Western Michigan University ScholarWorks at WMU

Masters Theses

Graduate College

8-1971

Energy Calibration of the Western Michigan University Model en Tandem Accelerator

Michael Joseph Parrott Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Nuclear Commons

Recommended Citation

Parrott, Michael Joseph, "Energy Calibration of the Western Michigan University Model en Tandem Accelerator" (1971). *Masters Theses*. 2910. https://scholarworks.wmich.edu/masters_theses/2910

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.

ENERGY CALIBRATION OF THE WESTERN MICHIGAN UNIVERSITY MODEL EN TANDEM ACCELERATOR

by

Michael Joseph Parrott

A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the Degree of Master of Arts

t

Western Michigan University Kalamazoo, Michigan August 1971

Ť

ACKNOWLEDGEMENTS

Special gratitude is expressed to Professor R.E. Shamu and Professor E.M. Bernstein for their guidance and assistance which made this project possible.

Appreciation is also extended to Professor M. Soga for his guidance in the preparing of this manuscript.

Valuable assistance in data taking and analysis was contributed by Mr. M.E. Warren and Mr. S.R. Cooper.

Michael Joseph Parrott

·. ·

ii

MASTERS THESIS

يت،

M-2941

PARROTT, Michael Joseph ENERGY CALIBRATION OF THE WESTERN MICHIGAN UNIVERSITY MODEL EN TANDEM ACCELERATOR.

Western Michigan University, M.A., 1971 Physics, nuclear

University Microfilms, A XEROX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

TABLE OF CONTENTS

15

-

CHAPTER		PAGE
I	INTRODUCTION	1
II	THEORY	_. 5
	Magnet Constant	5
	Neutron Cross Section Near Threshold	6
	Threshold Frequency Determination	8
	Extrapolation Range	11
III	EXPERIMENTAL	13
	Accelerator	13
	Energy Analyzing System	16
	Neutron Detection	17
	Targets	18
	Procedure	21
IV	RESULTS AND DISCUSSION	26
v	SUMMARY AND CONCLUSIONS	43
	APPENDIX I	46
	APPENDIX II	48
	BIBLIOGRAPHY	58

iii

.

• •

.

.

FIGURES

FIGURES I	Target Illustration	PAGE 10
II	W.M.U. Accelerator Lab	15
III	Ice Target Assembly	20
IV	Threshold Measurement of Li(p,n) Be	28
v	Threshold Measurement of ${}^{13}C(p,n){}^{13}N$	29
VI	Threshold Measurement of ${}^{19}F(p,n){}^{19}Ne$	30
VII	Threshold Measurement of Al(p,n) ²⁷ Si	31
VIII	Threshold Measurement of ${}^{12}C(\boldsymbol{\sigma},n){}^{15}O, (2^+)$	32
IX	Threshold Measurement of $D({}^{16}0,n){}^{17}F$, (4^+)	33
x	Threshold Measurement of $D({}^{16}_{0,n}){}^{17}_{F}$, (3^+)	34
XI	Threshold Measurement of ${}^{12}C(\mathbf{a},n){}^{15}O$, (1^+)	35
XII	Threshold Measurement of $D(0,n)$ F, (2)	36
XIII	Magnet Constant Versus Proton NMR Frequency	38

\$

-

• .

TABLES

TABLES		PAGE
I	Calibration Reaction Summary	22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

INTRODUCTION

Tandem accelerators have proven to be very useful instruments for experimental studies of nuclear structure. Many properties of nuclei may be investigated with ease, since a stable beam of charged heavy particles which is very well-defined in energy can be produced. Tandem accelerators which can produce beams of protons with energy ranging from 2 to about 20 MeV are currently in operation, while those that produce protons with energies as high as 40 MeV have been designed. In addition to accelerating protons this type of machine can accelerate heavier particles such as deuterons, helium ions, and oxygen ions with a minimum of effort needed to change from one kind of particle to another. This important advantage is realized because the ion source is external to the accelerating equipment.

The energy of the accelerated beam of particles is determined by passing this beam through an uniform magnetic field. The strength of this field is normally measured at a point by means of a nuclearmagnetic-resonance technique. However, the field at this point may not have the same value as the average field experienced by a particle over its trajectory through the magnet. It is well known, also, that fringing fields affect a particle at the regions where a particle enters and leaves the magnet. For these reasons it is necessary to provide energy calibration for the accelerator analyzing system over the full range of magnet fields possible. This range of fields for the Western Michigan University analyzing magnet, for example, is such that particles with energies from about 2 to 60 MeV equivalent proton

energy may be analyzed.

A common method employed for energy calibrations is the determination of the analyzing magnet field at which neutrons are first emitted from a given reaction. The incident particle energy at which the neutrons are first emitted is called the neutron threshold energy. For a number of different reactions this threshold energy is known from absolute measurements of the incident particle energy at threshold. Marion¹ has reviewed several neutron threshold measurements and has tabulated recommended values for the threshold energies. Below about 6 MeV (p,n) thresholds are easily observable using a simple neutron detector called a long counter. He has listed various useful (p,n) thresholds in this range. Above 6 MeV, though, it is difficult to observe (p,n) thresholds with a long counter because the neutron background becomes large. He has suggested other useful reactions for accelerator calibration at these higher analyzing magnet fields. One such reaction, for example, is the $D(^{16}0,n)^{17}F$ reaction.

If one reverses the roles of the incident and target particles in the ${}^{16}O(d,n){}^{17}F$ reaction, the different charge states of the incident ${}^{16}O$ particle in the $D({}^{16}O,n){}^{17}F$ reaction provide several higher magnet field calibration points². The incident energy of the ${}^{16}O$ ions at threshold may be easily calculated from an absolute measurement by Bondelid <u>et al.</u>³ of the incident deuteron energy in the ${}^{16}O(d,n){}^{17}F$ reaction threshold. The ${}^{16}O$ ion calibration points are advantageous, since the neutron background from the ${}^{16}O$ ions is low, making it possible to perform the measurements using a long counter.

Marion also has listed several (α, n) thresholds as possible

higher magnet field calibration points. Of the (α,n) reactions listed, the ${}^{12}C(\alpha,n){}^{15}O$ reaction has been observed through ${}^{15}O$ positron decay by Nelson <u>et al.</u>⁴ and Black <u>et al.</u>⁵ However, no absolute measurement of the incident alpha energy at threshold has been made. The threshold energy tabulated by Marion for this reaction was calculated from the masses involved. It should be pointed out that, due to the Lewis effect, the "apparent" threshold position and the "true" position calculated from the Q value can differ by 100 to 200 eV¹.

Overly <u>et al.</u>⁶, in their calibration of the Yale University HVEC model MP tandem, used a long counter to observe a few of the (p,n) thresholds suggested by Marion in the range below 6 MeV incident proton energy. They noted that neutron and gamma ray background for (p,n) thresholds above 6 MeV made direct neutron observation impossible. For this reason, those (p,n) thresholds which were above 6 MeV had to be observed by delayed counting of decay positrons from shortlived residual nuclei. Further high magnet field calibration points, for this calibration work, were obtained by observing the $D(^{16}O,n)^{17}F$ reaction threshold with a long counter for the 2⁺, 3⁺, 4⁺, and 5⁺ charge states of the ¹⁶O ion. It is noted that throughout their measurements, the current of the analyzing magnet had to be recycled by an empirically determined recipe in order to achieve reproducibility.

The purpose of the present work was to provide energy calibration for the Western Michigan University 12 MeV model EN tandem accelerator. The 7 Li(p,n) 7 Be, 13 C(p,n) 13 N, 19 F(p,n) 19 Ne, and 27 Al(p,n) 27 Si thresholds were used as calibration points below 6 MeV. Above 6 MeV equiv-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

alent proton energy the 2^+ , 3^+ , and 4^+ charge states of the incident 16 O particle in the $D(^{16}O,n)^{17}F$ reaction provided neutron threshold calibration points. In addition, the possibility of employing the 1^+ and 2^+ charge states of the alpha particle in the $^{12}C(\alpha,n)^{15}O$ and $^{16}O(\alpha,n)^{19}Ne$ reactions as neutron threshold calibration points in this higher energy range was investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THEORY

Magnet Constant

The energy of a beam of charged particles, traveling a predetermined path through a magnetic field of a momentum analyzing magnet, is related to the magnetic field by the magnet constant, K. This magnet constant may be defined as follows.

Consider a particle of charge, q, and momentum, p, moving in a plane normal to a uniform, static magnetic field of magnetic induction, B. As shown, e.g., in Jackson⁷, this particle will move in a circular path of radius, r, given by the expression:

$$\rho = B g r. \tag{1}$$

Thus, for a fixed radius of curvature, r, a measurement of the magnetic induction may be employed to determine the charged particle's momentum. If the rest mass, m, of the particle is known, the particle's kinetic energy, E, can then be found using the expression:

$$P = \sqrt{2mE + E^2/c^2},$$
 (2)

where p is the relativistic momentum of the particle and c is the speed of light. Squaring both sides of Eq. (1) and using Eq. (2), one obtains:

$$B^{2} = \left(\frac{1}{q^{2}r^{2}}\right) \left(2mE + E^{2}/c^{2}\right). \tag{3}$$

The magnetic field is usually measured by a nuclear-magnetic-resonance (NMR) technique and may be written:

$$B = k' f, \qquad (4)$$

where K' is a constant and f is the resonance frequency. Substituting

5

Eq. (4) into Eq. (3), one gets:

$$(K'f)^{2} = \left(2mc^{2}E/r^{2}q^{2}c^{2}\right)\left(1 + E/2mc^{2}\right)$$
 (5)

Expressing E and mc² in keV, writing q^2 as Q^2e^2 , and combining constants so that the magnet constant, $K=(K')^2r^2c^2/2$, one obtains:

$$K = (mE/Q^{2}f^{2})(1 + E/2mc^{2}).$$
(6)

If m is expressed in unified mass units (u) and f in megahertz (MHz), the units of K are $u-keV/MHz^2$.

Once the magnet constant has been determined, Eq. (6) can be solved easily for E to calculate the energy of an incident particle corresponding to a specific NMR frequency on the field monitoring equipment. One obtains as the expression for E:

$$E = -mc^{2} + \int (mc^{2})^{2} + 2(KQ^{2}mc^{2}f^{2})/m.$$
(7)

Neutron Cross Section Near Threshold

A value of K may be determined by observing a neutron threshold for a particular endothermic reaction. The NMR frequency at which the threshold takes place corresponds to the threshold energy for the emission of neutrons from that reaction. The usefulness of this method arises from the behavior of the total neutron emission cross section, i.e., the cross section integrated over all angles, near threshold. The cross section versus energy curve for S-wave neutrons has infinite slope at threshold⁸. Thus, a very sharp rise in neutron yield may be observed. A number of neutron threshold energies have been measured and calculated¹. These served as the energy values used to determine K in this experiment.

The energy dependence of the neutron emission cross section

immediately above threshold can be determined as follows. Consider the endothermic reaction $A+a \rightarrow B+b$. The number of transitions per unit time, w, is given by the Golden Rule for constant transitions, discussed, e.g., by Merzbacher⁹:

$$w = \frac{a\pi}{\pi} |\mathcal{H}|^2 \frac{dn}{d\varepsilon}, \qquad (8)$$

where \mathcal{H} is the matrix element of the pertubation causing the transition, and dn/dE is the energy density of final states. Since S-wave neutrons are emitted isotropically in the center-of-mass system, it can be shown that the number of states available to a neutron in a volume, V, with momentum between p_n and p_n+dp_n , is given by:

$$dn = \frac{4\pi P_n^2 dp_n V}{(2\pi \pi)^3}.$$
 (9)

Also one may write:

$$dE = \sqrt{n} dP_n \tag{10}$$

where v_n is the velocity of the neutron, so that:

$$\frac{dn}{d\varepsilon} \propto \frac{Pn^2}{v_n} \propto v_n. \tag{11}$$

The matrix enement $|\mathbf{H}|$ can be written¹⁰:

$$|\mathcal{H}| = U \times \text{Volume of nucleus } \left(\mathcal{Y}_{\text{initial}} \mathcal{\Psi}_{\text{final}} \right), (12)$$

where $\overline{|\Psi_i \Psi_j|}$ is a suitable average of the product of the initial and
final state wave functions over the volume of the nucleus and \overline{U} is
the average interaction energy. Thus, one may write:

$$|\mathcal{H}|^2 \propto (\overline{U} \times \text{Volume of Mucleus})^2 \times \exp(-G_a)$$
, (13)

where $\exp(-G_a)$ is a coulomb barrier term, since "a" is a charged particle. The definition of the cross section, σ , is essentially contained in the relation:

where n_a is the density of the incident particles. For massive "A", the velocity of "a" relative to "A" in Eq. (14) can be written as v_a , the velocity of "a" in the center-of-mass frame. Thus the cross section can be expressed:

$$\sigma = \sigma \frac{v_a}{v_a} \exp(-G_a). \tag{15}$$

Immediately above threshold, the energy of the emmitted neutron is small $(v_n < v_a)$, such that v_a is essentially constant. Also, since $\exp(-G_a)$ depends on the energy of the incoming particle, $\exp(-G_a)$ is essentially constant. Therefore, the cross section is proportional to the velocity of the emitted neutron, which is proportional to the square root of the difference between the threshold energy, E_{TH} , and incident particle energy within the target, E:

$$\mathcal{O} \propto \mathcal{V}_{n} \propto \left(E - E_{TH}\right)^{\frac{1}{2}}$$
 (16)

Threshold Frequency Determination

Consider a monoenergetic beam of N charged particles having a kinetic energy, E_a , incident normal to a thick target with a density of n nuclei per cm³ (See Fig. I.). Assume that E_a is just above the threshold energy, E_{TH} , so that the specific energy loss, dE/dx^{11} , of the charged particles in the target is essentially constant over the energy range E_a to E_{TH} . Let Δx be the distance from the point where the particle energy has been reduced to the minimum energy for neutron production, i.e., E_{TH} , to the surface of the target (We ignore here energy straggling.). Consider a target element in Δx of thickness dx, which is a distance x from the plane where the particle energy is E_{TH} .

Figure I. Illustration of the target parameters used to derive the dependence of neutron yield on incident particle energy.

.

.

.

~

Figure I. TARGET ILLUSTRATION

ment dx. Then one may write:

 $E = E_{TH} + dE/dx \times$ (17)

or

$$\mathcal{E} = \frac{dE}{dx} \times , \qquad (18)$$

where we have defined $\mathcal{E}=\mathbb{E}-\mathbb{E}_{TH}$. The yield from the element dx of the target may be written:

$$dY(\varepsilon) = Nn \sigma(\varepsilon) dx, \qquad (19)$$

where $\sigma(\boldsymbol{\varepsilon})$ is the neutron emission cross section. In the previous section, Eq. (16), the neutron cross section was shown to be proportional to the square root of :

$$\sigma(E) \propto (E - E_{TH})^{\frac{1}{2}} = E^{\frac{1}{2}}$$
 (20)

Thus the integrated yield from the target is given by:

$$\int_{a}^{y(\varepsilon_{max})} dy(\varepsilon) = \int_{a}^{\varepsilon_{a} - \varepsilon_{rn}} \int_{a}^{y_{a}} d\varepsilon \propto (\varepsilon_{a} - \varepsilon_{rn})^{3/2} = 4\varepsilon^{3/2}$$
(21)

where we have used Eq. (19) and Eq. (20) and defined $\Delta E = E_a - E_{TH}$.

The threshold energy can be determined by a straight line extrapolation of a plot of net yield, above any background, raised to the 2/3 power versus energy to the energy intercept. In this case, for a small frequency range, a least squares straight line fit (See Appendix I.) of net yield raised to the 2/3 power versus proton NMK frequency extrapolated to the frequency intercept yields the threshold frequency.

Extrapolation Range

As is seen one must be careful to ensure that all the neutrons are being counted, since it is the total yield referred to in Eq. (21). It is shown by Hanson¹², for endothermic reactions, that outgoing

neutrons in the laboratory system are confined to a cone in the forward direction whose half-angle, Ψ , is given by:

$$\psi = \sin^{-1} \left[\left(M_{R} M_{B} / M_{a} M_{n} \right) \left((E - E_{TH}) / E \right) \right]^{1/2}$$
(22)

where $E-E_{TH}$ is the extrapolation range and M_A , M_B , M_a , and M_n are the masses in the reaction A+a→B+n. Thus, for a given half-angle subtended by the neutron detector, there is an extrapolation range, $E-E_{TH}$, for which all the neutrons are counted.

Also, if the targets used are thin, one must be sure to take an extrapolation range which does not extend beyond the target. This ensures that particles which pass through the target have lost sufficient energy that they emerge with an energy less than the threshold energy.

One must also ensure that too many neutrons are not counted. This would happen if there is a resonance near threshold and the extrapolation range included the resonance. For example, in the case of the ${}^{7}\text{Li}(p,n){}^{7}\text{Be}$ threshold, the extrapolation range must be taken small enough to exclude the resonance just above threshold.

EXPERIMENTAL

Accelerator

The floor plan of the Western Michigan University tandem accelerator laboratory is shown in Fig. II. The accelerator system consists of a negative ion source, beam accelerating equipment, and an energy analyzing system. The accelerator is a 12 MeV model EN tandem Van de Graaff accelerator manufactured by High Voltage Engineering Corporation.

A general physical description of the accelerator system, as illustrated in Fig. II, follows most easily from a discussion of the principles of operation. Consider, for example, the acceleration of protons. In the ion source neurtal hydrogen atoms are ionized to form positive hydrogen ions. After these positive ions have been slightly accelerated, electrons are added to the positive hydrogen ions and a negative hydrogen ion beam, H, is produced. The negative ions are then accelerated toward a high voltage terminal at positive potential in the center of the model EN accelerator, which is capable of maintaining a voltage up to 6 million volts. At this point the beam passes through a stripper gas and each H ion is stripped of its electrons. The resulting positive ions, protons, are then repelled by the terminal to a maximum energy of 12 MeV. This particular type of machine is also capable of accelerating any heavier positive ions to which a sufficient number of electrons may be added to form a negative beam for the first stage of acceleration, i.e.,

Figure II. W.M.U. Accelerator Lab. The general floor plan of the Western Michigan University tandem accelerator laboratory is shown. The major components of the accelerator system are labeled. The accelerator itself is a model EN 12 MeV tandem Van de Graaff accelerator.

-7

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'n

deuterons, helium, and oxygen.

Energy Analyzing System

The accelerated ions pass through a quadrupole magnet and are focused on the object slits of a 90° momentum analyzing magnet. The positive ions of selected mass, charge, and energy will make the 90° turn through the magnet to be focused on the image slits. Through a slit control system, these slits sense any energy imbalance, due to effects such as wandering of the terminal voltage, and cause proper adjustment of the terminal voltage until balance is regained. If, for example, the chosen incident particle begins to deviate from the desired energy to a different energy, the radius of curvature of the particle's path through the magnet changes and the particle strikes one slit. This causes a current imbalance with more current on this slit. The current difference between the two slits is fed back causing proper terminal voltage compensation to maintain balance. Control can also be maintained through a generating voltmeter control system if, for example, the beam is too small to operate the slit control system. Data throughout these measurements were taken with the machine on slit control. The energy analyzed beam passes through a switching magnet to any one of three target room beam lines and focuses via another quadrupole magnet onto the selected target.

The field within the analyzing magnet is determined by a nuclearmagnetic-resonance (NMR) technique. A proton NMR probe is placed at a fixed position within the magnet near its midpoint and close to the beam trajectory. The proton NMR frequency, which is proportional to

the magnetic field, is read directly on a frequency meter. The neutron thresholds measured were such that nearly the full range of analyzing magnet field was investigated.

The components of the beam handling system were manufactured and supplied by Varian, Associates. The analyzing magnet is a doublefocusing model 1058 analyzing magnet. This magnet produces a homogeneous field, such that changes in the magnet constant attributable to field homogeniety are less than 1 part in 10^4 . The image and object slits, which define the beam trajectory through the analyzing magnet, are model 9030 adjustable single slits and model 9010 adjustable double slits respectively. Both of these sets of slits are adjustable to within 0.001 inches. The switching magnet and the quadrupole magnets are a model 1035 switching magnet field measuring instrument is a model 5002 NMR gaussmeter.

Neutron Detection

A standard long counter was used to detect the neutrons in all of the threshold measurements. The long counter was essentially the same construction as that of Hanson and McKibben¹³, except that an 8 inch diameter polyethelene cylinder was used as the moderator, instead of paraffin. A high voltage of 1500 volts was supplied across the Nancy Wood model G-5-9 BF_3 tube by an Ortec model 446 high voltage power supply. The neutron pulses were preamplified by a model 100C Tennelec low noise preamplifier and then amplified by an Ortec model 485 amplifier. The resulting pulses, approximately 7 volts high,

.

17

S.

were recorded by an Ortec model 484 biased scaler.

Targets

Two types of targets were employed for the threshold measurements, solid targets and ice targets. For both cases a target assem. . bly was designed to facilitate the measurement of the thresholds involved.

The solid target assembly consisted of a 3" long, 9/16" O.D., thin-walled stainless steel tube closed at one end by a 0.025"-thick stainless steel cap. A 3/16"-thick, 2" O.D. flange at the other end joined onto the target room beam line. The assembly was electrically insulated from the beam line by a 3/16"-thick lucite spacer and by using nylon bolts. The solid targets are held perpendicular to the beam path at the closed end of the 3" tube by a circular clip which fits snugly to the inner diameter of the tube. This assembly was employed for all the measurements except the $D({}^{16}0,n){}^{17}F$ measurements.

Figure III shows the target assembly designed to make frozen D_2O ice targets for the $D({}^{16}O,n){}^{17}F$ measurements. The 8" liquid nitrogen reservoir was filled with approximately 1" of liquid nitrogen and a measured amount of heavy water was bled into the system through the Cu tubing at the bottom of the assembly. The reservoir was then filled with liquid nitrogen and the beam allowed to hit the ice target. During a normal run, the liquid nitrogen lasted at least 30 minutes. The amount of heavy water frozen on the target assembly was controlled by letting a reservoir of heavy water come into equilibrium with a fixed volume through a manifold. The opening to the res-

Figure III. Ice Target Assembly. The assembly designed for the making of frozen D_2O ice targets for the $D(160,n)^{17}F$ threshold measurements is shown.

ъ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.....

Figure III. ICE TARGET ASSEMBLY

ervoir was then shut and the vapor bled through a needle valve to the cold target backing. For the thresholds other than $D({}^{16}O,n){}^{17}F$, the individual targets are listed in Table I. The thick LiF and CaF₂ crystals were supplied by Harschaw, while the 100 μ g/cm² carbon foil was supplied by Yissum Reasearch Development Co. and the ¹³C foil obtained from Argonne National Lab. All of the thin foils were mounted on gold or tantalum backings.

A 3/16"-diameter tantalum or gold collimator, located about 15" in front of the target position, served to define the beam spot on the targets. In addition, a 3/8"-diameter tantalum anti-scattering baffle was mounted on the flange of each target assembly to prevent charged particles scattered by the collimator from striking stainless steel.

o Procedure

Analyzing magnet differential hysterisis may affect the relationship between the field maesured at the probe position and the average field sampled by a beam particle. To reduce such effects, a predetermined recipe of recycling the magnet, suggested by Varian, Associates, was utilized. The magnet current was reduced to zero for two minutes. The magnet was then brought to maximum field for another two minutes and then down to the desired field. It is noted that this procedure is exactly opposite that of Overly <u>et al</u>.⁶ Before each measurement the image and object slits were set and the magnet recycled to a point sufficiently below threshold so that the linearly varying background could be determined. The magnet field was increased

REACTION	TARGET	EXTR. RANGE (keV)	SLIT WIDTH OBJ. IM. (inches)	INDIVIDUAL THRESH. FREQ. (MHz)	THRESHOLD ENERGY (keV)	MAGNET CONSTANT (u-keV/MHz ²)
⁷ Li(p,n) ⁷ Be	LiF	2.5	0.0100 0.0050 0.0100 0.0050 0.0100 0.0050 0.0150 0.0100 0.0150 0.0100 0.0150 0.0100 FREQ. RESULT =	12.71480 ± 0.00019 12.71526 ± 0.00019 12.71663 ± 0.00041 12.71569 ± 0.00014 12.71489 ± 0.00017 12.71662 ± 0.00034 12.71565 ± 0.00083	1880.6 <u>+</u> 0.07	11.72744 <u>+</u> 0.0016 [*]
¹³ C(p,n) ¹³ N	¹³ C foil Thick C 100 µg/cm ² C foil	3	0.0150 0.0100 0.0150 0.0100 0.0150 0.0100 0.0100 0.0050 0.0150 0.0100 0.0150 0.0100 FREQ, RESULT =	16.68384 ± 0.0007 16.68344 ± 0.0008 16.68251 ± 0.0005 16.68736 ± 0.0007 16.68767 ± 0.00023 16.68502 ± 0.00034 16.68497 ± 0.0021	3235.7 <u>+</u> 0.7	11.72774 <u>+</u> 0.0039 [*]
¹⁹ F(p,n) ¹⁹ Ne	CaF2	9	0.0100 0.0050 0.0100 0.0050 0.0100 0.0050 FREQ. RESULT =	$\begin{array}{r} 19.0971 \pm 0.00205 \\ 19.0941 \pm 0.00239 \\ 19.0942 \pm 0.00321 \\ 19.0955 \pm 0.0023 \end{array}$	4234.3 <u>+</u> 0.8	11.72462 <u>+</u> 0.0036 [*]

TABLE I CALIBRATION REACTIONS

.

•

REACTION	TARGET	EXTR. RANGE (keV)	SLIT WIDTH OBJ. IM. (inches)	INDIVIDUAL THRESH, FREQ, (MHz)	THRESHOLD ENERGY (keV)	MAGNET CONSTANT (u-keV/MHz ²)
27 _{A1(p,n)} 27 _{Si}	Thick Al foil	7	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0100 0.0050 FREQ. RESULT =	22.37181 ± 0.00026 22.36848 ± 0.00022 22.36784 ± 0.00021 22.37315 ± 0.00030 22.36746 ± 0.00027 22.36974 ± 0.0026	5796.9 ± 3.8 5794.5 ± 2.4 5802.9 ± 3.8	$11.70475 \pm 0.0081 \\ 11.69989 \pm 0.0055 \\ 11.71690 \pm 0.0081*$
¹² C(œ,n) ¹⁵ 0 (2 ⁺)	100 g/cm ² C foil	40	0,0150 0.0100 0.0150 0.0100 FREQ. RESULT =	31.14462 ± 0.0015 31.14488 ± 0.0019 31.14475 ± 0.0012	$ \begin{array}{r} 11346.3 \pm 1.7^{c} \\ 11340.3 \pm 1.0^{d} \\ 11343.4 \pm 5.7^{e} \end{array} $	11.71948 ± 0.0020 11.71328 ± 0.0014 $11.71648 \pm 0.0060^{*}$
$ \frac{D(^{16}0,n)^{17}F}{(4^{+})} $	D ₂ O ice	200	0.0150 0.0100 0.0150 0.0100 FREQ. RESULT =	35.20154 ± 0.0023 35.21731 ± 0.0033 35.20943 ± 0.0113	14525.0 <u>+</u> 5	11.71689 <u>+</u> 0.0086 [*]
$\frac{D(^{16}0,n)^{17}F}{(3^{+})}$	D ₂ O ice	150	0.0150 0.0100 0.0150 0.0100 FREQ. RESULT =	$\begin{array}{r} 46.97189 \pm 0.0055 \\ \underline{46.94302 \pm 0.0043} \\ 46.95746 \pm 0.0207 \end{array}$	14525.5 <u>+</u> 5	11.71193 <u>+</u> 0.0110 ^{\$}

TABLE I (cont.) CALIBRATION REACTIONS

.

.

REACTION	TARGET	EXTR, RANGE (keV)	SLIT WIDTH OBJ. IM. (inches)	INDIVIDUAL THRESH, FREQ, (MHz)	THRESHOLD ENERGY (keV)	MAGNET CONSTANT (u-keV/MHz ²)
$\frac{12}{(\alpha,n)^{15}}$ (1+)	100 g/cm ² C foil	40	0.0150 0.0100 0.0150 0.0100 <u>0.0150 0.0100</u> FREQ. RESULT =	$\begin{array}{r} 62.32333 \pm 0.00495 \\ 62.35488 \pm 0.00370 \\ 62.34314 \pm 0.00410 \\ 62.34046 \pm 0.0161 \end{array}$	11346.3 ± 1.7^{c} 11340.3 ± 1.0^{d} 11343.4 ± 5.7^{e}	11.70193 ± 0.0063 11.65974 ± 0.0061 $11.69894 \pm 0.0084^{\circ}$
$D({}^{16}0,n){}^{17}F(2^+)$	D ₂ O ice	100	0.0150 0.0100 0.0150 0.0100 FREQ, RESULT =	70.50348 ± 0.0070 70.48058 ± 0.0087 70.49203 ± 0.0171	14526.0 <u>+</u> 5	11.69418 <u>+</u> 0.0070 [*]

TABLE I (cont.) CALIBRATION REACTIONS

Points used for Fig. XIII.

a) Bonner <u>et al</u>. energy value.
b) Freeman <u>et al</u>. energy value.
c) Calculated with Mattauch <u>et al</u>. ¹⁵0 mass.
d) Calculated with Hensley ¹⁵0 mass.
e) Calculated with average 150 mass.

: [0

in small convenient increments and neutrons counted for equal intervals, determined by a Brookhaven Instruments' model 1000 current integrator along with an Ortec model 431 timer-scaler.

For the case when the ice target assembly was used, measurements were made with nitrogen only in the target assembly and with no nitrogen or ice and no increase in neutron yield due to carbon build-up was observed.

The total slit width for the image and object slits for each threshold measurement is listed in Table I.

Care was taken to ensure that points included in the extrapolation range of the 2/3 power plots represented the total yield of neutrons as discussed in the Theory section.

RESULTS AND DISCUSSION

The results of the individual threshold measurements are listed in Table I. Included in this table are the targets, extrapolation ranges, the image and object slit widths, and the threshold energy values used. Typical threshold data is presented in Figures IV-XII. Two plots are shown on these figures. The top plot is the yield versus proton NMR frequency, with a line shown for the linearly varying background where it differs significantly from zero. The bottom plot is net yield to the 2/3 power versus proton NMR frequency showing the least squares straight line fit (See Appendix I.) of the points above threshold. The point where the straight line fit intercepts the zero line of the net yield to the 2/3 power is the threshold frequency. The intercept for all the measurements is listed in Table I. In the case where no error bars are shown for the points on these figures, the error is about the same size or smaller than the size of the point. Figure XIII shows the results of the K versus f curve (See Theory section for the derivation of the magnet constant, K.). The nine neutron thresholds measured represent points covering. almost the entire range of analyzing magnet field.

In addition an unsuccessful attempt was made to observe the the ${}^{16}O(\mathbf{d},n){}^{19}$ Ne threshold for two more points at higher magnet fields. No increase in neutron yield was observed near the expected threshold frequency, although a rise in neutron yield was observed almost 300 keV above this point. This effect is unexplained.

Figures IV-XII. Threshold Measurements. Typical data taken for each of the nine thresholds measured is displayed. The figures consist of two plots. The upper plot is a plot of neutron yield versus proton NMR frequency, with a horizontal line representing the average background below threshold, where the background differs significantly from zero. The lower plot is a plot of net yield above background to the 2/3 power for points above threshold versus proton NMR frequency. A least squares straight line fit, as discussed in Appendix I, is shown. The intercept of the straight line fit with the zero of net yield to the 2/3 power is the threshold frequency. In all cases where error bars are not shown, the error is about the same size or smaller than the point itself.

Figure XIII. Magnet Constant Versus Proton NMR Frequercy. The magnet constant, K, has been calculated for each of the nine threshold calibration points measured, and displayed on the plot at the appropriate proton NMR frequency. The shaded points represent the points used for the least squares straight line fit shown. At the 27 Al point, the shaded circle represents a K value calculated with the threshold energy of Freeman <u>et al.</u>, while the open circle represents a K value calculated with the Bonner <u>et al</u>. threshold energy. At the 12 C points, the square points are K values calculated with a threshold energy which uses the Mattauch <u>et al</u>. 15 O mass, while the triangular points represent K values calculated using a threshold energy which uses the Mattauch <u>et al</u>. 15 O mass of the least squares fit, an average of these two masses, with an error encompassing the mass difference, was used to compute a threshold energy. This energy is used to calculate the K values at the 12 C points.

The threshold energies used in computing the value of the magnet constant from a given reaction threshold were, in most cases, those recommended and tabulated by Marion¹. The exceptions are the 27 Al(p,n)²⁷Si and 12 C(σ ,n)¹⁵O reactions.

The value of 5796.9 ± 3.8 keV for the ${}^{27}\text{Al}(\text{p,n}){}^{27}\text{Si}$ threshold energy recommended by Marion represents the weighted average of two measurements, one by Freeman <u>et al</u>.¹⁴ of 5802.9 ± 3.8 keV and the other by Bonner <u>et al</u>.¹⁵ of 5794.5 ± 2.4 keV. It is seen that the value for the K computed using the Freeman value for the threshold energy (Shown as the closed circle at the ${}^{27}\text{Al}$ point on Fig. XIII.) is consistent with a line drawn through the points at other energies. However, the value of K computed using the Bonner energy value (Shown as the open circle at the ${}^{27}\text{Al}$ point on Fig. XIII.) lies more than three standard deviations from such a line. For this reason only the Freeman value for the `threshold energy was used to calculate K for the ${}^{27}\text{Al}(\text{p,n}){}^{27}\text{Si}$ reaction.

In the case of the ${}^{12}C(\mathbf{c},n){}^{15}0$ reaction the threshold energy recommended by Marion was calculated from the atomic masses given by Mattauch <u>et al.</u>¹⁶ However, a difference from the table of Mattauch of -4.6 ± 0.6 keV in the mass excess of ${}^{15}0$ has been reported recently by Hensley¹⁷. It appears that the Mattauch calculation of the ${}^{15}0$ mass is heavily weighted by a ${}^{15}N(p,n){}^{15}0$ threshold energy measurement by Jones <u>et al.</u>¹⁸ In his measurement of the threshold, Jones employed the ${}^{7}\text{Li}(p,n){}^{7}\text{Be}$ threshold, measured with H_2^+ ions bent 60° through his analyzing magnet, as a calibration reaction. Simultaneously, an H^+ beam was bent 90° through the magnet and the ${}^{15}N(p,n){}^{15}0$

threshold was observed immediately after observing the calibration reaction. It appears that the incident beams for each of these reactions travel a different path through the magnet and thereby experience different magnetic fields. Thus, some doubt is cast upon the results of this ${}^{15}N(p,n)$ threshold measurement, and hence, upon the Mattauch ${}^{15}O$ mass. The K value computed using each of the ${}^{15}O$ masses is consistent with values of K computed at other energies within the errors of the present experiment. Therefore, the average of these two values of the ${}^{15}O$ mass was used to calculate a threshold energy value and the mass discrepancy was included in the energy error. On Figure XIII at the ${}^{12}C$ points, the square points represent K values calculated with Marion's energy value, while the triangular points represent those calculated with a threshold energy using Hensley's ${}^{15}O$ mass.

The incident particle mass used, when calculating the value of the magnet constant for the proton induced reactions, was 1.00727663 u. For the alpha and 16 O induced reactions, the appropriate ionic mass, calculated by subtracting the correct number of electrons from the atomic mass, neglecting electron binding energies, was employed. In the case of the incident alpha particle 1⁺ and 2⁺ charge states, these masses were, respectively, 4.002055 and 4.001506 u. For the incident 2⁺, 3⁺, and 4⁺ charge states of the 16 O ion, the masses were, respectively, 15.993818, 15.993269, and 15.992721 u.

The closed points in the plot on Figure XIII are the points used for the least squares straight line fit shown. At the 12 C points, as previously discussed, an average value of the two points with an

error encompassing both was used. The best fit straight line was:

The errors shown on the figures and assigned to the results in Table I were determined in the standard manner as described, for example, by Bevington¹⁹. The error in the (yield-background)^{2/3} was calculated by the relation:

$$(\Delta(\gamma^{2/3})/\gamma^{2/3}) = (2/3)(\Delta\gamma/\gamma),$$
 (24)

where:

Y=yield-background=Y'-
$$\overline{B}$$
,
 ΔY =error in Y= $\sqrt{(\Delta Y')^2 + (\Delta \overline{B})^2}$,
 $\Delta \overline{B}$ =error in yield= $\sqrt{Y'}$,
 $\Delta \overline{B}$ =error in average background= $\sqrt{\frac{z}{E}B_i}/N$,
 B_i =individual background point,
N=total number of background points, and
 $\Delta (Y^{2/3})$ =error in $Y^{2/3}$.

The error in the threshold frequency result is the rms combination of th error in the average frequency and the standard deviation from run to run:

$$\Delta f = \int \left[\frac{g}{2} (\Delta f_{e})^{2} / m \right]^{2} + \sigma_{f}^{2} , \qquad (25)$$

where:

$$\Delta f_{i} = \text{fit error (See Appendix I.),}$$

$$\sigma_{f} = \int_{i=1}^{M} (f_{i} - \overline{f})^{2} / (M-1)^{2},$$
M=number of individual threshold measurements,
$$\overline{f} = \sum_{i=1}^{M} f_{i} / M = \text{threshold frequency result, and}$$

$$f_{i} = \text{individual threshold frequencies.}$$

The errors assigned to the magnet constants were calculated by com-

bining the uncertianty in the threshold frequency result, Δf , and the listed standard deviations in the energy values, ΔE :

$$\frac{\Delta \kappa}{\kappa} = \sqrt{\left(\frac{2\Delta f}{f}\right)^2 + \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2}$$
(26)

The major portion of the uncertianty in the magnet constant, in most cases, is due to the error in the energy values. The errors quoted for the constants in the straight line result of the K versus f plot, Eq. (23), were determined from the formulas derived by Bevington for a least squares weighted fit. The error in energies, calculated using Eq. (7), can be calculated using the errors determined for the constants in the linear K versus f plot, which are for K=a+bf, (a and b are the constants):

 Δ a=error in a=0.0022 u-keV/MHz², and

△b=error in b=0.000000118 u-keV/MHz³.

Assuming E Kf², then the error in the energy is:

$$\Delta E = \int (0.0022f^2)^2 + (0.000000118f^3)^2 . (27)$$

All data reduction leading to the results quoted was done on the Western Michigan University Computer Center's PDP 10 computer. The Fortran programs written for this purpose are listed in Appendix II. For the convenience of those operating the accelerator, a program was written for the PDP 15 computer, located in the accelerator control room, to print a table of frequencies and corresponding energies for various incident particles and charge states. A listing of this program is included in Appendix II.

SUMMARY AND CONCLUSIONS

The purpose of this thesis was to provide energy calibration for the Western Michigan University tandem accelerator. This was done by determining the magnet constant of the accelerator analyzing magnet for each of the nine neutron thresholds listed in Table I. These thresholds covered rather uniformly the full range of the field of the magnet, and thus, the full range of proton NMR frequency. The dependence of the magnet constant, K, upon the proton NMR frequency, f, was investigated, and it was found that the recycling procedure suggested by the magnet manufacturers, Varian, Associates, led to a simple straight line dependence of K upon f (See Fig. XIII and Eq. (23).). Using this K dependence result, the energy of any incident particle, with a given charge, and the energy error (See Eq. (27).) can be calculated in a straightforward manner from the NMR frequency by means of Eq. (7). It should be pointed out that the K dependence determined is only valid if the same recycling procedure as outlined in the Experimental section is employed.

In order to give some idea as to the accuracy of the accelerator calibration, the energy error was calculated for 2 MeV and 12 Mev incident protons. The calculated error for 2 MeV protons is 0.38 keV, whereas the error calculated for 12 MeV protons is 2.29 keV. It must be noted that this error represents the minimum estimate. Error due to reproducibility for a given measurement must also be included in the final error assignment.

43

In the course of interpreting the data to be used for the K versus f plot, there was ambiguity as to which threshold energies to use to calculate K values for the 27 Al(p,n) 27 Si and 12 C(α ,n) 15 O reactions. It is seen that, for the 27 Al(p,n) 27 Si reaction, the Freeman energy value¹⁴ of 5802.9 + 3.8 keV is the more consistent threshold energy, as opposed to the Bonner value¹⁵ of 5794.3 \pm 2.4 keV, which lies more than three standard deviations from a curve drawn through K values at other energies (See Fig. XIII.). The threshold energy value of Marion represents a weighted average of these two, but previous work, by Overly et al. 6 at Yale University, as well as this work, favors the Freeman value. It would seem that another measurement of this reaction's threshold energy would be of value. In the case of the $\binom{12}{C(\mathbf{cr},\mathbf{n})}$ or reaction, the threshold energy recommended by Marion is calculated from the masses involved. Recently Hensley¹⁷ has reported a mass for ¹⁵0 which is lower than that tabulated by Mattauch et al.¹⁶ by 4.6 + 0.6 keV (See Results and Discussion section.). K values calculated with threshold energies determined with each 0 mass are consistent with data at other energies (See Fig. XIII.), and thus, the average value with an error encompassing the mass discrepancy was used. It is pointed out that a remeasurement of the $15N(p,n)^{15}O$ threshold energy to investigate the validity of the Jones $\underline{et} \underline{al}$.¹⁸ measurement (See Results and Discussion section.) might prove valuable in determining the correct 150 mass.

This work is believed to represent the first attempt to calibrate an accelerator by directly observing neutrons from the ${}^{12}C(a,n){}^{15}O$ reaction. It is noted that, even with the ${}^{15}O$ mass discrepancy in44

cluded (See Results and Discussion section and Fig. XIII.), these points are at least as good as the $D({}^{16}O,n){}^{19}F$ reaction points for calibration purposes. The ${}^{12}C(\alpha,n){}^{15}O$ reaction is advantageous in that solid ${}^{12}C$ targets are easily obtainable and one does not need to employ an elaborate target assembly as in the case of ice targets. It is a fact also that alpha particle beams are becoming common, so that this reaction can be easily employed. Further investigation of the ${}^{15}O$ mass, i.e., by a measurement of the ${}^{15}N(p,n){}^{15}O$ threshold, will significantly increase the precision and value of the ${}^{12}C(\alpha,n){}^{15}O$ reaction points as high energy calibration points.

Finally, the investigation in this work of the possibility of employing the ${}^{16}O(\alpha,n){}^{19}Ne$ reaction for high field calibration points suggests that this reaction threshold does not provide calibration points which are easily observable with a long counter.

APPENDIX I

The best straight line through a set of data points,

$$y_i = a + b x_i \tag{1}$$

where x_i is (net yield)^{2/3}, y_i is NMR frequency, and a and b are constants, can be determined via the method of least squares. If The uncertianty is in the x_i , then the weighted sum of the square of the x residuals²⁰,

$$S = \sum_{i} w_i (res)^2$$

or

$$S = \sum_{i} \omega_{i} \left[x_{i} - (y_{i} - a)/b \right]^{2}, \qquad (2)$$

where the weighting, w_i , is $1/(\Delta x_i)^2$, and Δx_i is the uncertianty in x_i , must be minimized. This is done by setting the appropriate partial derivatives equal to zero,

$$S_{a} = \frac{2}{b} \sum_{i}^{2} w_{i} (x_{i} - y_{i}/b + \frac{2}{b}) = 0$$
 (3)

and

$$\frac{\partial S}{\partial b} = \frac{2}{b^2} \sum_{i}^{\infty} \frac{w_i}{(y_i - a)} (x_i - \frac{y_i}{b} + \frac{a}{b}) = 0 \quad (4)$$

These two derivatives yield:

$$b \not\leq w_i x_i + a \not\leq w_i - \not\leq w_i y_i = 0$$
 (5)

and $b \not\in w_i x_i y_i - ab \not\in w_i x_i + 2a \not\in w_i y_i - a^2 \not\in w_i - \not\in w_i y_i^2 = 0$, ⁽⁶⁾ Solving for b in Eq. (5) and substituting into Eq. (6), one gets

for a:

$$a = \frac{\xi w_{i} y_{i}^{2} \xi w_{i} x_{i} - \xi w_{i} y_{i} \xi w_{i} x_{i} y_{i}}{\xi w_{i} y_{i} \xi w_{i} x_{i} - \xi w_{i} \xi w_{i} x_{i} y_{i}}, \qquad (7)$$

Using this value for a, b may be calculated from Eq. (5):

$$b = \frac{\overline{\xi} \omega_i y_i - \alpha \overline{\xi} \omega_i}{\overline{\xi} \omega_i x_i}.$$
 (8)

The value of a, in this case, is the value of the threshold frequency, f.

To derive the fit error, ${}^{a}f_{i}$, which is the standard deviation in a, σ_{a} , one uses the relation:

$$\sigma_{a}^{2} = \xi \left[\Delta x_{j}^{2} \left(\partial a_{j} x_{j} \right)^{2} \right]$$
(9)

It is first necessary to calculate

$$\frac{\partial a}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left\{ \frac{\xi w_{i} y_{i}^{z} \xi w_{i} x_{i} - \xi w_{i} y_{i} \xi w_{i} x_{i} y_{i}}{\xi w_{i} y_{i} \xi w_{i} x_{i} - \xi w_{i} \xi w_{i} x_{i} y_{i}} \right\}$$

$$\frac{\partial a}{\partial x_{j}} = \frac{1}{denomin.} \left[w_{j} \xi w_{i} y_{i}^{z} - w_{j} y_{j} \xi w_{i} y_{i} \right] + \frac{numerator}{(denominator)^{2}} \left((-1) \left[w_{j} \xi w_{i} y_{i} - w_{j} y_{j} \xi w_{i} y_{i} \right] \right] \right\}$$

or

Noting that numerator/denominator is a and gathering terms one gets:

$$\frac{\partial \alpha}{\partial x_j} = \frac{1}{denominator} \left[w_j \left(\frac{z}{w_i} y_i^2 - \alpha \frac{z}{w_i} y_i \right) - w_j \left(\frac{z}{v_j} w_j y_i - \alpha \frac{z}{v_j} w_j \right) \right]$$

Letting

$$Q = \xi w_i y_i^2 - \alpha \xi w_i y_i$$

and

$$R = \Xi w_i y_i - a \Xi w_i$$

one obtains:

$$\left(\frac{\partial a}{\partial x_{j}}\right)^{2} = \frac{1}{\left(denomin.\right)^{2}} \left[\frac{\omega_{j}^{2}Q^{2} + \omega_{j}^{2}y_{j}^{2}R^{2} - 2\omega_{j}^{2}y_{j}QR}{\left(denomin.\right)^{2}} \right]$$
(10)

Thus, from Eq. (9),

$$\sigma_{a}^{2} = \frac{1}{(denomin)^{2}} \sum_{j} \left\{ \delta x_{j}^{2} \omega_{j}^{2} Q^{2} + \delta x_{j}^{2} \omega_{j}^{2} y_{j}^{2} R^{2} - 2 \delta x_{j}^{2} \omega_{j}^{2} y_{j} Q R \right\}, (11)$$

$$G_a^2 = \frac{1}{(denomin.)^2} \left[Q^2 \not\equiv w_j + R^2 \not\equiv w_j y_j^2 - 2QR \not\equiv w_j y_j \right]$$
(12)

since

$$\Delta x_j^2 \omega_j^2 = \omega_j$$

APPENDIX II

This section contains a listing of four Fortran programs written to handle the data taken in this experiment. The first three programs are designed for execution on Western Michigan Computer Center's PDP 10 computer. The last program was written specifically for the PDP 15 computer located in the accelerator control room.

The first program is entitled THRESH.F4. Its purpose is to determine the threshold frequency and frequency error, through a least squares straight line extrapolated fit (See Appendix I.) of frequency versus (yield-background)^{2/3}. The second program, entitled KVAL.F4, calculates the magnet constant and its error for a given threshold reaction. The third program is entitled POLY.F4 and its function is to perform a standard least squares fit to data with error in the y coordinate. It was written specifically to determine the fit polynomial of the K versus f plot illustrated in Fig. XIII. The fit can be a first, second, or third order polynomial. In the case when a first order (straight line) fit is warranted, as was the case for the K versus f plot, the error in the two constants is computed. The fourth program, entitled ENERGY, calculates the energies of various incident particles and charge states from frequencies and prints them in tabular form. The main variables for the programs are listed in the comment lines preceding each program.

С THRESH F4 С THIS IS A PROGRAM TO ANALYZE THRESHOLD DATA THE MAIN VARIABLES ARE AS FOLLOWS: С M: TOTAL NOS. OF PTS. С N: NOS. OF BACKGROUND PTS. С L: NOS. OF FIT PTS. С LB: NOS. OF PTS AT THE START OF ARRAY NOT USED С С X(I): FREQUENCY Y(I): NEUTRON YIELD С С **B: BACKGROUND BELOW THRESHOLD** С YS(I): NET YIELD ABOVE BACKGOUND = Y(I)-B Z(I): NET YIELD TO THE 2/3 POWER Ç DB: ERROR IN B С DYS(I): ERROR IN YS(I) C DZ(I): ERROR IN Z(I) С A: INTERCEPT OF X = A + BASY FIT OR THRESHOLD FREQUENCY С С BA: SLOPE OF X = A + BAWY FIT С SA: THRESHOLD FREQUENCY ERROR DOUBLE PRECISION SUM, XSUM, YSUM, QSUM, DSUM, ASUM, X2SUM DOUBLE PRECISION Z, DZ, C, DELTA, BA, A, SB, Q, DYS, YS, X, Y, B, DB, R DIMENSION X(35), Y(35), DY(35), YS(35), DYS(35), Z(35), DZ(35) READ (5,100) M 1 TYPE 99,M FORMAT (' TOTAL NOS. OF PTS. IS ',12/) 99 100 FORMAT(12) TYPE 98 I',5X,' X',8X,'Y'/) 98 FORMAT (' DO 6 I=1,M READ $(5,110) \times (I), Y(I)$ TYPE 97, I, X(I), Y(I)6 97 FORMAT (13,1X,F9.4,F9.0) FORMAT (2F). 110 **TYPE 101** 2 FORMAT (' TYPE NOS. OF BACKGROUND PTS.'/) 101 ASUM=0. ACCEPT 100.N IF (N.EQ.O) CALL EXIT DO 20 I=1,N 20 ASUM = ASUM + Y(I)TN=N B=ASUM/TN DB=DSQRT (ASUM) /TN 23 **TYPE 111** FORMAT (' TYPE NOS. OF PTS. AT START OF ARRAY NOT USED'/) 111 ACCEPT 100, LB IF (LB.EQ.O) GO TO 2 25 **TYPE 112** FORMAT (' TYPE NOS. OF TOTAL PTS. USED'/) 112 ACCEPT 100, L IF (L.EQ.0) GO TO 23

49

ر ا

```
DO 30 J=1,L
         K=LB+J
         YS(J)=Y(K)-B
         DYS(J) = DSQRT(Y(K) + DB DB)
         Z(J) = (YS(J) \neq YS(J)) \neq \leq (1./3.)
 30
         DZ(J) = (2 + DYS(J) + Z(J)) / (3 + YS(J))
         TYPE 113
 113
         FORMAT (' FIT PTS. PRINTED? YES=CAR. RET., NO=01'/)
         ACCEPT 100, NOS
         IF (NOS.EQ.1) GO TO 40
         TYPE 114
 114
         FORMAT (' I',4X,' X(I),',6X,' Y 2/3',6X,' DY 2/3'/)
         DO 45 I=1,L
                               ءَ
روب
         KI=LB+I
        TYPE 115, I, X(KI), Z(I), DZ(I)
        FORMAT (I3,3X,F7.4,4X,F8.3,5X,F8.4)
 115
 45
        CONTINUE
 С
 С
        LEAST SQUARES FIT
 С
 40
        XSUM=0.
        YSUM=0.
        X2SUM=0.
        DSUM=0.
         SUM=0.
        QSUM=0.
        TL=L
         DO 9 I=1,L
        C=DZ(I) DZ(I)
        MI=LB+I
        XSUM=XSUM+X(MI)/C
         DSUM=DSUM+(1./C)
        YSUM = YSUM + (Z(I)/C)
         SUM=SUM+(X(I)*Z(I))/C
        X2SUM=X2SUM+X(MI) = X(MI)
 9
        QSUM=QSUM+(Z(I) \leq Z(I))/C
         DELTA= XSUM YSUM-DSUM#SUM
         A=(X2SUM#YSUM-XSUM#SUM)/DELTA
         BA= (XSUM-A*DSUM) /YSUM
         R=XSUM-A*DSUM
         Q=X2SUM-A=XSUM
         IF (DELTA) 11,12,12
 11
         DELTA=(-1) DELTA
 12
         CONTINUE
         SA=(DSQRT (Q&Q&DSUM+R&R&X2SUM-2.&Q&R&XSUM) /DELTA)
        TYPE 102
        FORMAT (' FREQUENCY=A+B $(YIELD-BACKGROUND) $ #2/3'/)
 102
        TYPE 103, A, BA
        FORMAT (' A = ', E15.9,' B = ', E15.9/)
· 103
        TYPE 104,A
         FORMAT (' THRESHOLD = ',F11.7/)
 104
```

106		TYPE 106, SA FORMAT (' ERROR IN THE THRESHOLD IS ',F11.8/) GO TO 25 END
с		KVAL.F4
С		THIS IS A PROGRAM TO COMPUTE THE MAGNET CALIBRATION
С		CONSTANT, K, FOR VARIOUS THRESHOLD REACTIONS.
С		THE MAIN VARIABLES ARE AS FOLLOWS:
С		K: MAGNET CALIBRATION CONSTANT
С		DK: ERROR IN THE MAGNET CALIBRATION CONSTANT
С		E: THRESHOLD ENERGY
С		DE: ERROR IN THE THRESHOLD ENERGY
С		Q: CHARGE OF THE INCIDENT PARTICLE
С		F: THRESHOLD FREQUENCY
С		DF: ERROR IN THE THRESHOLD FREQUENCY
_		REAL K
1		
100		FORMAT (' TYPE THE THRESHOLD ENERGY AND ITS ERROR IN REV')
101		ACCEPT IOT, E, DE
101		$\frac{1}{10000000000000000000000000000000000$
20		TYPE 102
102		FORMAT (' TYPE THE CHARGE OF THE INCIDENT PARTICLE IN DECIMAL
102	1	FORM'/)
	-	ACCEPT 101. 0
		IF (Q.EQ.O.) GO TO 1
		TYPE 103
103		FORMAT (' TYPE THE MASS OF THE INCIDENT PARTICLE IN U'/)
		ACCEPT 101, A
30		TYPE 104
104		FORMAT (' TYPE THE THRESHOLD FREQUENCY AND ERROR IN MHZ'/)
		ACCEPT 101, F, DF
		IF (F.EQ.O.) GO TO 20
		$C = ((A \pm 1.660436 \pm (299792500.) \pm 22.) / 1.6021) / 100000000000.$
		$ \begin{array}{c} \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\left(\mathbf{A} \mathbf{F} \mathbf{L} \right) / \left(\mathbf{V} \mathbf{F} \mathbf{V} \mathbf{F} \mathbf{F} \mathbf{F} \right) \right) \\ \mathbf{K} = \left(\mathbf{K} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
		$DX=K SQR1(4.s(Dr/r)=s_2.+(Dr/r)*s_2.)$
105		FORMAT ('K = 'F15.8 '+ OR = 'F15.8)
105		$\begin{array}{c} \text{FORMAT} (\mathbf{K} = , 115.0, 70000 \\ \text{FORMAT} (\mathbf{K} = , 115.0, 7000 \\ \text{FORMAT} (\mathbf{K} = , 115.0, 115.0 \\ \text{FORMAT} (\mathbf{K} = , 115.0 \\ \text{FORMAT} ($
		END
С		POLY.F4
С		THIS IS A PROGRAM TO FIT A POLYNOMIAL OF ORDER THREE
С		OR LESS TO A SET OF DATA POINTS OF THE FORM (X(I),
С		Y(I) + OR - DY(I)), FOR I LESS THAN OR EQUAL TO 35,
С		BY THE METHOD OF LEAST SQUARES.
С		
С		THE MAIN VARIABLES ARE AS FOLLOWS:

```
С
          N: NOS. OF TOTAL PTS.
С
          X(I): X VALUE
С
          Y(I): Y VALUE
С
          DY(I): ERROR IN THE Y VALUE
          NO: ORDER OF THE POLYNOMIAL FIT
С
С
          A(I): CONSTANTS OF THE POLYNOMIAL Y=A(1)+A(2)X+A(3)X ##2+
С
                 A(4)X≥#3
С
          SA1: ERROR IN A(1), IF FIRST ORDER FIT
С
           SA2: ERROR IN A(2), IF FIRST ORDER FIT
       DIMENSION X(35), Y(35), DY(35), Z(4,5), SUM(15), TEMP(4), A(4)
       COMMON Z
1
       TYPE 90
90
       FORMAT (' I',4X,' X',10X,' Y',10X,' DY'/)
       READ (5,101) N
       FORMAT (12)
101
       IF (N.EQ.O) CALL EXIT
       DO 26 I=1,N
       READ (5,103) \times (I), Y(I), DY(I)
103
       FORMAT (2F)
       TYPE 102, I, X(I), Y(I), DY(I)
26
102
       FORMAT (13,3F11.7)
5
       TYPE 108
       FORMAT (' TYPE ORDER OF FIT POLYNOMIAL'/)
108
       ACCEPT 101, NO
       IF (NO.EQ.O) GO TO 1
       DO 30 I=1,15
30
       SUM(1)=0.
       DO 35 I=1,N
       Q=DY(I) 2.
       SUM(1) = SUM(1) + 1./Q
       SUM(2) = SUM(2) + X(I)/Q
       SUM(3) = SUM(3) + X(I) * 2./Q
       SUM(4) = SUM(4) + X(I) * 3./Q
       SUM(5) = SUM(5) + X(I) = *4./Q
       SUM(6) = SUM(6) + X(I) \neq \pm 5./Q
       SUM(7) = SUM(7) + X(I) * *6./Q
       SUM(8) = SUM(8) + Y(I)/Q
       SUM(9) = SUM(9) + (X(I) * Y(I))/Q
       SUM(10) = SUM(10) + (X(I) * 2.*Y(I))/Q
       SUM(11) = SUM(11) + (X(I) * 3.*Y(I))/Q
35
       CONTINUE
       DO 40 I=1,4
       Z(1,I)=SUM(I)
       IF (I.EQ.4) GO TO 40
        Z(I+1,4) = SUM(I+4)
40
        Z(I,5)=SUM(I+7)
        Z(2,3)=Z(1,4)
        Z(3,3)=Z(2,4)
        Z(2,2)=Z(1,3)
       DO 45 I=1,3
       DO 50 J=2,4
```

50	Z(J,I)=Z(I,J)
45	CONTINUE
	IF (NO.EQ.1) GO TO 61
	CALL DET2(Z(1,1),Z(1,2),Z(2,1),Z(2,2),ANS1)
	GC TO 53
С	CRAMER'S RULE TO SOLVE FOR A(I)'S
61	IF (NO.EQ.2) GO TO 52
	CALL DET4(ANS1)
	IF (NO.EQ.3) GO TO 53
52	CALL DET3(ANS1)
53	DO 60 I=1,NO+1
	DO 70 J=1,NO+1
	TEMP(J)=Z(J,I)
70	Z(J,I)=Z(J,5)
	IF (NO.EQ.1) GO TO 66
	CALL DET2(Z(1,1),Z(1,2),Z(2,1),Z(2,2),ANS2)
	GO TO 64
66	IF (NO.EQ.2) GO TO 63
	CALL DET4(ANS2)
	IF (NO.EQ.3) GO TO 64
63	CALL DET3(ANS2)
64	DO 55 K=1,NO+1
65	Z(K, I) = TEMP(K)
60	A(1) = ANS2/ANS1
60	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
105	111111111111111111111111111111111111
105	FORMAT (A(-,12,-), EIS.777)
	$CONST = SIM(3) \times SIM(1) - SIM(2) \times 2$
	SA2=SORT(1 / CONST)
	SA1 = SORT(SIM(3)/CONST)
	TYPE 120. SAL SA2
120	FORMAT (' ERROR IN A(1) = '/.E15.9, ' ERROR IN A(2) = '/.E15.9/)
	GO TO 5
	END
С	
С	SUBROUTINE TO CALCULATE A 2BY2 DETERMINATE
С	
	SUBROUTINE DET2(A1,A2,A3,A4,A5)
	A5=A1*A4-A2*A3
	RETURN
	END
С	
С	SUBROUTINE TO CALCULATE A 3BY3 DETERMINATE
С	
	SUBROUTINE DET3(VAL3)
	COMMON Z
	$D_{1}MENSION^{-2}(4,5), D(3)$
16	$\frac{1}{2} \frac{1}{2} \frac{1}$
10	$\begin{array}{c} (ALL DET2(2(2,1), 2(2,3), 2(3,1), 2(3,3), D(1))\\ (ALL DET2(2(2,1), 2(2,3), 2(3,1), 2(3,2), D(3))\\ \end{array}$
	UALL DEI2(6(2,1),6(4,4),6(3,1),6(3,2),D(3))
	\cdot

• ..

.

	VAL3=Z(RETURN	1,1)≱D(2)-D(1)¥	Z(1,2)+Z(1,3)	≱ D(3)	
<u>.</u> .	END		ີເ ,		
C C C	SUBROUT	INE TO CALCULAT	E A 4BY4 DETE	RMINATE	
C	SUBROUT	INE DET4(VAL)			
	DIMENSI	ON Z(4,5),B(12)	,C(6)		
	J=0 DO 11 T:	=1.4			
	DO 10 I	=1,4			
	IF (K.E	2.1) GO TO 10			
	B(J)=Z(1,I) ≭ Z(2,K)			
10	CONTINU	Ξ			
11	CONTINU	-1 2			
	CALL DE	-1,5 f2(Z(3,I),Z(3,4),Z(4,I),Z(4,	4),C(I))	
15	CONTINU	3			
	CALL DE DO 20 Ja	[2(Z(3,2),Z(3,3) =2.3),Z(4,2),Z(4,	3),C(4))	
20	CALL DE	E2(Z(3,1),Z(3, J),Z(4,1),Z(4,	J),C(J+3)))
	VAL=B(1))¥C(3) -B(2)¥C(2)+B(3) * C(4) -B	(4) ≱ C(3)+	-B(5)≱C(1) -B(6)≠
	1 C(6)+B()	/)*C(2)-B(8)¥C((5)	1)+B(9)\$C(5)-	B(10)#C(2	+)+B(II)#C(6)-
	Z B(IZ)#C				
	END				
С	THIS IS	A PROGRAM TO G	ET PARTICLE E	NERGIES I	ROM PROTON NMR
č	FREQUEN	CIES AND THEN TO	O PRODUCE A T	ABLE OF F	REQUENCIES AND
С	ENERGIES	5.			
С	THE MAIN	VARIABLES ARE	AS FOLLOWS:	-	
C		LASS OF THE INC.	LDENT PARILLE	.ይ ነገፍ	
C C	F• PI	COCRAM STARTING	FREQUENCY	ىليە	
c	T: SV	VITCH FOR F/8.	F/4, OR $F/2$ C	HOICE	
C	DDDF	: INCREMENT FOR	CHOICE		
С	ES: S	STARTING ENERGY	FOR TABLE		
С	EF: H	ENDING ENERGY F	OR TABLE		
C	FV: I	REQUENCY USED	IN CALCULATIO	NS	
C C	VK - N	AGNET CONSTANT	ev		
č	E(I):	PARTICLE ENER	GIES		
С	IE(I)	: PARTICLE ENER	RGIES PRINTED	, ROUNDEI) TO NEAREST KEV
С	FF: H	3/8, F/4, F/2 (1	DEPENDING ON	CHOICE)	
C C	DDF:	INCREMENT FOR	FF		
U U	DOUBLE H	RECISION B. C.	DSQRT		
	DIMENSIC	N E(10), IE(10)	,DF(10),DDF(1	0)	
	COMMON H	v			

•

.

•

	1 100	WRITE (4,100) FORMAT (44H TYPE MASS OF INCIDENT PARTICLE IN 11 (F10 8)/)
	100	READ (4,200) XM
	200	FORMAT (10.8)
	3	WRITE $(4,101)$
	101	READ (4,200) Q
	5	WRITE (4,102)
	102	FORMAT (39H TYPE STARTING FREQUENCY IN MHZ. (F10.8)/)
		READ (4,200) F
		IF (F.EQ.0) GO TO 1
	6	WRITE (4,90)
	90	FORMAT (30H F/8 = 1., $F/4 = -1., F/2 = 0./$)
		READ (4,200) T
		WRITE (4,112)
	112	FORMAT (49H TYPE FREQUENCY INCREMENT FOR THIS CHOICE. (FI0.8)/)
	-	READ (4,200) DDDF
	/	WRITE $(4,103)$
	103	FURMAT (36H TYPE STARTING ENERGY IN KEV. (FIU.8)/)
	•	READ (4,200) ES
	9	WRITE (4,104)
	104	FURMAI (34H TIPE ENDING ENERGI IN NEV. (FIU.0)/)
		(4,200) Er
		S=0. v=10
		K-10
		5-1
		TF(T) = 300 = 301 = 302
	300	DFF=DDDF+4.
	500	GO TO 11
	301	DFF=DDDF#2.
•		GO TO 11
	302	DFF=DDDF#8.
	С	
	С	CALCULATION OF E(I)'S
	С	
	11	CALL SUB1(VK)
		B=XM\$931481.101
		C=(-1.)\$VK\$B \$(Q\$\$2.) \$(FV₹\$2.)/XM
		E(J) = ((-1) B + DSQRT(B + B - 2. C))
		IF (E(J).LE.ES) GO TO 15
		S=1.
		IF (E(J).LE.EF) GO TO 15
		IF (J.EQ.10) GO TO 30
	15	FV=FV+DFF
		J=J+1
		TF (C FO 1) CO TO II
		τr (υ,μφ, τ,) συ το συ ⊺≞1
		5-1 F=FV
		GO TO 11

ij.

30	IF (K.NE.10) GO TO 61
С	
С	PRINTING OF HEADINGS
С	
	DF(1) = 0.
	DO 32 I=2,10
	L=I-1
32	DF(I) = DF(L) + DFF
	WRITE $(4,105)$ (DF(I), I=1,10)
105	FORMAT (8X,2H F,3X,10F6.3)
	DDF(1)=0.
	DO 35 I=2,10
	M=I-l
34	DDF(I) = DDF(M) + DDDF
35	CONTINUE
	IF (T) 310,311,312
311	CONTINUE
	WRITE (4,106) (DDF(I),I=1,10)
106	FORMAT (7X,4H F/2,2X,10F6.3)
	WRITE (4,107)
107	FORMAT ($2X_2H = 3X_4H = 72$)
107	GO TO 60
310	CONTINUE
510	WRITE $(4 \ 108)$ (DDE(I) I=1 10)
108	FORMAT ($7X$ 4H F/4 2X 10F6 3)
100	1000000000000000000000000000000000000
100	FORMAT (2X 2H F 3X 4H F/4)
109	CO TO 60
319	CONTINUE
512	UDTTE (4 110) (DDE(T) T-1 10)
110	$\frac{1}{100} (100) $
110	PORTAL (77,40,770,27,1000.5)
	WRITE $(4,111)$ FORMAT (27 21 F 27 /11 F (9)
111	V_{-0}
60	
01	DU /5 I=I,IU
/5	LE(1)=L(1)+.5
С	
С	PRINTING OF TABLE
С	
	IF (T) 71,70,72
70	FF=F/2.
	GO TO 80
71	FF=F/4.
	GO TO 80
72	FF=F/8.
80	WRITE (4,113) F,FF,(IE(I),I=1,10)
113	FORMAT (F6.2,1X,F5.3,1X,1016)
	IF (E(10).GT.EF) GO TO 5
	K=K+1
•	J=1
	F=FV

.

56

.

GO TO 11 END C C SUBROUTINE TO CALCULATE THE MAGNET CONSTANT C SUBROUTINE SUB1(VAL) COMMON FV VAL=11.73496-.0005683#FV RETURN END

5

.е. . ,

BIBLIOGRAPHY

- 1. J.B. Marion, Rev. Mod. Phys. <u>38</u>, 660 (1966).
- H.E. Gove, J.A. Kuehner, A.E. Litherland, E. Almqvist, D.A. Bromley, A.J. Ferguson, P.H. Rose, R.P. Bastide, N. Brooks, and R.J. Conner, Phys. Rev. Letters <u>1</u>, 251 (1958).
- R.O. Bondelid, J.W. Butler, and C.A. Kennedy, Phys. Rev. <u>120</u>, 889 (1960).
- J.W. Nelson, E.B. Carter, G.E. Mitchell, R.H. Davis, Phys. Rev. 129, 1723 (1963).
- J.L. Black, H.M. Kuan, W. Gruhle, M. Suffert, and G.L. Latshaw, Nucl. Phys. <u>A115</u>, 687 (1968).
- 6. J.C. Overly, P.D. Parker, and D.A. Bromley, Nucl. Instr. and Meth. <u>68</u>, 61 (1969).
- J.D. Jackson, <u>Classical Electrodynamics</u>, John Wiley & Sons, Inc., New York, 1962, p. 411.
- J.B. Marion, T.W. Bonner, <u>Fast Neutron Physics</u>, J.B. Marion and J.L. Fowler, ed., Interscience Publishers, Inc., New York, 1963, Part II, p. 1865.
- 9. E. Merzbacher, <u>Quantum Mechanics</u>, John Wiley & Sons, Inc., New York, 1970, Second Edition, p. 479.
- E. Fermi, <u>Nuclear Physics</u>, J. Orear, A.H. Rosenfeld, and R.A. Shluter, ed., University of Chicago Press, 1949, Revised Edition, p.141.
- R.D. Evans, <u>The Atomic Nucleus</u>, McGraw-Hill, New York, 1955, p. 637.
- 12. A.O. Hanson, R.F. Tascheck, and J.H. Williams, Revs. Modern Phys. <u>21</u>, 635 (1949).
- 13. A.O. Hanson, and J.L. McKibben, Phys. Rev. 72, 673 (1947).
- J.M. Freeman, J.H. Montague, G. Murray, R.E. White, and W.E. Burcham, Nucl. Phys. <u>65</u>, 113 (1965).
- 15. B.E. Bonner, G. Rickards, D.L. Bernard, and G.C. Philips, Nucl. Phys. <u>86</u>, 187 (1966).

16. J.H.E. Mattauch, W. Theile, and A.H. Wapstra, Nucl. Phys. <u>67</u>, 1 (1965).

. .

•

and the second second

 D.C. Hensley, Ph.D. Thesis, California Institute of Technology, 1969.

έ.

- K.W. Jones, L.J. Lidofsky, and J.L. Wiel, Phys. Rev. <u>112</u>, 1252 (1958).
- 19. P.R. Bevington, <u>Data Reduction and Error Analysis for the</u> Physical <u>Sciences</u>, McGraw-Hill, New York, 1969.
- 20. W. Edwards Deming, <u>Statistical Adjustment of Data</u>, Dover Publications, Inc., New York, 1964, p. 14.