
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Honors Theses Lee Honors College

4-17-2018

Music Keyboard Based on Flexible Hybrid Electronics Music Keyboard Based on Flexible Hybrid Electronics

Anthony Hanson
Western Michigan University, tony27hanson@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Hanson, Anthony, "Music Keyboard Based on Flexible Hybrid Electronics" (2018). Honors Theses. 2949.
https://scholarworks.wmich.edu/honors_theses/2949

This Honors Thesis-Open Access is brought to you for
free and open access by the Lee Honors College at
ScholarWorks at WMU. It has been accepted for inclusion
in Honors Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/honors_theses
https://scholarworks.wmich.edu/honors
https://scholarworks.wmich.edu/honors_theses?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/honors_theses/2949?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F2949&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A Musical Keyboard Based on Flexible Hybrid

Electronics

ECE 4820

Jesse Echtinaw, Kyle Mann, Tony Hanson

Advisor and Sponsor: Dr. Massood Atashbar

4/27/2018

1

DISCLAIMER

This report was generated by a group of engineering seniors at Western Michigan

University. It is primarily a record of a project conducted by these students as part of

curriculum requirements for being awarded an engineering degree. Western Michigan

University makes no representation that the material contained in this report is error free

or complete in all respects. Therefore, Western Michigan University, its faculty, its

administration or the students make no recommendation for use of said material and

take no responsibility for such usage. Thus, persons or organizations who choose to

use said material for such usage do so at their own risk.

2

Abstract

With the idea of creating a product using flexible hybrid electronics, the group

decided to create a musical keyboard like a synthesizer. This is implemented using a

printing technique called screen printing. This allowed the group to make several copies

of the same sensors with a consistent thickness, roughness, and size. These keys,

made of silver, are used as capacitive proximity sensors. When another conductive

material comes within range of the key to change the polled capacitance by 2.7 pF, the

note corresponding with that key is outputted.

In the interest of making this project a useful tool for someone playing the piano, a

user interface was implemented that allows for volume control, octave control, and

instrument change. Using a microcontroller, multiple sets of keys, as well as the user

interface can all be incorporated together to make a compact, portable musical

keyboard.

This design proved to be effective. The enclosure has a final volume of 2300 cm3.

Several changes were made to allow for a more portable case design including a holder

for the keys and connectors. The case for the musical keyboard also includes an

internal speaker and the user can either use the internal speaker or plug in an audio

cable to listen through headphones or a more powerful speaker. The option to switch

between battery power or a micro USB cable is available to help keep the design

portable. The user can change instrument, volume, and octave at will as well as being

able to play up to 24 notes simultaneously. This allows the user to compose meaningful

music with the full range of a conventional piano.

3

Table of Contents

Need Statement………………………………………………………………………...4

Introduction……………………………………………………………………………...4

Specification………………………………………………………………….....5

Discussion…………………………………………………………………………….…6

 Layout Design……………………………………………………………....…..6

 Hardware Design…………………………………………………………....….8

 Software Design……………………………………………………………….11

 Capacitance……………………………………………………………………12

Enclosure Design……………………………………………………………...13

Conclusion………………………………………………………………………....…..14

References……………………………………………………………………………..16

Appendix………………………………………………………………………………..17

 First Design…………………………………………………………………….17

Second Design………………………………………………………………...18

Final Design…………………………………………………………………....19

Capacitance Values……………………………………………………….…..20

 Schematic……………………………………………………………………...21

 Parts List………………………………………………………………………..22

 Software Flow Chart…………………………………………………………..23

 Code…………………………………………………………………………....24

 Characterization of Sensors………………………………………………….33

 Final Products………………………………………………………………….34

4

Need Statement

Conventional electronic keyboards for playing music are much too heavy and

bulky to be able to take them on the go. The purpose of this project is to eliminate this

problem by creating a keyboard using printed electronics with proximity sensors. This

will allow the keyboard to be easily portable, with the ability to take it to unconventional

places without it being out of place.

Introduction

The main goal of this project was to create an accurate and reliable musical

keyboard based on capacitive sensing using printed electronics. For the layout of the

keys themselves, they must be the size of standard piano keys. The keys must also be

flexible to stay with the idea of portability and to showcase the capabilities of printed

electronics. The case should be relatively small, and the microcontroller should be able

to support functions like volume and octave control to give the user as much

functionality as possible. To this end the group came up with some initial specifications

that the project should meet.

In order to meet these design goals, the group partnered with Dr. Massood

Atashbar, and the Center for Advanced Smart Sensors and Structures lab at Western

Michigan University. This lab offers several different opportunities including the ability to

work with specialized equipment such as: a laser etching machine, a gravure printer, a

screen printer, as well as students and faculty that are knowledgeable in this area.

5

Specifications

1. Physical

1.1. Size

1.1.1. The key size should be the standard keyboard size (Width= 20mm).

1.1.2. Case for components should fit in a box under 3,400cm3.

1.2. The keyboard must be flexible up to at least 45 degrees.

1.3. There must be 24 keys on the keyboard.

1.4. Entire system should not weigh more than 10lbs

2. Functionality

2.1. Each key must play a specific note.

2.2. The keyboard must be able to output sound.

2.3. The keyboard should be able to change to multiple octaves.

2.4. The keyboard’s battery should have a playtime of at least two hours.

2.5. Device must be able to turn on and off at the users will.

2.6. User should be able to change the output volume of the device.

2.7. Device pieces must be able to firmly lock together.

2.8. The keyboard must run using a portable power source.

2.9. Must be able to read and handle a voltage of around 0-5 V.

3. Safety

3.1. When in use, the device must not administer a shock of any kind.

4. Cost

4.1. Total cost of materials should be no more than $500.

6

Discussion

Layout Design

Before the final design that can be seen in appendix C, the group went through

several different design possibilities. The first of which was meant for the laser etching

machine in the Sensors Lab at Western Michigan. This design had a width of 4 inches

to match the width of the copper that was to be etched on.

Some key features that were kept for the rest of the designs include a 1 mm gap

between the keys and the associated wires. This helps to prevent crosstalk while

pressing keys, as keys that are close to touching would experience changes in their

capacitance when the user didn’t intend to hit that key. The connection wires needed to

have a gap of 1 mm, and a width of 2.54 mm from the middle of one wire to the middle

of the next to fit perfectly with the 12 pin connectors that would allow the keyboard to

interface with the microcontroller.

Figure 1 [Appendix A]

7

This design covers 12 distinct keys, 7 white keys and 5 flats/sharps keys. It starts on

the left side with a C note, which is a common place for the right hand to start at and

covers a full octave after that.

The next design, shown below, keeps many of the design decisions from the

original keyboard, including the 1 mm gap and the key selections, but this was meant

for screen printing, and as such, has different dimensions. The first design could be sent

to the laser etching machine which could etch out the required design with precision.

This design however, needs to be sent to a company who can create the screen for

printing. The screen will be an 8” x 8” design on a stainless-steel mesh with an emulsion

placed in all the areas where the design is not present.

Figure 2 [Appendix B]

This design was not optimal however, since it was advised that the screen design

be within a 6” x 6” area for the best quality with the available screen printer. It was also

advised that 90o angles in the wires are not optimal. This is because often the screen

that’s returned from the manufactures will have defects in the sharp turns and make

poor wire connections. The wire section for the connector needed to be elongated to

8

allow for the 12-pin connector to crimp correctly onto the wires without interfering with

other traces.

Thus, the next design became the final design of the project, with rounded turns

and on a 6” x 6” design. The connector now meets in the middle, which makes rounding

the wires easier.

Figure 3 [Appendix C]

Hardware Design

 The hardware section of the project included the implementation of the volume

change, octave change, instrument selection, LCD screen, power source selection, and

the audio selection.

9

Figure 4 [Appendix E]

One of the key ideas behind this project was to make a keyboard that can be

used anywhere while maintaining the functionality of a normal piano. To implement all

these ideas while keeping the portability, some design compromises had to be met. It is

not physically feasible to implement all 88 keys traditionally offered on a piano while

also keeping it portable. As a compromise, the product offers the user the option to

select from the entire range of the piano’s octaves. Each of the two keyboard screens

cover one octave. This allows the user to access two consecutive octaves at any

moment, and they may shift up and down on the keyboard. This shift is controlled by

two different switch buttons that are debounced in the software and are connected to 10

KΩ pull-down resistors.

10

The user may also control the changing of instruments by the switch buttons

connected to pull-down resistors. This will cycle between 20 different instruments

including:

1. Acoustic Piano

2. Electric Piano

3. Church Organ

4. Vibraphone

5. Xylophone

6. Harmonica

7. Electric Guitar

8. Violin

9. Trumpet

10. Trombone

11. Tuba

12. French Horn

13. Clarinet

14. Flute

15. Sitar

16. Bagpipes

17. Woodblock

18. Synth Drum

19. Reverse Cymbal

20. Bird Tweet

The volume control allows the user to change volume while playing with the use

of a 10 kΩ twist potentiometer.

 The instrument, volume, and the current octaves are all displayed on the LCD

screen. The octave shows all the potential octaves as 0s with Xs where the current keys

are. This way the user can see where they are relative to a standard size piano. The

volume is shown as a bar across the screen. As the volume goes up, the bar increases

in size and vice versa. This screen is controlled via I2C pins on the controller and

11

connected to a common voltage source and ground with the other I2C controlled

devices.

 The first set of keys are directly connected to the controller with the built in

MPR121 controller and connected electrodes. The second set of keys are connected

through an external MPR121 which is controlled via I2C from the microcontroller,

connected to the common voltage source and ground.

 The user also has the option of switching between a mini-USB power source and

a 9 V battery for the power source. This is accomplished on the side of the case with a

3-way switch that has options of: Off in the middle, mini USB on the top, and 9 V battery

on the bottom. The 9 V battery is scaled down to 5 V by a voltage regulator, so it can be

handled by the microcontroller.

 There is also the option of changing between an internal and an auxiliary audio

output. This is done with the use of a switch that turns on and off the internal speaker.

The internal speaker is connected and controlled by a connection between the

microcontroller and a PAM8302 audio amplifier controller.

 All the components for this project are found on the parts list in appendix F. The

final cost for one device can to be $134.52. This was well under our budget of $500.

Software Design

 The software was all made in the Arduino IDE using C++. The main software

drivers are the switches, the volume potentiometer, and the interrupts associated with

the two different sets of keys.

 I2C is the driving force behind much of the project and makes a lot of it possible

given the limited number of pins available. I2C is essentially a master to multiple-slave

12

protocol that allows a board to control multiple devices through two pins, SDA (data pin)

and SCL (clock line). The liquid crystal display (LCD) is controlled via I2C, as well as the

supplemental MPR121 controller and the MPR121 controller built into the main

microcontroller.

 Both MPR121 controllers are connected to interrupt pins on the microcontroller.

When a key is pressed on one of the keyboards, the associated interrupt will trigger.

This will send the code to the MPR121 header file, where the interrupt handler changes

the return value of the touchStatusChanged method. When either the keyboard touch

status changes, the software goes through a loop looking to see which key was

pressed. Once found it will either send that key to the released or touched method in the

MPR121 header files.

 All the push buttons are debounced to detect only when a value has been

changed for more than 50 ms. This allows the user to accurately change instruments or

octaves when pressing the button without making the octave or instrument change

multiple units when they only intended to press it once.

 On every loop of the code, the value of each displayed variable (volume, octave,

and instrument) will be polled to see if they changed. If they did, then the LCD is

cleared, and the new values are displayed through I2C.

 The flow chart of the code as well as the code itself can be found in appendix G

and H respectively.

Capacitance

 The sensors made are proximity touch sensors. These touch sensors change in

capacitance the closer a contact becomes to it. The keys measure a non-touch

13

capacitance of 11-13 pF depending on the key. When a finger applies a touch to the

sensor, the capacitance increases by a value of 24-27 pF. These values can be found in

appendix D. When this happens, it triggers an interrupt to the microcontroller letting the

controller know that there has been contact on one sensor.

 The MPR121 measures the capacitance of the keys by sending a 16uA signal to

a key for 0.5 us to charge the capacitor. Then the capacitor discharges for 0.5 us. After

this the next key in the sequence is charged. The MPR121 looks at the peak voltage

that the capacitor hits and converts this to a 10-bit ADC number. This 10-bit number is

sent to the microcontroller if the number exceeds the threshold set to 20 VADC which is

about a 2.7 pf difference.

Each key is measured ever 6 us, and if the capacitance changes from the base

capacitance, it triggers an interrupt. When this happens, the microcontroller will play the

proper key noise.

Enclosure Design

 To make the device portable, there was a need to centralize all the components

within a single enclosure. The enclosure was designed using Autodesk Fusion 360. The

key points to the design were to make the case compact and contain everything

necessary to be a standalone device. The case contains holes for the 4 push buttons. It

also contains openings for the potentiometer, LCD screen, power switch, micro USB

plugin, audio switch, and audio cable plug in. The case also has a holder for the battery,

keyboard keys, and wires to connect them. This enclosure includes engravings to help

14

brief what each button and switch is for. There are also engravings on the front of the

enclosure detailing a list of the available instruments.

 After this design was finished, the group decided to 3D print it. To make this

possible, the model was exported to an stl file, and then imported into Cura. Some of

the Cura setting were as follows: 0.3 mm layer height, 45 mm/s print speed, and an infill

of 20%. This was exported to a gcode file and uploaded onto the 3D printer. The 3D

printer used was the Creality CR-10. This print took about 23 hours to complete and

used around 350 grams of 1.75 mm PLA plastic.

Conclusion

 The final product meets every original specification while also implementing new

features to better achieve the goal of portability and functionality. These extra features

include: the LCD screen to display the characteristics of the outputted sound, the ability

to choose multiple instruments, an internal speaker or external speaker, and power from

micro USB cable or battery. The user is also able to play many different notes at once

and has the ability to play every note on a conventional piano through octave change.

 Future improvements for follow up projects on this would include changing the

user interface, changing the capacitive proximity sensing to pressure sensing, and

better wire management.

Changing the user interface could be completed by a smartphone application and

implementation of a Bluetooth component on the microcontroller. This would allow the

designer to remove all the physical components of the interface like the push buttons,

potentiometer, and LCD screen. This will decrease the overall size of the design and

make it even more portable.

15

Changing the proximity sensing to pressure sensing would allow greater

versatility in how the user can create their music. Instead of only having one set sound

every time a key is pressed, the sound will be able to increase or decrease in volume

depending on how hard the user presses the keys.

The project could be improved in the aspect of portability with some wire

management. The connectors from the box to the keys are very long to the point where

you need substantial table space to properly use the device. By making these wires

shorter, the space needed to use the device would be drastically cut down. The space

needed for the box could also be cut down by placing the connectors for the wires to the

keys on the sides of the case, decreasing the width of the enclosure.

16

References

[1]N. Pontius, "What is Printed Electronics? Learn about How Printed Electronics is

Used, the Applications, Challenges, Benefits, and More", Pannam Blog, 2017.

[2]"Roadmap for Organic and Printed Electronics, 7th Edition", International

Exhibition and Conference for the Printed Electronics Industry, 2017.

[3]B. Davison, "Techniques for Robust Touch Sensing Design", Microchip

Technology Inc. November 2012.

[4]B. Board and A. sauce!, "Bare Conductive Touch Board - DEV-13298 - SparkFun

Electronics", Sparkfun.com, 2017. [Online]. Available:

https://www.sparkfun.com/products/13298.

[5]Freescale, “Proximity Capacitive Touch Sensor Controller,” MPR121 Datasheet

 2009, Revised September, 2010

17

Appendix

A First Design

18

B Second Design

19

C Third Design

20

D Capacitance Values

Theoretic

al

Experiment

al

Percent

Error

 CBase (pF) CPressed (pF) CBase (pF) CPressed (pF) CBase

CPresse

d

Key 1 (Silver) 19.67 35.437 13.2 40.5 49.02% 12.50%

Key 2 (Silver) 14.816 35.437 11.2 34.7 32.29% 2.12%

Key 3 (Silver) 12.481 35.437 12.6 36.3 0.94% 2.38%

21

E Schematic

22

F Parts List

23

G Software Flow Chart

24

H Code

 // include the relevant libraries
 #include <MPR121.h>
 #include <Wire.h>
 #include <SoftwareSerial.h>
 #include <LiquidCrystal_I2C.h>

 //This is the instrument being used
 int music [] = {1, 4, 19, 11, 13, 22, 26, 40, 56, 57, 58, 60, 71, 73, 104, 109, 115, 118, 119, 123};

 //These are the octaves
 const byte allNotes[7][12] = {{24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35}, {36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47},
 {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59}, {60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71}, {72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83},
 {84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95}, {96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107}};

 String instArr[] ={ "1 Acoustic Piano", "2 Electric Piano", "3 Church Organ", "4 Vibraphone" , "5 Xylophone", "6
Harmonica", "7 Electric Guitar" , "8 Violin", "9 Trumpet", "10 Trombone"
 , "11 Tuba", "12 French Horn", "13 Clarinet", "14 Flute", "15 Sitar", "16 Bag Pipe", "17 Woodblock", "18 Synth
Drum", "19 Reverse Cymbal", "20 Bird Tweet"};

 LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);// Sets up LCD
 MPR121_t master = MPR121_t();// For the touch sensors connected to the bare board
 MPR121_t slave = MPR121_t(); // Touch sensors connected to the MPR121 break out chip
 SoftwareSerial mySerial(12, 10); // Soft TX on 10, we don't use RX in this code. Used for MIDI

 // Touch Board Setup variables
 #define firstPin 0
 #define lastPin 11
 #define masterInterrupt 4
 #define slaveInterrupt 5

 // VS1053 setup
 byte note = 0; // The MIDI note value to be played
 byte resetMIDI = 8; // Tied to VS1053 Reset line

 int octave = 4;
 int octaveUp = 1;
 int octUpReading;
 int octUpLastState = LOW;
 unsigned long octUpLastTime = 0;
 int octUpCurrentState;

 int octaveDown = A1;
 int octDownReading;
 int octDownLastState = LOW;
 unsigned long octDownLastTime = 0;
 int octDownCurrentState;

 int instrument = 0;

25

 int instrumentUp = 12;
 int instUpReading;
 int instUpLastState = LOW;
 unsigned long instUpLastTime = 0;
 int instUpCurrentState;

 int instrumentDown = 11;
 int instDownReading;
 int instDownLastState = LOW;
 unsigned long instDownLastTime = 0;
 int instDownCurrentState;

 int volumeKnob = A3;
 int volume127Conv = 80;
 int volume11Conv = 0;
 int volumeRawReading;
 int volumeCheckDiff = 0;
 int volumeDisplay;

 void setup() {
 pinMode(octaveUp, INPUT);
 pinMode(octaveDown, INPUT);
 pinMode(instrumentUp, INPUT);
 pinMode(instrumentDown, INPUT);
 pinMode(volumeKnob, INPUT);

 /*Initialize display*/
 startLCD();
 delay(4000);//Delay for 4 seconds
 // initialise MIDI
 setupMidi();

 delay(1000);//Delay for 1 seconds
 master.setTouchThreshold(5);
 slave.setTouchThreshold(5);
 clearDisplay();
 lcdDisplayInterface();
 }

 void loop() {
 //old values to determine if there is a change
 int tempOct = octave;
 int tempVol11Conv = volume11Conv;
 int tempInst = instrument;

 //checks the external buttons for a change
 checkOctUp();
 checkOctDown();
 checkInstUp();

26

 checkInstDown();
 volumeControl();

 //update LCD if there is a change in Octave, Volume, or Instrument
 if (tempOct != octave || tempVol11Conv != volume11Conv || tempInst != instrument) {
 lcdDisplayInterface();
 }

 /*
 * Check to see if key is pressed or released on bare touch board
 */
 if (master.touchStatusChanged()) {
 master.updateAll();

 for (int i = firstPin; i <= lastPin; i++) {
 note = allNotes[octave][lastPin - i];
 if (master.isNewTouch(i)) {
 noteOn(0, note, 0x60);
 }
 else if (master.isNewRelease(i)) {
 noteOff(0, note, 0x60);
 }
 }
 }

 /*
 * Check to see if key is pressed or released on MPR121 breakout board
 */
 if (slave.touchStatusChanged()) {
 slave.updateAll();
 for (int r = firstPin; r <= lastPin; r++) {
 note = allNotes[octave - 1][r];
 if (slave.isNewTouch(r)) {
 noteOn(0, note, 0x60);
 }
 else if (slave.isNewRelease(r)) {
 noteOff(0, note, 0x60);
 }
 }
 }

 // end of loop
 }

 //Checks to see if the button for octave up is pressed.
 //If so, then this changes the octave up one.
 //Uses a debounce code.
 void checkOctUp() {
 octUpReading = digitalRead(octaveUp);
 if (octUpReading != octUpLastState) {
 octUpLastTime = millis();
 }

27

 if ((millis() - octUpLastTime) > 50) {
 if (octUpReading != octUpCurrentState) {
 octUpCurrentState = octUpReading;
 if (octUpCurrentState == HIGH) {
 if (octave != 6) {
 for (int j = firstPin; j <= lastPin; j++) {
 note = allNotes[octave][lastPin - j];
 noteOff(0, note, 0x60);
 note = allNotes[octave - 1][lastPin - j];
 noteOff(0, note, 0x60);
 }
 octave++;}}}}
 octUpLastState = octUpReading;
 }

 //Checks to see if the button for octave down is pressed.
 //If so, then this changes the octave down one.
 //Uses a debounce code.
 void checkOctDown() {
 octDownReading = digitalRead(octaveDown);
 if (octDownReading != octDownLastState) {
 octDownLastTime = millis();
 }
 if ((millis() - octDownLastTime) > 50) {
 if (octDownReading != octDownCurrentState) {
 octDownCurrentState = octDownReading;
 if (octDownCurrentState == HIGH) {
 if (octave != 1) {
 for (int i = firstPin; i <= lastPin; i++) {
 note = allNotes[octave][lastPin - i];
 noteOff(0, note, 0x60);
 note = allNotes[octave - 1][lastPin - i];
 noteOff(0, note, 0x60);
 }
 octave--;}}}}
 octDownLastState = octDownReading;
 }

 //Checks to see if the button for instrument up is pressed.
 //If so, then this changes to the next instrument.
 //Uses a debounce code.
 void checkInstUp() {
 instUpReading = digitalRead(instrumentUp);
 if (instUpReading != instUpLastState) {
 instUpLastTime = millis();
 }
 if ((millis() - instUpLastTime) > 50) {
 if (instUpReading != instUpCurrentState) {
 instUpCurrentState = instUpReading;
 if (instUpCurrentState == HIGH) {

28

 if (instrument == 19)
 instrument = 0;
 else
 instrument ++;
 for (int j = firstPin; j <= lastPin; j++) {
 note = allNotes[octave][lastPin - j];
 noteOff(0, note, 0x60);
 note = allNotes[octave - 1][lastPin - j];
 noteOff(0, note, 0x60);
 }
 instrumentChange();
 talkMIDI(0xB0, 0, 0x00); // Default bank GM1
 talkMIDI(0xC0, music[instrument], 0);}}}
 instUpLastState = instUpReading;
 }

 //Checks to see if the button for instrument down is pressed.
 //If so, then this changes to the next instrument.
 //Uses a debounce code.
 void checkInstDown() {
 instDownReading = digitalRead(instrumentDown);
 if (instDownReading != instDownLastState) {
 instDownLastTime = millis();
 }
 if ((millis() - instDownLastTime) > 50) {
 if (instDownReading != instDownCurrentState) {
 instDownCurrentState = instDownReading;
 if (instDownCurrentState == HIGH) {
 if (instrument == 0)
 instrument = 19;
 else
 instrument--;
 for (int j = firstPin; j <= lastPin; j++) {
 note = allNotes[octave][lastPin - j];
 noteOff(0, note, 0x60);
 note = allNotes[octave - 1][lastPin - j];
 noteOff(0, note, 0x60);
 }
 instrumentChange();
 talkMIDI(0xB0, 0, 0x00); // Default bank GM1
 talkMIDI(0xC0, music[instrument], 0);}}}
 instDownLastState = instDownReading;
 }

 //Read a potentiometer to ge a value 0-1023.
 //Converts that value to a new scale of 0-127 for MIDI purposes,
 //Then converts to a scale of 0-11 for LCD display purposes.
 void volumeControl() {
 volumeRawReading = analogRead(volumeKnob);
 volume127Conv = map(volumeRawReading, 0, 1023, 0, 127);
 if (volume127Conv != volumeCheckDiff) {

29

 volumeCheckDiff = volume127Conv;
 talkMIDI(0xB0, 0x07, volume127Conv);
 volume11Conv = map(volumeRawReading, 0, 1023, 0, 11);
 }
 }

 //This code will set the change the octave to the insturments default octave
 void instrumentChange() {
 switch (instrument) {
 case 0: octave = 4;
 break;
 case 1: octave = 4;
 break;
 case 2: octave = 3;
 break;
 case 3: octave = 4;
 break;
 case 4: octave = 4;
 break;
 case 5: octave = 4;
 break;
 case 6: octave = 4;
 break;
 case 7: octave = 4;
 break;
 case 8: octave = 4;
 break;
 case 9: octave = 3;
 break;
 case 10: octave = 2;
 break;
 case 11: octave = 4;
 break;
 case 12: octave = 4;
 break;
 case 13: octave = 5;
 break;
 case 14: octave = 4;
 break;
 case 15: octave = 4;
 break;
 case 16: octave = 4;
 break;
 case 17: octave = 4;
 break;
 case 18: octave = 3;
 break;
 case 19: octave = 6;
 break;
 default:
 break;
 }

30

 }

 //Tells the MP3 decoder to play this sound
 void noteOn(byte channel, byte note, byte attack_velocity) {
 talkMIDI((0x90 | channel), note, attack_velocity);
 }

 //Tells the MP3 decoder to stop this sound.
 void noteOff(byte channel, byte note, byte release_velocity) {
 talkMIDI((0x80 | channel), note, release_velocity);
 }

 //Communicates with the MP3 decoder.
 void talkMIDI(byte cmd, byte data1, byte data2) {
 mySerial.write(cmd);
 mySerial.write(data1);
 if ((cmd & 0xF0) <= 0xB0)
 mySerial.write(data2);
 }

 void setupMidi() {
 // Setup soft serial for MIDI control
 mySerial.begin(31250);
 Wire.begin();

 if (!master.begin(0x5C)) {// 0x5C is the MPR121 I2C address on the Bare Touch Board
 while (1);
 }
 master.setInterruptPin(masterInterrupt); // pin 4 is the MPR121 interrupt on the Bare Touch Board
 master.updateTouchData();// initial data update

 if (!slave.begin(0x5A)) { // 0x5A is the MPR121 I2C address on the MPR121 Breakout board
 while (1);
 }
 slave.setInterruptPin(slaveInterrupt);// pin 5 is the MPR121 interrupt for the MPR121 breakout board
 slave.updateTouchData();// initial data update

 // Reset the VS1053
 pinMode(resetMIDI, OUTPUT);
 digitalWrite(resetMIDI, LOW);
 delay(100);
 digitalWrite(resetMIDI, HIGH);
 delay(100);

 talkMIDI(0xB0, 0x07, volume127Conv);//Inital volume
 talkMIDI(0xB0, 0, 0x00); // GM1 Bank
 talkMIDI(0xC0, music [instrument], 0); // Set inital instrument.

31

 }

 //This is displayed during start up to show that the board is starting up
 void startLCD() {
 lcd.begin(20, 4);
 lcd.setCursor(0, 0);
 lcd.print("Senior Design 2018");
 lcd.setCursor(0, 1);
 lcd.print("Setup in progress,");
 lcd.setCursor(0, 2);
 lcd.print ("Please don't touch..");
 }

 //Clear the LCD Screen
 void clearDisplay() {
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 1);
 lcd.print(" ");
 lcd.setCursor(0, 2);
 lcd.print(" ");
 lcd.setCursor(0, 3);
 lcd.print(" ");
 }

 //LCD display while the program on in the main loop
 void lcdDisplayInterface() {
 //LCD dipsplay for instrument change
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(instArr[instrument]);

 //LCD dipsplay for octave change
 lcd.setCursor(0, 1);
 lcd.print("Octave: ");
 lcd.setCursor(8, 1);
 switch (octave) {
 case 1: lcd.print("XX00000");
 break;
 case 2: lcd.print("0XX0000");
 break;
 case 3: lcd.print("00XX000");
 break;
 case 4: lcd.print("000XX00");
 break;
 case 5: lcd.print("0000XX0");
 break;
 case 6: lcd.print("00000XX");
 break;

32

 }

 //LCD dipsplay for volume change
 lcd.setCursor(0, 2);
 lcd.print("Volume:");
 lcd.setCursor(8, 2);
 switch (volume11Conv) {
 case 0: lcd.print("| |");
 break;
 case 1: lcd.print("|- |");
 break;
 case 2: lcd.print("|-- |");
 break;
 case 3: lcd.print("|--- |");
 break;
 case 4: lcd.print("|---- |");
 break;
 case 5: lcd.print("|----- |");
 break;
 case 6: lcd.print("|------ |");
 break;
 case 7: lcd.print("|------- |");
 break;
 case 8: lcd.print("|-------- |");
 break;
 case 9: lcd.print("|--------- |");
 break;
 case 10: lcd.print("|----------|");
 break;
 default: lcd.print("|----------|");
 break;
 }
 }

33

I Characterization of Sensors

34

J Final Products

35

	Music Keyboard Based on Flexible Hybrid Electronics
	Recommended Citation

	tmp.1527186718.pdf._7__B

