035	138.020	62.278	3,239
57 402	11.242	0.670	142.350	55,458	2,943
62.50Ø	9.239	2.568	142.050	43.238	2.385
63.580	9.162	0.576	144.030	29.318	1.742
66.630	13.127	2.767	145.970	17.917	1.201
69.660	17.124	0.958	147.850	7.134	2.648
72.650	19.890	1.392	149.770	1.532	2.271
75.610	21.253	1.159	151.642	3.183	2.410
78.550	15.628	0,947	153.490	14.612	1.066
81.450	12.536	0.758	155.312	36.363	2.127
84.310	7.213	0.504	157.110	72.523	3.821
87.150	3.024	2.285	158.892	119.228	5.984
89,940	1.236	0.155	160.662	179.434	8.759
92.700	0.891	2,145	162.410	241.232	11.624
95.430	2.326	0,252	164.142	326.848	15.533
98.112	3.706	2.338	165.870	414.939	19.585
130.762	5.453	0.438	167.58Ø	504.344	23.692
103.380	6.160	2,480	169.280	589.615	27.604
105.950	5.665	0.459	172.973	561.434	30. 899
128.482	3.756	0.355			

81

- -

.

ENERGY = 13.206 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(HB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15,310	3056.253	140.205	110.982	2.294	2.265
18.630	1767.308	81.139	113.442	2,323	0.295
21.940	974.589	44.812	115.86Z	0.611	0.133
25.230	459.185	21.195	118.240	3,437	0.350
28.520	192.755	8,985	120.580	8,096	• 0.614
31.320	67,023	3.223	122.390	15.240	0.976
35,060	25.627	1.322	125.150	24.902	1.444
38,310	22.767	1.192	127.390	36.512	1.996
41.540	25.487	1.457	129.580	45,464	2,421
44.750	32.126	1.627	131.740	54.537	2.851
47.940	29.324	1.500	133.870	59.161	3.074
51.120	22.574	1.191	135.960	57.880	3.025
54.270	13,955	0.792	138.022	56.585	2.975
57.400	7.469	0.485	140.050	50.183	2.588
60.522	5.092	0.371	142.050	37.982	2.130
63.580	7.397	2.488	144.030	26.147	1.582
66.630	13.493	0.782	145.970	14.646	1.031
69.66Z	17.973	0.995	147.880	6.562	2.629
72.650	22.820	1.224	149.772	1.844	0.296
75.610	24.299	1.296	151.642	3.414	0.421
78.550	20,423	1.120	153.492	12.483	0.949
81.450	15.347	0.887	155.310	33.589	1.985
64.310	7.785	0.529	157.110	65.234	3.472
87,150	3.065	Ø.264	158.890	114.950	5.774
39.940	0.412	0.294	160.660	163.923	8.033
92.700	2.318	2.283	162.410	232.728	11.222
95.432	2.439	2,256	164.140	333.909	15.843
98.110	4.775	2.393	165.870	358.296	16.973
100.760	7.203	0.525	167.550	428.294	20.188
103.380	7.946	2.567	169.280	513.867	24.117
105.952	6.130	2.479	170.970	597.992	27.978
128.480	4.245	0.370			

ENERGY = 15.408 MEV

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	3069.638	140.824	110.950	7.456	0.563
18.632	1762.835	80.939	113.440	3.233	2.335
21,940	970.179	44.616	115.860	2.185	0.272
25,230	429.515	19.840	118.242	1.602	0.230
28.520	178.608	8.343	120.582	5.295	2.472
31.800	56.347	2.738	122.890	8,905	0.670
35.260	18.198	0.983	125.150	17.558	1.124
38.310	13.008	0.743	127.390	26.204	1.524
41.540	21.138	1.123	129.582	35.189	1,954
44.750	23.909	1.254	131.740	41.869	2,275
47,940	21.323	1.136	133.870	46.880	2.518
51.120	15.703	0.877	135.960	45.769	2.476
54.270	7.976	0.513	138.020	43.355	2.374
57.420	3.324	0.279	142.050	38.654	2.165
60,500	2.426	0.231	142.350	30.128	1.773
63.580	6.409	2.443	144.030	20.665	1.331
66.630	14.506	0.834	145.970	10.838	2.846
69.66Z	19.857	1.283	147.880	3,466	2.424
72.650	25.292	1.344	149.770	0.728	0.185
75.610	25.513	1.359	151.640	5.166	2.544
78.550	21.792	1.190	153.490	15.502	1.114
81,450	16.905	0.966	155.310	35.672	2.099
84.310	10.532	0.653	157.110	67.833	3.609
87.150	4.193	Ø.352	158.892	115.567	5.819
89.940	2.619	0.115	160.660	162.556	7.983
92.720	2.285	0.083	162.412	224.517	10.841
95.430	3.159	0.304	164.140	297.441	14.195
98.110	6.572	0.494	165.870	371.902	17.616
100.760	12.213	0.681	167.580	435.077	20.519
103.380	12.323	0.739	169.282	522.664	24.540
105,950	12.854	0.820	170.970	559.763	26.246
108.482	12.268	0.701			

.

ENERGY = 15.646 MEV

.

ANGCM	X-SEC	ERROR	ANGCM	X-SEC	ERROR
(DEG)	(MB/SR)	(MB/SR)	(DEG)	(MB/SR)	(MB/SR)
15.310	2658.756	121,987	110.980	12.225	2.792
18.630	12%6.982	69.205	113.440	9.889	2.584
21.940	817.537	37.617	115.862	6.738	0.529
25,230	361.454	16.713	118.240	5.460	0.465
29.520	137.511	5.451	120.580	6.359	0.519
31.800	43.572	2.144	122.890	ô.419	2.634
35.260	11.773	2.676	125.152	14.495	0.943
38.310	14.389	0.801	127.390	28.382	1.230
41.540	19.851	1.056	129.582	25.038	1.463
44,750	23.198	1.213	131.740	29.122	1.664
47.940	21.289	1.127	133.872	32.371	1.825
51.120	13.792	3,782	135.950	34.198	1.919
54.270	6.843	2.452	138.020	31.894	1.821
57.400	2.761	0.243	140.052	28.729	1.681
60.500	3.436	0.283	142.052	21.223	1.331
63,580	9.373	0.581	144.030	14.152	2,995
66.630	18.088	Ø.994	145.972	8.925	0.732
69.660	27.438	1.429	147.852	4.806	0.501
72.650	35.680	1.815	149.773	3.927	0.449
75.610	36.075	1.837	151.640	8.786	8.743
78,550	32.835	1.692	153.490	17.594	1.201
81,450	25.159	1.342	155.310	37.434	2.162
84.310	16.436	0.939	157.110	62.711	3.347
87.150	7.650	0.524	158.892	93.439	4.775
59,940	2,044	0.224	160.662	138.619	6,862
92.700	8.354	0.288	162.410	181.164	8.824
95.430	2.183	0.239	164.140	240.231	11,542
98.110	5.563	0.433	165.870	301.860	14.375
100.750	10.983	0.729	167.580	363.313	17.200
123.382	14,252	0.362	169.280	427.818	19.246
105.950	16.341	0.977	170.973	473.423	22.217
108.480	15.656	0.950			· - ·

.

BIBLIOGRAPHY

- R. W. Hill, Phys. Rev., <u>90</u>, 845(1953); J. W. Bittner, R. D. Moffat, Phys. Rev., <u>96</u>, 374(1954); J. Ferguson, and G. J. McCallum, Bull. Am. Phys. Soc., <u>6</u>, 235(1961).
- E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev., <u>133</u>, B1421(1964).
- E. M. Bernstein, R. E. Shamu, L. Y. Kuo, L. D. Oppliger,
 G. Hardie, and M. Soga, Phys. Rev., <u>3C</u>, 427(1971).
- 4. E. B. Carter, and R. H. Davis, Rev. Sci. Instr., <u>34</u>, 93(1963).
- M. Parrot, E. M. Bernstein, and R. E. Shamu, Bull. Am. Phys. Soc., Series 2, <u>15</u>, 1671(1970).
- 6. S. J. Moss, and W. Haeberli, Nucl. Phys., 72, 417(1965).
- K. Ziock, "Basic Quantum Mechanics", P. 228, John Wiley and Sons Book Co. Inc., New York, 1969.
- 8. G. E. Terrel, Ph.D. Thesis, University of Texas, 1966.
- 9. R. M. Eisberg, "Fundamentals of Modern Physics", P. 537, John Wiley and Sons Book Co. Inc., New York, 1961.
- G. E. Mitchell, E. B. Carter, and R. H. Davis, Phys. Rev., <u>133</u>, 6B, B1434(1964).
- 11. A. Gersten, Nucl. Phys., <u>B12</u>, 537(1969).
- 12. P. L. Jolivette, Phys. Rev., 26, 1383(1971).
- F. P. Brady, J. A. Jungerman, and J. C. Young, Nucl. Phys., <u>A98</u>, 241(1967).
- 14. F. Ajzenberg-Selove, Nucl. Phys., All6, 1(1971).

85

1.1