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In the age of Big Genomics Data, institutes such as the National Human Genome Research 

Institute (NHGRI),1000-Genomes project, and the international cancer sequencing consortium are 

faced with the challenge of sharing large volumes of data between internationally dispersed sample 

collectors, data analyzers, and researchers, a process that up until now has been plagued by 

unreliable transfers and slow connection speeds. These occur due to the inherent throughput 

bottlenecks of traditional transfer technologies. One suggested solution is using the cloud as an 

infrastructure to solve the store and analysis challenges. However, the transfer and share of the 

genomics datasets between biological laboratories and from/to the cloud represents an ongoing 

bottleneck because of the amount of data, as well as the limitations of the network bandwidth. 

Therefore, transfer challenges can be solved by either increasing the bandwidth or minimizing the 

data size during the transfer phase. 

One way to increase the efficiency of data transmission is to increase the bandwidth, which 

might not always be possible due to resource limitations. Another way to maximize channel 

capacity utilization is by decreasing the bits that need to be transmitted for a given dataset. 

Traditionally, transmission of big genomics datasets between two geographical locations is com- 

monly done using general-purpose protocols, such as hypertext transfer protocol (HTTP) and file 

transfer protocol (FTP). In this dissertation, a novel deep learning-based data minimization algo- 

rithm is presented and aims to:  1) minimize the datasets during transfer over the carrier channels; 

2) protect the data from the man-in-the-middle (MITM) and other attacks by changing the binary 



 

representation (codewords) several times for the same dataset. 

This innovative data minimization strategy exploits the alphabet limitation of DNA 

sequences and modifies the binary representation (codewords) of dataset characters by using deep 

learning-based random sampling that utilizes the convolutional neural network (CNN) and Fourier 

transform theory. This algorithm ensures transmission of big genomics datasets with minimal bits 

and latency, thereby lending to a more efficient and expedient process.  To evaluate this approach, 

extensive actual and simulated tests on various genomics datasets were conducted. Results indicate 

that the proposed data minimization algorithm is up to 99-fold faster and more secure than the 

current use of the HTTP data-encoding scheme and 96-fold faster than FTP on tested datasets. 
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CHAPTER 1

INTRODUCTION

1.1 Background

DNA sequencing is needed in the most critical areas such as criminal investigations,

genotyping and determination of disease-relevant genes or agents causing diseases, mutation anal-

ysis, screening of single nucleotide polymorphisms (SNPs), detection of chromosome abnormali-

ties [1], global determination of post-translational modification [2], and to identify disease- and/or

drug-associated genetic variants to advance precision medicine [3] [4]. Also, the use of the next-

generation sequencing (NGS) technologies such as whole-genome sequencing (WGS) and whole-

exome sequencing (WES), are significantly decrease the sequencing costs and enable the genomic

datasets to join to the big data club.

Currently, the major big data generators are Astronomy, YouTube, and Twitter and

are expected to demonstrate continued dramatic growth in the volume of data to be acquired.

For example, the Australian Square Kilometer Array Pathfinder (ASKAP) project currently ac-

quires 7.5 terabytes/second of sample image data, a rate projected to increase 100-fold to 750

terabytes/second (∼25 zettabytes per year) by 2025 [5] [6]. YouTube currently has 300 hours of

video being uploaded every minute, and this could expand to 1,000 - 1,700 hours per minute (1 - 2

exabytes of video data per year) by 2025 if we extrapolate from current trends.

Today, Twitter generates 500 million tweets/day, each about 3 kilobytes including

metadata. While this figure is beginning to plateau, a projected logarithmic growth rate would

suggest a 2.4-fold growth by 2025, to 1.2 billion tweets per day, 1.36 petabytes/year. A big data

generator will appear soon that will exceed 35 petabases per year [7]. For example, the cost of

sequencing genomes reduced by a factor of 1 million in less than 10 years to reach to a few hun-

dred dollars to sequence and map genomes faster than ever before. However, growing the genomic
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datasets brought challenges such as storing, handling, analyzing, visualizing, sharing, and trans-

ferring the genomic information generated by NGS technologies that need to be addressed. For

instance, sequencing a single whole genome generates more than 250 gigabytes of data since there

are over three billion base pairs (sites) on a human genome[8].

In fact, the growth rate of DNA sequencing over the last 10 years has generated a

massive amount of data to produce a double amount approximately every 7 months. According to

[9] to date, there are more than 2,500 high-throughput sequencing instruments distributed over 55

countries placed in about 1,000 sequencing centers.

The United States National Institutes of Health National Center for Biotechnology

Information (NIH/NCBI) maintains the most archived sequencing reads. For example, NIH/NCBI

currently maintains more than 3.6 petabases of sequence reads, distributed into approximately

32,000 microbial genomes, 5,000 animal and plant genomes, and 250,000 human genomes [10].

However, the current estimate of the global sequence reads is more than 35 petabases annually

[11].

The tentative expectation of DNA sequencing for the next 8 years (2025) is one zettabase

of annual sequencing and expanding to double per 7 months, as shown in Table 1.1 on page 10.

There two more estimates of DNA sequencing that are doubling every 12 months according to

Illumina’s estimate [10] and every 18 months based on Moore’s law. Also, biologists anticipate

they need to sequence the most known species of plants and animals that are comprised of ap-

proximately 1.2 million genomes [1]. American and Chinese researchers plan to sequence about

1 million genomes in the next few years [12] [13]. For all listed information, it is necessary to

prepare for the greatest challenge of big genomic datasets: data transfer. Recently, biologists as-

certained that the bottleneck in the advent of the big genomics revolution is an inability to share

and transfer large datasets in a timely manner. Therefore, some projects have begun to navigate

the possible solutions to access big data and share them with researchers worldwide. The possible

solutions are either to minimize the data volumes during the transfer over the networks or expand

the network bandwidth. For example, the Human Genome Project [14] and the HapMap project

2



Figure 1.1: The human genome
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[15] aim to facilitate sharing the sequence data and the more recent data-sharing structures for

genome-wide association studies (GWAS) [16], such as dbGaP [17] and the European Genotyping

Archive [18].

In addition, all of the large funding bodies now make data sharing a requirement of

support for all projects, including all hypothesis-driven projects, whose primary purpose is to focus

on a specific research question rather than to create data to be used by others. Implementing tools

and techniques for accessing high-quality genomic datasets accelerates studies of the biological

mechanisms of most diseases and the development of personalized treatments for individual pa-

tients. Individual researchers can no longer download and analyze the important datasets in their

scientific fields on their own computers. Therefore, a solution to address this issue is necessary.

The purpose of this study is to remove the bottleneck of big genomic data access by

implementing a novel data minimization algorithm to transfer data in a more expedient and secure

way and to allow scientists to easily share their data and analyses as shown in Figures 1.2 on page

5 and 1.3 on page 6. In addition, data minimization solutions would support basic research and

clinical trials by making data easily accessible, interoperable, and reusable.

1.2 Research Problem

Although low-cost, high-throughput instruments and cloud-based services have solved

big data generating and processing challenges to certain extents, they do not solve the data transfer

speed and security problems very efficiently when it comes to big genomic datasets. That is, trans-

ferring big data between two or more places (e.g. between two biology laboratories or between

lab-cloud-lab) still results in a bottleneck due to the use of traditional transfer protocols such as

HTTP [19] and FTP [20]. Recently, biologists ascertained that the bottleneck in the advent of

the big genomics revolution results in an inability to share and transfer large datasets in a timely

manner. Therefore, some projects have begun to navigate potential solutions to access big data

and share them with researchers worldwide. The possible solutions are either to minimize the data

volumes during the transfer over the networks [21] [22] or expand the network bandwidth [23]. For

4



Figure 1.2: Comparison between available solutions and this work solution

example, the Human Genome Project [14] and the HapMap project [15] aims to facilitate sharing

the sequence data and the more recent data-sharing structures for genome-wide association studies

(GWAS) [16], such as dbGaP [17] and the European Genotyping Archive [18]. In addition, all
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of the large grantors and other funding agencies now make data sharing a requirement of support

for all projects, including all hypothesis-driven projects, whose primary purpose is to focus on a

specific research question rather than to create data to be used by others. Implementing tools and

techniques for accessing high-quality genomic datasets accelerates studies of the biological mech-

anisms of most diseases and the development of personalized treatments for individual patients.

Individual researchers can no longer download and analyze the important datasets in their scien-

tific fields on their own computers, thereby creating an impasse in accessing critical information.

A solution to address this issue is necessary.

Figure 1.3: Genomic lifecycle

1.3 Purpose of the Study

We designed and implemented a novel data minimization algorithm to transfer big ge-

nomic datasets in a more expedient and secure way and to allow scientists to easily share their data

and analyses. We used the HTTP as a baseline protocol [24] to compare and assess our imple-

6



mentation results of transferring big genomic datasets. The goals of our new data minimization

algorithm are as follows: 1) reduce the size of data that need to be transferred between a server and

a client [25]; 2) secure and protect the privacy of the data from unauthorized access due to attacks

or data breach, such as MITM attack. Our heuristic model, simulation, and implementation results

proved that our data minimization algorithm reduces significant amounts of data and makes more

efficient use of network bandwidth, while also protecting the data by preventing unauthorized in-

dividuals from accessing them, should a breach occur. This dissertation represents an extension

of our previous research dissertations in [26],[27], and [28], in which we changed the character

codeword several times during transfer of a single dataset (file), a change that aims to minimize

data transfers, thus shortening the overall transfer time of the genomic dataset and increasing data

security. To the best of our knowledge, this is the first data minimization technique that reduces

and secures the datasets during data transfer via changing binary representations of data characters

many times for the same file. We show that our algorithm can provide remarkable improvements in

response and transfer time of genomic datasets, as well as prevent unauthorized individuals from

accessing the file contents in the event of a data breach: this occurs because we assign different

codewords to the same character of the dataset in different times and file parts based on data ob-

tained in running the convolutional neural network. We also illustrate the added benefit of using

the deep learning technique of random sampling to form a renewable content-encoding in different

times and file parts, an outcome that yields optimal results in terms of transfer data size, time,

and security. Our approach is compatible with all existing browser implementations and specifica-

tions, such as Google Chrome [29], Safari [30], Internet Explorer [31], etc. Therefore, the overall

benefit of this work is to increase opportunities for data sharing among researchers to advance the

dissemination of scientific knowledge.

1.4 Audience

The audience for this work is researchers (biologists), investigators, and clinicians as

shown in Figure 1.3 on page 6. Investigators use DNA sequencing to combat crimes by understand-
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ing finger printings and genetic clues in a crime scene: For example, the use of gel electrophoresis

to relate sperm DNA to potential suspects. Also, investigators utilize DNA sequencing to under-

stand ethnicity and ancestry by identifying ethnic characteristics of a certain country via specific

patterns or genes. Thus, investigators can fully understand the development of mankind and its

division throughout history. DNA sequencing also enables biologists and clinicians to investigate

various diseases and genetic illnesses. In addition, many mutations are initiated by faulty genetic

sequencing. Scientists can gain epidemiological data with multiple genomic candidates, and via

genomic sequencing (in clinical trials), can provide critical information in the evolution of medical

treatment.

1.5 Contribution

We create a new data minimization mechanism for big genomic datasets during real-

time data transfer using a deep learning-based algorithm, as illustrated in section 3.3.3 on page 48.

We assert that creating data minimization mechanisms to be equipped to transfer protocols such

as HTTP and FTP can solve big data transmission challenges, especially for big genomic datasets

in terms of transfer time and data security [32]. Our proposed data minimization mechanism for

the transfer protocols enables them to be smart protocols via using standard codewords for dataset

headers, while using our data minimization mechanism for the dataset body. We test our data min-

imization algorithm by using three different transfer protocols: HTTP, FTP and BitTorrent [33]

and by considering such variables as versatility, security and flexibility. These are commonly used

protocols that transfer different data types in a variety of browsers, such as Google Chrome. Also,

these protocols have certain security features in the transport layer because they run on top of

TCP [34]. These protocols are flexible because they are equipped with the ability to modify one

or more components, such as content-encoding schemes, compression algorithms, and message

headers. This dissertation is an extended version of our works published in [27][28]. We extend

this previous work by employing the convolutional neural network to update the encoding code-

words periodically and to ensure the assignment of the minimum binary representation to the most
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repetitive characters in the file.

1.6 Motivation

The revolution of the new technology solved the data generating challenges and re-

sulted in the creation of big datasets. The generated data led to other challenges such as data

storage, process, and share. Many efforts have been made to solve the challenges of big data stor-

age, and manipulation, including data analysis and visualization. However, the challenges of big

data sharing still constitute a major challenge that must be addressed and resolved. Also, design-

ing and implementing transfer protocols equipped with data minimization techniques that relied

on neural network techniques and that aimed to transfer big data in shorter times with added secu-

rity against attacks, did not garner the attention of many researchers. Healthcare instruments and

biology laboratories became big data generators that required singular methodologies in terms of

transfer time, accuracy, speed, and security. Big genomic datasets are part of the big data club

that require special handling from generating and processing to transferring between two or more

biology laboratories. Many solutions have been developed to address the challenges of big data

generating and analysis. However, transmission challenges have not been addressed at the same

level, mainly due to compatibility issues. As a result, scientists are motivated to navigate and dis-

cover new mechanisms to transfer big genomic datasets more efficiently in terms of transfer time

and security. Current content-encoding algorithms for transfer protocols use the standard encoding

scheme [35], which increases the size and the transfer time, and which are not suitable for use with

big genomic datasets. Observing these limitations, we take advantage of the nature of the genomic

dataset alphabet to reduce the size of data being transferred. The genomic alphabet consists of

only four characters; therefore, this alphabet yields a great reduction in data size and transfer time

if encoded in smart ways such as using deep learning techniques during real-time data transfer.

The term alphabet is defined as a symbol or group of symbols that can take different forms, such

as alphabet of 2 symbols (bits) 0 and 1, of the 128 or 256 ASCII characters (8-bit), or any other

characters.
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Table 1.1: Four domains of big data in 2025

Data Lifecycle
Big Data Main Domains

Astronomy Twitter YouTube Genomics

Acquisition 25 zetta bytes/year 0.5 -15 billion tweets/year 500 - 900 million hours/year 1 zetta bases/year

Storage 1 EB/year 1 - 17 PB/year 1 - 2 EB/year 2 - 40 EB/year

Analysis In situ data reduction Topic and sentiment mining Limited requirements Heterogeneous data and analysis

Real-time processing Metadata analysis Variant calling, 2 trillion central

processing unit (CPU) hours

Massive volumes All pairs genome alignments

10,000 trillion CPU hours

Distribution Dedicated lines from antennae Small units of distribution Major component of modern Many small (10 MB/s) and fewer

to server (600 TB/s) users bandwidth (10 MB/s) massive (10 TB/s) data movement

1.7 Dissertation Goals and Organization

The purpose of this dissertation is to develop and implement transfer protocols equipped

with a novel data minimization algorithm for big genomic datasets that aim to share the data in less

time and with more security. Moreover, these protocols will introduce a generic concept that can

be modified to transfer securely minimum datasets that have limited symbols by using CNN-based

algorithm content-encoding schemes. The implications of this dissertation are outlined as follows:

• Summarizes the standard and common use of content-encoding schemes that are currently

employed in transfer protocols and their relevant standards to provide researchers with quick

fundamentals, without having to search through the details presented in the standards’ spec-

ifications.

• Provides an overview of some of the big genomic data challenges in terms of transmission

and transfer time.

• Explores the relationship between big data and binary representation methods involving var-

ious binary encoding mechanisms.

• Presents the need for better transfer protocols equipped with data minimization algorithms to

transfer datasets securely in shorter times, especially genomic datasets, and then to provide

better services for big data demands.
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• Implements, tests, and evaluates the proposed data minimization algorithm of transfer pro-

tocols in terms of transfer size, time, and security.

The remainder of this dissertation is organized as follows: Chapter 2 provides a literature review

and summary of the related works that are used as a baseline for our implementations. Chapter

3 presents the first finding that is a deep learning-based data minimization algorithm for fast and

secure transfer of big genomic datasets. Chapter 4 discusses the second finding that is a Fourier-

based data minimization algorithm for fast and secure transfer of big genomic datasets, and the

third and fourth findings which are variable-length and naive bit-based data minimization algorithm

for fast and secure transfer of big genomic datasets in Chapter 5. Chapter 6 presents the fifth finding

that is a new cryptography algorithm to protect cloud-based healthcare services presented. Finally,

our conclusion is presented in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

2.1 Work Related to Data Encoding Schemes

2.1.1 A Review of Related Network Transfer Protocols

Many protocols have been implemented to transfer different data volumes, such as

HTTP and FTP, but these protocols operate in a data-oblivious manner. HTTP is a request/response

protocol that resides in the first layer of the Open Systems Interconnection (OSI) conceptual model

(application) and transfers data among web applications i.e. client(s)-server [36], as shown in

Figure 2.1 on page 13.

HTTP communicates by sending a request from the client (requestor) to the server,

followed by a response from the server to the client. Requests and responses are present in a

simple ASCII format (8 bits). HTTP requests contain many elements: a method such as GET,

PUT, POST and a uniform resource locater (URL). Also, HTTP requests include message headers

and content-encoding, along with all data needed by the client. The server handles the request,

and then responds according to the specified method. After that, the server sends a response to the

client, including the status code, indicating if the request succeeded or failed and the reason why.

FTP is an application layer protocol of TCP/IP model that works on top of TCP and

that transfers files between two machines only: i.e. client-server or machine-to-machine. FTP

communicates by sending a request from the client to the server, along with a valid username

and password. FTP needs two connection lines: one for commands called control connection

and another one for data transfer called data connection. In FTP, data are encoded and can be

compressed (optional) during the transfer phase, using a deflate compression algorithm via MODE

Z command [37]. There are multiple binary codes available for FTP, such as a 7-bit, 8-bit, and

9-bit representation, which is considered to be problematic.
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Figure 2.1: Open systems interconnection (OSI) conceptual model

We implement our content-encoding method for HTTP for the flexibility and security

considerations that exist in HTTP, but not in FTP. Some of those flexibility considerations presented

are needed to establish two consistent connections: command-line protocol (not friendly interface),

and file size issue i.e. large file [38]. One of the major security concerns is the use of clear and

unencrypted text, factors which make FTP easy to attack [39]. Two connections require more

bandwidth, and that increases the cost, making it impractical. Also, if a disconnection happens for

any reason during data transferring, there is a need to retransmit the whole file again [40]. HTTP-

based protocol does not suffer from these drawbacks. This chapter introduces an adaptive binary

encoding to speed up data transmission over HTTP.
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2.1.2 A Review of Data Encoding Schemes

To the best of our knowledge, this work is the first network-based data minimization

solution for big genomic datasets that utilizes data-encoding as a mechanism. GeneTorrent [41] is

a file transfer protocol which uses the BitTorrent [42] technique to transfer genomic datasets, and

which was originally designed to support distributed peer-to-peer (P2P) file transfer applications.

In other words, GeneTorrent distributes the same file(s) on different machines settled in different

locations and configures those machines to transfer certain part(s) of that file(s) to a requester.

Although higher throughput can be achieved by using multiple machines for transferring data, the

underlying data are still transferred using general-purpose protocols. This protocol is no longer

in use, and there is a need to create a data-aware network transfer protocol for the DNA genomic

datasets that use minimum resources of the network to deliver data efficiently.

The possible network solutions to transfer big genomic datasets expediently are listed

as follows:

1. Enhance bandwidth utilization by developing new solutions and techniques for:

• Flow Control [43]: An operation that balances the rate at which bits are generated by

the sender with the rate at which bits are received by the receiver. This matches the

speed of a sender with the capabilities of a receiver.

• Congestion Control [44]: An operation that regulates the rate at which senders generate

traffic in order to avoid the over-utilization of the resources available within network.

This prevents network congestion which if pronounced, could lead to a network col-

lapse.

2. Maximize the bandwidth by expanding the network in terms of physical (hardware) re-

sources as such internet2 project[45] that provides high speed internet connection.

3. Minimize the datasets that can be achieved by developing new techniques and solutions for:
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• Encoding schemes that deal with character codewords or binary representations, the

focus and scope of this dissertation.

• Compression techniques that are out of this work scope. However, we list briefly the

three different lossless compression algorithms: compress [46], deflate [47], and GZIP

that can be used for HTTP as a preprocessing operation that requires additional time and

continued research. Also, it would be worthy to mention here that there are some ef-

ficient compression algorithms that provide higher compression ratios, such as BZIP2

[48] and MFCompress, and that are genomic-specific compared to those that can be

used in HTTP as preprocessing functions. However, the higher compression ratio algo-

rithm is not the best choice when considering the compression time and security aspects

of browsers. This tradeoff between compression ratio and compression time requires

additional attention when dealing with time-sensitive applications, as shown later in

the results. Also, some compression algorithms might suffer from security issues, such

as intermediate proxies of the Chromium browser, which corrupts the data when trying

to use BZIP2. Therefore, we introduce a new content-encoding that works best for

all browsers, without adding more time or affecting security, such as those attached to

compression algorithms. This work utilizes GZIP and MFCompress as benchmarks to

compare with our encoding scheme over HTTP.

We can summarize some differences between the two data minimization techniques: encoding and

compression, and then discuss why we decided to utilize data-encoding as a core of this work.

These explanations are as follows:

1. Compression techniques cannot be implemented on the network during transfer phase, work

in static environments such as workstations, PCs, and any non-transferable environments,

which need network solutions.

2. Compression algorithms provide better performances in terms of data minimization but re-

quire longer time due to computation costs, which we want to avoid.
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3. Compression algorithms use the same codeword for the entire dataset characters rather than

all datasets, while we are able to change characters’ codewords several times for each dataset

to add extra security level via a proposed data-encoding scheme.

4. Not all compression techniques supported by network browsers such as Firefox, Edge, Sa-

fari, and etc.

5. Finally, the data-encoding techniques can provide similar performances to compression tech-

niques in shorter transfer times and in more secure ways.

We put forward a novel network-based data minimization solution using CNN to transfer big ge-

nomic datasets expediently and securely, thereby enabling more scientists to share and analyze

datasets.

2.1.3 Data-Encoding Approaches

Data minimization can be divided into two main forms: data encoding and data com-

pression. Data minimization using data encoding assigns the lowest possible bits to each alphabet’s

symbol using content-encoding schemes without complex computations, whereas the data mini-

mization using data compression assigns the lowest possible bits to the entire dataset: this process

involves complex computations and an extended period of time to compress and decompress oper-

ations. In general, binary representation can be divided into two categories: Fixed-Length Binary

Encoding (FLBE) and Variable-Length Binary Encoding (VLBE). FLBE scheme, also called sin-

gular encoding, converts symbols into a fixed number of output bits, such as in an ASCII code

which consists of an 8-bit long for each codeword [49]. Variable-length binary encoding (VLBE),

also referred to as a uniquely decodable and non-singular code, converts symbols into variable-

length codewords, such that λi 6= λj for all i and j [50]. However, the scope of this dissertation is

data minimization using data-encoding techniques that are divided into five main mechanisms as

follows:
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2.1.4 Naive Bit Encoding

This approach works by assigning fixed-length codeword/binary representation to each

alphabet symbol in a way that represents more than a single symbol in a single byte, such as 2-bit

length to genomic symbols [51] and [52], as shown in Figure 2.2-(a) on page 18.

2.1.5 Dictionary-based/Substitutional Encoding

This approach stores different patterns of the input symbols in a dictionary or a database,

along with their codewords, and then replaces the new input parts with predefined portions [53]

and [54], such as in 1977-78 Ziv and Lempel (LZ-77) [55] and [56], as shown in Figure 2.2-(b)

on page 18. LZ-77 algorithm works by replacing the repeated occurrences of symbols with their

references that indicate length and location of that string, which occurred before, and which can

be presented in the tuple (offset, length, symbol).

2.1.6 Statistical/Entropy Encoding

This approach works by statistics, prediction, and a probabilistic model from the input

[57] and [58], such as Huffman’s coding [55] and [59], as shown in Figure 2.2-(c) on page 18.

Huffman’s coding, introduced in 1952, is a statistical method that assigns a fixed-length code-

word/binary representation to alphabet symbols, such as 2-bit, 3-bit, 8-bit, etc. The codewords

will have different lengths, and the lowest frequency symbols will be assigned with the longest

codewords and vice versa. This research utilizes this type of encoding with CNN deep learning

algorithm to ensure the assignment of the lowest possible codewords to the more frequent dataset

characters, and to undertake this process several times during the data transfer phase.

2.1.7 Referential/Reference-based Encoding

This approach is similar to a dictionary-based technique, except that it uses the pointer

to the internal and external references, as shown in Figure 2.2-(d) on page 18.
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(a) Naive bit-based encoding (b) Dictionary-based encoding

(c) Statistical-based encoding (d) Reference-based encoding

Figure 2.2: Data-encoding methods

2.1.8 Hybrid Encoding

This approach works by combining two or more encoding methods. For example,

The Burrows-Wheeler transform (BWT) [60][55] and [61], is one of the hybrid encoding meth-

ods, especially popular in bioinformatics, used for data minimization. The BWT method works by

permuting the input sequence in a way that symbols are grouped by their neighborhood. Our pro-

posed data minimization algorithm can be classified as a hybrid encoding method by incorporating

elements of the standard (8-bit) and the statistical encoding methods (variation of 1 - 3 bits.

18



Figure 2.3: The FASTA format components
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2.2 Work Related to Data Encryption Methods

The security of personal health data is a critical issue when these data are transferred

on wireless channels to end users such as doctors, nurses, family members, or other authorized

individuals. The data are exchanged wirelessly where cables cannot be used, so all nodes can re-

ceive data if they are within range. If the network is not secure, an adversary could read, modify,

and inject messages into the network. Such incorrect information, even when not for nefarious

reasons, can lead to serious consequences for patients and potentially compromise their safe treat-

ment. Current data encryption methods are not suitable for the cloud-based services such as remote

healthcare monitoring due to using heterogeneous devices that use a variety of transfer protocols

that belong to different vendors. Observing these facts, we take advantage of the nature of the ge-

nomic encryption and the deterministic Chaos Theory to implement a more efficient cryptography

algorithm to secure remote healthcare monitoring.

When connecting the Wireless Sensor Network (WSN) to the Internet, the location of

these sensor nodes would not be an important issue for intruders wherein they can attack the WSN

from anywhere. Consequently, a powerful security mechanism should be designed with awareness

of the resource constraints of the WSN. Most of the security protocols designed for WSN cannot

be applied directly in the Wearable Wireless Body Area Network (WWBASN), since these nodes

have limited resources in the power, computation processing, and communication. A powerful

method of data encryption is the one-time-pad algorithm [62], where each single piece of data is

encrypted individually with a unique key. The disadvantage of this method is that it requires a

vast number of keys; a Pseudo Random Number Generator (PRNG) could be used to generate the

required keys, but it is problematic in terms of the key repetition. To eliminate the problem of

repetition, the application of Chaos Theory to generate these keys represents a solid approach. The

security algorithm of these networks must maintain the resource limitations of the sensor nodes and

at the same time provide high security. The new generation of security mechanisms is genomics

encryption due to its randomness and complexity.
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The security algorithm of these networks must maintain the resource limitations of

the sensor nodes and at the same time provide high security. As a method of authentication,

Wang et al., [63] used a wavelet domain Hidden Markov Model. In addition, information from the

ElectroCardioGraphy (ECG) signal is used as a biometric key. Venkatasubramanian et al., [64] had

proposed a Physiological Signal-based Key Agreement (PSKA) which shares the cryptographic

key using physiological signals obtained from the patient. Liu et al., [65] had proposed a simulation

of a chaotic block cipher used for wireless sensor networks through which results were compared

with RC5 and RC6 block ciphers. An improvement of a Message Authentication Code (MAC)

algorithm was proposed using chaos and XOR encryption [66]. The advanced MAC generator

has been divided into a sub key generator and the MAC structure. Genomic-based cryptography

emerged as a new cryptographic field, in which nucleotide is used as an information carrier, and

modern biological technology is used as an implementation tool. Adleman et al., [67] had solved

Hamiltonian Path Problems (HPP) by using nucleotide computing, with its inherent advantages,

such as vast parallelism and extraordinary information density. Zhang et al., [68] had designed

a genomics and chaos map to encrypt images. Karakose and Cigdem [69] had introduced a new

approach to the genomics computing algorithm aims to perform genomics computing with adaptive

parameters by using Quantum-behaved Particle Swarm Optimization (QPSO). Mokhtar et al., [70]

had designed an RGB image encryption algorithm using DNA encoding and a chaos map.

In 2015, UbaidurRahman et al., [71] had designed a DNA-based encryption and de-

cryption algorithm such that it overcame the limitation of the genomics-based cryptography al-

gorithm and incorporated modular arithmetic cryptography at some steps. Also, in 2015 Gritti

et al., [72] had designed a system that realizes complex access control on encrypted data, where

the attributes used to describe a user’s credentials will determine a policy as to which recipient

will be able to decrypt the provided cipher text. Moosavi et al., [73] developed a secure authen-

tication and authorization for patient security and privacy medical data for the Internet of Things

(IoT)-based healthcare monitoring system. Farash et al., [74] proposed an improvement to the

User Authentication and Key Agreement Scheme (UAKAS) for Heterogeneous WSN (HWSN)
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by improving the security level and enabling the HWSN to dynamically grow, without influencing

any part involved in the UAKAS.
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CHAPTER 3

A DEEP LEARNING-BASED DATA MINIMIZATION ALGORITHM FOR FAST AND 

In the age of Big Genomics Data, institutions such as the National Human Genome

Research Institute (NHGRI) are faced with the challenge of sharing large volumes of data between

internationally dispersed sample collectors, data analyzers, and researchers, a process that up until

now has been plagued by unreliable transfers and slow connection speeds. These occur due to

the inherent throughput bottlenecks of traditional transfer technologies. Two factors that affect

the efficiency of data transmission are the channel bandwidth and the amount of data. One way to

increase the efficiency of data transmission is to increase the bandwidth, which might not always be

possible due to resource limitations. Another way to maximize channel utilization is by decreasing

the bits that need to be transmitted for a given dataset.

Traditionally, transmission of big genomic data between two geographical locations

is commonly done using general-purpose protocols, such as hypertext transfer protocol (HTTP)

and file transfer protocol (FTP) secure. In this chapter, we present a novel machine learning-

based data minimization algorithm that aims to: 1) minimize the datasets during transfer over the

carrier channels; 2) protect the data from the man-in-the-middle (MITM) attack and other attacks

by changing the binary representation (content-encoding) several times for the same dataset. In

other words, assigning different codewords to the same character in different parts of the dataset.

Our data minimization strategy exploits the alphabet limitation of DNA sequences and modifies

the binary representation (codeword) of dataset characters using machine learning-based random

sampling and convolutional neural network (CNN) techniques to assure that the minimum code

word uses to the high frequency characters at different time slots of the transfer time.

This algorithm ensures transmission of big genomic DNA datasets with minimal bits

and latency, thereby leading to a more efficient and expedient process. To evaluate our approach,
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we conducted extensive tests on various genomic datasets (actual and simulated). Our heuris-

tic model, simulation, and real implementation results indicate that the proposed data minimiza-

tion algorithm is up to 99 times faster and more secure than the currently used content-encoding

scheme used in HTTP of the HTTP content-encoding scheme and 96 times faster than FTP on

tested datasets. The developed protocol in C# will be available to the wider genomics community

and domain scientists.

3.1 Introduction

High-throughput DNA sequencing instruments, such as next-generation sequencing

(NGS) machines, have dropped sequencing prices significantly [75]. Those instruments became

big data generators, not only for big biology centers, but also for small biology laboratories and re-

searchers, as shown in Figure 3.1. Biology laboratories, even without NGS, are accessing terabytes

of DNA sequences from public genomic repositories [76]. Although low-cost high-throughput in-

struments and cloud-based services have solved big data generating and processing challenges to

some extent, they do not solve the data transfer speed and security problems very efficiently when

it comes to big genomic datasets. That is, transferring big data between two or more places (e.g.

between two biology laboratories or between lab-cloud-lab) still results in a bottleneck due to the

use of traditional transfer protocols such as HTTP [19] and FTP [37]. Moreover, current data trans-

fer protocols do not consider data minimization, multiple modifications to the character codewords

for the same dataset to increase security, and fully utilize available bandwidth. This is partially due

to not considering the data type, scope, and encoding schemes that cause unpredictable and slow

transfers.

The current transfer protocols, such as HTTP or FTP content-encoding, use between

an 8-16 bits long codeword for each alphabet character. Improving big data transfer performance

can be accomplished via three main techniques: data parallelism; [77] [78], increase of bandwidth;

[23]; and data minimization [21] [22]. In addition, considering the protocols available to transfer
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data, including big data, such as HTTP and FTP.

We designed and implemented a new content-encoding for big genomic data transfer

that aims to minimize and secure the datasets during data transfer. We used the standard HTTP

content-encoding scheme as a baseline protocol [24] to compare and assess our implementation

results of transferring big genomic datasets. The goals of our new data minimization algorithm

are as follows: 1) reduce the size of data that need to be transferred between a server and a client

[25]; 2) secure and protect the privacy of the data from unauthorized access due to attacks or data

breach, such as MITM attack. Our heuristic model, simulation, and implementation results proved

that our data minimization algorithm reduces significant amounts of data and makes more efficient

use of network bandwidth while protecting the data by preventing unauthorized individuals from

accessing them, should a breach occur.

This chapter represents an extension of our previous published research papers in [26],

[79], and [28], in which we changed the character codeword several times during transfer of a single

dataset (file), a change that aims to minimize data transfers, thus shortening the overall transfer

time of the genomic dataset and increasing data security. To the best of our knowledge, this is the

first data minimization technique that aims to reduce and secure the datasets during data transfer

via changing binary representations of data characters many times for the same file. We showed

that our algorithm can provide remarkable improvements in response and transfer time of genomic

datasets, as well as prevents unauthorized individuals from accessing the file contents in case of

a data breach: this occurs because we assigned different codewords to the same character of the

dataset in different times and file parts based on data obtained of running the convolutional neural

network. We also illustrate the added benefit of using the machine learning technique of random

sampling to form a renewable content-encoding in different times and file parts, an outcome that

yields optimal results in terms of transfer data size, time, and security. Our approach is compatible

with all existing browser implementations and specifications, such as Google Chrome [29], Safari

[30], Internet Explorer [31], etc.
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Single Unit of all DNA
(A - C - G - T) - 1 bp

Average Length of exon
sequences for one protein-
coding gene - (1100 bp)

Approximate total length of
all exons of protein-coding
genes in the human genome

(20000 genes - 22000000 bp)

Approximate total length
of all coding and non-
coding DNA in haploid

genome (3000000000 bp)

Approximate length of diploid
human genome. That is
all DNA within a single

nucleus (6000000000 bp)

Approximate number of
bp generated in a shot-

gun sequence using Next
Generation Sequencing
methods assuming 30x

coverage (180000000000 bp)

Approximate number of bp
that would be generated by
sequencing diploid genomes

for all 7 billion people on earth
today (1250000000000 bp)

Figure 3.1: The estimate digitalization of the world’s population genomes on June 2016 [80] in a
binary form

3.1.1 Contribution

Creating a new data minimization mechanism for big genomic datasets during real-

time data transfer using a machine learning-based random sampling technique, as illustrated in

section 3.3.3 on page 48. We assert that creating data minimization mechanisms to be equipped

to transfer protocols such as HTTP and FTP can solve big data transmission challenges, especially

for big genomic datasets in terms of transfer time and data security [32]. Our proposed data

minimization mechanism for the transfer protocols enables them to be smart protocols via using

standard codewords for dataset headers, while using our data minimization mechanism for the

dataset body. We test our data minimization algorithm using three different transfer protocols that
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are HTTP, FTP and BitTorrent [33] for several considerations, such as versatility, security and

flexibility. These are commonly used protocols that transfer different data types in a variety of

browsers, such as Google Chrome. Also, these protocols have some kind of security features in the

transport layer because they run on top of TCP [34]. These protocols are flexible because they are

equipped with the ability to modify one or more components, such as content-encoding schemes,

compression algorithms, and message headers.

This chapter is an extended version of our works published in data [79] and [28]. We

extend this previous work by employing the convolutional neural network to update the encod-

ing codewords periodically that ensures assigning the minimum binary representation to the most

repetitive characters in the file.

3.1.2 Motivation

The revolution of the new technology nowadays solved the data generating challenges,

result big datasets. The generated data assisted in forming other challenges such data store, pro-

cess, and share. Many efforts have been made aiming to solve the big data store and manipulate

challenges, including data analysis and visualization. However, the challenges of big data sharing

still a major challenge that need to be addressed and solved. Also, designing and implementing

transfer protocols equipped with data minimization techniques that relies on neural network tech-

niques and aim to transfer the big data in shorter times and more security against attacks, did not

bring attention of many researchers yet.

Healthcare instruments and biology laboratories became one of the big data generators

that need to be treated in unusual ways in terms of transfer time, accuracy, speed, and security. Big

genomic datasets are part of big data club that require special handle from generating and process-

ing to transferring between two or more biology laboratories. Many solutions have been developed

for challenges of big data generating and analysis. However, transmission challenges have not been

tackled at the same level, mainly due to compatibility issues. As a result, scientists are motivated

to navigate and find new mechanisms to transfer big genomic datasets more efficiently in terms of
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transfer time and security.

Current transfer protocols’ content-encoding algorithms use the standard encoding

scheme [35], which add extra size and transfer time, and which are not suitable for use to big

genomic datasets. Observing these limitations, we take advantage of the nature of genomic dataset

alphabet to reduce the size of data being transferred. The genomic alphabet consists of only four

characters, therefore thais alphabet can yield a great reduction in data size and transfer time, if

encoded in smart ways like using deep learning techniques during the real-time data transferring.

The term alphabet is defined as a symbol or group of symbols that can take different forms, such

as alphabet of 2 symbols (bits) 0 and 1, of the 128 or 256 ASCII characters (8-bit), or any other

characters.

3.1.3 Chapter Goals and Organization

The purpose of this chapter is to develop and implement transfer protocols equipped

with a novel data minimization algorithm for big genomic datasets aiming to share the data in

reduced time and with more security. Moreover, it will introduce a generic concept that can

be modified to transfer securely minimum datasets that have limited symbols by using machine

learning-based random sampling content-encoding schemes. The contributions of this chapter are

outlined as follows:

• Summarizes the standard and common use content-encoding schemes that are currently em-

ployed in transfer protocols and their relevant standards to provide researchers with quick

fundamentals, without having to search through the details presented in the standards’ spec-

ifications.

• Provides an overview of some of the big genomic data challenges in terms of transmission

and transfer time.

• Explores the relationship between big data and binary representation methods involving var-

ious binary encoding mechanisms.
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• Presents the need for better transfer protocols equipped with data minimization algorithms to

transfer datasets securely in shorter times, especially genomic datasets, and then to provide

better services for big data demands.

• Implement, test, and evaluate the proposed data minimization algorithm of transfer protocols

in terms of transfer size, time, and security.

The remainder of this chapter is organized as follows: Section 3.2 presents preliminaries of this

work. Section 3.3 discusses the overall architecture of the proposed data minimization algorithm,

simulation, and heuristic model’s description. Section 3.4 presents the experimental results of the

proposed data minimization mechanism including discusses the three transfer protocols behaviors

using the standard and the proposed content-encoding schemes with/out two selected compres-

sion algorithms: (GZIP [81] and MFCompress [82]) Finally, future work and our conclusions are

presented in Section 3.5.

3.2 Preliminaries

Development and implementation of a content-encoding scheme that forms a data-

aware protocol derived from HTTP for transferring big genomic datasets, requires an understand-

ing of genomic DNA sets and content-encoding schemes. The next subsections provide a brief de-

scription regarding the fundamentals of genomic DNA components and the current use of content-

encoding in HTTP.

3.2.1 Genomic DNA

The DNA of any organism is made up of millions of nucleotides monomer building

blocks that are joined together to form extremely long polymers. The nucleotides comprise four

basic types, abbreviated as follows: A, T, C & G. These nucleotide monomers are joined together

in very specific ways to form genes that encode the information required to produce the cells,

tissues and organs of an organism. Some of the most important strings of nucleotides are those that
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together encode the information required to produce proteins, which are the machines of the cells.

The average length of the protein coding portion of a gene in humans is 1,100 nucleotides.

In the human genome, it is estimated that there are approximately 20,000 protein cod-

ing genes. A rough estimate of the total number of nucleotides of the human genome devoted

to encoding for all of the protein machinery required for life is 30 million nucleotides. Abun-

dant additional nucleotides make up the rest of the genome of a human and some of these encode

important functional molecules such as various types of RNAs), while the rest are considered non-

coding. Altogether, the approximate number of nucleotides making up the 23 chromosomes of the

haploid human genome is 3.3 billion nucleotides. Thus, for the entire diploid human genome of

46 chromosomes are 6.6 billion nucleotides. These estimates exclude the mitochondrial genome

since it is very small by comparison. In the future, when all human genomes may be sequenced, a

large amount of data will be generated and will require efficient management.

Next Generation Sequencing techniques often result in an average coverage of each

nucleotide of 30x. Therefore, approximately 180 billion nucleotides of data are obtained every

time a human genome is sequenced using existing technologies. If we then scale this estimate up

for the entire human population, we project that approximately 1,250 billion nucleotides of data

would be generated. By doing simple calculations to estimate how much we need to digitalize

human genome (genomic DNA), we derive at the following:

1. Digitalizing a single cell would result in :

• Single Unit of all DNA (A - C - G - T) - 1 bp.

• Average Length of exon sequences for one protein-coding gene - (1100 bp).

• Approximate total length of all exons of protein-coding genes in the human genome

(20000 genes - 22000000 bp).

• Approximate total length of all coding and non-coding DNA in haploid genome (3000000000

bp).

• Approximate length of diploid human genome. That is all DNA within a single nucleus
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(6000000000 bp).

• Approximate number of bp generated in a shotgun sequence using Next Generation

Sequencing methods assuming 30x coverage (180000000000 bp).

2. Digitalizing of the world’s population genomes (world’s population on June 2016 [80])

would result in : Approximate number of bp that would be generated by sequencing diploid

genomes for all 7 billion people on earth today (1250000000000 bp).

Hint: 1kilo = 1024 used in these calculations, hence 1 Yotta = 270 KB.

In fact, the growth rate of DNA sequencing over the last 10 years has generated a massive amount

of data that doubles approximately every 7 months. According to[9] to date as shown in Table 1.1

on page 10, there are more than 2,500 high-throughput sequencing instruments distributed over

55 countries placed in about 1,000 sequencing centers.

This chapter introduces a new transfer solution for big genomic DNA in a way that

maximizes bandwidth utilization and minimizes the transmission size.

3.2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) [83][84] is an example of deep learning (DL)

[85] techniques that refer to both deep neural networks and other branches of machine learning,

such as deep reinforcement learning. Neural networks are defined as a set of algorithms, modeled

loosely after the human brain, and that are designed to recognize patterns. They interpret sensory

data through a kind of machine perception, labeling or by clustering raw input. The patterns they

recognize are numerical, contained in vectors, into which all real-world data, be it images, sound,

text or time series, must be translated. Thus, CNN is defined as an end-to-end system, in which

the input is raw data, while the output is a prediction through the distinctive features extracted via

intermediate layers. CNN divides into four main layers: convolution, pooling, normalization, and

fully connected, as illustrated in Figure 3.2 on page 32 as follows:
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Figure 3.2: Convolutional neural network conceptual model

3.2.2 Convolution Layers

Convolution layers are used to convolve previous layer’s feature maps with multiple

filter masks to find the most common patterns of tested data. This layer is responsible for running

two important jobs: connection and sharing. Connection applies each single convolve filter only

to a local region of the input volume and thus, decreases the network weight parameters. Thus,

the spatial extent of the local connectivity is sometimes referred to as the receptive field. Sharing

the network parameters between layers means it is necessary to use the same filter to convolve

the entire feature map at each layer. To formulate the convolution layers, we denote Conli as the

ith input feature map of l layer; Kerlij refers to connecting the kernels of the feature map of the

output layer jth to the feature map of the input layer ith and biaslj , as an additive bias.; and then
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the following:

Conlj = f(
n∑
i=1

Conl−1
i Kerlij + biaslj), (3.1)

where f denotes the activation function that is usually a rectified linear function.

3.2.2 Pooling Layers

Pooling layers represent the sampling layers that work on combining the outputs of the

convolution layers and the related classical spatial pyramid [86]. These layers reduce the spatial

size of the feature maps, thus decreasing computation costs in the network. To formulate the

pooling layers, we denote as:

Conlj = next(Conl−1
j ), (3.2)

where next(Conj) is a subsampling function of the next layer.

3.2.2 Normalization Layers

Normalization layers are responsible for assembling the output of different layers and

provide the best pattern recognition i.e. the most repetition characters. Denoting by ai the single

value of ith feature map, the normalize activity biasi is given by the expression

biasi =
ai

(Ker + α
∑min(N−1,i+n/2)

j=max(0,1−n/2) a
2
j)
β
. (3.3)

The constants Ker, n, α, and β are hyperparameters, and we use Ker = 2, n = 5, α = 10−4, and β =

0.75 in our experiments.

3.2.2 Fully Connected Layers

The final cycles of normalization produce several fully connected layers that draw the

final forms of available data patterns (classifiers). The final layer consists of a combination of the

outputs of fully connected layers which generate the new character-codeword tree. The output
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of character-codeword tree represents the probabilities of the character repetitions, in which the

highest one corresponds to the predicted codeword. Then, we can formulate the fully-connected

layer,

P (y = 1|Con;w) =
1

1 + exp(−wTCon)
, (3.4)

where y is label, x ∈ R(D+1)1 represents the D dimensional feature vector, w ∈ R(D+1)1 repre-

sents the weight vector, T refers to training data. Considering a classification problem where the

response variable y can take any one of N values, we can generalize the binary classification (ge-

nomic or non-genomic characters). Thus,

P (y = c|Con;W ) =
exp(wTi Con)∑n
i=1 exp(wTi Con)

, (3.5)

where W = [w1, w2, ..., wn] ∈ R(D+1)N , each w represents the corresponding category weight pa-

rameters.

This subsection presents our implementation of network data minimization solution

that relies on the statistical encoding and CNN algorithm via modifying HTTP content-encoding

to transfer big genomic datasets expediently and securely. This work assures better performance

and bandwidth utilization for the transfer of big genomic datasets via the minimization of data

size and time. This model assigns the shortest possible codeword for more symbol occurrences

via utilizing a CNN algorithm, as illustrated in section 3.3.3 on page 48, a codeword that divides

a dataset into parts and that reads a short string randomly to specify symbol repetitions. Two

encoding schemes are used in this model: standard (8-bit) and modified (1,2, and 3-bit). The

standard one uses the title (header) of a dataset and other symbols out of the genomic scope i.e.

N in the body. The modified encoding scheme uses a convolutional neural network technique

for the body of datasets. The proposed encoding scheme starts with initial codewords such those

shown in Table 3.3 on page 42 and then periodically updates codewords via a CNN deep learning

algorithm, as illustrated in section 3.3.3 on page 48, while using the former codeword table. After

each real-time update, the server send the proposed encoding scheme to the client (receiver) prior
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Table 3.1: The standard and proposed codewords

Symbol Frequency Proposed Standard

A 0.85 0 01000001

T 0.05 11 01010100

G 0.05 100 01000111

C 0.05 101 01000011

Total bits for 20 symbols 100% 25 160

to applying it on datasets at the server side. Therefore, this model encodes the contents using two

main codeword tables: fixed (static) and dynamic, as shown in Figure 4.1 on page 79.

Therefore, encoding 20 symbols in 25 bits yields an average of 1.25 bits/symbol in

the proposed example, whereas 160 bits in the current HTTP encoding yields an average of 8

bits/symbol. We designed variable codes in Table 3.3 on page 42 in a way that facilitates decod-

ing, using a prefix property (unambiguously). The prefix property assigns a unique specific bit

pattern for each alphabet symbol to ease the decoding operation on the client side. Variable binary

encoding is not a new idea; however, it is more common in single or static applications. The use of

the proposed encoding scheme requires a prior knowledge to assign short codes for high probabil-

ities; otherwise, short codes would be assigned for rare occurrences (negative results). The current

use of HTTP content-encoding is fixed (standard), which means assigning the same weight for

each symbol i.e. 8-bits. Therefore, we design a proposed encoding scheme for HTTP in a way that

always enables the server to assign short codes for letters that appear more frequently. Although

this scheme produces minimum possible bits, it consumes extra time. Our implementation relies

on reading parts of the file via the CNN algorithm to estimate symbol frequencies and to set codes.

Consequently, we can get minimum possible codes in less time via applying the CNN algorithm

to the proposed scheme. Time complexity is O(n). This encoding approach works well with high

symbol repetition occurrences, so that assigning a 1-bit length codeword for the highest occurrence

symbol, a 2-bit length codeword for less repetition, and a 3-bit codeword length for the remaining

2 symbols is an optimal approach. The pseudocode for our protocol is highlighted in algorithm 4
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Algorithm 1 Dynamic variable-length binary encoding
1: procedure ENCODING

2: DVLBE.doSamplingAndBuildFreqArray(inputStream , fileParti-
tions,SamplingRatioPerPartition)

3: if inputStream.hasGenomeFileheader then
4: outputStream.write(GenomeFileheader)
5: end if
6: DVLBE.writeGenomeSymbolsEncoder(outputStream)
7: while !inputStream.EOF do
8: genomeChar← inputStream.GetChar().
9: code← DVLBE.encode(genomeChar).

10: oneByteStore.store(code).
11: if oneByteStore.ISFull() then
12: outputStream.write(oneByteStore).
13: oneByteStore.empty().
14: end if
15: end while
16: if !oneByteStore.ISEmpty() then
17: outputStream.write(oneByteStore).
18: outputStream.write(NumOfExtraBits).
19: end if
20: end procedure

1: function DOSAMPLINGANDBUILDFREQARRAY(INPUTSTREAM , FILEPARTI-
TIONS,SAMPLINGRATIOPERPARTITION)

2: PartitionSize← FileSize / filePartitions().
3: SamplesPerPartition← PartitionSize * SamplingRatioPerPartition.
4: SymbolsFrequencyArray← Interger Array with Four elements filled with zeros.
5: while filePartitions >0 do
6: Offest← Random.GetDouble * PartitionSize . . Random.GetDouble generates

random numbers between 0 and 1
7: inputStream.Seek(offest).
8: inputStream.Read(SamplesPerPartition, dataBuffer).
9: UpdateFrequency(SymbolsFrequencyArray,← dataBuffer).

10: filePartitions← filePartitions - 1.
11: end while
12: FreqArray.Build(SymbolsFrequencyArray). return FreqTable
13: end function
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on page 81. In addition, we implemented a variable-length binary encoding (arbitrary or bind) to

compare with our proposed and standard.

Figure 3.3: Example of the HTTP content encoding schemes for a string of 20 symbols with variety
of repetitions. 3 possible codes for the genomic symbols [A, C, G and T]

3.2.3 Genomic DNA Generator

In this section, we discuss a genomic DNA generator we implemented to generate

FASTA format genomic files [87]. FASTA file is a single sequence described by a title line followed

by one or more data lines. The title line begins with a right-angle bracket followed by a label. The

label ends with the first white space character. Everything after that on the first line is considered

a comment. The data lines begin right after the title line and contain the sequence characters in
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order, as shown in Figure 3.4 on page 38.

Figure 3.4: FASTA file format that includes living organism’s genomic datasets. Each data line
except the last should be exactly 60 letters long, although many programs allow some flexibility
on that score

We generated 18 FASTA files in different sizes and symbol frequencies to assess the

results of our proposed HTTP content-encoding, which works efficiently for more occurrence sym-

bols as shown in Table 4.2 on page 87. The genomic generator (GG) runs in two modes: auto and

manually as can be seen in Algorithm 3 on page 68.

In the auto mode, the GG takes one input parameter that is a needed file size and

produces a FASTA file with almost equal symbol repetitions i.e. 25% each. In the manual mode,

the GG takes three input parameters: needed file size, symbol and needed repetition for this symbol

38



Table 3.2: Generated FASTA files using a genomic generator

Datasets
Number of DNA Symbols in each Dataset

A C G T A% C% G% T%

100M[25] 26,843,545 26,843,645 31,808,042 21,878,898 0.25% 0.25% 0.30% 0.20%

100M[35] 37580963 30868915 13425306 25498,926 0.35% 0.28% 0.13% 0.24%

100M[50] 53,687,091 14,786,579 25,675,457 13,224,952 0.50% 0.14% 0.24% 0.12%

500M[25] 134,217,728 149,129,757 149,112,975 104,410,196 0.25% 0.28% 0.28% 0.19%

500M[35] 187,904,819 153,550,318 116,324,344 79,091,072 0.35% 0.29% 0.21% 0.15%

500M[50] 268,435,456 93,792,797 100,263,349 74,378,798 0.50% 0.17% 0.19% 0.14%

1G[25] 268,435,456 219,637,924 292,809,252 292,858,680 0.25% 0.21% 0.27% 0.27%

1G[35] 375,809,638 221,793,199 254,370,797 221,767,473 0.35% 0.20% 0.24% 0.21%

1G[50] 536,870,912 203,878,326 101,922,932 231,068,630 0.50% 0.19% 0.09% 0.22%

5G[25] 1,342,177,280 1,283,854,849 1,517,198,501 1,225,475,930 0.25% 0.24% 0.28% 0.23%

5G[35] 1,879,048,192 1,143,192,988 1,203,320,398 1,143,143,958 0.35% 0.21% 0.22% 0.22%

5G[50] 2,684,354,560 723,874,757 1,176,284,699 784,189,984 0.50% 0.13% 0.22% 0.15%

10G[25] 2,684,354,560 2,467,876,125 2,338,051,024 3,247,131,411 0.25% 0.23% 0.22% 0.30%

10G[35] 3,758,096,384 2,594,087,000 2,532,325,440 1,852,902,248 0.35% 0.24% 0.24% 0.17%

10G[50] 5,368,709,120 894,831,061 2,013,252,324 2,460,615,495 0.50% 0.08% 0.19% 0.23%

50G[25] 13,421,772,800 13,421,823,505 14,380,428,192 12,463,041,103 0.25% 0.25% 0.27% 0.23%

50G[35] 18,790,481,920 10,550,108,277 9,738,567,871 14,607,897,292 0.35% 0.20% 0.18% 0.27%

50G[50] 26,843,545,600 10,949,303,940 7,064,179,103 8,830,011,357 0.50% 0.20% 0.14% 0.16%

and generates a FASTA file with required repetitions. The manual GG controls 1 symbol repetition

only, and the rest generate randomly at different rates. To simplify our experiments, we generate

18 different FASTA files with different frequency rates and sizes up to 50-gigabyte. For example,

we generated a 10GB FASTA file in 3 different frequency rates: 25%, 35% and 50% for the symbol

(A). Symbol repetition aims to verify our implementation improvement in contrast to the HTTP

encoding for big genomic datasets from size and time perspectives. The first scenario assumes 25%

occurrence rate for each symbol in a dataset. The second scenario assumes a 35% repetition rate for

one symbol of a dataset and 65% occurrences for the 3 other symbols. The third scenario assumes

a 50% repetition for one symbol, while the 3 other symbols have different repetitions within 50%

of the dataset. The goals of the GG implementation are to customize file sizes and occurrence

rates. Also, the GG aims to avoid privacy violations to validate our content-encoding method, in

contrast to other possible approaches during big genomic transferring. The GG algorithm can be
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seen in Algorithm 3 on page 68. Note: A file of 25% of symbol (A) does not necessarily mean the

rest of the symbols have the same symbol repetitions i.e. 25% for (C), 25% for (G), and 25% for

(T), it may vary.

3.3 A Dynamic Model of Content-Encoding

In this section, we illustrate our three implementation versions of the content-encoding:

FLBE, fixed VLBE (FVLBE), and dynamic VLBE (DVLBE). Also, model formulations are dis-

cussed in this section for different possible scenarios of symbol repetitions to verify how our pro-

posed encoding scheme compares to the current transfer protocols i.e. HTTP and FTP content-

encoding scheme. The encoding model description and formulation are presented in the following

subsections:

3.3.1 Model Description

This subsection presents our implementation of an adaptive data-aware transfer pro-

tocol that modifies HTTP content-encoding to transfer big genomic DNA datasets. This work has

been done to assure better performance and bandwidth utilization for big data transfer via min-

imizing data size and time. This model assigns the shortest possible codeword for more symbol

occurrences via utilizing a machine learning random sample, as illustrated in section 3.3.3 on page

48, a codeword that divides a dataset into parts and that reads a short string randomly to specify

symbol repetitions.

Two encoding schemes are used in this model: standard (fixed) and modified (dy-

namic). The standard one uses the title (header) of a dataset and other symbols out of the genomic

scope i.e. N in the body. The modified encoding scheme used a convolutional neural network

technique for the body of datasets. It starts with initial codewords such those shown in Table 3.3

on page 42 and then periodically updates codewords via random sample of machine learning, as

illustrated in section 3.3.3 on page 48, while using the former codeword table. After each real-

time update, it is sent first to the client (receiver) prior to applying it on datasets at the server side.
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Therefore, this model encodes the contents using two main codeword tables: fixed and dynamic

(changes many times), as shown in Figures 3.6 on page 49, 3.7 on page 50, and 3.8 on page 51.

The fact that the genomic DNA alphabet consists of only four symbols, inspired us to

build an adaptive encoding scheme to speed up a transfer time. This implementation combines a

VLBE scheme and dynamic behavior to guarantee producing the best updatable VLBE scheme for

any genomic file all the time. Producing an updatable VLBE scheme assures getting the minimum

possible data that minimizes transfer time. The genomic alphabet (A) is comprised of four sym-

bols: {A, T, G, C}, which can be presented in less than an 8-bit codewords length as used in the

current implementation. We can encode the genomic dataset symbols in four unique decipherable

codewords i.e. [0, 11, 100, 101] or simply [0, 3, 4, 5] as shown in Table 3.3 on page 42. Tra-

ditional HTTP works in 12 or 14 (if compression is used) steps, but our implementation of HTTP

using the proposed encoding scheme works in 13 steps via adding a sampling sub-step to shorten

the transfer time.

Step 7 divides into 2 sub-steps: the first sub-step achieves the sampling and the assign-

ment of codewords in the second sub-step. The first sub-step requires a brief period of time at the

beginning, but reduces a significant amount of time for the next steps. The HTTP in most browsers

starts when clients search for specific data. The HTTP initiates a connection with the server that

contains the required data. The connection between the client and the server establishes what is

called a 3-way handshake through the TCP/IP protocol.

After establishing the connection, the client sends a request for certain resource(s)

to the server that checks the header(s), the method(s), and the resource address(es). The server

retrieves the required data and starts to convert file symbols to the binary form, using a FLBE and

passes it to a compression (optional) i.e. GZIP or MFCompress algorithms. At this point, our

main contribution takes place by doing a random sampling using a machine learning algorithm as

illustrated in section 3.3.3 on page 48 for each dataset.

The result of the sampling phase is stored in an array to calculate symbol repetitions
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and create the encoding tree that is used in the content-encoding phase. After building the encoding

tree, the server starts to encode the contents and sends the data (response) through network medium

i.e. Ethernet along with this tree that will be used in the decoding phase. The client receives the

dataset from the server, including the communication header(s), encoding tree, and method(s) to

verify and authenticate the source, and then continues the communication.

We utilize a binary tree as a structure to represent our DVLBE because it is faster to

search, avoids duplicate values, and facilitates decoding at the receiver side. Also, the use of a

binary tree as a structure gives the programmer special flexibility because it offers one of the two

paths to follow and cuts the search time to half, thereby increasing process throughput.

A simple example is listed below to theoretically assess our binary encoding in contrast

to current use of HTTP binary encoding for 20 genomic symbols string based on Table 3.3 on page

42.

Table 3.3: The fixed and variable codewords

Symbol Frequency FVLBE HTTP

A 0.49 0 01000001

T 0.25 11 01010100

G 0.25 100 01000111

C 0.01 101 01000011

Total bits for 20 symbols 100% 37 160

Therefore, encoding 20 symbols in 37 bits yields an average of 1.85 bits/symbol in

FVLBE, whereas 160 bits in current HTTP encoding yields an average of 8 bits/symbol. However,

it is not easy to assign the shortest code for more frequently repeated letters using FVLBE for real-

time applications. We designed variable codes in Table 3.3 on page 42 in a way that makes it easy

to decode using a prefix property (unambiguously). The prefix property assigns a unique specific

bit pattern for each alphabet symbol to ease the decoding operation in the client side. Variable

binary encoding is not a new idea; however, it is more common in single or static applications.

FVLBE needs a prior knowledge to assign short codes for high probabilities; otherwise, short
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Figure 3.5: Example of the HTTP binary encoding schemes for a string of 20 symbols with variety
of repetitions. The top encoding scheme represents current use in HTTP (fixed), while the bottom
scheme presents a fixed of variable-length binary encoding in a range of (1-3) bits

codes would be assigned for rare occurrences (negative results).

Implementing a data transfer protocol with FVLBE will not guarantee producing the

minimum possible codewords since files do not have the same frequencies. Current use of HTTP

content-encoding is fixed (FLBE), which means assigning the same weight for each symbol i.e.

8-bits. Therefore, we design a DVLBE for HTTP in a way that always enables the server to assign

short codes for letters that appear more frequently. DVLBE performs a two-cycle work to assign

the shortest code: during the first cycle, it reads the whole file to build a codewords table and sets

the best prefix codes for that file. In the second cycle, it substitutes codewords for each symbol

based on the codewords table. Although this scheme produces minimum possible bits, it consumes
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extra time.

Our implementation relies on reading parts of the file via random sampling to estimate

symbol frequencies and to set codes. Consequently, we can get minimum possible codes in less

time via applying sampling to the DVLBE. Time complexity is O(n). This encoding approach

works perfectly with high symbol repetition occurrences, so that assigning a 1-bit length codeword

for the highest occurrence symbol, a 2-bit length codeword for less repetition, and a 3-bit codeword

length for the remaining 2 symbols is an ideal approach. The pseudocode for our protocol is

highlighted in Algorithm 4 on page 81. In addition, we implemented a variable-length binary

encoding (arbitrary or bind) to compare with our DVLBE and original HTTP FLBE.

3.3.2 Problem Formulation

Our analysis starts from the fact that in practical cases, the transfer time of data fluc-

tuates due to several reasons, such as bandwidth and message loss. The data transfer throughput

thr measured by the minimum needed time (t) to transfer certain data amount (N) from the sender

to the receiver. In order to minimize transfer time, we need to either maximize the bandwidth or

minimize data volume during transferring. This can be formalized in the following Equations: 6.6

and 3.7 on page 119:

thr =
N

t
(3.6)

A higher thr means better protocol throughput via transferring large data amounts in a time unit.

The protocol throughput is inversely proportional to the number of bits per symbol (nucleotide).

For example, transferring N string symbols in B bits indicates the efficiency of the encoding

scheme as shown in the following:

bpn =
B

N
(3.7)
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Algorithm 2 Dynamic variable-length binary encoding
1: procedure ENCODING

2: DVLBE.doSamplingAndBuildFreqArray(inputStream , fileParti-
tions,SamplingRatioPerPartition)

3: if inputStream.hasGenomeFileheader then
4: outputStream.write(GenomeFileheader)
5: end if
6: DVLBE.writeGenomeSymbolsEncoder(outputStream)
7: while !inputStream.EOF do
8: genomeChar← inputStream.GetChar().
9: code← DVLBE.encode(genomeChar).

10: oneByteStore.store(code).
11: if oneByteStore.ISFull() then
12: outputStream.write(oneByteStore).
13: oneByteStore.empty().
14: end if
15: end while
16: if !oneByteStore.ISEmpty() then
17: outputStream.write(oneByteStore).
18: outputStream.write(NumOfExtraBits).
19: end if
20: end procedure

1: function DOSAMPLINGANDBUILDFREQARRAY(INPUTSTREAM , FILEPARTI-
TIONS,SAMPLINGRATIOPERPARTITION)

2: PartitionSize← FileSize / filePartitions().
3: SamplesPerPartition← PartitionSize * SamplingRatioPerPartition.
4: SymbolsFrequencyArray← Interger Array with Four elements filled with zeros.
5: while filePartitions >0 do
6: Offest← Random.GetDouble * PartitionSize . . Random.GetDouble generates

random numbers between 0 and 1
7: inputStream.Seek(offest).
8: inputStream.Read(SamplesPerPartition, dataBuffer).
9: UpdateFrequency(SymbolsFrequencyArray,← dataBuffer).

10: filePartitions← filePartitions - 1.
11: end while
12: FreqArray.Build(SymbolsFrequencyArray). return FreqTable
13: end function

Here, the minimum bpn is better and positively reflects on the transfer time. For instance, if the

transfer time for 1 bit is (T) time unit, then the transfer time for 1 nucleotide that consists of 8 bits

equals to 8T time units. Therefore, minimizing the bpn reduces the data amount which reduces

required transfer time. In the example mentioned in section 4.2.1 on page 78, we calculated 1.85.
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Consequently, 1.8 T is a significant reduction (6.15T) in contrast to the current HTTP encoding

(8T).

In this encoding implementation, we divide the file of N strings into S slots to apply

sampling on each slot and store the output in a frequency array. After that, we calculate the symbol

repetitions to build the encoding tree, as shown in the equations 3.8 and 3.9 on page 46 and

Figures 3.6 on page 49, 3.7 on page 50, and 3.8 on page 51:

Pfile =
N

s
(3.8)

Treeencoding =
Nr

s
(3.9)

Where Treeencoding refers to the binary encoding tree, the Pfile represents file parts or slots. The r

refers to a sampling ratio that applies to each file slot or part e.g. 1%.

By convention, the left child is labeled 0 and the right child is labeled 1 as shown in Figures 3.6

on page 49, 3.7 on page 50, and 3.8 on page 51.

The DVLBE scheme adds an extra phase (sampling) that requires more time to use the

machine learning algorithm as illustrated in section 3.3.3 on page 48 and that builds the encoding

tree. However, the sampling phase has a significant impact on the next phases (binary encoding,

compression, transfer, decompression, decoding to plain text). Therefore, the time penalty of

the sampling phase can be remedied by significant time reduction in the overall transfer time via

minimizing a binary form of datasets, which is the contribution of this work.

To simplify our model, let us assume we have an (A) alphabet as {a1, a2, a3, ..., an}

that consists of n symbols, for the genomic dataset, A ∈ {A, T, G, C}(nucleotides). Codeword

presented in C(A) = {0,11,100,101}. The time complexity for encoding a string of N symbols

using the HTTP (fixed) encoding is O(N), and the space complexity S can be calculated in the
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equation 3.10 on page 47:

Sflbe =
n∑
i=1

8ai (3.10)

The space complexity of our proposed encoding scheme in the three possible cases (worst, average

and best) can be formulated in equations 3.11, 3.12 and 3.13 on page 47:

• Worst case would include an enhancement rate of 0.625

Sworst(A) =
n∑
i=1

3ai (3.11)

• Average case would include an enhancement rate of 0.71875

Saverage(A) =
n∑
i=1

2.25ai (3.12)

• Best case would include an enhancement rate of 0.875

Sbest(A) =
n∑
i=1

ai (3.13)

The 3 mentioned scenarios have a time complexity of O(N/P), where the P ∈ {1, 3}. Also, we can

divide and formulate our model costs (Co) in equations 3.14, 3.15, 3.16, 3.17, and 3.18 on page

48:

Cototal = Cocomputation + Cocommunication (3.14)

Cocomputation = O

(
Coheader check + Coencoding

)
(3.15)

Coencoding = Cosampling + Coconverting (3.16)
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Cosampling = Codata picking + Cocodeword assigning (3.17)

Cocommunication = O

(
Co3 way handshake + Cobandwidth

)
(3.18)

The previous equations depict the total cost of our encoding implementation for data transfer over

HTTP. As mentioned above, our model adds extra time for sampling to build the encoding tree, but

significantly reduces the overall transfer time, which reaches to 99 times faster compared to the

current encoding scheme. The client (browser) requests a genomic dataset from the server after

establishing a connection via 3-way handshaking. The server checks header(s), locates the file

address, and then assigns codewords for each nucleotide. After that, it encodes data onto a binary

form to transfer it over the medium. Also, the proposed encoding scheme uses machine learning

algorithm, as illustrated in section 3.3.3 on page 48 to assign less codewords for more frequent

symbols, as illustrated in the next section.

3.3.3 Heuristic Model

One of our innovations is that we can automatically locate the important regions which

contribute more for recognition, i.e., more discriminative among these regions. Because the last

convolution layer extracts more discriminative and semantic features, we use feature maps of the

last convolution layer to locate interesting parts, and this procedure is marked with dash line in

Figure 3.2 on page 32. There are multiple feature maps with 64 x 64 size and we simply calculate

the average value of these maps to achieve a new feature map, i.e., each sample value in this new

feature map is the mean of the corresponding sample in the several feature maps. As demonstrated

in Figure 3.2 on page 32, we use this process to all training codeword arrays to obtain the average

feature map of the entire training set.

In this chapter, a novel encoding scheme is proposed that significantly reduces data

transfer as can be seen in Figures 3.6 on page 49, 3.7 on page 50, and 3.8 on page 51. Two
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Figure 3.6: A proposed data minimization scheme during transfer stage

encoding sets are used in this scheme: standard and alternative (proposed) set. The alternative

symbol encodings are created via an encoding generator E that runs a series of random samplings

during the data transfer process. The encoding generator E (El,m, fi, ac, al, n) consists of two main

processes: random sampling E and encoding improvement function fi, where El is the last symbol

in the encoding codewords. The input symbols m, the last generated array of symbol codewords

al, current array of symbol codewords ac and output bits n.

The following two theorems illustrate the proposed encoding scheme. The encoding

generator discussed in theorem 3.1 and sampling improvement function discussed in theorem 3.2.
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Figure 3.7: The internal process of the proposed data minimization scheme

Theorem 3.1

The alternative symbols encoding ESn generates minimum possible variable-length code-
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Figure 3.8: A codewords generator architecture

words for alphabet symbols via running series of random sampling Sn over encoding gen-

erator E (El,m, fi, ac, al, n). For Sn ≥ 1.

we have

ESn =

 n

Sn

 2−r(1−al)
r∑
i=1

 r

i

 pSni (1− pi)n−Sn (3.19)

where

pk =
Sc∑
j=1

fij

Bc∑
i=1

 j

i


 r − j

k − i


 r

k
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For series random sampling in the encoding generator, we have

ESn =
Sn∑
i=1

El
iE

c
i Sn

i


(3.20)

where El
i is the average of output symbol in last sampling cycle, and Ec

i is the average

of current sampling cycle. We can use [88] to formulate the El
i as

El
i =

 r

i

 2−r(1−al) (3.21)

We denote by r for the sampling size, pCr,Cb for the probability of n input symbols

(Cn) have character repetitions (Cr) with character bits (Cb), i.e.,

pr(Ci) := Pr{Ci = x|Characterrepetition(Ci)

= Cr, Characterbits(Ci) = Cb}

for any i ∈ {1, . . . , n} and x ∈ { A, C, T, G}. We may write this probability as

pCr,Cb(Cn) =
n∑
i=1

 Cr

i


 r − Cr

Cb − i


 r

Cb


For simplicity, we ignore Cr consideration to obtain

pCb(Cn) := Pr{Ci = x|Characterbits(Ci) = Cb}

for any i ∈ {1, . . . , n}. If we have an ideal sampling size Sn is equal to alphabet
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symbols and distributed binomially, then we can easily find codewords of each as

pCb(CSn) := Pr{Ci = x|Cb(Ci) = Cb}

=

 n

Sn

 pSnCb (1− pCb)
n−Sn (3.22)

also we may write it as

pCb(CSn) =
Sn∑
j=1

fijpj,Cb(Cj) (3.23)

Then we can find the average of symbol repetitions of current sampling cycle by mul-

tiplying (3.22) by Cb, to get

Ec
i =

 r

Cb


 n

Sn

 pSnCb (1− pCb)
n−Sn (3.24)

Therefore, we proved (3.19) by using (3.20), (3.21) and (3.24).

Next, we discuss the sampling improvement function fi of E (El,m, fi, ac, al, n). To

clarify our theorem, we denote by α for the current sampling improvement and β for the last

sampling improvement. The comparison function of encoding generator can be written by

fi(α) = lim
n→∞

1

n
log2Eαn (3.25)

Theorem 3.2

The sampling improvement function fi for symbols that are randomly picked by the encoding

generator E (El,m, fi, ac, al, n) is always assigns minimum possible codewords for symbols

as can be formatted by
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fi(α) = Cb(α)− ac(1− al) + fmin(α) (3.26)

fmin(α) can be written as

fmin(α) := min f(α, β),

We denote by β for the symbol codewords of last sampling cycle. We also define f (α, β) by

f(α, β) := acCb(β) + α log2 γ + (1− α) log2(1− γ),

We can define the sampling improvement factor γ by

γ :=
1

2

n∑
j=1

fij
[
1− (1− 2β)j

]
for any j ∈ {1, . . . , n}

Let assume we have input symbols i.e., N∗r = { 1, 2,..., r} and from (3.19) and (3.25)

we have

=
1

n
log2Eαn

=
1

n
log2

 n

αn

− ac(1− al)

+
1

n
log2

r∑
i=1

 r

i

 pSni (1− pi)n−Sn (3.27)

= Cb(α)− 1

2n
log2(2πnα(1− α))− ac(1− al)
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+
1

n
log2

r∑
i=1

 r

i

 pSni (1− pi)n−Sn (3.28)

= Cb(α)− 1

2n
log2(2πnα(1− α))− ac(1− al)

+
1

n
log2(acn) +

1

n
log2

 r

i

 pSni (1− pi)n−Sn (3.29)

= Cb(α)− 1

2n
log2(2πnα(1− α))− ac(1− al) +

1

n
log2(acn)

+acCb

 i

r

− 1

2n
log2

(
2πacn

i

r

(
1− i

r

))

+ α log2 pi + (1− α) log2(1− pi)

= Cb(α)− 1

2n
log2(2πnα(1− α))− ac(1− al) +

1

n
log2(acn)

+acCb(β)− 1

2n
log2(2πacnβ(1− β))

+α log2 pacnβ + (1− α) log2(1− pacnβ) (3.30)

through applying (3.26) in [88], we have

 n

αn

 ≤ 2nCb(α)√
2πnα(1− α)

, 0 < α < 1 (3.31)
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also, from (3.27) we know the fact

r∑
i=1

 r

i

 pSni (1− pi)n−Sn ≤ r

 r

i

 pSni (1− pi)n−Sn

Applying last statement in (3.23) for i = r and i = r -1, we get

Pr =
r∑
j=1

fij and pr−1 =
r∑
j=1

r − Cr
r

fij +
r∑
j=1

Cr
r
fij.

Therefore, we proved (3.26) by using (3.19), (3.23), (3.27) and (3.30).

3.4 Experiments and Results

In this section, we discuss FTP and HTTP behaviors using both the current (fixed) and

the proposed dynamic (variable) content-encoding schemes for a variety of genomic datasets with

both GZIP and MFCompress compression algorithms. The examined datasets (FASTA format)

were divided into two groups: actual and simulated datasets. Actual datasets were downloaded

through two sources: National Center for Biotechnology Information (NCBI) [89] and University

of California Santa Cruz (UCSC) [90] websites, as shown in Table 3.4 on page 57. Simulated

datasets were generated via our genome generator that controls symbol repetitions to assess our

encoding scheme, as can been seen in Table 3.4 on page 57.

3.4.1 Experimental Setup

This chapter compares the proposed (dynamic) content-encoding of HTTP to stan-

dard (fixed) content-encoding of HTTP, FTP, and BitTorrent protocols. Also, it used GZIP and

MFCompress compression algorithms with both protocols, HTTP and FTP, to verify transmission

time using both content-encoding schemes. Several datasets of sizes up to 430GB of FASTA files

have been fed into these implementations to validate our content-encoding. The experiments were

performed on machines that have specifications shown in Table 4.1 on page 86.
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Table 3.4: Datasets used in our experiments

IDs Source Size(KB) Renamed

pataa National Center for Biotechnology Information 563,318 1

refGeneexonNuc University of California Santa Cruz 639,183 2

envnr National Center for Biotechnology Information 1,952,531 3

hg38 University of California Santa Cruz 11,135,899 4

patnt National Center for Biotechnology Information 14,807,918 5

gss National Center for Biotechnology Information 30,526,525 6

estothers National Center for Biotechnology Information 43,632,488 7

humangenomic National Center for Biotechnology Information 45,323,884 8

othergenomic National Center for Biotechnology Information 346,387,292 9

Table 3.5: Experimental setup

Specifications Details

Processor 2.4 GHz Intel Core i7

Memory 8 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000 1024 MB

Operating System Windows 8.1 Pro

Download 87 Mb/s

Upload 40 Mb/s

Programming Language C# .Net

Protocols FTP, HTTP, BitTorrent and VTTP

Dataset Sizes 550MB (1) - 340GB (9)

3.4.2 Actual Datasets Results

Our experimental results of real datasets are shown in Figure 3.10 on page 60 and other

Figures and Tables at the end of this chapter through modified FTP and HTTP content-encoding

with two compression algorithms (GZIP and MFCompress) as well as BitTorrent.

In order to assess the effectiveness of our dynamic encoding scheme on data transfer

time, we compared the data size and transfer time of each content-encoding scheme (fixed and

dynamic) of HTTP and FTP. The results show that the DVLBE decreases the size of the data that
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need to be transferred quickly, and the corresponding decrease in the transfer time making it faster

to transfer, as shown in Figure 3.11 on page 61 and Figures and Tables at the end of this chapter.

For example, 1.20e+05 millisecond (ms) are required to transfer a compressed 550MB

dataset using the traditional HTTP content-encoding with GZIP, 3.83e+04 ms via the FTP, whereas

2.02e+03 ms are required to transfer the same file via the DVLBE and 6.36e+05 ms over HTTP

with MFCompress algorithm. This rate of transfer is about 98 times faster than HTTP FLBE-

based, and about 95 times faster than FTP, and 99-fold faster than HTTP-FLBE with MFCom-

press. Also, the 30GB dataset was transferred in 7.20e+06 ms, using the HTTP FLBE and GZIP-

based, 6.312e+06 ms by FTP FLBE and GZIP-based, 9.60e+07 HTTP FLBE-MFCompress-based,

whereas it only took 3.26e+05 ms to transfer the file using HTTP DVLBE and GZIP-based.

This is about 95-fold faster than HTTP and FTP, compared to 99-fold faster than HTTP FLBE

MFCompress-based. We show results for up to 340GB. The size reduction reaches to 96%, com-

pared to HTTP and FTP FLBE and GZIP-based of the original size as shown in Figure 5.8 on

page 108. Figures and Tables at the end of this chapter provide more results about time accel-

eration and size reduction of actual datasets over HTTP and FTP transfer protocols FLBE and

DVLBE-based with compression algorithms (GZIP and MFCompress).

In following tables, we show the acceleration time and size reduction of tested ac-

tual genomic datasets defined in Table 4.2 on page 87 at the beginning of this chapter using pro-

posed encoding scheme over HTTP and FTP with and without compression algorithms (GZIP and

MFCompress). Also, we show the speedup rate and size reduction of genomic datasets using a

proposed encoding scheme in contrast to standard encoding. The results showed a significant im-

provement in terms of transfer time as shown in Tables 3.6, 3.7, 3.8, 3.9 and 3.10 on page 64

and table 3.11 on page 67.

3.4.3 Simulated Datasets Results

For more accuracy and further validation for the proposed encoding scheme, we per-

formed experiments on generated datasets in FASTA format using our genome generator that is
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(a) (b) (c)

96x 95x 91x

(d) (e) (f)

98x 95x 91x

(g) (h) (i)

56x 49x 19x

(j) (k) (l)

93x 84x 97x

With DVLBE With FLBE

Figure 3.9: Time acceleration and size reduction of actual datasets 550MB and 430GB as defined in
Table 3.4 on page 57 over multiple transfer protocols (HTTP and FTP) FLBE and DVLBE based
with compression algorithms (GZIP and MFCompress). (a) HTTP FLBE and GZIP vs HTTP
DVLBE and GZIP (550MB size), (b) HTTP DVLBE and GZIP vs FTP FLBE and GZIP (550MB
size), (c) HTTP DVLBE and GZIP vs HTTP DVLBE and MFCompress (550MB size), (d) HTTP
FLBE and GZIP vs HTTP DVLBE and GZIP (550MB time), (e) HTTP DVLBE and GZIP vs FTP
FLBE and GZIP (550MB time), (f) HTTP DVLBE and GZIP vs HTTP DVLBE and MFCompress
(550MB time), (g) HTTP FLBE and GZIP vs HTTP DVLBE and GZIP (340GB size), (h) HTTP
DVLBE and GZIP vs FTP FLBE and GZIP (340GB size), (i) HTTP DVLBE and GZIP vs HTTP
DVLBE and MFCompress (340GB size), (j) HTTP FLBE and GZIP vs HTTP DVLBE and GZIP
(340GB time), (k) HTTP DVLBE and GZIP vs FTP FLBE and GZIP (340GB time), (l) HTTP
DVLBE and GZIP vs HTTP DVLBE and MFCompress (340GB time)
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Figure 3.10: Transfer size and time of actual datasets 550MB as defined in Table 3.4 on page 57
using multiple transfer protocols (HTTP and FTP) FLBE and DVLBE based, without and with
compression algorithms (GZIP and MFCompress)

shown in Table 4.2 on page 87 and Algorithm 3 on page 68. In this section, we compare and

discuss the performance of HTTP and FTP using fixed-encoding comparisons to our dynamic en-

coding with and without compression algorithms (GZIP and MFCompress). FVLBE shows better

results than FLBE, but the DVLBE showed even better results using a dynamic encoding scheme,

as shown at the end of this chapter.

For HTTP, we utilized GZIP and MFCompress as compression algorithms, while only

GZIP for FTP protocol implementation using both content-encoding schemes (fixed and dynamic)

to validate our scheme. The results showed a big impact on the data transfer time when using our
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(a) Transfer size of 340GB with compression
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Figure 3.11: Transfer size and time of actual datasets 340GB as defined in Table 3.4 on page 57
using multiple transfer protocols (HTTP and FTP) FLBE and DVLBE based, without and with
compression algorithms (GZIP and MFCompress)

encoding scheme for the HTTP compared to fixed encoding. As expected, the transfer time for

genomic datasets is always much shorter using FVLBE and DVLBE than the FLBE that is cur-

rently used in HTTP and FTP. For both encoding modes, FVLBE and DVLBE, the HTTP protocol

shows significant enhancement of transfer time in contrast to FLBE due to symbol repetitions. The

FVLBE and DVLBE work efficiently for files that include more symbol repetitions. Furthermore,

more enhancements have been achieved by doing a dynamic sampling during encoding compared

to FVLBE. However, utilizing machine learning random sample algorithm, as illustrated in sec-

tion 3.3.3 on page 48, needs more strings read, and that consumes extra time before assigning the
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(c) Transfer size of 50GB without compression
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Figure 3.12: Transfer size and time of generated datasets 100MB and 50GB as defined in Table 4.2
on page 87 over multiple transfer protocols (HTTP and FTP) FLBE and DVLBE based, without
using compression algorithms

shortest code for more repetition letters.

DVLBE is designed to encode datasets in minimum possible binary codewords. There-

fore, DVLBE minimizes datasets significantly during the transfer process due to including more

symbol repetitions after applying a random sample mechanism using the machine learning prin-

ciple, as illustrated in section 3.3.3 on page 48. For example, the first experiment spent 2.28e+04

ms to transfer the 100M dataset with 25% frequency for the symbol A using standard encoding
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(a) Transfer time of 1GB genomic dataset us-
ing 1 machine that utilizes the proposed data
minimization algorithm

(b) Transfer time of 1GB genomic dataset
using 2 machines that utilizes the standard
content-encoding algorithm

(c) Transfer time of 1GB genomic dataset
using 3 machines that utilizes the standard
content-encoding algorithm

(d) Transfer time of 1GB genomic dataset
using 4 machines that utilizes the standard
content-encoding algorithm

(e) Transfer time of 1GB genomic dataset
using 6 machines that utilizes the standard
content-encoding algorithm

(f) Transfer time of 1GB genomic dataset
using 8 machines that utilizes the standard
content-encoding algorithm

Figure 3.13: Transfer time in millisecond of 1GB genomic dataset using a proposed data minimiza-
tion algorithm using a single machine and a standard content-encoding algorithm using multiple
(2 - 8) machines in parallel
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(a) Transfer time of 1GB genomic dataset
using 10 machines that utilizes the standard
content-encoding algorithm

(b) Transfer time of 1GB genomic dataset
using 12 machines that utilizes the standard
content-encoding algorithm

Figure 3.14: Transfer time in millisecond of 1GB genomic dataset using a proposed data mini-
mization algorithm using a single machine and a standard content-encoding algorithm using 10
and 12 machines in parallel

Table 3.6: Time acceleration comparisons of actual datasets in (ms) without compression

Dataset
HTTP FTP HTTP

FLBE-based FLBE-based DVLBE-based

1 1.44e+05 4.28e+04 2.24e+03

2 1.68e+05 7.12e+04 7.31e+03

3 6.10e+05 1.66e+05 1.11e+04

4 3.33e+06 1.24e+06 8.08e+04

5 5.11e+06 3.22e+06 1.98e+05

6 8.86e+06 7.58e+06 4.90e+05

7 1.44e+07 1.06e+07 7.77e+05

8 2.23e+07 1.30e+07 8.01e+05

9 1.03e+08 4.18e+07 8.22e+06

over HTTP, 1.27e+04 ms via the FTP, compared to 3.25e+03 ms to transfer the same file via the

DVLBE with 7-fold faster than standard encoding.

The behaviors were impacted by 2 factors: number and repetition of symbols that oc-

curred during the design of this content-encoding scheme. Therefore, our transfer protocol that

uses DVLBE of machine learning random sample, as illustrated in section 3.3.3 on page 48, pro-
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Table 3.7: Time acceleration comparisons of actual datasets in (ms) with compression

Dataset
HTTP FTP HTTP HTTP

FLBE-GZIP FLBE-GZIP DVLBE-GZIP FLBE-MFCompress

1 1.20e+05 3.83e+04 2.02e+03 6.36e+05

2 1.20e+05 5.89e+04 4.57e+03 6.82e+05

3 4.21e+05 1.42e+05 5.85e+03 3.73e+06

4 2.52e+06 1.15e+06 4.25e+04 N/A

5 3.60e+06 2.78e+06 1.52e+05 3.75e+05

6 7.20e+06 6.32e+06 3.26e+05 9.60e+07

7 1.08e+07 8.62e+06 4.57e+05 2.24e+08

8 1.80e+07 1.05e+07 5.72e+05 2.46e+07

9 7.98e+07 3.24e+07 5.27e+06 1.74e+08

Table 3.8: Size reduction comparisons of actual datasets in (KB) without compression

Dataset
HTTP FTP HTTP

FLBE-based FLBE-based DVLBE-based

1 5.63e+05 5.63e+05 6.76e+04

2 6.39e+05 6.39e+05 9.59e+04

3 1.95e+06 1.95e+06 3.32e+05

4 1.11e+07 1.11e+07 1.45e+06

5 1.48e+07 1.48e+07 2.81e+06

6 3.05e+07 3.05e+07 4.58e+06

7 4.36e+07 4.36e+07 5.67e+06

8 4.53e+07 4.53e+07 7.25e+06

9 3.46e+08 3.46e+08 4.85e+07

vides a better performance for big genomic data. Also, this protocol presents an ideal solution to

transfer all genomic datasets that contain different symbol repetitions with an average accelera-

tion of 99-fold compared to the traditional HTTP. The time acceleration and size reduction for all

FASTA files in Table 4.2 on page 87 using all mentioned encoding schemes. This encoding scheme,

when compared to a standard scheme, features improved reliability, scalability, performance and

security. The reliability relies in its ability to use both encoding (genomics and universal) schemes
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Table 3.9: Size reduction comparisons of actual datasets in (KB) with compression

Dataset
HTTP FTP HTTP HTTP

FLBE-GZIP FLBE-GZIP DVLBE-GZIP FLBE-MFCompress

1 3.94e+05 3.15e+05 1.69e+04 1.88e+05

2 3.96e+05 3.13e+05 6.64e+04 9.31e+04

3 1.35e+06 8.79e+05 8.78e+04 6.67e+05

4 6.24e+06 5.79e+06 7.96e+05 N/A

5 8.74e+06 6.22e+06 2.97e+06 2.34e+06

6 1.56e+07 1.34e+07 6.42e+06 5.39e+06

7 2.49e+07 1.79e+07 8.75e+06 6.47e+06

8 2.81e+07 2.31e+07 1.11e+07 9.08e+06

9 1.91e+08 1.63e+08 8.30e+07 6.96e+07

Table 3.10: Size reduction rates of actual datasets with compression (D refers to DVLBE and F
refers to FLBE)

Dataset
HTTP HTTP HTTP vs FTP

D-GZIP vs F-GZIP D-GZIP vs F-MFCompress D-GZIP vs F-GZIP

1 96% 91% 95%

2 83% 29% 79%

3 93% 87% 90%

4 87% N/A% 86%

5 66% 127% 52%

6 59% 119% 52%

7 65% 135% 51%

8 61% 122% 52%

9 56% 119% 49%

when assigning a codeword for each symbol. The scalability feature is present by enabling the

protocol to update the binary representation of each alphabet symbol according to the machine

learning random sample, as illustrated in section 3.3.3 on page 48. This encoding scheme indi-

cates better performance via reducing the dataset during data transfer, which, in turn, reduces the

network traffic. The security of this protocol stems from utilizing the TCP protocol in the transport
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Table 3.11: Time acceleration rates of actual datasets with compression (D refers to DVLBE and
F refers to FLBE)

Dataset
HTTP HTTP HTTP vs FTP

D-GZIP vs F-GZIP D-GZIP vs F-MFCompress D-GZIP vs F-GZIP

1 98x 99x 95x

2 96x 99x 92x

3 99x 99x 96x

4 98x N/A 96x

5 96x 99x 95x

6 95x 99x 95x

7 96x 99x 95x

8 97x 98x 95x

9 93x 97x 84x

layer of the TCP/IP model.

In order to compare the results of the proposed content-encoding of HTTP with BitTor-

rent protocol, we implemented the latter approach, as well. The results are shown in Figure 3.13

on page 63 for a 1GB FASTA file that was downloaded from the NCBI website. Only 1 machine

(server) is used to transfer the same file using DVLBE, while n machines are used with the same

file using BitTorrent protocol FLBE-based. As expected, with the increasing number of machines,

the time to transfer decreases sharply over BitTorrent. It can also be observed that 1 machine using

HTTP DVLBE-based takes the same time to transfer 1GB of the genomic dataset using 10 parallel

machines over BitTorrent. This is due to massive reduction in size due to our encoding strategy.

Also, note that employing HTTP DVLBE-based for multiple machines will massively decrease the

time needed to transfer a file of a given size.

We generated 21 genomic datasets with variety of symbol occurrences (25%, 35% and

50%) using our genomic generator shown in algorithm 3 on page 68 to monitor and verify our

encoding scheme. Thus, we manually configured 6 possible encoding trees to assess our dynamic

encoding performance. Theses encoding possibilities were 0345, 5430, 3504, 4053, 0534 and 0543

represent fvlbe1, fvlbe2, fvlbe3, fvlbe4, fvlbe5, fvlbe6 respectively, fvlbe refers to fixed variable-
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length binary encoding.

DVLBE refers to dynamic variable length binary encoding and flbe denotes to fixed

length binary encoding. The results show a significant size reduction during transferring the data

that led to shortening the transfer time as can be seen in Tables 3.12 and 3.13 on page 69 and

figures 3.15 and 3.16 on page 71 and figures 3.17 and 3.18 on page 74.

Algorithm 3 A genomic generator algorithm
1: procedure GENERATE

2: FileSize← Get Genomic File Size .
3: TotalSymoblsToBeGenerated← FileSize .
4: Mode← Get Generation Mode.
5: if Mode = Manually then
6: Symbol← Get Genomic Symbol to control its← frequency.
7: Ratio← Get the Genomic Symbol’s percentage .
8: SymbolGenerate(OutputFile,Symbol,← Ratio * FileSize).
9: TotalSymoblsToBeGenerated← FileSize *(1-Ratio).

10: end if
11: RandomlyInitArray(SymbolsArray). . SymbolsArray will be filled with genomic symbols

randomly, the array size is calculated randomly too
12: while TotalSymoblsToBeGenerated > 0 do
13: ArrayIndex← Random.GetNumber %← SymbolsArray.Length. . Pick an element

from SymbolsArray randomly
14: GenomicSybmol← SymbolsArray[ArrayIndex].
15: OutputFile.write(GenomicSybmol).
16: TotalSymoblsToBeGenerated← TotalSymoblsToBeGenerated -1 .
17: end while
18: end procedure

3.5 Conclusions

In this chapter, we implemented a novel machine learning-based data minimization

algorithm to be integrated with transfer protocols to reduce the size of big genomic datasets during

the transfer phase, and then to transfer the data securely in a shorter time. The implementation

results illustrate that the proposed data minimization algorithm is capable of reducing the transfer

time 99-fold, compared to the standard content-encoding of HTTP, and 96-fold compared to FTP

on tested datasets. We used GZIP and MFCompress algorithms as optional compression algorithms
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Table 3.12: Size reduction comparisons of simulated datasets in (kB)

Dataset
HTTP FTP HTTP HTTP vs HTTP HTTP vs FTP

FLBE + GZIP FLBE + GZIP DVLBE + GZIP DVLBE vs FLBE DVLBE vs FLBE

100MB[25] 1.078e+08 1.078e+08 2.906e+07 73% 73%

100MB[35] 1.075e+08 1.075e+08 2.703e+07 75% 75%

100MB[50] 1.077e+08 1.077e+08 2.367e+07 78% 78%

500MB[25] 5.369e+08 5.369e+08 1.473e+08 73% 73%

500MB[35] 5.372e+08 5.372e+08 1.352e+08 75% 75%

500MB[50] 5.369e+08 5.369e+08 1.217e+08 77% 77%

1GB[25] 1.074e+09 1.074e+09 2.928e+08 73% 73%

1GB[35] 1.074e+09 1.074e+09 2.769e+08 74% 74%

1GB[50] 1.074e+09 1.074e+09 2.430e+08 77% 77%

5GB[25] 5.369e+09 5.369e+09 1.466e+09 73% 73%

5GB[35] 5.369e+09 5.369e+09 1.393e+09 74% 74%

5GB[50] 5.369e+09 5.369e+09 1.195e+09 77% 77%

10GB[25] 1.074e+10 1.074e+10 2.922e+09 73% 73%

10GB[35] 1.074e+10 1.074e+10 2.763e+09 74% 74%

10GB[50] 1.074e+10 1.074e+10 2.433e+09 77% 77%

50GB[25] 5.369e+10 5.369e+10 1.486e+10 72% 72%

50GB[35] 5.369e+10 5.369e+10 1.412e+10 74% 74%

50GB[50] 5.369e+10 5.369e+10 1.205e+10 78% 78%

beside our data minimization algorithm to assess how the transfer protocol behaves in terms of

transfer time and size. Also, we showed that our data minimization algorithm provides the best

size reduction, reduces transfer time, and securely transfers big genomic datasets.

Our proposed data minimization mechanism relies on a machine learning-based ran-

dom sampling method while encoding the data during data transfer, and then transfers the data se-

curely in a shortened time, as illustrated in section 3.3.3 on page 48. We showed that the data size

can be significantly reduced by our adaptive encoding, compared to a standard content-encoding

scheme, with and without compression algorithms, as well. Also, we implemented a genomic

dataset generator of FASTA file format to verify the performance of our current data minimization

scheme and compared it to the standard as well as our previous content-encoding schemes. Our

proposed genome generator allowed us to control the repetition in the data, which was instrumen-
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Table 3.13: Time acceleration comparisons of simulated datasets in (ms)

Dataset
HTTP FTP HTTP HTTP vs HTTP HTTP vs FTP

FLBE + GZIP FLBE + GZIP DVLBE + GZIP DVLBE vs FLBE DVLBE vs FLBE

100MB[25] 2.277e+04 1.265e+04 3.249e+03 7.01x 3.89x

100MB[35] 1.997e+04 8.681e+03 2.710e+03 7.37x 3.20x

100MB[50] 1.542e+04 9.639e+03 2.787e+03 5.53x 3.46x

500MB[25] 9.534e+04 5.417e+04 1.133e+04 8.41x 4.78x

500MB[35] 8.502e+04 4.383e+04 1.049e+04 8.11x 4.18x

500MB[50] 7.595e+04 5.238e+04 9.205e+03 8.25x 5.69x

1GB[25] 1.881e+05 8.956e+04 1.837e+04 10.24x 4.87x

1GB[35] 1.665e+05 6.938e+04 1.858e+04 8.96x 3.73x

1GB[50] 1.289e+05 6.894e+04 1.731e+04 7.45x 3.98x

5GB[25] 9.830e+05 5.922e+05 1.152e+05 8.53x 5.14x

5GB[35] 8.448e+05 3.840e+05 9.681e+04 8.73x 3.97x

5GB[50] 6.662e+05 2.221e+05 7.688e+04 8.67x 2.89x

10GB[25] 1.881e+06 6.967e+05 1.716e+05 10.96x 4.06x

10GB[35] 1.670e+06 8.433e+05 1.902e+05 8.78x 4.43x

10GB[50] 1.367e+06 4.712e+05 1.787e+05 7.65x 2.64x

50GB[25] 1.005e+07 4.189e+06 1.149e+06 8.75x 3.64x

50GB[35] 8.793e+06 4.677e+06 1.073e+06 8.19x 4.36x

50GB[50] 7.511e+06 3.266e+06 9.066e+05 8.29x 3.60x

tal in assessing the performance of our data minimization algorithm. The tested encoding schemes

(FLBE, FVLBE and DVLBE) were implemented over HTTP, FTP and BitTorrent protocols, with

and without compression algorithms.

Our experiments indicated that machine learning-based random sampling content-

encoding performs much better than the current and common use of the transfer protocol content-

encoding scheme through assigning short codewords for the dataset characters. We conclude

that proposed data minimization algorithm provides the best performance among current content-

encoding approaches for big genomic datasets.
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Figure 3.15: Size comparisons for multiple dataset using alternative scheme (FVLBE and DVLBE
sets)
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Figure 3.16: Time comparisons for multiple dataset using alternative scheme (FVLBE and DVLBE
sets)
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Figure 3.17: Size comparisons for multiple dataset using FLBE, FVLBE and DVLBE schemes
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Figure 3.18: Time comparisons for multiple dataset using FLBE, FVLBE and DVLBE schemes
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CHAPTER 4

A FOURIER-BASED DATA MINIMIZATION ALGORITHM FOR FAST AND SECURE 

4.1 Introduction

DNA sequencing is a critical biological technique used by laboratories to investigate

diseases and genetic illnesses. Also, it has been defined as a mechanism to make or produce pro-

teins and organic enzymes that determine bodily functions. DNA sequencing provides enhanced

treatment methods for genetic diseases which result from mutated DNA that causes a change in the

protein product. Additionally, DNA sequencing is the only practical resource in understanding eth-

nicity and ancestry, as well as detecting specific genetic patterns. Fortunately, the advancement of

biomedical equipment and the growth of high-throughput DNA sequencing resulted in an increase

in the sequencing operations. Consequently, DNA sequencing has generated big genomic datasets

that face several challenges such as storage, manipulation, analysis, visualization, and sharing.

The use of the higher throughput and less expensive equipment such as the next-

generation sequencing (NGS) [91], enables more researchers to sequence more organisms that

enhance quality of life. For example, less than $1,000 is the cost for sequencing a single human

genome [92]. Also, biologists anticipate that the sequencing cost will continue to decrease, a con-

cept based on a variant of Moore’s law trajectory: costs decrease over time. For example, the

1000-Genomes project [93] generated a greater amount of data using the NGS in 6 months than

what was generated in 21 years by NCBI Genbank [94].

Also, many genome related projects, such as the 1000-Genomes project [93] and the

international cancer sequencing consortium [95], suggest using the cloud as an infrastructure to

solve the store and analysis challenges [96], [97], [98]. However, the transfer and share of the ge-

nomic datasets between biological laboratories and from/to the cloud represents an ongoing bottle-
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neck because of the amount of data and the limitations of the network bandwidth [99]. Therefore,

it is critical to develop new ways to minimize the data size. This chapter presents a new real-time

data minimization mechanism of big genomic datasets to shorten the transfer time in a more secure

manner, despite the potential occurrence of a data breach. Our method involves the application of

the random sampling of Fourier transform theory to the real-time generated big genomic datasets of

both formats: FASTA and FASTQ and assigns the lowest possible codeword to the most frequent

characters of the datasets.

Our results indicate that the proposed data minimization algorithm is up to 79% of

FASTA datasets’ size reduction, with 98-fold faster and more secure than the standard data-

encoding method. Also, the results show up to 45% of FASTQ datasets’ size reduction with 57-fold

faster than the standard data-encoding approach. Based on our results, we conclude that the pro-

posed data minimization algorithm provides the best performance among current data-encoding

approaches for big real-time generated genomic datasets.

4.1.1 Contribution

This chapter discusses the design and implementation of a novel data minimization

algorithm for the real-time generated big genomic datasets that relies on a combination of the ran-

dom sampling of Fourier transform [100] and variable-length binary-encoding [50]. This work

aims to minimize and secure big genomic datasets during the data transfer phase over the net-

works, either via wire or wireless. We assert that creating a new minimization mechanism for big

genomic datasets can significantly shorten the transfer time and secure the data at the same time by

changing the data-encoding of the datasets multiple times during the transfer phase. Consequently,

the transfer time will decrease tremendously, in addition to protecting the data against a potential

breach by changing the codewords of the genomic symbols frequently. Therefore, we can ensure

that the data will transfer faster and in a more secure way.
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4.1.2 Motivation

It is not a minor challenge to transfer big data in particular genomic datasets faster than

the current transfer time because all data transfer protocols, such as Hyper Text Transfer Protocol

(HTTP) [19] and File Transfer Protocol (FTP) [37], use the standard content-encoding schemes,

such as the American Standard Code for Information Interchange (ASCII) [101]. Also, the de-

crease in the costs of DNA sequencing due to the advancement of the DNA sequence techniques

and equipment, encourages biologists to extend their research and produce increasingly greater

numbers of genomic datasets that need to be manipulated and transferred between various biol-

ogy laboratories. Also, the use of DNA sequencing in the most critical areas such as criminal

investigations, genotyping and determination of disease-relevant genes or agents causing diseases,

mutation analysis, screening of single nucleotide polymorphisms (SNPs), detection of chromo-

some abnormalities [102], and global determination of post-translational modification [103] have

led to the high demand to transfer and share the data faster than the current transfer time. However,

shortening the transfer time of big datasets is complicated because all Internet browsers use the

standard content-encoding schemes in terms of symbol lengths, such as 8-bit, 9-bit, 16-bit, 32-bit

codewords.

Data minimization and privacy are very important to both users and service providers,

especially for remote healthcare services. Many solutions, such as the cloud, have been developed

to address the challenges of remote diagnostic devices. However, data minimization and privacy

challenges have not been addressed at the same level, mainly due to compatibility issues. As a

result, scientists are motivated to navigate and search for new methods to transfer big genomic

data more efficiently and in a fully secured environment.

Current data transfer protocols are not suitable for the increased growth of big data and

cloud-based services such as remote healthcare diagnostics due to the use of transfer protocols that

belong to different vendors. Observing these facts, we take advantage of the nature of the genomic

symbols to implement a more efficient content-encoding algorithm to minimize the data amount

during the transfer phase.
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4.1.3 Chapter Goals and Organization

The purpose of this chapter is to design and implement a novel data minimization

algorithm to decrease the required time to transfer big genomic datasets over networks. In addition,

we increased security in the event of a data breach. Moreover, it will introduce a generic concept

that can be used by other limited symbols alphabet of the cloud-based applications to secure data

that exchange remotely. The contributions of this chapter are outlined as follows:

• Summarizes the data minimization and data encoding methods with quick fundamentals,

sans the need to search through the details presented in the standards’ specifications.

• Provides an overview of the challenges of the big genomic datasets in terms of transfer time

with extra protection if data breach occurs.

• Presents the need for better data minimization techniques to provide faster data transfer,

especially cloud-based services.

The remainder of this chapter is organized as follows: Section 4.2 presents model description and

formulation. Section 4.3 presents the experiments and results of the proposed data minimization

algorithm. Section 4.4 presents our conclusions.

4.2 Model Description and Formulation

4.2.1 Model Description

This subsection presents our implementation of data minimization algorithm for the

generation of big real-time genomic DNA datasets using DNA-sequencing equipment such as

NGS. The generated datasets can have many formats, but the common ones are FASTA [104]

and FASTQ [105] formats, as illustrated in Figure 4.2 on page 80. This work has been done to

minimize the size of big genomic datasets and then shorten the transfer time. Also, this work adds

an extra security layer via changing the symbol codewords several times for each dataset during

the transfer phase. This model ensures the assignment of the lowest possible codewords for more
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Figure 4.1: The proposed encoding system framework

symbol occurrences via dividing the datasets into parts based on time and by utilizing a random

sampling of Fourier transform theory, as illustrated in Figure 4.1 on page 79 and Algorithm 4 on

page 81.

Two encoding schemes are used in this model: standard and modified. The standard

one uses the dataset headers and non-DNA symbols in the dataset bodies. The modified encod-

ing scheme starts with an initial codeword, and then updates frequently via running a time-based

sampling using a Fourier transform theory. The initial codewords of the proposed encoding code-

words, such as those shown in Figure 2.2 (c) on page 18, periodically updates codewords via

random sample of Fourier theory, as illustrated in Figure 4.1 on page 79 and Algorithm 4 on

page 81.

The data-encoding switches between the standard and proposed ones by sending 25-

byte of 1’s from the sender to the receiver, indicating that the alternative codewords will be used

from this point on, and continuously, until receiving another data-encoding scheme. Therefore, this

model encodes the contents using two main codeword tables: fixed and variable (changes many
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Figure 4.2: The FASTA and FASTQ format components

times), as shown in Figure 4.1 on page 79. The proposed data-encoding scheme of the genomic

dataset benefits from being in the alphabet that can be encoded in four unique decipherable code-

words, i.e. [0, 11, 100, 101] or simply [0, 3, 4, 5]. The result of the sampling phase adds to the

encoding accumulator in an array form, and then calculates symbol repetitions and creates the new

encoding tree that is used in the data-encoding phase.

We utilize a binary tree as a structure to represent our genomic data-encoding because

it is faster to search, avoids duplicate values, and facilitates decoding at the receiver side. Also, the

use of a binary tree, as a structure, gives the programmer special flexibility because it offers one of

the two paths to follow and cuts the search time in half, thereby increasing process throughput.
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Algorithm 4 Proposed data-encoding algorithm
1: procedure DATA-ENCODING

2: Proposed.doSamplingandBuildFreqArray(inputStream , fileParti-
tions,SamplingRatioPerPartition)

3: if inputStream.hasGenomeFileheader then
4: outputStream.write(GenomeFileheader)
5: end if
6: Proposed.writeGenomeSymbolsEncoder(outputStream)
7: while !inputStream.EOF do
8: genomeChar← inputStream.GetChar().
9: code← Proposed.encode(genomeChar).

10: oneByteStore.store(code).
11: if oneByteStore.ISFull() then
12: outputStream.write(oneByteStore).
13: oneByteStore.empty().
14: end if
15: end while
16: if !oneByteStore.ISEmpty() then
17: outputStream.write(oneByteStore).
18: outputStream.write(NumOfExtraBits).
19: end if
20: end procedure

1: function DOSAMPLINGANDBUILDFREQARRAY(INPUTSTREAM , FILEPARTI-
TIONS,SAMPLINGRATIOPERPARTITION)

2: SamplingSize← SamplingTimeSlots / PartitionSizes().
3: SamplesPerPartition← PartitionSize * SamplingRatioPerPartition.
4: SymbolsFrequencyArray← Integer Array with Four elements filled with ones.
5: while filePartitions >0 do
6: Offest← Random.GetDouble * PartitionSize . . Random.GetDouble generates

random numbers between 0 and 1
7: inputStream.Seek(offest).
8: inputStream.Read(SamplesPerPartition, dataBuffer).
9: UpdateFrequency(SymbolsFrequencyArray,← dataBuffer).

10: filePartitions← filePartitions - 1.
11: end while
12: FreqArray.Build(SymbolsFrequencyArray). return FreqTable
13: end function

81



4.2.2 Problem Formulation

4.2.2 The Random Sampling of Fourier Transform

We are using the random sampling of Fourier transform theory to update the content-

encoding tree for big genomic symbols. Accordingly, we need to find the best representation of

Fourier ibest of X complex exponential terms to approximate i for a given a moment i ∈ CN .

The fast Fourier transform (FFT) can be applied to find the i within X largest terms. Fourier

representation i* can be found by sampling a subset τ ⊆ [0, N − 1] of i according to [106] as

follows:

‖i− i‖2
2 ≤ (1 + ε)‖i− ibest‖2

2 (4.1)

the ε refers to the error bound. Applying independent Bernoulli trials on the set [0, N - 1] with a

fixed probability to set the τ

We can find the amount of the sampling rate by employing i in the [107] as follows:

i[n] =
1√
N

X−1∑
x=0

α
xe
j2πωxn/N , wx ⊆ [0, N − 1]. (4.2)

That can be written in an array form such as i = Fα, for the discrete Fourier transform (DFT) array

F, the elements of the DFT can be found using the formula Fw,t = 1√
N
ej2πωt/N , ω, t = 0, ..., N−1,

and α only X non-zero values in the regular repetitions ωx. The goal is to recover α from the

random samples of i. The sampling pool generator τ is the Fourier random sampling theory.

The generated elements M of the sampling pool τ . Therefore, we can obtain each sample cycle

through the M/N or discarded with probability 1 −M/N . The sparse vector α of time slots can

be conducting with high probability if M = O(Xlog4N) [108] that utilizes geometric probability

distributions. This chapter applies the Fourier random sampling to generate updated encoding tree

of genomic datasets to minimize the data size during transfer phase.

82



4.2.2 Continuous Time Random Sampling

Continue randomize of sampling intervals can be found using the following theories

[109] [110] [111] [112] [113] . Then the random interval sampling s(t) is defined as

s(t) =
∞∑

n=−∞

δ(t− tn). (4.3)

The random operation i(t) can be sampled using s(t) can be written as y(t) = i(t)s(t). If tn is

independent from i(t), then

Φy(f) = Φi(f) ∗ Φs(f), (4.4)

where Φy(f),Φi(f), and Φs(f) are the power spectral densities (PSD) of y(t), i(t) and s(t), re-

spectively. When tn = nT ,

Φs(f) =
1

T 2

∞∑
n=−∞

δ(f − n

T
). (4.5)

Therefore, the periodic sampling of the encoding tree of the genomics alphabet Φs(f) can use

[110] to obtain the following theorem.

Theorem 2.1

Let’s assume the β is the average of the sampling cycles, we can find 1/E[τx], where τx

refers to the independently and identically distributed (i.i.d) intervals between samples. If the

characteristic function of τx is ψτx(f), then

Φs(f) = β<
{

1 + ψτx(2πf)

1− ψτx(2πf)

}
. (4.6)

Since ψτx(0) = 1, Phis(f) will have value f = 0.
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4.2.2 Collective Random Sampling

The sampling time tx can be found using the collective random sampling (CRS) in the

following equation

tx = tx−1 + τx, (4.7)

applying the exponential distribution ∼ Exp(λ) to the i.i.d interval τx, we can get the following

equation

Φs(f) = λ2δ(f) + λ. (4.8)

When τx is uniformly distributed τx ∼ Uniform[a, b],

Φs(f) =


P (ρ sin((b−a)πf)

(b−a)πf
), (b− a)πf f 6= 0

( 2
a+b

)2δ(f) f = 0

, (4.9)

where P (r, θ) is a Poisson kernel defined as:

P (r, θ) =
1− r2

1− 2r cos θ + r2
, (4.10)

4.2.2 Continuous Sampling Intervals

Implementing periodically sampling is not a minor challenge because the sampling

intervals are usually divided into fixed time slots determined mostly by the CPU clock speed.

Therefore, we can use rounding up ∆ to specify the sampling intervals τ qx such that:

τ qx = n∆, if(n− 1)∆ < τx ≤ n∆, n ∈ Ω, (4.11)

where Ω refers to the adequate integers that can be used. For instance, we can get the Ω = 1, 2,...

when the the exponential distribution is used to the τ qx . Whereas, the Ω = {1, 2, ..., b T
∆
c} in case of

using the uniform distribution in [0, T ] to the τ qx . The time slots of the sampling of τx can be found
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via their characteristic function ψτx(f). Accordingly, we ensure that the Φs(f) becomes periodic

synchronizing to the periodicity of the 1
∆

. Consequently, we can ensure getting the best possible

time slots of sampling rates only if i(t) place within [− 1
2∆
, 1

2∆
] limits. In other words, we can

obtain the best possible encoding tree with minimum sampling intervals that includes the highest

frequency of genomics symbols.

4.3 Experiments and Results

In this section, we discuss the size and transfer time of the simulated big genomic

datasets by using the proposed and standard data-encoding schemes over HTTP. The examined

datasets in both formats, FASTA and FASTQ, were generated via our simulated NGS generator, as

can been seen in Tables 4.2 on page 87 and 4.3 on page 88.

4.3.1 Experimental Setup

This chapter applies the proposed and standard data-encoding schemes during transfer

of big genomic datasets using HTTP. Several sizes of genomic datasets in both formats, FASTA

and FASTQ, were generated using our NGS simulation and tested up to 1TB to validate our data-

encoding. The experiments were performed on machines that have specifications shown in Table

4.1 on page 86.

4.3.2 Experimental Results

Our experimental results of big genomic datasets are shown in Tables 4.2 on page 87,

4.3 on page 88, 4.4 on page 89, and 4.5 on page 89, and Figures 4.3 on page 87, and 4.4 on

page 88.

In order to assess the effectiveness of our proposed data minimization method, sev-

eral genomic dataset sizes were tested using both data-encoding methods: proposed and standard

during transfer using HTTP. The results show that the proposed method significantly decreases

the dataset sizes, and then shortens the transfer time, as shown in Tables and Figures listed above.
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Table 4.1: Experimental setup

Specifications Details

Processor 2.4 GHz Intel Core i7

Memory 8 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000 1024 MB

Operating System Windows 8.1 Pro

Download 87 Mb/s

Upload 40 Mb/s

Programming Language C# .Net

Used Protocol HTTP

Dataset Sizes 1GB,5GB,10GB,20GB,50GB,100GB,200GB,400GB,500GB,1TB

For example, the original 1GB dataset in FASTA format was minimized to 293,393 KB using the

proposed method during transfer phase in contrast to 1,048,576 KB using the standard encoding

method with about 72% size reduction. Consequently, the transfer time was 5,255 milliseconds

(ms) using the proposed method, while 2.54 x 1051 ms resulted by using the standard scheme with

about 98-fold of time acceleration. Also, 223,136,461 KB were transferred of 1TB FASTA dataset

using the proposed method, while 1,073,741,824 KB resulted by using the standard method for

the same dataset with about 79% size reduction. The transfer time of 1TB FASTA dataset using

the proposed data-encoding were 8 x 106 ms, while 1.79 x 108 ms resulted in the transfer of the

same dataset using the standard scheme, with about 96-fold of time acceleration. Also, the 1GB

FASTQ dataset was minimized to 356,516 KB by using the proposed scheme, while 1,048,576

KB resulted by using the standard scheme, with about 34% of size reduction. Consequently, 8,333

ms were needed to transfer the dataset by using the proposed method, while 15,150 ms were re-

quired to transfer the same dataset using the standard approach, with 55-fold of time acceleration.

Moreover, 1TB FASTQ dataset was minimized to 418,759,311 KB by using a proposed encod-

ing method, while 1,073,741,824 KB transferred using the standard approach with about 39%

of size reduction. The time acceleration of the 1TB FASTQ dataset was 54-fold by sending the

dataset in 7.74 x 106 ms using the proposed method, while 143 x 107 ms were needed to transfer
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the same dataset. The maximum size reduction of examined FASTA datasets using the proposed

data-encoding scheme is 79% and about 98-fold of time acceleration, The maximum rate of size

reduction for the examined FASTQ datasets using the proposed encoding method is 45%, while

57-fold is the maximum time acceleration, as shown in Figure 4.5 on page 90.

Table 4.2: Simulated next-generation sequencing (NGS) dataset sizes, FASTA format

Datasets
Data-Encoding Size in KB Number of Genomic Symbols in each Dataset
Proposed Standard A C G T

1GB 293,393 1,048,576 536,870,912 214,748,160 214,748,160 107,374,592

5GB 1,181,950 5,242,880 3,758,095,360 268,431,360 429,496,320 912,686,080

10GB 2,731,022 10,485,760 6,442,444,800 1,610,608,640 858,992,640 1,825,372,160

20GB 4,722,414 20,971,520 15,461,867,520 2,147,471,360 1,717,985,280 2,147,512,320

50GB 14,369,917 52,428,800 26,843,545,600 13,421,772,800 9,663,641,600 3,758,131,200

100GB 23,321,911 104,857,600 73,014,374,400 10,737,356,800 2,147,430,400 21,475,020,800

200GB 53,935,177 209,715,200 1.33144E+11 21,474,713,600 25,769,779,200 34,359,910,400

400GB 99,176,254 419,430,400 2.96353E+11 47,244,492,800 42,949,427,200 42,950,246,400

500GB 127,617,346 524,288,000 3.22122E+11 1.07374E+11 96,636,416,000 10,738,176,000

1TB 223,136,461 1,073,741,824 7.91648E+11 1.31941E+11 1.64926E+11 10,996,416,512
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Figure 4.3: Transfer time of simulated FASTA datasets G, 5GB, 10GB, 20GB, 50GB, 100G,
200GB, 400GB, 500GB, and 1TB using proposed and standard data-encoding approaches
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Figure 4.4: Transfer time of simulated FASTQ datasets G, 5GB, 10GB, 20GB, 50GB, 100G,
200GB, 400GB, 500GB, and 1TB using proposed and standard data-encoding approaches

Table 4.3: Simulated next-generation sequencing (NGS) dataset sizes, FASTQ format

Datasets
Data-Encoding Size in KB Number of Genomic Symbols in each Dataset
Proposed Standard A C G T

1GB 356,516 1,048,576 1,100,243 1,171,475 1,194,506 1,070,103

5GB 2,097,152 5,242,880 4,587,490 4,722,908 4,853,198 4,293,654

10GB 3,879,731 10,485,760 10,579,317 10,871,037 11,069,642 10,603,326

20GB 8,808,038 20,971,520 18,383,332 19,099,195 19,068,835 16,777,600

50GB 20,971,520 52,428,800 55,189,255 58,677,592 55,350,383 5,5861,160

100GB 33,554,432 104,857,600 90,769,611 98,405,480 100,395,898 93,309,194

200GB 79,691,776 209,715,200 202,744,248 208,871,811 217,755,796 209,397,412

400GB 188,743,680 419,430,400 387,005,677 391,542,999 392,718,494 375,820,583

500G 214,958,080 524,288,000 490,035,888 508,771,266 550,501,004 49,066,4651

1TB 418,759,311 1,073,741,824 864,354,300 910,476,782 892,603,677 768,828,857

4.4 Conclusions

In this chapter, we implemented an innovative data minimization algorithm that relies

on a combination of the naive bit encoding approach and the random sampling of Fourier transform

theory to form a time-based random sampling data-encoding. The proposed algorithm is designed
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Table 4.4: Size reduction and time acceleration of datasets, FASTA format

Dataset
Size Reduction Time Acceleration

Proposed vs. Standard Proposed vs. Standard

1GB 72% 98x

5GB 77% 98x

10GB 74% 98x

20GB 77% 90x

50GB 73% 93x

100GB 78% 91x

200GB 74% 92x

400GB 76% 91x

500GB 76% 91x

1TB 79% 96x

Table 4.5: Size reduction and time acceleration of datasets, FASTQ format

Dataset
Size Reduction Time Acceleration

Proposed vs. Standard Proposed vs. Standard

1GB 34% 55x

5GB 40% 49x

10GB 37% 51x

20GB 42% 47x

50GB 40% 45x

100GB 32% 50x

200GB 38% 54x

400GB 45% 57x

500GB 41% 51x

1TB 39% 54x

to be integrated with transfer protocols to reduce the size of the real-time big genomic datasets in

both formats: FASTA and FASTQ, during the transfer phase, and then to transfer the data securely

in a shorter time. The results indicate that the proposed data minimization algorithm is capable

or reducing the transfer time up to 98-fold of FASTA datasets and 57-fold of FASTQ datasets,
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57x
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Proposed (time/size) Standard (size) Standard (time)

Figure 4.5: The maximum size reduction and time
acceleration of tested genomics datasets

compared to the standard data-encoding on tested datasets. Further, the results also show the

dataset can be reduced up to 79% of the original FASTA format dataset sizes and up to 45% of

FASTQ format.

The proposed data minimization approach is integrated to HTTP to assess how the

transfer protocol behaves in terms of transfer time and size. Also, we showed that our data min-

imization algorithm provides a significant size reduction and transfer time acceleration, as well

as adds an extra level of security during the transfer because dataset symbols encode in different

codewords during the transfer phase. We demonstrated that the data size can be significantly re-

duced by our hybrid data-encoding, compared to a standard scheme. Also, we implemented an

NGS simulator to generate genomic datasets in both formats: FASTA and FASTQ, to verify the

performance of our current data minimization scheme and compared it to the standard. Our experi-

ments indicated that the Fourier transform theory-based random sampling, data-encoding performs

much better than the standard scheme by ensuring the assignment of short codewords for the ge-

nomic dataset symbols. We conclude that the proposed data minimization algorithm provides the

best performance among current data-encoding approaches for big real-time generated genomic

datasets.

90



CHAPTER 5

VARIABLE AND NAIVE BIT-BASED DATA MINIMIZATION ALGORITHMS FOR 

5.1 Introduction

Modern genomic studies utilize high-throughput instruments which can produce data

at an astonishing rate. These big genomic datasets are produced by using next generation se-

quencing (NGS) machines that can easily reach a peta-scale level creating storage, analytic and

transmission problems for large-scale system biology studies. Traditional networking protocols

are oblivious to the data that is being transmitted and are designed for general purpose data trans-

fer. In this chapter, we present a novel data-aware network transfer protocol to efficiently transfer

big genomic data. Our protocol exploits the limited alphabet of the DNA nucleotide and is de-

veloped over the hypertext transfer protocol (HTTP) framework. Our results show that the pro-

posed technique improves transmission up to 84 times when compared to normal HTTP encoding

schemes. We also show that the performance of the resultant techniques, using a single machine,

is comparable to BitTorrent protocol used on 10 machines.

Next generation sequencing (NGS) machines, such as the Illumina HiSeq2500, can

generate up to 1TB of data per run, and the data grow exponentially for large systems biology

studies [114]. More often than not, these large genomic data sets have to be shared with fellow

scientists or with cloud services for data analysis. The usual practice is to transfer the data using

a networking protocol such as HTTP or FTP. Traditional networking protocols are oblivious to

the data that is being transmitted and are designed for general purpose data transfer. Consequently,

transfer is typified by an exceedingly long time when large data sets are involved. Previous methods

to improve transmission have focused on using FTP/HTTP protocols and multiple machines to

increase throughput [115]. However, those solutions are inefficient in terms of hardware and do
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not exploit the additional data redundancy of DNA sequences for efficient transmission.

This chapter introduces two data minimization techniques to reduce big genomic datasets

during data transfer processes that are variable-length and naive bit encoding schemes. We assert

that if the scope of the data is known, such as genomic data, then networking protocols should be

able to take advantage of this information for better efficiency. The key idea of VTTP is utiliz-

ing variable length codewords for DNA nucleotides in the content-encode of HTTP to maximize

network resources usage [19]. Our proposed transfer techniques decreases the size of the data

that need to be transmitted via assigning the shortest possible codewords for repeated symbols,

hence shortening the transfer time. The proposed data encoding schemes do not require any extra

hardware resources and is shown to be much faster than other competing techniques and protocols.

5.1.1 Contribution

Creating the proposed content encoding mechanism relies on assigning variable-length

binary codewords for the genomic symbols based on the frequency of the nucleotides in the dataset.

The VTTP dynamically switches between the traditional charsets for symbols that do not belong to

the genomic charset (A, G, C, T) and to our efficient encoding for DNA nucleotides. Lengths of ge-

nomic charset codewords is a static variable-length in range of 1-3 bits long. We have implemented

our encoding technique on top of HTTP for its universality and flexibility on various platforms.

We are not aware of any other data-aware protocols that exploit redundancy in genomic data for

efficient transmission. This VTTP is an improvement over our earlier work that used fixed-length

codewords for genomic symbols i.e. 2-bit long for each character [79].

5.1.2 Chapter Goals and Organization

The goal of this chapter is the design and implementation of a data-aware transfer

protocol that relies on HTTP using variable and naive bit methods. We implement the data mini-

mization techniques by modifying the HTTP content encoding approach to transfer a big genomic

dataset. We compare our results with traditional HTTP, FTP and BitTorrent-like transfer protocols
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to transfer large genomic datasets.

The chapter is organized as follows: Section 5.2 discusses the overall architecture of the pro-

posed variable-length-based content-encoding algorithm model description, formulation, and re-

sults. The second architecture of the proposed naive-bit-based content-encoding algorithm model

description, formulation, and results are discussed in Section 5.3. Finally, we discuss future work

and our conclusions in Section 5.4.

5.2 Proposed Variable-Length-Based Model of Content-Encoding Technique

In this section, we illustrate our implementation of VTTP that utilizes VLBE for con-

tent encoding. Model formulations are also discussed for different possible scenarios of symbol

repetitions to compare our proposed encoding to the current method used in HTTP encoding:

5.2.1 Model Description

This subsection presents our implementation of HTTP that relies on VLBE content

encoding to transfer big genomic datasets. This model assigns short variable codewords for ge-

nomic symbols. The fact that a genomic alphabet consists of only 4 symbols A, G, C, T makes it an

ideal candidate for VLBE encoding and can be represented in less than 8-bits. We can encode the

genomic dataset symbols in 4 unique decipherable codewords i.e. [0, 11, 100, 101] or simply [0, 3,

4, 5] as shown in Figure 5.1 on page 95. HTTP, in most browsers, starts when the client searches

for specific data, and the HTTP client side initiates a connection with the server that contains the

required data. The connection between the client and the server establishes a 3-way handshake

using the TCP/IP protocol. After establishing the connection, the client sends a request for certain

dataset(s) to the server that checks the header(s), the method(s), and the resource address(es). The

server retrieves the required data and starts to convert file symbols to binary form by using a VLBE

and passes it to a compression technique (GZIP in this implementation). FASTA file for a single

sequence is described by a title line followed by one or more data lines. The title line begins with

a right-angle bracket followed by a label. The label ends with the first white space character. The
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data lines begin right after the title line and contain the sequence characters in order as shown in

Figure 5.1 on page 95. At this point, we read the first line of the FASTA file [87] using an ASCII

character set, and the remaining lines are read using VTTP. The server starts encoding using the

VLBE character set, compresses via GZIP, and transfers the data (response) through the network

medium. The compressed data are received by the client, along with header(s) and method(s) to

store it. The client starts to decompress the received data using GZIP to obtain the binary form.

We utilize a binary tree as a structure to represent our VLBE because it is faster to

search, avoids duplicate values, and is easy to decode at a receiver side. Assuming we have a file

of 18 symbols with different symbol repetitions, the following: a1 appears in a frequency rate of

61%; a2 has a repetition rate of 17%, and 11% for both a3 and a4 as shown in Figure 5.1 on

page 95. In this example, the file has redundancy and VLBE works by assigning a variety of bit

lengths reaching 1 bit per symbol (bps). There are 3 possible code lengths for the symbol a1 in

this example, as appears in Figure 5.1 on page 95. The proposed method produces better results

in contrast to the FLBE.

Therefore, encoding 18 symbols in 29 bits yields an average of 1.6 bits/symbol in

VLBE, as compared to 144 bits in the current HTTP encoding. The 3 VLBE possibilities of this

example show 3 different code lengths (29, 37 and 47) bit long. However, VLBE still assigns short

codes for the whole string, in contrast to FLBE for the real-time applications i.e. data transfer.

We designed variable codes in Figure 5.1 on page 95 in a way that makes it easy to

decode using a prefix property (unambiguously). This property assigns a unique binary codeword

for each single alphabet symbols to facilitate the decode operation on the client side. The variable

length binary encoding has been used for static applications, but transferring dynamic decoding

trees has not been investigated.

It is important to note that the proposed VLBE does not guarantee minimal codewords

for the data since the frequency of the data is not calculated due to the complexity of the compu-

tation process for big data. However, it is expected that the proposed strategy will transfer data

much more rapidly as compared to the traditional HTTP protocol. For the current implementation,
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Figure 5.1: Example of the HTTP content encoding schemes for a string of 18 symbols with variety
of repetitions. 3 possible codes for the genomic symbols [A, T, G and C]
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the following are required: a 1-bit codeword length for a genomic symbol that has the highest

occurrence (based on a local sample); and a 2-bit codeword length for a symbol with next largest

repetition; and 3-bit codeword length for the remaining two symbols. The pseudocode for our

protocol can be seen in Algorithm 5 on page 96.

Algorithm 5 VLBE-based HTTP
1: procedure ENCODING

2: if !inputStream.hasGenomicFileheader then
3: STOP (IS NOT Genomic File)
4: else
5: Encode the whole first line using a traditionalChar
6: end if
7: VLBE.writeGenomicSymbolsEncoder(outputStream)
8: while !inputStream.EOF do
9: if inputStream.GetChar() ∈ {A, T, G, C} then

10: genomicChar← inputStream.GetChar()
11: code← VLBE.encode(genomicChar)
12: else
13: traditionalChar← inputStream.GetChar()
14: code← VLBE.encode(traditionalChar)
15: end if
16: oneByteStore.store(code)
17: if oneByteStore.ISFull() then
18: outputStream.write(oneByteStore)
19: oneByteStore.empty()
20: end if
21: end while
22: if !oneByteStore.ISEmpty() then
23: outputStream.write(oneByteStore)
24: outputStream.write(NumOfExtraBits)
25: end if
26: end procedure

5.2.2 Problem Formulation

Our analysis starts from the fact that in practical cases, the transfer time of data fluctu-

ates due to several reasons such as bandwidth and message loss. The data transfer throughput (Th)

is measured by the minimum time needed (t) to transfer certain data amount (N) from the sender to

the receiver. In order to minimize transfer time, we need to either maximize the bandwidth (which
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costs more) or minimize the data size, which will reduce overall resources and time and is being

pursued in this work. The transfer throughput can be formalized in Equations 5.1, 5.2 on page 97:

Th =
N

t
(5.1)

A higher Th means better protocol throughput via transferring a large data amount in less time.

Consequently, the protocol throughput increases when a bit per symbol (bps) is reduced as much as

possible. For example, transferring N string symbols in B bits indicates efficiency of the encoding

scheme as shown in the following:

bps =
B

N
(5.2)

Here the minimum bps is better, and hence, shows a more time-efficient performance as compared

to the original 8-bit transfers. The VLBE scheme utilizes all unused space in each single byte, a

fact that reduces the transfer time by decreasing data size in the next phases (compression, trans-

fer, decompression, decoding to plain text). To simplify our model, let’s assume we have an A

alphabet as {a1, a2, a3, ..., an} that consists of n symbols, for the genomic dataset, A ∈ {A, T, G,

C}(nucleotides). The codeword can be represented in C(A) ∈ {0,11,100,101}. The time com-

plexity for encoding a string of N symbols using the HTTP fixed encoding is O(N) and the space

complexity S can be calculated in Equation 5.3 on page 97:

Shttp =
n∑
i=1

ai ∗ 8 (5.3)

The space complexity of our proposed encoding scheme can be formulated in Equation 5.4 on

page 97:

Svlbe(A) =
n∑
i=1

ai ∗ codewordlength (5.4)
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VTTP has a time complexity of O(N/P), where P depends on the connection bandwidth and bps.

Also, we can divide and formulate our model costs (C) into the following Equations:

Ctotal = Ccomputation + Ccommunication (5.5)

Ccomputation = O

(
Cheader check + Cencoding + Ccompression

)
(5.6)

Ccommunication = O

(
C3 way handshake + Cbandwidth

)
(5.7)

The Equations 5.5, 5.6, 5.7 on page 98 show that the computation of VTTP consumes additional

time to encode symbols since it switches between two charsets during the reading of the file.

However, it takes much less time in the next steps to shorten the transfer time many times.

5.2.3 Experiments and Results

In this section, we discuss FTP and HTTP behaviors using both the current (fixed) and

the proposed (variable) length encoding schemes for a variety of genomic datasets. The examined

datasets that are FASTA format files were downloaded through two sources: National Center for

Biotechnology Information (NCBI) [89] and University of California Santa Cruz (UCSC) [90]

websites as shown in Table 5.1 on page 99.

5.2.4 Experimental Setup

This chapter compares the proposed VTTP with FTP, HTTP and BitTorrent-like trans-

fers. Several datasets (up to 430GB of FASTA files) have been fed to these implementations to

validate our approach. The experiments were performed on machines that have specifications

shown in Table 5.2 on page 99.
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Table 5.1: Experimental datasets

IDs Source Size(KB) Renamed

pataa NCBI 563,318 1

refGeneexonNuc UCSC 639,183 2

envnr NCBI 1,952,531 3

hg38 UCSC 11,135,899 4

patnt NCBI 14,807,918 5

gss NCBI 30,526,525 6

estothers NCBI 43,632,488 7

humangenomic NCBI 45,323,884 8

othergenomic NCBI 346,387,292 9

Table 5.2: Experimental setup

Specifications Details

Processor 2.4 GHz Intel Core i7

Memory 8 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000 1024 MB

Operating system Windows 8.1 Pro

Download 87 Mb/s

Upload 40 Mb/s

Programming Language C# .Net

Protocols FTP, HTTP, BitTorrent and VTTP

Dataset sizes 550MB - 340GB

5.2.5 Experimental Results

Our experimental results as shown in Figures 5.2 on page 100, 5.3 on page 100, 5.8

on page 108, Tables 5.3 on page 102, 5.4 on page 102, 5.5 on page 103, and 5.6 on page 103.

As can be observed, VLBE decreases the size of the data that needs to be transferred

sharply and the corresponding decrease in the transfer time occurs rapidly. As can be seen in

Tables Tables 5.3 on page 102, 5.4 on page 102, 5.5 on page 103, and 5.6 on page 103, 1.20 x 105

milliseconds (ms) are required to transfer 550MB dataset using the traditional HTTP encoding,
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Figure 5.2: Transfer size of real FASTA datasets 1 - 9 using proposed and standard data-encoding
approaches over HTTP and FTP
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Figure 5.3: Transfer time of real FASTA datasets 1 - 9 using proposed and standard data-encoding
approaches over HTTP and FTP

3.82 x 104 ms via the FTP whereas 3.25 x 103 ms are required to transfer the same file via the

HTTP-VLBE. This rate of transfer is approximately 37 times faster than HTTP-FLBE and about

12 times faster than FTP. Also, the 30GB dataset was transferred in 7.20 x 106 ms using the HTTP,

6.31 x 106 ms by FTP, whereas it took only 3.39 x 105 ms to transfer the file using VLBE. This is

approximately 21 times faster than HTTP and 18 times faster than FTP. We show results for up to
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Figure 5.4: The maximum size reduction and time
acceleration of tested genomics datasets
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Figure 5.5: Transfer time of 1G FASTA dataset using (1) VLBE-based machine and up to (12)
FLBE-based machines work in parallel
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Table 5.3: Comparison between genomic dataset sizes in (kB) using standard and proposed data-
encoding approaches over HTTP and FTP

Dataset IDs
Standard Proposed

HTTP FTP HTTP

1 5.63+05 5.63+05 1.75+04

2 6.39+05 6.39+05 8.85+04

3 1.95+06 1.95+06 7.04+04

4 1.11+07 1.11+07 7.95+05

5 1.48+07 1.48+07 2.98+06

6 3.05+07 3.05+07 6.42+06

7 4.36+07 4.36+07 8.79+06

8 4.53+07 4.53+07 1.10+07

9 3.46+08 3.46+08 8.32+07

Table 5.4: Comparison between genomic dataset transfer time in (ms) using standard and proposed
data-encoding approaches over HTTP and FTP

Dataset IDs
Standard Proposed

HTTP FTP HTTP

1 1.20+05 3.82+04 3.25+03

2 1.22+05 5.88+04 6.26+03

3 4.20+05 1.41+05 4.97+03

4 2.52+06 1.14+06 4.54+04

5 3.60+06 2.77+06 1.82+05

6 7.20+06 6.31+06 3.39+05

7 1.08+07 8.62+06 4.65+05

8 1.80+07 1.04+07 6.97+05

9 7.98+07 3.24+07 5.39+06

340GB. The average decrease in the size of the data sets as compared to HTTP and FTP is around

15 times.

The corresponding decrease in the running time is 33 times faster compared to HTTP,

and 16 times faster compared to FTP over all data sets. In order to compare the results of the

proposed approach with that of existing BitTorrent protocol, we implemented the latter approach as
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Table 5.5: Comparison between tested genomic dataset size using proposed and standard data-
encoding schemes

Dataset IDs
Dataset Size Reductions

Proposed vs. Standard-HTTP Proposed vs. Standard-FTP HTTP vs FTP

1 97% 97% 0%

2 88% 88% 0%

3 95% 95% 0%

4 93% 93% 0%

5 80% 80% 0%

6 79% 79% 0%

7 80% 80% 0%

8 75% 75% 0%

9 76% 76% 0%

Table 5.6: Comparison between tested genomic datasets transfer time using proposed and standard
data-encoding schemes

Dataset IDs
Dataset Time Acceleration

Proposed vs. Standard-HTTP Proposed vs. Standard-FTP HTTP vs FTP

1 98x 94x 68x

2 96x 91x 51x

3 99x 96x 66x

4 98x 96x 55x

5 96x 94x 23x

6 95x 95x 12x

7 96x 95x 20x

8 96x 93x 42x

9 93x 83x 59x

well. The results are shown in Figure 5.5 on page 101 for a 1GB FASTA file that was downloaded

from the NCBI website (Homo sapiens.GRCH38.dna sm toplevel). Only 1 machine (server) is

used to transfer the same file using VLBE, while n machines are used to transfer a file utilizing

HTTP over the BitTorrent protocol.

As expected, with the increasing number of machines, the time to transfer decreases
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sharply over BitTorrent. It can also be observed that the transfer time required for 1GB of genomic

file using our proposed protocol (VTTP) with using only 1 machine is approximately equivalent

to 10 machines used in parallel with BitTorrent protocols. That reduction happens due to our

encoding strategy. The results are presented for 1GB file only, and the performance of VTTP is

expected to increase with increasing size of the data due to increase in redundancy. Also note that

employing VTTP for multiple machines will massively decrease the time needed to transfer a file

of a given size.

5.3 Proposed Naive Bit-Based Model of Content-Encoding Technique

Genomic data processing applications continue to grow in their scope, ambition, and

functionality. Therefore, we believe creating a data-aware transfer protocol would optimize each

byte of sent data, which increases network throughput, saves bandwidth, time, and resources. This

chapter proposes a new network transfer protocol that relies on HTTP with some modifications

to meet genomic requirements. Our chapter assumes that the data consists of genomic data with

only four base pairs (A, T, G, C) that need to be transferred, processed, visualized, and exchanged

over networks. Thus, modifying the HTTP content-encoded mechanism represents the key idea

of this work, since the HTTP contains many headers [116] that offer different functions for data

transmission.

HTTP headers help to manage the transfer of a variety of data types, including video

and audio, over TCP and UDP protocols. Content-Encoded is responsible for managing encoding

and compressing algorithms, as well as specifying the character set of transferred data. The simple

form of HTTP is a request-response mode after establishing a connection between client (browser)

and server over TCP. The purpose of this work is to encode each of the four bytes into one byte

by assigning two bits for each genomic letter instead of eight bits. The proposed encoding scheme

reduces the amount of data that needs to be transferred by three fourths (3/4) since it converts every

32 bits to 8 bits.

Moreover, the proposed encoding approach decreases significantly the transfer time
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because fewer data need to be transferred. After the customized encoding, the encoded-data

are passed into a compression algorithm, such as GZIP, to compress data [8]. This chapter will

demonstrate how GTTP improves the network performance via minimizing latency and maximiz-

ing throughput. In this chapter, the performance of GTTP is evaluated in the contexts of size and

transfer time by using a TCP as a baseline for performance evaluation.

A complete cycle of transportation in HTTP begins by establishing a client-server con-

nection using 3-way TCP handshaking. After that, the client sends a request with some headers

using certain supported methods. The server receives the request and checks the headers to deter-

mine the needed contents via an accepted data type and content encoding. The GTTP determines

the location of the required data to encode, compress, and to transfer over the network. The main

contribution begins when the server starts transferring needed data by encoding into 2-bit form

instead of 8-bit. GTTP reads each of the 4 letters and stores them in only one letter to reduce data

by 75%.

Generated encoded data (25% of the original) will be passed into the compress algo-

rithm (GZIP), which is HTTP built-in to reduce data yet again by 75%. The binary encoded form

for each genomic letter can be found in Table 5.7 on page 109. For instance, GTTP encoding will

encode genomic ASCII of AAAA into 00000000 binary form and save 24-bit to pass 8-bit into the

compression stage and that reduces data by 75%.

The total of transmitted data would be 6.25% of original data or less (25% from en-

coded stage * 25% from compress stage) as shown in Equations 5.8 on page 105, 5.9 on page 106,

and Table 5.7 on page 109. Let assume we have genomics file Gen = {a1, a2, a3, ..., an} ai ∈ {A,

T, G, C}

Where n is the number of characters in the file and each character will encoded into

c(ai) as c(ai) = {A = 00, T = 01, G = 10, C = 11} = 2 bit From that we create a new Equation 5.8

on page 105 as follows:

B(Gen) =
n∑
i=1

ailength(ci) (5.8)
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Where B(Gen) is binary convert of Gen file, and length(ci) represents the length of coded ai in bits.

For example, suppose we want to send a FASTA file (genomics) that contains 100,000 characters.

Then we would get in:

(1) Normal coding requires 100,000 * 8 = 800,000 bits, (2) Proposed coding uses only

100,000 * 2 = 200,000 bits with 75% saving. Therefore, we obtain on a new Equation 5.9 on

page 106 as follows:

B(Gen) =
1

4

n∑
i=1

ailength(ci) (5.9)

To get 800,000 * 0.25 = 200,000 bits in normal way whereas 200,000 * 0.25 = 50,000 bits in the

proposed approach. Consequently, we will end up with sending 0.0625 of original data, which is

much more efficient than existing techniques.

GTTP algorithm can be summarized in Algorithm 6 on page 106.

Algorithm 6 Proposed 2-bit content-encoded
1: procedure ENCODING

2: if inputStream.hasGenomeFileheader then
3: outputStream.write(GenomeFileheader)
4: end if
5: while !inputStream.EOF do
6: genomeChar ← inputStream.GetChar().
7: twoBits← towBitsEncoding(genomeChar).
8: oneByteStore.store(twoBits).
9: if oneByteStore.ISFull() then

10: outputStream.write(oneByteStore).
11: oneByteStore.empty().
12: end if
13: end while
14: if !oneByteStore.ISEmpty() then
15: outputStream.write(oneByteStore).
16: outputStream.write(NumOfExtraBits).
17: end if
18: end procedure

Briefly, the first stage produces only 25% of the original data, and the second stage

will produce (25%) of the data in the first stage. Thus, GTTP will send about (6.25%) of original

data, which results in a significant increase in the network performance. It is hypothesized that the
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proposed study will minimize impairment in transmitting genomic big data using GTTP, as well

as improve network throughput by sending less data. Therefore, GTTP represents a new strategy

in transfer protocol literatures, considers scope, kind, and size of data. Also, transmitting 6.25%

of the original data increases network throughput and decreases traffic latency, rather than reduces

transfer time.

5.3.1 Experimental Results

In order to validate our theoretical results, we performed (28) experiments on different

genomic data for up to 10GB. We used (FASTA format) as genomic files to exchange between

two machines (client-server). Experimental results can be seen in Figures 5.6 on page 107, 5.7

on page 108, and 5.8 on page 108. Those results came from our implementation using visual C#

language version (2013) on the following machine specifications: Windows 8.1 pro (64-bit), Intel

Core i7 with clock speed of 2.4 GHz. The system is equipped with 8GB RAM, L2 Cache (per

Core) of 256 KB and L3 Cache of 6 MB over 37.59 Mb/s DOWNLOAD and 4.22 Mb/s UPLOAD

speeds.
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Figure 5.6: Transfer size of real FASTA datasets 1 - 14 using proposed and standard data-encoding
approaches

All tested files came from The National Center for Biotechnology Information Ad-
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Figure 5.7: Transfer time of real FASTA datasets 1 - 14 using proposed and standard data-encoding
approaches

75%

(a) Size reduction of FASTA

3x

(b) Time acceleration of FASTA
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Figure 5.8: The maximum size reduction and time
acceleration of tested genomics datasets

vances Science and Health (NCBI) [117] except 1GB and 10GB, which we generated randomly

by using a special genomic generator for FASTA files.

Our experiments start by requesting a specific genomic data file by client from the

server. The server encodes the required data into binary form and passes them to the GZIP al-

gorithm to send a zipped file to the client. When a client receives a zipped file, the client starts

decompress and decodes it to get original data.

Also, we implemented a normal HTTP request-response to compare and assess with

our GTTP results. We sent and received genomic files with the traditional HTTP model and then

compared the size and transfer time with our new approach. Experiments were performed on dif-

ferent genomic files to determine the minimum time required to transfer them using both protocols,
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Table 5.7: Size reduction and time acceleration of datasets

Dataset
Size Reduction Time Acceleration

Proposed vs. Standard Proposed vs. Standard

1 76% 75x

2 75% 75x

3 76% 75x

4 76% 75x

5 76% 75x

6 76% 75x

7 76% 75x

8 75% 75x

9 75% 75x

10 76% 75x

11 75% 75x

12 77% 75x

13 75% 75x

14 76% 75x

15 75% 75x

16 76% 75x

17 76% 75x

18 75% 75x

19 76% 75x

20 75% 75x

21 75% 75x

22 77% 75x

23 75% 75x

24 76% 75x

25 76% 75x

26 76% 75x

27 76% 75x

28 75% 55x
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HTTP and GTTP. Determining the minimum time to transfer genomics is a way of assessing the

encoded scheme. The GTTP encoded mechanism decreased the size of the transmitted data, which

also reduced the transfer time. Figure 5.6 on page 107 shows transferring genomics size via both

protocols, HTTP and GTTP. For example, experiment 2 transfers 10,203,125 bytes using HTTP,

while we only need to transfer 2,508,540 bytes of data using GTTP, which is a 75% decrease in the

data set size. Also, experiment 27 transfers 1,103,390,067 bytes (1 GB) through HTTP, whereas

264,788,421 bytes are transferred (0.25 GB) through GTTP, thereby saving 0.76 to send 0.24 in-

stead. Figure 5.7 on page 108 shows transferring time for genomic files using both protocols HTTP

and GTTP. For instance, HTTP needed 1,095 ms to transfer 10,203,125 bytes from Experiment 2,

whereas GTTP spent only 274 ms to transfer the same file 3.99 times faster. Also, HTTP spent

2,474,232 ms to transfer 10,737,418,240 bytes (10 GB) from experiment 28, while GTTP spent

only 1,104,290 ms to transfer the same file, which is 2.24 times faster.

Briefly, our implementation results indicate a big saving of data and increasing in

transfer speed as presented in Figure 5.8 on page 108. Thus, using GTTP reduces the amount of

transmitted data and increases the network throughput.

5.4 Conclusions

This chapter presents the design and implementation of a data-aware variable-length

and naive bit models of content-encoding techniques to reduce big genomic datasets during data

transfer process. Our protocol exploits the fact that genomic data is limited in its alphabet and

is largely redundant. This fact allows us to design a variable length encoding scheme which de-

creases significantly the size of the genomic data that needs to be transferred over the network.

Consequently, an enormous reduction in the time is also observed as compared to traditional HTTP

and FTP protocols. Our results also show that by using the proposed encoding schemes, the result-

ing protocol that uses a single machine is better than 10 machines that use the traditional HTTP

protocol to transfer genomic data.
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CHAPTER 6

A NEW CRYPTOGRAPHY ALGORITHM TO PROTECT CLOUD-BASED 

6.1 Introduction

The revolution of smart devices has a significant and positive impact on the lives of

many people, especially in regard to elements of healthcare. In part, this revolution is attributed

to technological advances that enable individuals to wear and use medical devices to monitor their

health activities, but remotely. Also, these smart, wearable medical devices assist health care

providers in monitoring their patients remotely, thereby enabling physicians to respond quickly

in the event of emergencies. An ancillary advantage is that health care costs will be reduced,

another benefit that, when paired with prompt medical treatment, indicates significant advances

in the contemporary management of health care. However, the competition among manufacturers

of these medical devices creates a complexity of small and smart wearable devices such as ECG

and EMG. This complexity results in other issues such as patient security, privacy, confidentiality,

and identity theft. In this chapter, we discuss the design and implementation of a hybrid real-time

cryptography algorithm to secure lightweight wearable medical devices.

The proposed system is based on an emerging innovative technology between the ge-

nomic encryptions and the deterministic chaos method to provide a quick and secure cryptography

algorithm for real-time health monitoring that permits for threats to patient confidentiality to be

addressed. The proposed algorithm also considers the limitations of memory and size of the wear-

able health devices. The experimental results and the encryption analysis indicate that the proposed

algorithm provides a high level of security for the remote health monitoring system.

The purpose of this chapter is to design and implement a hybrid cryptography algo-

rithm to protect cloud-based health services. Moreover, it will introduce a generic concept that can
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be used by other cloud-based applications to secure data that exchange remotely.

6.1.1 Contribution

This chapter discusses the design and implementation of a novel cryptography al-

gorithm for the remote, real-time health monitoring services and relies on a combination of the

genomics-based encryption, and the deterministic chaos method. This work aims to secure the

health data of cloud-based services between wearable medical devices attached to the patients, and

accessible to healthcare providers such as physicians, as well as hospitals. We assert that creating a

new cryptography mechanism for the wearable health devices can solve the delay issue of complex

computations of traditional encryption approaches.

6.1.2 Motivation

It is not a minor challenge to implement a new cryptography algorithm by combining

two different techniques. Also, the high demand on small, friendly, and affordable wearable health

devices encourages manufacturing production. However, producing wearable devices to provide

many services remotely, such as cloud-based health services, creates security challenges. Data

security and privacy are very important to both users and service providers, especially for remote

healthcare services. Many solutions have been developed for challenges of remote diagnostic

devices. However, security and cryptography challenges have not been addressed at the same

level, mainly due to compatibility issues. As a result, scientists are motivated to navigate and

search for new methods to transfer health data more efficiently and in a fully secured environment.

Current data encryption methods are not suitable for the cloud-based services such

as remote healthcare monitoring due to using heterogeneous devices that use a variety of transfer

protocols that belong to different vendors. Observing these facts, we take advantage of the na-

ture of the genomic encryption and the deterministic Chaos Theory to implement a more efficient

cryptography algorithm to secure remote healthcare monitoring.
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6.1.3 Chapter Goals and Organization

The purpose of this chapter is to design and implement a hybrid cryptography algo-

rithm to protect cloud-based health services. Moreover, it will introduce a generic concept that can

be used by other cloud-based applications to secure data that exchange remotely. The contributions

of this chapter are outlined as follows:

• Summarizes the genomic encryption method and Chaos Theory with quick fundamentals,

sans the need to search through the details presented in the standards’ specifications.

• Provides an overview of the challenges of the wireless sensing devices in terms of security

and computations.

• Presents the need for better cryptography methods to provide better cloud-based health ser-

vices.

The remainder of this chapter is organized as follows: Section 6.2 presents preliminar-

ies of this work for both: genomic encryption method and the Chaos Theory. Section 6.3 discusses

the overall architecture of the proposed algorithm and model description. Section 6.4 presents

the experiments and results of the proposed cryptography algorithm. Section 6.5 discusses the

comparative analysis and Section 6.6 presents our conclusions.

6.2 Preliminaries

6.2.1 Genomic-Based Cryptography

Deoxyribo Nucleic Acid (DNA) is a biochemical macromolecule that contains ge-

netic information necessary for the functioning of living beings. The genomics include the entire

hereditary information about the organism cell and consists of the chromosomes in a cell’s nucleus

and components of the genome. A genomic molecule consists of a double-stranded nucleotides

structure that is obtained by two twisted single-stranded DNA chains, hydrogen bonded together
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between bases (A-T and G-C) [118]. The double-helix structure is configured by two single, an-

tiparallel strands.

Four kinds of bases are found in two strands: Adenine (A); Guanine (G); Thymine

(T); and Cytosine (C). A strand contains a sequence of bases in a specific pattern. The other strand

contains the complementary nucleotides of the first strand. The adenine pairs with a thymine by

using a double bond (A = T), while the thymine and the cytosine pair with each other by using a

triple bond (G = C). The genomic sequencing information is contained in the nucleotide bases.

Genomic-based cryptography emerged as a new cryptographic field in 1994 and has

been used as an information carrier and as a modern implementation tool in biological technol-

ogy. The computational process using genomic-based cryptography produces a sequence of nu-

cleotides: A, T, C, and G, as the encrypted data output. The genomic-based cryptography is done

by hybridization of the DNA molecules and is formed by a double helix structure of complemen-

tary base pairs to encode data. The DNA addition and subtraction operation rules, described in

Tables 6.1 and 6.2 on page 114, are used to confuse the ECG data values, such that A= 00; T= 01;

C= 10; G= 11.

Table 6.1: Subtraction operation for the DNA sequence

- A T C G

A A G C T

T T A G C

C C T A G

G G C T A

6.2.2 Deterministic Chaos Theory

Chaos functions have mainly been used to develop mathematical models of nonlin-

ear systems. They have attracted the attention of many mathematicians owing to their extremely

sensitive nature of initial conditions, as well as their enormous applicability to modeling complex

problems of daily life. The sequences produced by such functions have very good randomness and
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Table 6.2: Addition operation for the DNA sequence

+ A T C G

A A T C G

T T C G A

C C G A T

G G A T C

complexity. These functions have an extreme sensitivity to initial conditions. For example, if the

initial start value of a chaotic function is modified 10−20, iterative numbers produced after some

iterations appear to differ from each other. This extreme sensitivity to initial conditions and some

other interesting properties, such as pseudo-randomness, wide spectrum, and good correlation in-

dicate that chaotic functions may serve as a promising alternative to conventional cryptographic

algorithms.

The main advantage using Chaos Theory lies in the observation that a chaotic signal

looks like noise to unauthorized users. Moreover, generating chaotic values is often low cost

with simple iterations, which makes it suitable for the construction of stream ciphers. Therefore,

cryptosystems can provide a secure and fast means of data encryption, which is crucial for data

transmission in many applications. Generally speaking, chaotic stream ciphers use chaotic systems

to generate pseudorandom key streams to encrypt the data (one-by-one). In this work, a 1-D tent

logistic map is employed for key generation. The map generates chaotic sequences in the interval

[0, 1], assuming the following equation [119]:

xn+1 =


xn
µ

0 ≤ xn ≤ µ

1−xn
1−µ µ < xn ≤ 1

(6.1)

where xn refers to the state variable of the system that belongs to the interval [0, 1], µ ∈ (0,1],

and x0 ∈ [0,1] is the initial condition. A typical orbit with initial condition x0 = 0.6 and control

parameter µ = 0.8 is shown in Figure 6.1 (a) on page 117. The distribution of the points of the
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orbit with a length of 1000 points is shown in Figure 6.1 (b) on page 117. The histogram plot is a

graphical representation similar to the bar chart where it shows the distribution of data with ranges

of the data grouped into intervals.

6.2.3 One-Time Pad Encryption Method

The one-time pad encryption mechanism is simple: encrypt each sample of the data

by the addition modular, which gets a bit or character from a random key generator. For example,

the key sequence generated by a random generator are as following equations:

pad = ki = k1, k2, k3, ..., kn, ki ∈ [0, 1]. (6.2)

The original message which will be encrypted by the pad keys is as follows:

message = mi = m1,m2,m3, ...,mn, mi ∈ [0, 1]. (6.3)

Then the cipher is as follows:

ci = mi ⊕ ki. (6.4)

To decrypt the cipher in the receiver side, the following function is used:

mi = (mi ⊕ ki)⊕ ki. (6.5)

6.3 Proposed Encryption Algorithm

This section provides step-by-step details of the proposed algorithm for the data en-

cryption by combining a DNA-based encryption technique and chaotic logistic maps. Limitation

of the wearable sensor node memories causes each sample of the ECG signal to be encrypted

alone. The sample data is a 16-bit length (the most 4-bit are considered to be zeros when the 12-bit
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(a) The chaotic orbit for parameters of x0 =
0.6, µ = 0.8

(b) Histogram of the points of typical orbit with
1000 points length

Figure 6.1: The chaotic orbit and the histogram of the orbit with 1000 points length

analog to digital converter is used). Each sample is divided and encoded into 8 DNA bases, with

each consisting of a two-bit length. A chaotic sequence is generated by using a tent chaotic map

with the initial condition xo1 and constant parameter µ01. The sequence is scaled to [0, 65536]

and converted into 8 DNA bases, with the most 4-bit equating to zeros. The 8 new DNA bases are

generated by combining the encoded ECG sample and encoded chaotic random key, as shown in

Tables 6.1 and 6.2 on page 114.

Two of 1-D tent chaotic maps with different initial conditions x02 and x03 and constant

parameters µ02 and µ03 are used to construct the 2-D encoding matrix, which will be used as a

complement (or not) to the combination of the ECG signal and the first chaotic map. After that, we

will obtain the six encryption keys: x01, x02, x03, µ01, µ02, and µ03. The computational precision

of the 64-bit double precision number is 252, according to the IEEE standard for the floating-point

arithmetic(IEEE 754). Therefore, the total number of different keys used is (252)6 = 2312. Such a

large key space is efficient and sufficient for reliable practical use.

The proposed algorithm of the ECG sensory data was initially introduced by the work

of [62] and [68], where they used it for image encryption. A modification of this algorithm has

been made to be applicable for WWBASN, such that each sample of the ECG data is encrypted
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alone, since it works on limited resources in terms of memory and computation. The proposed

algorithm works in 10 simple steps as follows:

Step 1:

Convert the signal samples into a binary sequence as a n ∗m binary matrix (m = 16 bits).

Step 2:

Encode the binary sequence into a matrix of nucleotides (DNA sequence matrix) to get the encod-

ing matrix n∗m
2

such that: A = 00, T = 01, C = 10, G = 11.

Let’s assume the signal data vector

s =


2055

1250

3590


Then the binary sequence would be:

s =


0000100000000111

0000010011100010

0000111000000110


So, we get the DNA sequence as follows:

s =


AACAAATG

AATAGCAC

AAGCAATC


Step 3:

Divide the DNA sequence matrix into 8 sub-matrices each n∗m
8

as follows:

DNA sub-matrix1 is s1 =


A

A

A

, DNA sub-matrix2 is s2 =


A

A

A



DNA sub-matrix3 is s3 =


C

T

G

, DNA sub-matrix4 is s4 =


A

A

C
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DNA sub-matrix5 is s5 =


A

G

A

, DNA sub-matrix6 is s6 =


A

C

A



DNA sub-matrix7 is s7 =


T

A

T

, DNA sub-matrix8 is s8 =


G

C

C


Step 4:

Generate a chaotic sequence vector n1 through a 1-D chaotic map with initial condition x01 and

constant parameter µ01. Scale the chaotic sequence to [0, 65536].

Step 5:

Apply steps 1 to 3 to the chaotic sequence.

Step 6:

Add the DNA sub matrices of the original signal to the DNA sub matrices of the chaotic sequence,

according to the rules shown in Tables 6.1 and 6.2 on page 114.

Step 7:

Recombine the sub matrices generated from the Step 6 to form a new binary sequence matrix

c(n ∗m).

Step 8:

Generate two chaotic sequences, c1(n ∗ 1) and c2(1 ∗m), along with another initial condition x02,

x03, and constant parameters µ02 and µ03. After that, multiply the two vectors to produce a matrix

w(n ∗m) with range [0, 1]. Map the value of w into (0, 1) by mod (w, 1). Then use the following

threshold function f(x) to get the binary sequence matrix:

f(x) =


0, 0 < w(i, j) ≤ 0.5

1, 0.5 < w(i, j) ≤ 1

, (6.6)

Step 9:

Get the complement to the matrix w(i, j) = 1, then c(i, j) is complemented. Otherwise, it is
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unchanged. For example: if the first row of the

w is
(

1001100110111001

)
,

c is
(

1010100100101010

)
,

c′ is
(

0011000010010011

)
This would produce a new encoding matrix that is c′(n ∗m). Rescaling this matrix produces the

encrypted ECG sample, which would be transmitted through the wireless channels.

Step 10:

Apply the inverse process of Step 2 and Step 1 for the sequence matrix c′, then we will get a real

value of the matrix D that represents the encrypted data signal.

In the decryption process, the reverse steps are applied from the Step 10 to the Step 1. Also,

use the subtraction operation instead of the addition operation as shown in Tables 6.1 and 6.2 on

page 114.

6.4 Experiments and Results

In this work, we used the SHIMMER platform [120] as the embedded sensor system.

From the hardware viewpoint, this platform includes the following:

A low-power 16-bit microcontroller (Texas Instrument MSP430F1611), a low-power radio sup-

ported with 802.15.4, an extension module for the ECG, ElectroMyoGraphy (EMG), and Galvanic

Skin Response (GSR), and built-in triaxial accelerometer.

The MSP430 microcontroller runs at 8 MHz, has 10 KB of RAM, 48 KB of flash

memory, and includes a fast hardware multiplier. As a practical implementation, five sensor nodes

were used as a body area network, which includes the ECG, EMG, and accelerometers in the

human chest, thigh, and leg. The chest node was used as a coordinator for the body area network,

while the encryption algorithm was implemented only inside the ECG node. The nodes were

programmed using the TinyOs, and the data were transmitted to the base station node using Python

2.7 under a Linux operating system to decrypt the data. There is a significant problem that effects
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Figure 6.2: Architecture of the proposed system

the performance of the decryption process by reducing the transmitted packets in the time unit

when using a collision-free (MAC) protocol.

The proposed algorithm was implemented and tested using a SHIMMER sensor nodes

platform, a python programming language, and a TinyOs 2.1.2 that supports the floating-point

computation. The proposed system is designed to support multiple patients (up to 256), using a

single base-station node. Also, it can support different groups of patients: each group belongs to a

different base-station node. In this mode of the operation, different scenarios could be considered,

such as intensive care unit, hospital rooms, rehabilitation units, or patient homes. The proposed

system has been designed to be secure, scalable, effective, and easy to use, as shown in Figure 6.2

on page 121. The sensory data packet from different types of sensor nodes, which are attached to

the patient’s skin, will send information to the coordinator node, using the IEEE 802.15.4 protocol.

The coordinator node will forward the packets to the base-station node, using the same protocol.

The original ECG sensed signal is shown in Figure 6.3 (a) on page 122, while the
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(a) Original ECG signal (b) Histogram of the original
ECG signal

(c) Encrypted ECG signal

(d) Histogram of the encrypted
ECG signal

(e) Single beat ECG signal (f) Encrypted of the single beat

Figure 6.3: Different decrypted ECG signal with different key values of the first group
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(a) x01 =
0.20000000000000001, x02 =
0.41, x03 = 0.61, µ01 =
0.66, µ02 = 0.4, and
µ03 = 0.99

(b) x01 = 0.2, x02 =
0.410000000000000001, x03 =
0.61, µ01 = 0.66, µ02 = 0.4,
and µ03 = 0.99

(c) x01 = 0.2, x02 =
0.41, x03 = 0.61, µ01 =
0.660000000000000001, µ02 =
0.4, and µ03 = 0.99

(d) x01 = 0.9, x02 =
0.41, x03 = 0.61, µ01 =
0.66, µ02 = 0.4, and
µ03 = 0.99

(e) x01 = 0.5, x02 =
0.41, x03 = 0.61, µ01 =
0.3, µ02 = 0.4, and µ03 = 0.99

(f) Decrypted ECG signal with
exactly the same key values
x01 = 0.2, x02 = 0.41, x03 =
0.61, µ01 = 0.3, µ02 = 0.3, and
µ03 = 0.99

Figure 6.4: Different decrypted ECG signal with different key values of the second group
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histogram of the original signal is shown in Figure 6.3 (b) on page 122, where most of the ECG

data are between -0.5 and 0.5 mV. The Figure 6.3 (c) on page 122 is shown the encrypted ECG

signal according to the proposed encryption algorithm, where the signal is detected as a noise

due to the nature of the chaos function. The key values used were x01 = 0.2, x02 = 0.41, x03 =

0.61, µ01 = 0.66, µ02 = 0.4, and µ03 = 0.99. Figure 6.3 (d) on page 122 is depicts the histogram of

the encrypted ECG signal. Here, the contribution of the encrypted data is uniform in contrast to the

Figure 6.3 (b) on page 122. The single beat ECG signal is illustrates in Figure 6.3 (e) on page 122,

while Figure 6.3 (f) on page 122 displays a zoom window of the decrypted signal. Figure 6.4

(a, b, and c) on page 123 show different changes in key values that demonstrate the power of the

proposed algorithm. This is because of the sensitivity of the chaos function to any changes in the

initial conditions. The decrypted signals that use the same encryption keys are shown in Figure 6.4

(d) on page 123, while Figure 6.4 (e and f) on page 123 shows a sample window of the encrypted

ECG signal after changing the initial condition x01. These figures show the difference of the initial

values of the decrypted signals. These values are as follows : x01
µ01

and use the Equation 6.6 on

page 119.

Figure 6.5 (a) on page 125 reveilles the real-time encryption process when sending the

ECG sensor node packets to the body area network. Figure 6.5 (b) on page 125 depicts a zoom

around the 380th samples, where the packets were lost. The decryption process assumes these

samples (∼20 successive samples) are zeros. The whole decryption process was not affected by

the lost samples since the encryption process decrypts each sample alone. The fluctuation shown

in the loss. occurs due to the chaotic nature of the decryption process.

The correlation coefficients are important features, and they are calculated based on

the correlation between the encrypted and the original signals. The main points that can be obtained

from the correlation coefficients are listed as follows:

1. When it is close to the value of 1, then there is a positive linear relationship between the two

vectors.

2. When it is close to the value of -1, then there is a negative linear relationship between the
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(a) ECG signal with some lost samples
(b) Zoom window near the 380th sample shows the
effect of samples loss

Figure 6.5: Zoomed of encrypted ECG signals

two vectors.

3. When it is close to the value of 0, then there is no linear relationship between the two vectors.

The following equations are used to determine the correlation coefficient [121]:

E(x) =
1

N

N∑
i=1

xi, (6.7)

D(x) =
1

N

N∑
i=1

(xi − E(x))2, (6.8)

cov(x) =
1

N

N∑
i=1

(xi − E(x))(yi − E(y)), (6.9)

rxy =
cov(x, y)√
D(x)

√
D(y)

. (6.10)

The correlation coefficient between the decrypted ECG signal and the original ECG signal was 1,

and 0.0215 between the original ECG and the encrypted signals.
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6.5 Comparative Analysis

Since wearable wireless sensor networks have limited storage and computational re-

sources, most of the encryption algorithms are not feasible on these platforms. Connecting this

network to the Internet makes the system more vulnerable, since it would be easy for an intruder to

gain access to the patients’ data, especially in case the physical distance would not be a problem.

Hence, a powerful encryption algorithm is required to maintain the privacy of patient data with the

limited resources of such a network.

There are many effective crypto-systems of traditional encryption algorithms used for

information security, such as Data Encryption Standard (DES); Triple DES (3DES); Blow fish; and

Advanced Encryption Standard (AES). DES suffers from the key size that is (56-bit), and it uses

a 64-block ciphering. There are some potential issues that can occur, especially when encrypting

several gigabytes of data using the same key. The use of the 3DES enables the reuse of the DES

implementation by cascading three instances of DES (with distinct keys). This algorithm is secure

up to 2186 key spaces, but it is slow. Blow fish is a symmetric block cipher that uses a variable

length of a key between 32 to 448 bits. It uses key-dependent lookup tables. Hence, performance

depends on the resources that are available with the platform used. AES accepts keys of 128; 192

and 256-bit length, and uses 128-bit blocks. It is an efficient algorithm from the software and

hardware perspectives [122].

Table 6.3 on page 127 summarizes different encryption algorithms in terms of key

length, block ciphering, number of keys, and applicability in a wireless sensor network. A real-

time DNA-based encryption algorithm and Chaos Theory for secure healthcare information, has

been proposed for the ECG signal encryption. The proposed algorithm has been designed to be

a context-aware algorithm, where all computations are performed on the sensor node. The algo-

rithm was designed to work with limited resources of the computational sensor nodes, where other

encryption methods cannot be implemented with these resources.

The use of Chaos Theory, as a key generator, is more powerful than the pseudorandom
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generator. The DNA-based encryption is a solid approach that can be used for data encoding, since

it requires a minimum of computations. Furthermore, the nature of the one-time pad to encrypt

each sample individually makes it an appropriate technique to be used in a wireless sensor network,

where it minimizes the required memory space. Finally, the algorithm has been implemented

successfully in a real-time body area network for healthcare monitoring and is suitable to be used

in the presence of a collision in wireless communication. For future work, it is important to develop

an algorithm to predict the sample loss and to design a collision-free MAC (media access control)

protocol.

Table 6.3: Encryption algorithm comparisons

Algorithm Key space (bit) Number of keys (bit) Block cipher Applicable in WSN

DES 56 1 yes no

3DES 168 3 yes no

Blow fish 32-448 huge yes no

AES 128, 192, 256 1 yes no

Proposed 312 each sample has it’s a unique key no yes

6.6 Conclusions

Smart connected wearable medical devices have gained the attention of both patients

and professional healthcare providers due to several characteristics, such as the fact that they are

lightweight, small in size, easy to use, and inexpensive. Also, the development of communication

protocols and techniques, such as cloud-based services, enables many healthcare providers to de-

liver their services to patients remotely. However, the remote-based and cloud-based services have

security issues, due to connecting heterogeneous devices that come from different vendors. Use of

traditional cryptography algorithms does not protect health data over the network because the data

are transferred through multiple devices and protocols.

In this chapter, we designed and implemented a novel encryption algorithm that relies

on the utilization of genomics encryption and deterministic chaos to protect the remote healthcare
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monitoring system. The proposed algorithm protects the health data from the main threats, such

as a key theft, man-in-the-middle attack, and brute force attack. Also, the proposed algorithm

is designed in a way that considers the limitations of device size, memory capacity, power con-

sumption, and cost. Moreover, the proposed algorithm does not require complex computations to

encrypt the data. The practical implementation of the proposed encryption algorithm and result

analysis prove that it is ideally suitable for remote health monitoring services in terms of data

security, computations, and power consumption.

128



CHAPTER 7

CONCLUSIONS

In this dissertation, we implemented a novel deep learning-based data minimization

algorithm to integrate with transfer protocols to reduce the size of big genomic datasets during the

transfer phase, and then to transfer the data securely in less time. Also, we implemented three

other data encoding techniques to reduce big genomic datasets during data transfer processes. The

implementation results illustrate that the proposed data minimization algorithm is capable of re-

ducing the transfer time 99-fold, compared to the standard content-encoding of HTTP, and 96-fold

compared to FTP on tested datasets. We used GZIP and MFCompress algorithms as optional

compression algorithms, in addition to our data minimization algorithm to assess how the transfer

protocol behaves in terms of transfer time and size. Also, we showed that our data minimization al-

gorithm provides the best size reduction, reduces transfer time, and securely transfers big genomic

datasets. Our proposed data minimization mechanism relies on a deep learning-based method,

while encoding the data during data transfer, and then transfers the data securely in a shortened

time, as illustrated in section 3.3.3 on page 48. We demonstrated that the data size can be signifi-

cantly reduced by our adaptive encoding, compared to a standard content-encoding scheme, with

and without compression algorithms, as well. Also, we implemented a genomic dataset gener-

ator of a FASTA file format to verify the performance of our current data minimization scheme

and then compared it to the standard, as well as our previous content-encoding schemes. Our

proposed genome generator allowed us to control the repetition in the data, which was instru-

mental in assessing the performance of our data minimization algorithm. The tested encoding

schemes, standard and proposed, were implemented over HTTP, FTP and BitTorrent protocols,

with/out involving compression algorithms. Our experiments indicated that utilizing a CNN-based

content-encoding scheme performs much better than the current and common use of the transfer

protocol content-encoding scheme by assigning short codewords for the dataset characters. We
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conclude that the proposed data minimization algorithm provides the best performance among

current content-encoding approaches for big genomic datasets.

In chapter 7, we designed and implemented a novel encryption algorithm that relies

on the utilization of genomics encryption and deterministic chaos to protect the remote healthcare

monitoring system. The proposed algorithm protects the health data from the main threats, such

as a key theft, man-in-the-middle attack, and brute force attack. Also, the proposed algorithm

is designed in a way that considers the limitations of device size, memory capacity, power con-

sumption, and cost. Moreover, the proposed algorithm does not require complex computations to

encrypt the data. The practical implementation of the proposed encryption algorithm and result

analysis prove that it is ideally suitable for remote health monitoring services in terms of data

security, computations, and power consumption.
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