A Study of the 16.7 MeV Level of the ^5He

George

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Nuclear Commons

Recommended Citation

George, "A Study of the 16.7 MeV Level of the ^5He" (1968). Master's Theses. 3152. https://scholarworks.wmich.edu/masters_theses/3152

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.
A STUDY OF THE 16.7 MeV
LEVEL OF 5He

by

James David George

A Thesis
Submitted to the
Faculty of the School of Graduate
Studies in partial fulfillment
of the
Degree of Master of Arts

Western Michigan University
Kalamazoo, Michigan
August 1968
ACKNOWLEDGEMENTS

Gratitude and appreciation is expressed to Professor R. E. Shamu for his guidance and assistance, without which this project could not have been accomplished. Thanks are also due to Mr. J. Meagher and Mr. K. Williams of the Western Michigan University Computer Center for their assistance with the calculations.

Discussions with Professors G. Hardie, L. D. Oppliger, and G. E. Bradley were very helpful. The interest and encouragement shown by the rest of the faculty of the Department of Physics has been greatly appreciated. It has been an enjoyable privilege and experience working with these men for the past two years.

Special thanks is also due to my wife, Sharon, for her patience and assistance in preparing the manuscript.

James David George
MASTER'S THESIS M-1652

GEORGE, James David
A STUDY OF THE 16.7 MeV LEVEL OF ^5He.

Western Michigan University, M.A., 1968
Physics, nuclear

University Microfilms, Inc., Ann Arbor, Michigan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>THEORY</td>
<td>11</td>
</tr>
<tr>
<td>III</td>
<td>CALCULATIONS</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Qualitative Restrictions on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{Im}</td>
<td>f_2^*</td>
</tr>
<tr>
<td></td>
<td>Calculations of \mathcal{T}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrictions on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuclear Parameters</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Determination of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$D_{3/2}$ Phase Shifts</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Calculations of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross Sections</td>
<td>24</td>
</tr>
<tr>
<td>IV</td>
<td>COMPARISONS OF THE CALCULATIONS WITH THE DATA</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total Scattering Cross Section</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total Elastic Scattering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross Section</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Differential Elastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scattering Cross Section</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>as a Function of Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential Elastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scattering Cross Section</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>as a Function of 0_{cm} at 22.15 MeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polarization Zero Crossing Angle</td>
<td>52</td>
</tr>
<tr>
<td>V</td>
<td>ANGLE OF ROTATION OF SPIN AND THE POLARIZATION</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Rotation Parameter</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Polarization</td>
<td>55</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>62</td>
</tr>
<tr>
<td>APPENDIX A. Neutron-Alpha Phase Shifts</td>
<td>64</td>
</tr>
<tr>
<td>APPENDIX B. Reciprocity Relationships</td>
<td>66</td>
</tr>
<tr>
<td>APPENDIX C. Computer Program</td>
<td>67</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>73</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Energy Level Diagram of ^5He</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>Energy Level Diagram of ^5Li</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>Relationship of G, τ, β, ϕ and μ</td>
<td>18</td>
</tr>
<tr>
<td>IV</td>
<td>f_2 in the Complex Plane</td>
<td>25</td>
</tr>
<tr>
<td>V</td>
<td>β vs Energy, $g = 36$</td>
<td>26</td>
</tr>
<tr>
<td>VI</td>
<td>β vs Energy, $g = 45$</td>
<td>27</td>
</tr>
<tr>
<td>VII</td>
<td>β vs Energy, $g = 70$</td>
<td>28</td>
</tr>
<tr>
<td>VIII</td>
<td>Total Cross Section vs Energy, $g = 45, 70$</td>
<td>33</td>
</tr>
<tr>
<td>IX</td>
<td>Total Cross Section vs Energy, $g = 36, 40$</td>
<td>34</td>
</tr>
<tr>
<td>X</td>
<td>Total Elastic Cross Section vs Energy, $g = 36, 40$</td>
<td>37</td>
</tr>
<tr>
<td>XI</td>
<td>Total Elastic Cross Section vs Energy, $g = 45, 70$</td>
<td>38</td>
</tr>
<tr>
<td>XII</td>
<td>Differential Cross Section vs Energy, $\cos \theta = 0.350$</td>
<td>41</td>
</tr>
<tr>
<td>XIII</td>
<td>Differential Cross Section vs Energy, $\cos \theta = 0.126$</td>
<td>42</td>
</tr>
<tr>
<td>XIV</td>
<td>Differential Cross Section vs Energy, $\cos \theta = -0.135$</td>
<td>43</td>
</tr>
<tr>
<td>XV</td>
<td>Differential Cross Section vs Energy, $\cos \theta = -0.324$</td>
<td>44</td>
</tr>
<tr>
<td>XVI</td>
<td>Differential Cross Section vs Energy, $\cos \theta = -0.495$</td>
<td>45</td>
</tr>
<tr>
<td>XVII</td>
<td>Differential Cross Section vs Energy, $\cos \theta = -0.649$</td>
<td>46</td>
</tr>
</tbody>
</table>
XVIII Differential Cross Section
 vs Energy, Cos θ = -0.811 47
XIX Differential Cross Section
 vs Energy, Cos θ = -0.883 48
XX Differential Cross Section
 vs Cos θ, Energy = 22.15 MeV 51
XXI Polarization Zero-Cross Angle vs Energy 54
XXII Angle of Rotation of Spin
 vs Energy, Cos θ = -0.495 57
XXIII Angle of Rotation of Spin
 vs Energy, Cos θ = -0.649 58
XXIV Polarization vs Energy, Cos θ = -0.810. 60
XXV Polarization vs Energy, Cos θ = -0.133. 61
INTRODUCTION

One of the fundamental problems of nuclear physics is the study of charge symmetry, that is, the comparison of the neutron-neutron interaction and the nuclear part of the proton-proton interaction. One can define two versions of charge symmetry which shall be called the weak statement and the strong statement. The weak statement, pertaining to the interaction between only two nucleons, is the hypothesis that the neutron-neutron interaction is the same as the nuclear part of the proton-proton interaction. The weak statement is the one tested by comparing parameters obtained from proton-proton scattering with parameters obtained from studies of the neutron-neutron interaction. The strong statement implies the first and pertains to the interaction between two nucleons in nuclei containing more than two nucleons. It asserts that one may simultaneously exchange all neutrons for protons and all protons for neutrons in any experiment and obtain the same result. There is strong evidence available to indicate that the weak statement is indeed valid. Although there is also evidence which supports the strong statement of charge symmetry, there is some question concerning the degree of its correctness.

There are several arguments which support the strong statement of charge symmetry. The fact that the number of neutrons plus the number of protons is approximately equal in the nuclei of the elements is evidence for the correctness of this assumption. If either the neutron-neutron or proton-proton force were much greater
than the other, then nuclei would exist of purely protons or purely neutrons. One must note, however, that as the atomic number increases, the ratio of neutrons to protons also increases. It is felt that this neutron excess may be adequately explained by considering the short range of the nuclear force and the long range of the Coulomb repulsion between pairs of protons \(^4\).

The properties of mirror nuclei are also evidence for the strong statement of charge symmetry \(^1\). Two nuclei are called mirror nuclei if one has the same number of neutrons as the other has protons and the same number of protons as the other has neutrons. See Figures I and II for examples of mirror nuclei level structure. However, it is still unclear if the shift in energy level structure of mirror nuclei is due entirely to the additional Coulomb energy \(^1\) in the nuclei with the greater number of protons. And, it is not clear that the increase in the ratio of neutrons to protons in the heavier nuclei is due entirely to the Coulomb repulsion \(^4\). Thus it is possible that part of the shift in the energy level structure and that part of the increased ratio of neutrons to protons in the heavier nuclei may be caused by a difference between the neutron-neutron force and the proton-proton force in the nucleus.

Because of the fundamental nature of charge symmetry, it is of interest to determine if a small difference does exist between the neutron-neutron and the proton-proton forces in nuclei. And if so, it would be important to determine the magnitude and the effects of the difference in the interaction.
Figures I and II. Energy Level Structure of ^5He and ^5Li. Energy values are plotted vertically in MeV, based on the ground state as zero. Uncertain levels are indicated by dashed lines; levels which are known to be particularly broad are cross hatched. The levels and parity are indicated in the standard spectroscopic notation. For reactions in which ^5He or ^5Li is the compound nucleus, some typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and the bombarding energy vertically. Bombarding energies are included in laboratory coordinates and plotted to scale in center-of-mass coordinates.
Figure I
Figure II
One procedure that has been attempted by several investigators is an examination of the nuclear parameters—the reduced widths and resonance energies—of a sharp resonant level in mirror nuclei. The strong statement of charge symmetry predicts the nuclear parameters for two analogue levels in mirror nuclei to be the same.

A convenient mirror pair for study is \(^5\)He and \(^5\)Li as they are relatively simple. Both systems exhibit similar level structures and both have an isolated sharp resonance at approximately 17 MeV above the ground state. The relatively isolated sharp resonance allows the use of the rather straightforward single level resonance theory. One disadvantage that this pair of mirror nuclei has is that the thresholds of the deuteron+triton reaction in \(^5\)He and the deuteron + \(^3\)He reaction in \(^5\)Li, occur just below the resonance, which complicates the analysis somewhat.

A number of previous investigators have determined values for the reduced widths for the two systems. Table I presents the results of some of these investigations. In this table \(\gamma_n^2\) is the reduced width of the neutron, \(\gamma_p^2\) is the reduced width of the proton, and \(\gamma_d^2\) is the reduced width of the deuteron.

Of the three parameters listed, the parameter \(g\) will be examined in the following analysis because it can be determined with less uncertainty than the values of \(\gamma_n^2\), \(\gamma_p^2\) or \(\gamma_d^2\). If the strong statement of charge symmetry is valid, \(g\) will be the same for both \(^5\)He and \(^5\)Li. It is seen from Table I that at present there is
Table I

Level Parameters for the $3/2^+$ Level in 5He (16.67 MeV) and 5Li (16.7 MeV)

Interaction radius: $r = 5.0 \times 10^{-13}$ cm

<table>
<thead>
<tr>
<th>γ_n^2 (MeV)</th>
<th>γ_d^2 (MeV)</th>
<th>$g = \gamma_d^2 / \gamma_n^2$</th>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0555</td>
<td>2.00</td>
<td>36^6</td>
<td>Total T (d,n) He^4 Reaction Cross Section^6</td>
</tr>
<tr>
<td>0.0500</td>
<td>2.00</td>
<td>40^10</td>
<td>Total Scattering Cross Section^17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total d (T,n) He Reaction Cross Section^12</td>
</tr>
<tr>
<td>0.0742</td>
<td>3.34</td>
<td>45^9</td>
<td>Total T (d,n) He^4 Reaction Cross Section^6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total d + T Elastic Scattering at 90°^27</td>
</tr>
</tbody>
</table>
Table I Cont.

<table>
<thead>
<tr>
<th>(\gamma_p^2) (MeV)</th>
<th>(\gamma_d^2) (MeV)</th>
<th>(g = \gamma_d^2 / \gamma_n^2)</th>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0742</td>
<td>3.34</td>
<td>45(^9)</td>
<td>d + He(^3) Elastic Scattering at 90°(^9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ave. Total He(^3) (d,p) He(^4) Cross Section(^{13,14})</td>
</tr>
<tr>
<td>.0264</td>
<td>1.4</td>
<td>53(^{11})</td>
<td>Total He(^3)(d,p)He(^4) Cross Section(^{13})</td>
</tr>
<tr>
<td>.0334</td>
<td>1.50</td>
<td>45(^{11})</td>
<td>Ave. Total He(^3) (d,p) He(^4) Cross Section(^{13,18})</td>
</tr>
<tr>
<td>.0428</td>
<td>3.0</td>
<td>70(^{11})</td>
<td>p - α Differential Cross Section vs Energy(^{15,25}) Polarization(^{11,16,26})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ave. Total He(^3) (d,p) He(^4) Cross Section(^{7,17,19}) p - α Differential Cross Section vs Energy(^{25,15}) Polarization(^{11,16})</td>
</tr>
</tbody>
</table>
large disagreement in the value of g both for ^5He and ^5Li. It may be that some of the comparisons examined were not overly sensitive to the nuclear parameters. The situation for ^5Li is further complicated because existing measurements of the $^\text{He}_3(\text{d},\text{p})^\text{He}_4$ reaction cross section do not agree. It is seen that the analyses listed in Table I indicate that the strong form of charge symmetry may be valid, e.g. if g = 45 for both ^5Li and ^5He. However, because of the uncertainty in the value of g for both ^5He and ^5Li, to date, this validity has not been proven.

This work is a re-examination of the nuclear parameters for the sharp resonance in ^5He at 16.7 MeV above ground state. In neutron-alpha scattering the level in ^5He is observed as an anomaly in the scattering cross section. Neutron-alpha differential cross section data which have not previously been used for comparison to determine the nuclear parameters are available. Comparisons of these data to single level resonance theory calculations are made for various values of g. Comparisons are made for the total scattering cross section, the differential elastic scattering cross section, and the polarization for neutron-alpha scattering. Particular emphasis is placed on the differential scattering.

+ It has been suggested by Breit that an analysis based only on total reaction cross sections may not be overly sensitive in determining the reduced widths.

++ The total scattering cross section is defined as the sum of the total elastic scattering cross section, $^\text{He}_4(\text{n,n})^\text{He}_4$, and the total reaction cross section, $^\text{He}_4(\text{n,d})T$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
elastic scattering cross section. The polarization22 and the angle of rotation of spin+ will be examined to see if either measurement is a sensitive test for the nuclear parameters.

It is the purpose of this thesis to determine the nuclear parameters for the 16.7 MeV level in 5He using existing data20. These parameters will be compared with the suggested values for the analogue state in 5Li.

An analysis of the polarization and rotation parameter will also be performed to see if these measurements are suitable to further substantiate the values of g for the resonant level in 5He.

+The angle of rotation of spin may be determined by means of a triple scattering experiment where the plane of the second scattering is perpendicular to the plane of the first scattering23,24.
THEORY

The scattering of nucleons by a nucleus may be described by the method of partial waves. If, for the moment, one neglects spin, then the incident beam of neutrons may be represented, to a good approximation, by a plane wave of the form e^{ikz} where k represents the magnitude of the propagation vector in the center-of-mass system and z is measured along the direction of propagation. This plane wave may also be expressed as a sum of partial waves:

$$e^{ikr} = e^{ihr\cos\theta} = \sum_{l=0}^{\infty} a_l J_l(kr) P_l(\cos\theta)$$

where $a_l = (2l+1) i^l$, $J_l(kr)$ = spherical Bessel function, and $P_l(\cos\theta)$ = Legendre polynomial of order l. In this representation, the plane wave of linear momentum has been decomposed into an infinite series of partial waves, each of differing angular momentum l.

When analyzing scattering phenomena by the method of partial waves, it is convenient to introduce the concept of a phase shift. The term phase shift refers to a shift in phase which an incident partial wave undergoes upon scattering. All of the quantities which one may measure in a scattering experiment may be expressed in terms of phase shifts. As given by Burke, the differential elastic scattering cross section, $\frac{d\sigma}{d\Omega}$, the polarization, $P_l(\theta)$, and the angle of rotation of spin, β, may be calculated from the phase shifts, for a neutron incident on an alpha particle as:
\[\frac{d\sigma}{d\Omega} (\theta) = \frac{1}{\mathbf{k}^2} \left[|A|^2 + |B|^2 \right] \]

\[P(\theta) = \frac{2 \text{ Im} (A^* B)}{|A|^2 + |B|^2} \]

\[\beta = \arccos \left(\frac{2 \text{ Re} (B^* A)}{|A|^2 + |B|^2} \right) \]

where A and B are respectively the coherent and incoherent scattering amplitudes,

\[A = \sum_{l=0}^{\ell_{max}} \left[(\ell+1) f_{l}^{+} + \ell f_{l}^{-} \right] P_{l} (\cos \theta) \]

\[B = \sum_{l=0}^{\ell_{max}} \left[f_{l}^{-} - f_{l}^{+} \right] \frac{d}{d(\cos \theta)} P_{l} (\cos \theta) \]

The partial scattering amplitudes, \(f_{l}^{\pm} \), are related to the phase shifts, \(\delta_{l}^{\pm} \), by

\[f_{l}^{\pm} = \frac{e^{\pm 2i \delta_{l}^{\pm}}}{2i} - 1 \]

The plus or minus superscript denotes the total angular momentum, \(j = \ell \pm 1/2 \). The quantity \(e^{2i \delta_{l}^{\pm}} \) is often called the scattering or collision function 30.

Due to the finite range, a, of the scattering potential, only the partial waves in the sum up to a maximum orbital angular momentum \(\ell_{max} \) approximately equal to \(k \cdot a \), are strongly affected by the
potential.

The contributions from the partial waves of higher angular momentum are very small or negligible. Since the incident energy of the neutron is large enough near the resonance to notice relativistic effects, the wave number, correct to first order, becomes:

$$k = \sqrt{\frac{\hbar}{\mu} \left[\frac{(1 - \frac{m_1}{2m})^2}{\hbar^2 c^2} - \frac{(1 - \frac{m_1}{2m})^2}{2m, c^2} \right]}$$

where m_1 is the rest mass of the neutron, m_2 is the rest mass of the alpha particle, \hbar is Planck's constant divided by 2π, c is the speed of light and T is the laboratory kinetic energy of the incident particle.

If processes other than elastic scattering are possible, then the phase shift becomes complex. The real part of the phase shift represents the elastic scattering process and the imaginary part represents all other processes. If the phase shift is complex, the partial scattering amplitude becomes:

$$f_{12}^* = \frac{\gamma^T - 2i\mu^\pm}{2i}$$

where μ is the real part of the phase shift. The inelastic parameter, τ, is equal to $e^{-2i\mu^\pm}$.

The elastic scattering cross section, σ_{elas}, and the reaction cross section, σ_τ, may be written in terms of the partial scattering amplitudes as:

$$\sigma_\text{elas} = \frac{1}{4\pi} |f_{12}|^2$$

$$\sigma_\tau = |f_{12}|^2$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The total cross section, σ_T, is the sum of the elastic cross section and the reaction cross section. It may be written as:

$$\sigma_T = \frac{\pi}{k^2} \sum_{j, l} (j + \frac{1}{2}) \left(4 I m \frac{f^2}{k^2} - |f^2| \right)$$

In terms of the real part of the phase shift and inelastic parameter, equations 9, 10, and 11 may be rewritten as:

$$\sigma_{elas} = \frac{\pi}{k^2} \sum_{j, l} (j + \frac{1}{2}) \left[1 + \left(\frac{\tau^2}{r^2} \right)^2 - 2 \frac{\tau^2}{r^2} \cos 2 \mu^2 \right]$$

$$\sigma_r = \frac{\pi}{k^2} \sum_{j, l} (j + \frac{1}{2}) \left[1 - \left(\frac{\tau^2}{r^2} \right)^2 \right]$$

Assuming, on the basis of previous investigations that the assignment of total angular momentum and parity of $3/2^+$ to be correct, the effects of the 16.7 MeV excited state is ^{5}He, as observed in the
n - α scattering, should be contained in the $D_{3/2}$ phase shift and the f_2^- partial scattering amplitude. From single resonance theory, the f_2^- partial scattering amplitude in the vicinity of an isolated resonance may be written as:

\[
\frac{f_2^-}{f_2^+} = \frac{\frac{2\pi \phi_2^-}{2\pi i} - 1}{G \left(\frac{2\pi \beta - 1}{2\pi i} \right)} \phi_2^-
\]

where

\[
G = \frac{\Gamma_m}{\Gamma_m + \Gamma_d}
\]

Here, Γ_d and Γ_n are the partial widths for the decay into the deuteron + triton channel and the neutron + ^4He channel, respectively. The resonant phase shift is designated as β; ϕ_2^- is the non-resonant phase shift. The non-resonant phase shift contains contributions from distant levels, normally called potential scattering.

The resonant phase shift β is given as:

\[
\beta = \alpha \arctan \left[\frac{\frac{1}{2} \left(\frac{\Gamma_m + \Gamma_d}{E_\lambda + \Delta_\lambda - E} \right)}{E_\lambda + \Delta_\lambda - E} \right]
\]

where E_λ is the characteristic energy of the resonance, E is the characteristic energy of the resonance, E is the

+ The partial width Γ_λ, for the decay of the state to ^4He (ground state) + γ is negligibly small 33 and will not be considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
center-of-mass energy of the neutron and alpha particle and $\Delta \lambda$ is the level shift.

The level shift is defined as:

$$\Delta \lambda = - (S_n - B_n) \gamma_n^2 - (S_d - B_d) \gamma_d^2$$

where S_n and S_d are respectively the neutron and deuteron shift functions defined as

$$S = \left[\frac{\partial r}{\partial (kr)} \right] \ln \left(F_\lambda^2 + G_\lambda^2 \right)_{r=a}$$

The symbols F_λ and G_λ represent the regular and irregular Coulomb wave function respectively. The terms B_n and B_d are arbitrary constants picked such that at $E_\lambda = E$, $\Delta \lambda = 0$ and therefore $\beta = 90^\circ$.

The partial widths, Γ_n and Γ_d, may also be written in terms of the reduced widths as:

$$\Gamma' = 2 \gamma P$$

where the penetrability, P, is defined as:

$$P = \left(\frac{\hbar c}{F_\lambda^2 + G_\lambda^2} \right)_{r=a}$$

It is now possible to rewrite equation 15, applying equations 16 and 20, in terms of the reduced widths as:
where \(g = \frac{\gamma d^2}{\gamma_n^2} \).

Thus the partial scattering amplitude, \(f_2^- \), and in turn the phase shift, \(\mu \), \(\tau \), may be directly related to the reduced widths.

If the partial scattering amplitude as expressed in equation 8 is plotted in the complex plane, as in Figure III, it is found for example, that for constant \(\tau^- \), \(f_2^- \) traces out a circle of radius \(\tau^-/2 \) with a center, \(C \), at \((0, 1/2)\). If \(\tau^- \) varies with energy a circular path is traced out inside the unitary circle--the unitary circle being the path scribed by \(f_2^- \) for \(\tau^- = 1 \). The angle between a line from the center of the circle \((0, 1/2)\) and some point \(P \) on the circle is equal to \(2\mu \). The phase shift, \(\mu \), varies from 0 through 180° if \(f_2^- \) passes above the center of the unitary circle. If the path passes beneath the center of the unitary circle, the phase shift increases to a value less than 90° and then decreases to zero, well above the resonance.

If \(f_2^- \) in the form of equation 15 is plotted in the unitary circle, (see Figure III) it becomes possible through elementary geometry to graphically determine the phase shift for the different nuclear parameters.
RELATIONSHIP OF G, γ, β, ϕ, AND μ

Figure III. Relationships between the real part of the phase shifts, μ, the inelastic parameter, γ, the resonant phase shifts, β, the potential phase shift, ϕ, and the partial scattering amplitude, \mathcal{F}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CALCULATIONS

Qualitative Restrictions on $\text{Im} f_2^-$ and $|f_2^-|^2$

It is useful to perform a qualitative examination of the cross sections. This may provide restrictions on the partial scattering amplitude and in turn on the nuclear parameters. If it can be assumed that the change in the cross sections near the resonance is due entirely to the $^5D_{3/2}$ state in 5He, equations 9, 10 and 11 provide useful information on the path of f_2^- in the unitary circle.

The maximum imaginary component of f_2^- may be determined by evaluating the maximum change in the total cross section at the resonance. If the change in the total cross section is strictly due to the level in 5He then an extrapolation from above and below the resonance should account for the contributions to the total cross section from the other levels. From the available data the maximum change in the cross section is approximately 220 mb, and occurs at an incident neutron energy of 22.16 \pm 0.01 MeV. From equation 11 the maximum imaginary component of f_2^- is found to be:

$$\text{Im} f_2^- \max \approx 0.60.$$

With the aid of equation 9 and the same general procedure, the maximum value of f_2^- may be determined from the total elastic cross section. The total elastic cross section peaks at 22.15 \pm 0.01 MeV with a maximum change of approximately 150 mb. From equation 9 the maximum value of the partial scattering amplitude is found to be:

$$f_2^- \max \approx 0.64.$$
Calculation of φ

The parameter φ may obtained from the He4 (n,d) T cross section data by using equation 13. However, available He4 (n,d) T data are only relative data. Consequently it is best to determine the reaction cross section from studies of the inverse reaction, i.e., T (d,n) He4. This may be readily performed by applying the reciprocity relationship as explained in Evans. The calculation is reproduced in Appendix A.

There are two principal sets of data, Argo et al. and Conner et al., available for determining the T (d,n) He4 reaction cross section. The two sets of data are consistent to within their experimental uncertainties--Conner et al., have a 3% uncertainty, Argo et al., have a 10% uncertainty.

The values of the inelastic parameter, φ, were determined with the aid of reciprocity relationship, equation 13, and the average of the available data. At 22.173 MeV, maximum peak of the reaction cross section, the average He4 (n,d) T cross section is larger than $2 \pi/\lambda^2$. If there are no other contributions at this particular level, this implies φ is imaginary. But, φ must be real. Because the analysis has been restricted to a single level interpretation, the

+The threshold of the d + T reaction was taken to be 22.07 MeV to agree with the calculations of Hoop and the measurements by Shamu et al. However, it was calculated to be 22.0638 MeV, relativistically correct, using the method outlined by Morrison and a Q for the reaction from Lauritsen and Ajzenberg.
average value of the reaction cross section at \(E = 22.172 \text{ MeV} \) and adjacent energies were adjusted by \(0.546\% \), a value within the experimental uncertainty, so that \(\tau \) was real. The adjusted reaction cross section also peaked at \(22.17 \pm 0.01 \text{ MeV} \) with a maximum of \(91.6 \text{ mb} \). The values determined for the inelastic parameter, \(\tau \), are found in Table II.

Restrictions on the Nuclear Parameters

The minimum value of \(\tau \) places an additional restriction on the partial scattering amplitude, \(f_2^- \), and the nuclear parameters. Since \(\tau \) is nearly zero at \(22.17 \pm 0.01 \text{ MeV} \), from equation 8 it is found that \(f_2^- \approx i/2 \) at the resonance. From equation 15, \(f_2^- \) is pure imaginary when \(\beta = 90^\circ \), provided the potential phase shift of \(\phi = 5^\circ \) may be neglected for a qualitative study. Assuming the potential phase shift may be neglected, the partial scattering amplitude at \(\beta = 90^\circ \) becomes:

\[
f_2^- = \frac{iz}{2} = \frac{r_n i}{r_n + r_d} = \frac{i}{1 + \frac{v_n^2}{E_n^2} + \frac{v_d^2}{E_d^2}}
\]

This suggests that \(r_n \approx r_d \). If \(r_n / r_d > 1 \), the phase shift changes through 180°. If \(r_n / r_d < 1 \), the phase shift will approach 90° and then decrease well above the resonance to values near 0°. Previous investigators\(^{10,12,27}\) have attempted to determine if \(r_n / r_d > 1 \) or \(r_n / r_d < 1 \) at the resonance. Due to insufficient scattering data their studies have been inconclusive.

Since \(r_n / r_d \approx 1 \) at the resonance energy, one may obtain an estimate of the value of \(g \), by evaluating the penetrabilities as
suggested by Bloch et al.38 and Willard et al.34 and solving for the value of $\frac{2}{\pi} \frac{\mu^2}{\alpha^2}$ at the resonance. From this, it is learned that the value of g for $\frac{I_n}{I_d} \approx 1$ is $g \approx 38$.

Determination of the $D_{3/2}$ Phase Shift

To determine the phase shift graphically above the deuteron + triton threshold for the different nuclear parameters the value of G must first be determined. Since G may be written using equations 16, 20 and 23 as:

$$G = \frac{1}{1 + \frac{\mu^2}{\alpha^2} \frac{P_d}{P_n}} = \frac{1}{1 + g \frac{P_d}{P_n}}$$

it is convenient to vary only the value g. The values of P_d may be determined from the tabulation by Block et al.38 or from plots of Coulomb functions by Sharp et al.39 The neutron penetrability, P_n, may be determined from the expression as given by Willard34. It should be noted that the relative angular momentum between the incident neutron and alpha particle is $J_L = 2$, and $J_L = 0$ between the triton and deuteron.

The values chosen for g, were: $g = 36$, because of Conner's success with this value; $g = 45$, because of Balashko's success with both the 5He and 5Li systems and because of Weitkamp's success for 5Li; and $g = 70$, due also to Weitkamp's11 success with the state in 5Li. The value of $g = 40$ was not selected because of the availability of Hoop's10 calculations for this value. The value of $g = 53$ was not chosen because it was consistent with only one set of data. The phase shifts were then graphically determined using the method as outlined...
in Chapter II. The paths of f_2 for the different parameters are shown in Figure IV.

For the ratio of $g = 70$, it was not possible to determine phase shifts above an incident neutron energy of $E = 22.16$ MeV using the above method. Above this energy, the experimental value of the reaction cross section was too large for a one level fit to the data. On the basis of existing data, it seems unlikely that other processes are contributing to the reaction cross section at this energy.

Below the deuteron + triton threshold, the partial scattering amplitude and in turn the phase shift were determined with the aid of equations 17, 18 and Figure III. In this energy range, the deuteron penetrability is zero. The deuteron shift function was determined from the Whittaker function as given by Lane and Thomas. To calculate β, particular values of γ_n^2 and γ_d^2 must be chosen. To correspond with previous investigators, values of γ_d^2 of 1.5, 2.0 and 3.0 MeV were chosen. The values of γ_n^2 were then chosen such that $\gamma_n^2 = \beta d^2 / g$, for the different values of g. The resonance energy was determined from the graphical determination of β above the deuteron + triton threshold. The quantity β was then calculated and plotted for each value of γ_d^2 and g. See Figures V, VI, VII. Due to the uncertainty in the graphical determination of β it was not possible to favor one value of γ_d^2 over another. Therefore, to be consistent with Weitkamp and Haerlien, $\gamma_d^2 = 1.5$ was used to determine the phase shift below the deuteron + triton threshold. See Table II for a tabulation of the phase shifts for the
different parameters.

Calculations of the Cross Sections

Equations 1, 2, 3, 12, 13 and 14 lend themselves quite readily to analysis with a high speed digital computer. Following the procedure of Westin, a program was written in Fortran II for an IBM 1620 computer to evaluate the measured quantities as expressed in the above equations. A listing of the program may be found in Appendix C. The values used for the other phase shifts were those published by Hoop and Barschall. For convenience, a tabulation of these values are included in Appendix A. Phase shifts for contributions from partial waves up through \(\lambda = 4 \) were considered. An interaction radius of \(r = 5.0 \times 10^{-13} \text{ cm.} \) was used to include all nuclear interactions and to agree with previous investigators. The results of these calculations were then compared with the experimental data.
Figure IV. Behavior of the $D_{3/2}$ partial scattering amplitude, f_2^-, in the complex plane as a function of energy for the values of $g = 36, 45$ and 70.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table II

D Phase Shifts

<table>
<thead>
<tr>
<th>Energy</th>
<th>(\tilde{\tau}_2)</th>
<th>(g = 36)</th>
<th>(g = 45)</th>
<th>(g = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.85</td>
<td>1.000</td>
<td>11.75</td>
<td>11.75</td>
<td>11.75</td>
</tr>
<tr>
<td>21.90</td>
<td>1.000</td>
<td>13.00</td>
<td>12.00</td>
<td>12.26</td>
</tr>
<tr>
<td>22.00</td>
<td>1.000</td>
<td>16.25</td>
<td>15.50</td>
<td>15.40</td>
</tr>
<tr>
<td>22.05</td>
<td>1.000</td>
<td>20.05</td>
<td>19.00</td>
<td>18.25</td>
</tr>
<tr>
<td>22.09</td>
<td>.995</td>
<td>25.00</td>
<td>24.93</td>
<td>22.00</td>
</tr>
<tr>
<td>22.10</td>
<td>.980</td>
<td>28.00</td>
<td>27.50</td>
<td>23.50</td>
</tr>
<tr>
<td>22.11</td>
<td>.945</td>
<td>30.50</td>
<td>32.75</td>
<td>26.00</td>
</tr>
<tr>
<td>22.12</td>
<td>.844</td>
<td>43.00</td>
<td>40.00</td>
<td>31.50</td>
</tr>
<tr>
<td>22.13</td>
<td>.695</td>
<td>51.50</td>
<td>47.00</td>
<td>36.50</td>
</tr>
<tr>
<td>22.14</td>
<td>.530</td>
<td>60.50</td>
<td>51.50</td>
<td>38.00</td>
</tr>
<tr>
<td>22.15</td>
<td>.355</td>
<td>69.50</td>
<td>55.00</td>
<td>36.25</td>
</tr>
<tr>
<td>22.16</td>
<td>.175</td>
<td>79.25</td>
<td>54.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>
Table II Cont.

$D_{3/2}$ Phase Shifts

<table>
<thead>
<tr>
<th>Energy</th>
<th>t_2</th>
<th>$g = 36$</th>
<th>$g = 45$</th>
<th>$g = 70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.17</td>
<td>.060</td>
<td>112.00</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>22.18</td>
<td>.100</td>
<td>145.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>22.19</td>
<td>.190</td>
<td>157.50</td>
<td>-2.50</td>
<td></td>
</tr>
<tr>
<td>22.20</td>
<td>.263</td>
<td>162.50</td>
<td>-3.50</td>
<td></td>
</tr>
<tr>
<td>22.23</td>
<td>.416</td>
<td>169.25</td>
<td>-2.50</td>
<td></td>
</tr>
<tr>
<td>22.26</td>
<td>.520</td>
<td>173.25</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>22.30</td>
<td>.615</td>
<td>177.00</td>
<td>-.01</td>
<td></td>
</tr>
<tr>
<td>22.35</td>
<td>.679</td>
<td>178.70</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>22.42</td>
<td>.700</td>
<td>179.68</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>22.45</td>
<td>.715</td>
<td>180.25</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>22.50</td>
<td>.732</td>
<td>181.25</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>22.60</td>
<td>.748</td>
<td>181.50</td>
<td>7.40</td>
<td></td>
</tr>
</tbody>
</table>
COMPARISONS OF THE CALCULATIONS WITH THE DATA

Total Scattering Cross Section

Figures VIII and IX show the comparison of the data to the calculated total cross section curves for the different values of g. The error bars represent a 3% statistical uncertainty. The data have been corrected for a 40 kev energy spread in the incident beam.

The curve corresponding to g = 40 is calculated from the phase shifts published by Hoop and Barschall ¹. The agreement is improved if there is a relative shift between the data and Hoop and Barschall's calculation of seven kilovolts. A shift of seven kilovolts is within the uncertainty of the data. Rather than shift the data down, the calculation of Hoop and Barschall ¹ was shifted up because no shift was necessary for the present calculation. This shift was performed for all of the following comparisons.

As was explained earlier, it was not possible using the experimental reaction cross section to determine phase shifts above 22.16 MeV for g = 70. Consequently, the total cross section for g = 70 is not plotted above this energy. The calculation for the ratio of g = 70 is not consistent with the data.

Comparing the calculated curves, it is found that varying the ratio of the reduced widths by 10%, has approximately a 2% effect in the maximum peak height. Consequently, the total scattering cross section is not unduly sensitive to small changes in the nuclear parameters.
Figures VIII and IX. The data represent total neutron-alpha scattering over the $D_3/2$ resonance. The data have been corrected for a 40 kev energy spread in the incident beam. The incident neutron energy is in the laboratory system. The energy is measured in MeV; the cross section is measured in millibarns.
TOTAL CROSS SECTION VS ENERGY

Figure VIII

--- $g = 45$

\times $g = 70$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TOTAL CROSS SECTION VS ENERGY

Figure IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Total Elastic Scattering Cross Section

Figures X and XI present the comparisons of the total elastic scattering cross section data to the calculations for the different parameters. The elastic scattering cross section was determined by subtracting the reaction cross section from the total cross section.

The ratios of $g = 36, 40, 45$ all provide reasonable fits with the data. The agreement for $g = 70$ is poor. Comparison of the calculated curves indicate that a change of approximately 10% produces a 2% change in the total elastic cross section at the peak of the resonance.

Differential Cross Section for Elastic Scattering as a Function of Energy

Data were available for the differential cross section as a function of energy at eight scattering angles. The data have been normalized to the calculations of Hoop and Barschall at 21.85 MeV. This normalization is consistent with that determined by comparing the differential cross section data, with the aid of a Legendre polynomial expansion, to the total elastic scattering cross section.

Comparisons have been made for all eight of these angles. The data for the angle of $\cos \theta = .350$ are felt to be uncertain for energies greater than 22.07 MeV incident neutron energy due to a possible error in the subtraction of the contribution from the
Figures X and IX. Total Elastic Scattering Cross Section as a function of Incident Neutron Energy. The data represent the subtraction of the He\(^4\) (n,d) T cross section from the total scattering cross section. The data have been corrected for a 40 kev energy spread in the incident beam. The error bars represent only the statistical uncertainty. The incident neutron energy is in the laboratory system. The energy is measured in MeV; the cross section is measured in millibarns.
TOTAL ELASTIC CROSS SECTION VS ENERGY

Figure XI

- - - - g = 36
- - - - g = 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TOTAL ELASTIC CROSS SECTION VS ENERGY

--- g = 45
---×--- g = 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The ^4He (n,d) T reaction. It was found that the experimental cross section at $\cos \theta = .350$ was not consistent with that obtained from the Legendre fit to the data at all angles. Since the Legendre fit must be consistent for all angles, one may conclude that the data for $\cos \theta = .350$ are in error. The cause of the discrepancy below an incident neutron energy of 22.1 MeV in the comparisons for $\cos \theta = .126$ and -.135 is not clear. It may be that too large of a correction was made for the background at these angles for energies less than the deuteron + triton threshold. Or, it may be that there is interference between the resonant and potential phases at the forward angles. It should also be noted that the Legendre fit is not consistent at these angles below the deuteron + triton threshold.

The curves corresponding to $g = 40$ were computed from the phase shifts published by Hoop and Barschall13. Comparisons for a ratio of $g = 70$ were not made since the phase shift could not be determined above 22.16 MeV.

Analysis of the curves indicates the ratio of $g = 45$ is favored over the ratios of $g = 36$ and $g = 40$. The ratio of $g = 36$ predicts a larger anomaly than the data indicate. It appears that this is a sensitive test, at the back scattering angles, of the value of g. A variation of 10% in the value of g produces a change from 1% to 10% in the peak height depending upon the scattering angle examined.
Figures XII-XIX. Differential Cross Section vs Incident Neutron Energy. The data are relative data normalized to the calculation of Hoop and Barschall at 21.85 MeV. The error bars represent a 10% error in the total background. The data have been corrected for a 70 kev energy spread in the incident beam. The incident neutron energy is in the laboratory. The energy is measured in MeV; the cross section is measured in millibarns.
Figure XII

Energy

Differential Cross Section vs Energy

Cos $\theta = .350$

- $g = 36$
- $g = 40$
- $g = 45$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DIFFERENTIAL CROSS SECTION VS ENERGY

Cos $\theta = .126$

- $g = 36$
- $g = 40$
- $g = 45$

Differential Cross Section

Energy

Figure XIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DIFFERENTIAL CROSS SECTION VS ENERGY

$\cos \theta = -0.135$

- - $g = 36$
- - $g = 40$
- - - $g = 45$

Energy

Figure XIV
Differential Cross Section vs Energy

\[\cos \theta = -0.324 \]

- $g = 36$
- $g = 40$
- $g = 45$

Figure XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DIFFERENTIAL CROSS SECTION VS ENERGY

Cos $\theta = -0.495$

- $g = 36$
- $g = 40$
- $g = 45$

Differential Cross Section

Energy

Figure XVI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DIFFERENTIAL CROSS SECTION VS ENERGY

Cos $\theta = -0.649$

--- $g = 36$
--- $g = 40$
--- $g = 45$

Figure XVII
Differential cross section vs energy

\[\cos \theta = -0.811 \]

$g = 36$

$g = 40$

$g = 45$

Figure XVIII
Differential Cross Section vs Energy

\[\cos \theta = -0.883 \]

- \(g = 36 \)
- \(g = 40 \)
- \(g = 45 \)

Energy

Figure XIX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Differential Elastic Scattering Cross Section

as a Function of θ at 22.15 MeV

Figure XX shows a comparison of the differential cross section as a function of $\cos \theta$ for incident neutron energy of 22.15 MeV. Here θ is the center-of-mass scattering angle. The data were relative data. The data were normalized in the same manner as described in the previous section. An analysis of the calculated curves indicates a change of approximately 10% in the value of g produces a maximum change in the differential cross section near $\cos \theta = -.65$ of 5%. At this energy the differential cross section is changing rapidly as a function of energy. If there is a slight shift in the energy scale, the sensitivity of this measurement could be exaggerated.

Examination reveals that the ratio of $g = 45$ produces an excellent fit to the data. The calculation for $g = 40$ produces a poor fit for angles near $\cos \theta = 0.$ and near $\cos \theta = -.6$. The ratios of $g = 36$ and $g = 70$ certainly do not exhibit good fits. For $g = 36$ the discrepancy is approximately 19% at $\cos \theta = -.6$. For $g = 70$ the discrepancy is approximately 21% at $\cos \theta = -.6$. It should also be noted that a shift in energy of more than $\pm .03$ MeV can not account for the discrepancy in agreement for the curves of $g = 36,$ 40 or 70. A shift of this magnitude exceeds the uncertainty in the energy scale by a factor of three.

A peak appears in the differential cross section data between values of $\cos \theta = .2$ and $\cos \theta = .45$ due to deuteron + triton
Figure XX. Differential Elastic Cross Section vs Cos θ at 22.15 MeV. The relative data were normalized to calculations of Hoop and Barshad10 at 22.85 MeV. The data have been corrected for a 70 keV energy spread in the incident beam. The error bars represent a possible 10% error in the total background. The error due to the angular resolution is less than the error bars. The angle, θ, is the center-of-mass scattering angle. The incident neutron energy is measured in the laboratory system. The energy is measured in MeV; the cross section is measured in millibarns.
DIFFERENTIAL CROSS SECTION VS $\cos^2 \theta$

Energy = 22.15 MeV

- - - $g = 36$
- - - $g = 40$
- - - $g = 45$
- - - $g = 70$

Figure XX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
reaction. Because of this large background, the data point in this region have a large uncertainty. It is believed that this uncertainty accounts for the data point at angles of $\cos \theta = .36$ and $\cos \theta = .38$ lying above the theoretical curve.

Polarization Zero Crossing Angle

Figure XXI presents a plot of zero polarization crossing angle as a function of incident neutron energy. The data point has not been corrected for all possible sources of error. The error bars given correspond to the possible zero-cross angle based on linear interpolation of relative asymmetries taken at ten degree intervals in the laboratory system. The uncertainty in the energy scale is not known. The point has not been corrected for an energy spread in the incident beam.

The zero-cross angle does not appear highly dependent upon the ratio of the reduced widths. To differentiate between the ratios, the measurement would need to be accurate to within 2% over the resonance.

The discrepancy between the calculation of Hoop and Barschall and the present calculations is due to Hoop and Barschall's choice of $\mathcal{J}^2_d = 2.0$ MeV as compared to $\mathcal{J}^2_d = 1.5$ MeV for the present analysis.
Figure XXI. Polarization Zero Cross Angle vs Energy. The angle θ is the center-of-mass angle of zero polarization. The incident neutron energy is in the laboratory system.
POLARIZATION ZERO-CROSS ANGLE VS ENERGY

--- $g = 36$
--- $g = 40$
--- $g = 45$
--- $g = 70$

Figure XXI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ANGLE OF ROTATION OF SPIN AND THE POLARIZATION

Angle of Rotation of Spin

Experimental data for the angle of rotation of spin over the resonance are also unavailable. Figures XXII and XXIII show a comparison of the calculated curves for the different values of g. The curves illustrated represent the angles at which the change over the resonance is maximum.

The discrepancy between the calculation of Hoop and Barschall\(^\text{10}\) and the present analysis below the threshold may be attributed to Hoop and Barschall's choice of $\gamma_d^2 = 2.0$ MeV as compared to $\gamma_d^2 = 1.5$ for the present analysis.

Examination of the Polarization

Figures XXIV and XXV present the polarization as a function of the incident neutron energy in the region of the anomaly. Unfortunately, experimental data are not available over the resonance. Data are available at 21.1 MeV and 23.1 MeV. These have previously been compared by Hoop and Barschall\(^\text{10}\).

The plots illustrated are for the angles which present the maximum change and maximum percentage change in the peak of the polarization. Comparison of the curves indicates that this is not a sensitive test for ratio of the nuclear parameters. A polarization experiment would need to be accurate to within 2\% over the resonance to differentiate which of the ratios, $g = 36, 40$ or 45 is favored.
Examination reveals that this measurement is not unduly sensitive to the different nuclear parameters. To differentiate which ratio is favored, measured data would need to have an uncertainty of less than 1% over the resonance.
Figure XXII. Angle of Rotation of Spin vs the Incident Neutron Energy. The angle β is in the center-of-mass system. The incident neutron energy is in the laboratory system.
Figure XXIII. Angle of Rotation of Spin vs the Incident Neutron Energy. The angle is in the center-of-mass system. The incident neutron energy is in the laboratory system.
Figures XXIV and XXV. Polarization vs Incident Neutron Energy. The incident neutron energy is in the laboratory system.
POLARIZATION VS ENERGY

Figure XXIV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
POLARIZATION Vs ENERGY

Cos $\theta = -.133$

--- $g = 36$
--- $g = 40$
--- $g = 45$
--- $g = 70$

Energy

Figure XXV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SUMMARY AND CONCLUSIONS

The results presented in the previous two chapters may be summarized as follows. The neutron alpha data for the total scattering cross section (Fig. VIII and IX), total elastic scattering cross section (Fig. X and XI) and differential elastic scattering cross section at 22.15 MeV neutron energy (Fig. XX) appear to exclude the value \(\gamma^2 / \gamma_n^2 = 70 \) for the 16.7 MeV level of \(^5\)He. The differential elastic scattering cross section data as a function of energy and as a function of angle (Fig. XII--XX) appear to exclude a value of \(\gamma = 36 \). The total scattering cross section and the total elastic scattering cross section data are in good agreement with the calculations for both \(\gamma = 40 \) and \(\gamma = 45 \). However, the differential cross section data favor the value of \(\gamma^2 / \gamma_n^2 = 45 \).

One might ask what further measurements might substantiate the value of \(\gamma = 45 \) for the 16.7 MeV level in \(^5\)He. The results of chapters 4 and 5 have bearing on what further measurements one might choose. These results indicate that measurements of the polarization and the angle of rotation of spin for neutron-alpha scattering are no more sensitive to the value of \(\gamma \) than the total cross section, the total elastic cross section or the differential elastic scattering cross section.

A value of \(\gamma = 45 \) supports the assumption that \(\gamma_n^2 / \gamma_d^2 < 1 \) at the resonance for the 16.7 MeV level in \(^5\)He. This is in agreement with the results of Hoop and Barschall.
A value of $g = 45$ for the 16.7 MeV level of ^5He is also consistent with the work of Balasko and Barit14 and with one of the values suggested by Weitkamp and Haeberli11 for the analogue level in ^5Li. Thus, if the value of g is indeed equal to 45 for the analogue state in ^5Li, then the results of the present work support the strong statement of charge symmetry.

However, present analyses are unable to confirm the value of $g = 45$ for the ^5Li system (See Table I). As pointed out by Weitkamp and Haeberli11, only one of three groups of $\text{d} (\text{He}^3, \text{p}) \text{He}^4$ reaction cross section data favors the value $\gamma^2 / \gamma_n^2 = 45$. The other two groups of data favor $g = 53^{11}$ and $g = 70^{11}$. Also, it does not appear possible to decide which value of g is correct, and thus which set of reaction data is correct on the basis of existing measurements of the polarization16,26 and the differential elastic cross section data15,25 for proton-alpha scattering. Clearly the parameters for ^5Li must be fixed before any firm conclusion may be drawn about the correctness of the strong statement of charge symmetry for the $^5\text{He}-^5\text{Li}$ system. Thus a precise measurement of the $\text{He}^3 (\text{d}, \text{p}) \text{He}^4$ reaction cross section is badly needed.
APPENDIX A

Neutron-Alpha Phase Shifts
and Inelastic Parameters

These phase shifts and inelastic parameters were published by Hoop and Barschall. Common spectroscopic notation is used i.e., S, P, D, F refer to the orbital angular momentum, $\lambda = 0, 1, 2, 3$ and 4 respectively, the subscript refers to total angular momentum $J = \lambda \pm 1/2$. The $D_{3/2}$ phase shift is consistent with a value of the reduced width such that $\gamma^2 = 2$ MeV and $g = 40$. The symbol E_n designates the incident neutron energy. Only the $D_{3/2}$ inelastic parameters are listed because the inelastic parameters for the other levels are unity over this energy range.

<table>
<thead>
<tr>
<th>E_n</th>
<th>$S_{1/2}$</th>
<th>$P_{1/2}$</th>
<th>$P_{3/2}$</th>
<th>$D_{3/2}$</th>
<th>$D_{5/2}$</th>
<th>$F_{5/2}$</th>
<th>$F_{7/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.6</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>10.0</td>
<td>1.00</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>21.85</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>11.75</td>
<td>1.00</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>21.90</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>15.0</td>
<td>1.00</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.0</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>19.0</td>
<td>1.00</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.05</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>24.0</td>
<td>1.00</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.09</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>32.0</td>
<td>.981</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.10</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>38.0</td>
<td>.919</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.11</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>44.0</td>
<td>.825</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.12</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>50.0</td>
<td>.70</td>
<td>10.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Phase Shifts and Inelastic Parameter Cont.

<table>
<thead>
<tr>
<th>E_n</th>
<th>$S_{1/2}$</th>
<th>$P_{1/2}$</th>
<th>$P_{3/2}$</th>
<th>$D_{3/2}$</th>
<th>$\gamma_{3/2}$</th>
<th>$D_{5/2}$</th>
<th>$F_{5/2}$</th>
<th>$F_{7/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>56.0</td>
<td>0.492</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.14</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>58.0</td>
<td>0.30</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.15</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>58.0</td>
<td>0.154</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.16</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>37.0</td>
<td>0.044</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.17</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-6.0</td>
<td>0.104</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.18</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-10.0</td>
<td>0.195</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.19</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-10.0</td>
<td>0.269</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.20</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-9.0</td>
<td>0.332</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.23</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-6.0</td>
<td>0.472</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.26</td>
<td>89.0</td>
<td>53.0</td>
<td>92.0</td>
<td>-5.0</td>
<td>0.561</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.30</td>
<td>88.0</td>
<td>53.0</td>
<td>91.0</td>
<td>-2.0</td>
<td>0.632</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.42</td>
<td>88.9</td>
<td>53.0</td>
<td>91.5</td>
<td>0.0</td>
<td>0.71</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>22.60</td>
<td>88.0</td>
<td>53.0</td>
<td>91.0</td>
<td>2.0</td>
<td>0.74</td>
<td>10.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
APPENDIX B

The Principal of Reciprocity

The cross section of an inverse reaction is given by Evans as:

\[\sigma (B \rightarrow A) = \frac{(2I_a + 1)(2I_b + 1)}{(2I_c + 1)(2I_d + 1)} \frac{p_a^2}{p_b^2} \sigma (A \rightarrow B) \]

where \(P_a \) is the momentum of the incident particle, \(P_{b} \) is the momentum of the lighter decay particle and \(I \) is the total angular momentum. Here, \(b \) designates the target particle; \(c \), the heavier of the product particles. And, \(\sigma (A \rightarrow B) \) is the cross section of the reaction going from \(A \) to \(B \) where \(A \) is the incident particle plus the target and \(B \) is the resulting nucleus plus the decay product.
APPENDIX C

Computer Program for the Cross Sections

The following computer program is written in Fortran II for a 1620 IBM computer. It will calculate and punch out a total cross section, a total elastic cross section, a reaction cross section and the differential cross section at a given laboratory energy of the incident particle, provided it is given; the phase shifts and inelastic parameters up to $\lambda = 4$; the rest masses of the incident and target particle; the laboratory energy; and the angles at which the differential cross sections are to be calculated. The calculations will be relativistically correct to a first order approximation.

The following is a listing and definition of the terms in the program:

- **SMALM**: Mass of the incident particle.
- **BIGM**: Mass of the target particle.
- **N**: Number angles at which the differential cross section is to be calculated.
- **TH(I)**: Scattering angle θ at which the differential cross section will be calculated.
- **ENERG**: Laboratory energy of the incident particle.
- **D(L)**: Phase shift.
- **G(L)**: Inelastic Parameter.
- **BLAM**: Reciprocal of the wave number squared.
- **S(I)**: Sine θ.
- **C(I)**: Cos θ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
P(I,L) Legendre Polynomial.

PP(I,L) Derivative of the Legendre Polynomial with respect to cos θ.

DRAD(L) Phase shift in radians.

SDPA(L) Sine of the phase shift.

CDPA(L) Cosine of the phase shift.

REG(I) Real part of the coherent amplitudes.

UNG(I) Imaginary part of the coherent amplitudes.

REH(I) Real part of the incoherent amplitudes.

UNH(I) Imaginary part of the incoherent amplitudes.

DSDO(I) Differential Cross Section.

POL(I) Polarization.

BETA Rotation Parameter.

CROSE Total Elastic Scattering Cross Section.

CROSI Inelastic Scattering Cross Section.

CROST Total Cross Section.

Below is a listing of the program followed by a sample set of data. The data must be arranged as shown in the sample.

The .1 card indicates to the machine that this is the end of the job. If one would want to read in a completely different set of parameters, different masses or different angles, then the .1 card should be replaced by a .5 card followed by the new parameters as illustrated below.
C N-ALPHA DATA ANALYSIS
PHYSICS DEPT.
DAVID GEORGE
DIMENSION TH(40), U(7), U(7), I9(40), C(40)
DIMENSION UNG(40), REN(40), U(40), DSO(40), PCL(40), ETA(40)
DIMENSION PX(40), PP(40), UREN(7), SUPA(7), COPA(7), REG(40)
DIMENSION BN(7), BS(7), B(7)
10 READ I, RALH, UOM, N
1 FORMAT(F10.6,F10.6,F12)
2 FORMAT(F10.3)
4 READ 40*,ENERG
40 FORMAT(F10.3)
IF (ENERG<1.0) 42,43,43
43 CONTINUE
3 READ 3,(C(L),O(L),L=1,J)
3 FORMAT(8F10.3)
C CALCULATE 1/K**2
4 WA=0.0
5 W=0.0037*(1-S+ALHN/D18H)**2
6 ALHN=0.0
7 BLHN=1.09*SHALN**2*(1+SHALN/D18H)**2/ENERG-WA
C CALCULATE LEGENDRE POLYNOMIALS
1 P(1)=2.01425746
2 DQ 4 D=1.0
3 TH(1)=TH(1)**2 PI/180.0
4 S(1)=SINF(TH(1))
C C(1)=COSF(TH(1))
1 P(1,1)=0.5
2 P(1,2)=0.5*C(1)
3 P(1,3)=C(1)
4 P(1,4)=1.0 C(1)**2-0.5
5 P(1,5)=1.5*C(1)**2 P(1,4)
6 P(1,6)=3.75*C(1)**3-2.25*C(1)
C

CALCULATE DERIVATIVES OF LEGENDRE POLYNOMIALS

PP(1,1)=0.0
PP(1,2)=0.5*S(1)
PP(1,3)=-PP(1,2)
PP(1,4)=1.5*S(1)*C(1)
PP(1,5)=-PP(1,4)
PP(1,6)=S(1)*(3.75*C(1)^2-0.75)
PP(1,7)=-PP(1,6)

45

TH(1)=TH(1)*180.0/PI

C

CALCULATE DIFFERENTIAL CROSSSECTION

DO 50 L=1,7

DRAU(L)=U(L)*PI/90.0

SUMP(L)=SINF(DRAU(L))

CUMP(L)=COSF(DRAU(L))

GR(L)=G(L)*SDMP(L)

GU(L)=G(L)*CUMP(L)-1.0

CONTINUE

DO 60 I=1,N

REG(I)=0.0

UNG(I)=0.0

REM(I)=0.0

UNH(I)=0.0

DO 60 L=1,7

REG(I)=REG(I)+P(I,L)*GR(L)

UNG(I)=UNG(I)-P(I,L)*GU(L)

REM(I)=REM(I)+PP(I,L)*GR(L)

UNH(I)=UNH(I)-PP(I,L)*GU(L)

DO 60 I=1,N

POL(I)=2.0*(REG(I)*UNG(I)-UNG(I)*REM(I))*WAM/USUM(I)

BETA(I)=ALAM*2.0*(KLC(I)+UNG(I)+UNH(I)+UNG(I)*UNH(I)*WAM/USUM(I))

RP(I)=BETA(I)*180.0/PI
CONTINUE

CALCULATE ELASTIC CROSSSECTION

DEFINE COEFFICIENTS

COT(1)=1.0
COT(2)=1.0
COT(3)=2.0
COT(4)=2.0
COT(5)=3.0
COT(6)=3.0
COT(7)=4.0
CROSE=0.0
CRUST=0.0

DO 60 L=1,7

CROSL = CROSE + COT(L)*(-1.0+G(L)) = 2.0*K/L(L)*PI*SLAM

CRUST = CRUST + COT(L)*(1.0-G(L))*PI*SLAM

CONTINUE

FORT.88,ENERG = +10.0,4H MLV

PUNCH 85,ENERG

PUNCH 67

FORT.88,CROST,CROSE,CROS1

FORT.89,CROST

PUNCH 91

FORT.91,CROS1,THETA,5X,13H,DIFF,CROSSCET,3X,6H

PUNCH 91
```
G 7X, 6H ROT PART
DO 92 I=1-IN
PUNCH 93, C(I), BSU(I), PUL(I), RP(I)
92 CONTINUE
GO TO 41
41 CONTINUE
IF(ENERG - .1) 100, 101, 100
100 GO TO 10
101 CONTINUE
PUNCH 925, SMALL, BIG, N
525 FORMAT (FL10.6, FL10.6, 12)
CALL EXIT
END
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>35.0</td>
<td>45.0</td>
<td>55.0</td>
<td>60.0</td>
<td>65.0</td>
<td>70.0</td>
<td>75.0</td>
<td>80.0</td>
</tr>
<tr>
<td>100.0</td>
<td>120.0</td>
<td>130.0</td>
<td>135.0</td>
<td>140.0</td>
<td>145.0</td>
<td>150.0</td>
<td>155.0</td>
</tr>
<tr>
<td>175.0</td>
<td>180.0</td>
<td>185.0</td>
<td>190.0</td>
<td>195.0</td>
<td>200.0</td>
<td>205.0</td>
<td>210.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>92.0</td>
<td>1.0</td>
<td>18.91</td>
<td>1.0</td>
</tr>
<tr>
<td>10.0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
```
BIBLIOGRAPHY


43. P. B. Perkins, (private communication) to J. G. Jenkin.