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LONGITUDINAL DATA

Nichole Andrews, Ph.D.

Western Michigan University, 2017

In clinical trials and biomedical studies, treatments are compared to determine

which one is e�ective against illness. Growth curve analysis can be bene�cial in

longitudinal biomedical studies, as we can evaluate the treatment e�ect on the

response over time. The generalized growth curve model using polynomial

regression is proposed for longitudinal data. An optimal degree for the polynomial

is obtained using the BIQIF, an adaptation of the Bayesian information criterion.

Quadratic inference functions are used to estimate the parameters of the model,

which takes into account the fact that repeated measurements from the same

subject are more likely to be correlated. The equality of the growth curves is

assessed using an asymptotically chi-square test statistic. Through this test, it

could be shown that multiple treatments perform similarly, leading to the

recommendation of either, however individuals can react to the same treatment

very di�erently. A complete process for longitudinal data is also proposed that

identi�es subgroups of the population that would bene�t from a speci�c

treatment. A random e�ects linear model is used to evaluate individual treatment

e�ects longitudinally where the random e�ects identify a positive or negative

reaction to the treatment over. With the individual treatment e�ects and



characteristics of the patients, various classi�cation algorithms are applied to build

prediction models for subgrouping. While many subgrouping approaches have

been developed recently, most of them do not check its validity. As such, a simple

validation approach is proposed which not only determines if the subgroups used

are appropriate and bene�cial, but also compares methods to predict individual

treatment e�ects. All proposed methods are con�rmed with simulation studies

and analysis of data from the Women Entering Care study on depression.
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Chapter 1

Introduction

Medical conditions can greatly impact one's way of life. While some conditions

are not as severe, others need treatment to relieve symptoms and allow an individual

to lead as normal of a life as possible. Biomedical studies then are used to test

treatment e�ects. In such studies, where two or more treatments are compared,

the goal is to identify which treatment will achieve a desired result and should be

recommended for use to the population. It is common to use longitudinal data in

biomedical studies. Longitudinal data consists of observations that are measured

through time. This allows for analysis in the change of the response over time.

While it is ideal that patients attend all follow up appointments for responses to be

measured, it is common to have missing data points in longitudinal data.

Longitudinal data has been used to compare treatments and assess the response

of a treatment on a patient over time. As such, two methods have been developed

to analyze longitudinal data from medical studies and select a bene�cial treatment

for use to the population. We �rst introduce the idea of using growth curve models

to choose an ideal treatment. If this method does not lead to the recommendation

of a treatment that is deemed most bene�cial, subgroup analysis, also known as

personalized treatment, can be performed to determine a treatment bene�cial for
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subgroups of the population rather than the population as a whole.

We �rst outline the proposed procedures that will be presented in Chapters 2

and 3, followed by information on the Women Entering Care study, which will be

analyzed throughout this paper.

1.1 Proposed Work

The ultimate goal is to determine the most bene�cial treatment for a given

condition that would be recommended for use to the population. We will �rst assess

this with growth curves. Growth curves are used to investigate the trajectory for

each treatment over time. This allows us to identify if a treatment is outperforming

the others. Polynomial regression will be used to determine the coe�cients of the

growth curves and an asymptotically chi-square test statistic has been developed

to assess the equality of the growth curves. This work is presented in Chapter 2.

With our proposed analysis of growth curves, it could be determined that two

or more treatments outperform the others, however no signi�cant di�erence can

be found between the responses of these treatments. Which treatment should

be recommended for use to the population then? Rather than selecting a single

treatment, we will determine a personalized treatment for each patient that will

produce optimal results. This work is presented in Chapter 3. A random e�ects

model will be used to determine the treatment e�ect for each individual over time.

Subgrouping is then performed to determine which treatment the patient should

take. A validation approach will determine if the subgrouping was appropriate and

bene�cial.

We will assess both methods with simulation studies and analysis with data from

the Women Entering Care study. The simulation studies con�rm the e�ectiveness

2



of the proposed procedures while the data analysis allows us to see how this work

can be applied to a real life situation.

1.2 Explanation of Dataset

In the Women Entering Care study, depression was studied among low-income

minority women in the Washington D.C. area. 16,286 were screened major depres-

sive disorder. Most were excluded for various reasons, including having an ethnicity

that was not of interest for the study and having alcohol problems. In the end,

267 women were randomly assigned to treatments. The three treatments were an-

tidepressant medication, cognitive behavioral therapy (CBT, psychotherapy), and

referral to community mental health services (referral to community care, control).

Individuals in the medication group received the medication for 6 months. Parox-

etine was initially given to the women, however if negative side e�ects or no im-

provement was seen by the ninth week, the women were then given buproprion. In

total, 88 women were treated with medication. Of these, 67 received at least 9

weeks of guideline concordant medication therapy. Women assigned to the cogni-

tive behavioral therapy group were treated by a psychologist with 8 weekly sessions,

which could be either in a group or individually. While sessions were usually at a

clinic, at-home sessions were an option, as some women were not able to travel

to a clinic. In total, 90 women received cognitive behavioral therapy, of which 32

received at least six cognitive behavioral therapy sessions. Women in the referral

to community care group were informed about depression and mental health treat-

ments available to them in their communities. Of the 89 women in this group, only

15 attended at least one mental health visit.

The response for this dataset was the Hamilton Depression Score, which comes
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as a result of an interview (Hamilton, 1960). A higher score indicates a more severe

case of depression. Depression scores were obtained every month for the �rst six

months, then every other month for the remainder of the year.

The duration of the treatments was no longer than six months, therefore data

from only the �rst six months will be considered. Since the goal is to analyze

the treatment e�ect over time, we only considered patients who had a baseline

depression score and at least one follow-up. While all patients had an initial score,

thirteen did not have any other depression scores and were therefore excluded from

our analysis (medication n = 86, cognitive behavioral therapy n = 83, referral to

community care n = 85).

Besides the treatment received and the depression scores, seven other variables

were observed from each patient. These are:

� Age

� Marital Status

� School Status

� Housing Status

� Ethnicity

� Where You Were Born

� Whether Or Not You Work

Summary results of the categorical variables can be found in Table B.1 in Ap-

pendix B. More information on this dataset can be found in Miranda et al. (2003),

where this dataset was �rst analyzed.

Tables 1.1 and 1.2 give us an initial look at our dataset with the means and

con�dence intervals for depression scores among all patients and broken down by

4



treatments, respectively. Once the assigned treatment has been used, we notice

better (lower) scores among those in the medication and psychotherapy group.

Without doing further analysis, this gives us an initial idea that one of these two

treatments may be best for treating depression. In fact, in a previous study with this

data, Miranda et al. (2003) found medication and psychotherapy to be signi�cantly

more e�ective at treating depression than receiving no treatment at all.

Table 1.1: Means and Con�dence Intervals for Depression Scores
Time Mean (95% CI)

Baseline 17.00 (16.30, 17.60)
Month 1 13.30 (12.40, 14.20)
Month 2 11.10 (10.20, 12.10)
Month 3 11.00 (10.00, 12.00)
Month 4 10.10 (9.06, 11.23)
Month 5 10.30 (9.24, 11.41)
Month 6 10.60 (9.69, 11.63)

Table 1.2: Means and Con�dence Intervals for Depression Scores by Treatment
Medication CBT Control

Time Mean (95% CI) Mean (95% CI) Mean (95% CI)
Baseline 18.10 (17.00, 19.20) 16.30 (15.10, 17.50) 16.50 (15.40, 17.70)
Month 1 14.00 (12.50, 15.50) 13.10 (11.60, 14.60) 12.80 (11.00, 14.60)
Month 2 10.70 (9.15, 12.34) 11.40 (9.72, 13.13) 11.30 (9.43, 13.17)
Month 3 9.60 (8.02, 11.19) 10.20 (8.56, 11.92) 13.00 (11.20, 14.90)
Month 4 9.54 (7.68, 11.40) 9.07 (7.22, 10.92) 11.80 (9.86, 13.76)
Month 5 8.62 (6.83, 10.41) 10.5 (8.73, 12.22) 11.80 (9.72, 13.98)
Month 6 9.17 (7.41, 10.94) 10.7 (8.95, 12.52) 11.90 (10.10, 13.70)

The overall goal, then, is compare the depression scores over time for each

treatment. While we wish to �nd a treatment that is most bene�cial with growth

curve models, this may not be the case. In such a case, subgroup analysis can be

performed to determine which treatment is bene�cial for an individual rather than

the population as a whole.
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Chapter 2

Growth Curve Models

2.1 Introduction

Growth curve analysis allows us to investigate the trajectory of the response

variable for a given independent variable. Speci�cally, the growth curve models the

change of the conditional mean of the response conditioned on an independent

variable. Growth curve analysis can be advantageous in biomedical studies, where

multiple treatment e�ects are compared, since it allows us to monitor the change

in the response over time for each treatment.

In the Women Entering Care study, the goal was to investigate the treatment ef-

fect on depression longitudinally. As such, depression scores were collected monthly.

Miranda et al. (2003) found that medication and cognitive behavioral therapy were

better at treating depression than being referred to community care in the linear

regression framework by incorporating the interaction term between treatment and

time. On the other hand, Siddique et al. (2012) did not use all the depression

scores, but rather at certain time points for those who took medication and cog-

nitive behavioral therapy to investigate the response based on the severity of the

depression. In this chapter, we propose the growth curve nonlinear mean regression
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model that explores the change in the depression scores over a given time period

for di�erent treatment groups.

Growth curve analysis was �rst introduced by Pottho� and Roy in 1964. They

provided a multivariate analysis of variance model for growth curves and conducted

the hypothesis test concerning the coe�cients in the model. Chou, Bentler, and

Pentz (1998) introduced latent growth curve analysis that treats the initial status

and the growth of the curves as latent variables to model the response variable.

Curran, Obediat, and Losardo (2010) pointed out advantages to using growth

curve models over traditional longitudinal models, which include, but are not limited

to, the ability for the data to still be analyzed with missing data and nonlinear

trajectories. These authors also note that a data requirement for analysis with

growth curves is often that the response be continuous and normally distributed,

while Barbosa and Goldstein (2000) proposed a multilevel model that is applicable

for a discrete response variable.

In this chapter, we build the generalized growth curve model for longitudinal

data under the polynomial regression framework. It is known that repeated mea-

surements from the same subject are more likely to be correlated. Therefore, we

employ the quadratic inference functions (Qu, Lindsay, and Li, 2000) to �t the

growth curve model to longitudinal data. This yields more e�cient estimators by

accommodating the within-subject correlation without estimating the parameters

associated with the correlation structure. When polynomial regression is modeled,

the choice of a polynomial degree plays an important role in providing the most suit-

able growth curve model. We adopt the Bayesian information criterion (Schwarz,

1978) by treating the quadratic inference function as an objective function (Wang

and Qu, 2009). This is able to choose the most parsimonious model consistently by

imposing a penalty for over�tting the model. After the model is �tted to the data,
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we further construct a hypothesis test to assess the equality of the growth curves.

The proposed test statistic does not require the estimation of the covariance matrix

of the regression parameter. In addition, it avoids the need to specify the likelihood

function; specifying the likelihood function for correlated discrete response variables

can be challenging. The entire proposed procedure is applicable for both continuous

and discrete response variables. We apply our approach to the above-mentioned

depression data and illustrate the change of treatment e�ects through the �tted

growth curves of the depression scores.

2.2 Methodology

Suppose that Yi = (Yi1; : : : ; Yimi
)0 is a vector of mi responses repeatedly mea-

sured at times ti1; : : : ; timi
for subject i where these measurements are more likely

to be correlated. A generalized growth curve model is formulated as

E(Yi jGi ; Zi) = h(G 0
iBZi); i = 1; : : : ; n; (2.1)

where n is the number of subjects, h(�) is a known link function, Gi = (Gi1; : : : ; Gimi
)

is a (p + 1) � mi -dimensional matrix with Gi j = (1; ti j ; t
2
i j ; : : : ; t

p
ij)
0, Zi is a q-

dimensional vector representing the treatment received, and B = (B1; : : : ; Bq) is

a (p + 1) � q-dimensional matrix of parameters. Note that Zi models di�erences

between q treatment groups and Gi speci�es polynomial growth curves with an

order of p; polynomial functions are dynamically consistent and a polynomial of

su�ciently high order is guaranteed to provide an arbitrarily good �t to the observed

longitudinal data, known as Taylor's theorem.
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2.2.1 Estimation and Inference on the Regression Parameter

In this section, we �rst consider estimation of the parameter B in model (2.1).

By letting Xi = Zi 
Gi , where 
 is the kronecker product, and � = (B0
1; : : : ; B

0
q)
0,

model (2.1) can be simpli�ed as

E(Yi jXi) = h (X 0
i�) = �i : (2.2)

Liang and Zeger (1986) extend a quasi-likelihood function (Wedderburn, 1974) and

obtain an estimator of � by solving the generalized estimating equations

n∑
i=1

_�0iA
�1=2
i Ri(�)

�1A
�1=2
i (Yi � �i) = 0; (2.3)

where _�i = (@�i=@�), Ai is the diagonal variance matrix of Yi , and Ri(�) is a work-

ing correlation matrix of the responses with nuisance parameter �. Even though

Ri(�) allows us to account for the within-subject correlation, the estimator of �

can be ine�cient if this working correlation structure is misspeci�ed due to the

need to estimate �. As such, Qu, Lindsay, and Li (2000) provide an alternative; it

approximates an inverse of Ri(�) in (2.3) as

Ri(�)
�1 =

d∑
k=1

lkDik ; (2.4)

where lk is an unknown coe�cient and Dik is a known basis matrix for k = 1; : : : ; d .

As an example, consider when Ri(�) is a compound symmetric matrix, where the

diagonal elements are 1 and the remaining elements are �. Then Ri(�)
�1 is a linear

combination of two basis matrices, Di1 and Di2, where Di1 is the identity matrix

and Di2 contains 0's on the diagonal and all remaining elements are 1.

9



Ri(�)
�1 =



1 � � �

� 1 � �

� � 1 �

� � � 1



�1

Ri(�)
�1 = l1Di1 + l2Di2

Di1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Di2 =



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


Likewise, if Ri(�) is a �rst-order autoregressive correlation matrix, where the

element in the j th row and mth column is �jj�mj, Ri(�)
�1 is a linear combination

of three basis matrices: the identity matrix Di1, Di2 with 1 on the two main o�-

diagonals and 0 elsewhere, and Di3 with a 1 on the upper left and lower right corners

and 0 elsewhere.

Ri(�)
�1 =



1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1



�1

Ri(�)
�1 = l1Di1 + l2Di2 + l3Di3
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Di1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Di2 =



0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


Di3 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


By replacing Ri(�)

�1 in (2.3) with the basis matrices in (2.4), the estimator �̂

is obtained by minimizing the quadratic inference functions

Q(�) = n�g(�)0C�1�g(�); (2.5)

where �g(�) = n�1
∑n

i=1 gi(�) and C = n�1
∑n

i=1 gi(�)gi(�)
0 with

gi(�) =


_�0iA

�1=2
i Di1A

�1=2
i (Yi � �i)

...

_�0iA
�1=2
i DidA

�1=2
i (Yi � �i)

 : (2.6)

This approach allows us to incorporate the correlation information without estimat-

ing the nuisance parameter � in Ri(�). Moreover, this approach optimally combines

the estimating equations in (2.6) by assigning a lesser weight to the equation hav-

ing a larger variation. This leads to the most e�cient estimator among estimators

solved by the same linear class of the equations in (2.6).

Theorem 1. Under the regularity conditions in Appendix A, the estimator of �

satis�es

p
n(�̂ � �0)

d! N(0; V );

where �0 is the true parameter of � and V = (�0��1�)�1 with � = Ef@gi(�)=@�g
and � = Efgi(�)gi(�)0g. Moreover, VI � V is positive semide�nite, where VI is
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the asymptotic covariance matrix of �̂ under the independent working correlation

structure.

The proof of this theorem is presented in Appendix A.

Theorem 1 con�rms that the estimator is asymptotically normal with true mean

� and covariance matrix V . In addition, a positive semide�nite VI � V ensures that

the asymptotic variance in V is no greater than the one obtained under the inde-

pendent working structure. This accounts for the e�ciency gain from incorporating

the within-subject correlation commonly existing in longitudinal data.

For statistical inference on the regression parameter such as construction of

a con�dence interval for �, we can obtain a plug-in estimator of the asymptotic

covariance matrix V in Theorem 1 as

V̂ =

{1

n

n∑
i=1

@gi(�̂)

@�

}0{
1

n

n∑
i=1

gi(�̂)gi(�̂)
0

}�1{
1

n

n∑
i=1

@gi(�̂)

@�

}�1 :
2.2.2 Hypothesis Test for Identical Growth Curves

A main concern here that has not been addressed yet is which treatment pro-

duces better results over time. Which treatment should we recommend for use

to the population? Do two or more treatments perform similarly? To investigate

these inquiries, we have to determine whether or not all of the growth curves are

the same. To assess the equality of the growth curves, we state the null hypothesis

as

H0 : B1 = B2 = : : : = Bq:

Since the quadratic inference functions play an inferential role similar to minus twice

the loglikelihood function, we construct the test statistic based on Q(�) in (2.5)

12



for testing the null hypothesis as

T = Q(��)�Q(�̂);

where �� is the minimizer of Q(�) under the null hypothesis.

Theorem 2. If the regularity conditions in Appendix A hold, T
d! �2

(p+1)(q�1) under

H0.

The proof of this theorem is presented in Appendix A.

Theorem 2 con�rms that under the null hypothesis, this test statistic is asymp-

totically chi-square distributed with (p + 1)(q � 1) degrees of freedom, thus we

can use critical values to draw a conclusion on the equality of the growth curves.

We remark that estimation of the asymptotic covariance matrix of the regression

parameter is not required. Moreover, the proposed test is conducted without spec-

ifying the loglikelihood function, which can be especially challenging with discrete

correlated responses.

If it is shown that not all growth curves are equal, one may wish to further

investigate these curves and test the equality of some of them. We can readily

extend the above test by setting the parameters of the growth curves of particular

interest as equal for the null hypothesis.

2.2.3 Bayesian Information Criterion for Choice of a Polynomial

Order

Up until this point, we have assumed that the polynomial with order p �ts the

data su�ciently well, however the process for selecting this order has yet to be

discussed. One challenge that arises is that while order p is su�cient, so are orders

higher than p. Therefore we seek to �nd the true model that neither over�ts nor

13



under�ts the data. As such, we provide a model selection procedure that selects

the polynomial order for the parsimonious correct model. Although cross valida-

tion and generalized cross validation are commonly used to choose the polynomial

order, these approaches tend to over�t the model (Wang, Li, and Tsai, 2007). An

alternative procedure is the Bayesian information criterion (BIC), which enables us

to identify the true model consistently.

We select a value of k that is large enough to capture p (p � k) and consider

all models with polynomial order up to k . We index these candidate models by

m, where m = 0; : : : ; k . For each candidate model with polynomial order m, we

estimate the (m + 1) � q matrix B in model (2.1). This is adapted to formulate

the (k +1)� q matrix B̂(m) = (B̂1(m); : : : ; B̂q(m)), where the �rst (m+1) rows

are B̂ obtained from estimation with order m and all remaining elements are 0. As

an example, consider when k = 3 and q = 3. Then

B̂(0) =



�̂1 �̂2 �̂3

0 0 0

0 0 0

0 0 0


B̂(1) =



�̂1 �̂3 �̂5

�̂2 �̂4 �̂6

0 0 0

0 0 0



B̂(2) =



�̂1 �̂4 �̂7

�̂2 �̂5 �̂8

�̂3 �̂6 �̂9

0 0 0


B̂(3) =



�̂1 �̂5 �̂9

�̂2 �̂6 �̂10

�̂3 �̂7 �̂11

�̂4 �̂8 �̂12


Let Qk(�) be the quadratic inference functions based on model (2.1) with

polynomial order k . We adopt the BIC based on Qk(�) (Wang and Qu, 2009):

BIQIFm = Qk(�̂(m)) + dfmlog(n); m = 1; : : : ; k; (2.7)
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where �̂(m) = (B̂1(m)0; : : : ; B̂q(m)0)0 and dfm is the number of non-zero coe�-

cients in �̂(m). The degree of the polynomial is determined by minimizing (2.7),

denoted by m̂ = argminm BIQIFm.

Theorem 3. Under the regularity conditions in the appendix, as n !1

P (m̂ = p)! 1:

See Appendix A for the proof of this theorem.

Theorem 3 ensures that the proposed criterion identi�es the true order of the

growth curve model consistently.

Note that if the selected polynomial order is 0, then all growth curves in model

(2.1) are constant over time. In such a case, a growth curve might not be needed,

however the bene�t to our procedure is that it can identify this pattern.

2.3 Data Analysis

The proposed procedure was then applied to data from the Women Entering

Care study outlined in Section 1.2. To assess the treatment e�ect over time, model

(2.1) was applied, resulting in:

Y =



1 0 : : : 0p

1 1 : : : 1p

...
...

. . .
...

1 6 : : : 6p





�1 �p+2 �2(p+1)+1

�2 �p+3 �2(p+1)+2

...
...

...

�p+1 �2(p+1) �3(p+1)




188 0 0

0 190 0

0 0 189


0

+� = G 0BZ+�;

(2.8)
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Table 2.1: BIQIF Values for Depression Dataset
m BIQIFm
0 58.528
1 50.350
2 14.514
3 21.743
4 29.254

where 1j is a j-dimensional one vector. Note that the ith column vector of Z

is (1; 0; 0)0 if the ith patient received medication, (0; 1; 0)0 if the patient received

CBT, and (0; 0; 1)0 otherwise.

The true value of p was selected using BIQIF. Table 2.1 displays the values of

the BIQIF for k = 4. This con�rms that the quadratic form (m̂ = 2) �ts the data

su�ciently well.

We then obtained an estimator of B in (2.8) and its standard errors using the

quadratic inference functions and plug-in approach in Section 2.2.1, respectively,

and computed the Wald test statistics, as shown in Table 2.2. These estimates all

resulted in high test statistics with p-values that were very close to zero. We also

noticed that parameter estimates for medication and cognitive behavioral therapy

are relatively close while those for control di�er a bit more.

We also displayed the �tted curves in Figure 2.1. This �gure indicates that

all forms of treatment resulted in the depression score decreasing over time with

medication and cognitive behavioral therapy producing lower depression scores.

In this manner, we tested whether all growth curves were the same using the

proposed T test statistic from Section 2.2.2. The resulting test statistic was T =

21:80. Here, the degrees of freedom are calculated as (p+1)(q�1) = (2+1)(3�
1) = 6. The p-value for T = 21:80 and 6 degrees of freedom is 0.0013. This

suggests that di�erences between some of growth curves are statistically signi�cant
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Table 2.2: Estimated Coe�cients, Standard Errors (SE), and Wald Test Statistics
Estimate SE Wald

Medication
Intercept 17.849 0.504 1255.0
Linear -3.997 0.397 101.2

Quadratic 0.430 0.062 47.5
CBT

Intercept 16.117 0.513 987.6
Linear -3.060 0.366 69.7

Quadratic 0.354 0.061 33.1
Control

Intercept 16.235 0.533 927.4
Linear -2.008 0.426 22.2

Quadratic 0.244 0.068 13.1

Figure 2.1: Fitted Growth Curves of Three Treatments for Depression Data
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at a nominal level of 0.05.

From Figure 2.1, it is apparent that the growth curve for the control group is

di�erent from the other two. These curves indicate that medication and cogni-

tive behavioral therapy perform better at treating depression than being referred

to community care. The growth curves for medication and cognitive behavioral

therapy, however, look similar, therefore they were compared to see if the two

growth curves di�er. Here, T = 7:54 and the degrees of freedom are calculated

as (2 + 1)(2 � 1) = 3, resulting in a p-value of 0.0565. This indicates that the

proposed test fails to reject the equality between the two growth curves at the

signi�cance level of 0.05, although it should be noted that the p-value is close to

0.05.

2.4 Simulation Studies

The simulation studies here re�ect the results from the data analysis on the

Women Entering Care study in Section 2.3. We generated correlated continuous

responses based on model (2.8) with p = 2 by treating the estimated coe�cients

in Table 2.2 as B. In addition, the random errors matrix � were generated from

a multivariate normal distribution, � � N(0; I267 
 R), where I267 is a 267 � 267-

dimensional identity matrix and R is a 7� 7-dimensional matrix of the AR(1) with

a correlation coe�cient of either 0.4 or 0.8, i.e.,
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R =



1 0:4 0:42 0:43 0:44 0:45 0:46

0:4 1 0:4 0:42 0:43 0:44 0:45

0:42 0:4 1 0:4 0:42 0:43 0:44

0:43 0:42 0:4 1 0:4 0:42 0:43

0:44 0:43 0:42 0:4 1 0:4 0:42

0:45 0:44 0:43 0:42 0:4 1 0:4

0:46 0:45 0:44 0:43 0:42 0:4 1


and

R =



1 0:8 0:82 0:83 0:84 0:85 0:86

0:8 1 0:8 0:82 0:83 0:84 0:85

0:82 0:8 1 0:8 0:82 0:83 0:84

0:83 0:82 0:8 1 0:8 0:82 0:83

0:84 0:83 0:82 0:8 1 0:8 0:82

0:85 0:84 0:83 0:82 0:8 1 0:8

0:86 0:85 0:84 0:83 0:82 0:8 1


We generated 1000 simulated data sets and estimated the coe�cients of B

for all simulations under three working correlation structures: AR(1), compound

symmetry, and independence.

We also computed 95% con�dence intervals and determined whether or not

the interval captured the true parameter. Moreover, the average length of the

con�dence intervals for each parameter estimate is reported in Table 2.3. This table

also reports the proportion of times the true parameter was captured in the interval.

We notice that the coverage probabilities were nearly the same, and at or close to

95%, for all coe�cients under each working correlation structure. This could lead

us to conclude that the working correlation structure used is irrelevant, however it

is important to note the di�erence among the MSE's and average lengths of these
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Table 2.3: Mean Squared Errors (MSE � 100), Coverage Probabilities (CP), and
Means of Con�dence Interval Lengths (Length) Under the AR(1), Compound Sym-
metry and Independent Working Correlation Structure

AR(1) Compound symmetry Independent
� MSE Length CP(%) MSE Length CP(%) MSE Length CP(%)
� = 0:8

�1 1.429 0.438 93% 1.492 0.450 92% 1.550 0.480 94%
�2 0.421 0.243 94% 0.445 0.250 94% 0.514 0.279 94%
�3 0.010 0.038 94% 0.011 0.039 93% 0.013 0.044 95%
�4 1.313 0.435 95% 1.374 0.445 94% 1.482 0.476 95%
�5 0.400 0.241 95% 0.437 0.248 93% 0.513 0.277 94%
�6 0.010 0.037 94% 0.011 0.038 94% 0.013 0.043 94%
�7 1.343 0.435 93% 1.452 0.446 93% 1.458 0.476 95%
�8 0.406 0.243 94% 0.428 0.251 95% 0.512 0.286 96%
�9 0.010 0.038 94% 0.011 0.039 94% 0.013 0.045 95%
� = 0:4

�1 1.404 0.446 94% 1.415 0.453 94% 1.407 0.464 95%
�2 0.750 0.329 95% 0.745 0.334 95% 0.744 0.344 95%
�3 0.019 0.053 95% 0.019 0.053 94% 0.019 0.055 96%
�4 1.446 0.449 94% 1.494 0.454 93% 1.453 0.466 94%
�5 0.820 0.331 92% 0.810 0.335 93% 0.805 0.345 95%
�6 0.020 0.052 92% 0.020 0.053 93% 0.020 0.054 94%
�7 1.582 0.472 94% 1.666 0.478 94% 1.590 0.491 95%
�8 0.822 0.339 93% 0.865 0.343 93% 0.835 0.353 94%
�9 0.020 0.053 94% 0.021 0.054 93% 0.021 0.055 94%

con�dence intervals. The con�dence intervals for the correct working correlation

structure, AR(1), are narrower than those of the other structures and are widest

for independence, where we ignored correlation between observations.

For each simulation study, we also determined whether or not BIQIF identi�ed

the best polynomial order to be p = 2. In fact, BIQIF identi�ed m̂ = 2 every

time, regardless of the correlation coe�cient. In addition, we also tested whether

or not all growth curves were the same with our test statistic T . For � = 0:8, our

test always identi�ed that the growth curves were not all the same. For � = 0:4,

the test had this same result 999 times of the 1000 simulations when the correct
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Figure 2.2: Quantile-Quantile Plots for the Chi-Square Distribution with Six De-
grees of Freedom Versus the Test Statistic when the Null Hypothesis is True
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working correlation structure, AR(1), was used.

We also ran additional simulation studies with another 1000 datasets to further

investigate Theorem 2. Here, we considered all growth curves to be the same as

that of the CBT curve and tested how many times among the 1000 simulations we

rejected the null hypothesis of equal growth curves at a signi�cant level of 0.05.

Here, we rejected the null hypothesis 53 times, which is close to the nominal level.

We further drew the qq-plot in Figure 2.2 for the chi-square distribution versus the

test statistic when the null hypothesis is true. All of this con�rms Theorem 2.
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2.5 Discussion

We have developed an entire process using a generalized growth curve model

that �ts the data to a polynomial and tests the equality of the curves. This is

especially useful when comparing treatments to see which one results in a better

response over time. In general, the proposed procedure is easy to implement and

interpret. This procedure also overcomes the limitation of a linear relationship

between the response and time. For our data analysis with the depression dataset,

we found that there was a quadratic relationship between the response and time

for each treatment. In addition, our method was able to show that medication and

cognitive behavioral therapy outperformed referral to community care in treating

depression.

Here, we assume that a polynomial curve �ts the data su�ciently well. Since

our growth curves are not necessarily linear, nonparametric regression is another

approach for the growth curves. Our method could be extended to use of the spline

curve. The spline curve is a global estimation, meaning it uses all the information

to create the curve, as our approach did also. To extend our work, you would

simply replace the polynomial regression matrix with the spline. This will create

a curve between points called knots, which could also be identi�ed with the BIC.

This is beyond the scope of the current research, though.
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Chapter 3

Subgroup Analysis

3.1 Introduction

For longitudinal data, we suppose that Yi j is the response for the i th subject at

time Ti j where i = 1; : : : ; n, j = 1; : : : ; ni , and ni is the number of times measure-

ments are taken on the i th patient. In addition, the n subjects are independent. To

evaluate the treatment e�ect over time, the following marginal regression model

could be considered:

Yi j = �0 + �1ZiTi j + �2Ti j + �i j ; (3.1)

where Zi = 1 or � 1 represents the treatment assignment for patient i , � =

(�0; �1; �2)
0 is the parameter vector, and �i j are random errors. As outlined in Section

2.2.1, generalized estimating equations (Liang and Zeger, 1986) and quadratic

inference functions (Qu, Lindsay, and Li, 2000) can be used to estimate �. Both

approaches can yield consistent and e�cient estimators by accommodating the

within-subject correlation commonly existing in longitudinal data.

Analysis with model (3.1), however, could indicate no di�erence in the outcome

of two treatments, resulting in the recommendation of either treatment for use in
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the population. Such was the case in Section 2.3, where no di�erence was found

in the depression scores between the medication and cognitive behavioral therapy

groups over time. At the same time, individuals can react very di�erently to the

same treatment. Outside factors, such as biological or environmental in�uences,

can have a signi�cant impact on the outcome of a given treatment. As such, a

method for identifying an ideal treatment based on patient characteristics is desired

rather than identifying a single bene�cial treatment for the entire population.

Song and Pepe (2004) proposed a method for subgrouping patients into a par-

ticular treatment according to a covariate determined by how this value compared

to a pre-speci�ed threshold. The use of a single covariate was also used by Bonetti

and Gelber (2004), in which patients were grouped by the value of this covariate

and analyzed with a moving average procedure. Moskowitz and Pepe (2004) used

the concept of positive predictive values with a single covariate. The problem with

these methods, though, is that more than one variable may be related to the out-

come of the treatment. Cai et al. (2011) were able to utilize multiple baseline

measurements with a two-stage method, where a parametric index score was cal-

culated based on the estimated subject-speci�c mean response for the treatments

with either a parametric or semiparametric model, followed by inference of the aver-

age treatment di�erence. Zhao et al. (2011) also used a parametric scoring system

with multiple baseline covariates. Foster, Taylor, and Ruberg (2011) proposed the

virtual twins method to identify a subgroup for which the treatment e�ect was

better than the average treatment e�ect.

Recently, random e�ects linear models have been studied for personalized treat-

ments, as the model allows each patient to be considered an individual rather than

only a member of the population (Diaz, Yeh, and Leon, 2012, Diaz and de Leon,

2013). Diaz et al. (2007) used a random intercept model to model the log of
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plasma concentrations given certain covariates. Diaz (2016) proposed bene�t func-

tions for treatment comparison and provided a graphical method for investigating

the severity of a disease. Here, the random e�ects incorporate variability of the

response di�erences in personal characteristics of the patient. Cho et al. (2016)

used a random forest approach in an unspeci�ed random e�ects model. Zhu and

Qu (2016) personalized drug dosage over time with a log-linear mixed e�ect model.

Diaz, Yeh, and Leon (2012) also noted that an empirical Bayesian approach under

the mixed model framework may have better results for individualizing drug doses.

While the above mentioned procedures can subgroup the data, the e�ectiveness

of their classi�cation has not been fully discussed. Shen and He (2015) developed a

procedure using a structured logistic-normal mixture model that not only classi�ed

the data, but also tested for the existence of subgroups. This work was extended by

Wu, Zheng, and Yu (2016) for time-to-event data with the semiparametric logistic-

cox mixture model. While these methods have advanced work in subgroup analysis,

speci�cations for the data may not always be met.

In this chapter, we o�er a complete process from subgrouping to validation for

personalized treatments in longitudinal studies. Our procedure starts by providing

a random e�ects linear model. The random e�ects in the model evaluate individual

treatment e�ects over time, yet the �xed e�ects still allow us to look at the pop-

ulation as a whole. Since the variation in the random e�ects acts as the variation

between characteristics of the patients (Diaz, Yeh, and Leon, 2012, Diaz, 2016,

Senn, 2001), we employ various classi�cation approaches to build prediction models

based on the individual e�ects and characteristics of the patients; both linear and

nonlinear classi�cation approaches are considered, since the association between

the characteristics of the patient and the outcome is unknown in practice. While

subgrouping can be performed based on the prediction models, the question of its
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appropriateness and which model is best remains unanswered. Therefore, a valida-

tion procedure has been developed to choose the best prediction model under the

marginal regression framework.

While many methods have been developed for classifying data, the advantage

to the proposed method is that it utilizes supervised learning algorithms already de-

veloped, making them easier to implement and interpret. In addition, the proposed

procedure can be readily applied to a longitudinal medical study where all follow up

appointments may not be attended, therefore resulting in missing measurements.

Moreover, the validation approach allows us to not only analyze the treatment ef-

fect over time for those that received the treatment deemed bene�cial with the

prediction model, but also takes into account a time e�ect. This is an important

aspect; while we may desire that the value of the outcome decreases over time,

this may not happen. Including a time e�ect allows us to analyze whether or not

the treatment slows the progression of the illness. Since we are able to assess

the validity of our classi�cation and determine the best prediction model, our steps

outline the entire procedure for determining an appropriate subgroup.

3.2 Methodology

3.2.1 Evaluating an Individual Treatment E�ect

Since a mixed model has been shown to be e�ective in the analysis of longitudinal

data, we consider the model that evaluates the treatment e�ect, speci�cally its

e�ect over time, on a response. Accordingly, the random slope intercept model is

formulated as:

Yi j = �0+�0i + (�1+�1i)ZiTi j + �2Ti j + ei j ; i = 1; : : : ; n j = 1; : : : ; ni ; (3.2)

26



where �0i and �1i are the random intercept and slope for subject i , respectively.

While �1 represents the overall average of the treatment e�ect over time, �1i

enables us to take into account individual di�erences. By considering the interaction

e�ect between the treatment and time, model (3.2) allows us to evaluate the

treatment e�ect on the response over time.

We estimate the parameters in model (3.2) using maximum likelihood estima-

tion. Without loss of generality, we suppose that the number of measurements

taken on each subject are the same (i.e., ni = k for all i) and rewrite model (3.2)

as:

Y = G� +D�+ e;

where Y is an nk-dimensional vector of the response and G and D are nk � 3 and

nk � 2n matrices of covariates corresponding to the �xed e�ect � = (�0; �1; �2)
0

and random e�ect � = (�01; : : : ; �0n; �11; : : : ; �1n)
0, respectively. Assuming a

multivariate normal distribution �

e

 � N


 0

0

 ;

 
 0

0 �


 ;

Y can also be expressed as Y = G�+ e�, where e� = D�+ e, resulting in e� �
N(0;M) where M = D
D0 +�. If M were the identity matrix, �̂ = (G 0G)�1G 0Y ,

however this is doubtful. Therefore, we will change our equation slightly to help

us.

Y = G� + ��

M� 1

2Y = M� 1

2G� +M� 1

2 ��︸ ︷︷ ︸
�N(0;I)
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We are now able to estimate �.

�̂ = (G 0M� 1

2M� 1

2G)�1G 0M� 1

2M� 1

2Y

= (G 0M�1G)�1G 0M�1Y

To estimate �, we will use the fact that Y � N(X�;M) and � � N(0;
). We

will �rst �nd the joint distribution of Y and �. Since we know the expected value

and variance of each, we need the covariance between the two vectors.

COV(Y; �) = COV(G� +D�+ �; �)

= COV(G�;�) + COV(D�;�) + COV(�; �)

= 0 +D
+ 0

= D


Therefore,

 Y

�

 � N


 G�

0


 M D



D0 



.

Recall that if

 A

B

 � N


 �A

�B

 ;

 ∑
A

∑
AB∑

BA

∑
B


, then

BjA � N(�B +
∑

BA

∑�1
A (A� �A);

∑
B �

∑
BA

∑�1
A

∑
AB)
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Knowing this,

E(�jY ) = 0 + 
D0M�1(Y � G�)

= 
D0M�1(Y � G�)

Therefore, we have the following parameter estimates for our �xed and random

e�ects:

�̂ = (G 0M̂�1G)�1G 0M̂�1Y

�̂ = 
̂D0M̂�1(Y � G�̂)

Here 
̂ and �̂, and ultimately M̂, are obtained by maximizing the following

likelihood function:

l(
;�) = �1

2
(Y � G(G 0M�1G)�1G 0M�1Y )0M�1(Y � G(G 0M�1G)�1G 0M�1Y )

�1

2
logjMj � nk

2
log(2�);

where jMj is the determinant of the covariance matrix M. While this is compu-

tationally intensive, advances with technology and software make this a non-issue.

Moreover, Hartley and Rao (1967) showed that these estimates are asymptotically

consistent and e�cient. When the estimate ofM is biased, the restricted maximum

likelihood is a viable alternative approach (Latra et al., 2010).

Since model (3.2) provides the individual treatment e�ect on the response over

time, we can split all subjects into two groups according to whether or not they

had a positive e�ect. For this, a value, Ci , is assigned to each subject based on
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the sum of the �xed slope estimate and random slope estimate for the interaction

between treatment and time (�̂1 + �̂1i). The assignment is

Ci =

 1 �̂1 + �̂1i > 0

�1 �̂1 + �̂1i � 0

Ci indicates a positive or negative treatment e�ect for subject i over time.

3.2.2 Building the Prediction Model

Once individual e�ects have been identi�ed, we classify our data accordingly.

The response variable for our subgrouping approaches is the binary outcome of Ci .

As such, we build a prediction model based on the independent variables Xi , which

contains characteristics of patient i that are deemed in�uential to the assignment

of the treatment. This could include variables such as, but not limited to, age,

gender, and race. The use of Ci as the response is key, as it is determined by

the parameter estimate for the interaction between treatment, Zi , and time, Ti j ,

for each patient and is not an observed value form the dataset. Since we will be

classifying observations into one of two groups, the desired prediction model is then

speci�ed as

f (Xi) = P (Ci = 1jXi);

where f (�) is a function representing the relationship between Ci and Xi . In reality,

this relationship is unknown. It could be either linear or nonlinear, however this lack

of information makes the function f (�) unidenti�able. As such, various prediction

models are constructed through both types of supervised learning algorithms:

� Linear

� Logistic regression
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� Linear discriminant analysis (LDA)

� Support vector machine (SVM) with linear kernel

� Nonlinear

� Quadratic discriminant analysis (QDA)

� Decision tree

� Random forest

� SVM with radial kernel

We denote the estimated model by f̂ (Xi) and classify patient i as Ĉi = 1 if f̂ (Xi) >

0:5 and Ĉi = �1 otherwise.

Using logistic regression, we will calculate the probability P(Ci = 1jXi). To do

this, we will �t a model for P(Ci = 1jXi) with the variables of Xi using the logistic

function, that is

P (Ci = 1jXi) =
e�

0Xi

1 + e�0Xi
:

The regression coe�cients of � are estimated using maximum likelihood estimation.

If this probability is at least 0.5, we will classify patient i as Ĉi = 1, otherwise we

will let Ĉi = �1. That is,

Ĉ =

 1 if P (Ci = 1jXi) � 0:5

�1 if P (Ci = 1jXi) < 0:5

LDA is similar to logistic regression, however instead of only predicting P(Ci =

1jXi), it will predict both P(Ci = 1jXi) and P(Ci = �1jXi). Our classi�cation

will then be based on which probability is higher. These probabilities are calculated

using the prior probabilities, �0 and �1, that a randomly chosen observation is

from a certain class and the density function of Xi . If the prior probabilities are
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unknown, we will default to using the probability that an observation in the training

dataset falls in the given class. It is assumed that Xi is from a multivariate normal

distribution. Therefore, it is assumed that Xi � N(�;�), then the density function

of Xi is

f (Xi) =
1

(2�)
p

2 j∑ j 12
e�

1

2
(Xi��)

0��1(Xi��)

where p is the number of variables in Xi . Classi�cation is based on whether P(Ci =

1jXi) or P(Ci = �1jXi) is larger, where

P (Ci = k jXi) =
�k fk(Xi)

�0f0(Xi) + �1f1(Xi)
:

Like LDA, QDA it will calculate a probability for each class and classify the ob-

servation according to the largest probability. The di�erence, however, is that QDA

assumes that each class has its only covariance matrix, meaning Xi � N(�k ;�k)

for the k th class.

We will build a decision tree that splits our data into regions based on values of

the personal characteristics. The classi�cation groups are determined by the most

occurring Ci value in that region from the training dataset.

The random forest algorithm works similar to that of a decision tree, however

when building our tree, this takes bootstrap samples of the data and then averages

the results. In addition, at each split, instead of considering all p variables, we

will only consider
p
p of them. This prevents strong variables from always being in

the top split and makes the results more reliable (James et al., 2013). An added

bonus of this algorithm is that it can identify important variables related to the

classi�cation.

We will also be using SVM, which extends beyond linear variables to quadratic

and even cubic to �nd the relationship between Ci and Xi . SVM uses a function of
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the inner products that we call a kernel. The default kernel in R is a radial kernel,

but we will also consider a linear kernel. A linear kernel uses the inner product of

each observation (
∑p

l=1 xi lxi i l), ultimately �nding a linear separation between the

observations. A radial kernel uses the function e�
∑p

l=1
(xi l�xi i l

)2, where  is a positive

constant.

Among these supervised learning algorithms, we expect logistic regression, LDA,

and SVM with a linear kernel to provide an accurate prediction model if the predic-

tors are linearly associated with the response. Likewise, we expect these methods

to perform poorly and QDA, decision tree, random forest, and SVM with a radial

kernel to perform well if the relationship between Ci and Xi is not linear.

Once classi�cation is performed with the supervised learning algorithms, Ĉi in-

dicates the recommended treatment for subject i that is believed to be bene�cial.

After we employ the supervised learning algorithms to build the prediction models,

we assess these results with the validation approach outlined below.

3.2.3 Validating the Prediction Model

While classi�cation can be performed on our dataset, the question still remains

of whether the subgrouping was e�ective or not. Therefore, a validation approach

has been developed to assess this problem. Suppose that a higher response is

desired over time. Then treatment Z = 1 is deemed bene�cial for patient i if

Ĉi = 1, as �̂1 + �̂1i is the parameter estimate for ZiTi j and Ci = 1 means this

estimate is positive. Likewise, treatment Z = �1 is deemed bene�cial for patient

i if Ĉi = �1.
In this section, we assume that the desired outcome is for the response to

decrease over time, which corresponds to our application of the depression study

(i.e., treatments Z = 1 and �1 are deemed bene�cial for patients whose Ĉi are
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�1 and 1, respectively). For each subgrouping method described in Section 3.2.2,

let Ui be the indicator that the patient received the treatment determined to be

bene�cial through the prediction model. We then formulate the following marginal

regression model:

Yi j = 0 + 1UiTi j + 2Ti j + �i j (3.3)

and estimate parameters k , k = 0; 1; 2, using the generalized estimating equa-

tion approach (Liang and Zeger, 1986) that can yield unbiased and more e�cient

estimators than the one ignoring the within-subject correlation. For patients who

receive the bene�cial treatment, we should notice a decrease in their response over

time, thus ̂1 should be signi�cantly negative. If this is the case, then the proposed

subgrouping analysis is appropriate and bene�cial. We remark that while this may

appear to be similar to model (3.1), the key di�erence is the use of Ui rather than

Zi . We are no longer concerned with which treatment the patient receives, as

we were in model (3.1), but rather with whether or not the subject received the

treatment that was deemed bene�cial in the building of the prediction model.

It may be the case that multiple subgrouping approaches prove to be bene-

�cial but one must be chosen. The best classi�cation approach is the one that

distinguishes the two groups (did and did not receive the treatment predicted to

be bene�cial) the most. This is determined by the one with the largest Wald test

statistic among e�ective prediction models.

3.3 Simulation Studies

In this section, we assess the proposed method through three simulation studies.

First, we assume that subgrouping is appropriate and use both a linear and nonlinear

form of the random slopes. Finally, we assume that subgrouping is not appropriate
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and generate random slopes that are not dependent on the data. For these, a

sample size of 200 for the training dataset and 100 for the testing dataset were

modeled as:

Yi j = �0 + �0i + (�1 + �1i)ZiTi j + �2Ti j + ei j ; j = 1; : : : ; 6; (3.4)

where (�0; �1; �2)
0 = (0; 0;�0:2)0, Zi was randomly chosen as either �1 or 1 for

the treatment assignment with a probability of 0.5, Ti j was the index of time j ,

�0i was randomly generated from a uniform distribution between �1 and 1, and

ei j = (ei1; : : : ; ei6)
0 was randomly selected from a multivariate normal distribution

with mean 0 and covariance matrix R, where R has a compound symmetry structure

with a correlation coe�cient of 0.7, i.e.,

R =



1 0:7 0:7 0:7 0:7 0:7

0:7 1 0:7 0:7 0:7 0:7

0:7 0:7 1 0:7 0:7 0:7

0:7 0:7 0:7 1 0:7 0:7

0:7 0:7 0:7 0:7 1 0:7

0:7 0:7 0:7 0:7 0:7 1


.

Six independent variables independent variables were used, which act as charac-

teristics of the patient; X1i , X2i , and X3i were generated randomly from a standard

normal distribution, while X4i , X5i , and X6i were binary variables assigned a value

randomly chosen as either �1 or 1 for subject i with a probability of 0.5.

The training dataset was �t to model (3.4), and the seven supervised learning

algorithms described in Section 3.2.2 were utilized based on the predictor vector

Xi = (X1i ; X2i ; X3i ; X4i ; X5i ; X6i)
0. Once prediction models were developed on the

training dataset, subjects in the testing dataset were classi�ed based on these

models; misclassi�cation error rates were computed, de�ned as the proportion of
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times Ci 6= Ĉi for i = 1; : : : ; 100. Finally, the proposed validation approach was

used to determine the appropriateness of our subgrouping and the best subgrouping

method. A total of 1000 simulations were run for each type of random slope.

3.3.1 Linear Association

We will let our random slopes be:

�1i = �0:5X1i +X4i + �i ;

where �i is the error term randomly generated from a standard normal distribution.

Note that we intentionally set X4 to be a strong variable and X1 to be weaker in

order to see if logistic regression and the random forest algorithm will detect these

variables as signi�cant. From there, we �t our mixed model to our data using the

equation for Yi j speci�ed above. Figure B.1 in Appendix B contains the histograms

for both the random slopes and random slope estimates of our training data set

for one of our simulations. We see that both of these plots are centered around

0. Since we are determining a value of Ci based on the sign of our random slope

estimate, this symmetry is ideal. In addition, the shape of each histogram is similar.

Again, this is ideal. In the end, 96.25% of our 200 data points had the same sign

for their random slope and random slope estimate, on average. From here, our

supervised learning algorithms were utilized and prediction models were developed.

The same initial steps were then performed with the testing dataset. Again,

a random slope was calculated for each observation, then estimated by �tting

our mixed model for the variable Yi j . Here, the random slopes and random slope

estimates had the same sign for 95.32% of the 100 data points, on average. Figure

B.2 in Appendix B contains the plots of the random slopes and random slope
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estimates for the testing dataset for one of our simulations. We notice a similar

overall look to these histograms as we did above.

The classi�cation methods developed for the training dataset were then utilized

on the testing dataset. As stated section 3.2.2, the random forest algorithm, by

default, considers
p
p variables at each split, where p is the number of variables. In

our case, this would be
p
6, which rounds to 2. We investigated using one through

six variables at each split to see if we could obtain better results, however the results

were not signi�cantly di�erent so we chose to simply use the default of randomly

selecting two variables at each split.

The average of the misclassi�cation error rates reported in Table 3.1 show that

all methods except the decision tree perform similarly with the linear approaches

producing slightly lower error rates.

Table 3.1: Average Misclassi�cation Error Rates for Testing Data with Linear Ran-
dom Slopes

Type Method Error Rate

Linear
Logistic 19.17%
LDA 18.87%

SVM (linear) 19.05%

Nonlinear

QDA 19.45%
Decision tree 24.45%
Random forest 20.57%
SVM (radial) 19.12%

In addition, the validity of our classi�cation was assessed on the testing dataset.

Table 3.2 displays the proportion of times each method produced a signi�cantly

negative ̂1, as well as the average and standard deviation of ̂1 among the 1000

simulations. Since we were assuming that a lower response is desired over time,

̂1 is signi�cantly negative if the proposed prediction model is e�ective. This was

achieved, as shown in Table 3.2; each subgrouping approach produced a signi�cant

parameter estimate all 1000 times, indicating that the proposed method performs
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well in the case of linear random slopes. Moreover, the average and standard

deviation of ̂1 were approximately the same for all methods except the decision

tree, suggesting that both linear and nonlinear classi�cation approaches performed

relatively equally. Due to ease of interpretation and simplicity, however, we would

recommend the use of a linear classi�cation approach here.

Table 3.2: Validation Results for Testing Data with Linear Random Slopes
Type Method Proportion Mean(̂1) SD(̂1)

Linear
Logistic 1.000 �1:976 0.233
LDA 1.000 �1:994 0.227

SVM (linear) 1.000 �1:988 0.228

Nonlinear

QDA 1.000 �1:970 0.234
Decision tree 1.000 �1:670 0.301
Random forest 1.000 �1:899 0.240
SVM (radial) 1.000 �1:982 0.229

We note that we intentionally set X4 to be a strong variable and X1 to be weaker

in order to �nd if logistic regression and the random forest algorithm would detect

these variables as signi�cant. For logistic regression, variables were considered

signi�cant if their corresponding p-value was less than 0.05. The number of times

each variable was considered signi�cant is displayed in Table B.2 in Appendix B. X4

was always shown to be a signi�cant variable in the model while X1 was signi�cant

99.3% of the time. Moreover, the remaining four variables were signi�cant 5 to

6% of the time.

In addition, we were able to identify important factors when the random forest

algorithm was implemented. Table B.3 in Appendix B displays the number of times

each variable was ranked �rst, second, and third most important using the random

forest algorithm. X4 was always considered the most important factor and X1 was

the second most important variable over 90% of the time.
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3.3.2 Nonlinear Association

We used the same information as above, however we added two nonlinear com-

ponents to the random slopes in Section 3.3.1. The nonlinear random slopes were

then generated as:

�1i = �0:5X1i +X4i +X1iX2i � 0:7X2
3iX4i + �i :

We would like the sign of each random slope and its corresponding random

slope estimate to be the same, as we will classify our data based on the sign

of the random slope estimates. For the training dataset, the random slopes and

random slope estimates had the same sign for 95.83% of the 200 observations,

on average. Histograms of the random slopes and random slope estimates for the

training dataset for one of the simulations are in Figure B.3 in Appendix B.

The seven subgrouping methods were then used to create our prediction models

on our training dataset. From there, our attention shifted towards the testing

dataset. For this, 94.52% of the random slopes and random slope estimates had

the same sign, on average. Figure B.4 in Appendix B contains the histograms of

the random slopes and random slope estimates for the testing dataset for one of

the simulations.

The prediction models developed for the training dataset were then utilized on

the testing dataset. Table 3.3 summarizes the error rates for each method.

The results in Table 3.3 con�rm that all nonlinear approaches outperformed the

linear ones in terms of a lower misclassi�cation error rate; SVM with a radial kernel

had the lowest error rate with the random forest algorithm less than one percent

behind.

We also remark that X5 and X6 were never considered among the top three most
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Table 3.3: Average Misclassi�cation Error Rates for Testing Data with Nonlinear
Random Slopes

Type Method Error Rate

Linear
Logistic 39.06%
LDA 39.02%

SVM (linear) 39.27%

Nonlinear

QDA 33.24%
Decision tree 34.73%
Random forest 30.39%
SVM (radial) 29.63%

in�uential variables among all 1000 simulations with the random forest approach.

Considering these two variables were the only ones not used in the calculation of

the above random slope, this result was not surprising. Table B.4 in Appendix B

displays the number of times each variable was ranked �rst, second, and third most

important using the random forest algorithm.

For logistic regression, variables were considered signi�cant if their correspond-

ing p-value was less than 0.05. The number of times each variable was considered

signi�cant is displayed in Table B.5 in Appendix B. Here, X1 and X4 were signi�cant

the most often. Since these variables are stronger than the others in the calculation

of the random slopes, this is not surprising.

Table 3.4 shows that the prediction models based on the nonlinear classi�cation

approaches were better than those of the linear type in terms of a higher proportion

of times that ̂1 was signi�cant; this estimate also has a smaller value, indicating

that the bene�cial treatment will lower the response more over time. When com-

paring the nonlinear algorithms, SVM with a radial kernel and random forest were

the best classi�cation methods studied. For these methods, the average ̂1 was

�1:615 and �1:587, respectively. On the other hand, the linear approaches all

had the highest error rates and accordingly had the fewest signi�cant parameter

estimates with the validation approach. In fact, the proportion of signi�cant pa-
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rameter estimates decreased by about 30% with the linear approaches from when

we had linear random slopes in Section 3.3.1. In addition, the average ̂1 for these

methods ranged from �0:737 to �0:815, indicating the subgrouping was bene�cial
but not as bene�cial as that of the nonlinear methods.

Table 3.4: Validation Results for Testing Data with Nonlinear Random Slopes
Type Method Proportion Mean(̂1) SD(̂1)

Linear
Logistic 0.718 �0:815 0.383
LDA 0.718 �0:814 0.385

SVM (linear) 0.666 �0:737 0.400

Nonlinear

QDA 0.913 �1:088 0.369
Decision tree 0.952 �1:280 0.418
Random forest 0.997 �1:587 0.360
SVM (radial) 0.999 �1:615 0.350

3.3.3 No Association

In the two previous simulation studies, the random slopes were calculated based

on data values. We now investigate when the random slopes are not dependent

on the data at all. This represents the null hypothesis, that subgrouping is not

appropriate. Here, we will let our random slopes be randomly generated from a

standard normal distribution.

�1i = �i :

For the training dataset, the random slopes and random slope estimates had

the same sign for 95% of the 200 observations, on average. Histograms of the

random slopes and random slope estimates for the training dataset for one of the

simulations are in Figure B.5 in Appendix B. Once the prediction models were

built the independent variables, our attention shifted to the testing dataset. Here,

92.4% of the random slopes and random slope estimates had the same sign, on
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average. Figure B.6 in Appendix B contains the histograms of the random slopes

and random slope estimates for the testing dataset for one of the simulations.

The averages of the misclassi�cation error rates are also reported in Table 3.5.

These are all near 50%, indicating that we are just as likely to correctly classify

an individual as we are to misclassify them. This is because the random slopes are

not associated with the data at all, yet the prediction models are built with the

independent variables of Xi . As such, the classi�cation approaches cannot perform

well.

Table 3.5: Average Misclassi�cation Error Rates for Testing Data for Randomly
Generated Random Slopes

Type Method Error Rate

Linear
Logistic 50.1%
LDA 50.1%

SVM (linear) 50.1%

Nonlinear

QDA 50.1%
Decision tree 49.9%
Random forest 50.1%
SVM (radial) 50.2%

Table 3.6 displays the results from the validation approach. Regardless of the

classi�cation approach, the proportion of times that the prediction model is deemed

signi�cant through validation is close to a nominal level of 0.05. This proportion

also represents the type I error, where we recommend subgrouping when it is not

appropriate. These results indicate that when subgrouping is not appropriate, all

the classi�cation methods do not recommend any subgrouping.

Logistic regression also assessed whether or not a variable was considered sig-

ni�cant. Here, all variables were signi�cant close to a nominal level of 5% of the

time. In addition, variable importance was ranked with the random forest algo-

rithm. Here, all variables were considered important a relatively equal amount of

the time.
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Table 3.6: Validation Results for Testing Data with Randomly Generated Random
Slopes

Type Method Proportion Mean(̂1) SD(̂1)

Linear
Logistic 0.057 �0:0019 0.200
LDA 0.057 �0:0019 0.200

SVM (linear) 0.053 0:0016 0.209

Nonlinear

QDA 0.054 �0:0003 0.200
Decision tree 0.064 �0:0025 0.202
Random forest 0.048 0:0082 0.200
SVM (radial) 0.060 0:0043 0.208

3.4 Data Analysis

In this section, the proposed subgrouping method was applied to the Women

Entering Care study on depression that involved low-income and minority women.

As stated in Section 1.2, seven independent variables were assessed for each patient:

age, marital status, schooling, housing, ethnicity, where the patient was born, and

whether or not the patient works. Only the �rst variable listed is numeric and the

remaining categorical variables were converted to a binary variable. Grouping was

based on logical grouping and an approximately equal number of observations in

each group. Table B.8 and B.9 in Appendix B displays our assignment of binary

variables and summary statistics of these variables, respectively.

To assess our procedure, we split the data into two smaller datasets with two

thirds of the data in the training dataset and a third in the testing. Our proposed

method had similar �ndings as that of Miranda et al. (2003). When using the

training dataset to compare medication and cognitive behavioral therapy to the

referral group, our mixed model estimated that the parameters for the interactions

between treatment and time were �̂1 = �0:445 and �0:249 (t-value = �4:02 and

�2:22), respectively. Therefore, our method was also able to show that medication

and cognitive behavioral therapy are better at treating depression than being referred

to community care.
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Our attention shifted to comparing the medication and cognitive behavioral

therapy groups. We start by �tting marginal model (3.1) to the training dataset

and using the generalized estimating equations with an AR(1) correlation structure,

as this is an established method. With this, the parameter estimate for the inter-

action between treatment and time for the training dataset was �̂1 = 0:0117 (Wald

= 0.01, p-value = 0:92), meaning we could not determine a di�erence in outcomes

of the treatment and would recommend either to a patient. Using proposed model

(3.2) resulted in an estimate of �̂1 = �0:0402 (t-value = �0:38), again leading

to the inability to conclude a signi�cant di�erence in average outcomes between

treatments. Therefore, analysis with the random e�ects of model (3.2) was per-

formed, taking into account individual treatment e�ects over time. Figures B.7

and B.8 in Appendix B contain histograms of the random slope estimates for both

the training and testing datasets. We see that these are symmetric around zero.

In addition, the decision tree is in �gure B.9 in Appendix B.

When building the prediction models, the seven independent variables were used

for each patient. Table 3.7 displays the results when using model (3.3) to check

the validity of our approach on the testing dataset with prediction models built on

the training dataset. Not all of the parameter estimates for the interaction between

treatment and time (̂1) were negative. These positive estimates result from linear

classi�cation methods, which indicate these are not appropriate subgrouping ap-

proaches. All parameter estimates for the interaction between treatment and time

were negative with the nonlinear supervised learning algorithms, indicating that the

depression score decreased over time for those individuals that received the treat-

ment deemed to be bene�cial. Not all these methods, however, produced signi�cant

results; the only method that found subgrouping to be appropriate and bene�cial

was the random forest algorithm with QDA being close to signi�cant. The random
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forest detects that housing and ethnicity were the two most important variables in

classifying the data.

Table 3.7: Validation Results on Testing Dataset for Depression Data
Type Method ̂1 SE Wald p-value

Linear
Logistic 0:163 0.385 0.18 0.6650
LDA 0:163 0.385 0.18 0.6650

SVM (linear) �0:129 0.406 0.10 0.2750

Nonlinear

QDA �0:549 0.383 2.05 0.0761
Decision tree �0:379 0.387 0.96 0.1635
Random forest �0:867 0.365 5.64 0.0090
SVM (radial) �0:251 0.387 0.42 0.2587

Subgrouping was not considered appropriate with any of the linear classi�cation

approaches. In fact, logistic regression did not detect any of the predictors as

signi�cant. Siddique, et al. (2012) found similar results in their study with growth

mixture modeling. Their results with logistic regression were able to identify which

trajectory class a patient should be in, however it did not determine a decision rule

for bene�cial treatment.

The validation results show the importance of performing multiple subgroup-

ing approaches and comparing the results. Here, we do not know the relationship

between the treatment e�ect and the independent variables, therefore we do not

know which subgrouping approach will be best. Our analysis shows that the nonlin-

ear approaches are best but also shows us that not all these nonlinear approaches

perform well. Simply picking one method for subgrouping is not enough; we must

perform multiple to �nd the most advantageous method.

3.5 Discussion

Unlike most of the existing methods referred to in Section refsection:SubgroupIntroduction,

our proposed procedure o�ers a complete process for subgrouping and validation; it
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utilizes a random e�ects linear model to assess the treatment e�ects over time for

each subject, builds prediction models based on classi�cation algorithms, and de-

termines whether or not the subgroups are appropriate and bene�cial. This whole

process can be easily implemented using existing packages in statistical software

such as R and SAS. To secure good performance for subgroup identi�cation, re-

peated measures within the subject are required to separate variance components

and identify individual treatment e�ects successfully (Senn, 2016).

With the numerical studies, all classi�cation methods performed about the same

with the linear random slopes, however for the nonlinear random slopes, the linear

classi�cation approaches performed poorly. This could lead to the recommenda-

tion of always using nonlinear classi�cation approaches as the preferred method for

subgrouping. While the results with such a nonlinear approach would still be good,

the interpretation would not be as easy. As such, it is recommended that vari-

ous classi�cation approaches are considered to �nd the best subgrouping strategy.

Real data analysis also con�rms the importance of performing multiple subgroup-

ing approaches and comparing the results. Our analysis showed that the nonlinear

approaches were best but also showed that not all these nonlinear approaches per-

form well. In fact, the decision tree performed the worst among all classi�cation

approaches. Moreover, the simulation results indicate that our validation approach

is not only simple, but also powerful. The validation approach produced signi�cant

results more often when the proper type of classi�cation approach was used, while

also having the probability of a type I error close to a nominal level under the null

hypothesis.
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Chapter 4

Conclusion

Two methods have now been proposed for comparing treatments over time.

The �rst, in Chapter 2, used growth curves with polynomial regression. While

other methods limit themselves to a linear trajectory, the BIQIF is able to identify

the optimal degree of the polynomial, which may or may not be linear. Quadratic

inference functions then calculate the coe�cients of the each curve. From here,

we are able to assess the equality of the growth curves with the asymptotically

chi-square test statistic T . If the growth curves are not all equal, this indicates a

di�erence in the performance of the treatments over time. Further analysis could

be done to assess the equality of certain treatments. A limitation here, however, is

that a di�erence in responses may not be found among several treatments. In such

a case, it cannot be determined which treatment will perform better over time.

To overcome this limitation, an additional method was proposed in Chapter 3.

While the mixed model is also able to identify a bene�cial treatment, it can also

have the same result as growth curve analysis in that it can show that the responses

from two treatments are not signi�cantly di�erent over time. As such, the random

e�ect for each individual is used to subgroup individuals according to a bene�cial

treatment for the patient. A validation approach was also developed to con�rm
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that the subgrouping is appropriate and bene�cial.

There are several advantages to the two methods proposed. While e�ective,

they are also easy to implement. Both these procedures can be employed with

already existing packages in SAS and R. In addition, no assumptions are made

about the data. An assumption made on most data is that the response is normally

distributed. This is not a requirement for either of the proposed procedures. Fi-

nally, both methods can handle missing data. This is especially advantageous when

working with longitudinal data, when not all follow up appointments are always

attended.

Both these methods were applied to the Women Entering Care study. While

these methods were shown to be e�ective here, they could be bene�cial to other

medical studies, as well. Both methods allow for the analysis with missing data,

which can be prevalent in longitudinal studies.
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Appendix A

Proofs From Chapter 2

The following conditions are required to establish the asymptotic properties of

the estimator �̂:

1) The parameter space B is compact and �0 is in its interior.

2) There exists a �0 such that Efgi(�)g = 0, i = 1; : : : ; n, if and only if � = �0.

3) gi(�) is almost surely continuously di�erentiable in � and n�1
∑n

i=1 @gi(�)=@�

converges in probability to a full rank matrix of � = Ef@gi(�)=@�g.

4) C = n�1
∑n

i=1 gi(�)gi(�)
0 converges to� in probability, where� = Efgi(�)gi(�)0g

is positive de�nite.

They are the standard conditions commonly assumed in marginal regression proce-

dures for longitudinal data such as the generalized estimating equations (Liang and

Zeger, 1986) and quadratic inference functions (Qu, Lindsay and Li, 2000).
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Proof of Theorem 1. Recall that �̂ minimizes the quadratic inference functions,

meaning �̂ = argmin� Q(�) = argmin� n�g(�)
0C�1�g(�) with �g(�) = n�1

∑n
i=1 gi(�).

Taylor expansion leads to

�g(�̂) = �g(�0) + _�g(��)(�̂ � �0); (A.1)

where _�g = @�g(�)=@� and �� lies between �̂ and �0. By multiplying both sides in

(A.1) by _�g(�̂)0C�1, we have

_�g(�̂)0C�1�g(�̂) = _�g(�̂)0C�1�g(�0) + _�g(�̂)0C�1 _�g(��)(�̂ � �0): (A.2)

The left hand side in (A.2) is zero since minimizing Q(�) to obtain �̂ is equivalent

to solving _�g(�)0C�1�g(�). As such, (A.2) becomes

0 = _�g(�̂)0C�1�g(�0) + _�g(�̂)0C�1 _�g(��)(�̂ � �0): (A.3)

Accordingly, (A.3) can be rearranged as

_�g(�̂)0C�1 _�g(��)(�̂ � �0) = � _�g(�̂)0C�1�g(�0)

p
n
(
�̂ � �0

)
= �{ _�g(�̂)0C�1 _�g(��)}�1 _�g(�̂)0C�1 � pn�g(�0) (A.4)

By the central limit theorem and condition 4, we have

p
n�g(�0) =

1p
n

n∑
i=1

gi(�0)
d! N(0;�): (A.5)

Note that

p
n
(
�̂ � �0

)
= �{ _�g(�̂)0C�1 _�g(��)}�1 _�g(�̂)0C�1 � pn�g(�0)︸ ︷︷ ︸

N(0;�)
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It follows from (A.4), (A.5), and conditions 3 and 4 that

p
n(�̂ � �0)

d! N(0;
{
_�g(�̂)0C�1 _�g(��)

}�1 _�g(�̂)0C�1�({ _�g(�̂)0C�1 _�g(��)}�1 _�g(�̂)0C�1)0)
Let � = Ef@gi(�)=@�g and � = Efgi(�)gi(�)0g. Then

p
n(�̂ � �0)

d! N(0; (�0��1�)�1�0��1���1�(�0��1�)�1
0

)

p
n(�̂ � �0)

d! N(0; (�0��1�)�1�0��1�(�0��1�)�1
0

)

p
n(�̂ � �0)

d! N(0; (�0��1�)�1)

p
n(�̂ � �0)

d! N(0; V )

where V = (�0��1�)�1.

Now we prove that VI � V is positive semide�nite. Without loss of generality,

Ri(�)
�1 can be approximated by two basis matrices as Ri(�)

�1 = d1Imi
+ d2Di ,

where Imi
is an mi � mi -dimensional identity matrix, Di is a known basis matrix,

and d1 and d2 are constants. With Imi
and Di , gi(�) is formulated as

gi(�) =

 gi1(�)

gi2(�)

 =

 _�0iA
�1=2
i Imi

A
�1=2
i (Yi � �i)

_�0iA
�1=2
i DiA

�1=2
i (Yi � �i)

 : (A.6)

By letting �1 = E (@gi1=@�) and �11 = Efgi1(�)gi1(�)0g, the asymptotic co-

variance matrix of �̂ assuming an independent correlation structure is speci�ed as

VI =
(
�0
1�

�1
11�1

)�1
.

We further de�ne �2 = E (@gi2=@�) and �21 = Efgi2(�)gi1(�)0g, and or-

thogonalize gi2(�) against gi1(�), gio(�) = gi2(�) � �21�
�1
11 gi1(�), such that

Efgi1(�)gio(�)0g = 0. By replacing gi2(�) in (A.6) with gio(�), we obtain � =

Ef@gi(�)=@�g and � = Efgi(�)gi(�)0g
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V �1 = �0��1�

=

 Ef@gi1(�)
@�

g
Ef@gi0(�)

@�
g


0 Efgi1(�)gi1(�)0g Efgi1(�)gi0(�)0g

Efgi0(�)gi1(�)0g Efgi0(�)gi0(�)0g


�1 Ef@gi1(�)

@�
g

Ef@gi0(�)
@�

g


=

 Ef@gi1(�)
@�

g
Ef@gi0(�)

@�
g


 Efgi1(�)gi1(�)0g 0

0 Efgi0(�)gi0(�)0g


�1 Ef@gi1(�)

@�
g

Ef@gi0(�)
@�

g


=

(
Ef@gi1(�)

@�
g0Efgi1(�)gi1(�)0g�1 Ef@gi0(�)

@�
g0Efgi0(�)gi0(�)0g�1

) Ef@gi1(�)
@�

g
Ef@gi0(�)

@�
g


= Ef@gi1(�)

@�
g0Efgi1(�)gi1(�)0g�1Ef@gi1(�)

@�
g (A.7)

+Ef@gi0(�)
@�

g0Efgi0(�)gi0(�)0g�1Ef@gi0(�)
@�

g

= �0
1�

�1
11�1 + (�2 ��21�

�1
11�1)

0��1
0 (�2 ��21�

�1
11�1)

= V �1
I +�0

o�
�1
o �o ; (A.8)

where �o = �2 ��21�
�1
11�1 and �o = Efgio(�)gio(�)0g. The proof is completed

since �o in (A.8) is positive semide�nite.
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Proof of Theorem 2. The null hypothesis can be speci�ed as

H0 : bi1 = : : : = biq for all i = 1; : : : ; p + 1; (A.9)

where Bj = (b1j ; : : : ; b(p+1)j)
0. With (p + 1)(q � 1) contrasts bi j � biq = b�i j for

i = 1; : : : ; (p + 1) and j = 1; : : : ; q � 1, we can rewrite (A.9) as

H0 : b
�
i j = 0 for all i = 1; : : : ; p + 1 j = 1; : : : ; q � 1: (A.10)

We let �� = (��
0

1 ; �
�0

2 )
0, where ��1 and �

�
2 are vectors of (p+1)(q�1) b�i j 's and (p+1)

biq's, respectively. Then, the parameter � can be denoted by � = (Iq
H)�� having
a q � q identity matrix Iq and a square matrix H of order p with 1 on the diagonal

and the last column, and 0 elsewhere. An estimator of �� is accordingly obtained

by minimizing Q�(��) = n�g�(��)0C��1�g�(��), where �g�(��) = n�1
∑n

i=1 g
�
i (�

�),

C� = n�1
∑n

i=1 g
�
i (�

�)g�i (�
�)0, and

g�i (�
�) =


_��

0

i A
�1=2
i Di1A

�1=2
i (Yi � ��i )

...

_��
0

i A
�1=2
i DidA

�1=2
i (Yi � ��i )


with ��i = h fX 0

i (Iq 
H)��g. Similar to Theorem 1, the estimator �̂� satis�es

p
n

 �̂�1 � ��10

�̂�2 � ��20

 d! N


 0

0

 ;

 
��

1
��

1

��

1
��

2


��

2
��

1

��

2
��

2


�1 = N

(
0;
��1

)
;

p
n
(
�̂�1 � ��10

) d! N

(
0;
(

��

1
��

1
�
��

1
��

2

�1

��

2
��

2


��

2
��

1

)�1)
; (A.11)

where (��10; �
�
20) is a true value of (��1; �

�
2) and 
� = ��0���1�� with �� =
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Ef@g�i (��)=@��g and �� = Efg�i (��)g�i (��)0g.
Under H0 in (A.10), the true parameter of �� and its estimator are speci�ed

as ��0 = (0; ��20) and ��� = (0; ���2), respectively. We note that T = Q�(0; ���2) �
Q�(�̂�1; �̂

�
2), and simplify the notations for ease of presentation as

1

n

@Q�(��)

@��
=

 @Q�(��)
@��

1

@Q�(��)
@��

2

 =

 _Q��

1

_Q��

2

 = _Q��;

1

n

@2Q�(��)

@��2
=

 @2Q�(��)

@��2

1

@2Q�(��)
@��

1
@��

2

@2Q�(��)
@��

2
@��

1

@2Q�(��)

@��2

2

 =

 �Q��

1
��

1

�Q��

1
��

2

�Q��

2
��

1

�Q��

2
��

2

 = �Q��:

By Taylor expansion, we have

Q�(0; ���2)=n = Q�(0; ��20)=n+
(
���2 � ��20

)0 _Q��

2
(���2)+

1

2

(
���2 � ��20

)0 �Q��

2
��

2
(~��2)

(
���2 � ��20

)
;

where ~��2 lies between ���2 and ��20. Similarly, Q
�(�̂�1; �̂

�
2)=n can be extended as

Q�(0; ��20)=n+

 �̂�1 � 0

�̂�2 � ��20


0

_Q��(�̂�)+
1

2

 �̂�1 � 0

�̂�2 � ��20


0

�Q��(���)

 �̂�1 � 0

�̂�2 � ��20

 ;

where ��� lies between �̂� and ��0. It follows from _Q��

2
(���2) = 0 and _Q��(�̂

�) = 0
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that

T=n = Q�(0; ���2)=n �Q�(�̂�1; �̂
�
2)=n

=
1

2

 0

���2 � ��20


0

�Q��

2
��

2
(~��2)

 0

���2 � ��20


�1

2

 �̂�1 � 0

�̂�2 � ��20


0

�Q��2(���)

 �̂�1 � 0

�̂�2 � ��20


+Q�(0; ��20)=n �Q�(�̂�1; �̂

�
2)=n︸ ︷︷ ︸

! 0 as n ! 1

=
1

2

 0

���2 � ��20


0

�Q��

2
��

2
(~��2)

 0

���2 � ��20


�1

2

 �̂�1 � 0

�̂�2 � ��20


0

�Q��2(���)

 �̂�1 � 0

�̂�2 � ��20


+op(n

�1) (A.12)

Taylor expansion also leads _Q��

2
(���2) and _Q��(�̂

�) to

_Q��

2
(���2) = _Q�2(�

�
20) + �Q��

2
��

2
(���2 � ��20) + op(n

�1) = 0; (A.13)

_Q��(�̂
�) = _Q��(��0) + �Q��

2
��

2
(�̂�2 � ��20) + �Q��

2
��

1
(�̂�1 � 0) + op(n

�1) = 0: (A.14)

By setting _Q��

2
(���2) and _Q��(�̂

�) from (A.13) and (A.14) to each other and solving

for (���2 � ��20), we have

_Q�2(�
�
20) + �Q��

2
��

2
(���2 � ��20) + op(n

�1) =

_Q��(��0) + �Q��

2
��

2
(�̂�2 � ��20) + �Q��

2
��

1
(�̂�1 � 0) + op(n

�1)
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���2 � ��20 = �Q�1
��

2
��

2

( _Q��(��0)� _Q�2(�
�
20)︸ ︷︷ ︸

! 0 as n !1

+ �Q��

2
��

2
(�̂�2 � ��20) + �Q��

2
��

1
(�̂�1 � 0) + op(n

�1))

= �Q�1
��

2
��

2

( �Q��

2
��

2
(�̂�2 � ��20) + �Q��

2
��

1
(�̂�1 � 0) + op(n

�1))

= (�̂�2 � ��20) + �Q�1
��

2
��

2

�Q��

2
��

1
(�̂�1 � 0) + op(n

�1))

 0

���2 � ��20

 =

 0 0

�Q�1
��

2
��

2

�Q��

2
��

1
I


 �̂�1 � 0

�̂�2 � ��20

+ op(n
�1):

(A.15)

By substituting (A.15) into (A.12), we obtain

T =
n

2

 �̂�1 � 0

�̂�2 � ��20


0 �Q��

1
��

2

�Q�1
��

2
��

2

�Q��

2
��

1
� �Q��

1
��

1
0

0 0


 �̂�1 � 0

�̂�2 � ��20

+ op(1)

=
n

2
(�̂�1 � 0)0

(
�Q��

1
��

2

�Q�1
��

2
��

2

�Q��

2
��

1
� �Q��

1
��

1

)
(�̂�1 � 0) + op(1): (A.16)

It consequently follows from n�1@2Q�(��)=@��2
p! 2��T���1��, (A.11), (A.16),

and Theorem 10.2d in Arnold (1981) that T follows a chi-squared distribution

asymptotically under the null hypothesis, and its degrees of freedom is the same as

the dimension of ��1, (p + 1)(q � 1).
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Proof of Theorem 3. This proof is similar to the proof of Theorem 3.1 in Wang

and Qu (2009) and the proof of Lemma 2 in Cho and Qu (2013).
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Appendix B

Additional Tables and Figures
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Table B.1: Summary of Depression Dataset
Variable All Medication Psychotherapy Control

Marital Status
Married 76 31 28 17

Partner/Boyfriend 44 11 9 24
Widowed 4 1 3 0
Separated 33 12 13 8
Divorced 13 4 4 5

Never Married 84 27 26 31
School

8th Grade Or Less 43 19 9 15
Some High School 50 17 15 18

High School Graduate/GED 80 30 25 25
Trade School 8 2 3 3
Some College 55 13 23 19

Completed College 18 5 8 5
Housing

In Own House/Apartment 157 52 52 53
Projects 14 5 5 4
Parents 23 7 8 8

With Family Or Friends 59 21 18 10
Shelter/Hotel 1 1 0 0
Ethnicity
Black 112 33 39 40
White 14 6 4 4
Latina 128 47 40 41
Born
USA 130 41 44 45

Caribbean 6 2 3 1
Central America 89 37 24 28

Other North American Country 5 1 3 1
South America 24 5 9 10

Working
Not Working 115 41 40 34
Working 141 45 45 51
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Figure B.1: Histograms of the Linear Random Slopes and Linear Random Slope
Estimates for the Training Dataset
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Figure B.2: Histograms of the Linear Random Slopes and Linear Random Slope
Estimates for the Testing Dataset
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Table B.2: Signi�cant Variables for Logistic Regression with Linear Random Slopes
Number of Times

Variable Variable Is Signi�cant
X1 993
X2 61
X3 51
X4 1000
X5 56
X6 60

Table B.3: Variable Importance with the Random Forest Algorithm with a Nonlinear
Random Slope

Variable First Second Third
X1 0 906 58
X2 0 35 243
X3 0 33 247
X4 1000 0 0
X5 0 13 234
X6 0 13 218

Table B.4: Variable Importance with the Random Forest Algorithm with a Linear
Random Slope

Variable First Second Third
X1 402 320 211
X2 43 220 318
X3 18 219 294
X4 537 241 177
X5 0 0 0
X6 0 0 0
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Figure B.3: Histograms of the Nonlinear Random Slopes and Nonlinear Random
Slope Estimates for the Training Dataset
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Figure B.4: Histograms of the Randomly Generated Random Slopes and Random
Slope Estimates for the Testing Dataset
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Table B.5: Signi�cant Variables for Logistic Regression with Nonlinear Random
Slopes

Number of Times
Variable Variable Is Signi�cant
X1 780
X2 52
X3 96
X4 841
X5 51
X6 55

Table B.6: Signi�cant Variables for Logistic Regression with Randomly Generated
Random Slopes

Number of Times
Variable Variable Is Signi�cant
X1 55
X2 52
X3 47
X4 56
X5 39
X6 49

Table B.7: Variable Importance with the Random Forest Algorithm with a Ran-
domly Generated Random Slope

Variable First Second Third
X1 203 159 135
X2 195 157 157
X3 192 150 130
X4 139 197 194
X5 149 163 187
X6 122 174 197
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Figure B.5: Histograms of the Randomly Generated Random Slopes and Random
Slope Estimates for the Training Dataset
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Figure B.6: Histograms of the Nonlinear Random Slopes and Nonlinear Random
Slope Estimates for the Testing Dataset
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Table B.8: Assignment of Binary Variables for Depression Dataset
Variable 1 0

Marital Status Married Widowed
Partner/boyfriend Separated

Divorced
Never married

School 8th grade or less HS grad/GED
Some HS Trade school

Some college
Completed college

Housing In own house/apt Projects
Parents

With family/friends
Jail

Shelter/hotel
Car/street

Ethnicity Black African
Asian
White
Indian
Islander
Latina

More than one
Born USA Africa

Asia
Caribbean

Central America
Europe

Middle East
Oceania

Other North America
South America
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Table B.9: Summary Statistics for Covariates in Depression Data

Variable All Medication Psychotherapy Control
Age mean (sd) 29.4 (7.95) 28.8 (6.59) 29.7 (7.98) 29.7 (9.15)

Marital 1 120 42 37 41
0 134 44 46 44

School 1 93 36 24 33
0 161 50 59 52

Housing 1 157 52 52 53
0 97 34 31 32

Ethnicity 1 112 33 39 40
0 142 53 44 45

Born 1 130 41 44 45
0 124 45 39 40

Working 1 115 41 40 34
0 141 45 45 51

Figure B.7: Histogram of the Random Slope Estimates for the Training Dataset
from Depression Data
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Figure B.8: Histogram of the Random Slope Estimates for the Testing Dataset
from Depression Data
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Figure B.9: Decision Tree for Subgrouping of Depression Dataset
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