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LOAD SHARING STRATEGIES IN DISTRIBUTED ENVIRONMENTS

Laurentiu Cucos, Ph.D.

Western Michigan University, 2003

We investigate load sharing strategies in distributed systems based on work properties,

environment and process organization. For various classes of problems we characterize

the paradigms corresponding to applicable communication strategies. We develop suitable

structure for the work, and work assignment techniques in order to maximize the efficiency.

This research is based in part on work conducted on distributed numerical integration.
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CHAPTER 1

Introduction

An application is said to be executed in parallel when different portions of it are run

concurrently on different functional units, processors or systems. The ratio of the sequential

to the parallel runtime gives an indication of how efficient the parallel execution is. Ideally,

the total execution time gets reduced proportionally with the number of processing units

that are used. However, this does not often happen in practice. The main reasons for

inefficiency are: idle processing units, and redundant and/or unnecessary computations.

To achieve efficiency in distributed computing, two major factors need to be investi-

gated: the structure of the work to be performed and the characteristics of the environment

that will carry the computation. In this section we present classifications of different types

of work, different types of computing environments and various distributed computing fac-

tors that need to be taken into account. These will be used in later sections to guide our

design of work assignment strategies for different problem characteristics.

Chapter 2 presents the problem to be addressed by this research. Considering the task

to be computed in a distributed system as being characterized by two factors, the number

of work units and the size of each work unit, we investigate how this information can affect

the efficiency of the computation.

Chapters 3, 4, 5 and 6 contain representative test cases investigated in relation to the

proposed problem. Chapter 3 presents two problems with known work structure [13],

Chapter 4 presents a set of cases with known work units size but of an unknown num-
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ber [12, 15, 21, 22, 65]. Chapter 5 introduces a problem with a known number of work

units but of unknown size [17, 19], while Chapter 6 handles a problem where there is no

information about the size of the workload [23].

Even though challenges exist regardless of the structure of the workload, in general,

work units of an arbitrary size may constitute a more serious source of inefficiency than an

unknown total number of units. In Chapter 7 we investigate how to approach the more dif-

ficult problems with an unknown work unit size, using a Master-Slave paradigm. Chapter

8 further presents an important aspect in finding an efficient computation for workloads of

unknown work unit size, through the sharing of status information by the workers.

Chapter 9 summarizes this research and presents conclusions of our findings.

1.1 Properties of the Distributed Computing Environment

Michael Flynn [62] introduced a classification of various computer architectures based

on notions of instructions and data stream, those are SISD, SIMD, MIMD and MISD.

Intrinsic Parallel Computers are those that execute programs in MIMD mode (Multiple

Instruction stream over Multiple Data stream).

1.1.1 Multiprocessors, Multicomputers

Regarding the memory location and accessibility, there are two major classes of paral-

lel computers, namely, shared-memory multiprocessors and distributed-memory multicom-

puters. The major distinction between multiprocessors and multicomputers lies in memory

accessibility and the mechanisms used for interprocess communication. Multicomputers

are sometimes also called message-passing systems.
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1.1.2 Homogeneous, Heterogeneous Systems

A cluster is said to be homogeneous when all CPUs are identical, and are connected

by a symmetrical network. If these conditions are not satisfied, we have to consider differ-

ent types of heterogeneity : architecture, data format, computational speed, machine and

network load [26]. Heterogeneous parallel computing systems can range from a collection

of MPP’s (Massive Parallel Processors) or other supercomputers to clusters of various per-

sonal computers connected by a high speed network. The systems are usually programmed

by message passing libraries such as PVM and MPI.

1.1.3 Dedicated vs. Shared Process Space

An important factor that affects performance is the number of applications that share the

same resources. Sharing the process space increases the total runtime for each application;

the delays introduced will have a random behavior. For a distributed application that has

tightly coupled work units, this will significantly reduce the overall system efficiency. The

delay of one unit will propagate to all other depending on it.

1.1.4 Grid Computing

A computational grid is a type of parallel and distributed system that enables sharing,

selection, and aggregation of resources distributed across multiple administrative domains,

based on their availability, performance and cost [6].
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1.2 Properties of the Work

There are a number of issues that need to be addressed in determining the size, structure

and origin of the work units assigned in a distributed application.

1.2.1 Total Amount of Work

For some applications we can estimate the total amount of work required to solve a

certain problem. This information can be very useful in splitting the work among the par-

ticipating processing units. Examples are matrix multiplication, direct methods for solving

a large system of linear equations, etc. For other applications we cannot estimate the total

amount of work required to solve a certain problem. In numerical integration, for example,

it is very difficult to predict the total amount of work required for an arbitrary integrand

function. Other problems with an unknown total amount of work include: branch and

bound, and adaptive mesh refinement.

1.2.2 Structure of Task/Work Units

Work units can be very big or can be very small. Either one of these extremes can

degrade performance. For irregular problems it is difficult to identify useful work units of

at least a certain size. Spending additional computation time to identify good size work

units may be beneficial.

With respect to the form of the overall work, we can identify fixed or variable size work

units. The fixed form corresponds to non-adaptive methods such as performing a number

of predetermined iteration steps. In the variable form, as in the case of adaptive integration

methods, there is no a-priori outline of the work. This type of strategy adapts itself to the
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problem at hand and concentrates the evaluation points in the areas of concern, consisting

of subregions of high estimated error for the local cubature rule approximations.

For those problems where we can control the task size, such as for parallel Quasi-Monte

Carlo, or Monte Carlo integration, we can make the following classification:

0 Worker-independent. The task size is independent of the worker power.

– Time-constant. The task size remains constant throughout the computation.

– Time-variable. The task size (though predetermined), changes as the compu-

tation advances, e.g., in the assignment of QMC randomized sample evaluations

as the work units [21]. Their increasing size may introduce significant break-

ing loss [12] or communication clutter. Uniform assignment can be applied

effectively for homogeneous systems. In heterogeneous environments, slower

workers will process less work than faster ones.

0 Worker-dependent. The size of the work unit depends on the worker power.

– Static assignment. Each worker receives an amount of work proportional with

its processing power. However, it is difficult to estimate the worker’s power

accurately.

Therefore we will devise a dynamic assignment based on processing time.

– Dynamic assignment. The work unit does not have a specific size but a specific

processing time. Each worker processes as much as it can in the specified time

interval. This handles most of the problems introduced by heterogeneity in the
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system. In this category, we should be able to partition the work into arbitrary

chunk size.

1.2.3 Process Origin or Assignment

The work generation can be centralized, as in the case where one or possibly multiple

controllers create parametrized work units and assign them to the workers. Or, the work can

be generated locally by each worker, as in adaptive task partitioning, where the partitioning

of a task yields subtasks that can be distributed among the other workers. For either class

of methods, a measure of task importance is required as it dictates process load. If the tasks

do not have any dependencies among each other, they can be loaded into a priority heap.

Very large problems may benefit from a combination of centralized and local work

generation. On a large cluster, it is common practice to schedule problems on a number

of subclusters simultaneously. Furthermore, with the current support for grid computing it

has become feasible to distribute the computation of large sets of tasks over multiple sites.

1.3 Inefficiency Factors in Distributed Computing

This section presents an overview of inefficiency factors that occur in distributed com-

puting. Figure 1.1 shows their hierarchical classification.

1.3.1 Communication Time

Traditionally, the most cited factor of inefficiency for distributed systems is commu-

nication time. This is the sum of Prepare Communication Time, Data Transfer Time and

Synchronization Time.
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Inefficiency Factors

Communication

Prepare Data Synchronization

Data TransferApplication OS+Device Prepare
Response

Bottleneck

Breaking Loss Additional
Computation

Collective
Operations

Lack of Sharing 
Information

Parallel
Overhead

To Avoid
Communication

Figure 1.1 Classification of Inefficiency Factors

Prepare Communication Time. This is the sum, over all participating processors, of

the total time spent by each worker to prepare the data for communication. In general this

factor is not “very visible”, as it involves a small fraction of all communication time.

Synchronization Time. Often a processor needs to gather data from other processors.

The synchronization time is the total idle time between the moment a request was sent until

an answer is received.

Collective Operations. This represents the additional time due to communication in-

volving more than two processors. A few examples of global operations are Broadcast,

(All)Reduce, (All)Gather. The main source of inefficiency in collective operations is the

waiting time for all the participating processors to reach the communication entry point.

Data Transfer Time. This is the total required time to physically transport the data

from one point to another. In general this factor can be eliminated (at least theoretically)

by overlapping the communication with computation.
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Communication Bottleneck. Especially for load balancing strategies, the majority of

the communication time is used for sending updates with either results and/or load infor-

mation. A communication bottleneck occurs when for one worker, the number of messages

received is greater than the number of messages processed. To reduce the total number of

messages received by a particular processor, we can either change the structure of the work,

or redistribute the communication among more processors.

1.3.2 Breaking and Starvation Loss

Breaking loss is loss in parallelism caused by processors doing useless work towards

the end of the computation. This is actually replaced by starvation loss, where processors

are idle waiting for work, if the computation proceeds to the last possible work unit.

These factors are significant when the total work size is unknown, and the work unit

size is relatively big. Let us denote: 132 ��
 � for the work unit size of worker
�

at time


, 4

for the total number of workers, and 5 for the total work size. A sufficient condition for

breaking loss to occur is that 6�7298 � 1:2 ��
<; � (where

=;

represents termination time) is large

(compared with 5 ). When termination is signaled, some workers’ results are not going to

be considered, hence their work is useless.

1.3.3 Additional Computation

This represents the redundant, or unnecessary computation performed due to a lack

of proper synchronization, to avoid more expensive communication, or due to the parallel

logic overhead.

Using the same number of processors, Figure 1.2 shows that for larger work unit size
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Figure 1.2 Inefficiency Factors Based on Ratio Work Unit Size/Workload

(relative to the total workload size) the main factor of inefficiency is Breaking Loss, while

for very small work units it is Communication.

1.4 Metrics Overview

If we denote the execution time of the fastest sequential algorithm by >@? and the parallel

execution time on 4 processors by > 7 , the speedup can be defined as A 7 � >�?CBD> 7 , and the

efficiency is E 7 � A 7 BD4 .

One of the most common criteria to measure the efficiency of a parallel computation is

Scalability, which refers to the ability of the parallel method to maintain efficiency as the

number of processors increases.

Isoefficiency is the rate at which the problem size must increase with respect to the

number of processors in order to keep the efficiency fixed. Considering the total work 5

9



distributed over 4 processors, let us define FG? � 5 � 4 � to be the total parallel overhead, i.e.,

FH? � 5 � 4 � � 4I> � 4 � �J5 . This is the difference between 5 units of time spent doing useful

work and the cost of the parallel time 4I> � 4 � for all the processors. To maintain constant

efficiency E , the following must be satisfied: 5 �LK FG? � 5 � 4 � , where
K � M� ' M . The

isoefficiency function 5 � 4 � K � is obtained by extracting 5 as a function of 4 and
K

from

the previous equation [42].

In the present work we used a definition of speedup where >@? is considered the execu-

tion time of a parallel program when running with only one worker.

Most of our algorithms conform to the master-slave paradigm. In our scalability studies,

we compute the speedup based on the number of workers involved and not the number of

CPUs.

In a simple approach, the controller can be set up to perform useful work while idle

between message processing. This strategy may introduce significant performance degra-

dation if there are workers waiting for the controller to finish its computation before pro-

cessing their messages. We will report our results with the controller not working, thus

speedup plots are computed with >N? generated by the parallel application executed with

two CPUs: one controller and one worker. In a more complex solution, the controller may

perform useful work in a separate thread or process.

Other issues include that the experimental results may be influenced by dynamic factors

in the environment (network, operating system, system load). For this reason we repeat the

same experiment a number of times and take the median of the run times.
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1.5 Survey of Literature
1.5.1 Load Balancing Strategies

In [63], Xu at al. compare six work distribution strategies on two parallel systems for

branch-and-bound computations. Three of the strategies are based on random allocation;

the other three are based on local averages. They observed that the average strategies

outperform the randomized allocation.

In general, load balancing strategies have been studied extensively for homogeneous

systems. These strategies do not scale well in heterogeneous settings without modifications.

The computational power of the nodes and the network bandwidth are not well known in

advance; moreover they can change unpredictably at runtime. In [24], a general mechanism

for converting scalable homogeneous algorithms to heterogeneous strategies is presented.

The approach is to constantly monitor the system for the work unit processing time and

the average communication turnaround time. Our work on distributed quasi-Monte Carlo

algorithms takes possible heterogeneity of the environment into account [12].

For a-priori known work load, in the form of loops with variable running times, the

iterations are executed in chunks of decreasing size, so that earlier larger chunks have

relatively little overhead, and their non-uniformity in size can be smoothed over by later

smaller chunks [58]. This method also known as factoring has been shown to be a robust

and highly efficient technique on homogeneous shared address-space multiprocessors. In

a weighted factoring method [38], the workers are dynamically assigned decreasing size

chunks of iterations in proportion to their processing speed. In adaptive weighted factor-

ing [2], the weight values are adapted after each iteration in the computation. Zheng [67],
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presents the adaptive weighted fractiling method in a an N-Body simulation framework.

Fractiling is a dynamic scheduling method that exploits the self-similarities properties of

fractals to maintain data locality, and balances work load using factoring.

The architecture adaptive algorithms introduced in [41] provide a set of concepts and

tools for writing portable parallel programs that run efficiently on a broad range of target

machines. By taking into account information about processors, communication channels,

memory hierarchies, etc., a portable algorithm can theoretically adapt its behavior to envi-

ronment characteristics in order to increase its efficiency.

1.5.2 Tools on Distributed Systems

The Portable Parallel Branch-and-Bound Library [61] contains a set of tools to

develop and compare load balancing algorithms. The library takes over the management of

the subproblems which are created during execution of the Branch-and-Bound algorithm.

The user has the option to use one of the library’s application independent load balancers,

or to implement a customized one.

LBsim is a software tool that simulates various existing load balancing strategies for

data parallel applications in a distributed memory environment [40]. The authors provides

various data sets of different distributions. Each data set contains N loop iterations, and

each loop iteration has a variable running time. To model system-induced load imbalance,

the workers are intentionally loaded with additional processes. The simulator is written in

C and MPI.
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DRAMA is a library for parallel dynamic load balancing of finite element applica-

tions [45]. The method used to restore the load balance is dynamic mesh re-partitioning.

To accomplish this goal, there are two approaches: a) using a suitable sequence of local

decisions, the current partition is updated by migrating parts of the mesh to another neigh-

boring partition; b) by exploiting a global view of the partitioning problem, parallel static

mesh partitioners are able to find a nearly optimal solution.
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CHAPTER 2

Problem Definition

The present work addresses the following questions pertaining to the efficiency of dis-

tributed computations on a network of workstations.

How can information about the work structure improve the efficiency of a parallel com-

putation? Having this information, how can we obtain a more efficient computation? How

much do we need to know? We will consider a number of cases, and investigate how the

information about the work structure can affect and/or predict the efficiency.

Assuming the work can be split into a number of units, the information about the total

number or the size of the units can be estimated with certain accuracy. In some cases we

can consider the size of the communicated data to be known as well.

Figure 2.1 shows the types of problems to be considered grouped based on the accuracy

of predicting the total work. The X axis shows the probability of correctly predicting the

number of work units while the Y axis shows the probability of correctly predicting the

work units size.

Figure 2.2 depicts the probable efficiency, as a function of the two measures. The plot

assumes solving problems of different characteristics on the same system with the same

number of processors. It is highly probable to obtain a very efficient computation when the

total amount of work, and the size of the work units are known. On the contrary, when we

do not have any information about the size or structure of the work, the computation may

be very inefficient.
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Figure 2.1 Work Structure Classification and Sample Applications

Figure 2.3 shows a set of methods that we will apply to investigate or generate efficient

computations. In general, when the unit size is unknown, the task is more difficult. In this

case it may be beneficial to introduce additional work to gather this information, in order

to reduce the problem to the known category. Overall, having information about the work

unit size has proved more useful than having information about the total number of work

units.

Chapter 3 will investigate problems with a Known number of units and Known units

size (KnKs). This includes parallel files distribution, which is important as parallel execu-

tions often produce and require re-distribution of large amounts of data on input and output.

This chapter also handles a resource allocation problem [13]. The MaxFlow algorithm is

used.
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Figure 2.2 Probable Efficiency Function of Workload Information
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Figure 2.3 Investigated Methods

Problems with an Unknown number of work units and Known unit size (UnKs) include

Monte Carlo and quasi-Monte Carlo integration, as outlined in Chapter 4 [12, 15, 22, 14,

65].

Hierarchical integration belongs to the Known number of units and Unknown unit size

(KnUs) category, and is presented in Chapter 6 [17]. Distributed adaptive integration with

load balancing is given as a problem with Unknown number of units and Unknown unit

size (UnUs) in Chapter 6 [23, 65].

Chapter 7 gives a detailed analysis of the effects of bounded vs. unbounded work unit

size. Chapter 8 deals with status information sharing and analyzes the effects of large tasks

on parallel efficiency.

To help the investigation, we developed gRpas, a tool to gather analyze and store tests
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results. Part of publication [11], Appendix A presents an overview of the application.

Throughout the document most of the plots are either generated directly by gRpas (as in

Figures 4.7, 4.8, 4.9), or contain data collected by it (e.g. Figures 5.1, 5.2, 5.3).
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CHAPTER 3

Problems with a Known Number of Units and Known Unit Size
(KnKs)

In this chapter we investigate two types of problems for which we know the total num-

ber of work units and the size of each work unit, Parallel Files Distribution and Resource

Allocation for Clusters.

3.1 Parallel Files Distribution

We propose to devise an efficient and flexible mechanism to distribute data from multi-

ple files to multiple processors/machines and vice-versa.

Often, a large data set is composed of a number of items distributed over multiple

files. In parallel computations, each participating machine will write its own file, and for

subsequent parallel processing the data must remain distributed over multiple machines.

There are a number of reasons to incorporate the file distribution in parallel programs,

to name a few:

- using load balancing for uniform and efficient distribution;

- compactness (in the same program we can read, process and save files);

- a single machine cannot hold all the required data;

- standard filesystems usually hide the location of the files.

For reading and distributing data, we make the followings assumptions:

19



- the data is composed of a known, large number of items;

- the data files are located on machines that participate in the computation;

- there are no dependencies among items, or items and machines;

- the system is homogeneous;

- there is an arbitrary topology of shared filesystems.

Note: Even though a file is shared between a number of machines, it is physically located

on one of them. We do not consider the differences in access time between machines sharing

the same file.

3.1.1 Static Item Distribution

To avoid the synchronization overhead in homogeneous systems, and since the total

amount of work is known, it is more efficient to compute in advance the item distribution

in advance. In general, we can formulate the following problem.

Problem: Given a group of 4 machines, M = O"PQ2�R �TS 2 S 7 , a collection of
�

sets, A �
O+AVU�R �TS U SDW , each having XYAZU[X items, and a unidirectional bipartite graph \ � O ��] � A ��� E^R
where E � O �`_ 2 �	a U � R with

_ 2cb ]
and a UdbeA , which defines a mapping between ma-

chines and sets, compute the item distribution so that each machine gets an equal share

of items. In case that an equal distribution cannot be achieved, find a solution with items

shipped between machines at a minimum communication cost.

Figure 3.1 shows two examples with 4 machines, 3 sets, and different file sharing con-

figurations. While for simple topologies (see Sample 1), it may be easy to identify an equal

item distribution, the general case may be more challenging.
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Figure 3.1 Sample Problems

3.2 Resource Allocation for Clusters

For this problem we consider the mapping of processes to a network with hierarchical

structure, where the processors are grouped in clusters which may have different intraclus-

ter bandwidth. This work is part of publication [13]. We combine the communication

requirements of the processes with the bandwidth characteristics of the target network by

minimizing the total transfer time.

3.3 MaxFlow Algorithm

Given a directed graph with a non-negative capacity on each edge, having two special

nodes: source and sink, the flow is a function that assigns to each edge a number between

0 and the capacity so that for all nodes but the sink and source, the total incident flow is

equal to the total emerging flow. The MaxFlow algorithm computes the maximum value of

the flow from the source to the sink. The total flow value for \ is equal to the total flow

emerging from the source.

An augmenting path is a path from the source to the sink along which we can push
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Ford Fulkerson Method(G,s,t)
initialize flow F to 0
while there exists an augmenting path P

do augment flow F along P
return F

Figure 3.2 Ford and Fulkerson Method

more flow.

The residual capacity f ;�� a@� _ � of an edge g � a@� _ � is f ;�� a@� _ � � f � a@� _ � � �h� a@� _ � , where

f � a@� _ � is the edge capacity, and
�i� aj� _ � is the current flow.

\ ;k�l��m � E ; � where E ;n� ODg � a@� _ � with f ;�� a@� _ �po % R is a residual network.

Theorem: MaxFlow MinCut: [8] If
�

is a flow in a flow network \ �q��m � E � with

source
�

and sink


, then the following conditions are equivalent:

1.
�

is a maximum flow in G.

2. The residual network \ ; contains no augumenting paths.

3. X � X � f � A � > � for some cut
� A � > � of \ .

The order of complexity is r � X � X�s�XtEuX � . The Edmonds-Karp algorithm differs from the

original Ford-Fulkerson algorithm in that, at each iteration, it chooses an augumenting path

with the smallest number of edges, leading to an order of complexity r � X m X"sZXtEQX * � for the

algorithm [32].

3.4 Efficient Parallel Files Distribution

An efficient distribution can be achieved using a MaxFlow algorithm and the following

procedure.
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Figure 3.3 Sample 1: MaxFlow Mapping

1) Augment the graph with two new nodes: source and sink, and edges between all set-

nodes and source, and all machine-nodes and sink, see Figure 3.3

2) Assign infinite capacity for edges between sets and machines, XtA@2	X between set A�2 and

source, and v 6Gwxzy�{}| ~ x |7 �
between each machine and the sink.

3) Apply the MaxFlow algorithm to the newly created graph.

4) If the resulting flow is 6 W 298 � XYA�2	X , there exists an equal distribution of the sets. The

distribution is given by the flow in the inner edges;

otherwise, the sets cannot be equally distributed without additional communication and

go to step 5.

5) Equally distribute the items not allocated in step 3) to machines with a smaller number

of items.

Figure 3.4 shows the item distribution for Sample 2 computed using the MaxFlow al-
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Figure 3.4 Sample 2: MaxFlow Mapping

gorithm. In this case, the solution generates an equal distribution without requiring syn-

chronization.

3.5 Using MaxFlow to Find Cluster Allocation

Assume there are
�

processes to be assigned, and � clusters. Let ��� { ��� be the required

communication traffic (# bytes) between processes � � and � * . Let � 2tU be the transfer time

per byte between clusters
�

and �[� Then the communication time between processes � � and

� * is ��� { ���=� 2tU if processes � � and � * reside in clusters
�

and � , respectively. Define indicator

variable � U � ��#
if process � belongs to cluster � and � U � �$%

otherwise, for � ��# ����� ����� � �
and � � # ����� ����� � � , and let �� U � � (not) � U � . The total transfer time to be minimized is
�� ��� � 6 2 6 U 6 � { 6 ��� ��� { ���=� 2YU � 2� { � U ��� �

We denote the intra-cluster transfer time per byte within cluster � by � U � � U�U . For the

inter-cluster transfer time per byte we use ��� � � 2tU � �n�� � (which may be considered as an
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estimated average transfer time/ byte).

By requiring that each process is mapped to one cluster, the problem is to obtain an

assignment � which solves

�^����� 
�� ���
6 U � U � �$# � #�� � ��� (3.1)

� U � b�O % � # R � #�� � � � � #�� � ���
The objective function which can be written as

���N� U � � { � ��� ��� { ��� � U � { �� U ���j� � U � � { � ��� ��� { ���<� U � U � { � U ��� � (3.2)

can furthermore be put in the form of the pseudo-boolean quadratic function


�� ��� � �Z�"�c� ��� �C�@� (3.3)

where � ��� � �� � ����� �	� �W � ����� �	��  � � ����� �	�� W � � , � � = �C� 6  U	8 � 6 W � { 8 � 6 W ���¡8 � ��� { ��� , and the matrix

� is upper triangular, and block diagonal with � upper triangular blocks each of dimensions�£¢¤�
, i.e.

� �
¥¦¦¦¦¦¦¦¦¦¦¦¦¦
§

� �T�
� *T* ¨

¨ . . .

�  � 

©<ªªªªªªªªªªªªª
«
�

The � th upper triangular block � U�U has zeros on the diagonal and the element � � �Z� { � � � �C�h�
� U � at location

� � � � � * � in the block.
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As a small example, for � � ��� ����¬ �

� U�U �
¥¦¦¦¦¦¦¦¦¦¦¦¦¦
§

% � � � ��*D� �C�:��� U � � � � ��-D� �C�:��� U �% � � � *T-D� �C�:��� U �¨
%

©<ªªªªªªªªªªªªª
«
�

for � �­# ��� .
Note that the objective function as the total (sum, or average) transfer time reflects the

total usage of the network, i.e., the extent to which network links/channels are tied up by

the application, loose from the actual point in time any transfer occurs, thereby allowing

transfer overlaps (where transfers occur simultaneously on different network links).

�� ���

does not depend on the underlying topology, and the processes and message passing may

be synchronous or asynchronous. However,

�� ��� does generally not represent the total

communication time.

The problem of minimizing an unconstrained pseudo-boolean quadratic function of the

form (3.3), although NP complete in general [3], has an efficient algorithmic solution when

the elements of � are all nonpositive, which is satisfied by

�� ��� assuming �&�¯®e� U"° cf. the

following property from [52]. The problem

�^���� O 7�U	8 � � U � U � 7� 298 � 7�U=8 �+± 2YU � 2 � U�R (3.4)

subject to

� Unb�O % � # R � #¯� � � 4
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where � U and ± 2YU are real valued constants and ± 2YU �²% for
#��³�´� 4 and

#¯� � � 4 can be

solved efficiently by solving for a minimum cut on a related graph.

The constructions in [51, 52] deliver a network with a set of non-negative capacities,

so that the capacity through the cut equals the objective function, thereby reducing the 0-1

minimization problem to determining a cut with minimum capacity. The algorithm of Ford

and Fulkerson or its improvements [48] can then be used to obtain a minimum cut.

Taking the constraint of (3.1) into account leads to a problem of the form considered

in [5]. In the latter, a branch-and-bound method is used where, at each branch-and-bound

node, bounds (for the primal problem) are obtained via the Lagrangian dual, which is

mapped to a max-flow problem with an efficient solution.

The task allocation models given so far in this section will not, in general, guarantee a

particular restriction on the number of processes assigned to any cluster, which would be

necessary if, for example, the number of processes assigned to cluster � cannot exceed its

number of processors (allowing for assigning at most one process per processor). With this

type of constraint the quadratic program becomes

�^����� 
�� ���
6 U � U � �$# � #�� � ���
6 � � U � �¶µ U � #�� � � �
� U � b�O % � # R � #�� � � � � #�� � ���

assuming
�£� 6 U µ UD�
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3.5.1 Methods

We did some test runs with a “general” optimization code (for mixed integer programs)

available from the NAG library [46]. The algorithm uses a branch-and-bound technique

which branches by splitting a variable range, and obtains bounds for the objective function

by solving the corresponding continuous problem at each node. The problem specification

is of the form �G�·�(� O � � � � �* � � F � R � where each variable � 2 � #£�¸�¯� 4 � is specified to

be in a given range and may be restricted to be integer, subject to a linear constraint set.

The only restriction on F is to be symmetric. In general the method is only expected to

deliver a global optimum when F is positive definite; yet for some applications a result

corresponding to a local optimum may yield useful information. This method is generally

too time consuming for practical cases.

Alternatively, special purpose methods can be investigated, in order to exploit the struc-

ture of the objective function. Generalized Lagrange multiplier type methods solve a se-

quence of Lagrangian dual (relaxation) problems, searching the multiplier space to maxi-

mize the minimum Lagrange function. Indeed, it is well known that a solution minimizing

the Lagrange function provides a lower bound on the original objective function. We thus

seek to maximize the lower bound.

Using the definition of [33], the Lagrangian dual corresponding to �^���Z��¹�º �i� ��� under

constraints » � ��� �¶% and ¼ � ��� �²% (primal) is

�G½D¾ OD¿´À ��Á �	Âj�pÃ Á ® % R
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where

¿ À ��Á �	Â@� � ���ÅÄ��¹�º OD¿ � �@� Á �	Âj� R
with

¿ � �@� Á �=Âj� �Æ�i� ��� � Á ¼ � ��� � Â » � ��� �
If ¿ À is reached at � À � then

¿´À ��Á �	Âj� � ÁIÇ � Â f � ���ÅÄ��¹�ºÈO �i� ��� X�¼ � ��� �²Ç � » � ��� � f"R��
Furthermore, � À b argmin OD¿ � �@� Á �=Âj� X � bÊÉ�R implies � À b argmin O �h� ��� X�¼ � ��� �Ç

and » � ��� � » � � À � R for all
Ç

satisfying
� ¼ � � À � �¶Ç � and

��Á ¼ � � À � �eÁIÇ � �
A generalized Lagrange multiplier method then incorporates a strategy of the form [33]

1. For
��Á �	Â@� with

Á ® % � find � b argmin OD¿ � �@� Á �	Âj� X � bËÉ�R��
2. Terminate if 0 is in the convex hull of A � �@� Á �	Â@� � O ��Ç � f � X�¼ � ��� � Ç � » � ��� �
f � Á ¼ � ��� �ÌÁIÇ R (then � solves the original program). If no min generates 0 as a

member of S, the right hand side (0) is in a duality gap.

3. Given
� �@� Á �	Â@�C� determine

��Á�Í �	Â Í � to increase ¿ À ��Á �	Â@� �
A strategy of this form is proposed in [25]. In [34] the Lagrangian model is put in the

framework of a generalized penalty function/ surrogate model. Considering the Lagrange

multiplier method as a mapping from the space of the multipliers to the space of the con-

straint vectors, the duality gap arises from the fact that this mapping is not necessarily onto.

This may leave inaccessible regions or gaps corresponding to (right hand side) constraint
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Figure 3.5 Clusters for Resource Allocation Example

vectors which can never be generated [25]. In [5], an approximate Lagrangian dual prob-

lem is solved to provide a lower bound; the duality gap is tested by solving a posiform

equation at each branch-and-bound node.

3.5.2 Example

As an example, let us consider two clusters Î � and Î * , each having two processors, and

four processes that need to be efficiently distributed. Figure 3.5, shows the communica-

tion speed (seconds/MegaBytes) between and within clusters, while Figure 3.6 shows the

communication requirements (MegaBytes) between the processes.

For this example the optimum solution is to assign processes
�@�

and
�Z*

to Cluster 1 and��¬
and

�Z�
to Cluster 2. The minimum communication time is

� s �Ï#&% s # � # s #&% �¶Ð s �[� �ÒÑ[%
. The unknowns are � �Ó� � �� �	� �* �=� �- �	� �. �	� * � �=� ** �	� *- �	� *. � � ,
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Figure 3.6 Communication Requirements for Resource Allocation Example

� �Ô�<#[#&% � #&%[% � Ñ[% � Ð % � #[#&% � #&%[% � Ñ}% � Ð % � , and Equation (3.3) becomes:


�� ��� �Ô#[#&% � �� � #&%[% � �* � Ñ}% � �- �ÕÐ % � �. � #[#�% � * � � #&%[% � ** � Ñ[% � *- �ÖÐ % � *. �
� #&×[% � �� � �* � #&× � �� � �- �ÙØ % � �- � �. � #�Ñ[% � * � � ** � #&Ñ � * � � *- � ×[% � *- � *. � (3.5)

with constraints » � ��� and ¼ � ��� :ÚÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÜ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÝ

» � ��� �

ÚÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÜ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÝ

� �� � � * � �Ô#
� �* � � ** �Ô#
� �- � � *- �Ô#
� �. � � *. �Ô#

¼ � ��� �
ÚÛÛÛÛÛÜ ÛÛÛÛÛÝ
� �� � � �* � � �- � � �. � �
� * � � � ** � � *- � � *. � �

(3.6)

In order to eliminate these constraints, we set out to solve the Lagrangian dual problem:

¿´À ��Á �	Âj� �¶� 4 � � O 
�� ��� � Á s�¼ � ��� � Â sD» � ��� R�� (3.7)
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For
Á��l� � #&% � � #�% � � � % � � � and Â �l�Ï# ���[� , the new equation to minimize is:


�� ��� �Ô#&%Å# � �� � Ø # � �* � �V# � �- �ÕÐ[Ð � �. � #&% �"� * � � Ø �D� ** � � �"� *- �ÕÐ Ñ � *. �
� #&×}% � �� � �* � #&× � �� � �- �ÞØ % � �- � �. � #&Ñ[% � * � � ** � #�Ñ � * � � *- � ×[% � *- � *. � (3.8)

From Equation (3.8) we generate the flow graph presented in Figure 3.7. The mapping

steps are: a) add one node for every equation term plus a source and a sink; b) add a directed

edge between the source and each linear term in the equation, and between every quadratic

term and the sink (the edge capacities are the absolute values of the coefficients); c) for

each quadratic term add an edge (of inifinite capacity) between the constituent linear term

nodes and the corresponding quadratic node.

Applying the Ford and Fulkerson algorithm to the above graph, we find a solution to

Equation (3.8). If this solution satisfies the constraints (3.6), then we have found a solution

for the principal problem. If not, we have to solve another dual problem with a differentÁ �	Â vector.

In conclusion, even if the workload structure is known, it may be difficult to obtain an

efficient computation.
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Figure 3.7 Flow Graph for Resource Allocation Example
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CHAPTER 4

Problems with an Unknown Number of Units - Known Unit Size
(UnKs)

In this chapter we study problems for which we know the size of the work units but

we do not know the total number of units. In Section 4.2 we present distributed quasi-

Monte Carlo and Monte Carlo integration methods. This chapter is part of publications [12]

and [14].

4.1 Abstract Problems

Problem 1: First we consider the case where the total amount of work is unknown but

the required work increases in known size units. Let us assume that the computation can

be characterized as in Figure 4.1. The algorithm requires a termination check only when

a row is completed. Each row has the same number of cells; all cells in the same row

are of equal size, and there are no dependencies among them. However, the size of the

work unit increases considerably from one row to the next. Consider using
�

processors for

the computation, one of which is assigned a controlling role, and the remaining ones are

workers. One distribution strategy is to assign one cell of work ß(2YU to one worker at a time.

We will refer to this strategy as single cell work assignment.

The controller updates the result and sends a new cell if necessary. Figure 4.2 illustrates

a case with less workers than cells in a row. Since the computations are asynchronous, dif-

ferent processors may be working on different rows. Results from this algorithm tend to
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Figure 4.1 Example of Work Structure
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ki1 ki2 ki3 ki4 ki5

1 2 3 4 1Worker:

ki6

2

Figure 4.2 Single Cell Work Assignment

show a degradation in performance when the number of workers is relatively large (com-

pared with the number of cells in a row ± ). We found that this behavior can usually be

attributed to breaking loss. This is replaced by starvation loss, where processors are idle

waiting for work, when the computation proceeds to the last possible row (of index à max).

For example, assume
�$� � s ± workers (two groups of ± ), and a computation that

requires five rows to finish. In this case, the first row is assigned to the first group of

workers, the next row to the next group and so on. In Figure 4.3 the amount of time wasted

on unwanted work (breaking loss) is marked with light gray.

Another strategy is to split every row among all the workers, so that (in a synchronous

setting) all workers at a time would process the same row. This strategy splits every cell

ß}2YU into
�

pieces ß(á2tU � P �â# � ����� � � of size à�2�B � where à�2 is the size of a cell in row
�

(see

Figure 4.4).

Every worker 1 is assigned a work unit aIã2 � O+ß ã2YU X�� �ä# � ����� � ± R�� After the con-

troller has received the row results from all workers, it assembles the cell results. We will

refer to this strategy as row distribution work assignment. We found that this new strategy

significantly decreases the breaking loss.
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Figure 4.3 Example of Breaking Loss Effect for Problem 1
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Figure 4.4 Row Distributed Work Split for åçæ�è
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Figure 4.5 Problem 2: Uniform Work Distribution in Heterogeneous Environment

An issue that remains is that the performance easily degrades if some processors are

slower than others, making this strategy, as is, unsuitable for heterogeneous systems. For-

tunately we can easely adapt it by splitting each row into a number of units that is a multiple

of the number of processors, so that the faster workers process more units from the same

row.

Problem 2: Consider an unknown amount of work in a worker-dependent/dynamic

task size assignment. Assume further that there are no dependencies between work units,

and each unit can be made as small or as big as desired. One option for the work split

is to ask each worker to report results after a fixed number of iterations. However this

strategy introduces breaking loss in heterogeneous systems. Figure 4.5 represents the load

assignment for four workers of different power. After worker W-1 reports the result for unit

a�é , the computation terminates. The gray boxes represent unwanted work.
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Time one iteration
Estimate the number of iterations (NLI) that can be performed
in the requested time interval
do ê

Read the time after NLI/10 iterations
Use the new time read to adjust NLI and next time-read intervalë

until (Time expired)

Figure 4.6 Iteration Timing Algorithm

A better strategy is to ask all the workers to report results after a fixed time interval.

Each worker basically adjusts the computation performed in a work unit according to its

power. By fixing the work unit time and not the work unit amount, we can control the

number of messages received by the controller. In this way we can avoid both bottleneck

and breaking loss effects.

This strategy can be accomplished by asking each worker to send an update every



seconds. The time interval must be determined to obtain a fair trade-off between commu-

nication overhead and possible breaking loss.

Let us assume the work is composed of a number of iterations, and we want to report

results after a certain time interval. In order that the application would not be flooded

with too many clock reads we can use the iteration execution time as a measurement unit.

Figure 4.6 outlines a simple algorithm.
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4.1.1 Speedup Analysis

Based on the structure of the work, we propose to create a model describing the speedup

that can be obtained on a particular system. A case study is presented in [12]. For Problem

1 and single cell work assignment, let us consider the case where the execution behaves in

a synchronous manner and the number of processors
�

is a multiple of the number of cells

in a row, that is,
���²
 ± with


 o % .
Assume the problem requires 4 rows to terminate. Initially, the first ± processors are

working on row ì � , the next ± processors work on ì * and so on. Assuming that the

processors finish their cells and receive new tasks at the same time, then once ì � is done,

the first set of ± processors moves on to ìníïî � ; once ì * is done the second set starts row ìníïî *
and so on. When the last row required for this problem is assigned, all other rows of lower

index are either completed or in the process of being completed. Since the work required

for lower index rows is much smaller than the work required for ì 7 , and there are only ±
processors assigned to ì 7 , all other workers will be reassigned to rows ìð� , � o 4 before

ì 7 is completed. However this work is useless, since the controller stops the computation

when ì 7 is completed; thus breaking loss is incurred.

In order to evaluate the parallel performance, let � be the time required to complete a

function evaluation; then the sequential computing time can be estimated by > �ñ� ± 6 72ò8 � àó2ô� .

In the case under consideration, the total parallel execution time equals the time of the pro-

cessors that eventually work on the last row ì 7 . That is,

> Wc� !�õ 8 � à é<ö � � (4.1)
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where
�Q� v 7�÷W � � vø7 í � is the number of rows computed by these processors, ß õ � ß � �
���� � # ��� is the row index, ß �^� 4ù� ��� � # � 
 � and ß ! � 4h� In this case the theoretical

speedup is

A � > �> W � ± 6d7298 � à�26Ùú 7�û íýüõ 8 � à é=ö � (4.2)

For example, with ± �ÔÑ � �£�$¬[% � 4 � � Ð � (4.2) gives A � , 6 ��þxÿy[{�� x� þTî � {�� î � { þTî � � � î � ��þ = 15.628.

Measuring the runtime experimentally (for a problem in quasi-Monte Carlo integration, on

a homogeneous cluster), we obtain a speedup of 15.495. Table 4.1.1 lists the experimental

vs. theoretical speedup, obtained for numbers of workers between 1 and 30.

No.Workers Theoretical Experimental
1 1.000 1.000
2 2.000 1.998
4 3.749 3.746
6 6.000 5.990
8 6.841 6.828

10 7.961 7.950
12 9.999 9.974
14 10.320 10.296
16 10.974 10.933
20 12.778 12.722
24 14.443 14.389
28 14.659 14.594
30 15.628 15.495

Table 4.1 Theoretical vs. Experimental Speedup for Problem 1

The total communication time is small as only one pair of messages per cell is required,

amounting to r � 4 ± � � However, the parallel efficiency of the single cell work assignment is

affected considerably by breaking loss.
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Now let us consider
�Q� ± (


È�Ô# � � All the processors work in one row at a time. Once

a row is finished all workers move to the next one. When the last row is completed there

are no processors working on cells beyond the last row, resulting in a near ideal speedup.

The same can be shown if
��� ± and ± is a multiple of

�
(however, breaking or starvation

loss may occur when ± is not a multiple of
�

).

Since, in our application, ± is small (e.g ± �ÔÑ
), we have hereby shown that the single

cell work assignment technique is not scalable, and justified our introduction of the row

distribution strategy. The goal is to force all the workers to process units from the same

row at every moment in time.

4.2 Numerical Integration

The computational objective is to obtain an approximation � to the multivariate integral

� ���
	
f
��� �

 � and an absolute error bound E�� such that �E � X � � � X � E�� � � ��G½D¾ O  � �	 "! X � XÿR � for given absolute and relative error tolerances  � and  D! , respectively. The

integration domain � is a hyper-rectangular region or simplex. The integrand is generally

defined as a vector function
� Ã�� 7 � � á , and the error (estimate) value is interpreted in

maximum norm.

4.2.1 Monte Carlo

The work structure for the Monte Carlo integration method fits the description pre-

sented in Problem 2 of Section 4.1. To avoid the breaking loss problem in a heterogeneous

environment, we have implemented the fixed time unit distributed strategy.

Each worker continuously evaluates the integrand function at random points. At fixed
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time intervals it sends the result to a controller that updates the global result and standard

error, see Figure 4.6. The communication is sender initiated. The workers do not receive

any other messages beside the stop signal.

In the parallel Monte Carlo implementation, special attention must be payed to the ran-

dom number generator used. The sequence of random values generated by one processor

must not overlap with the sequence generated by another processor.

Initial scalability tests have shown near ideal speedup. In Figure 4.7, workload A re-

quires 43 seconds to complete by one processor. Note that as the work unit size increases,

the parallel efficiency decreases. For a Work Unit of 2 seconds the speedup is half of that

with a work unit of 0.01 seconds at 30 processors. We attributed this behavior to breaking

loss. At the end of the computation, the last work unit is processed for 2 seconds, most of

which is not necessary.

This observation is sustained by the Figure 4.8. The work unit is set to 2 seconds, the

sequential computation time is 6.2 seconds. The total function evaluation count for each

run is shown in Figure 4.9.

The superlinear speedup spikes are explained by the fact that the sequential time is

obtained by running the parallel program on one CPU. The speedup peaks indeed coincide

with runs of a lower number of function evaluations (compare with Figure 4.9).

4.2.2 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods are effective for higher dimensions and fairly

smooth functions. At the basis, we use a sequence of Korobov lattice rules [9, 29, 21, 15].

43



Figure 4.7 Monte Carlo: Speedup - Workload A

Figure 4.8 Monte Carlo: Speedup - Workload B
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Figure 4.9 Monte Carlo: Total Function Evaluation Count - Workload B

For each rule, a fixed number of randomized samples are computed by adding a random

vector to the integrand evaluation points. The randomization serves the purpose of obtain-

ing an estimated error based on the sample variance. Let

K � ��� � � #
à ��298 � �i� O

�
à�� � � R �C� (4.3)

where � is the (Korobov) lattice generator vector, randomized by a uniformly distributed

random vector
�

[9]. Then with a sample set (of size ± ) of random
� U , the mean

�K � � #
± ÷�U=8 � K � ��� U � (4.4)

allows for a standard error estimation by

E *� � #
± � ± � # � ÷�U=8 � ��K � ��� U � � �K � � * � (4.5)

The algorithm calculates the �K � values of (4.4) for a sequence of rules with successively

larger numbers à of integration points, until either an answer is found to the user-specified
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18.0 10.78 16.87
22.0 11.54 20.70
26.0 12.73 24.89
30.0 13.28 28.86

Figure 4.10 Speedup for Finance Problem on Homogeneous System

accuracy, or the function count limit is reached (or the end of the sequence has been

reached).

Using the mortgage-backed security problem from [47, 49], we tested both strategies

presented in Problem 1 of Section 4.1. Figure 4.10 shows the speedup obtained when

calculating the (360-dimensional) integral in a homogeneous network, showing the excel-

lent behavior of the row distribution assignment (versus the relatively poor behavior of the

single cell assignment).

Figure 4.11 shows the speedup obtained for a Student-T distribution problem using the

two algorithms.
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Figure 4.11 Speedup for Student-T Distribution Problem on Homogeneous System

Adaptations for Heterogeneous Systems

Since for each row, every processor performs the same amount of work in the strategy

of Problem 1, the total run time for the completion of N rows is determined by the slower

machines. To overcome this limitation we consider three alternative strategies.

Proportional row splitting: For each row, a worker gets a slice of work proportional

with its processor power. This information can be acquired either statically, dynamically or

using a combination of both. Statically, the controller can retrieve the physical properties

of each machine (CPU, memory, bus speed, etc). For a cluster, these numbers almost never

change, and can be stored in and retrieved from a file. Dynamically, each worker reports

its average time per function evaluation. Or, as a combination, the controller first splits the

work according to the static information, and later adjusts the distribution based on reported

function evaluation times and worker response times as the computation proceeds. This
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strategy has a number of disadvantages. The static approach gives a very rough estimation.

The processing time is affected by a number of factors besides the ones mentioned above.

These include: memory latency, caching, etc., which can affect the computation time sig-

nificantly from problem to problem. The dynamic approach works well if the workers are

dedicated to the computation. Otherwise, processes sharing the same machine, affect the

estimation of the worker power. A similar approach is presented in [41].

Fixed work splitting: In this approach, the work units are of the same size, so that

the earlier rows are split in fewer units than the later rows. This gives faster processors a

chance to request work more often than the slower ones. This strategy has a few drawbacks.

On the one hand the total number of messages increases from row to row. Furthermore,

choosing the optimum work unit size is a delicate task, mainly because it depends on the

integrand function. A big work unit may introduce a significant starvation or breaking loss

effect (in case the last units from the last row are assigned to the slower workers); while a

small work unit may introduce significant communication time.

Constant row splitting: This strategy splits each row in a constant number of work

units, Î ��K¤� � where
K

is a constant. The size of each work unit is proportional with the

row size. If some processors are slower than others, they will process fewer units from each

row. This strategy has the advantage that the total number of messages is constant across

the rows. As in the previous case, starvation or breaking loss can occur in situations where

the last work units are assigned to the slower processors. Figure 4.12 shows the speedup

obtained for the same problem in a heterogeneous system using different
K

values. The

first 30 machines have 1.2Ghz CPUs and the last 30 machines have 0.8Ghz CPUs.
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CHAPTER 5

Problems with a Known Number of Units - Unknown Unit Size (KnUs)

In this chapter we investigate a problem with known number of work units, and un-

known work unit size. This section is part of the publication [17].

5.1 Hierarchical Integration

We consider efficient strategies for the parallel and distributed computation of large sets

of multivariate integrals. These arise in many applications such as computational chemistry,

high energy physics and finite element problems.

Let O � � � � * � s&s&s � ��� R be a set of � integrals. Our problem is to efficiently calculate a

numerical approximation �¯é to the integral
� é , together with an error estimate E é+� for

#��
ß � �3� Integral

� é is of the form
� é ���
	�� é ������

 �� where � is a hyper-rectangular region in

� � and
� é ����N� is an à -dimensional integrand function over �Q� The approximation �çé and

its error estimate E é need to satisfy the condition X � é � ��é X � E é �¸]e� � O  � é[�= D!¡é X � é XzR
where  � é and  D!Té are given absolute and relative tolerances, respectively.

Let
�

be the number of processors in a given parallel and distributed computing system.

One approach would be to insert the integrals
� é into a queue and compute each integral

using all
�

processors until the queue is empty. In cases where some of the integrals are

easy to compute this may lead to a wastage of resources because of system overheads. Load

balancing not only within an individual integral computation but also among the integrals

� é thus becomes an important issue. Furthermore, in situations where communication over-
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heads in the given
�

-processor system are considerable, it may be more efficient to use, say,��� �
processors to compute an individual integral

� é � This would allow the computation

of ¼ �! � B �#" integrals in parallel and would also lead to a scalable solution. This suggests a

three level hierarchical approach with a global controller, a level of group controllers and a

level of workers. The number of workers does not need to be equal in the different groups.

The global controller manages ¼ group controllers and is responsible for assigning inte-

grals (tasks) to groups initially and whenever a group becomes idle. For example, the global

controller may give one task to each group initially; whenever a group becomes idle, it is

supplied with a new integration problem. If the problems are all sufficiently similar and �
is a multiple of ¼ , this is equivalent to assigning

� � tasks to each group initially and letting

each group evaluate its sequence of integrals. If the problems are not similar, then this

results in assigning the integrals depending on their computational time requirements in a

load balanced manner.

Parallelization with very different characteristics can be obtained by varying the number

of groups ¼ . When ¼ � #
, all

�
processors participate in the integration for each integral,

i.e., the parallelization is on the subregion level, which may be appropriate when
�

is rel-

atively small and the integrals are difficult. When
�

is large and/or communication costs

are high, this approach may lead to too much communication overhead. When ¼ �³� , the

integrations are performed sequentially by the individual processors, i.e., the paralleliza-

tion is on the integral level. In situations where integrals of varying difficulty are involved,

this may lead to load imbalances and breaking loss. For example, one processor may be

working on a difficult problem while all the other ones have finished and are idle. Other
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values of ¼ ,
#$� ¼ �â�

, result in a true hierarchical structure. Load balancing within a

group may be needed depending on the integration problem.

The hierarchical algorithm can be analyzed given the details of the communication and

computation costs of the
�

-processor system, specific implementation of load balancing

and priority queues within a group, and details of the integral approximation locally in a

worker. For a detailed theoretical description we refer the reader to [19].

5.2 Experimental Results

In order to test the viability of the hierarchical approach, we selected six function fam-

ilies proposed by Genz [27], which characterize different peculiarities in the integrand

behavior. Schürer also considers these integral families in [56] and compares quasi-Monte

Carlo techniques with adaptive methods based on cubature rules. The function families

are given in Table 5.1. In this table, à is the dimension of the integral, the a 2 ’s and
� 2 ’s,#ó�²�ñ� à � are the unaffective and affective parameters, respectively, and the X·X � X�X � attribute

determines the difficulty level.

The test platform was our 64-node linux cluster (Athena [1]), of which we used its

available AMD Thunderbird 1.2GHz processors each with 512 MB RAM, and its Myrinet

interconnect. The head node of the cluster is a dual-processor 1.5GHz AMD Athlon pro-

cessor with 1GB RAM.

We report typical test results for à �Ò#&%
and various levels of difficulty. The a 2 ’s and� 2 ’s are randomly chosen from

 �* ? � # � �* ? " and the
� 2 ’s scaled to obtain the desired difficulty

level. Figures 5.1 to 5.6 graph the run times as a function of the group size for 100 instances
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Integrand Family X�X � X�X � Attribute�[���&���� �&%('*)"� �"Â a � � 6 �2ò8 � � 2 � 2 � #[#�% � B,+ à - Oscillatory�"*D�&���� ��- �2ò8 � # B ��� ' *2 � � � 2�� a 2 � * � Ñ[%}% � B�à * Product Peak�"-D�&���� �$# B �<# � 6 �298 � � 2 � 2 �/. õ î �10 Ñ[%}% � B�à * Corner Peak� . �&���� �&2 ¾43 � � 6 �2ò8 � � *2 � � 2I� a 2 � * � #&%}% � B�à Gaussian� / �&���� �&2 ¾43 � � 6 �2ò8 � � 2=X � 2I� a 2	X � # Ð % � B�à * Î:? Function

� , �&���� � O % if � � o a �65 � * o a *
2 ¾73 � 6 �298 � � 2 � 2 � otherwise

#&%}% � B�à * Discontinuous

Table 5.1 Genz Test Integrand Families

of each parametrized family and using 28 processors. The function evaluation limit for each

problem was set to
#&%98 � The difficulty values are given in the legends.

For the runs of Figure 5.1 most problems were hard, indicating a uniform work spread

over the processors. For the higher difficulty levels the problems parallelize optimally using

a small number of fairly large groups. The other runs typically involved a mix of easy to

hard problems, leading to breaking loss when many small groups were used. We further

observed, especially for the higher difficulty level of function 6 (Figure 5.6) and to some

extent for function 3 (Figure 5.3) that the number of function evaluations performed was

significantly higher using large groups of processors, leading to a decreased efficiency. This

work anomaly effect may result due to a very local nature of the difficulties in the integrand

behavior, such as the corner peak of function 3 and the discontinuity in function 6. As a

result, some workers perform less important tasks than those available at the processors
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which have difficult subregions [64].

In conclusion, even though the number of work units is known for this type of problems,

it is very hard to develop an efficient solution without information about the work unit size.
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CHAPTER 6

Problems with an Unknown Number of Units - Unknown Unit Size
(UnUs)

In this chapter we present a problem with an unknown number of work units, and

unknown work unit size. This section is part of [22, 23, 20].

6.1 Adaptive Integration

The computational objective is to obtain an approximation � to the multivariate integral

� ��� 	
f
��� �

 � and an absolute error bound E�� such that �E � X � � � X � E�� � � ��G½D¾ O  � �	 "! X � XÿR � for given absolute and relative error tolerances  � and  D! , respectively. The

integration domain � is a hyper-rectangular region or simplex. The integrand is defined as

a vector function
� Ã,� 7 � � á �

We use a global adaptive partitioning algorithm (adhering to the meta- algorithm of

Figure 6.1), in order to concentrate the integration points in areas of the domain � where the

integrand is the least well-behaved. The bulk of the computational work is in the calculation

of the function
�

at the integration points. The granularity of the problem primarily depends

on the time needed to evaluate
�

and on the dimension; an expensive
�

generally results in

a problem of large granularity, such as the Bayesian statistics problems in [16, 18] and the

high energy physics problem in [23].

Multivariate integration rules for hyper-rectangular regions from Genz and Malik [30,

31] (with error estimation techniques from [4]), simplex rules from [28], and univariate
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Evaluate initial region and update results
Initialize priority queue with initial region
while (evaluation limit not reached and estimated error too large)

Retrieve region from priority queue
Split region
Evaluate new subregions and update results
Insert new subregions into priority queue

Figure 6.1 Adaptive Integration Meta-Algorithm

(Gauss-Kronrod) rules (as in Quadpack [53]) are used to provide a result � � � � and an

error estimate E � � � for any subregion
�

obtained from the initial domain � . Thus � � � �
is of the form � � � � � 6 ! é 8 � 1 é f ���6I � . We will refer to the calculation of the pair � � � �
and E � � � for a region

�
as a region evaluation.

The meta-algorithm of Figure 6.1 subsumes many different designs and implemen-

tations [55, 57]. In the PARINT distributed implementation of the adaptive partitioning

algorithm, all processors act as integration worker; one processor additionally assumes

the role of an integration controller. The initial region is divided up among the workers.

Each executes the adaptive integration algorithm on their own portion of the initial region,

largely independent of the other workers, while maintaining a local priority queue of re-

gions, stored as a heap and keyed with the estimated error of the regions.

In the initial steps the workers evaluate their part of the domain and initialize their local

heap with it. The regular adaptive loop iteration consists of: removing the region with the

highest estimated error from the priority queue; this region is split in half and the two new

subregions are evaluated; the overall result and error estimate now needs to be updated and
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the new subregions inserted into the queue.

All workers periodically send updates of their results to the controller; in turn, the

controller provides the workers with updated values of the estimated required accuracy  ,
calculated as  � �G½D¾ O  � �	 "! X � XzR . The workers use this value to determine if they have

achieved a satisfactory approximation of the integral over their initial subregion. If they

have, they become idle. To maintain efficiency, a dynamic load balancing technique is

employed to move work to the idle workers (see Load Balancing section bellow).

The computation terminates when the total estimated error calculated by the controller

drops below the threshold  , or, a user-specified limit on the number of function evaluations

is reached.

6.1.1 Load Balancing

A worker
�

informs the controller via a regular update message that it is not idle; the

controller selects (in a round-robin fashion) an idle worker � and sends
�

a message con-

taining the id of � . Worker
�

will then send � a region off the top of its queue or a message

indicating that no work is available. Worker � receives this message and either resumes

working or informs the controller that it is still idle.

Note that as any adaptive partitioning algorithm will have methods for prioritizing, se-

lecting, and partitioning work, the notion of a region subdivision tree exists in any problem

domain for which some sort of dynamic, adaptive partitioning can be utilized, including

adaptive mesh refinement, hierarchical progressive radiosity and branch and bound algo-

rithms.
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6.2 Further Remarks and Challenges

Adaptive task partitioning is an important paradigm in numerical integration. However,

it is also used in other problem domains, such as ray tracing, function approximation,

optimization, and mesh refinement [39].

The adaptive strategy implements a priority queue using a heap. There are problems that

require more regions stored in the queue than the amount of memory in any one CPU. In

such cases, a sequential execution may not be possible, and/or the parallel implementation

may give superlinear speedup.

Although this method helps to direct the work in difficult areas, any adaptive partition-

ing strategy may suffer from singularity loss, where less important tasks are done before

more important ones are available.

If the error estimate does not improve or improves very slowly as the computations

proceed, it is possible that the subdivision focus went wrong and that there are important

regions which did not get processed.

A related type of work anomaly, which is incurred by generating and processing unnec-

essary work is studied in [66] for adaptive integration and branch and bound applications.

6.3 Adaptive Mesh Refinement

We developed a techique for investigating the integration domain, based on a sequence

of nested grids with finer and finer mesh spacing. The problem domain is initially divided

in a coarse grid that will create a first approximation of the solution. Based on error esti-

mation, cells of the grid are subdivided further for the improvement of the partition.
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Figure 6.2 Sample Integrand Function

This technique is frequently used in fluid dynamics, radiative transport methods, pro-

gressive radiosity, etc. We note that, in one extreme, may have work units with difficulties

uniformly distributed in the problem domain, or it may be very imbalanced.

If, after a set number of function evaluations, the error does not show any tendency

improvement, a region is split into a number of subregions. The subdivision stops when

the error estimate is smaller than the requested error relative to the region size. In that case

the region becomes inactive based on the local adaptive criteria.

We studied a problem with applications for the calculation of cross sections in high

energy physics [59]. The integrand of the sample integral
� �' � � �' � 
[� � 
�� *KJ + � � { î � ��ML . � ' � � { ' � �� 0. � � { î � �� ' � � 0 � î J �

is shown in Figure 6.2.

Results given in [20] indicated that regular adaptive methods failed to integrate this

function to a relative accuracy of
#&%�'(/

for small values of  , e.g.  � #&%�'(/
. This was
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Figure 6.3 Domain Subdivision Plot

ascribed to a problem with the error estimates over the subregions generated, which caused

the adaptive algorithm to focus on certain sections of the singularity, but leave large portions

untouched, as shown in Figure 6.3.

More research is needed in this area, possible leading to specialized methods for han-

dling these extremely difficult problems.
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CHAPTER 7

Speedup and Efficiency Analysis Based on Work Unit Boundaries for
Master Slave paradigm

In this chapter we investigate how to approach the more difficult problems with un-

known work unit size, using a Master-Slave paradigm.

7.1 The Effect of Bounded/Unbounded Work Unit

For workload 5 , we denote by > õ the sequential runtime, by > W the parallel runtime

(using
�

processors), by >ON the penalty for the transfer of a work unit 1 , and by > ã the

processing time of the work unit. Figure 7.1 shows a communication process between two

processors (typical for sending a request, processing the request and sending a response).

Thus >PN is a type of round trip communication time.

Assuming there is no significant breaking loss or network congestion, the total CPU

time used by the parallel run is >�íRQ�íR�
SUT �WV �Õ� s�> Wó� > õ � ßçs&>XN , where ß is the number of

T
c

Unpack

Unpack

Pack

Pack

Process Messaget
cm

Figure 7.1 Communication Time
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work units processed [43]. The efficiency is:

E � > õ� s�> W � > õ> õ � ßHs�>PN �
## � ßJs4Y>ZY ö � (7.1)

To investigate the effect of communication, we compute the number of work units ß4[
that reduces the efficiency to E�[ � Ð % % (this corresponds to an isoefficiency function for

a parallel efficiency of 50%).

E�[ � #� � ## � ß*[ðs Y ZY ö \ ß][ � > õ>PN (7.2)

For a given system and problem, it is possible to find > õ and >XN . We can estimate

the number of messages per second that need to be processed by the controller when the

efficiency is reduced to this level:

K N � ß*[> W � > õ>XNjs�> W �
�� s�>PN (7.3)

For example, for a problem of > õ =10 sec, in a system where >ON =0.2 milliseconds, ß][
is 50,000, while for

�­� � , K N is 5,000. At this rate, we expect a significant network

congestion. Figure 7.2 shows >ON in a worst case scenario.

For problems which have no bounds on the size of the work unit, the number of work

transfers can be unlimited, the efficiency depreciating accordingly.

7.2 Investigating the Bottleneck Effect

The time used by the controller to process one incoming message is denoted by

 N á .

There will be congestion at the controller if the incoming message rate exceeds
�í Z_^ mes-
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Figure 7.2 Bottleneck at Controller

sages per second, or for
�

workers, the average time between two consecutive messages

sent by one worker is less than
� s 
 N á .

We can reduce the bottleneck effect at the controller if we can force the work units size

to satisfy:

> ã � >PNp® � s 
 N á � (7.4)

If > ã � >XN �Þ� s 
 N á , the total parallel runtime is > Wó� ßHs 
 N á , regardless of the number of

processors.

To investigate this effect, we developed a simple simulator for which we can control:

the number of work units, the size of a unit, and the amount of work performed by the

controller for each work unit. The simulator runs over a network of workstations and

uses MPI. Figure 7.3 shows the speedup obtained for a problem with
#&%[%

work units each

requiring > ã �q# Ð % milliseconds and different values of

 N á . Considering >ONa` 
 N á we

observed a sharp decrease in efficiency when > ã � >PN reaches
� s 
 N á . After this point, the

speedup remains fairly constant near Y öY w � Y(bí Z_^
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Figure 7.3 Communication Bottleneck Effect for 100 Work Units

Indeed, increasing the workload size to
#&%[%}%

work units does not improve the efficiency,

see Figure 7.4.

If we increase the size of the work unit proportionally with the number of processors,

we obtain an increase in the efficiency due to alleviating the bottleneck.

Another way of eliminating the bottleneck is by using intermediate collectors of in-

formation. Some of the workers can collect data from other workers and send a unique

package to the controller. The effect of additional controllers on the overall efficiency is a

topic for further investigation.

7.3 Overlapping Computation with Communication

If we have knowledge of the work unit size, we can overlap the computation > . 2 0ã with

the communication > . 29î �10N if > . 2 0ã ®²> . 2òî �10N (Figure 7.5). A new work unit will be available
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Figure 7.4 Communication Bottleneck Effect for 1000 Work Units

just before completing the current one. It is generally desired that no more than one work

unit be transferred in advance to any one worker.

Depending on the location where the new work is generated, we consider the following

cases:

I) the controller distributes work units from a work pool readily available;

II) each worker generates new work on the fly (for example, by splitting the current work).

For case I) there is an easy solution to overlap the computation with communication which,

for work units with known boundaries, falls under the “embarrassingly parallel” category.

As soon as the controller receives a result, it sends a new work unit. The new work unit can

wait in the worker message queue until the current one is finished. Knowledge about the

work unit boundaries serves to avoid the bottleneck at the controller and breaking loss at
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Figure 7.5 Computation-Communication Overlap

the end of the computation (otherwise the computation needs to be investigated under case

II)).

Case II) is more interesting and is studied in the following section.

7.3.1 Overlapping Computation with Communication in Work Redistribution

When the work load requires dynamic redistribution among the participating workers,

overlapping computation with communication can be an expensive process.

We investigate a strategy based on two special functions: work estimate and fair split.

The work estimate function must give an approximate finishing time of the current work

unit while fair split must generate a new work unit of a certain minimum size.

Every

 ! seconds each worker will send a status message to the controller with an es-

timate of its work. The id’s of the workers to finish in a certain interval are sent to those

with more work. Note the particular cases where: a worker receives more than one work

unit request at a time; or no worker receives a work request message.

We can estimate the current work unit termination time by quantifying the execution
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- Can we build a work estimate function?
- How much additional CPU-time is required?
- What is the length of the estimated work ?
- What are the chances of work estimate failure?

Figure 7.6 Questions on: Work Estimation Function

progress by a real value, for example, the number of iterations, accuracy, etc. Every

 ! sec-

onds, each worker calls a function to record the work unit progress. Using an extrapolation

function, we may be able to estimate the finishing time for reaching the goal.

Creating a fair split function presents challenges. This function must generate a new

work unit of a minimum processing time. Note that, in order to properly use fair split, we

need a work estimate function (unless the size of each work unit generated by fair split is

known precisely). The work estimate function is particularly important when we do not

know the upper boundaries of the unit, or we lack information on the CPU processing

time. For a given work load and a given system, answering the questions in Figure 7.6 may

provide valuable efficiency information.

To assure immediate response to a work request, we consider computation and commu-

nication performed in separate threads (or using a similar approach).

We use a clock synchronization mechanism (either provided by the system or imple-

mented in the program), such that the wall clocks of different machines are within 
 
 sec-

onds. Every

 ! seconds, each worker sends its status to the controller; the message includes

the estimated finishing time

	;

of its work unit. The controller translates

ø;

to a global time
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> ; (by looking at worker’s clock shift). A work request is sent on behalf of this worker if

the following condition is satisfied: > ; �Ö>PN ! í �ÊÇ s[>PN where
Ç

is a constant, and >ON ! í is

the current time. Figure 7.7 depicts in gray the time spent by each worker performing the

estimate and sending the update to the controller.

Consider the scenario where a worker makes a request for a new work unit only when

it becomes idle. The request goes to the controller, from which it gets forwarded to another

worker, which (if still busy) sends a new work unit to the requester. Since we have defined

>PN as being round trip communication time, the total idle time is
# � Ð sÏ>cN � >X� ã í , where >X� ã í

is the Average Waiting Time at the controller before the message gets processed.

Considering > * to be the time a worker sends an update message used by the controller

to identify its finishing time, then computation can be overlapped with communication

during a time span of length > ; �¶> *ed # � Ð s�>PN � >P� ã í , given that the work unit size

satisfies:

> ã ® 
 ! � # � Ð s�>PN � >X� ã í (7.5)

What is the efficiency degradation due to the estimation function and update message?

If we assume that the estimation is performed in f a seconds, then every worker, every

 !

seconds, will spend an extra f a time performing the estimation function. The new parallel

time is > Í Wc� > W � f a s�> W B 
 ! and the new efficiency is:

E Í � > õ� s�> Í W � > õ� s�> W s �<# �hgjiíRk � � E# �lg1iíRk (7.6)
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Figure 7.7 Communication Overlapping Algorithm

Given f a we can compute

 ! so that in order to have fDE efficiency degradation:


 ! ®mf a � Ef+E � # � (7.7)

Putting together (7.4), (7.5), and (7.7), and assuming >c� ã í dÆ%
, the work unit size must

be:

> ã ® # � Ð s�>XN � P � � � f a � EfDE � # ��� � s 
 N á � (7.8)

7.4 Properties of the Communication System

In this section we investigate a number of characteristics of the communication system

that can help in deciding the distribution strategy:

1) The actual values for round trip communication time >cN (ethernet, myrinet);

2) The real value for the

 N á processing time of an incoming message, which gives an

estimate of the number of messages per second that leads to the bottleneck effect (at any
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time, the controller must not have more than a constant number of message in its message

queue);

3) How much of >XN is used for packing/unpacking a message and how much is used for

data transfer;

4) What is the effect of multiple messages in the system. This can be assessed by checking

the network switch capabilities, and by measuring the communication time between two

processors when there is no other communication in the network, and when the network

is loaded ( i.e., when there are
� B � distinct pairs or processors, out of

�
processors, that

communicate simultaneously);

5) What is the effect of processing a work unit and communicating at the same time. In

other words if communication and processing is done in parallel (by having separate threads

or processes), how much will that slow down the work unit processing.

A grand goal is: given a network of workstations, by collecting some information about

the system, generate requirements for the work unit size to obtain a given efficiency for a

certain number of processors; or, given certain work unit size boundaries, to estimate the

efficiency for a number of processors.

In our preliminary tests we found the measurement data to be highly skewed. Figure 7.8

plots the round trip communication time for three runs, each having 40 measurements. The

message size is 1 byte. 85% of the measurements are in a small interval around
# � Ñ s #&%Z'�.

seconds, but a number of times we consistently found values up to 70% higher than the

median. We attribute these high values to some external factors that need to be considered

separately. In the following sections we use the median of 40 observations on three different
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Figure 7.8 Round Trip Communication Time

architectures:

a) Fast Ethernet and 1.2MHz Athlon CPU;

b) Fast Ethernet and 0.8Mhz Athlon CPU;

c) Myrinet and 1.2Mhz Athlon CPU.

7.4.1 Round Trip Communication

This section presents results of measuring the round trip communication time >nN for

varying message length. Figure 7.9 lists the algorithm used for this measurement. Ta-

ble 7.4.1 shows >ON when the network and the CPUs are dedicated, while Table 7.4.1 shows

the corresponding communication times when the network is congested: 30 processors exe-

cute the same communication pattern. We note a small increase in communication time (of

� %9o � g&f ) when the ethernet network is flooded with messages, however the myrinet network

does not seem to be affected.
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/* the even processors start the communication: i prq i+1*/
if(id%2 == 0)ê

run time = MPI Wtime() ;
MPI Send(buf, MsgSize, MPI CHAR, id+1, tag 1, MPI COMM WORLD);
MPI Recv(buf, MsgSize, MPI CHAR, id+1, tag 2, MPI COMM WORLD, &status);
run time = MPI Wtime() - run time;ë

elseê
MPI Recv(buf, MsgSize, MPI CHAR, id-1, tag 1, MPI COMM WORLD, &status);
MPI Send(buf, MsgSize, MPI CHAR, id-1, tag 2, MPI COMM WORLD);ë

Figure 7.9 Timing Code for Round Trip Communication

MsgSize(bytes) ethernet+0.8Ghz ethernet+1.2Ghz myrinet+1.2Ghz
1 0.000193 0.000163 0.000019

10 0.000197 0.000166 0.000019
20 0.000198 0.000168 0.000020
30 0.000203 0.000172 0.000020
40 0.000209 0.000177 0.000021
50 0.000213 0.000182 0.000021

100 0.000234 0.000201 0.000027
200 0.000271 0.000241 0.000043
500 0.000389 0.000362 0.000070

1000 0.000581 0.000560 0.000106
5000 0.001371 0.001343 0.000351

Table 7.1 Round Trip Communication Time: Free Network
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MsgSize(bytes) ethernet+0.8Ghz ethernet+1.2Ghz myrinet+1.2Ghz
1 0.000228 0.000180 0.000019

10 0.000229 0.000183 0.000019
20 0.000233 0.000186 0.000020
30 0.000237 0.000189 0.000020
40 0.000241 0.000194 0.000021
50 0.000247 0.000200 0.000021

100 0.000268 0.000219 0.000027
200 0.000307 0.000259 0.000043
500 0.000424 0.000380 0.000070

1000 0.000617 0.000578 0.000106
5000 0.001373 0.001343 0.000349

Table 7.2 Round Trip Communication Time: Congested Network

7.4.2 MPI Send Message

This measurement captures the time used by the non-blocking MPI Send. A message

is sent from the controller to 29 workers. The algorithm is presented in Figure 7.10. Ta-

ble 7.4.2 shows a very small overhead for the non-blocking send operation (as the message

size increases).

MsgSize(bytes) ethernet+0.8Ghz ethernet+1.2Ghz myrinet+1.2Ghz
1 0.000031 0.000019 0.000001

10 0.000004 0.000009 0.000000
20 0.000004 0.000012 0.000000
30 0.000004 0.000002 0.000000
40 0.000004 0.000003 0.000000
50 0.000005 0.000003 0.000000

100 0.000010 0.000004 0.000001
200 0.000014 0.000005 0.000001
500 0.000010 0.000006 0.000002

1000 0.000014 0.000008 0.000003
5000 0.000044 0.000033 0.000021

Table 7.3 Send Time: Master s7q 29 Workers
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if(id==0)ê
time start = MPI Wtime() ;
for(k=1;k t nb proc;k++)

MPI Send(buf, MsgSize, MPI CHAR, k, tag 1, MPI COMM WORLD);
time = (MPI Wtime() - time start)/nb proc;ë

else
MPI Recv(buf, MsgSize, MPI CHAR, 0, tag 1, MPI COMM WORLD, &status);

Figure 7.10 Timing Code for Send Message

7.4.3 Collective Communication

For the collective communications measurements we start the clock when all the par-

ticipating workers are about to enter the communication function. Otherwise the commu-

nication time will reflect arbitrary delays representing the time to reach the communica-

tion function by some workers. For this reason we use a barrier just before starting the

timer. Often the MPI device for a network of workstations implements the barrier with a

broadcast [35]. The broadcast is often implemented with a tree expansion communication

algorithm. The difference between the exit point from the barrier for different CPUs can be

up to >XN . This difference may be reflected in the collective communication time.
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CHAPTER 8

Sharing Status Information

One problem that needs to be addressed is how the workers will share status infor-

mation. The controller has to receive status information periodically in order to properly

redirect work requests to those CPUs which have more work left.

8.1 Computation Communication Interface

We define a work unit as the amount of work executed by a worker that, once started,

does not require any additional information to be completed.

Let us first look at the structure of the work unit from two perspectives:

I) how easy it is to split a work unit;

II) how easy it is to extract information about the amount of work performed (progress) on

a work unit at any given point in time.

We assume that a work unit can be composed of two main building blocks:

1) for loops,

2) indivisible tasks.

The “for loops” may have a known finishing time or an arbitrary finishing time. The “in-

divisible tasks” are purely sequential; but without prior knowledge it may be difficult to

estimate their finishing time.

If we cannot estimate the termination time, it is very difficult to predict the efficiency

of the parallel computation.
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Let us assume the work unit can be split into arbitrary chunks of known size. This can

be done if the work unit has a main loop of known size. Under this condition, the question

arises how often data has to be exchanged between processors in order to maintain an

efficient computation.

We propose a computation-communication interface based on two procedures:

1. Update Function Call. An update function is called within the main work unit loop

every É iterations, which can decide to send an update with the computation status and/or

handle requests for help.

2. Parallel Communication. The communication and the computation are performed in

separate threads or processes [36], [60]. Assuming that while processing a work unit, the

computation process (PR) does not require any communication, the communication process

(CM) will: process all the messages, ask PR for its status information, or ask PR to split its

work.

Assuming a work unit composed of ß i indivisible subtasks of size


i , without having

the communication and the computation in separate processes, a work request has to wait

 2

seconds until a subtask is finished in order to send out a response. For a uniform distribution

of work request arrival time,

 2 is approximately



i B � , and the corresponding efficiency

degradation is:

E � ## � ßçs í xY ö (8.1)

where ß is the number of work units, and > õ is the total sequential time, > õ � ß¤s[ß i s 
 i .
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Thus the efficiency degradation is:

E � ## � é(u íRv* u é>u é v u í v �
� s"ß i� sDß i � # (8.2)

For ß i �Ì#&%
, the efficiency degradation is Ð9w . This shows that for relatively big work

units, waiting for a response can be a significant source of inefficiency.

The proposed mechanism presents a number of challenges:

1. The interval between two updates can be very small or very large, both will affect the

efficiency.

2. The system requires additional work to synchronize the processes. CM needs to identify

how much work PR has left by either consulting a shared memory variable (updated by

PR) or by investigating the data processed by PR (in which case the data access must be

protected by monitors).

8.2 Efficiency Analysis when Using xzy6{<| }�~��E{/� Function

For a work load of > õ � ß¤sD> ã , of ß work units, the parallel execution time (without

considering the breaking loss effect) is > W � > õ � ßus(>PN . Let us consider a
������� �	��
���


function that takes

 õ seconds to execute, and reduce the total number of work units from

ß to � � s+ß . In estimating the influence of the
������� �	��
���


function on the overall efficiency,

the following questions arise: (i) Given � � , what should the execution time

 õ be in order to

maintain an efficient computation? (ii) For a given

 õ , what should the value of � � be?

The parallel execution time when using the
������� �	��
���


function is

> Í W�� > õ � ßËs�� � sÅ>PN � ßËs4� � s 
 õ . For a better efficiency, > Í W�� > W , which implies

ßcsø>XN���ßns�� � s�>PNI��ßcs<� � s 
 õ o % , i.e., >XN�s �<# ��� �+� �e� � s 
 õ o % . For a given � � , this leads
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to


 õ � >XNjs # ��� �
� � (8.3)

and for a given

 õ ,

� � � >PN>XN � 
 õ � (8.4)

Example, for >XN � � � milliseconds, and � � ��% � %�# , 
 õ must be less than Ø[Ør��� � d � %
milliseconds.

It may be noted that a
������� �	��
���


function it can also be used to alleviate the bottleneck

effect. Furthermore the
������� �	��
���


function will generally depend on the type of problem

at hand.
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CHAPTER 9

Conclusions

The present work has addressed various efficiency issues in distributed computing.

Considering the task to be computed in a distributed system as being characterized by

two factors, the number of work units and the size of each work unit, we investigated how

these may affect the efficiency of the computation.

We studied a number of representative test cases, where either the number of work

units, or/and the size of the work units is known, or no information about the structure of

the work is available.

For problems with an a-priori known workload structure, we demonstrated how the

MaxFlow algorithm can improve the efficiency. In this category we studied file distribution

and cluster optimization problems. As representative cases where the number of work

units is unknown but the unit size is known, we presented distributed Monte Carlo and

quasi-Monte Carlo integration methods. We built a theoretical model to explain various

inefficiency issues. The Known number of units and Unknown unit size (KnUs) case is

represented by the Hierarchical integration method. The most difficult case, when the

workload structure is unknown, is represented by adaptive numerical integration.

Even though challenges exist regardless of the structure of the workload, in general,

work units of arbitrary size may constitute a more serious source of inefficiency than an

unknown total number of units.

We developed a theoretical foundation for problems with bounded work units. Investi-
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gating workloads with bounded work units is important not only for problem with unknown

work units, but also for problems with known units that run on a network of heterogeneous

workstations under variable additional loads.
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Appendix

A ”gRpas”, a Tool for Performance Testing and Analysis

This section introduces a testing tool developed by the author to plot, analyze and store

experimental results. The tool has been used extensively for the majority of the experiments

presented in this work. This section is part of publication [11].

A.1 Introduction

Software applications in general and scientific computing programs in particular can be

seen as multidimensional functions:
� Ã ì 7 � ì á . A program can take an 4 -variate input,

and generate an P -variate output. To analyze the program behavior, the investigator selects

a set of input values and compares the output with results obtained using a different method.

The complexity of evaluating the program arises through a number of factors including:

the problem to be solved and its parameters, the algorithm used and its parameters, random

factors, total number of processors involved, etc.

For a given problem, some algorithms perform better than others, while for a given

algorithm some problems will be solved more efficiently. Efficiency related results are

generally affected by the problem parameters and the algorithm parameters.

The random factor is related to the fact that some algorithms require a set of random

values. Ideally, the outcome must not depend on the random values; however this is not

always the case. By repeating the same test a number of times, the developer is able to see

if the output of the algorithm tends to the same value.

The number of processors involved can complicate the analysis. On the one hand, for
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each processor, the developer must monitor a number of efficiency related parameters; on

the other hand, a disturbance of the distributed environment (such as in sharing bandwidth

with another program) can possibly affect the outcome, introducing a random factor.

For those problems for which there are no proved solutions (either because they are too

hard and require approximations - as for NP complete problems, or because they involve

too many extra conditions - as in parallel processing, adaptive numerical integration, etc.),

the development cycle often iterates as follows:

a) find a new algorithm (or start from a current version);

b) perform a set of tests;

c) based on results analysis improve the algorithm.

For the later stages, some common questions are: How much testing must be done to obtain

significant results? Is the new algorithm better and how much better? Despite the fact that

there are no practical limits on the amount of data that can be collected from the tests, it is

desired to perform as few tests as possible (to save CPU cycles, or decrease development

time).

Tests are usually automated by varying one input parameter while keeping the others

constant. If, for the
� íR[ parameter, ß[2 different values are tested, then a problem with 4 input

parameters and m output values generates P - �TS 2 S 7 ß}2 numbers to analyze.

Often, to evaluate improvements, the same set of tests is performed for different ver-

sions. In [37], Hooker mentions two types of algorithm comparisons: (i) competitive test-

ing, and (ii) controlled experimentation. Competitive testing is more suitable for develop-

ment, and tells which algorithm is faster but not why, whereas controlled experimentation
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is suitable for research and gives insight on how the code behaves under certain conditions.

We can relate this classification with the following: (i) compare results from two or more

versions; (ii) examine results from the same algorithm version.

Algorithm comparison in (i) relies on examining the difference in result vectors from

different algorithms for corresponding input parameters. There is often a trade-off between

the amount of work done and the quality of the result. Algorithm A may be pessimistic and

B more optimistic, so that requesting less accuracy from A may lead to results equivalent

to B’s. The performance profiles technique of [44] accounts for this characteristic in the

comparison of A and B.

In (ii), the algorithm may be tested with respect to the influence of random factors,

either due to the environment or a random component in the algorithm (such as through the

use of random numbers). The difference between the (sample) result vectors in P -space

is significant to measure performance dependence on the random factor(s). Their distance

can be accounted for by using the mean and variance with respect to some or all of the

output components.

Performance measures to test algorithm behavior as a function of varying input param-

eters are problem related. For example, “result” and “estimated error” output parameters

can be analyzed as a function of input “tolerated error” by comparing the actual error (if

known) and estimated error to the level tolerated. The situation is complicated by the fact

that the dependence on different input parameters may be correlated, such as that of “ac-

tual error” on “tolerated error” and “allowed number of iterations”. As another example,

various scalability measures (as a function of the number of processors used) are discussed
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in [66].

Another issue to take into account is the stability of the algorithm. An unstable al-

gorithm may cause a large change in results for a small change in the input parameters,

or, magnify the small errors from earlier computation stages until the result deviates com-

pletely from the true answer. Examples can be found in recurrence relations, like in com-

puting the 4 íR[ order Bessel function denoted by � 7 � ��� using the (forward) recurrence,

� 7 î �ù�
* 7� � 7 � ��� ��� 7 ' ��� ��� , which leads to a numerical catastrophe for 4 ® � when

finite precision arithmetic is used [50]. Solving Fredholm equations of the first kind also

belongs to this category [54].

A.2 Testing Numerical Integration Algorithms

The two main ingredients of a numerical integration problem are:
� �1� � the integral,

and
]l� � � the integration method, where

�
and � are various parameters. We denote by

� U a problem
� �j� U � and by

] é a method
]l� � é"� . We consider the integrand function,

integration region, requested accuracy and maximum number of function evaluations as

part of the integration parameters
�

. A few examples of integration methods are: adaptive,

Monte Carlo and quasi-Monte Carlo methods. Various cubature rules that can be used at

the basis of adaptive multivariate integration methods are listed in [7].

A major issue in numerical integration is that often we don’t know the characteristics

of the integrand function. In general, we don’t have answers to questions like: are there

any singularities, how steep are they and where are they located?

We denote by
] QU the best algorithm that solves

� U , that is, the algorithm with the best
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convergence. Let Î � � � ] � be the cost of solving
�

using algorithm
]

, expressed in an

appropriate measurement unit (e.g., number of function evaluations performed).

Given
]

, it is our goal to develop a set of tests to:

a) Find � é such that on the average over all
� U , Î � � � ] � is minimum. - Since it is impossible

to handle all
� U , we need to determine a suitable test set for which we require that on the

average Î � � � ] � is minimized. Alternatively we may require that
]l� � é&� � ] QU for

� U
in the test set. Or, we may just want to extract as much information as possible about the

algorithm behavior.

b) Compare
] é with other algorithms for the entire test space.

A.3 gRpas tool

gRpas [10] is a small application designed to help analyze results from scientific appli-

cations. Its main features are listed bellow.

Flexible Application Interface

For inter-operability and flexibility, all data is stored in an XML like format. For each

input/output parameter, the user specifies a set of attributes: name, type, and tag. These are

stored in a type repository and are used by the GUI module and re-used for similar tests.

All results, along with input parameters, are stored in a tagged format.

Option for filtering or combining results

Tests are performed in groups. Usually a set of tests is performed, analyzed and if

there are satisfactory results, another group of tests is performed. If the results are not as
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expected, the code is changed and the same set of tests is repeated. gRpas can combine the

results from different groups of tests or can present them individually. Figure A.1 shows

the tree structure: applications - versions - tests. In Figure A.2 a Test Set is expanded to

show the relation between Individual Tests and input parameters for an application with 4

parameters:
��� � �Z* � �Z- � � . , where

���
gets assigned three values and

�I*
two. The Test Set is

composed of 6 Individual Tests.

Note that although the version can be seen as an algorithm parameter, from the practical

point of view it is better to consider it as a separate entity.

The user can filter certain results across multiple sets of tests for individual analysis, or

89



can combine multiple tests from multiple sources.

Flexible User Interface

The application is mainly designed for algorithm comparisons, and is mainly intended

for scientific software developers. The user interface is simple and is point-and-click based.

This allows for a short learning curve and fast response to the user. After data is collected,

a wide range of plots can be generated. Parameters defined in the input files can be selected

by their names from drop-down menus. Multiple plots can be drawn in the same window

and multiple windows can be displayed at once.

Figure A.3 shows the main user interface. The table in the lower part lists all the Test

Sets performed for a particular version of the code (this corresponds to the shaded areas

in the Test Sets level in Figure A.1). In the rightmost column, the title shows the name of

the code version, and the cells show the time when the Sets were generated. The middle

column shows the parameters used in the Set, and the left column shows the associated

name for the Set.

Once the user has selected a Test Set, its parameters are shown in the control group

situated on the right (corresponding to the type of area that is shaded in the Individual Tests

level in Figure A.1). This section has a double role: to show and to select the parameters

to be plotted. In the top part, the user selects the Y coordinate from a drop list containing

all the output variables, while the X coordinate is selected from the input parameters with

multiple values. Once the user has selected a parameter set, the plots are displayed in the

center-left area.
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The plots in Figure A.3 result from solving multivariate integration problems using

a quasi-Monte Carlo method with up to 60 processors. The variable input parameters are:

Integrand Function, Number of Processors, and Function Limit. This particular Set consists

of 325 Individual Tests, each repeated a number of times. On the left, the Run Time is

plotted versus the Number of Processors for all the integrand functions using a different

Function evaluation Limit, whereas on the right the obtained error is plotted. Each plotted

point represents the median of multiple values. The data interval is shown as a closed

segment.

Figure A.4 represents two algorithm versions (note an additional column in the table

Test Sets area). The two versions have a number of identical Test Sets: Test s01, Test s02,

Test s05, and Test s06 (which can be identified by the date in the algorithm version column).

The plot shows the differences in the result values.

User defined plugins

Extern modules can be linked to gRpas for additional functionality. The user can pre-

process the output before displaying, or can link in a different application. The plugins must

be written in java. The extern modules are called using menus. For example, Figure A.5

shows the effect of applying the scalability (speedup) plugin: for each test, the plot shows

the inverse of the runtime multiplied with the runtime of the first test (which corresponds

to the sequential run).
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Figure A.3 gRpas : Multiple Plots, Multiple Window

Figure A.4 gRpas : Multiple Algorithm Plot
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Figure A.5 gRpas : Scalability (speedup) Plugin

Statistical reports

As mentioned earlier, the developer is interested in two types of comparisons. First, for

a given algorithm
] � what is the value of � such that

]l� � � gives the best performance for

a set of problems
� U . Second, given two or more algorithms, which one performs better for

the same set of problems.

Most of the time, a simple inspection of the plots gives enough information to continue

analyzing the algorithm or to change it.

To generate more elaborate statistics we have two options, either implement a small set

of functions in java as plugins, or export the data to applications like Splus or SAS. It is our

goal to implement a set of functions that can perform comparisons at the click of a button.

For further consideration, we envision a new functionality for generating plots from
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non-common-parameters tests. Instead of performing Test Sets where some parameters are

fixed while others vary, is possible to generate indicative plots from Tests that do not share

common parameters. In this way it is possible to reduce the number of tests performed,

while increasing the problem investigation space.

A.4 Conclusions

In this section we presented “gRpas”, a tool to help analyze test results for scientific

computing applications. Intended to be used for both competitive testing as well as con-

trolled experimentation, the application has been used extensively in our parallel numer-

ical integration research. We included samples of its usage from solving multivariate t-

distribution (MVT) problems using a quasi-Monte Carlo method with up to 60 processors.

The “gRpas” application and code is available for download at [10]. It can also be executed

online as an applet at [10].

94



BIBLIOGRAPHY

1. ATHENA web site, https://aegis.cs.wmich.edu.

2. BANICESCU, I., AND VELUSAMY, V. Performance of scheduling scientific appli-
cations with adaptive weighted factoring. In Proceeding of the IEEE International
Parallel and Distributed Processing Symposium Heterogeneous Computing Workshop
(on CD-ROM) (2001).
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61. TSCHÖKE, S. Portable parallel branch-and-bound library. http:// www.uni-
paderborn.de/ � ppbb-lib.

62. WHANG, K. Advanced Computer Architecture. McGraw-Hill, Inc., 1993.
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