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The Department of Homeland Security in the United States was created in 2003

in response to weaknesses discovered in the transfer of classified information after the

September 11, 2001 terrorist attacks. While information related to national security

needs to be protected, there must be procedures in place that permit access between ap-

propriate parties. This two-fold issue can be addressed by assigning information-transfer

paths between agencies which may have other agencies as intermediaries while requiring

a large enough number of passwords and firewalls that is prohibitive to intruders, yet

small enough to manage. Situations such as this can be represented by a graph whose

vertices are the agencies and where two vertices are adjacent if there is direct access

between them. Such graphs can then be studied by means of certain edge colorings of

the graphs, where colors here refer to passwords. During the past decade, many re-

search topics in graph theory have been introduced to deal with this type of problems.

In particular, edge colorings of connected graphs have been introduced that deal with

various ways every pair of vertices are connected by paths possessing some prescribed

color condition.

Let G be an edge-colored connected graph, where adjacent edges may be colored the

same. A path P is a rainbow path in an edge-colored graph G if no two edges of P are

colored the same. An edge coloring c of a connected graph G is a rainbow coloring of G

if every pair of distinct vertices of G are connected by a rainbow path in G. In this case,

G is rainbow-connected. The minimum number of colors needed for a rainbow coloring

of G is referred to as the rainbow connection number of G and is denoted by rc(G). A

path P is a proper path in G if no two adjacent edges of P are colored the same. An edge

coloring c of a connected graph G is a proper-path coloring of G if every pair of distinct

vertices of G are connected by a proper path in G. If k colors are used, then c is referred

to as a proper-path k-coloring. The minimum k for which G has a proper-path k-coloring



is called the proper connection number pc(G) of G. In recent years, these two concepts

have been studied extensively by many researchers. It has been observed that these two

concepts model a communications network, where the goal is to transfer information in

a secure manner between various law enforcement and intelligence agencies. Research on

these two concepts has typically involved problems dealing with the minimum number

of colors required for the graphical models of these communications networks to possess

at least one desirable information-transfer path between each pair of agencies.

Looking at rainbow colorings and proper-path colorings in a different way brings up

edge colorings that are intermediate to rainbow and proper-path colorings. Let G be a

nontrivial connected edge-colored graph, where adjacent edges may be colored the same.

A path P in G is a proper path if no two adjacent edges of P are colored the same and is

a rainbow path if no two edges of P are colored the same. For an integer k ≥ 2, a path

P in G is a k-rainbow path if every subpath of P having length at most k is a rainbow

path. An edge coloring of G is a k-rainbow coloring if every pair of distinct vertices of

G are connected by a k-rainbow path in G. The minimum number of colors for which

G has a k-rainbow coloring is called the k-rainbow connection number of G. Thus, if G

is a nontrivial connected graph whose longest paths have length `, then

pc(G) = rc2(G) ≤ rc3(G) ≤ · · · ≤ rc`(G) = rc(G).

We first investigate the 3-rainbow colorings in graphs and the relationships among

the 3-rainbow connection numbers and the well-studied chromatic number, chromatic

index, rainbow or proper connection numbers of graphs. Since every connected graph

G contains a spanning tree T and rck(G) ≤ rck(T ), the various connection numbers of

trees play an important role in the study of general graphs. It is shown that

? for a triple (a, b, c) of integers with 2 ≤ a ≤ b ≤ c, there exists a tree T with

pc(T ) = a, rc3(T ) = b and rc(T ) = c if and only if a = b = c or 2 ≤ a < b ≤
min{2a− 1, c} and

? for a triple (a, b,m)of positive integers, there exists a tree T of sizem with χ′(G) = a

and rc3(T ) = b if and only if a ≤ b ≤ m such that a = b = m or 2 ≤ a < b ≤
min{2a− 1,m}.

For each integer k ≥ 3, the values of rck(G) are determined for several well-known classes

of graphs G. For example, if Ks,t is the complete bipartite graph 2 ≤ s ≤ t, ` is the



length of a longest path in Ks,t and k is an integer with 2 ≤ k ≤ `, then

rck(Ks,t) =


2 if k = 2

min
{⌈

s
√
t
⌉
, 3
}

if k = 3

min
{⌈

s
√
t
⌉
, 4
}

if 4 ≤ k ≤ `.

If T is a tree of diameter at least k for some integer k ≥ 2, then

rck(T ) = max{m(T ′) : T ′ ⊆ T and diam(T ′) = k}.

With the aid of results on trees, upper bounds for rck(G) are established in terms of the

maximum degree of G. For example, if G is a connected graph of order at least k+1 ≥ 4

and maximum degree ∆ ≥ 3, then

rck(G) ≤


∆[(∆−1)t−1]

∆−2 if k = 2t ≥ 2 is even

1 + 2(∆− 1)
[(∆−1)t−1−1]

∆−2 if k = 2t− 1 ≥ 3 is odd.

We also establish sharp upper bounds for a connected graph in terms of its order.

? If G is a nontrivial connected graph of order n ≥ 3 that is not a tree such that

the length of a longest path in G is `, then rck(G) ≤ n − 2 for all integers k with

2 ≤ k ≤ `. Furthermore, the upper bound n− 2 is best possible.

? Let G be a connected graph of order n ≥ 4 and size m ≥ n + 1 and let ` be the

length of a longest path in G. If G does not contain K4 − e as a subgraph, then

rck(G) ≤ n − 3 for all integers k with 2 ≤ k ≤ `. Furthermore, the upper bound

n− 3 is best possible.

If G is a nontrivial connected graph of diameter d, then rcd(G) ≥ d. Furthermore, if

G is a nontrivial tree of order n, then rcd(G) = n − 1 and so rcd(G) − diam(G) can

be arbitrarily large. On the other hand, if G is a connected graph of order n ≥ 3 and

diameter d ≥ 2 that is not tree, then d ≤ rcd(G) ≤ n− 2. It is shown that for each triple

(d, k, n) of integers with 2 ≤ d ≤ k ≤ n− 1, there exists a connected graph G of order n

that is not a tree such that diam(G) = d and rcd(G) = k if and only if k 6= n− 1.

One of well-known areas of research in graph theory involves the Hamiltonian prop-

erties of graphs. A Hamiltonian cycle in a graph G is a cycle containing every vertex of G

and a graph having a Hamiltonian cycle is a Hamiltonian graph. A Hamiltonian path in



a graph G is a path containing every vertex of G. A graph G is Hamiltonian-connected

if G contains a Hamiltonian u− v path for every pair u, v of distinct vertices of G. In a

rainbow coloring or a proper-path coloring of a connected graph G, every two vertices u

and v of G are connected by a rainbow u− v path or a proper u− v path and there is no

condition on what the length of such a path must be. For certain graphs G, however, it

is natural to ask whether there may exist an edge coloring of G using a certain number

of colors such that every two vertices of G are connected by a rainbow path or proper

path of a prescribed length.

For a Hamiltonian-connected graph G, an edge coloring c is called a Hamiltonian-

connected rainbow coloring if every two vertices of G are connected by a rainbow Hamil-

tonian path in G. The minimum number of colors needed in a Hamiltonian-connected

rainbow coloring of G is the rainbow Hamiltonian-connection number of G and is denoted

by hrc(G). An edge coloring c is a proper Hamiltonian-path coloring if every two vertices

of G are connected by a proper Hamiltonian path in G. The minimum number of colors

needed in a proper Hamiltonian-path coloring of G is the proper Hamiltonian-connection

number of G and is denoted by hpc(G).

Inspired by proper Hamiltonian-path colorings, k-rainbow colorings and Hamiltonian-

connected rainbow colorings of Hamiltonian-connected graphs, we introduce and study

the concept of k-rainbow Hamiltonian-path colorings of Hamiltonian-connected graphs.

Let G be an edge-colored Hamiltonian-connected graph, where adjacent edges may be

colored the same. For an integer k ≥ 2, a Hamiltonian path P in G is a k-rainbow

Hamiltonian path if every subpath of P having length at most k is a rainbow path.

An edge coloring of G is a k-rainbow Hamiltonian-path coloring if every two vertices

of G are connected by a k-rainbow Hamiltonian path in G. The minimum number of

colors in a k-rainbow Hamiltonian-path coloring of G is the k-rainbow Hamiltonian-

connection number of G. Thus, k-rainbow Hamiltonian-path colorings are intermediate

to Hamiltonian-connected rainbow colorings and proper Hamiltonian-path colorings. In

particular, if G is a Hamiltonian-connected graph of order n ≥ 4 and size m, then

2 ≤ hpc(G) = hrc2(G) ≤ hrc3(G) ≤ · · · ≤ hrcn−1(G) = hrc(G) ≤ m.

We investigate the k-rainbow Hamiltonian-path colorings in two well-known classes of

Hamiltonian-connected graphs, namely the join G ∨K1 of a Hamiltonian graph G and

the trivial graph K1 and the prism G � K2 where G is a Hamiltonian graph of odd

order. Results and open questions are also presented.

There is a rainbow concept that is somewhat reverse to rainbow connection in graphs.

Let G be a nontrivial connected, edge-colored graph. An edge-cut R of G is called a



rainbow cut if no two edges in R are colored the same. An edge-coloring of G is a

rainbow disconnection coloring if for every two distinct vertices u and v of G, there

exists a rainbow cut in G, where u and v belong to different components of G−R. We

introduce and study the rainbow disconnection number rd(G) of G, which is defined as

the minimum number of colors required of a rainbow disconnection coloring of G. It is

shown that the rainbow disconnection number of a nontrivial connected graph G equals

the maximum rainbow disconnection number among the blocks of G. It is also shown

that for a nontrivial connected graph G of order n, rd(G) = n − 1 if and only if G

contains at least two vertices of degree n − 1. The rainbow disconnection numbers of

all grids Pm � Pn are determined. Furthermore, it is shown for integers k and n with

1 ≤ k ≤ n − 1 that the minimum size of a connected graph of order n having rainbow

disconnection number k is n+ k − 2. Other results and a conjecture are also presented.
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Chapter 1

Introduction

In this chapter, we provide background and motivation for research topics studied in this

work and review some fundamental concepts and results on graph colorings that will be

encountered as we proceed. In addition, we review some facts concerning Hamiltonian

properties, vertex-cuts and connectivity concepts in graphs. We refer to the books

[15, 16] for graph theoretic notation and terminology not described in this work. All

graphs under consideration here are nontrivial connected graphs in general.

1.1 An Information-Transfer Problem

It was stated in [12] that the Department of Homeland Security in the United States

was created in 2003 in response to weaknesses discovered in the transfer of classified

information after the September 11, 2001 terrorist attacks. In [19], Ericksen made the

following observation:

An unanticipated aftermath of those deadly attacks was the realization that

law enforcement and intelligence agencies couldn’t communicate with each

other through their regular channels from radio systems to databases. The

technologies utilized were separate entities and prohibited shared access, mean-

ing there was no way for officers and agents to cross check information be-

tween various organizations.

While information related to national security needs to be protected, there must be

procedures in place that permit access between appropriate parties. This two-fold issue

can be addressed by assigning information-transfer paths between agencies which may

have other agencies as intermediaries while requiring a large enough number of passwords

and firewalls that is prohibitive to intruders, yet small enough to manage. An immediate

question arises:

1



What is the minimum number of passwords or firewalls needed that permits

the existence of one or more secure paths between every two agencies?

To answer this question, we need an understanding of what is meant by a secure

information-transfer path. There are many possible interpretations of what might be

meant by such a secure path. At one extreme, a path may be considered secure only if

the passwords along the path are distinct. A considerably less stringent interpretation

might require only that every pair of consecutive passwords along the path be distinct.

As described in [12], situations such as this can be represented by a graph whose vertices

are the agencies and where two vertices are adjacent if there is direct access between

them. Such graphs can then be studied by means of certain edge colorings of the graphs,

where colors here refer to passwords.

1.2 Rainbow and Proper-Path Colorings

A rainbow coloring of a connected graph G is an edge coloring c of G with the property

that for every two vertices u and v of G, there exists a u− v rainbow path (no two edges

of the path are colored the same). In this case, G is rainbow-connected (with respect to

c). The minimum number of colors needed for a rainbow coloring of G is referred to

as the rainbow connection number of G and is denoted by rc(G). These concepts were

introduced in 2006 and studied by Chartrand, Johns, McKeon and Zhang [12]. In recent

years, this topic has been studied by many and, in fact, there is a book by Li and Sun

[28] on rainbow colorings, published in 2012.

While passwords have been around for ages, passwords, as we know them, are used to

stop unauthorized individuals from having access to private information. In recent years,

it has become increasingly clear of the necessity of using more complex passwords and of

changing passwords more frequently. Indeed, some policies of agencies and institutions

require their users to change passwords – every year, every 180 days or perhaps every 90

days. This, of course, makes remembering new passwords more difficult. Since protecting

security is critical, some policies require any new password to be distinct from those

passwords used within a certain time period. For example, one American university

requires its employees to change passwords at least once a year and not use the same

password that has been used during the past 20 years. This suggests another concept

in graph theory, namely that of assigning colors to the edges of a connected graph G so

that every two vertices of G are connected by a path P having the property that the

colors on every subpath of P of length k or less are distinct (a rainbow subpath).

Let G be an edge-colored connected graph, where adjacent edges may be colored the
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same. A path P in G is properly colored or, more simply, is a proper path in G if no two

adjacent edges of P are colored the same. An edge coloring c of a connected graph G

is a proper-path coloring of G if every pair of distinct vertices of G are connected by a

proper path in G. If k colors are used, then c is referred to as a proper-path k-coloring.

The minimum k for which G has a proper-path k-coloring is called the proper connection

number pc(G) of G. This concept was defined by Borozan et al. in [8] and studied by

many (see [1, 27] for example).

While proper-path colorings were introduced to parallel concepts dealing with rain-

bow colorings, there is motivation for this concept corresponding to that introduced for

rainbow colorings of graphs. With regard to the national security discussion mentioned

above, we are then interested in the answer to the following question:

What is the minimum number of passwords or firewalls that allow one or

more secure paths between every two agencies where, as we progress from one

step to the next along such a path, we are required to change passwords?

In [27], Li and Magnant reported that when building a communications network

between wireless signal towers, one fundamental requirement is that the network be

connected. If there cannot be a direct connection between two towers A and B for

any variety of reasons (such as there is a mountain between the towers), then it is

necessary to have a route through other towers to proceed from A to B. As a wireless

transmission passes through a signal tower, it would help to avoid interference if the

incoming signal and the outgoing signal do not share the same frequency. Suppose we

assign a vertex to each signal tower, an edge between two vertices if the corresponding

signal towers are directly connected by a signal and assign a color to each edge based

on the assigned frequency used for the communication. Then the minimum number of

frequencies needed to assign to the connections between towers so that there is always a

path avoiding interference between each pair of towers is precisely the proper connection

number of the corresponding graph.

1.3 The Knight’s Tour Problem

Anther motivation has been suggested for the study of proper-path colorings of graphs.

The Knight’s Tour Problem is a famous problem that asks whether it’s possible for a

knight to tour an 8×8 chessboard where each square of the chessboard is visited exactly

once (except that the final square visited is the initial square of the tour) and each step

along the tour is a single legal move of a knight. It is well known that such a tour is

3



possible. Since a single move of a knight causes the knight to move from a square of

one color on the chessboard to a square of the other color, it follows that if two knights

were placed on any two squares of a chessboard, then there exists a path of legal moves

from one knight to the other on a chessboard, using legal knight moves, such that the

squares visited along the path alternate in color. Because the Knight’s Tour Problem is

equivalent to that of finding a particular type of Hamiltonian cycle on the grid P8 � P8

(the Cartesian product of P8 and P8), this brings up two possible graph colorings.

(1) Colors are assigned to the edges of a connected graph G so that for every two

vertices u and v of G, there exists a u − v path P in G such that every two

adjacent edges on P have distinct colors.

(2) Colors are assigned to the vertices of a connected graph G so that for every two

vertices u and v of G, there exists a u−v path P in G such that every two adjacent

vertices on P have distinct colors.

It is colorings of type (1), of course, that lead us once again to proper-path colorings of

connected graphs.

1.4 k-Rainbow Colorings

Let us review the various edge-colorings we have discussed. First, if G is an edge-colored

graph such that for every two vertices u and v, there exists a u − v path P having

the property that every subpath of P is a rainbow path, then this edge coloring is a

rainbow coloring. On the other hand, if for every two vertices u and v, there exists a

u − v path Q having the property that every subpath of Q of length (at most) 2 is a

rainbow path, then this edge coloring is a proper-path coloring. However, what if we

require this for subpaths of length greater than 2? Looking at rainbow colorings and

proper-path colorings in this way brings up, quite naturally, other edge colorings that

are intermediate to rainbow and proper-path colorings.

More formally, let G be an edge-colored nontrivial connected graph, where adjacent

edges may be colored the same. For an integer k ≥ 2, a path P in G is a k-rainbow

path (with respect to the edge coloring) if every subpath of P having length k or less is

a rainbow path. Thus, every proper path is a 2-rainbow path and for each k ≥ 3, a k-

rainbow path is also an `-rainbow path for every integer ` with 2 ≤ ` ≤ k. In particular,

every k-rainbow path is a proper path for each integer k ≥ 2.

For an integer k ≥ 2, an edge coloring c is a k-rainbow coloring of a connected graph

G if every pair of distinct vertices of G are connected by a k-rainbow path in G. In

4



this case, the graph G is k-rainbow connected (with respect to c). If j colors are used to

produce a k-rainbow coloring of G, then c is referred to as a k-rainbow j-edge coloring (or

simply a k-rainbow j-coloring). The minimum j for which G has a k-rainbow j-coloring

is called the k-rainbow connection number rck(G) of G. Hence, rc2(G) = pc(G) and

rk(G) = rc(G) if k is the length of a longest path in G. For every nontrivial connected

graph G of size m and integer k ≥ 2,

1 ≤ pc(G) ≤ rck(G) ≤ rc(G) ≤ m. (1.1)

To illustrate these concepts, a proper-path 2-coloring, a 3-rainbow 3-coloring and a

rainbow 4-coloring are shown for the graph G in Figure 1.1. In fact, for this graph G,

we have pc(G) = 2, rc3(G) = 3 and rc(G) = 4.
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Figure 1.1: Three edge colorings of a graph G

1.5 Basic Definitions and Notation

In this section, we review some basic concepts in graph theory that we will need along

with some of the theorems that have been obtained concerning them. We refer to the

books [15, 16] for additional information about these concepts.

1.5.1 Proper Vertex and Edge Colorings

The vertex colorings of a graph G that have received the most attention over the years are

proper colorings (see [15, 36, 37]). A proper vertex coloring of a graph G is a function c

from V (G) to some set S of objects (colors) such that c(u) 6= c(v) for every pair u, v of

adjacent vertices of G. In our case, S = [k] = {1, 2, . . . , k} for some positive integer k

and so the coloring c is a k-vertex coloring (or, more often, simply a k-coloring) of G.

The minimum positive integer k for which G has a k-vertex coloring is the chromatic

number of G, denoted by χ(G). For graphs of order n ≥ 3, it is immediate which graphs

of order n have chromatic number 1, 2 or n. A graph is empty if it has no edges; thus,

a nonempty graph has one or more edges.
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Observation 1.5.1 If G is a graph of order n ≥ 3, then χ(G) = 1 if and only if G is

empty, χ(G) = n if and only if G = Kn, and χ(G) = 2 if and only if G is a nonempty

bipartite graph.

By Observation 1.5.1 then, χ(G) ≥ 3 if and only if G contains an odd cycle. The

following result, though elementary, is useful.

Proposition 1.5.2 If H is a subgraph of a graph G, then χ(H) ≤ χ(G).

The clique number ω(G) of a graph G is the maximum order of a complete subgraph

of G. The following result is therefore a consequence of Proposition 1.5.2.

Corollary 1.5.3 For every graph G, ω(G) ≤ χ(G).

There are graphs G for which χ(G) and ω(G) may differ significantly. As far as upper

bounds for the chromatic number of a graph G are concerned, the following result gives

such a bound in terms of the maximum degree ∆(G) of the graph G.

Theorem 1.5.4 For every graph G, χ(G) ≤ ∆(G) + 1.

For each positive integer n, χ(Kn) = n = ∆(Kn) + 1 and for each odd integer n ≥ 3,

χ(Cn) = 3 = ∆(Cn) + 1. Brooks [6] proved that these two classes of graphs are the only

connected graphs with this property.

Theorem 1.5.5 (Brooks’ Theorem) If G is a connected graph that is neither an odd

cycle nor a complete graph, then χ(G) ≤ ∆(G).

A proper edge coloring c of a nonempty graph G is a function c : E(G)→ {1, 2, . . . , k}
for some positive integer k with the property that c(e) 6= c(f) for every two adjacent

edges e and f of G. If the colors are chosen from a set of k colors, then c is called a k-edge

coloring of G. The minimum positive integer k for which G has a k-edge coloring is called

the chromatic index of G and is denoted by χ′(G). It is immediate for every nonempty

graph G that χ′(G) ≥ ∆(G). The best known and most useful theorem dealing with the

chromatic index is one obtained by Vizing [34].

Theorem 1.5.6 (Vizing’s Theorem) For every nonempty graph G,

χ′(G) ≤ ∆(G) + 1.
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As a result of Vizing’s theorem, the chromatic index of a nonempty graph G is one

of two numbers, namely either ∆(G) or ∆(G) + 1. A graph G with χ′(G) = ∆(G) is

called a class one graph while a graph G with χ′(G) = ∆(G) + 1 is called a class two

graph. The following result is essentially due to König [26].

Theorem 1.5.7 (König’s Theorem) Every nonempty bipartite graph is of class one.

Every complete bipartite graph is of class one, while cycles and complete graphs are

of class one if their orders are even and are of class two if their orders are odd. For an

r-regular graph G, either χ′(G) = r or χ′(G) = r+ 1 by Vizing’s theorem. If χ′(G) = r,

then there is an r-edge coloring of G, resulting in r color classes E1, E2, . . . , Er. Since

every vertex v of G has degree r, the vertex v is incident with exactly one edge in each

set Ei (1 ≤ i ≤ r). Therefore, each color class Ei is a perfect matching (or a 1-factor)

and G is 1-factorable. The following results are known (see [15]).

Theorem 1.5.8 A regular graph G is of class one if and only if G is 1-factorable.

Corollary 1.5.9 Every regular graph of odd order is of class two.

We refer to the books [15, 36, 37] for more information on graph colorings.

1.5.2 Hamiltonian Concepts

A Hamiltonian path in a graphG is a path containing every vertex ofG and a Hamiltonian

cycle in a graph G is a cycle containing every vertex of G. A graph having a Hamiltonian

cycle is a Hamiltonian graph. A graph G is Hamiltonian-connected if G contains a

Hamiltonian u − v path for every pair u, v of distinct vertices of G. Among many

sufficient conditions for a graph G to be Hamiltonian or Hamiltonian-connected are

those concerning the minimum of the degree sums of two nonadjacent vertices in G and

are those concerning the size of G. For a nontrivial graph G that is not complete, let

σ2(G) = min{deg u+ deg v : uv /∈ E(G)}.

For a connected graph G, let

diam(G) = max{d(u, v) : u, v ∈ V (G)}

denote the diameter of G, where d(u, v) is the length of the shortest path from u to v.

The following result is well known (see [16, p. 152], for example).
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Theorem 1.5.10 If G is a graph of order n ≥ 2 such that σ2(G) ≥ n − 1, then G

contains a Hamiltonian path.

The following two results are due to Ore, the first of which was obtained in 1960 [30]

and the second in 1963 [31].

Theorem 1.5.11 (Ore) If G is a graph of order n ≥ 3 such that σ2(G) ≥ n, then G

is Hamiltonian.

Theorem 1.5.12 (Ore) If G is a graph of order n ≥ 4 such that σ2(G) ≥ n+ 1, then

G is Hamiltonian-connected.

Each of Theorems 1.5.10–5.1.1 has a corollary providing a lower bound on the mini-

mum degree δ(G) for a graph G to possess the respective property.

Corollary 1.5.13 If G is a graph of order n ≥ 2 with δ(G) ≥ (n−1)/2, then G contains

a Hamiltonian path.

The following result (which is a corollary of Theorem 1.5.11) is the first theoretical

result on Hamiltonian graphs. This result occurred in 1952 and is due to Dirac [17].

Corollary 1.5.14 (Dirac) If G is a graph of order n ≥ 3 with δ(G) ≥ n/2, then G is

Hamiltonian.

The following result is a corollary of Theorem 5.1.1.

Corollary 1.5.15 If G is a graph of order n ≥ 4 with δ(G) ≥ (n + 1)/2, then G is

Hamiltonian-connected.

It is well known that all bounds stated in Corollaries 1.5.13, 1.5.14 and 1.5.15 are

sharp.

1.5.3 Cut-Sets and Connectivity

A vertex-cut of a graph G is a set S of vertices of G such that G − S is disconnected.

A vertex-cut of minimum cardinality in G is called a minimum vertex-cut of G and this

cardinality is called the vertex-connectivity (or the connectivity) of G (when G is not

complete) and is denoted by κ(G). Complete graphs do not contain vertex-cuts. The

connectivity of the complete graph of order n is defined as n− 1, that is, κ(Kn) = n− 1.

In general, the connectivity κ(G) of a graph G is the smallest number of vertices whose

removal from G results in either a disconnected graph or a trivial graph. Therefore, for

every graph G of order n,
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0 ≤ κ(G) ≤ n− 1.

Thus, a graph G has connectivity 0 if and only if either G = K1 or G is disconnected;

a graph G has connectivity 1 if and only if G = K2 or G is a connected graph with

cut-vertices; and a graph G has connectivity 2 or more if and only if G is a nonseparable

graph (connected and no cut-vertices) of order 3 or more.

A graph G is k-connected for some positive integer k if κ(G) ≥ k. That is, G is

k-connected if the removal of fewer than k vertices from G does not result in a discon-

nected graph. The 1-connected graphs are then the nontrivial connected graphs, while

the 2-connected graphs are the nonseparable graphs of order 3 or more. Whitney [35]

provided a useful characterization of k-connected graphs regarding the number of inter-

nally disjoint paths. Note that two u− v paths are internally disjoint if they have only

u and v in common.

Theorem 1.5.16 (Whitney’s Theorem) A nontrivial graph G is k-connected for some

positive integer k if and only if for each pair u, v of distinct vertices of G, there are at

least k internally disjoint u− v paths in G.

An edge-cut of a graph G is a subset X of E(G) such that G−X is disconnected. An

edge-cut of minimum cardinality in G is a minimum edge-cut and this cardinality is the

edge-connectivity of G, which is denoted by λ(G). The trivial graph K1 does not contain

an edge-cut but its edge-connectivity is defined to be 0; that is, λ(K1) = 0. Therefore,

λ(G) is the minimum number of edges whose removal from G results in a disconnected

or trivial graph. Since the set of edges incident with any vertex of a graph G of order n

is an edge-cut of G, it follows that

0 ≤ λ(G) ≤ δ(G) ≤ n− 1.

A graph G is k-edge-connected for some positive integer k if λ(G) ≥ k; namely, G

is k-edge-connected if the removal of fewer than k edges from G results in neither a

disconnected graph nor a trivial graph. Thus, a 1-edge-connected graph is a nontrivial

connected graph and a 2-edge-connected graph is a nontrivial connected bridgeless graph.

There is a well-known edge analogue of Whitney’s Theorem that appears in many sources

(see [14, 102], for example).

Theorem 1.5.17 A nontrivial graph G is k-edge-connected if and only if G contains k

pairwise edge-disjoint u− v paths for each pair u, v of distinct vertices of G.
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1.5.4 Distance Concepts

Let G be a nontrivial connected graph. The distance d(u, v) between vertices u and v

in G is the minimum number of edges in a u − v path in G. The eccentricity e(v) =

max{d(v, w) : w ∈ V (G)} of a vertex v of G is the distance between v and a vertex

farthest from v in G. The diameter diam(G) = max{e(v) : v ∈ V (G)} of G is the largest

eccentricity among the vertices of G and the radius rad(G) = min{e(v) : v ∈ V (G)} is

the smallest eccentricity among the vertices of G. Therefore, the diameter of G is the

greatest distance between any two vertices of G. A vertex v with e(v) = rad(G) is called

a central vertex of G and a vertex v with e(v) = diam(G) is called a peripheral vertex

of G. Two vertices u and v of G with d(u, v) = diam(G) are antipodal vertices of G.

Necessarily, if u and v are antipodal vertices in G, then both u and v are peripheral

vertices. The subgraph induced by the central vertices of a connected graph G is the

center of G and the subgraph induced by the peripheral vertices of a connected graph G

is the periphery of G. The following result is due to Hedetniemi (see [9]).

Theorem 1.5.18 [9] Every graph is the center of some graph.

While every graph is the center of some graph, this is not true for the periphery. The

following result is due to Bielak and Sys lo (see [5]).

Theorem 1.5.19 [5] A nontrivial graph G is the periphery of some graph if and only

if every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.
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Chapter 2

On 3-Rainbow Connected Graphs

In this chapter, we investigate k-rainbow colorings of graphs for the case where k = 3.

Let’s first review this concept. Let G be a connected graph of order at least 4. An edge

coloring c of G is a 3-rainbow coloring if every pair of distinct vertices of G are connected

by a path every subpath of which having length 3 or less is a rainbow path. The minimum

integer j for whichG has a 3-rainbow j-coloring is called the 3-rainbow connection number

rc3(G) of G. We investigate the relationship between the 3-rainbow connection numbers

and the well-studied rainbow and proper connection numbers of graphs. The values of

rc3(G) are determined for several well-known classes of graphs G. With the aid of the

3-rainbow connection number of a tree, we establish sharp bounds for the 3-rainbow

connection number of a graph and some realization results on trees. Furthermore, we

study the relationship between the 3-rainbow connection numbers, chromatic number and

chromatic index of a graph and present a realization result on the 3-rainbow connection

number and chromatic index of a graph.

2.1 Preliminary Results

Let G be a nontrivial connected graph of order n and size m. In the case of the k-rainbow

connection number when k = 3, the inequalities in

1 ≤ pc(G) ≤ rck(G) ≤ rc(G) ≤ m for all integers k ≥ 2

give rise to the following inequalities:

1 ≤ pc(G) ≤ rc3(G) ≤ rc(G) ≤ m. (2.1)

Since rc(G) = 1 if and only if G = Kn, it follows that pc(G) = rc3(G) = 1 if and only if

G = Kn. Thus, rc3(G) = 1 if and only if rc(G) = 1.
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Proposition 2.1.1 Let G be a nontrivial connected graph. Then

rc(G) = 2 if and only if rc3(G) = 2.

Proof. If rc(G) = 2, then G is not complete and so 2 ≤ rc3(G) ≤ rc(G) = 2. Thus,

rc3(G) = 2. For the converse, suppose that rc3(G) = 2. Then there exists a 3-rainbow

2-coloring c of G. Since the only 3-rainbow paths in G are proper 2-colored paths, it

follows that c is also a rainbow 2-coloring of G. Hence, rc(G) = 2.

The following observation is immediate.

Observation 2.1.2 Let G be a nontrivial connected graph.

If rc3(G) = 2, then pc(G) = 2.

Not surprisingly, the converse of Observation 2.1.2 is false. For example, pc(P4) = 2,

while rc3(P4) = 3. In fact, if c is a 3-rainbow coloring of a graph G and P is a 3-rainbow

path of length at least 3, then the number of colors of the edges of P is at least 3. This

observation gives the following result.

Proposition 2.1.3 If G is a connected graph with diam(G) ≥ 3, then

rc3(G) ≥ 3.

It is probably not surprising that the converse of Proposition 2.1.3 is false. For

example, the diameter of the Petersen graph P is 2 and it is known that pc(P ) = 2 and

rc(P ) = 3. Thus, either rc3(P ) = 2 or rc3(P ) = 3. We show that rc3(P ) = 3. Assume,

to the contrary, that there is a 3-rainbow 2-coloring c of P using the colors 1 and 2.

Since P is 3-regular, there are two adjacent edges of P that are colored the same, say

c(uv) = c(vw) = 1. Since (u, v, w) is not a proper path and the girth of P is 5, the length

of any 3-rainbow u − v path of the Petersen graph P is at least 3, which is impossible.

Hence, rc3(P ) = 3. Following this example, one might hope that a small diameter would

result in an upper bound on the 3-rainbow connection number. However, as we will see

later, the 3-rainbow connection number of a graph can be arbitrarily large regardless of

the diameter.

If H is a connected spanning subgraph of G and cH : E(H) → [k] is a 3-rainbow

k-coloring of H, then cH can be extended to a 3-rainbow coloring cG of G by assigning

any color in [k] to each edge in E(G)−E(H). Since every two vertices of G are connected

by a 3-rainbow path in H (and so in G), it follows that cG is a 3-rainbow k-coloring of

G. This observation gives the following result.
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Proposition 2.1.4 If H is a connected spanning subgraph of a nontrivial connected

graph G, then rc3(G) ≤ rc3(H). In particular, if T is a spanning tree of G, then

rc3(G) ≤ rc3(T ).

In the case of paths, we have the following.

Proposition 2.1.5 For each integer n ≥ 4, rc3(Pn) = 3.

It is shown in [12] that rc(Cn) = dn/2e for each integer n ≥ 4. Thus,

rc3(C4) = rc(C4) = 2 and rc3(C5) = rc(C5) = 3.

More generally, we have the following.

Proposition 2.1.6 For each integer n ≥ 5, rc3(Cn) = 3.

A Hamiltonian path in a graph G is a path containing every vertex of G. A graph

G containing a Hamiltonian path is a traceable graph. The following is an immediate

consequence of Propositions 2.1.4 and 2.1.5.

Corollary 2.1.7 If a graph G is traceable, then rc3(G) ≤ 3.

As an illustration of Corollary 2.1.7, we determine the 3-rainbow connection number

of grids. The Cartesian product G � H of two vertex-disjoint graphs G and H is the

graph with vertex set V (G)× V (H), where (u, v) is adjacent to (w, x) in G � H if and

only if either u = w and vx ∈ E(H) or uw ∈ E(G) and v = x. The m × n grid graph

Gm,n = Pm � Pn consists of m horizontal paths Pn and n vertical paths Pm.

Proposition 2.1.8 Let m,n ∈ N with m ≥ 2 and n ≥ 2. Then

rc3(Pm � Pn) =

{
2 m = n = 2
3 m ≥ 3 or n ≥ 3.

Proof. Let G = Pm � Pn and suppose first that m = n = 2. For this proof, the

vertices of G are considered as entries of a matrix, where xi,j denotes the vertex in row

i and column j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Since G is not complete, rc3(G) ≥ 2. We demonstrate that G has a 3-rainbow

2-coloring. Indeed, let

� c(xi1,j1xi2,j2) = 1 if i1 = i2, and
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� c(xi1,j1xi2,j2) = 2 if i1 6= i2

In other words, all horizontal paths are colored 1 and all vertical paths are colored 2.

Since every path between two vertices in G requires at most one vertical edge and at

most one horizontal edge, this is a 3-rainbow 2-coloring of G.

Now suppose without loss of generality that m ≥ 3. Since the graph G now has

diameter at least 3, rc3(G) ≥ 3 by Proposition 2.1.3. However, since G is traceable,

Corollary 2.1.7 implies that rc3(G) ≤ 3. Thus, rc3(G) = 3 in this case, as desired.

The join G = G1 ∨G2 of G1 and G2 has vertex set V (G) = V (G1)∪V (G2) and egde

set

E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

One example is the wheel Wn = Cn ∨K1 of order n+ 1 ≥ 4, which is the join of a cycle

Cn and K1, for which we have the following result.

Proposition 2.1.9 For the wheel Wn of order n+ 1 ≥ 4,

rc3(Wn) =


1 if n = 3
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

Proof. Since W3 = K4, it follows that rc3(W3) = 1. Thus, we may assume that n ≥ 4.

Let Cn = (v1, v2, . . . , vn, v1) and V (K1) = {v}. First, suppose that n = 4, 5, 6. We define

an edge coloring c : E(Wn)→ {1, 2} as follows:

? If n = 4, let c be a proper coloring of C4 and let c(vvi) = 1 for 1 ≤ i ≤ 4;

? If n = 5, let c(e) = 1 if e ∈ {vv1, v1v2, v3v4} and c(e) = 2 otherwise;

? If n = 6, let c be a proper coloring of C6, let c(vvi) = 1 for 1 ≤ i ≤ 3 and c(vvi) = 2

for 4 ≤ i ≤ 6.

In each case, c is a 3-rainbow 2-coloring c of Wn and so rc3(Wn) = 2 for n = 4, 5, 6.

Next, suppose that n ≥ 7. Since Wn is traceable, it follows by Corollary 2.1.7 that

rc3(Wn) ≤ 3. It remains to show that rc3(Wn) 6= 2. Assume, to the contrary, that there

is a 3-rainbow 2-coloring c of Wn using the colors 1 and 2 for some integer n ≥ 7. Thus,

for each pair x, y of distinct vertices of Wn, there is a properly colored x − y path of

length 2 in Wn. First, observe that if i, j ∈ {1, 2, . . . , n} such that |i − j| ≥ 3, then

there is a unique vi − vj path of length 2 in Wn, namely, (vi, v, vj). We may assume,

without loss of generality, that c(vv1) = 1. Hence, c(vvi) = 2 for 4 ≤ i ≤ n − 2. Since
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c(vv4) = c(vvn−2) = 2, it follows that c(vv2) = c(vvn) = 1. Next, since c(vv2) = 1,

this implies that c(vvn−1) = 2. Similarly, since c(vvn) = 1, we have c(vv3) = 2. Thus,

c(vv3) = c(vvn−1) = 2. Since the only v3 − vn−1 path of length 2 in Wn is (v3, v, vn−1),

which is not proper, this produces a contradiction. Therefore, rc3(Wn) = 3 for n ≥ 7.

It is shown by Chartrand et al. in [12] that if Wn is the wheel of order n + 1 ≥ 4,

then

rc(Wn) =


1 if n = 3
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

Thus, rc3(Wn) = rc(Wn) for n ≥ 3.

In Proposition 2.1.9, we saw that rc3(Wn) = 3 for n ≥ 7, while rc3(W6) = 2. The

reason for this is that for each integer n ≥ 7, the cycle Cn = (v1, v2, . . . , vn, v1) has the

property that Cn contains a vertex u1 for which there exists a cyclic sequence

s : u1, u2, . . . , uk, uk+1 = u1

of k distinct vertices of Cn for some odd integer k ≥ 3 such that dCn(ui, ui+1) ≥ 3 for

each integer i for 1 ≤ i ≤ k. In general, we will say that a graph G has Property (1) if

it contains a vertex u1 for which such a cyclic sequence exists. In fact, here every vertex

of Cn has Property (1). For example, for n = 7, the cyclic sequence

s : v1, v4, v7, v3, v6, v2, v5, v1

has this property, while for n = 8, the cyclic sequence

s : v1, v4, v7, v2, v5, v1

has this property. Let v be the vertex of degree n in Wn. If there existed a 3-rainbow

2-coloring of Wn, then we can assume that c(vv1) = 1 in each case above. For n = 7, we

then must have c(vv4) = 2, c(vv7) = 1, c(vv3) = 2, c(vv6) = 1, c(vv2) = 2, c(vv5) = 1

and c(vv1) = 2, which is impossible. Therefore, rc3(Wn) 6= 2 for n ≥ 7. In the case of

W6, there is no vertex of C6 for which such a sequence s exists. For example, for the

vertex v1 of C6, the only vertex u with the property that dC6(v1, u) ≥ 3 is u = v4 and

the only vertex u with the property that dC6(v4, u) ≥ 3 is v1.

In the study of 3-rainbow colorings of graphs, it is often quite challenging to determine

the exact value of the 3-rainbow connection number of a given graph or to establish

a lower bound for this number. Therefore, we have a different view of the proof of
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Proposition 2.1.9 and we can apply this idea to other more general graphs. As an

example of other connected graphs G having radius at least 3 for which one can show

that rc3(G∨K1) ≥ 3, we define the square of a graph G to be the graph G2 with vertex

set V (G2) = V (G) and edge set E(G2) = {uv ∈ E(G) : dG(u, v) ≤ 2}. Now consider the

graph G = C2
11, where C11 = (v1, v2, . . . , v11, v1). The cyclic sequence

s : v1, v6, v11, v5, v10, v4, v9, v3, v8, v2, v7, v1

has Property (1). The graph G = C2
10 does not have this property, however. For

example, the only vertex u for which dG(v1, u) ≥ 3 is u = v6, while the only vertex u

with dG(v6, u) ≥ 3 is v1.

Two other examples of graphs with this property are shown in Figure 2.1.
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Figure 2.1: The graphs G and F

In the graph G of Figure 2.1, the cyclic sequence

s : v1, v4, v7, v3, v6, v2, v5, v1

has Property (1). In the graph F = C6 � K2 of Figure 2.1, the cyclic sequence

s : v1, v
′
4, v
′
1, v5, v

′
3, v1

has Property (1). Thus, rc3(G ∨K1) ≥ 3 and rc3(F ∨K1) ≥ 3 for the graphs G and F

of Figure 2.1.
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2.2 Complete Bipartite Graphs

Next, we determine the 3-rainbow connection numbers of complete bipartite graphs.

Prior to doing this, we recall the rainbow connection numbers of these graphs (see [12]).

Theorem 2.2.1 For integers s and t with 2 ≤ s ≤ t,

rc(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}
.

The 3-rainbow connection numbers of complete bipartite graphs are nearly the same

as their rainbow connection counterparts.

Theorem 2.2.2 For integers s and t with 2 ≤ s ≤ t,

rc3(Ks,t) = min
{⌈

s
√
t
⌉
, 3
}
.

Proof. Observe that
⌈

s
√
t
⌉
≥ 2 for all integers s and t with 2 ≤ s ≤ t. First, suppose

that
⌈

s
√
t
⌉

= 2. Since 2 ≤ rc3(Ks,t) ≤ rc(Ks,t) = 2 by (2.1) and Theorem 2.2.1, it follows

that rc3(G) = 2 and so rc3(G) = min
{⌈

s
√
t
⌉
, 3
}

. Thus, we may assume that
⌈

s
√
t
⌉
≥ 3

and so t ≥ 2s+ 1. Let U = {u1, u2, . . . , us} and W = {w1, w2, . . . , wt} be the partite sets

of G.

Initially, we show that rc3(Ks,t) ≥ 3. Assume, to the contrary, that there exists a

3-rainbow 2-coloring c : E(Ks,t)→ {1, 2} of Ks,t. For each vertex w ∈W , let code(w) =

(a1, a2, . . . , as) be the color code of w, where ai = c(uiw) ∈ {1, 2} for 1 ≤ i ≤ s. Since

t > 2s, there exist two distinct vertices w′ and w′′ of W such that code(w′) = code(w′′).

Since the edges of every w′−w′′ path of length 2 are colored the same, there is no proper

w′ − w′′ path in Ks,t, which is a contradiction. Thus, rc3(Ks,t) ≥ 3.

Next, we show that rc3(Ks,t) ≤ 3 by defining a 3-rainbow 3-coloring of Ks,t. We

consider two cases, according to whether s = 2 or s ≥ 3.

Case 1. s = 2. Thus, t ≥ 22 + 1 = 5. Let c : E(Ks,t)→ {1, 2, 3} be defined by

c(e) =


1 if e = u1w1, u2w2

2 if e = u1w2, u2w1

3 otherwise.

Let x, y ∈ V (Ks,t) and x 6= y. If x and y belong to different partite sets, then (x, y) is

a path. If x and y are nonadjacent vertices of {u1, u2, w1, w2}, then there is a properly

colored x − y path of length 2. Thus, we may assume that x, y ∈ W , where {x, y} 6=
{w1, w2}, say x = wi and y = wj where 1 ≤ i < j and j ≥ 3. If x ∈ {w1, w2}, say
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x = w1, then (x = w1, u1, y) is a properly colored x − y path of length 2 whose edges

colored 1 and 3. If x = wi for some i ≥ 3, then P = (wi, u1, w1, u2, wj) is a 3-rainbow

path of length 4 in Ks,t, where the edges of P are colored by 3, 1, 2, 3 in this order.

Case 2. s ≥ 3. Let H = Ks,s be the subgraph of Ks,t induced by the sets U and

W ′ = {w1, w2, . . . , ws}. First, we define three perfect matchings M1,M2,M3 in H as

follows: For j = 1, 2, 3, let Mj = {wiui+j−1 : 1 ≤ i ≤ s} where the subscript of each

vertex is expressed modulo s. The edges in M1,M2,M3 are as follows:

M1 = {wiui : 1 ≤ i ≤ s} = {w1u1, w2u2, w3u2, . . . , wsus}

M2 = {wiui+1 : 1 ≤ i ≤ s} = {w1u2, w2u3, w3u4, . . . , ws−1us, wsu1}

M3 = {wiui+2 : 1 ≤ i ≤ s} = {w1u3, w2u4, w3u5, . . . , ws−2us, ws−1u1, wsu2}.

Next, we partition the set U into two subsets U1 and U2 where

U1 = {ui : i is odd and 1 ≤ i ≤ s}

U2 = {ui : i is even and 2 ≤ i ≤ s}.

For i = 1, 2, let Fi be the subgraph of Ks,t induced by

Ui ∪ {ws+1, ws+2, . . . , wt}.

Define the edge coloring c : E(Ks,t)→ {1, 2, 3} by

c(e) =


3 if e ∈M3 ∪ E(F1)

2 if e ∈M2

1 otherwise.

Let x, y ∈ V (Ks,t) and x 6= y. If x and y belong to different partite sets, then (x, y) is

a path. If x, y ∈ V (H), then there is a properly colored x − y path of length 2. For

example, if x = u1 and y = u2, then (u1, w1, u2) is a properly colored path of length 2

whose edges are colored by 1 and 2; while if x = w1 and y = w2, then (w1, u2, w2) is a

properly colored path of length 2 whose edges are colored 2 and 1. Thus, we may assume

that x, y ∈ W , say x = wi and y = wj where 1 ≤ i < j and j ≥ s + 1. There are two

subcases.

Subcase 2.1. 1 ≤ i ≤ s. Here, we may assume that x = w1 and y = ws+1. Then

(w1, u1, ws+1) is a properly colored path of length 2 whose edges are colored 1 and 3.

Subcase 2.2. i ≥ s + 1. Here, we may assume that x = ws+1 and y = ws+2.

Then (ws+1, u1, w2, u3, ws+2) is a 3-rainbow path of length 4. The edges of this path are

colored 3, 1, 2, 3 in this order.
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In each case, there is a 3-rainbow x − y path in Ks,t. Therefore, rc3(Ks,t) = 3 =

min
{⌈

s
√
t
⌉
, 3
}

when t ≥ 2s + 1.

If t ≥ 3s + 1 and s ≥ 2, then
⌈

s
√
t
⌉
≥ 4 and so rc(Ks,t) = 4. Since pc(Ks,t) = 2 and

rc3(Ks,t) = 3 in such a case, it follows that

pc(Ks,t) < rc3(Ks,t) < rc(Ks,t)

when t ≥ 3s + 1 and s ≥ 2. We next determine the 3-rainbow connection number of

complete k-partite graphs where k ≥ 3. First, we recall the rainbow connection numbers

of these graphs (see [12]).

Theorem 2.2.3 Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3 and

n1 ≤ n2 ≤ · · · ≤ nk such that s =
∑k−1

i=1 ni and t = nk. Then

rc(G) =


1 if nk = 1

2 if nk ≥ 2 and s ≥ t
min{

⌈
s
√
t
⌉
, 3} if s < t.

With the aid of Theorem 2.2.3, we now show for complete k-partite graphs G with

k ≥ 3 that rc(G) = rc3(G).

Theorem 2.2.4 Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3 and

n1 ≤ n2 ≤ · · · ≤ nk such that s =
∑k−1

i=1 ni and t = nk. Then

rc3(G) =


1 if nk = 1

2 if nk ≥ 2 and s ≥ t
min{

⌈
s
√
t
⌉
, 3} if s < t.

Proof. If nk = 1, then G is complete and rc3(G) = 1. Suppose next that nk ≥ 2 and

s ≥ t. By Theorem 2.2.3, rc(G) = 2 and so rc3(G) = 2 by (2.1). Hence, we may assume

that s < t. Let W be the partite set with t = nk vertices and U = {u1, u2, . . . , us} be

the union of the remaining partite sets of G. Since G is not complete, rc3(G) ≥ 2. By

Theorem 2.2.3, rc(G) = min{
⌈

s
√
t
⌉
, 3} and so rc3(G) ≤ min{

⌈
s
√
t
⌉
, 3}. Assume, to

the contrary, that rc3(G) < min{
⌈

s
√
t
⌉
, 3}. Since 2 ≤ rc3(G) < min{

⌈
s
√
t
⌉
, 3} ≤ 3,

it follows that rc3(G) = 2. Thus,
⌈

s
√
t
⌉
≥ 3 and so s

√
t > 2. Hence, t > 2s. Let

c : E(G) → {1, 2} be a 3-rainbow 2-coloring of G. Thus, we can associate a color code

code(w) = (a1, a2, . . . , as) with each vertex w ∈ W , where ai = c(uiw) ∈ {1, 2} for
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1 ≤ i ≤ s. Since the maximum number of distinct color codes is 2s and t > 2s, there

exist two distinct vertices w′, w′′ ∈ W for which code(w′) = code(w′′). Hence, the two

edges of each w′−w′′ path of length 2 are colored the same and so there is no 3-rainbow

w′ − w′′ path in Ks,t, producing a contradiction. Thus, rc3(Ks,t) = 3 = min{
⌈

s
√
t
⌉
, 3}

in this case.

In [8] it was shown that rc2(G) ≤ 3 if G is 2-connected. This suggests the following

question: if G is a 2-connected graph, is rc3(G) ≤ 3?

2.3 On the 3-Rainbow Connection Number of a Tree

We saw in Proposition 2.1.4 that if G is a nontrivial connected graph and T is a spanning

tree of G, then rc3(G) ≤ rc3(T ) and so

rc3(G) ≤ min{rc3(T ) : T is a spanning subgraph of G}. (2.2)

This suggests investigating rc3(T ) for trees T . Since rc3(T ) ≤ m for a tree T of size m,

we begin by characterizing those trees T of size m for which rc3(T ) = m. This can only

occur if the diameter of T is at most 3. We will see later that this inequality can be

made strict and that the gap between rc3(G) and rc3(T ) can be made arbitrarily large.

Proposition 2.3.1 Let T be a nontrivial tree of size m. Then rc3(T ) = m if and only

if T is a star or a double star.

Proof. If T is a star or a double star, then diam(T ) = 2 or diam(T ) = 3. Let e and f

be any two edges of T .

Suppose that e and f are adjacent, say e = uv and f = vw for u, v, w ∈ V (T ). Then

(u, v, w) is the only u− w path of length 2. Hence, any 3-rainbow coloring must assign

different colors to e = uv and f = vw.

If e and f are not adjacent, say e = uv and f = wx, where then (u, v, w, x) is the

only u − x path of length 3. So e and f must be colored differently by any 3-rainbow

coloring. In any case, e and f must be colored differently. Since e and f were chosen

arbitrarily, each edge in T must have a distinct color. Thus, rc3(T ) = m.

For the converse, suppose T is not a star or double star. Thus, diam(T ) ≥ 4. It

suffices to show that there is a 3-rainbow coloring of T in which two edges are colored

the same. Let e = uv and f = wx be edges, where u and x are leaves and d(u, x) ≥ 4.

We define an edge coloring c on T in which we color all edges of T distinctly with the

exception that c(e) = c(f). The unique path from u to x is a rainbow path, since the
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distance between u and x is at least 4. The path between any other two vertices of T has

distinctly colored edges and hence is a rainbow path. Hence c is a 3-rainbow coloring of

T using m− 1 colors.

By Proposition 2.3.1, if T is a star, then rc3(T ) = ∆(T ); while if T is a double

star with two vertices of degree ∆(T ) or T is a path of order at least 4, then rc3(T ) =

2∆(T ) − 1. In fact, more can be said, as we show next. For integers a, b ≥ 2, let Sa,b

denote the double star whose central vertices have degrees a and b. Thus, Sa,b has order

a+ b and size a+ b− 1. The following result gives the 3-rainbow connection number of

every tree.

Theorem 2.3.2 If T is a tree of diameter 3 or more, then

rc3(T ) = max{a+ b− 1 : Sa,b ⊆ T}.

Proof. Let k = max{a + b − 1 : Sa,b ⊆ T} and let Sa,b ⊆ T such that a + b − 1 = k.

We may assume that 2 ≤ a ≤ b. Since any 3-rainbow coloring of T must assign distinct

colors to the k = a+ b− 1 edges of Sa,b, it follows that rc3(T ) ≥ k.

Next, we show that rc3(T ) ≤ k. Let u and v be the two central vertices of Sa,b

where degT u = a and degT (v) = b. Root the tree T at vertex v. For each integer i with

0 ≤ i ≤ e(v), let Vi = {w ∈ V (T ) : d(v, w) = i}. For each integer h with 1 ≤ h ≤ e(v), let

Th = T [∪hi=0Vi] be the subtree of T induced by the set ∪hi=0Vi of vertices whose distance

from v is at most h. We proceed by induction on h to show that every Th, 1 ≤ h ≤ e(v),

has a 3-rainbow k-coloring.

For h = 1, let c1 : E(T1) → [k] of the edge coloring of T1 that assigns the b distinct

colors 1, 2, . . . , b to the b edges incident with v. Then c1 is a 3-rainbow k-coloring of T1.

For h = 2, we define an edge coloring c2 : E(T2)→ {1, 2, . . . , k} such that c2(e) = c1(e)

for each e ∈ E(T1). It remains to define c2(e) for each uncolored edge e of T2. Each such

uncolored edge e is incident with a vertex in V1 and a vertex in V2. Let v1 ∈ V1. Since

degT2(v1) + degT2(v) ≤ a+ b, there are at least (a+ b− 1)− b = a− 1 colors in [k] that

have not been used to color any edge of T1 incident with v. Since there are at most a−1

uncolored edges incident with v1, there are a− 1 ≥ 1 colors in [k] that are available for

these edges in T2. By assigning degT (v1)− 1 of these a− 1 colors to the uncolored edges

of T2 incident with v1, a 3-rainbow k-coloring c2 of T2 is produced.

Assume by induction that for every integer h2 ≤ h < e(v), a 3-rainbow k-coloring

ch : E(Th) → [k] of Th has been defined. Next, we define a 3-rainbow coloring ch+1 :

E(Th+1)→ [k] of Th+1. First, let ch+1(e) = ch(e) for each e ∈ E(Th). The only uncolored

edges of Th+1 are those that join a vertex of Vh and a vertex of Vh+1. Let vh+1 ∈
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Vh+1. Then vh+1 is adjacent to a unique vertex vh ∈ Vh and vh is adjacent to a unique

vertex vh−1 ∈ Vh−1. Suppose that degTh+1
(vh) = degT (vh) = a′ and degTh+1

(vh−1) =

degT (vh−1) = b′. Then a′ + b′ ≤ a+ b. The edges incident with vh−1 are colored with b′

colors in [k]. Hence, there are at least k− b′ = (a+ b− 1)− b′ ≥ (a′+ b′− 1)− b′ = a′− 1

colors in [k] that have not been used to color any edge of Th+1 incident with vh. There

are a′ − 1 uncolored edges incident with vh in Th+1 and there are a′ − 1 colors in [k]

that are available for these edges in Th+1. By assigning a′ − 1 of these k − b′ colors to

the a′ − 1 uncolored edges of Th+1 incident with vh, a 3-rainbow k-coloring of Th+1 is

produced.

Thus, the subtree Th of T has a 3-rainbow k-coloring for every integer h with 1 ≤ h ≤
e(v). In particular, Te(v) = T has a 3-rainbow k-coloring and so rc3(T ) ≤ k. Therefore,

rc3(T ) = k.

Notice that we may restate Theorem 2.3.2 to say that

rc3(T ) = max{deg(u) + deg(v)− 1 : uv ∈ E(T )}.

In [1] it is shown that for any tree T , pc(T ) = ∆(T ), that is, the 2-rainbow connection

number of T is the maximum size of a star in T . By Theorem 2.3.2, the 3-rainbow

connection number of a tree T that is not a star is the maximum size of a double star in

T . The following is a consequence of Theorem 2.3.2.

Corollary 2.3.3 If T is a tree of order at least 4, then

∆(T ) ≤ rc3(T ) ≤ 2∆(T )− 1.

Furthermore,

(i) rc3(T ) = ∆(T ) if and only if T is a star and

(ii) rc3(T ) = 2∆(T )−1 if and only if T contains two adjacent vertices of degree ∆(T ).

By (2.1), if G is a nontrivial connected graph of order at least 3 with pc(G) = a,

rc3(G) = b and rc(G) = c, then 2 ≤ a ≤ b ≤ c. Next, we determine all triples (a, b, c)

of integers with 2 ≤ a ≤ b ≤ c that are realizable as the proper connection number,

3-rainbow connection number and rainbow connection number of some tree of order at

least 3. Recall that if T is a tree of size m, then rc(T ) = m and pc(T ) = ∆(T ) (see

[1, 12]).

Theorem 2.3.4 Let (a, b, c) be a triple of integers with 2 ≤ a ≤ b ≤ c. Then there

exists a tree T with pc(T ) = a, rc3(T ) = b and rc(T ) = c if and only if (i) a = b = c or

(ii) 2 ≤ a < b ≤ min{2a− 1, c}.
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Proof. First, suppose that T is a tree of size m and maximum degree ∆ with pc(T ) = a,

rc3(T ) = b and rc(T ) = c. Then pc(T ) = a = ∆ and rc(T ) = c = m. If T is a star, then

pc(T ) = rc3(T ) = rc(T ) = m and so (i) holds. Thus, we may assume that T is not a

star. Thus, rc3(T ) > ∆ = a by Corollary 2.3.3. Since b ≤ m and b ≤ 2∆ − 1 = 2a − 1,

again by Corollary 2.3.3, it follows that ∆ < b ≤ min{2∆− 1,m} = {2a− 1, c}.
Next, we verify the converse. For (i), the star of size a has the desired property. For

(ii), let (a, b, c) be a triple of positive integers with 2 ≤ a < b ≤ min{2a − 1, c}. Let

Sa,b−a+1 be the double star of size b whose central vertices u and v have degrees a and

b−a+1, respectively. Suppose that u is adjacent to the a−1 end-vertices u1, u2, . . . , ua−1

and v is adjacent to the b−a end-vertices v1, v2, . . . , vb−a. Since b ≤ 2a−1, it follows that

a ≥ b−a+1 and so ∆(Sa,b−a+1) = a. If c = b, let T = Sa,b−a+1 and so pc(T ) = ∆(T ) = a

and rc3(T ) = rc(T ) = b. If b < c, let T be the tree of size c obtained from the double

star Sa,b−a+1 and the path Pc−b = (w1, w2, . . . , wc−b) by adding the edge v1w1. Then

pc(T ) = ∆(T ) = a and rc(T ) = c. It remains to show that rc3(T ) = b. Since the

double star Sa,b−a+1 of size b is a subtree of T , it follows that rc3(T ) ≥ b. Next,

define a 3-rainbow b-coloring c of T by (1) c(uui) = i for 1 ≤ i ≤ a − 1, c(uv) = a,

c(vvj) = a + j for 1 ≤ j ≤ b − a and (2) assigning the colors 1, 2, 3 to the edges of the

path (v1, w1, w2, . . . wc−b) in the order 1, 2, 3, 1, 2, 3, . . .. Therefore, rc3(T ) ≤ b and so

rc3(T ) = b.

By Corollary 2.3.3, if T is a nontrivial tree of size m with rc3(T ) = k and ∆(T ) = ∆,

then ∆ ≤ k ≤ min{2∆− 1,m}. Since rc3(T ) = ∆(T ) if and only if T is a star, it follows

that there is no tree T of size m such that ∆(T ) = rc3(T ) < m. Furthermore, we saw

that if T is a tree of size m, then rc(T ) = m and pc(T ) = ∆(T ). Therefore, the following

is a consequence of Theorem 2.3.4.

Corollary 2.3.5 Let (∆, k,m) be a triple of integers with ∆ ≤ k ≤ m. Then there exists

a tree T of size m and ∆(T ) = ∆ such that rc3(T ) = k if and only if (i) ∆ = k = m or

(ii) 2 ≤ ∆ < k ≤ min{2∆− 1,m}.

The following is a consequence of (2.2) and Corollary 2.3.3.

Corollary 2.3.6 If G is a connected graph of order 4 or more that is not a tree, then

rc3(G) ≤ 2∆(G)− 1.

The upper bound for rc3(G) provided in Corollary 2.3.6 is sharp for connected

graphs G that are not trees. In fact, more can be said.
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Proposition 2.3.7 For each pair (∆, k) of integers with 3 ≤ k ≤ 2∆ − 1, there is a

connected graph G that is not a tree such that ∆(G) = ∆ and rc3(G) = k.

Proof. We begin with the double star H = Sbk/2c+1,dk/2e of size k and the complete

graph K∆ of order ∆. Then the graph G is obtained from H and K∆ by identifying an

end-vertex x of H and a vertex of K∆ and labeling the identified vertex by x. Suppose

that the central vertices of H are u and v where degH u = bk/2c+1 and degH v = dk/2e.
Since k ≤ 2∆ − 1, it follows that degG u = bk/2c + 1 ≤ 1 + k/2 ≤ ∆ + 1/2 and

degG v = dk/2e ≤ 1 + k/2 ≤ ∆ + 1/2. Thus, degG u ≤ ∆ and degG v ≤ ∆. Furthermore,

degG x = ∆ and so ∆(G) = ∆.

It remains to show that rc3(G) = k. Any 3-rainbow coloring of G must assign distinct

colors to the k edges in H and so rc3(G) ≥ k. Next, we show that there is a 3-rainbow

k-coloring of G. Assume, without loss of generality that x is adjacent to u. The edge

coloring that assigns the colors 1, 2, . . . , k to the k edges in H such that the color 1 is

assigned to a pendant edge incident with v and each edge of K∆ is a 3-rainbow k-coloring

of G. Therefore, rc3(G) ≤ k and rc3(G) = k.

If G is a connected graph of order at least 4 for which rc3(G) = 2∆(G)− 1, then G

must contain a spanning tree containing two adjacent vertices of degree ∆(G). However,

the graph G of Figure 2.2 shows that even if every spanning tree of a graph G contains

adjacent vertices of degree ∆(G), then it need not occur that rc3(G) = 2∆(G) − 1. In

this case, ∆(G) = 3 and rc3(G) = 4. A 3-rainbow 4-coloring is shown in Figure 2.2. On

the other hand, for each such spanning tree T of G, it follows that rc3(T ) = 2∆(G)− 1.
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Figure 2.2: A graph G with rc3(G) < 2∆(G)− 1 for which every
spanning tree contains adjacent vertices of degree ∆(G)
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2.4 The 3-Rainbow Connection Number and Chromatic
Index

Recall that an edge coloring of a nonempty graph G is proper if no two adjacent edges

of G are colored the same. The minimum number of colors required of a proper edge

coloring is the chromatic index of G, denoted by χ′(G). The following result is due to

König [26].

Theorem 2.4.1 (König’s Theorem) If G is a nonempty bipartite graph, then

χ′(G) = ∆(G).

In particular, if T is a nontrivial tree, then χ′(T ) = ∆(T ).

We discuss some facts involving the chromatic index χ′(G) and the 3-rainbow con-

nection number rc3(G) of a connected graph G. There are graphs G1, G2 and G3 such

that

(i) χ′(G1) = rc3(G1), (ii) χ′(G2) > rc3(G2) and (iii) χ′(G3) < rc3(G3).

In fact, each of (i), (ii) and (iii) holds for infinite classes of graphs.

(i) If G1 = K1,t is a star, then χ′(G1) = rc3(G1) = t.

(ii) Let G2 be the graph obtained from ∆ ≥ 4 pairwise disjoint paths (ui, vi) of length 1

for 1 ≤ i ≤ ∆ by (1) adding two new vertices u and v and (2) joining u to each

vertex ui and v to each vertex vi for 1 ≤ i ≤ ∆. Thus, ∆(G2) = ∆ ≥ 3. Since G2

is a bipartite graph, χ′(G2) = ∆(G2) = ∆. An edge coloring c : E(G2)→ {1, 2, 3}
of G2 is defined by

c(e) =


1 if e = uui for 1 ≤ i ≤ ∆− 1 or e = vv∆

2 if e = uivi for 1 ≤ i ≤ ∆
3 if e = vvi for 1 ≤ i ≤ ∆− 1 or e = uu∆

is a 3-rainbow coloring, it follows that rc3(G2) ≤ 3. However, since every 3-rainbow

coloring of G2 must use at least three colors, it follows that rc3(G2) = 3. If ∆ ≥ 4,

then χ′(G2) = ∆ > 3 = rc3(G) and the value of χ′(G2)− rc3(G2) = ∆− 3 can be

arbitrarily large.

(iii) If G3 = Pn for integer n ≥ 4, then χ′(G3) = 2 and rc3(G3) = 3. Therefore,

rc3(G3) > χ′(G3).
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We have seen that if T is a tree of order at least 4, then

∆(T ) ≤ rc3(T ) ≤ 2∆(T )− 1.

Thus, if T is a tree of order at least 4, then

χ′(T ) ≤ rc3(T ) ≤ 2χ′(T )− 1. (2.3)

Hence, the example of stars and paths presented are special cases of (2.3). Therefore, in

the case of trees, we ask the following question:

For which pairs a, b of integers with 2 ≤ a ≤ b, is there a tree T such that

χ′(T ) = a and rc3(T ) = b?

Not only is there a complete answer to this question but more can be said. An immediate

consequence of (2.3) and Corollary 2.3.5 is the following.

Corollary 2.4.2 Let (a, b,m) be a triple of positive integers. There exists a tree T of

size m for which χ′(T ) = a and rc3(T ) = b if and only if a ≤ b ≤ m such that

(i) a = b = m or (ii) 2 ≤ a < b ≤ min{2a− 1,m}.
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Chapter 3

On k-Rainbow Colorings of
Graphs

In the preceeding chapter, we considered 3-rainbow colorings of graphs. Now, we study

k-rainbow colorings and k-rainbow chromatic numbers of graphs for integers k ≥ 3 in

general and extend several results obtained in Chapter 2. In this chapter, we determine

the k-rainbow connection numbers of graphs belonging to some familiar classes of graphs,

including complete multipartite graphs, cycles, prisms and umbrella graphs. In addition,

we present some preliminary observations and results on k-rainbow connection numbers

of graphs.

3.1 Introduction

Let’s first review a primary concept in this dissertation. For an integer k ≥ 2, a path

P in G is a k-rainbow path if every subpath of P having length k or less is a rainbow

path. An edge coloring c is a k-rainbow coloring of a connected graph G if every pair of

distinct vertices of G are connected by a k-rainbow path in G. If j colors are used to

produce a k-rainbow coloring of G, then c is referred to as a k-rainbow j-edge coloring or

simply a k-rainbow j-coloring. The minimum j for which G has a k-rainbow j-coloring

is called the k-rainbow connection number of G, denoted by rck(G). For every nontrivial

connected graph G whose longest paths have length `,

pc(G) = rc2(G) ≤ rc3(G) ≤ · · · ≤ rc`(G) = rc(G). (3.1)

First, we state some observations concerning k-rainbow connection numbers in gen-

eral.
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Observation 3.1.1 If H is a connected spanning subgraph of a nontrivial connected

graph G, then rck(G) ≤ rck(H) for each integer k ≥ 3. In particular, if T is a spanning

tree of G, then rck(G) ≤ rck(T ).

The length of a path is the number of edges in the path.

Lemma 3.1.2 Let G be a connected graph of diameter d ≥ 2 whose longest paths have

length `.

(a) If 2 ≤ k ≤ d, then rck(G) ≥ k.

(b) If d+ 1 ≤ k ≤ `, then rck(G) ≥ d.

Proof. Let u and v be two antipodal vertices of G such that d(u, v) = d. If 2 ≤ k ≤ d,

then every k-rainbow coloring of G must assign at least k distinct colors to the edges of

any k-rainbow u − v path in G. Hence, rck(G) ≥ k and so (a) holds. If d + 1 ≤ k ≤ `,

then every k-rainbow coloring of G must assign at least d distinct colors to the edges of

any k-rainbow u− v path in G. Hence, rck(G) ≥ d and so (b) holds.

In fact, the length of a longest path in a graph G is called the detour number of G

and is denoted by τ(G).

3.2 k-Rainbow Colorings of Complete Multipartite Graphs

In this section, we determine the k-rainbow connection numbers of complete multipartite

graphs. We saw in Chapter 2 that if s and t are integers with 2 ≤ s ≤ t, then

rc3(Ks,t) = min
{⌈

s
√
t
⌉
, 3
}

and rc(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}
.

Consequently, we have the following corollary by (3.1).

Corollary 3.2.1 Let s and t be integers with 2 ≤ s ≤ t and let ` be the length of a

longest path in Ks,t. If k is an integer with 4 ≤ k ≤ `, then

min
{⌈

s
√
t
⌉
, 3
}
≤ rck(Ks,t) ≤ min

{⌈
s
√
t
⌉
, 4
}
.

We show, in fact, for every such integer k in Corollary 3.2.1 that rck(Ks,t) attains

the upper bound in Corollary 3.2.1.

Theorem 3.2.2 Let s and t be integers with 2 ≤ s ≤ t and let ` be the length of a

longest path in Ks,t. If k is an integer with 4 ≤ k ≤ `, then

rck(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}
.
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Proof. By (3.1) and Corollary 3.2.1, it suffices to show that

rc4(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}
.

Observe that
⌈

s
√
t
⌉
≥ 2 for all integers s and t with 2 ≤ s ≤ t. Let U and W be the

partite sets of Ks,t, where |U | = s and |W | = t. First, suppose that
⌈

s
√
t
⌉

= a, where

a ∈ {2, 3}. Since a = rc3(Ks,t) ≤ rc4(Ks,t) ≤ rc(Ks,t) = a by Corollary 3.2.1, it follows

that rc4(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}

if
⌈

s
√
t
⌉
∈ {2, 3}.

We now assume that
⌈

s
√
t
⌉
≥ 4. Then t ≥ 3s + 1. Let U ={u1, u2, . . ., us}. Since

rc4(Ks,t) ≤ 4 by Corollary 3.2.1, it remains to show that rc4(Ks,t) ≥ 4. Assume, to

the contrary, that there exists a 4-rainbow 3-coloring of Ks,t. Corresponding to this

4-rainbow 3-coloring of Ks,t, there is a color code, denoted by code(w), assigned to each

vertex w ∈ W , consisting of an ordered s-tuple (a1, a2, . . . , as), where ai = c(uiw) ∈
{1, 2, 3} for 1 ≤ i ≤ s. Since t > 3s, there exist two distinct vertices w′ and w′′ of W

such that code(w′) = code(w′′). Every w′ − w′′ path P in Ks,t has even length. Since

code(w′) = code(w′′), the path P cannot have length 2 as the colors of the two edges of

every w′ − w′′ path of length 2 are the same. However, if the path P has length 4 or

more, then each subpath of length 4 in P must repeat a color as this edge coloring uses

only three colors. Hence, there is no 4-rainbow w′ − w′′ path in Ks,t, a contradiction.

Thus, rc4(Ks,t) ≥ 4 and so rc4(Ks,t) = 4.

It then follows by (3.1) and Corollary 3.2.1 that rck(Ks,t) = min
{⌈

s
√
t
⌉
, 4
}

for all

integers k with 4 ≤ k ≤ `.

In summary, we have the following.

Corollary 3.2.3 Let s and t be integers with 2 ≤ s ≤ t and let ` be the length of a

longest path in Ks,t. If k is an integer with 2 ≤ k ≤ `, then

rck(Ks,t) =


2 if k = 2

min
{⌈

s
√
t
⌉
, 3
}

if k = 3

min
{⌈

s
√
t
⌉
, 4
}

if 4 ≤ k ≤ `.

Next, we consider complete multipartite graphs. Let G = Kn1,n2,...,np be a complete

p-partite graph, where p ≥ 3 and n1 ≤ n2 ≤ · · · ≤ np such that s =
∑p−1

i=1 ni and t = np.

We have seen that

rc3(G) = rc(G) =


1 if np = 1

2 if np ≥ 2 and s ≥ t
min{

⌈
s
√
t
⌉
, 3} if s < t.

(3.2)
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Thus, the following corollary is a consequence of (3.1) and (3.2).

Corollary 3.2.4 Let G = Kn1,n2,...,np be a complete p-partite graph, where p ≥ 3 and

n1 ≤ n2 ≤ · · · ≤ np such that s =
∑p−1

i=1 ni and t = np. If k is an integer with 3 ≤ k ≤ `
where ` is the length of a longest path in G, then

rck(G) =


1 if np = 1

2 if np ≥ 2 and s ≥ t
min{

⌈
s
√
t
⌉
, 3} if s < t.

3.3 k-Rainbow Colorings of Paths, Cycles and Wheels

We now determine the k-rainbow connection numbers of graphs belonging to some other

familiar classes of graphs, namely paths, cycles and wheels. We begin with an observa-

tion.

Observation 3.3.1 For integers k and n with 2 ≤ k ≤ n− 1, rck(Pn) = k.

We now turn to k-rainbow connection numbers of cycles.

Theorem 3.3.2 For integers k and n with 3 ≤ k ≤ n− 1 and n ≥ 5,

rck(Cn) = min {dn/2e , k} .

Proof. Let Cn = (v1, v2, . . . , vn, vn+1 = v1) where ei = vivi+1 for 1 ≤ i ≤ n. The

diameter of Cn is diam(Cn) = bn/2c. We consider two cases, according to whether

dn/2e ≤ k or dn/2e > k.

Case 1. dn/2e ≤ k. Here, we show that rck(Cn) = min {dn/2e , k} = dn/2e. First,

define an edge coloring c of Cn by

c(ei) =

{
i if 1 ≤ i ≤ dn/2e

i− dn/2e if dn/2e+ 1 ≤ i ≤ n.

Thus, the color sequence of the edges of Cn with respect to c is

Sc = (c(e1), c(e2), . . . , c(en)) = (1, 2, . . . , dn/2e , 1, 2, . . . , bn/2c).
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Note that every subsequence of length at most bn/2c in Sc has distinct terms. For two

vertices vi and vj of Cn where 1 ≤ i < j ≤ n, there are exactly two vi − vj paths P and

Q in Cn. We may assume that |E(P )| ≤ |E(Q)|. Then P is a rainbow path of length

at most bn/2c. Since bn/2c ≤ dn/2e ≤ k, it follows that P is a k-rainbow vi − vj path.

Therefore, c is a k-rainbow dn/2e-coloring of Cn and so rck(Cn) ≤ dn/2e.
Next, we show that rck(Cn) ≥ dn/2e. Assume, to the contrary, that Cn has a k-

rainbow coloring c∗ using the colors 1, 2, . . . , dn/2e − 1. Of the two v1 − vbn/2c+1 paths

on Cn, one has length dn/2e and the other bn/2c. If n is even, then neither path is a

k-rainbow path; while if n is odd, the path of length dn/2e cannot be a k-rainbow path.

In this case, let n = 2t+ 1 for some integer t ≥ 2 and consider the path (v1, v2, . . . , vt+1)

of length t = bn/2c, which is necessarily a k-rainbow path. Hence, we may assume that

c∗(vivi+1) = i for 1 ≤ i ≤ t. The path (v2, v3, . . . , vt+s) also has length t and so is a

k-rainbow path, implying that c∗(vt+1vt+2) = 1. Continuing in this manner, we see that

c∗(vivi+1) =


i if 1 ≤ i ≤ t

t− i if t+ 1 ≤ i ≤ 2t

1 If i = 2t+ 1.

The v2t+1− vt path P = (v2t+1, v1, v2, . . . , vt) of length t has c∗(v2t+1v1) = v∗(v1v2) = 1,

implying that neither P nor the v2t+1 − vt path of length t + 1 is a k-rainbow path,

producing a contradiction.

Case 2. dn/2e > k. We show that rck(Cn) = min {dn/2e , k} = k. First, by Observa-

tions 3.1.1 and 3.3.1, rck(Cn) ≤ rck(Pn) ≤ k. Next, we show that rck(Cn) ≥ k. Assume,

to the contrary, that Cn has a k-rainbow coloring c∗ using the k−1 colors 1, 2, . . . , k−1.

There are two v1 − vdn/2e+1 paths in Cn, one of which has length bn/2c and the other

has length dn/2e. Since the coloring c∗ only uses k − 1 distinct colors, neither path can

be a k-rainbow v1 − vt+1 path in Cn, producing a contradiction.

Let Wn = Cn ∨K1 be the wheel of order n+ 1 ≥ 5 in which the length of a longest

path is n. We have seen in Chapter 2 that rc2(Wn) = 2 for all n ≥ 4 and

rc2(Wn) = pc(Wn) = 2,

rc(Wn) = rc3(Wn) =

{
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

By (3.1), if n ≥ 4, then rci(Wn) = rci−1(Wn) for each integer i with 2 < i < n.
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Corollary 3.3.3 If n and k are integers with 3 ≤ k ≤ n− 1 and n ≥ 4, then

rck(Wn) = rc3(Wn) =


1 if n = 3
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

3.4 k-Rainbow Colorings of Prisms

The prism Cn � K2 is the Cartesian product of the cycle Cn of order n ≥ 3 and K2.

Since Cn � K2 is a Hamiltonian graph of order 2n, the length of a longest path in G

is 2n− 1.

The following is a consequence of Observation 3.1.1 and Theorem 3.3.2.

Corollary 3.4.1 If G is a Hamiltonian graph of order n ≥ 3, then rck(G) ≤ k for each

integer k with 2 ≤ k ≤ n− 1.

Proof. Since G is a Hamiltonian graph of order n, the length of a longest paths in G

is n − 1. Let C be a Hamiltonian cycle of G. It then follows by Observation 3.1.1 and

Theorem 3.3.2 that rck(G) ≤ rck(C) ≤ k for each integer k with 2 ≤ k ≤ n− 1.

First, we present a lemma.

Lemma 3.4.2 For each integer n ≥ 3, diam(Cn � K2) =
⌊
n
2

⌋
+ 1.

Proof. For an integer n ≥ 3, let G = Cn � K2 be obtained from two copies C and C ′

of the n-cycle Cn, where C = (u1, u2, . . . , un, un+1 = u1) and C ′ = (v1, v2, . . . , vn, vn+1 =

v1), by adding the n edges uivi for 1 ≤ i ≤ n. Since d(ui, vbn2 c+i) =
⌊
n
2

⌋
+1 for 1 ≤ i ≤ n

and d(x, y) ≤
⌊
n
2

⌋
if {x, y} 6= {ui, vbn2 c+i} for any i with 1 ≤ i ≤ n, where the subscripts

are expressed as integers modulo n, it follows that diam(G) =
⌊
n
2

⌋
+ 1.

We are now prepared to present the following result.

Theorem 3.4.3 For integers k and n with 2 ≤ k ≤ 2n− 1 and n ≥ 3,

rck(Cn � K2) = min
{
k,
⌊n

2

⌋
+ 1
}
.

Proof. For an integer n ≥ 3, let G = Cn � K2 be obtained from two copies C and C ′

of the n-cycle Cn, where

C = (u1, u2, . . . , un, un+1 = u1) and C ′ = (v1, v2, . . . , vn, vn+1 = v1),
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by adding the n edges uivi for 1 ≤ i ≤ n. Let d =
⌊
n
2

⌋
+1. By Lemma 3.4.2, diam(G) = d.

Since G is a Hamiltonian graph of order 2n, the length of a longest path in G is 2n− 1.

First, suppose that 2 ≤ k ≤ d. We show that rck(G) = k. Since k ≤ d, it follows by

Lemma 3.1.2 that rck(G) ≥ k. Since G is Hamiltonian, rck(G) ≤ k by Corollary 3.4.1.

Therefore, rck(G) = k.

Next, suppose that d+ 1 ≤ k ≤ 2n− 1. We show that rck(G) = d. By Lemma 3.1.2,

rck(G) ≥ d. Thus, it remains to show that G has a k-rainbow d-coloring. We consider

two cases, according to whether n is even or n is odd.

Case 1. n ≥ 4 is even. By Theorem 3.3.2, rck(Cn) = d − 1. Let c1 : E(C) →
[d − 1] be a k-rainbow (d − 1)-coloring of the n-cycle C = (u1, u2, . . . , un, u1) and let

c2 : E(C ′) → [d − 1] be a k-rainbow (d − 1)-coloring of n-cycle C ′ = (v1, v2, . . . , vn, v1).

Define an edge coloring c of G by c(e) = c1(e) if e ∈ E(C), c(e) = c2(e) if e ∈ E(C ′) and

c(uivi) = d for 1 ≤ i ≤ n. We show that c is a k-rainbow d-coloring of G. Let x and y

be two nonadjacent vertices of G. First, suppose that x, y ∈ V (C) or x, y ∈ V (C ′), say

the former. Since c1 is a k-rainbow coloring of C, there is a k-rainbow x− y path in C

and in G as well. Next, suppose that x = ui and y = vj , where 1 ≤ i, j ≤ n. Let P be a

k-rainbow ui − uj path in C. Since no edge of P is colored d and c(ujvj) = d, it follows

that P followed by the edge ujvj produces a k-rainbow ui − vj path in G. Hence, c is a

k-rainbow d-coloring of G.

Case 2. n ≥ 3 is odd. In this case, d =
⌊
n
2

⌋
+ 1 =

⌈
n
2

⌉
. Define an edge coloring

c : E(G)→ [d] of G by

c(uiui+1) =

{
i if 1 ≤ i ≤ d

i− d if d+ 1 ≤ i ≤ n

c(vivi+1) =

{
i if 1 ≤ i ≤ d− 1

(i+ 1)− d if d ≤ i ≤ n

c(uivi) = d if 1 ≤ i ≤ n.

Hence, the color sequences of the edges of C and C ′ with respect to c are

(c(u1u2), c(u2u3), . . . , c(unu1)) = (1, 2, . . . , d, 1, 2, . . . , d− 1) (3.3)

(c(v1v2), c(v2v3), . . . , c(vnv1)) = (1, 2, . . . , d− 1, 1, 2, 3, . . . , d). (3.4)
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This coloring is illustrated in Figure 3.1 for n = 9. Since every subsequence of length at

most d− 1 in the sequences in (3.3) and (3.4) has distinct terms, the restriction of this

coloring c to each of the n-cycles C and C ′ is a k-rainbow coloring. Next, we show that

c is a k-rainbow d-coloring of G.

.........
................................

.........
................................

.........
................................ .........

................................

.........
................................

.........
................................

.........
................................

.........
................................

.........
................................

.........
................................ .........

................................

.........
.........................................

................................

.........
................................

.........
................................

.........
................................ .........

................................
.........
................................

...............................................................................................
................

................
................

................

........
........
........
........
........
........
........
........
........
...... ...............................................................................

............................................................................
......................................................................

.........................................................................
....................................................................

.................
.................

.................
.................

.................
.................

.................
.................

. .....................................................................................................................................
...................................................................................................................................

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...................................................................................................................

...................................................................................................................
..................................................................................................................

.................................................................................................................

.......................................................

.......................................................

.....................................................
.....

..........
..........
..........
..........
..........
............................................................

....................................................

..............
..............

..............
............

......................................................

u1

u2

u3

u4

u9

u8

u7

u6 u5

v1
v2

v3

v4

v5v6

v7

v9

v8

1

2

3

4

1

2

3

4
1

2

3

5

5

5

4
5

5

5 5

5

5

5
3

2

1

5

4

Figure 3.1: A 5-rainbow coloring c of C9 � K2 in Case 2

Let x and y be two nonadjacent vertices of G. First, suppose that x, y ∈ V (C) or

x, y ∈ V (C ′), say x, y ∈ V (C). Since the restriction of this coloring c to the n-cycle C is

a k-rainbow coloring, it follows that x and y are connected by a k-rainbow x− y path in

C and so in G. Hence, we may assume that x = ui and y = vj , where 1 ≤ i, j ≤ n. Note

that udud+1 is the only edge colored d on C and vnv1 is the only edge colored d on C ′.

Let P be the k-rainbow ui−uj path of length at most d−1 on C. If udud+1 /∈ E(P ), then

no edge on P is colored by d and so P followed by the edge ujvj produces a k-rainbow

ui − vj in G. Thus, we may assume udud+1 ∈ E(P ). Let Q be a k-rainbow vi − vj path

of length at most d− 1 in C ′. Then Q is the path in C ′ that corresponds to the ui − uj
path P in C and so Q contains the edge vdvd+1. Since the length of Q is at most d− 1,

it follows that Q does not contain the edge vnv1 and so no edge on Q is colored d. Thus,

the edge uivi followed by Q produces a k-rainbow ui − vj in G. Hence, c is a k-rainbow

d-coloring of G.

3.5 k-Rainbow Colorings of Umbrella Graphs

An umbrella graph is constructed from a wheel W by attaching a path at the central

vertex of W . More precisely, let Wa = Ca ∨ K1 where Ca = (v1, v2, . . . , va, v1) and

V (K1) = {v} and let Pb = (u1, u2, . . . , ub). The vertex v is referred to as the central
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vertex of Wa. The umbrella graph U(a, b) is constructed from Wa and Pb by adding the

edge vu1. Then the order of U(a, b) is a+ b+ 1, the diameter of U(a, b) is b+ 1 and the

length of a longest path in U(a, b) is a+b. We now determine rck(U(a, b)) for all positive

integers a, b, k with a ≥ 3 and 2 ≤ k ≤ a+ b, beginning with the case when k ≤ b+ 1.
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Figure 3.2: The umbrella graph U(a, b)

Proposition 3.5.1 If a, b, k are integers with a ≥ 3 and 2 ≤ k ≤ b + 1, then

rck(U(a, b)) = k.

Proof. In the umbrella graph U(a, b), let Wa = Ca∨K1, where Ca = (v1, v2, . . . , va, v1)

and V (K1) = {v}, and let Pb = (u1, u2, . . . , ub). Then U(a, b) is constructed from Wa

and Pb by adding the edge vu1. Furthermore, let Pb+1 = (v, u1, u2, . . . , ub) be the path of

order b+ 1 in U(a, b). First, we show that rck(U(a, b)) ≤ k. The umbrella graph U(a, b)

has a Hamiltonian path P of order a+b+1 in U(a, b). It then follows by Observations 3.1.1

and 3.3.1 that rck(U(a, b)) ≤ rck(P ) = k. Next, we show that rck(U(a, b)) ≥ k. Since

b + 1 ≥ k, it follows by Observation 3.3.1 that rck(Pb+1) = k. For every two vertices

x and x′ of Pb+1, there is a unique x − x′ path in U(a, b). Therefore, every k-rainbow

coloring of U(a, b) must assign at least k distinct colors to the edges of Pb+1 and so

rck(U(a, b)) ≥ k. Therefore, rck(U(a, b)) = k when b+ 1 ≥ k.

Next, we determine rck(U(a, b)) when a ≥ 3 and k ≥ b+2 ≥ 3. First, we make a useful

observation. Let U(a, b) be the umbrella graph constructed from the wheel Wa = Ca∨K1,

where Ca = (v1, v2, . . . , va, v1) and V (K1) = {v}, and the path Pb = (u1, u2, . . . , ub) of

order b by adding the edge vu1. For each i = 1, 2, . . . , a, let Qi = (vi, v, u1, u2, . . . , ub)

be the vi − ub path of length b+ 1 in U(a, b).

(P) Since d(vi, ub) = b + 1 for 1 ≤ i ≤ a, it follows that Qi is a vi − ub geodesic of

length b + 1 in U(a, b). Hence, if k ≥ b + 2, then every k-rainbow coloring of
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U(a, b) must assign b+ 1 distinct colors to the b+ 1 edges of Qi for some i and so

rck(U(a, b)) ≥ b+ 1.

We begin by determining rck(U(a, b)) for small umbrella graphs U(a, b) where a ∈
{3, 4, 5}.

Theorem 3.5.2 If a, b, k are integers with a ∈ {3, 4, 5} and k ≥ b+ 2 ≥ 3, then

rck(U(a, b)) =

{
b+ 1 if (a, b, k) 6= (5, 1, k)

b+ 2 if (a, b, k) = (5, 1, k).

Proof. Let U(a, b) be the umbrella graph constructed from the wheel Wa = Ca ∨K1,

where Ca = (v1, v2, . . . , va, v1) and V (K1) = {v}, and the path Pb = (u1, u2, . . . , ub) of

order b by adding the edge vu1. Let Pb+1 = (v, u1, u2, . . . , ub) be the v−ub path of order

b + 1 in U(a, b). For each i = 1, 2, . . . , a, let Qi = (vi, v, u1, u2, . . . , ub) be the vi − ub
geodesic of length b+ 1 in U(a, b).

First, suppose that a ∈ {3, 4} and k ≥ b + 2. We show that rck(U(a, b)) = b +

1. By (P), it suffices to show that U(a, b) has a k-rainbow (b + 1)-coloring. Let c :

E(U(a, b))→ [b+ 1] be the edge coloring of U(a, b) defined by

? c(vu1) = 1 and c(uiui+1) = i+ 1 for 2 ≤ i ≤ b− 1;

? c(vvi) = b+ 1 for 1 ≤ i ≤ a;

? c(vivi+1) = b if i is even and c(vivi+1) = b−1 if i is odd for 1 ≤ i ≤ a and va+1 = v1.

This edge coloring c is illustrated in Figure 3.3 for U(3, b) and U(4, b), respectively. Next,

we show that every two nonadjacent vertices of U(a, b) are connected by a k-rainbow path

in U(a, b). For each i = 1, 2, . . . , a, the path Qi = (vi, v, u1, u2, . . . , ub) is a rainbow path

of length b+ 1. Furthermore, every two nonadjacent vertices on Ca (where then a = 4)

are connected by a rainbow path of length 2. Thus, c is a k-rainbow (b+ 1)-coloring and

so rck(U(a, b)) = b+ 1.

Next, suppose that a = 5 and k ≥ b+ 2 ≥ 3. We show that

rck(U(5, 1)) = rck(U(5, 2)) = 3 and rck(U(5, b)) = b+ 1 for b ≥ 3.

First, suppose that b ∈ {1, 2}. To show that rck(U(5, b)) ≤ 3, let the edge coloring

c : E(U(a, b))→ [3] be defined by

? c(v1v2) = c(v3v4) = 1, c(v2v3) = c(v4v5) = 2 and c(v5v1) = 3;
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Figure 3.3: The k-rainbow (b+ 1)-colorings of U(3, b) and U(4, b) when k ≥ b+ 2

? c(vvi) = 3 for 1 ≤ i ≤ 5;

? c(vu1) = 1 and c(u1u2) = 2 if b = 2.

This coloring is shown in Figure 3.4 for U(5, 1) and U(5, 2). Observe that (a) for each

i = 1, 2, . . . , 5, the path Qi = (vi, v, u1, u2) is a rainbow vi − u2 path and (b) every two

nonadjacent vertices of C5 are connected by a rainbow path of length 2. Thus, c is a

k-rainbow 3-coloring of U(5, b) for b = 1, 2 and all k ≥ 3.
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Figure 3.4: A k-rainbow 3-coloring of U(5, b) for b = 1, 2 and k ≥ b+ 2

Next, we show that rck(U(5, b)) ≥ 3 for b ∈ {1, 2} and k ≥ 3. If b = 2, then

rck(U(5, 2)) ≥ 3 by (P). Thus, it remains to show that rck(U(5, 1)) ≥ 3. Assume, to

the contrary, that rck(U(5, 1)) = 2 for some integer k ≥ 3. Let there be a k-rainbow

2-coloring c of U(5, 1). Since χ′(C5) = 3, there are two adjacent edges of C5 that are

colored the same, say c(v5v1) = c(v1v2) = 1. Since k ≥ 3 and c only uses two colors,
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every k-rainbow v5 − v2 path must have length 2. This implies that (v5, v, v2) must

be a rainbow path and so {c(v5v), c(vv2)} = {1, 2}, say c(v5v) = 1 and c(vv2) = 2.

Similarly, both the v2 − u1 path (v2, v, u1) and v5 − u1 path (v5, v, u1) must be rainbow.

If c(vu1) = 1, then there is no k-rainbow v5 − u1 path; while if c(vu1) = 2, then there

is no k-rainbow v2 − u1 path, which is impossible. Thus, rck(U(5, 1)) ≥ 3. Therefore,

rck(U(5, 1)) = rck(U(5, 2)) = 3 for k ≥ 3.

Next, suppose that b ≥ 3 and we show that rck(U(5, b) = b+ 1. By (P), it suffices to

show that a k-rainbow (b+ 1)-coloring of U(5, b) exists. Let c : E(U(a, b))→ [b+ 1] be

the edge coloring defined by

? c(vu1) = 1 and c(uiui+1) = i+ 1 for 2 ≤ i ≤ b− 1;

? c(vvi) = b+ 1 for 1 ≤ i ≤ 5.

? c(v1v2) = c(v3v4) = b, c(v2v3) = c(v5v1) = b− 1, and c(v4v5) = b− 2.

This coloring is shown in Figure 3.5. Then Qi = (vi, v, u1, . . . , ub) is a rainbow vi−ub path

for i = 1, 2, . . . , 5 and every two nonadjacent vertices of C5 are connected by a rainbow

path of length 2. Hence, c is a k-rainbow (b+ 1)-coloring and so rck(U(5, b) = b+ 1.

Therefore, rck(U(5, b)) = b + 2 if (a, b, k) = (5, 1, k) and rck(U(5, b)) = b + 1 other-

wise.
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Figure 3.5: A k-rainbow 3-coloring of U(5, b) for b ≥ 3 for k ≥ b+ 2

Theorem 3.5.3 If a, b, k are integers with a ≥ 6 and k ≥ b+ 2 ≥ 3, then

rck(U(a, b)) =

{
b+ 1 if da/2e ≤ b+ 1

b+ 2 if da/2e ≥ b+ 2.
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Proof. In the umbrella graph U(a, b), let Wa = Ca∨K1, where Ca = (v1, v2, . . . , va, v1)

and V (K1) = {v}, and let Pb = (u1, u2, . . . , ub). Then U(a, b) is constructed from Wa

and Pb by adding the edge vu1. Furthermore, let Pb+1 = (v, u1, u2, . . . , ub) be the path

of order b+ 1 in U(a, b). We consider two cases, according to whether da/2e ≤ b+ 1 or

da/2e ≥ b+ 2.

Case 1. da/2e ≤ b+ 1. We show that rck(U(a, b)) = b+ 1. Since k ≥ b+ 2, it suffices

to show that U(a, b) has a k-rainbow (b + 1)-coloring by (P). Since da/2e ≤ b + 1 < k,

it follows by Theorem 3.3.2 that rck(Ca) = min{da/2e , k} = da/2e ≤ b + 1. Hence,

there is a k-rainbow coloring c0 : E(Ca)→ [b+ 1] of Ca. Let c1 be a rainbow coloring of

Pb+1 = (v, u1, u2, . . . , ub) using the colors 1, 2, . . . , b. Now, define a k-rainbow coloring

c : E(U(a, b))→ [b+ 1] of U(a, b) by

c(e) =


c0(e) if e ∈ E(Ca)

c1(e) if e ∈ E(Pb+1)

b+ 1 if e = vvi for 1 ≤ i ≤ a.

For b = 3, this k-rainbow 4-coloring is shown in Figure 3.6 for U(6, 3) and U(7, 3),

respectively. Thus, rck(U(a, b)) ≤ b+ 1.
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Figure 3.6: A k-rainbow 4-coloring for each of U(6, 3) and U(7, 3)

Case 2.. da/2e ≥ b + 2. We show that rck(U(a, b)) = b + 2. First, we show that

rck(U(a, b)) ≥ b + 2. By (P), rck(U(a, b)) ≥ b + 1. Assume, to the contrary, that

rck(U(a, b)) = b + 1. Then there is a k-rainbow coloring c : E(U(a, b)) → [b + 1] of
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U(a, b). Since all edges of Pb+1 = (v, u1, u2, . . . , ub) must be colored differently, we may

assume that c(vu1) = 1 and c(uiui+1) = i + 1 for 1 ≤ i ≤ b − 1. For each j with

1 ≤ j ≤ a, there is only one vj − ub path of length b + 1, namely (vj , v, u1, u2, . . . , ub).

Since b + 1 ≤ k, it follows that c(vvj) = b + 1 for 1 ≤ j ≤ a. This implies that

every two vertices x and y of Ca must be connected by a k-rainbow x − y path on Ca.

However then, the restriction of c to the cycle Ca is a k-rainbow coloring of Ca using at

most b+ 1 colors. On the other hand, since da/2e > b+ 1 and k > b+ 1, it follows that

rck(Ca) = min{da/2e , k} > b+1, which is impossible. Hence, rck(U(a, b)) ≥ b+2. Next,

we show that U(a, b) has a k-rainbow coloring using the colors 1, 2, . . . , b+ 2. Define an

edge coloring c : E(U(a, b))→ [b+ 2] of U(a, b) by

? c(vu1) = 1 and c(uiui+1) = i+ 1 for 1 ≤ i ≤ b− 1;

? c(vvi) = b+ 1 if i is odd and c(vvi) = b+ 2 if i is even for 1 ≤ i ≤ a;

? c(vivi+1) = b + 1 if i is even and c(vivi+1) = 1 if i is odd for 1 ≤ i ≤ a and

va+1 = v1.

For b = 2, this k-rainbow 4-coloring is shown in Figure 3.7 for U(8, 2) and U(9, 2). It

remains to show that c is a k-rainbow coloring of U(a, b).
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Figure 3.7: A k-rainbow 4-coloring for each of U(8, 2) and U(9, 2)

Let x and y be two nonadjacent vertices of U(a, b). Since, for each integer i with

1 ≤ i ≤ a, the path (vi, v, u1, u2, . . . , ub) is a rainbow path in U(a, b), it follows that if

at least one of x and y does not belong to the cycle Ca, then x and y are connected

by a rainbow x − y path. Thus, we may assume that x, y ∈ V (Ca). Then x = vi and

y = vj for some i, j ∈ {1, 2, . . . , a} such that |i − j| ≥ 2. If i and j are of opposite
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parity, where {i, j} 6= {1, a}, then (vi, v, vj) is a rainbow path. Thus, we may assume

that i and j are of the same parity. Hence, either c(vivi−1) = 1 or c(vivi+1) = 1, where

the subscript of a vertex is expressed as an integer modulo a. Suppose, without loss of

generality, that c(vivi−1) = 1. This implies that i − 1 and j are of opposite parity and

so c(vvi−1) 6= c(vvj). Thus, the path (vi, vi−1, v, vj) is a k-rainbow path. Therefore, c is

a k-rainbow coloring of U(a, b) and so rck(U(a, b)) = b+ 2.

Proposition 3.5.1 and Theorems 3.5.2 and 3.5.3 give rise to the following result, which

provides the exact value of the k-rainbow connection number of each umbrella graph.

Corollary 3.5.4 Let a, b, k be positive integers with a ≥ 3 and 2 ≤ k ≤ a+ b.

(i) If k ≤ b+ 1, then rck(U(a, b)) = k.

(ii) If k ≥ b + 2, then rck(U(a, b)) ∈ {b + 1, b + 2}. Furthermore, rck(U(a, b)) = b + 1

if and only if (a, b) = (5, 1) or 3 ≤ da/2e ≤ b+ 1.
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Chapter 4

Bounds for k-Rainbow
Connection Numbers

In this chapter, we establish several sharp upper bounds for k-rainbow connection num-

bers of graphs in terms of their maximum degree and order. In order to do this, we

first study k-rainbow colorings of trees, unicyclic graphs and connected graphs of cycle

rank 2. Several realization results involving k-rainbow connection numbers and other

graphical parameters are also presented.

4.1 k-Rainbow Colorings of Trees

Recall for integers a, b ≥ 2 that Sa,b denotes the double star whose central vertices have

degrees a and b. Thus, Sa,b has order a+ b and size a+ b− 1. It was shown in Chapter 2

that if T is a tree of diameter 3 or more, then

rc3(T ) = max{a+ b− 1 : Sa,b ⊆ T}.

We now extend this to k-rainbow colorings of trees for other values of k. First, we present

a lower bound for the k-rainbow connection number of a tree. The size of a tree T ′ is

denoted by m(T ′).

Proposition 4.1.1 If T is a tree of diameter at least k ≥ 2 for some integer k, then

rck(T ) ≥ max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.

Proof. Suppose that T is a tree of diameter at least k ≥ 2. Let

mk = max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.
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Let there be given a k-rainbow coloring c of T and let T ∗ be a subtree of T with

diam(T ∗) = k such that m(T ∗) = mk. For every two edges e, f ∈ E(T ∗), there is an

x−y path P in T ∗ such that e, f ∈ E(P ). The path P is the only x−y path in T . Since

diam(T ∗) = k, the length of P is at most k. Thus, c(e) 6= c(f) and so rck(T ) ≥ mk.

The following is an immediate consequence of Proposition 4.1.1.

Corollary 4.1.2 If T is a tree of order n and diameter d ≥ 2, then rcd(T ) = n− 1.

Proof. By Proposition 4.1.1,

rcd(T ) ≥ max{m(T ′) : T ′ is a subtree of T with diam(T ′) = d}

= m(T ) = n− 1.

Since rcd(T ) ≤ n− 1, it follows that rcd(T ) = n− 1.

Next, we show that the lower bound for the k-rainbow connection number of a tree

T in Proposition 4.1.1 is, in fact, the value of rck(T ) for 2 ≤ k ≤ 5. First, we introduce

an additional notation. For two disjoint sets U and W of V (G), let [U,W ] denote the

set of edges joining a vertex of U and a vertex of W .

Theorem 4.1.3 If T is a tree of diameter at least k for some integer k with 2 ≤ k ≤ 5,

then

rck(T ) = max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.

Proof. We have seen that the result is true for k = 2, 3. Thus, we may assume that

k ≥ 4. Let

mk = max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.

By Proposition 4.1.1, it suffices to show that rck(T ) ≤ mk; that is, we show that T has

a k-rainbow coloring using mk colors. Let v be a peripheral vertex of T . Then v is an

end-vertex of T and e(v) = diam(T ). Express the tree T as a rooted tree whose root is

v. For each integer i with 0 ≤ i ≤ diam(T ), let

Vi = {w ∈ V (T ) : d(v, w) = i} = {vi,1, vi,2, . . . , vi,ni},

where then |Vi| = ni. For each integer h with 0 ≤ h ≤ diam(T ), let Th = T [∪hi=0Vi] be

the subtree of T induced by the set ∪hi=0Vi of vertices whose distance from v is at most h.

We proceed by induction to show that every subtree Th, 0 ≤ h ≤ diam(T ), has a

k-rainbow coloring using at most mk colors. This is true vacuously for T0. Let h0 be
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the largest integer h with 1 ≤ h ≤ diam(T ) such that diam(Th0) ≤ k. [In fact, either

diam(Th0) = k − 1 or diam(Th0) = k; for otherwise, assume that diam(Th0) ≤ k − 2.

Since v is a peripheral vertex of T and diam(T ) = k, it follows that

diam(Th0) + 1 ≤ diam(Th0+1) ≤ diam(Th0) + 2 ≤ k,

which contradicts the defining property of h0.] Since diam(Th0) ≤ k, it follows that

m(Th0) ≤ mk. Thus, for h = 0, 1, 2, . . . , h0, there is a k-rainbow coloring ch : E(Th) →
[mk] of Th that assigns distinct colors to distinct edges of Th. Assume, for an integer

h with h0 ≤ h < diam(T ), that there is a k-rainbow coloring ch : E(Th) → [mk] of

Th. Next, we define a k-rainbow coloring ch+1 : E(Th+1) → [mk] of Th+1. First, define

ch+1(e) = ch(e) for each e ∈ E(Th). At this point, the only uncolored edges of Th+1 are

those that join a vertex of Vh and a vertex of Vh+1, namely the edges in [Vh, Vh+1].

Divide the set Vh into nh−1 subsets Vh,1, Vh,2, . . . , Vh,nh−1
such that Vh,j (1 ≤ j ≤

nh−1) is the set of all children of the vertex vh−1,j ∈ Vh−1 in the rooted tree T . Conse-

quently, Vh,j = N(vh−1,j) ∩ Vh for 1 ≤ j ≤ nh−1. Next, divide the set Vh+1 into nh−1

subsets Vh+1,1, Vh+1,2, . . ., Vh+1,nh−1
such that each set Vh+1,j (1 ≤ j ≤ nh−1) consists

of all children of vertices in Vh,j that belong to Vh+1 (namely, the grandchildren of the

vertex vh−1,j). Thus, Vh+1,j = N(Vh,j) ∩ Vh+1. Then

[Vh, Vh+1] =

nh−1⋃
j=1

[Vh,j , Vh+1,j ].

For each integer j with 1 ≤ j ≤ nh−1 for which [Vh,j , Vh+1,j ] 6= ∅, we now define a coloring

of the edges in [Vh,j , Vh+1,j ] such that the resulting coloring is a k-rainbow mk-coloring

of T . In what follows, we assume that each set [Vh,j , Vh+1,j ] (1 ≤ j ≤ nh−1) under

consideration is not empty.

First, suppose that diam(Th) < k. Since h ≥ h0 and h0 is the largest integer h with

1 ≤ h ≤ diam(T ) such that diam(Th) ≤ k, it follows that h = h0 and so diam(Th) = k−1.

Since diam(Th) = k − 1, the subtree T (j) of Th+1, where 1 ≤ j ≤ nh−1, induced by the

set V (Th) ∪ Vh+1,j has diameter at most k. We may assume, without loss of generality,

that

γ = |[Vh,1, Vh+1,1]| ≥ |[Vh,j , Vh+1,j ]|

for 2 ≤ j ≤ nh−1. Thus, the size of T (1) is at most mk. Let S be the set of the m(Th)

colors used to color the edges of Th and let S = [mk]− S. Then |S| ≥ γ ≥ |[Vh,j , Vh+1,j ]|
for 1 ≤ j ≤ nh−1. If ei ∈ [Vh,i, Vh+1,i] and ej ∈ [Vh,j , Vh+1,j ], where 1 ≤ i, j ≤ nh−1
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and i 6= j, then ei and ej do not lie on a path of length k or less in T and so ei and ej

can be colored the same. Thus, assign the distinct colors in S to the edges in each set

[Vh,j , Vh+1,j ] for 1 ≤ j ≤ nh−1, producing a k-rainbow mk-coloring of Th+1.

Next, suppose that diam(Th) ≥ k. By the induction hypothesis, we have a k-rainbow

mk-coloring of Th. Suppose that [Vh,1, Vh+1,1] 6= ∅. We wish to define a coloring of the

edges in [Vh,1, Vh+1,1] such that the resulting coloring of the subtree induced by the set

V (Th) ∪ Vh+1,1 is a k-rainbow mk-coloring of this subtree. Let vh−1,1 ∈ Vh−1 and let

Vh+1,1 denote the set of children of the vertices of Vh,1. Next, let E = [{vh−1,1}, Vh,1] ∪
[Vh,1, Vh+1,1]. Then the diameter of the subtree T [E] of T is at most 4. Let T ′ be

the subtree of Th+1 having maximum size such that T [E] ⊆ T ′ and diam(T ′) = k.

Next, let T ′′ be the subtree of Th having maximum size such that T ′ − Vh+1 ⊆ T ′′ and

diam(T ′′) = k. Let E∗ = E(T ′′) − E(T ′). By construction, if e ∈ [Vh,1, Vh+1,1] and

e∗ ∈ E∗, then e and e∗ do not lie on a path of length k or less in Th+1 (and therefore in

T as well). This is illustrated in Figure 4.1, where the subtree T [E] is indicated by bold

lines, the subtree T ′ by solid thin lines and the subtree T ′′ by dashed lines.
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vh−1,1

T ′ :

T ′′ :

Vh,1

Vh+1,1

Figure 4.1: The subtrees T [E], T ′ and T ′′ of T

By the induction hypothesis, there is a k-rainbow mk-coloring of the tree T ′′. Let

|E(T ′′)− E∗| = α, |E∗| = β and, as before, |[Vh,1, Vh+1,1]| = γ.

Therefore, m(T ′′) = α+ β and m(T ′) = α+ γ, where then α+ β ≤ mk and α+ γ ≤ mk.

Let S be the set of α colors used to color the edges of E(T ′′)−E∗ and let S = [mk]−S.

Thus, the color of each edge in E∗ belongs to S. Since γ ≤ mk − α = |S|, there

are γ distinct colors in S that can be assigned to the γ edges in [Vh,1, Vh+1,1]. As we

mentioned earlier, if e ∈ [Vh,1, Vh+1,1] and e∗ ∈ E∗, then e and e∗ do not lie on a path

45



of length k or less in T and so e and e∗ can be colored the same. This produces a

coloring of the edges of [Vh,1, Vh+1,1] such that every path P of length at most k such

that E(P ) ⊆ E(Th) ∪ [Vh,1, Vh+1,1] is a rainbow path. Repeating this method, we color

the edges in [Vh,j , Vh+1,j ] for each j with 2 ≤ j ≤ nh−1 such that if Q is a path of length

at most k such that E(Q) ⊆ E(Th) ∪ [Vh,j , Vh+1,j ], then Q is a rainbow path. Since

k ≤ 5, it follows that if ei ∈ [Vh,i, Vh+1,i] and ej ∈ [Vh,j , Vh+1,j ] where 1 ≤ i, j ≤ nh−1

i 6= j, then ei and ej do not lie on a path of length k or less in T and so ei and ej can be

colored the same. Thus, every path of length at most k in Th+1 is a rainbow path and

so this coloring is a k-rainbow mk-coloring of Th+1.

By the Principle of Mathematical Induction, the subtree Th of T has a k-rainbow

mk-coloring for every integer h with 0 ≤ h ≤ diam(T ). In particular, Tdiam(T ) = T has

a k-rainbow mk-coloring and so rck(T ) ≤ mk. Therefore, rck(T ) = mk.

As an illustration of Theorem 4.1.4 for k = 4 and k = 5, consider the tree T of

Figure 4.2 whose diameter is 6. The solid vertex v (or root) of T has eccentricity 6.
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Figure 4.2: A 4-rainbow 12-coloring of T

? For k = 4, the maximum size of a subtree of diameter 4 in T is m4 = 12. The

subtree of T , whose edges are indicated by bold lines, has size 12 and diameter 4.

A 4-rainbow 12-coloring of T is shown in Figure 4.2.

? For k = 5, the maximum size of a subtree of diameter 5 in T is m5 = 17. The

subtree of T , whose edges are indicated by bold lines, has size 17 and diameter 5.

A 5-rainbow 17-coloring of T is shown in Figure 4.3.
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Figure 4.3: A 5-rainbow 17-coloring of T

By Theorem 4.1.4, rc4(T ) = 12 and rc5(T ) = 17.

In fact, we have a more general result. First, we introduce some additional definitions

and notation. For two edges e and f of a connected graph, an e − f path has e as its

initial edge and f as its terminal edge. Let T ′ be a proper subtree of a tree T and e = uv

an edge of T not in T ′ such that e is incident with the vertex u of T ′. Then T ′ + e

denotes that subtree of T obtained by adding the vertex v and the edge e to T ′.

Theorem 4.1.4 If T is a tree of diameter at least k ≥ 2 for some integer k, then

rck(T ) = max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.

Proof. We have seen that the result is true for every integer k with 2 ≤ k ≤ 5. Thus,

we may assume that k ≥ 6. Let

mk = max{m(T ′) : T ′ is a subtree of T with diam(T ′) = k}.

By Proposition 4.1.1, it suffices to show that T has a k-rainbow coloring using mk colors.

Let T0 be a subtree of maximum size mk in T such that diam(T0) = k. Color the mk

edges of T0 with distinct colors from the set [mk]. We consider two cases, according to

whether k is even or k is odd.

Case 1. k is even. Thus, k = 2r for some integer r ≥ 3. Therefore, T0 has a unique

central vertex v0. Let eT (v0) = t, where then t ≥ r. We express the tree T as a rooted

tree whose root is v0. For each integer i with 0 ≤ i ≤ t, let Vi = {v ∈ V (T ) : d(v0, v) = i}.
Hence, V0 = {v0} and for each vertex v ∈ Vi, where 1 ≤ i ≤ t, there is a unique v′ ∈ Vi−1

such that vv′ ∈ E(T ). Furthermore, the subtree T [∪ri=0Vi] of T induced by ∪ri=0Vi is T0.
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If T = T0, then the proof is complete. Thus, we may assume that E(T )−E(T0) 6= ∅ and

so diam(T ) ≥ k + 1. Thus, eT (v0) = t > r.

Let e1 ∈ [Vr, Vr+1] and let T1 = T0 + e1. Hence, diam(T1) = k + 1. Let T ′1 be the

subtree of T1 consisting of e1 and all those edges of T1 lying on a path of length k or

less having initial edge e1. We claim that diam(T ′1) = k. Suppose that this is not the

case. Then there is an e − f path in T ′1 of length k + 1 for some e, f ∈ E(T ′1). Since

diam(T0) = k, one of e and f must be e1, say e = e1. However, from the definition of

T ′1, there is no e1 − f path of length k + 1 in T ′1, a contradiction. Thus, as claimed,

diam(T ′1) = k and so the size of T ′1 is at most mk. Hence, at most mk − 1 edges of T ′1

have been assigned colors from [mk] and therefore there is at least one color in [mk] that

has not been assigned to any edge of T ′1. Assigning such a color to the edge e1 results in

a k-rainbow coloring of T ′1 using the colors of [mk]. If T = T1, then the proof is complete.

Hence, we may assume that E(T )− E(T1) 6= ∅.
If there is an edge e′ ∈ (E(T ) − E(T1)) ∩ [Vr, Vr+1], where then e′ is incident with

a vertex of T1, and T1 + e′ has diameter k + 1, then we denote this edge e′ by e2 and

let T2 = T1 + e2. Next, if there is an edge e′ ∈ (E(T ) − E(T1)) ∩ [Vr, Vr+1], again

incident with a vertex of T2, such that T2 + e′ has diameter k + 1, then we denote this

edge e′ by e3 and let T3 = T2 + e3. We continue this procedure until no such edges e′

exist, obtaining a sequence e1, e2, . . . , ep (p ≥ 1) of edges and a sequence T1, T2, . . . , Tp of

subtrees of diameter k+ 1. Next, if there exists an edge e′ ∈ (E(T )−E(Tp))∩ [Vr, Vr+1]

such that e′ is incident with a vertex of Tp, then denote this edge e′ by ep+1 and let

Tp+1 = Tp + ep+1. Then diam(Tp + e′) = k + 2. We continue this procedure until no

edges in [Vr, Vr+1] remain, say arriving at the tree Tp′ . If E(T ) − E(Tp′) 6= ∅, then

let e′ ∈ (E(T ) − E(Tp′)) ∩ [Vr+1, Vr+2]. We continue this procedure until no edges of

[Vr+1, Vr+2] remain. We then continue this, obtaining a sequence e1, e2, . . . , eq of all edges

of E(T )−E(T0) and a sequence T1, T2, . . . , Tq of subtrees, where q = m(T )−m(T0) and

Tq = T . In summary, after selecting the edge e1, we select other edges in [Vr, Vr+1],

one edge at a time, such that the addition of each such edge to the preceding subtree

obtained results in a subtree of diameter k + 1. When no such edges remain, we then

select other edges in [Vr, Vr+1], one edge at a time, such that the addition of each such

edge to the preceding subtree obtained results in a subtree of diameter k + 2. Once no

such edges remain in [Vr, Vr+1], we turn to edges in [Vr+1, Vr+2], the addition of which to

the preceding subtree obtained results in a subtree of diameter k+ 3, and so on. Hence,

Ti ⊆ Ti+1 and diam(Ti) ≤ diam(Ti+1) ≤ diam(Ti) + 1 for 0 ≤ i ≤ q − 1.

We claim, for each integer i with 0 ≤ i ≤ q, that a k-rainbow coloring of Ti exists

using the colors of [mk]. We proceed by induction. We have already seen that such a
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coloring exists for both T0 and T1. Assume that such a coloring exists for Tj for some

integer j with 1 ≤ j < q. We show that such a coloring exists for Tj+1 = Tj + ej+1. Let

B be the branch of T at v0 containing ej+1. Suppose that ej+1 ∈ [Vs, Vs+1], where then

s+ 1 ≤ t. Let u be the vertex incident with ej+1 in Vs+1. Consequently, there is no edge

e′ in Tj+1 that belongs to [Vs+1, Vs+2].
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Figure 4.4: A step in the proof of Case 1

Let T ′j+1 be the subtree of Tj+1 consisting of ej+1 and all those edges of Tj+1 lying

on a path of length k or less having initial edge ej+1. We claim that diam(T ′j+1) = k.

Clearly, diam(T ′j+1) ≥ k. Let e and f be two distinct edges of T ′j+1. We claim that e

and f lie on a path of length k or less in T ′j+1. Clearly, this is the case if either e or f is

ej+1. Thus, we may assume that neither e nor f is ej+1. Let P be the unique ej+1 − e
path in T ′j+1 and Q the unique ej+1 − f path in T ′j+1. Suppose that P is a u − x path

and Q is a u−y path. Let v be the last vertex that P and Q have in common. Let P ′ be

the v − x subpath of P and Q′ the v − y subpath of Q. Thus, either d(x, v0) ≥ d(v, v0)

or d(y, v0) ≥ d(v, v0). Let dT (u, v) = a, dT (v, x) = b and dT (v, y) = c. Thus, a + b ≤ k

and a+ c ≤ k. There are four possibilities for the locations of e and f .

1. Both edges e and f belong to the branch B.

2. Exactly one of e and f belongs to a branch of T at v0 distinct from the branch B.

3. The edges e and f lie on the same branch of T at v0 but this branch is distinct
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from the branch B.

4. The edges e and f lie on distinct branches of T at v0, neither of which is the

branch B.

Regardless of which situation (1)–(4) occurs, either b ≤ a or c ≤ a (or both). Since

b ≤ k − a and c ≤ k − a, it follows that b+ c ≤ k. Thus, e and f lie on a path of length

at most k in T ′j+1 and so diam(T ′j+1) = k. Consequently, m(T ′j+1) ≤ mk. Hence, at most

mk − 1 edges of T ′j+1 have been assigned colors from [mk], resulting in at least one color

in [mk] that has not been assigned to any edge of T ′j+1. Hence, there is at least one color

in [mk] available for ej+1. Assigning ej+1 such a color results in a k-rainbow coloring of

Tj+1 using the colors of [mk]. Therefore, there exists a k-rainbow coloring of Ti with the

colors of [mk] for each integer i with 1 ≤ i ≤ q. In particular, there exists a k-rainbow

coloring of Tq = T using the colors from the set [mk]. Therefore, rck(T ) = mk for each

even integer k ≥ 6.

Case 2. k is odd. Thus, k = 2r + 1 for some integer r ≥ 3. Therefore, T0 has

two central vertices u0 and w0 and a central edge e0 = u0w0. Let t1 be the length of

the longest branch of T at u0 that does not contain w0 and let t2 be the length of the

longest branch of T at w0 that does not contain u0. Hence, t1 ≥ r and t2 ≥ r. For

i = 0, 1, 2, . . . , t1, let Ui be the set of all vertices of T at distance i from u0 that lie

on a branch of T at u0 not containing w0. For i = 0, 1, 2, . . . , t2, let Wi be the set of

all vertices of T at distance i from w0 that lie on a branch of T at w0 not containing

u0. In particular, U0 = {u0} and W0 = {w0}. Therefore, T [∪ri=0(Ui ∪Wi)] = T0. If

T = T0, then the proof is complete. Thus, we may assume that E(T ) − E(T0) 6= ∅ and

so diam(T ) ≥ k + 1.

Let e1 ∈ [Ur, Ur+1] ∪ [Wr,Wr+1] and let T1 = T0 + e1. Hence, diam(T1) = k + 1.

Let T ′1 be the subtree of T1 consisting of e1 and all those edges of T1 lying on a path of

length k or less having initial edge e1. We claim that diam(T ′1) = k. Suppose that this

is not the case. Then there is an e− f path in T ′1 of length k + 1 for some e, f ∈ E(T ′1).

Since diam(T0) = k, one of e and f must be e1, say e = e1. However, from the definition

of T ′1, there is no e1 − f path of length k + 1 in T ′1, a contradiction. Thus, as claimed,

diam(T ′1) = k and so the size of T ′1 is at most mk. Hence, at most mk − 1 edges of T ′1

have been assigned colors from [mk] and therefore there is at least one color in [mk] that

has not been assigned to any edge of T ′1. Assigning such a color to the edge e1 results in

a k-rainbow coloring of T ′1 using the colors of [mk]. If T = T1, then the proof is complete.

Hence, we may assume that E(T )− E(T1) 6= ∅.
If there is an edge e′ ∈ (E(T ) − E(T1)) ∩ ([Ur, Ur+1] ∪ [Wr,Wr+1]), where then e′
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Figure 4.5: The sets Ui and Wi of the tree T in Case 2

is incident with a vertex of T1 and T1 + e′ has diameter k + 1, then we denote this

edge e′ by e2 and let T2 = T1 + e2. Next, if there is an edge e′ ∈ (E(T ) − E(T2)) ∩
([Ur, Ur+1] ∪ [Wr,Wr+1]) such that T2 + e′ has diameter k + 1, then we denote this

edge e′ by e3 and let T3 = T2 + e3. We continue this procedure until no such edges e′

exist, obtaining a sequence e1, e2, . . . , ep (p ≥ 1) of edges and a sequence T1, T2, . . . , Tp

of subtrees of T having diameter k + 1. Next, if there exists an edge e′ ∈ (E(T ) −
E(Tp)) ∩ ([Ur, Ur+1] ∪ [Wr,Wr+1]), then we denote this edge e′ by ep+1 and let Tp+1 =

Tp + ep+1. Then diam(Tp + e′) = k + 2. We continue this procedure until no edges in

[Ur, Ur+1]∪[Wr,Wr+1] remain, say arriving at the tree Tp′ . If E(T )−E(Tp′) 6= ∅, then let

e′ ∈ (E(T )−E(Tp′))∩([Ur+1, Ur+2]∪ [Wr+1,Wr+2]). We continue this procedure until no

edges of [Ur+1, Ur+2]∪ [Wr+1,Wr+2] remain. We then continue this, obtaining a sequence

e1, e2, . . . , eq of all edges of E(T )−E(T0) and a sequence T1, T2, . . . , Tq of subtrees, where
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q = m(T )−m(T0) and Tq = T . In summary, after selecting the edge e1, we select other

edges in [Ur, Ur+1]∪ [Wr,Wr+1], one edge at a time, such that the addition of each such

edge to the preceding subtree obtained results in a subtree of diameter k + 1. When no

such edges remain, we then select other edges in [Ur, Ur+1] ∪ [Wr,Wr+1], one edge at a

time, such that the addition of each such edge to the preceding subtree obtained results

in a subtree of diameter k + 2. Once no such edges remain in [Ur, Ur+1] ∪ [Wr,Wr+1],

we turn to edges in [Ur+1, Ur+2] ∪ [Wr+1,Wr+2], the addition of which to the preceding

subtree obtained results in a subtree of diameter k+ 3, and so on. Hence, Ti ⊆ Ti+1 and

diam(Ti) ≤ diam(Ti+1) ≤ diam(Ti) + 1 for 0 ≤ i ≤ q − 1.

We claim, for each integer i with 0 ≤ i ≤ q, that a k-rainbow coloring of Ti exists

using the colors of [mk]. We proceed by induction. We have already seen that such a

coloring exists for both T0 and T1. Assume that such a coloring exists for Tj for some

integer j with 1 ≤ j < q. We show that such a coloring exists for Tj+1 = Tj + ej+1. We

may assume that ej+1 belongs to a branch B at u0 that does not contain w0 and that

ej+1 ∈ [Us, Us+1], where then s+ 1 ≤ t1. Let u be the vertex incident with ej+1 in Us+1.

Consequently, there is no edge in Tj+1 that belongs to [Us+1, Us+2].

Let T ′j+1 be the subtree of Tj+1 consisting of ej+1 and all those edges of Tj+1 lying

on a path of length k or less having initial edge ej+1. We claim that diam(T ′j+1) = k.

Clearly, diam(T ′j+1) ≥ k. Let e and f be two distinct edges of T ′j+1. We claim that e and

f lie on a path of length k or less in T ′j+1. Clearly, this is the case if either e or f is ej+1.

Thus, we may assume that neither e nor f is ej+1. Let P be the unique ej+1− e path in

T ′j+1 and let Q be the unique ej+1− f path in T ′j+1. Suppose that P is a u−x path and

Q is a u − y path. Let v be the last vertex that P and Q have in common. Let P ′ be

the v − x subpath of P and Q′ the v − y subpath of Q. Thus, either d(x, v0) ≥ d(v, v0)

or d(y, v0) ≥ d(v, v0). Let dT (u, v) = a, dT (v, x) = b and dT (v, y) = c. Thus, a + b ≤ k

and a+ c ≤ k, and so c ≤ k − a.

Recall that ej+1 belongs to the branch B of T at u0 that does not contain w0. To

simplify terminology, when we refer to a branch at u0, we mean a branch of T at u0 that

does not contain w0. Similarly, a branch at w0 is a branch of T at w0 that does not

contain u0. For the locations of e and f , the following situations are possible:

? one of e and f is e0 and the other lies on (i) the branch B, (ii) a branch B′ 6= B

at u0 or (iii) a branch at w0,

? e and f lie on the same branch at u0 or at w0; so this branch is (i) the branch B,

(ii) a branch B′ 6= B at u0 or (iii) a branch at w0,

? e and f lie on two different branches at u0, one of which is B or neither of which
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is B,

? e and f lie on two different branches at w0,

? e and f lie on two different branches, one of which is a branch at w0 and the other

is either (i) the branch B or (ii) a branch B′ 6= B at u0.

More precisely, there are eleven possibilities for the locations of e and f :

1. One of e and f is the edge e0 and the other belongs to B.

2. One of e and f is the edge e0 and the other belongs to a branch B′ at u0 distinct

from B.

3. One of e and f is the edge e0 and the other belongs to a branch B′ at w0.

4. Both e and f belong to B.

5. Both e and f belong to the same branch B′ at u0 distinct from B.

6. Both e and f belong to the same branch B′ at w0.

7. One of e and f belongs to B and the other belongs to a branch B′ at u0 distinct

from B.

8. One of e and f belongs to B and the other belongs to a branch B′ at w0.

9. The edges e and f belong to distinct branches at u0, neither of which is B.

10. One of e and f belongs to a branch B′ at u0 distinct from B and the other belongs

to a branch at w0.

11. The edges e and f belong to two distinct branches at w0.

Regardless of which situation (1)–(11) occurs, either b ≤ a or c ≤ a (or both). Since

b ≤ k − a and c ≤ k − a, it follows that b+ c ≤ k. Thus, e and f lie on a path of length

at most k in T ′j+1 and so diam(T ′j+1) = k. Consequently, m(T ′j+1) ≤ mk. Hence, at most

mk − 1 edges of T ′j+1 have been assigned colors from [mk], resulting in at least one color

in [mk] that has not been assigned to any edge of T ′j+1. Hence, there is at least one color

in [mk] available for ej+1. Assigning ej+1 such a color results in a k-rainbow coloring of

Tj+1 using the colors of [mk]. Therefore, there exists a k-rainbow coloring of Ti with the

colors of [mk] for each integer i with 1 ≤ i ≤ q. In particular, there exists a k-rainbow

coloring of Tq = T using the colors from the set [mk]. Therefore, rck(T ) = mk for each

odd integer k ≥ 7.
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It was observed in Chapter 2 that if T is a nontrivial tree of size m, then rc3(T ) = m

if and only if T is a star or a double star. This observation can be extended to the

following, which is a consequence of Theorem 4.1.4.

Corollary 4.1.5 Let T be a nontrivial tree of size m and let k ≥ 2 be an integer. Then

rck(T ) = m if and only if diam(T ) ≤ k.

Proof. First, suppose that diam(T ) ≤ k. Let e and f be any two edges of T . Then

there is an x − y path P in T such that e, f ∈ E(P ). The path P is the only x − y
path in T . Since diam(T ) ≤ k, the length of P is at most k. Thus, c(e) 6= c(f) and so

rck(T ) = m.

For the converse, suppose that T is a tree with diam(T ) > k. Let T ∗ be a subtree of

T having maximum size mk in T such that diam(T ∗) = k. Since diam(T ) > k, it follows

that T ∗ is a proper subtree of T and so mk < m. It then follows by Theorem 4.1.4 that

rc3(T ) = mk < m.

Theorem 4.1.4 provides a formula for rck(T ) of a tree T for each integer k ≥ 2, namely

rck(T ) is the maximum size mk of a subtree of T having diameter k. However, when k is

large, the value mk may not be easy to compute without the aid of technology (however,

the value mk may be computed in polynomial time when technology is implemented).

Therefore, this suggests the problem of obtaining bounds for rck(T ) in terms of more

easily computable expressions. For integers ∆ ≥ 3 and d ≥ 2, let T∆,d denote the set of

trees having maximum degree ∆ and diameter d and denote the minimum and maximum

sizes of trees in T∆,d by

m(∆, d) = min {m(T ) : T ∈ T∆,d}

M(∆, d) = max {m(T ) : T ∈ T∆,d} .

We will soon derive expressions for these numbers.

A tree is central if its center is K1 and bicentral if its center is K2. It is known that

a tree is central if and only if it has even diameter. Furthermore, if T is central, then

diam(T ) = 2 rad(T );

while if T is bicentral, then

diam(T ) = 2 rad(T )− 1

(see [14, pp. 88]).

54



Proposition 4.1.6 For integers ∆ ≥ 3 and d ≥ 2,

m(∆, d) = ∆ + d− 2,

M(∆, d) =


∆[(∆−1)t−1]

∆−2 if d = 2t ≥ 2 is even

1 + 2(∆− 1)
[(∆−1)t−1−1]

∆−2 if d = 2t− 1 ≥ 3 is odd.

Proof. Since the result is true for d = 2, 3, we may assume that d ≥ 4. First, we show

that m(∆, d) = ∆ + d− 2. Let T ∈ T∆,d such that T has size m and let v be a vertex of

T with deg v = ∆. Then T − v is a forest with ∆ components, say T1, T2, . . . , T∆. Let

mi denote the size of Ti for i = 1, 2, . . . ,∆. Therefore,

m = ∆ +
∆∑
i=1

mi.

Let P be a path of size d in T . Suppose first that v lies on P . Then exactly two of the

trees T1, T2, . . . , T∆, say T1 and T2, contain vertices of P . Hence, m1 +m2 ≥ d− 2 and

so

m = ∆ +

∆∑
i=1

mi ≥ ∆ + (d− 2) +

∆∑
i=3

mi ≥ ∆ + d− 2.

Next, suppose that v is not a vertex of P . Hence, P lies entirely in one of the trees

T1, T2, . . . , T∆, say T1 and so m1 ≥ d. Thus,

m = ∆ +

∆∑
i=1

mi ≥ ∆ + d+

∆∑
i=2

mi ≥ ∆ + d.

Therefore, m(∆, d) ≥ ∆ + d − 2. Now, let T ′ be the tree obtained from the path

(v0, v1, . . . , vd) where d ≥ 2 by adding ∆− 2 vertices and joining all these vertices to v1.

Then T ′ ∈ T∆,d. Since the size of T ′ is ∆ + d − 2, it follows that m(∆, d) ≤ ∆ + d − 2

and so m(∆, d) = ∆ + d− 2.

It remains to determine M(∆, d). We consider two cases, according to whether d is

even or d is odd.

Case 1. d ≥ 4 is even. Then d = 2t for some integer t ≥ 2. Let
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K(∆, d) =
∆[(∆−1)t−1]

∆−2 .

We show that M(∆, d) = K(∆, d). Now, let T ∈ T∆,d be an arbitrary tree. Since

diam(T ) = d is even, T has a unique central vertex v. Then e(v) = t. We may assume

that T is a rooted tree with root v. For each integer i with 0 ≤ i ≤ t, let

Vi = {w ∈ V (T ) : d(v, w) = i}.

Since V0 = {v} and deg v ≤ ∆, it follows that |[V0, V1]| ≤ ∆. Furthermore, |[V1, V2]| ≤
∆(∆− 1) and |[V2, V3]| ≤ ∆(∆− 1)2. In general,

|[Vi, Vi+1]| ≤ ∆(∆− 1)i for 0 ≤ i ≤ t− 1.

Thus,

m(T ) =
t−1∑
i=0

|[Vi, Vi+1]| ≤ ∆
t−1∑
i=0

(∆− 1)i

=
∆
[
(∆− 1)t − 1

]
∆− 2

= K(∆, d).

Since T is an arbitrary tree in T∆,d, it follows that M(∆, d) ≤ K(∆, d). On the other

hand, let TM ∈ T∆,d be a tree with central vertex u such that for each integer i with

0 ≤ i ≤ t − 1, every vertex in {w ∈ V (T ) : d(u,w) = i} has degree ∆ and every vertex

in {w ∈ V (T ) : d(u,w) = t} is an end-vertex of TM . Hence, |[Vi, Vi+1]| = ∆(∆ − 1)i

for 0 ≤ i ≤ t − 1 and so m(TM ) = K(∆, d). Hence, M(∆, d) ≥ K(∆, d) and so

M(∆, d) = K(∆, d) when d ≥ 4 is even.

Case 2. d ≥ 5 is odd. Then d = 2t− 1 for some integer t ≥ 3. Let

K(∆, d) = 1 + 2(∆− 1)
[(∆−1)t−1−1]

∆−2 .

We show that M(∆, d) = K(∆, d). Next, let T ∈ T∆,d. Since diam(T ) = d is odd, the

center of T is K2 and so T has exactly two central vertices u and v. Thus, u and v are

adjacent vertices with e(u) = e(v) = t. Express the tree T as “a double rooted tree”

whose roots are u and v. For each integer i with 0 ≤ i ≤ t− 1, let

Wi,u = {w ∈ V (T ) : d(u,w) = i and d(v, w) = i+ 1},

Wi,v = {w ∈ V (T ) : d(v, w) = i and d(u,w) = i+ 1},

and Wi = Wi,u ∪Wi,v for 0 ≤ i ≤ t − 1. Thus, W0 = {u, v} and W1 consits of those

vertices in V (T )−{u, v} that are adjacent to either u or v. Then |[W0,W1]| ≤ 2(∆− 1).

Furthermore, |[W1,W2]| ≤ 2(∆− 1)2 and |[W2,W3]| ≤ 2(∆− 1)3. More generally,
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|[Wi,Wi+1]| ≤ 2(∆− 1)i for 0 ≤ i ≤ t− 2.

Hence,

m(T ) = 1 +

t−2∑
i=0

|[Wi,Wi+1]| ≤ 1 +

t−2∑
i=0

2(∆− 1)i+1

≤ 1 + 2(∆− 1)

t−2∑
i=0

(∆− 1)i

= 1 + 2(∆− 1)

[
(∆− 1)t−1 − 1

]
∆− 2

= K(∆, d).

Since T is an arbitrary tree in T∆,d, it follows that M(∆, d) ≤ K(∆, d). On the other

hand, let TM ∈ T∆,d be a tree with the central vertices x and y such that for each integer

i with 0 ≤ i ≤ t − 2, every vertex in Wi = Wi,x ∪Wi,y has degree ∆ and every vertex

in Wt−1 = Wt−1,x ∪Wt−1,y is an end-vertex of TM . Then |[Wi,Wi+1]| = 2(∆− 1)i+1 for

0 ≤ i ≤ t− 2 and so m(TM ) = K(∆, d). Hence, M(∆, d) = K(∆, d).

The following corollary is a consequence of Theorem 4.1.4 and Proposition 4.1.6

Corollary 4.1.7 If T is a tree having maximum degree ∆ ≥ 3 and diameter at least k,

where k ≥ 2, then

rck(T ) ≥ ∆ + k − 2

rck(T ) ≤


∆[(∆−1)t−1]

∆−2 if k = 2t ≥ 2 is even

1 + 2(∆− 1)
[(∆−1)t−1−1]

∆−2 if k = 2t− 1 ≥ 3 is odd.

The following is an immediate consequence of Observation 3.1.1 and Corollary 4.1.7.

Corollary 4.1.8 If G is a connected graph of order at least k + 1 ≥ 4 and maximum

degree ∆ ≥ 3, then

rck(G) ≤


∆[(∆−1)t−1]

∆−2 if k = 2t ≥ 2 is even

1 + 2(∆− 1)
[(∆−1)t−1−1]

∆−2 if k = 2t− 1 ≥ 3 is odd.
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4.2 Unicyclic Graphs

In [32, 33], upper bounds for the rainbow connection numbers have been established for

connected graphs G having minimum degree δ(G) ≥ 2.

Theorem 4.2.1 [33] Let G be a connected graph of order n ≥ 4 with minimum degree

δ(G) = 2. If G /∈ {C4,K4 − e, C5}, then rc(G) ≤ n− 3.

Theorem 4.2.2 [32] If G is a connected graph of order n ≥ 4 with minimum degree

δ(G) ≥ 3, then rc(G) ≤ 3n−1
4 .

The following is a consequence of (3.1) and Theorems 4.2.1 and 4.2.2.

Corollary 4.2.3 Let G be a connected graph of order n ≥ 6 whose longest paths have

length ` and let k be an integer with 2 ≤ k ≤ `.

(1) If δ(G) = 2, then rck(G) ≤ n− 3.

(2) If δ(G) ≥ 3, then rck(G) ≤ 3n−1
4 .

Thus, we study connected graphs containing end-vertices, namely those graphs with

minimum degree 1. Every nontrivial tree contains end-vertices. If T is a tree of order

n ≥ 3, then diam(T ) = d is the length of a longest path in T and rcd(T ) = n − 1 by

Corollary 4.1.2. Thus, rck(T ) ≤ n− 1 for all integers k with 2 ≤ k ≤ d by (3.1). It can

be shown that if G is a connected graph of order n ≥ 3 and ` is the length of a longest

path in G, then G contains a spanning tree T such that diam(T ) = `. It then follows

by Observation 3.1.1 and Corollary 4.1.2 that rck(G) ≤ n − 1 for all integers k with

2 ≤ k ≤ `. In this section, we study the k-rainbow colorings of a well-known class of

graphs, namely unicyclic graphs. As a consequence, it is shown that if G is a connected

graph of order n ≥ 3 that is not a tree and the length of a longest path in G is `, then

rck(G) ≤ n− 2 for all integers k with 2 ≤ k ≤ `.
A unicyclic graph is a connected graph containing exactly one cycle. Thus, if G

is a unicyclic graph of order n ≥ 3, then the size of G is also n. In particular, each

cycle is a unicyclic graph. Since rc(Kn) = 1 for all integer n ≥ 3 (and so rc(C3) = 1),

it then follows by (3.1) and Theorem 3.3.2 that rck(Cn) ≤ n − 2 for integers k and n

with 2 ≤ k ≤ n − 1. Next, we show that rck(G) ≤ n − 2 for all unicyclic graphs G of

order n ≥ 3 in general. First, we introduce additional notation. If P and Q are two

paths in a graph G such that P and Q have exactly one vertex in common and this

vertex is an end-vertex of P and Q, say P is u − v path and Q is a v − w path where
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V (P )∩V (Q) = {v}, then let (P,Q) denote the u−w path in G constructed from P and

Q, namely P followed by Q.

Proposition 4.2.4 If G is a unicyclic graph of order n ≥ 3 whose longest paths have

length `, then rck(G) ≤ n− 2 for all integers k with 2 ≤ k ≤ `.

Proof. Let G be a unicyclic graph of order n ≥ 3. Thus, G has n edges. Since K3

is the only unicyclic graph of order 3 and rc(K3) = 1, we may assume that n ≥ 4 and

so diam(G) ≥ 2. Let C = (u1, u2, . . . , up, up+1 = u1) be the unique cycle in G. By

Theorem 3.3.2, we may assume that G 6= C and so 3 ≤ p ≤ n − 1. We show that G

has a rainbow coloring using n − 2 colors. Define the edge coloring c : E(G) → [n − 2]

by assigning the color 1 to the three edges u1u2, u2u3, u3u4 on C (where u3u4 = u3u1 if

p = 3) and assigning the n− 3 distinct colors 2, 3, . . . , n− 2 to the remaining n− 3 edges

of G. It remains to show that c is a rainbow coloring of G.

Let x and y be two nonadjacent vertices of G. We show that there is a rainbow x−y
path in G. First, suppose that x, y ∈ V (C). Then there are two x − y paths Q and

Q′ on C. Since only three edges on C are colored 1, at least one of Q and Q′ contains

at most one edge colored 1, say Q contains at most one edge colored 1. Thus, Q is a

rainbow x−y path. Next, suppose that at least one of x and y does not belong to C, say

y /∈ V (C). Let ui ∈ V (C) where 1 ≤ i ≤ n such that d(y, ui) = min{d(y, u) : u ∈ V (C)}
and let P be the ui − y geodesic in G. Then P is a rainbow ui − y path in G. If

x ∈ V (C), then let Q be the rainbow x − ui path on C (where Q is a trivial path if

x = ui). Hence, (Q,P ) is a rainbow x − y path in G. If x /∈ V (C), then let uj ∈ V (C)

such that d(x, uj) = min{d(x, u) : u ∈ V (C)} where it is possible that ui = uj . Let P ′

be the x−uj geodesic in G and so P ′ is a rainbow x−uj path. Now let Q be the ui−uj
rainbow path on C (where Q is a trivial path if ui = uj). Then (P ′, Q, P ) is a rainbow

x− y path in G. Therefore, c is a rainbow coloring of G and so rc(G) ≤ n− 2. It then

follows by (3.1) that rck(G) ≤ rc(G) ≤ n− 2 for all integers k with 2 ≤ k ≤ `.

The bound n − 2 established for rck(G) in Proposition 4.2.4 is best possible as we

will see soon. In order to extend Proposition 4.2.4 to all connected graphs that are not

trees, we first present a lemma.

Lemma 4.2.5 If G is a nontrivial connected graph that is not a tree such that the

length of a longest path in G is `, then G contains a unicyclic spanning subgraph whose

longest paths have length `.

Proof. Since the result is certainly true if G is a unicyclic graph, we may assume

that G is not unicyclic. Let L be a path of length ` in G. Since G is not a tree,
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there is an edge e1 ∈ E(G) − E(L) that lies on a cycle of G. Then G1 = G − e1 is a

connected spanning subgraph of G. Since G1 contains L, the length of a longest path in

G1 is `. If G1 is a unicyclic graph, then G1 has the desired property. Otherwise, there

is e2 ∈ E(G1) − E(L) that lies on a cycle of G1. Then G2 = G − e2 is a connected

spanning subgraph of G1 and G. Since G2 contains L, the length of a longest path in G2

is `. If G2 is a unicyclic graph, then G2 has the desired property; if not, we continue this

procedure until eventually arriving at a unicyclic spanning subgraph of G whose longest

paths have length `.

Theorem 4.2.6 If G is a nontrivial connected graph of order n ≥ 3 that is not a tree

such that the length of a longest path in G is `, then rck(G) ≤ n − 2 for all integers k

with 2 ≤ k ≤ `.

Proof. Let G be a connected graph of order n that is not a tree such that the length

of a longest path in G is `. By Lemma 4.2.5, G contains a uncyclic spanning subgraph

H such that the length of a longest path in H is `. By Proposition 4.2.4, rck(H) ≤ n−2

for all integers k with 2 ≤ k ≤ `. It then follows by Observation 3.1.1 that rck(G) ≤
rck(H) ≤ n− 2 for all integers k with 2 ≤ k ≤ `.

The bound n − 2 established for rck(G) in Theorem 4.2.6 is best possible. In fact,

more can be said. A tree T has the property that there exists a 3-rainbow coloring

of T such that every two vertices u and v are connected by a unique 3-rainbow u − v
path in T . This gives rise to the following question: Is there a connected graph that

is not a tree with this property? We provide an affirmative answer to this question.

First, we give an example of a class of graphs of diameter 3. The corona cor(H) of

a graph H is the graph obtained from H by attaching a pendant edge to each vertex

of H. Thus, if H has order n, then the corona cor(H) has order 2n and has precisely n

leaves. Let G = cor(Kn) for some integer n ≥ 3, where V (Kn) = {u1, u2, . . . , un} and

V (G)− V (Kn) = {v1, v2, . . . , vn} such that uivi is the pendant edge at ui for 1 ≤ i ≤ n.

Define the edge coloring c : E(G)→ [n+ 1] by c(uivi) = i for 1 ≤ i ≤ n and c(e) = n+ 1

for each e ∈ E(Kn). Then c is a 3-rainbow (n + 1)-coloring of G. Furthermore, every

two vertices are connected by a unique 3-rainbow path (or a rainbow path) in G.

Theorem 4.2.7 For two integers d and k with d ≥ k ≥ 3, there exists a connected

graph G of diameter d that is not a tree with the property that rck(G) = k and G has a

k-rainbow coloring such that every two vertices of G are connected by a unique k-rainbow

path.

60



Proof. For an integer k ≥ 3, let Gk be the graph constructed from the graph K2 =

(u, v) and the path Pk = (w1, w2, . . . , wk) of order k by joining u and v to w1. (see

Figure 4.6). Since diam(Gk) = k, it follows that rck(Gk) ≥ k. Next, define the edge

coloring c of Gk defined by c(e) = 1 if e ∈ {uv, uw1, vw1} and c(wiwi+1) = i + 1 for

1 ≤ i ≤ k − 1. Since c is a k-rainbow k-coloring of Gk, it follows that rck(G) = k.
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Figure 4.6: The graph Gk

Next, we show that every two vertices of G are connected by a unique k-rainbow

path. Let x and y be any two vertices of Gk. If x and y belong to Pk, then the x − y
subpath of Pk is the unique k-rainbow x− y path in Gk. If x and y belong to {u, v, w1},
then (x, y) is the unique k-rainbow x − y path in Gk. If x belongs to {u, v, w1} and y

belongs to Pk, say y = wi for some i with 2 ≤ i ≤ k, then the path (x,w1, w2, . . . , wi) is

the unique k-rainbow x−y path in Gk. Thus, the graph Gk (together with the k-rainbow

coloring c) has the desired property.

A graph Gd of diameter d > k with the desired property can be constructed from

the graph Gk and the path (wk+1, wk+2, . . . , wd) of order d − k by adding the edge

wkwk+1. We can then extend the k-rainbow coloring c of Gk to a k-rainbow coloring

of Gd by assigning the colors 1, 2, . . . , k in this order to the edges of the path Q =

(wk, wk+1, wk+2, . . . , wd) beginning with wkwk+1 (namely, assign the color i + 1 to the

edge wk+iwk+i+1 for 0 ≤ i ≤ k− 1 if d− k ≥ k) and repeat this procedure if d− k > k.

By Theorem 4.2.7, for each integer n ≥ 4, there is a unicyclic graph G of order n

such that rcn−2(G) = n − 2. Therefore, as we mentioned, the bound n − 2 established

for rck(G) where 2 ≤ k ≤ n− 1 in Theorem 4.2.6 is the best possible

4.3 Graphs of Cycle Rank 2

In this section, we show that if G is a connected graph of order n ≥ 3 and size at

least n+1 that is (K4−e)-free and the length of a longest path is `, then rck(G) ≤ n−3

for all integers k with 2 ≤ k ≤ `. In order to show this, we first introduce a another

class of graphs. Let G be a connected graph of order n and size m. The number of edges

that must be deleted from G to obtain a spanning tree of G is m− n+ 1. The number

m− n+ 1 is called the cycle rank (or Betti number) of G. Thus, the cycle rank of a tree
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is 0 and the cycle rank of a unicyclic graph (a connected graph with exactly one cycle)

is 1. The cycle rank of a connected graph of order n and size m = n + 1 is therefore

2. A graph H is called a subdivision of a graph G if H is obtained from G by inserting

vertices of degree 2 into one or more edges of G. For this purpose, we also say that a

graph is vacuously a subdivision of itself. If H is a subdivision of a graph G, then H

and G have the same cycle rank.

As is the case with trees, there is a formula that gives the number of end-vertices in

a connected graph G having cycle rank ψ in terms of ψ and the number of vertices of G

having degree 3 or more. Although the following result is known, we present a proof for

completion.

Proposition 4.3.1 Let G be a nontrivial connected graph having maximum degree ∆

and cycle rank ψ. If ni is the number of vertices of degree i in G, where 1 ≤ i ≤ ∆, then

n1 = (2− 2ψ) + n3 + 2n4 + 3n5 + · · ·+ (∆− 2)n∆. (4.1)

Proof. Suppose that G has order n and size m. Then m = (n− 1) + ψ,

n =
∑∆

i=1 ni, and 2m =
∑∆

i=1 ini.

Therefore, 2m = 2(n− 1 + ψ) = 2n− 2 + 2ψ and so

∆∑
i=1

ini = 2
∆∑
i=1

ni − 2 + 2ψ. (4.2)

Solving for n1 in (4.2), we obtain (4.1).
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For each integer n ≥ 4, let G2,n denote the set of all connected graphs of order n with

cycle rank 2. If G ∈ G2,n, then the size of G is n + 1. If G ∈ G2,n, then G contains at

least two cycles and so G has a subgraph F that is isomorphic to one of three types of

graphs in Figure 4.7.
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Figure 4.7: Three possible types of subgraphs

(1) a graph obtained from two cycles C and C ′, by identifying a vertex in C and a

vertex in C ′, as shown in Figure 4.7(a),

(2) a graph obtained from two disjoint cycles C and C ′ and a path P of length 1 or

more by identifying an end-vertex u of P with a vertex of C and identifying the

other end-vertex v of P with a vertex of C ′, as shown in Figure 4.7(b),

(3) a subdivision of K4 − e, that is, a graph consisting of three internally disjoint

u− v paths Pi (1 ≤ i ≤ 3), as shown in Figure 4.7(c), where at least two paths Pi

(1 ≤ i ≤ 3) have length 2 or more.

The graph K4 − e is the only connected graph of order 4 and cycle rank 2 and so

G2,4 = {K4− e}. Figure 4.8 shows all graphs in in G2,5 and G2,6 together with a rainbow

coloring for each of these graphs. If G is a connected graph of order n ≥ 4 and cycle

rank 2, then diam(G) ≤ n−2. If G = K4− e, then rc(G) = diam(G) = 2 = n−2. There

are three graphs G ∈ G2,5 ∪ G2,6 such that rc(G) = diam(G) = n − 2, each of which is

placed inside a box shown in Figure 4.8. Notice that these are the only graphs in G2,5

and G2,6 containing K4− e as a subgraph and having maximum degree 3. The following

result can be verified.

Proposition 4.3.2 Let G be a connected graph of order n ∈ {4, 5, 6} and cycle rank 2

whose longest paths have length `. Then rc(G) = n − 2 if and only if diam(G) = n − 2

and rc(G) ≤ n − 3 otherwise. Consequently, if diam(G) 6= n − 2, then rck(G) ≤ n − 3

for each integer k with 2 ≤ k ≤ `.

We now turn our attention to connected graphs of order n ≥ 7 having cycle rank 2.

A graph G having cycle rank 2 is of type I if the two cycles in G are edge-disjoint. Thus,
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Figure 4.8: Graphs in G2,5 and G2,6

G contains a subgraph that is isomorphic either to the graph in Figure 4.7(a) or to the

graph in Figure 4.7(b).

Proposition 4.3.3 Let G be a connected graph of order n ≥ 7 having cycle rank 2 and

let ` be the length of a longest path in G. If G is of type I, then rck(G) ≤ n − 3 for all

integers k with 2 ≤ k ≤ `.

Proof. Let Cp = (u1, u2, . . . , up, u1) and Cq = (v1, v2, . . . , vq, v1) be the two edge-

disjoint cycles in G. We may assume that q ≥ p ≥ 3. By (3.1), it suffices to show that

rc(G) ≤ n− 3; that is, there is a rainbow coloring of G using at most n− 3 colors. First,

observe that if p = 3, then rc(Cp) = 1 = p−2; while if p ≥ 4, then rc(Cp) ≤ bp/2c ≤ p−2.

Thus, rc(Cp) ≤ p − 2 for each integer p ≥ 3. Similarly, rc(Cq) ≤ q − 2 for each integer

q ≥ 3. Suppose that rc(Cp) = a and rc(Cq) = b. Then a + b ≤ p + q − 4. Let

cp : E(Cp)→ [a] be a rainbow coloring of Cp and let cq : E(Cq)→ {a+1, a+2, . . . , a+b}
be a rainbow coloring of Cq. Let X = E(G) − (E(Cp) ∪ E(Cq)). Since the size of G is
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n+ 1, it follows that |X| = n+ 1− p− q ≥ 0.

? If X = ∅, then n = p + q − 1. Define the edge coloring c : E(G) → [a + b] by

c(e) = cp(e) if e ∈ E(Cp) and c(e) = cq(e) if e ∈ E(Cq). Then c is a rainbow

coloring of G and so rc(G) ≤ a+ b ≤ p+ q − 4 = n− 3.

? If X 6= ∅, then let X = {e1, e2, . . . , eγ}, where γ = n + 1 − p − q ≥ 1. Define the

edge coloring c : E(G)→ [a+ b+ γ] by c(e) = cp(e) if e ∈ E(Cp) and c(e) = cq(e)

if e ∈ E(Cq) and c(ei) = a+ b+ i for 1 ≤ i ≤ γ. Then c is a rainbow coloring of G

and so rc(G) ≤ a+ b+ γ ≤ (p+ q − 4) + (n+ 1− p− q) = n− 3.

It then follows by (3.1) that rck(G) ≤ n− 3 for all integers k with 2 ≤ k ≤ `.

A connected graph G of order n ≥ 4 having cycle rank 2 is of type II if the two

cycles in G have at least one edge in common. Thus, G contains a subdivision of K4− e.
Therefore, G contains a subgraph that is isomorphic to the graph in Figure 4.7(c).

Proposition 4.3.4 Let G be a connected graph of order n ≥ 7 having cycle rank 2 and

let ` be the length of a longest path in G. If G is of type II but does not contain K4 − e
as a subgraph, then rck(G) ≤ n− 3 for all integers k with 2 ≤ k ≤ `.

Proof. By (3.1), it suffices to show that rc(G) ≤ n − 3, that is, there is a rainbow

coloring of G using at most n − 3 colors. Let H be the subgraph of order p that is

isomorphic to a subdivision of K4 − e in G. Since H 6= K4 − e, it follows that p ≥ 5.

Since H is a connected graph of cycle rank 2 itself, the size of H is p+ 1. If G = H, then

G is a connected graph of order n ≥ 7 and δ(G) = 2. It then follows by Theorem 4.2.1

that rc(G) ≤ n− 3. Thus, we may assume that G 6= H. Then

|E(G)− E(H)| = (n+ 1)− (p+ 1) = n− p ≥ 1.

Let E(G) − E(H) = {e1, e2, . . . , en−p}. Since H 6= C5 and δ(H) = 2, it follows by

Theorem 4.2.1 that rc(H) = a ≤ p − 3. Let cH : E(H) → [a] be a rainbow coloring of

H. Define the edge coloring c : E(G) → [a + (n − p)] by c(e) = cH(e) if e ∈ E(H) and

c(ei) = a+ i for 1 ≤ i ≤ n− p. It can be shown that c is a rainbow coloring of G. Thus,

rc(G) ≤ a+ (n− p) ≤ (p− 3) + (n− p) = n− 3.

Therefore, rck(G) ≤ n− 3 for all integers k with 2 ≤ k ≤ ` by (3.1).

The following is a consequence of the three preceding propositions.
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Theorem 4.3.5 Let G be a connected graph of order n ≥ 4 having cycle rank 2 and let

` be the length of a longest path in G. If G does not contain K4 − e as a subgraph, then

rck(G) ≤ n− 3 for all integers k with 2 ≤ k ≤ `.

By an argument similar to that used in the proof of Lemma 4.2.5, we obtain the

following lemma.

Lemma 4.3.6 If G is a nontrivial connected graph of order n ≥ 4 and size m ≥ n+ 1,

the length of whose longest path is `, then G contains a connected spanning subgraph of

size n+ 1 whose longest paths have length `.

The following is a consequence of Observation 3.1.1, Lemma 4.3.6 and Theorem 4.3.5.

Theorem 4.3.7 Let G be a connected graph of order n ≥ 4 and size m ≥ n+ 1 and let

` be the length of a longest path in G. If G does not contain K4 − e as a subgraph, then

rck(G) ≤ n− 3 for all integers k with 2 ≤ k ≤ `.

The results stated in Theorems 4.3.5 and 4.3.7 are best possible. In fact, for each

integer n ≥ 4, there are connected graphs Gn of order n ≥ 4 and size n+ 1 that contain

K4− e as a subgraph such that rck(Gn) = n− 2 for some integer k where 2 ≤ k ≤ ` and

` is the length of a longest path in Gn. To see this, let G4 = K4 − e and for n ≥ 5, let

Gn be constructed from the graph K4 − e and Pn−4 = (v1, v2, . . . , vn−4) by joining v1 to

a vertex of degree 2 in K4 − e. Since diam(Gn) = n− 2, it follows by Lemma 3.1.2 and

Theorem 4.2.6 that rck(Gn) = n− 2 for k = n− 2, n− 1. Furthermore, for each integer

n ≥ 5, there are connected graphs Fn of order n ≥ 4 and size n+ 1 that do not contain

K4 − e as a subgraph such that rck(Fn) = n− 3 for some integer k where 2 ≤ k ≤ ` and

` is the length of a longest path in Fn. To see this, let F5 = C5 + e and for n ≥ 6, let

Fn be constructed from the graph C5 + e and Pn−5 = (v1, v2, . . . , vn−5) by joining v1 to

a vertex of degree 2 in C5 + e. Since diam(Fn) = n − 3, it follows by Lemma 3.1.2 and

Theorem 4.3.5 that rck(Fn) = n− 3 for k ∈ {n− 3, n− 2, n− 1}.

4.4 Diametric-Rainbow Colorings in Graphs

We have seen in Lemma 3.1.2 that if G is a nontrivial connected graph of diameter d, then

rcd(G) ≥ d. By Corollary 4.1.2, if G is a nontrivial tree of order n, then rcd(G) = n− 1

and so rcd(G)−diam(G) can be arbitrarily large. This gives rise to the following question:

If G is not a tree, how large can rcd(G)− diam(G) be?
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For a nontrivial connected graph G of diameter d, a d-rainbow coloring of G is also

referred to as a diametric-rainbow coloring of G. Thus, a diametric-rainbow coloring of

a connected graph G with diam(G) = d is an edge coloring of G such that every pair of

distinct vertices of G are connected by a d-rainbow path in G. By Theorem 4.2.6, if G

is a connected graph of order n ≥ 3 and diameter d ≥ 2 that is not tree, then

d ≤ rcd(G) ≤ n− 2.

In fact, if d, γ, n are integers with 2 ≤ d ≤ γ ≤ n−2, then there exists a connected graph

G of order n that is not a tree such that diam(G) = d and rcd(G) = γ. We begin with

case where 2 ≤ d ≤ k = n− 2.

Theorem 4.4.1 For every triple (d, k, n) of integers with 2 ≤ d ≤ k and n = k + 2,

there exists a connected graph G of order n that is not a tree such that

diam(G) = d and rcd(G) = k.

Proof. First, suppose that k = d. Let Gd be the graph of order d+ 2 constructed from

the graph K2 = (u, v) and the path Pd = (w1, w2, . . . , wd) of order d by joining u and v

to w1 (see Figure 4.6). We saw, in the proof of Proposition 4.2.7, that diam(Gd) = d and

rcd(Gd) = d. Next, suppose that k > d. We consider two cases, according to whether

k = d+ 1 or k ≥ d+ 2.

Case 1. k = d + 1. Let G be the graph of order k + 2 = d + 3 obtained from

Gd by adding a new vertex x and joining x to wd−1. Then diam(G) = d. We claim

that rcd(G) = d + 1. First, we show that rcd(G) ≤ d + 1. Define the edge coloring

c : E(G)→ [d+ 1] of G defined by

c(e) =


1 if e ∈ {uv, uw1, vw1}

i+ 1 if e = wiwi+1 for 1 ≤ i ≤ d− 1

d+ 1 if e = wd+1x.

This coloring is shown in Figure 4.9. Since every two vertices are connected by a rainbow

path, it follows that c is a d-rainbow (d+ 1)-coloring of G. Hence, rcd(G) ≤ d+ 1.

Next, we show that rcd(G) ≥ d + 1. Assume, to the contrary, that rcd(G) ≤ d. It

then follows by Lemma 3.1.2 that rcd(G) = d. Let there be given a d-rainbow d-coloring

c : E(G) → [d] of G. We may assume, without loss of generality, that c(uw1) = 1 and

the color 1 is also assigned to another edge e of H. First, suppose that c(e) = 1 for some
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Figure 4.9: A graph G with diam(G) = d in Case 1

e ∈ E(H) − {xwd−1, wd−1wd}. Since k ≥ d and only d colors are used by c, it follows

that a k-rainbow u−wd−1 path must be a rainbow path. There are exactly two u−wd−1

paths in G, namely

Q1 = (u,w1, w2, . . . , wd−1) and Q2 = (u, v, w1, w2, . . . , wd−1).

Since Q1 is not a rainbow path, it follows that Q2 must be a rainbow path. Thus,

{c(uv), c(vw1)}= {2, 3}, say c(uv) = 2 and c(vw1) = 3. This implies that c(f) /∈ {2, 3}
for each f ∈ E(H) − {xwd−1, wd−1wd} and so {c(xwd−1), c(wd−1wd)} = {2, 3}, say

c(xwd−1) = 2 and c(wd−1wd) = 3. However then, there is no rainbow v − wd path in G,

which is a contradiction. Therefore, rcd(G) ≥ d+ 1 and so rcd(G) = d+ 1.

Case 2. k ≥ d + 2. Let G be the graph of order k + 2 obtained from Gd by adding

k − d + 1 new vertices x1, x2, . . . , xk−d+1 and joining xi to wd−1 for 1 ≤ i ≤ k − d + 1.

Then diam(G) = d. It remains to show that rcd(G) = k. The subgraph G − {u, v} is a

tree of size k. For every pair x, y of distinct vertices of H, there is a unique x− y path

in G. Hence, every d-rainbow coloring must assign k distinct colors to the k edges of H,

implying that rcd(G) ≥ k. Next, define the edge coloring c : E(G)→ [k] by

? assigning the colors 1, 2, 3 to the three edges uv, uw1, vw1,

namely {c(uv), c(uw1), c(vw1)} = {1, 2, 3},

? assigning the colors 1, 2, 3 to the three edges wd−1xi for i = 1, 2, 3,

namely {c(wd−1x1, c(wd−1x2, c(wd−1x3} = {1, 2, 3},

? assigning the k − 3 colors in {4, 5, . . . , k} to the remaining k − 3 edges of G.

We may assume that the coloring c is the one as shown in Figure 4.10.

Since H is a rainbow tree in G, every two vertices of H are connected by a rainbow

path. In fact, every two vertices of G are connected by a rainbow path. For example, the

vertices u and x2 are connected by the rainbow u−x2 path (u, v, w1, . . . , wd−1, x2) in G.

Thus, c is a rainbow coloring of G and so c is a d-rainbow k-coloring of G. Therefore,

rcd(G) ≤ k and so rcd(G) = k.
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Figure 4.10: A graph G with diam(G) = d in Case 2

Theorem 4.4.2 For every triple (d, k, n) of integers with 2 ≤ d ≤ k ≤ n − 3, there

exists a connected graph G of order n that is not a tree such that

diam(G) = d and rcd(G) = k.

Proof. First, suppose that 2 ≤ d = k ≤ n − 3. Let G be the graph obtained from

the path Pd = (u1, u2, . . . , ud) of order d and the complete graph Kn−d by joining ud to

each vertex of Kn−d. Then the order of G is n and diameter of G is d. We show that

rcd(G) = d. Since rcd(G) ≥ d, it remains to show that G has a d-rainbow d-coloring.

Define the edge coloring c : E(G)→ [d] by

c(e) =


1 if e ∈ E(Kn−d)

i if e = uiui+1 for 1 ≤ i ≤ d− 1

d if e = udx for each x ∈ V (Kn−d).

Then c is a d-rainbow d-coloring and so rcd(G) = d.

Next, suppose that 2 ≤ d < k ≤ n − 3. Then n ≥ k + 3 ≥ 6 and k − d + 1 ≥ 2.

We begin with the tree T of order k + 1 and diameter d ≥ 2 obtained from the path

Pd = (u1, u2, . . . , ud) of order d and the k−d+1 ≥ 2 vertices v1, v2, . . . , vk−d+1 by joining

the end-vertex ud of Pd to each vertex vi for 1 ≤ i ≤ k − d+ 1. Let cT : E(T )→ [k] be

a k-rainbow coloring of T defined by

cT (e) =

{
i if e = uiui+1 for 1 ≤ i ≤ d− 1

d+ i− 1 if e = udvi for 1 ≤ i ≤ k − d+ 1.
(4.3)

The tree T and the coloring cT of T are shown in Figure 4.11. Next, we construct a

graph G of order n that is not a tree such that diam(G) = d and rcd(G) = k. There are

two cases, according to whether n and k are of opposite parity or of the same parity.
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Figure 4.11: A k-rainbow coloring cT of the tree T

Case 1. n and k are of opposite parity. Write n − k = 2p + 1 ≥ 3 for some positive

integer p. Let F = pK2, where

V (F ) = {w1, w
′
1, w2, w

′
2, . . . , wp, w

′
p}

such that wiw
′
i ∈ E(F ) for 1 ≤ i ≤ p. Now, let G be the graph obtained from the tree

T and the graph F by joining the vertex ud of T to each vertex of F . Then the order

of G is k + 1 + (n − k − 1) = n and diam(G) = d. Since every d-rainbow coloring of G

must assign k distinct colors to the k edges of T , it follows that rcd(G) ≥ k. Next, we

show that G has a d-rainbow k-coloring. Let cT be the coloring of T described in (4.3).

Define the edge coloring c : E(G)→ [k] of G by

c(e) =


cT (e) if e ∈ E(T )

1 if e = wiw
′
i for 1 ≤ i ≤ p

d if e = udwi for 1 ≤ i ≤ p
d+ 1 if e = udw

′
i for 1 ≤ i ≤ p.

The graph G and the coloring c of G are shown in Figure 4.12. We show that c is a

d-rainbow coloring of G.
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Figure 4.12: A k-rainbow coloring c of the graph G in Case 1

Let x and y be two nonadjacent vertices of G. Since T is a rainbow subgraph of G,

every two vertices of T are connected by a rainbow path in T and so in G. Thus, we
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may assume that one of x and y is not a vertex of T , say y /∈ V (T ). By symmetry, we

may assume that y = w1. Thus, x /∈ N(w1) = {ud, w′1}.

? If x = ui where 1 ≤ i ≤ d− 1, then (ui, ui+1, . . . , ud, w1) is a rainbow x− y path.

? If x = v1, then (v1, ud, w
′
1, w1) is a rainbow x− y path.

? If x = vi where 2 ≤ i ≤ k − d+ 1, then (vi, ud, w1) is a rainbow x− y path.

? If x = wi or x = w′i where 2 ≤ i ≤ p, then, since (wi, w
′
i, ud, w1) is a rainbow path,

there is a rainbow x− y path.

Thus, c is a d-rainbow coloring of G and so rcd(G) ≤ k. Hence, rcd(G) = k.

Case 2. n and k are of the same parity. Write n−k = 2p ≥ 4 for some integer p ≥ 2.

For p = 2, let F = P3 = (w1, w, w
′
1) and for p ≥ 3, let F = P3 + (p − 2)K2, where

P3 = (w1, w, w
′
1) and wi+1w

′
i+1 ∈ E(F ) for 1 ≤ i ≤ p− 2. The graph G is obtained from

the tree T and the graph F by joining the vertex ud of T to each vertex of F . The order

of G is k + 1 + (n − k − 1) = n and diam(G) = d. Since every d-rainbow coloring of G

must assign k distinct colors to the k edges of T , it follows that rcd(G) ≥ k. Next, we

show that G has a d-rainbow k-coloring. Let cT be the coloring of T described in (4.3).

Define the edge coloring c : E(G)→ [k] of G by

c(e) =



cT (e) if e ∈ E(T )

1 if e = w1w or e = wiw
′
i for 2 ≤ i ≤ p− 2 if p ≥ 3

2 if e = ww′1
d− 1 if e = udw

d if e = udwi for 1 ≤ i ≤ p− 2 if p ≥ 3

d+ 1 if e = udw
′
i for 1 ≤ i ≤ p− 2 if p ≥ 3.

The graph G and the coloring c of G are shown in Figure 4.13. We show that c is a

d-rainbow coloring of G.

Let x and y be two nonadjacent vertices of G. Since T is a rainbow subgraph of G,

every two vertices of T are connected by a rainbow path in T and so in G. Thus, we

may assume that one of x and y is not a vertex of T , say y /∈ V (T ). By symmetry, it

suffices to consider y = w1 or y = w. First, suppose that y = w1. Since (w1, w, w
′
1) is a

rainbow path, we may assume that x /∈ N(w1) ∪ {w′1}.

? If x = ui where 1 ≤ i ≤ d− 1, then (ui, ui+1, . . . , ud, w1) is a rainbow x− y path.
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Figure 4.13: A k-rainbow coloring c of the graph G in Case 2

? If x = v1, then (v1, ud, w
′
1, w, w1) is a rainbow x− y path.

? If x = vi where 2 ≤ i ≤ k − d+ 1, then (vi, ud, w1) is a rainbow x− y path.

? If x = wi or x = w′i where 2 ≤ i ≤ p − 2, then, since (wi, w
′
i, ud, w1) is a rainbow

path, there is a rainbow x− y path.

Next, suppose that y = w. Thus, x /∈ N(w).

? If x = ui where 1 ≤ i ≤ d − 1, then (ui, ui+1, . . . , ud, w1, w) is a d-rainbow x − y
path.

? If x = vi where 1 ≤ i ≤ k − d+ 1, then (vi, ud, w) is a rainbow x− y path.

? If x = wi or x = w′i where 2 ≤ i ≤ p − 2, then, since (wi, w
′
i, ud, w) is a rainbow

path, there is a rainbow x− y path.

Thus, c is a d-rainbow coloring of G and so rcd(G) ≤ k. Hence, rcd(G) = k.

Combining Theorems 4.4.1 and 4.4.2, we have the following characterization of all

triples (d, k, n) of integers with 2 ≤ d ≤ k ≤ n−1 that can be realizable as the diameter,

d-rainbow connection number and order, respectively, of some connected graph.

Theorem 4.4.3 Let (d, k, n) be a triple of integers with 2 ≤ d ≤ k ≤ n − 1. Then

there exists a connected graph G of order n that is not a tree such that diam(G) = d and

rcd(G) = k if and only if k 6= n− 1.
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Chapter 5

k-Rainbow Hamiltonian-
Connected Graphs

In this dissertation, we introduce the concept of k-rainbow Hamiltonian paths in Hamiltonian-

connected graphs and investigate k-rainbow Hamiltonian-path colorings in two well-

known classes of Hamiltonian-connected graphs, namely the join G ∨K1 of a Hamilto-

nian graph G and the trivial graph K1 and the prism G � K2 where G is a Hamiltonian

graph of odd order. Other results and open questions are also presented.

5.1 Introduction

First, we review some definitions and results on Hamiltonian graphs and Hamiltonian-

connected graphs. A Hamiltonian cycle in a graph G is a cycle containing every vertex of

G and a graph having a Hamiltonian cycle is a Hamiltonian graph. A Hamiltonian path in

a graph G is a path containing every vertex of G. A graph G is Hamiltonian-connected if

G contains a Hamiltonian u−v path for every pair u, v of distinct vertices of G. Observe

that every Hamiltonian-connected graph is Hamiltonian. However, the converse is not

true. For example, for n ≥ 4, Cn is Hamiltonian but not Hamiltonian-connected.

For a nontrivial graph G, recall that δ(G) and ∆(G) denote the minimum and max-

imum degree of G, respectively, and

σ2(G) = min{deg u+ deg v : uv /∈ E(G)}

where degw is the degree of a vertex w in G. Ore [31] proved the following results

in 1963.

Theorem 5.1.1 If G is a graph of order n ≥ 4 such that σ2(G) ≥ n + 1, then G is

Hamiltonian-connected.
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Corollary 5.1.2 If G is a graph of order n ≥ 4 such that δ(G) ≥ (n+ 1)/2, then G is

Hamiltonian-connected.

In both a rainbow coloring and a proper-path coloring of a connected graph G, every

two vertices u and v of G are connected by a u − v path, the colors of whose edges

satisfy some specified required property; however, there is no condition on the length

of such a path. For certain graphs G, though, it is natural to require the existence of

such an edge coloring of G for which every two vertices of G are connected by a path

of some prescribed length. For a Hamiltonian-connected graph G, an edge coloring c is

called a Hamiltonian-connected rainbow coloring if every two vertices of G are connected

by a rainbow Hamiltonian path in G. The minimum number of colors needed in a

Hamiltonian-connected rainbow coloring of G is the rainbow Hamiltonian-connection

number of G and is denoted by hrc(G). If G is a Hamiltonian-connected graph of order

n ≥ 4 and size m, then

max{rc(G), n− 1} ≤ hrc(G) ≤ m. (5.1)

For a Hamiltonian-connected graph G, an edge coloring c is a proper Hamiltonian-

path coloring if every two vertices of G are connected by a proper Hamiltonian path in G.

The minimum number of colors needed in a proper Hamiltonian-path coloring of G is

the proper Hamiltonian-connection number of G and is denoted by hpc(G). Since every

proper edge coloring of a Hamiltonian-connected graph G of order at least 3 is a proper

Hamiltonian-path coloring of G and there is no proper Hamiltonian-path 1-coloring of G,

it follows that

2 ≤ hpc(G) ≤ χ′(G). (5.2)

These concepts were introduced and studied by Bi et al. in [2, 3, 4]. Inspired by proper

Hamiltonian-path colorings, k-rainbow colorings and Hamiltonian-connected rainbow

colorings, we study the concept of k-rainbow Hamiltonian-path colorings of Hamiltonian-

connected graphs.

Let G be an edge-colored Hamiltonian-connected graph, where adjacent edges may

be colored the same. For an integer k ≥ 2, a Hamiltonian path P in G is a k-rainbow

Hamiltonian path if every subpath of P having length at most k is a rainbow path. An

edge coloring c of G is a k-rainbow Hamiltonian-path coloring if every two vertices of G

are connected by a k-rainbow Hamiltonian path in G. If j colors are used in a k-rainbow

Hamiltonian-path coloring c of G, then c is referred to as a k-rainbow Hamiltonian-

path j-edge coloring (or simply a k-rainbow Hamiltonian-path j-coloring). The minimum

number of colors required of a k-rainbow Hamiltonian-path coloring of G is the k-rainbow
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Hamiltonian-connection number of G and is denoted by hrck(G). As expected, k-rainbow

Hamiltonian-path colorings are intermediate to Hamiltonian-connected rainbow colorings

and proper Hamiltonian-path colorings. In particular, if G is a Hamiltonian-connected

graph of order n ≥ 4 and size m, then

2 ≤ hpc(G) = hrc2(G) ≤ hrc3(G) ≤ · · · ≤ hrcn−1(G) = hrc(G) ≤ m. (5.3)

If H is a Hamiltonian-connected spanning subgraph of a graph G and c is a k-

rainbow Hamiltonian-path coloring of H for some integer k ≥ 2, then the coloring c can

be extended to a k-rainbow Hamiltonian-path coloring of G by assigning any color used

by c to each edge in E(G)− E(H). Thus, we have the following observation.

Observation 5.1.3 If H is a Hamiltonian-connected spanning subgraph of a graph G,

then k ≤ hrck(G) ≤ hrck(H) for every integer k with 2 ≤ k ≤ n− 1.

5.2 k-Rainbow Hamiltonian-Path Colorings of Wheels

For two vertex-disjoint graphs F and H, let F ∨ H denote the join of F and H. In

particular, the join G∨K1 of a graph G and the trivial graph K1 is obtained by joining

the vertex of K1 to each vertex of G. If G is a Hamiltonian graph of order n ≥ 3, then

G ∨K1 is a Hamiltonian-connected graph of order n + 1 and so the length of a longest

path in G∨K1 is n. Since the wheel Wn = Cn∨K1 is a spanning Hamiltonian-connected

subgraph of G ∨ K1, it follows by Observation 5.1.3 that hrck(G ∨ K1) ≤ hrck(Wn).

This suggests investigating k-rainbow Hamiltonian-path colorings of the wheels Wn since

hrck(Wn) is an upper bound for hrck(G∨K1) for every Hamiltonian graph G of order n.

We have seen in Chapters 2 and 3 that rc2(W3) = rc(W3) = 1 and for integers k and n

with 3 ≤ k ≤ n and n ≥ 4,

rc2(Wn) = pc(Wn) = 2,

rck(Wn) =

{
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

The rainbow Hamiltonian-connection number hrc(Wn) has been determined for each

integer n ≥ 3.

Theorem 5.2.1 [2] For each integer n ≥ 3, hrc(Wn) = n.

By Theorem 5.2.1 then, hrcn(Wn) = n. We now investigate the following problem:
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What can be said about the value of hrck(Wn) for integers k and n with

2 ≤ k ≤ n− 1?

It is known (see [2, 3, 4]) that

(i) hpc(K3) = 3 and hpc(Kn) = 2 for n ≥ 4 and

(ii) hrc(Kn) = n− 1 for n ≥ 4.

Since W3 = K4, it follows that hpc(K4) = hrc2(K4) = 2 and hrc(K4) = hrc3(W3) = 3.

Thus, we now assume that n ≥ 4. In order to present a lower bound for hrck(Wn), we

first present a lemma.

Lemma 5.2.2 Let k and n be integers with 2 ≤ k ≤ n − 2. If c is a k-rainbow

Hamiltonian-path coloring of Wn = Cn ∨ K1, then every path of length k in Cn is a

rainbow path. In particular, the restriction of c to Cn is a proper edge coloring of Cn.

Proof. For an integer n ≥ 3, let Wn = Cn ∨K1 where Cn=(u1, u2, . . ., un, un+1 = u1)

and V (K1) = {u0}. For each integer i with 1 ≤ i ≤ n, there are exactly two ui − u0

Hamiltonian paths in Wn, namely

Pi,0 = (ui, ui+1, . . . , un, u1, u2, . . . , ui−1, u0)

Qi,0 = (ui, ui−1, . . . , un, un−1, un−2, . . . , ui+1, u0)

where all subscripts are expressed as positive integers modulo n. Assume, to the contrary,

there is a path of length k in Cn that is not a rainbow path, say P = (u1, u2, . . . , uk+1) is

not a rainbow path. Since P is a subpath of the two uk+2−u0 Hamiltonian paths Pk+2,0

and Qk+2,0 in Wn, there is no k-rainbow Hamiltonian uk+2 − u0 path in Wn, which is a

contradiction. Consequently, the restriction of c to Cn is a proper edge coloring of Cn.

Theorem 5.2.3 If k and n are integers with 2 ≤ k ≤ n− 1 and n ≥ 4, then

hrck(Wn) ≥ k + 1.

In particular, hpc(Wn) ≥ 3.

Proof. For an integer n ≥ 4, let Wn = Cn ∨K1 where Cn=(u1, u2, . . ., un, un+1 = u1)

and V (K1) = {u0}. By Lemma 5.2.2, it follows that hrck(Wn) ≥ k. We now show that

hrck(Wn) 6= k. Assume, to the contrary, that there is a k-rainbow Hamiltonian-path
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k-coloring c : E(Wn) → [k] of Wn. As we saw in the proof of Lemma 5.2.2, for each

integer i with 1 ≤ i ≤ n, there are exactly two ui−u0 Hamiltonian paths in Wn, namely

Pi,0 = (ui, ui+1, . . . , un, u1, u2, . . . , ui−1, u0)

Qi,0 = (ui, ui−1, . . . , un, un−1, un−2, . . . , ui+1, u0)

where all subscripts are expressed as the integers 1, 2, . . . n modulo n. Since c is a k-

rainbow Hamiltonian-path coloring of Wn, at least one of P1,0 and Q1,0 is a k-rainbow

Hamiltonian path. By the symmetry ofWn, we may assume that P1,0 = (u1, u2, . . . , un, u0)

is a k-rainbow Hamiltonian path and c(unu0) = k. Let n = kq + r for some integers q

and r where q ≥ 1 and 0 ≤ r ≤ k− 1 and let CP1,0 = (c(u1u2), c(u2u3), . . . , c(unu0)). By

Lemma 5.2.2, we may assume, without loss of generality, that

CP1,0 =

{
(1, 2, . . . , k, ∗ ∗ ∗, 1, 2, . . . , k) if r = 0

(1, 2, . . . , k, ∗ ∗ ∗, 1, 2, . . . , k, 1, 2, . . . , r) if 1 ≤ r ≤ k − 1.
(5.4)

where ∗ ∗ ∗ represents repeating the next k-tuple as the preceding k-tuple. We consider

two cases, according to whether r = 0 or 1 ≤ r ≤ k − 1.

Case 1. r = 0. There are exactly two Hamiltonian u1 − un−1 paths in Wn, namely,

P1,n−1 = (u1, un, u0, u2, u3, . . . , un−1)

Q1,n−1 = (u1, u2, . . . , un−2, u0, un, un−1).

Since c(u1un) = c(unu0) = k, it follows that P1,n−1 is not a k-rainbow Hamiltonian path.

Because c(un−kun−k+1) = c(u0un) = k, the path

(un−k, un−k+1, . . . , un−2, u0, un)

of length k in Q1,n−1 is not a rainbow path and so Q1,n−1 is not a k-rainbow Hamiltonian

path. Thus, u1 and un−1 are not connected by any k-rainbow Hamiltonian path in Wn,

a contradiction.

Case 2. 1 ≤ r ≤ k − 1. Consider the path P = (un, u1, u2, . . . , uk) of length k on

the cycle Cn. By (5.4) then, c(P − un) = {1, 2, . . . , k − 1} and c(unu1) = r. Since

1 ≤ r ≤ k− 1, it follows that unu1 has the same color as one of the edges on P −un and

so P is not a rainbow path, which contradicts Lemma 5.2.2.

Next, we present an upper bound for hrck(Wn) where 2 ≤ k ≤ n− 1 and n ≥ 4.
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Theorem 5.2.4 For integers k and n with 2 ≤ k ≤ n − 1 and n ≥ 4, let n = kq + r

where 0 ≤ r < k. If n is even and n > 2k + 2r or n is odd and n > 2k + 2r + 1, then

hrck(Wn) ≤ k + r +
⌈
n
2

⌉
.

Proof. Let Wn = Cn ∨K1 where Cn=(u1, u2, . . ., un, un+1 = u1) and V (K1) = {u0}.
It suffices to show that there is a k-rainbow Hamiltonian-path coloring c of Wn using

k + r +
⌈
n
2

⌉
colors. First, we assign the k + r colors 1, 2, . . . , k + r to the edges of Cn,

where

c(Cn) = (1, 2, . . . , k, ∗ ∗ ∗, 1, 2, . . . , k, k + 1, k + 2, . . . , k + r),

where ∗ ∗ ∗ represents repeating the next k-tuple as the preceding k-tuple. Next, we

assign
⌈
n
2

⌉
new colors to the spokes of Wn. We consider two cases, according to whether

n is even or n is odd.

Case 1. n is even and n > 2k + 2r. Then we define

c(u0u2t−1) = c(u0u2t) = k + r + t for 1 ≤ t ≤ n
2 .

Thus, we obtain an edge coloring of Wn with k + r + n
2 colors. Since n > 2k + 2r, it

follows that k + r + n
2 < n.

Case 2. n is odd and n > 2k + 2r + 1. Then we define

c(u0u2t−1) = c(u0u2t) = k + r + t for 1 ≤ t ≤ n−1
2

c(u0un) = k + r +
n+ 1

2
.

Thus, we obtain an edge coloring of Wn with k+ r+ n+1
2 colors. Since n > 2k+ 2r+ 1,

it follows that k + r + n+1
2 < n.

It remains to show that c is a k-rainbow Hamiltonian-path coloring of Wn. In what

follows, all subscripts are expressed as the integers 1, 2, . . . , n modulo n. For every two

distinct vertices ui and uj of Wn, we show that there is a k-rainbow Hamiltonian ui−uj
path Pi,j in Wn as follows:

? For 1 ≤ i ≤ n, Pi,0 = (ui, ui+1, ui+2, . . . , un, u1, u2, . . . , ui−1, u0).

? For i 6= n, Pi,i+1 = (ui, ui−1, ui−2, . . . , u1, u0, un, un−1, un−2 . . . , ui+1).

? For i = n, Pn,1 = (un, un−1, u0, un−2, un−3, . . . , u2, u1) if n is even and

Pn,1 = (un, u0, un−1, un−2, un−3, . . . , u2, u1) if n is odd.
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? For 1 ≤ i, j ≤ n and j ≥ i+ 2,

Pi,j = (ui, ui+1, ui+2, . . . , uj−1, u0, ui−1, ui−2, . . . , un, un−1, . . . , uj).

Therefore, c is a k-rainbow Hamiltonian-path (k + r +
⌈
n
2

⌉
)-coloring of Wn and so

hrck(Wn) ≤ k + r +
⌈
n
2

⌉
.

The upper bound for hrck(Wn) in Theorem 5.2.4 can be improved. As an example,

we consider the case when k = 2. By Theorem 5.2.4, hpc(Wn) ≤ 2 + dn2 e if n ≥ 4 is

even and hpc(Wn) ≤ 3 + dn2 e if n ≥ 3 is odd. For each integer n ∈ {4, 5, 6}, a proper

Hamiltonian-path coloring of Wn using the colors 1, 2, 3 is shown in Figure 5.1 and so

hpc(Wn) = 3 by Theorem 5.2.3. Therefore, hpc(Wn) = dn2 e for n = 5, 6. In general, dn2 e
is an upper bound for hpc(Wn) for all n ≥ 5, as we show next.
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Figure 5.1: Proper Hamiltonian-path colorings of Wn for n = 4, 5, 6

Theorem 5.2.5 For each integer n ≥ 5, hpc(Wn) ≤ dn2 e.

Proof. For an integer n ≥ 5, let Wn = Cn ∨K1 where Cn=(u1, u2, . . ., un, un+1 = u1)

and V (K1) = {u0}. We consider two cases, according to whether n is even or n is odd.

Case 1. n ≥ 6 is even. Let n = 2t for some integer t ≥ 2. Define an edge coloring

c : E(Wn)→ [t] of Wn by

c(uiui+1) =

{
i if 1 ≤ i ≤ t

i− t if t+ 1 ≤ i ≤ n

c(uiu0) =


2 if i = 1, 2
1 if i = 3, 4
p if i = 2p− 1, 2p and 3 ≤ p ≤ t.

It remains to show that c is a proper Hamiltonian-path coloring of Wn. In what follows,

all subscripts are expressed as the integers 1, 2, . . . , n modulo n. For every two distinct

vertices ui and uj of Wn, we show that there is a proper Hamiltonian ui − uj path Pi,j

in Wn as follows:
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? For 1 ≤ i ≤ n, Pi,0 = (ui, ui+1, ui+2, . . . , un, u1, u2, . . . , ui−1, u0).

? For i 6= n, Pi,i+1 = (ui, ui−1, ui−2, . . . , u1, u0, un, un−1, un−2 . . . , ui+1).

? For i = n, Pn,1 = (un, un−1, u0, un−2, un−3, . . . , u2, u1).

? For 1 ≤ i, j ≤ n and j ≥ i+ 2,

Pi,j = (ui, ui+1, ui+2, . . . , uj−1, u0, ui−1, ui−2, . . . , un, un−1, . . . , uj).

Therefore, c is a proper Hamiltonian t-coloring and so hpc(Wn) ≤ t = n
2 .

Case 2. n ≥ 5 is odd. Let n = 2t+ 1 for some integer t ≥ 2. Define an edge coloring

c : E(Wn)→ [t+ 1] of Wn by

c(uiui+1) =

{
i if 1 ≤ i ≤ t+ 1

i− (t+ 1) if t+ 2 ≤ i ≤ n

c(uiu0) =


2 if i = 1, 2
1 if i = 3, 4
p if i = 2p− 1, 2p and 3 ≤ p ≤ t

t+ 1 if i = n.

It remains to show that c is a proper Hamiltonian-path coloring of Wn. As before, all

subscripts are expressed as the integers 1, 2, . . . , n modulo n. For every two distinct

vertices ui and uj of Wn, we show that there is a proper Hamiltonian ui − uj path Pi,j

in Wn as follows:

? For 1 ≤ i ≤ n, Pi,0 = (ui, ui+1, ui+2, . . . , un, u1, u2, . . . , ui−1, u0).

? For i 6= n, Pi,i+1 = (ui, ui−1, ui−2, . . . , u1, u0, un, un−1, un−2 . . . , ui+1).

? For i = n, Pn,1 = (un, u0, un−1, un−2, un−3, . . . , u2, u1).

? For 1 ≤ i, j ≤ n and j ≥ i+ 2,

Pi,j = (ui, ui+1, ui+2, . . . , uj−1, u0, ui−1, ui−2, . . . , un, un−1, . . . , uj).

Therefore, this coloring c is a proper Hamiltonian (t + 1)-coloring and so hpc(Wn) ≤
t+ 1 = dn2 e.

The following is a consequence of Theorems 5.2.3 and 5.2.5

Corollary 5.2.6 If n ≥ 5, then 3 ≤ hpc(Wn) ≤ dn2 e.

By Corollary 5.2.6 then, hpc(W7) = 3 or hpc(W7) = 4. In fact, our conjecture is that

hpc(W7) = 4.
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5.3 k-Rainbow Hamiltonian-Path Colorings in Prisms

For a graph G, let G � K2 denote the Cartesian product of G and K2. It is known

that if G is a Hamiltonian graph of odd order n ≥ 3, then G � K2 is a Hamiltonian-

connected graph of order 2n and so the length of a longest path in G � K2 is 2n − 1.

Since the prism Cn � K2 is a spanning Hamiltonian-connected subgraph of G � K2, it

follows by Observation 5.1.3 that hrck(G � K2) ≤ hrck(Cn � K2) for each integer k with

2 ≤ k ≤ 2n− 1. This leads us to a study of the k-rainbow Hamiltonian-path colorings of

the prisms Cn � K2 for odd integers n ≥ 3. As we saw in Theorem 3.4.3, the k-rainbow

connection numbers rck(Cn � K2) have been determined for all integers k and n with

2 ≤ k ≤ 2n− 1, namely

rck(Cn � K2) = min
{
k,
⌊n

2

⌋
+ 1
}
.

Recall that Cn � K2 is Hamiltonian-connected if and only if n ≥ 3 is odd. The

proper and rainbow Hamiltonian-connection numbers hpc(Cn � K2) and hrc(Cn � K2)

have been determined for each integer n ≥ 3.

Theorem 5.3.1 [3] For each odd integer n ≥ 3, hpc(Cn � K2) = 3.

Theorem 5.3.2 [2] For each odd integer n ≥ 3, hrc(C3 � K2) = 7 and hrc(Cn � K2) =

3n for n ≥ 5.

This leads us to the following problem:

Investigate hrck(Cn � K2) for integers k and n where 3 ≤ k ≤ 2n − 2 and

n ≥ 3 is odd.

It is often quite challenging to determine the exact value of hrck(G) for a given graph

G even when the order of G is relatively small. Next, we determine the value of

hrck(C3 � K2) for 2 ≤ k ≤ 5.

Theorem 5.3.3 If G = C3 � K2, then hrc2(G) = 3 and hrck(G) = 7 for k = 3, 4, 5.

Proof. By Theorems 5.3.1 and 5.3.2, hrc2(C3 � K2) = 3 and hrc5(C3 � K2) = 7. It

remains therefore to determine hrck(C3 � K2) for k = 3, 4. Let G = C3 � K2 where

the vertices and the edges of G are labeled as shown in Figure 5.2. Since hrc(G) = 7,

it follows that hrck(G) ≤ 7 for k = 3, 4. By (5.3), it suffices to show that there is no

3-rainbow Hamiltonian-path coloring of C3 � K2 using at most six colors.
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Figure 5.2: The graph C3 � K2

Assume, to the contrary, that there is a 3-rainbow Hamiltonian-path coloring c of

C3 � K2 using at most six colors. For each of the
(

6
2

)
= 15 pairs x, y of vertices of

G, there are exactly two Hamiltonian x − y paths. At least one of these two paths

is necessarily a 3-rainbow Hamiltonian path. These 2
(

6
2

)
= 30 Hamiltonian paths are

shown below.

1. u1 − u2 paths: (h1, f1, f2, h3, e2), (e3, h3, f3, f1, h2)

2. u1 − u3 paths: (e1, h2, f1, f3, h3), (h1, f3, f2, h2, e2)

3. u1 − v1 paths: (e1, e2, h3, f2, f1), (e3, e2, h2, f2, f3)

4. u1 − v2 paths: (h1, f3, h3, e2, h2), (e1, e2, h3, f3, f1)

5. u1 − v3 paths: (h1, f1, h2, e2, h3), (e3, e2, h2, f1, f3)

6. u2 − u3 paths: (e1, h1, f1, f2, h3), (h2, f2, f3, h1, e3)

7. u2 − v1 paths: (e1, e3, h3, f2, f1), (h2, f2, h3, e3, h1)

8. u2 − v2 paths: (e1, e3, h3, f3, f1), (e2, e3, h1, f3, f2)

9. u2 − v3 paths: (h2, f1, h1, e3, h3), (e2, e3, h1, f1, f2)

10. u3 − v1 paths: (h3, f2, h2, e1, h1), (e3, e1, h2, f2, f3)

11. u3 − v2 paths: (h3, f3, h1, e1, h2), (e2, e1, h1, f3, f2)

12. u3 − v3 paths: (e3, e1, h2, f1, f3), (e2, e1, h1, f1, f2)

13. v1 − v2 paths: (h1, e1, e2, h3, f2), (f3, h3, e3, e1, h2)

14. v1 − v3 paths: (f1, h2, e1, e3, h3), (h1, e3, e2, h2, f2)

15. v2 − v3 paths: (h2, e2, e3, h1, f3), (f1, h1, e1, e2, h3)

If e and f are two distinct edges of G belonging to a 4-subpath (a subpath of order 4)

in both Hamiltonian w− z paths of G for some pair w, z of distinct vertices of G, then e

and f cannot be assigned the same color by c. For example, since f1 and h3 belong to a

4-subpath in each of the two Hamiltonian u1−u2 paths of G, it follows that c(f1) 6= c(h3).

As another example, since (e3, h3, f2) is a subpath in each of the two Hamiltonian u2−v1

paths of G, it follows that |{c(e3), c(h3), c(f2)}| = 3.
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We now construct a graph G∗ with V (G∗) = E(G) such that two vertices x and

y of G∗, that is, two edges x and y of G, are adjacent in G∗ if c(x) 6= c(y). Thus, if

the edges x and y of G belong to a 4-subpath for every Hamiltonian w − z path of G

for some pair w, z of distinct vertices of G, then c(x) 6= c(y) and so xy ∈ E(G∗). For

example, f1h3, e3h3, h3f2, e3f2 ∈ E(G∗). It can be shown that the graph G∗ contains the

complete tripartite graph K3,3,3 as a subgraph whose partite sets are V1 = {e1, e2, e3},
V2 = {f1, f2, f3} and V3 = {h1, h2, h3}. This verifies the following claim.

Claim 1. If x ∈ Vi and y ∈ Vj, where 1 ≤ i, j ≤ 3 and i 6= j, then

c(x) 6= c(y).

For i = 1, 2, 3, let F ∗i = G∗[Vi] be the subgraph of G∗ induced by the set Vi and let

c(Vi) = {c(x) : x ∈ Vi}.

Claim 2. For i = 1, 2, 3, F ∗i = G∗[Vi] is not empty and so |c(Vi)| ≥ 2.

? For F ∗1 = G∗[{e1, e2, e3}], since (e1, e2) is a 3-subpath in one of the two Hamiltonian

u1 − v1 paths and (e3, e2) is a 3-subpath in the other Hamiltonian u1 − v1 path,

it follows that either c(e1) 6= c(e2) or c(e3) 6= c(e2). Thus, either e1e2 ∈ E(F ∗1 ) or

e2e3 ∈ E(F ∗1 ).

? For F ∗2 = G∗[{f1, f2, f3}], since (f1, f2) is a 3-subpath in one of the two Hamiltonian

u1 − u2 paths and (f3, f1) is a 3-subpath in the other Hamiltonian u1 − u2 path,

it follows that either c(f1) 6= c(f2) or c(f3) 6= c(f1). Thus, either f1f2 ∈ E(F ∗2 ) or

f1f3 ∈ E(F ∗2 ).

? For F ∗3 = G∗[{h1, h2, h3}], assume, to the contrary, that F ∗3 is empty or c(h1) =

c(h2) = c(h3). Then (e1, e2, h3, f3, f1) (in 4.), (e3, e2, h2, f1, f3) (in 5.), (e1, e3, h3, f2, f1)

(in 7.) and (e3, e1, h2, f2, f3) (in 10.) are 3-rainbow paths. This implies that

|{c(e1), c(e2), c(e3)}| = 3 and |{c(f1), c(f2), c(f3)}| = 3.

However then, c uses at least 7 colors, a contradiction. Thus, F ∗3 is nonempty.

Thus, Claim 2 holds. By Claims 1 and 2 then, c uses exactly six colors and |c(Vi)| = 2

for i = 1, 2, 3.

? If c(h1) = c(h2), then (e2, e3, h1, f1, f2), (e3, e1, h2, f2, f3) and (e2, e1, h1, f3, f2)

(in 9., 10., 11.) are 3-rainbow paths and so |c(V1)| = 3, which implies that c uses

at least 7 colors, a contradiction.
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? If c(h1) = c(h3), then (e1, e2, h3, f3, f1) (in 4.), (e1, e3, h3, f2, f1) (in 7.) and

(e2, e3, h1, f1, f2) (in 9.) are 3-rainbow paths and so |c(V1)| = 3, which implies

that c uses at least 7 colors, a contradiction.

? If c(h2) = c(h3), then (e1, e2, h3, f3, f1) (in 4.), (e3, e2, h2, f1, f3) (in 5.) and

(e1, e3, h3, f2, f1) (in 7.) are 3-rainbow paths and so |c(V1)| = 3, which implies

that c uses at least 7 colors, a contradiction.

Next, we establish an upper bound for hrck(Cn �K2) in terms of k and the remainder

when n is divided by k. In order to do this, we introduce an additional definition. For

two sets S and T in a connected graph G, the distance between S and T is defined as

d(S, T ) = min{d(u, v) : u ∈ S, v ∈ T}. For two edges e = uv and f = xy in a connected

graph G, the distance d(e, f) is defined as the distance between the sets {u, v} and {x, y}.

Theorem 5.3.4 Let k and n be integers where 2 ≤ k ≤ n and n ≥ 5 is odd. If

n = qk + r for some integers q and r with q ≥ 1 and 0 ≤ r ≤ k − 1, then

hrck(Cn � K2) ≤ 3(k + r).

Proof. For an integer n ≥ 3, let G = Cn � K2 be obtained from two copies C and C ′

of the n-cycle Cn, where C = (u1, u2, . . . , un, un+1 = u1) and C ′ = (v1, v2, . . . , vn, vn+1 =

v1), by adding the n edges uivi for 1 ≤ i ≤ n. We define a k-rainbow Hamiltonian-path

coloring c : E(G)→ [3(k + r)] as follows. Let Su, Sv and Suv denote the color sequences

of the edges of C, C ′ and the edges between C and C ′; that is,

Su = (c(u1u2), c(u2u3), . . . , c(unu1))

Sv = (c(v1v2), c(v2v3), . . . , c(vnv1))

Suv = (c(u1v1), c(u2v2), . . . , c(unvn))

? If r = 0, then

Su = (1, 2, . . . , k, ∗ ∗ ∗, 1, 2, . . . , k)

Sv = (k + 1, k + 2, . . . , 2k, ∗ ∗ ∗, k + 1, k + 2, . . . , 2k)

Suv = (2k + 1, 2k + 2, . . . , 3k, ∗ ∗ ∗, 2k + 1, 2k + 2, . . . , 3k),

where ∗ ∗ ∗ represents repeating the next k-tuple as the preceding k-tuple.
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? If 1 ≤ r < k, then

Su = (1, 2, . . . , k, ∗ ∗ ∗, 1, 2, . . . , k, k + 1, . . . , k + r)

Sv = (k + r + 1, k + r + 2, . . . , 2k + r, ∗ ∗ ∗,

k + r + 1, k + r + 2, . . . , 2k + r,

2k + r + 1, . . . , 2k + 2r)

Suv = (2k + 2r + 1, 2k + 2r + 2, . . . , 3k + 2r, ∗ ∗ ∗,

2k + 2r + 1, 2k + 2r + 2, . . . , 3k + r,

3k + 2r + 1, . . . , 3k + 3r),

again, where ∗ ∗ ∗ represents repeating the next k-tuple as the preceding k-tuple.

Such a 4-rainbow Hamiltonian-path coloring of C9 � K2 is illustrated in Figure 5.3.
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Figure 5.3: A 4-rainbow Hamiltonian-path coloring of C9 � K2 for k = 4

It remains to show that c is a k-rainbow Hamiltonian-path coloring. First, we show

that if e and f are two edges of G such that c(e) = c(f), then d(e, f) ≥ k − 1. Since

c(e) = c(f), it follows that

(i) e, f ∈ E(C) or e, f ∈ E(C ′) or (ii) e, f ∈ {uivi : 1 ≤ i ≤ n}.

If (i) occurs, say e, f ∈ E(C), then d(e, f) = k − 1; while if (ii) occurs, then d(e, f) = k.

This implies that for every two vertices x and y in G, any x−y path in G is a k-rainbow

path in G. Since G is Hamiltonian-connected, it follows that every two vertices are

connected by a k-rainbow Hamiltonian path in G. Thus, c is a k-rainbow Hamiltonian-

path coloring of G and so hrck(Cn � K2) ≤ 3(k + r).

For k = 3, it follows by Theorem 5.3.4 that
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hrc3(Cn � K2) ≤


9 if n ≡ 0 (mod 3)
12 if n ≡ 1 (mod 3)
15 if n ≡ 2 (mod 3)

In particular, hrc3(C5 � K2) ≤ 15, hrc3(C7 � K2) ≤ 12 and hrc3(C9 � K2) ≤ 9. If G is

a Hamiltonian graph of odd order n ≥ 3, then G � K2 is Hamiltonian-connected. Thus,

the following is a consequence of Observation 5.1.3 and Theorem 5.3.4.

Corollary 5.3.5 Let G be a Hamiltonian graph of odd order n ≥ 3 and k an integer

with 2 ≤ k ≤ n. If n = qk + r for some integers q and r with q ≥ 1 and 0 ≤ r ≤ k − 1,

then

hrck(G � K2) ≤ 3(k + r).

In [2], it is shown that if H is a Hamiltonian-connected graph H of order n ≥ 4, then

the number hrc(H � K2)− 2 hrc(H) cannot be much larger than 1.

Theorem 5.3.6 [2] If H is a Hamiltonian-connected graph of order n ≥ 4, then

hrc(H � K2) ≤ 2 hrc(H) + 2.

Theorem 5.3.6 can be extended to the k-rainbow Hamiltonian-connection numbers.

Theorem 5.3.7 If H is a Hamiltonian-connected graph of order n ≥ 4 and k is an

integer with 2 ≤ k ≤ 2n− 1, then

hrck(H � K2) ≤ 2 hrck(H) + 2.

Proof. Suppose that hrck(H) = s. Let G = H � K2 be obtained from two copies

F and F ′ of the graph H of order n ≥ 4, where V (F ) = {u1, u2, . . . , un} and V (F ′) =

{v1, v2, . . . , vn}, by adding the n edges uivi for 1 ≤ i ≤ n. Since hrck(H) = s, it follows

that H has a k-rainbow Hamiltonian-path s-coloring. Let

cF : V (F )→ {1, 2, . . . , s} and cF ′ : V (F ′)→ {s+ 1, s+ 2, . . . , 2s}

be a k-rainbow Hamiltonian-path s-coloring of F and F ′, respectively. Define the (2s+2)-

edge coloring c : E(G)→ [2s+ 2] by

c(e) =


cF (e) if e ∈ E(F )

cF ′(e) if e ∈ E(F ′)

2s+ 1 if e = uivi and 1 ≤ i ≤
⌊
n
2

⌋
2s+ 2 if e = uivi and

⌊
n
2

⌋
+ 1 ≤ i ≤ n.
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We show that c is a k-rainbow Hamiltonian-path coloring of G; that is, we show that

every two vertices x and y of G are connected by a k-rainbow Hamiltonian path in G.

First, suppose that x = ui and y = vj where 1 ≤ i, j ≤ n. Let t ∈ [n] − {i, j}. Let P

be a k-rainbow Hamiltonian ui − ut path in F and let P ′ be a k-rainbow Hamiltonian

vt − vj path in F ′. Then the path (P, P ′) is a k-rainbow Hamiltonian ui − vj path in G.

Next, suppose that x, y ∈ V (F ) or x, y ∈ V (F ′), say the former. Suppose that x = ui

and y = uj where 1 ≤ i, j ≤ n and i 6= j. Let Q be a k-rainbow Hamiltonian ui − uj
path in F , say Q = (ui = x1, x2, . . . , xn = uj). Thus, there is t ∈ [n − 1] such that

c(xtx
′
t) 6= c(xt+1x

′
t+1), where x′t and x′t+1 are the corresponding vertices of xt and xt+1

in F ′, respectively. Let Q1 be the x1 − xt subpath of Q and let Q2 be the xt+1 − xn
subpath of Q. Now, let Q′ be a k-rainbow Hamiltonian x′t − x′t+1 path in F ′. Then the

path (Q1, Q
′, Q2) is a k-rainbow Hamiltonian ui − uj in G. Therefore, c is a k-rainbow

Hamiltonian-path coloring of G and so hrck(G) ≤ 2s+ 2.
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Chapter 6

Rainbow Disconnection in Graphs

The object of this chapter is to introduce the rainbow disconnection number rd(G) of a

graph G, which is somewhat reverse to rainbow connection and to present some results

dealing with this new concept. While rainbow connection concerns connecting each pair

of vertices by a rainbow set of edges, the concept we describe here concerns disconnecting

each pair of vertices by a rainbow set of edges.

6.1 Introduction

An edge-cut of a nontrivial connected graph G is a set R of edges of G such that G−R is

disconnected. The minimum number of edges in an edge-cut of G is its edge-connectivity

λ(G). We then have the well-known inequality λ(G) ≤ δ(G). For two distinct vertices u

and v of G, let λ(u, v) denote the minimum number of edges in an edge-cut R of G such

that u and v lie in different components of G−R. Thus,

λ(G) = min{λ(u, v) : u, v ∈ V (G)}.

The following result of Elias, Feinstein and Shannon [18] and Ford and Fulkerson [21]

presents an alternate interpretation of λ(u, v).

Theorem 6.1.1 For every two vertices u and v in a graph G, λ(u, v) is the maximum

number of pairwise edge-disjoint u− v paths in G.
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The upper edge-connectivity λ+(G) is defined by

λ+(G) = max{λ(u, v) : u, v ∈ V (G)}.

Consider, for example, the graph Kn + v obtained from the complete graph Kn, one

vertex of which is attached to a single leaf v. For this graph, λ(Kn + v) = 1 while

λ+(Kn + v) = n − 1. Thus, λ(G) denotes the global minimum edge-connectivity of a

graph, while λ+(G) denotes the local maximum edge-connectivity of a graph.

A set R of edges in a connected edge-colored graph G is a rainbow set if no two edges

in R are colored the same. A set R of edges in a nontrivial connected, edge-colored graph

G is a rainbow cut of G if R is both a rainbow set and an edge-cut. A rainbow cut R is

said to separate two vertices u and v of G if u and v belong to different components of

G−R. Any such rainbow cut in G is called a u− v rainbow cut in G. An edge-coloring

of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G,

there exists a u − v rainbow cut in G. The rainbow disconnection number rd(G) of G

is the minimum number of colors required of a rainbow disconnection coloring of G. A

rainbow disconnection coloring with rd(G) colors is called an rd-coloring of G. We now

present bounds for the rainbow disconnection number of a graph.

Proposition 6.1.2 If G is a nontrivial connected graph, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof. First, by Vizing’s theorem (Theorem 1.5.6), χ′(G) ≤ ∆(G) + 1. Now, let there

be given a proper edge-coloring of G using χ′(G) colors. Then, for each vertex x of G,

the set Ex of edges incident with x is a rainbow set and |Ex| = deg x ≤ ∆(G) ≤ χ′(G).

Furthermore, Ex is a rainbow cut in G and so rd(G) ≤ χ′(G).

Next, let there be given an rd-coloring of G. Let u and v be two vertices of G

such that λ+(G) = λ(u, v) and let R be a u − v rainbow cut with |R| = λ(u, v). Then

|R| ≤ rd(G). Thus, λ(G) ≤ λ+(G) = |R| ≤ rd(G).

We now present examples of two classes of connected graphs G for which λ(G) =

rd(G), namely cycles and wheels.

Proposition 6.1.3 If Cn is a cycle of order n ≥ 3, then rd(Cn) = 2.

Proof. Since λ(Cn) = 2, it follows by Proposition 6.1.2 that rd(Cn) ≥ 2. To show that

rd(Cn) ≤ 2, let c be an edge-coloring of Cn that assigns the color 1 to exactly n−1 edges

of Cn and the color 2 to the remaining edge e of Cn. Let u and v be two vertices of Cn.

There are two u− v paths P and Q in Cn, exactly one of which contains the edge e, say
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e ∈ E(P ). Then any set {e, f}, where f ∈ E(Q), is a u − v rainbow cut. Thus, c is a

rainbow disconnection coloring of Cn using two colors. Hence, rd(Cn) = 2.

Proposition 6.1.4 If Wn = Cn ∨K1 is the wheel of order n+ 1 ≥ 4, then rd(Wn) = 3.

Proof. Since λ(Wn) = 3, it follows by Proposition 6.1.2 that rd(Wn) ≥ 3. It remains

to show that there is a rainbow disconnection coloring of Wn using only the colors 1, 2, 3.

Suppose that Cn = (v1, v2, . . . , vn, v1) and that v is the center of Wn. Define an edge-

coloring c : E(Wn)→ {1, 2, 3} of Wn as follows. First, let c be a proper edge-coloring of

Cn using the colors 1, 2 when n is even and the colors 1, 2, 3 when n is odd. For each

integer i with 1 ≤ i ≤ n, let

ai ∈ {1, 2, 3} − {c(vi−1vi), c(vivi+1)}

where each subscript is expressed as an integer 1, 2, . . . , n modulo n, and let c(vvi) = ai.

This coloring is illustrated for each of W6 and W7 in Figure 6.1.
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Figure 6.1: Rainbow disconnection colorings of W6 and W7

Thus, the set Evi of the three edges incident with vi is a rainbow set for 1 ≤ i ≤ n.

Let x and y be two distinct vertices of Wn. Then at least one of x and y belongs to Cn,

say x ∈ V (Cn). Since Ex separates x and y, it follows that c is a rainbow disconnection

coloring of Wn using three colors. Hence, rd(Wn) = 3.

Since χ′(Cn) = 3 when n ≥ 3 is odd and χ′(Wn) = n for each integer n ≥ 3, it follows

that rd(G) < χ′(G) if G is an odd cycle or if G is a wheel of order at least 4. Wheels

therefore illustrate that there are graphs G for which χ′(G) − rd(G) can be arbitrarily

large. We now give an example of a graph G for which λ+(G) < rd(G) = χ′(G).

Proposition 6.1.5 The rainbow disconnection number of the Petersen graph is 4.
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Proof. Let P denote the Petersen graph where V (P ) = {v1, v2, . . . , v10}. Since λ(P ) =

3 and χ′(P ) = 4, it follows by Proposition 6.1.2 that rd(P ) = 3 or rd(P ) = 4. Assume, to

the contrary, that rd(P ) = 3 and let there be given a rainbow disconnection 3-coloring of

P . Now, let u and v be two vertices of P and let R be a u−v rainbow cut. Hence, |R| ≤ 3

and P −R is disconnected, where u and v belong to different components of P −R. Let

U be the vertex set of the component of P − R containing u, where |U | = k. We may

assume that 1 ≤ k ≤ 5. First, suppose that 1 ≤ k ≤ 4. Since the girth of P is 5, the

subgraph P [U ] induced by U contains k−1 edges. Therefore, |R| = 3k−(2k−2) = k+2,

where then 3 ≤ k+2 ≤ 6. If k = 5, then P [U ] contains at most five edges and so |R| ≥ 5,

which is impossible. Since rd(P ) = 3, it follows that |R| ≤ 3 and so k = 1. Hence, the

only possible u − v rainbow cut is the set consisting of the three edges incident with u

(or with v).

Let the colors assigned to the edges of P be red, blue and green. Since χ′(P ) = 4,

there is at least one vertex of P that is incident with two edges of the same color. We

claim, in fact, that there are at least two such vertices. Let ER, EB and EG denote

the sets of edges of P colored red, blue and green, respectively, and let PR, PB and PG

be the spanning subgraphs of P with edge sets ER, EB and EG. We may assume that

|ER| ≥ |EB| ≥ |EG| and so |ER| ≥ 5. If |ER| ≥ 7, then
∑10

i=1 degPR
vi ≥ 14. Since

degPR
vi ≤ 3 for each i with 1 ≤ i ≤ 10, at least two vertices are incident with two red

edges, verifying the claim. If |ER| = 6, then
∑10

i=1 degPR
vi = 12. Then either (i) at least

two vertices are incident with two red edges or (ii) there is a vertex, say v10, incident

with three red edges and each of v1, v2, . . . , v9 is incident with exactly one red edge. If (ii)

occurs, then either |EB| = 6 or |EB| = 5 and so
∑9

i=1 degPB
vi ≥ 10, which implies that

at least one of the vertices v1, v2, . . . , v9 is incident with two blue edges, again verifying

the claim.

The only remaining possibility is therefore |ER| = |EB| = |EG| = 5. If ER is an

independent set of five edges, then P −ER is a 2-regular graph. Since the girth of P is 5

and P is not Hamiltonian, it follows that P −ER consists of two vertex-disjoint 5-cycles.

Thus, there is a vertex of P in each cycle incident with two blue edges or with two green

edges, verifying the claim. Hence, none of ER, EB or EG is an independent set. This

implies that for each of these colors, there is a vertex of P incident with two edges of

this color, verifying the claim in general.

Thus, P contains two vertices u and v, each of which is incident with two edges of

the same color. Since the only u − v rainbow cut is the set of edges incident with u or

v, this is a contradiction.

The following two results are useful.
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Proposition 6.1.6 If H is a connected subgraph of a graph G, then rd(H) ≤ rd(G).

Proof. Let c be an rd-coloring of G and let u and v are two vertices of G. Suppose

that R is a u − v rainbow cut. Then R ∩ E(H) is a u − v rainbow cut in H. Hence, c

restricted to H is a rainbow disconnection coloring of H. Thus, rd(H) ≤ rd(G).

A block of a graph is a maximal connected graph of G containing no cut-vertices.

The block decomposition of G is the set of blocks of G.

Proposition 6.1.7 Let G be a nontrivial connected graph, and let B be a block of G

such that rd(B) is maximum among all blocks of G. Then rd(G) = rd(B).

Proof. Let G be a nontrivial connected graph. Let {B1, B2, ..., Bt} be a block decom-

position of G, and let k = max{rd(Bi) |1 ≤ i ≤ t}. If G has no cut-vertex, then G = B1

and the result follows. Hence, we may assume that G has at least one cut-vertex. By

Proposition 6.1.6, k ≤ rd(G).

Let ci be an rd-coloring of Bi. We define the edge-coloring c : E(G) → [k] of G by

c(e) = ci(e) if e ∈ E(Bi).

Let x, y ∈ V (G). If there exists a block, say Bi, that contains both x and y, then

any x − y rainbow cut in Bi is an x − y rainbow cut in G. Hence, we can assume that

no block of G contains both x and y, and that x ∈ Bi and y ∈ Bj , where i 6= j. Now

every x − y path contains a cut-vertex, say v, of G in Bi and a cut-vertex, say w, of G

in Bj . Note that v could equal w. If x 6= v, then any x− v rainbow cut of Bi is an x− y
rainbow cut in G. Similarly, if y 6= w, then any y − w rainbow cut of Bj is an x − y
rainbow cut in G. Thus, we may assume that x = v and y = w. It follows that v 6= w.

Consider the x − y path P = (x = v1, v2, ..., vp = y). Since x and y are cut-vertices in

different blocks and no block contains both x and y, P contains a cut-vertex z of G in

Bi, that is, z = vk for some k (2 ≤ k ≤ p− 1). Then any x− z rainbow cut of Bi is an

x− y rainbow cut of G. Hence, rd(G) ≤ k, and so rd(G) = k.

As a consequence of Proposition 6.1.7, the study of rainbow disconnection numbers

can be restricted to 2-connected graphs. We now present several corollaries of Proposi-

tion 6.1.7.

Corollary 6.1.8 Let G and H be any two nontrivial connected graphs, and let GvH be

a graph formed by identifying a vertex in G with a vertex in H. Then

rd(GvH) = max{rd(G), rd(H)}.
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Corollary 6.1.9 Let G and H be any two nontrivial connected graphs, and let GuvH

be a graph formed by adding an edge between any vertex u in G and any vertex v in H.

Then

rd(GuvH) = max{rd(G), rd(H)}.

Corollary 6.1.10 Let G be a nontrivial connected graph and G′ the graph obtained by

attaching a pendant edge uv to some vertex u of G. Then rd(G′) = rd(G).

The corona G ◦K1 is the graph obtained from G by attaching a leaf to each vertex

of G. Thus, if G has order n, then the corona G ◦K1 has order 2n and has precisely n

leaves.

Corollary 6.1.11 If G is a nontrivial connected graph, then rd(G ◦K1) = rd(G).

Corollary 6.1.12 Let G be a nontrivial connected graph, let T be a nontrivial tree and

let u and v be vertices of G and T , respectively. If H is the graph obtained from G and

T by identifying u and v, then rd(H) = rd(G).

Corollary 6.1.13 If G is a unicyclic graph G, then rd(G) = 2.

6.2 Graphs with Prescribed Rainbow Disconnection Num-
ber

In this section, we characterize all those nontrivial connected graphs of order n with

rainbow disconnection number k for each k ∈ {1, 2, n− 1}. The result for graphs having

rainbow disconnection number 1 follows directly from Propositions 6.1.6 and 6.1.7.

Proposition 6.2.1 Let G be a nontrivial connected graph. Then rd(G) = 1 if and only

if G is a tree.

Next, we characterize all nontrivial connected graphs of order n having rainbow

disconnection number 2. By Proposition 6.2.1, such a graph must contain a cycle. An

ear of a graph G is a maximal path whose internal vertices have degree 2 in G. An ear

decomposition of a graph is a decomposition H0, H1, . . . ,Hk such that H0 is a cycle in G

and Hi is an ear of the subgraph of G with edge set E(H0) ∪ E(H1) ∪ . . . ∪ E(Hi) for

each integer i with 1 ≤ i ≤ k. Whitney [35] proved the following result in 1932.

Theorem 6.2.2 A graph G is 2-connected if and only if G has an ear decomposition.

Furthermore, every cycle is the initial cycle in some ear decomposition of G.
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The following is a consequence of Theorem 6.2.2.

Lemma 6.2.3 A 2-connected graph G is a cycle if and only if for every two vertices u

and v of G, there are exactly two internally disjoint u− v paths in G.

Also, by Theorem 6.2.2, if G is a 2-connected, non-Hamiltonian graph, then G con-

tains a theta subgraph (a subgraph consisting of two vertices connected by three inter-

nally disjoint paths of length 2 or more).

Theorem 6.2.4 Let G be a nontrivial connected graph. Then rd(G) = 2 if and only if

each block of G is either K2 or a cycle and at least one block of G is a cycle.

Proof. If G a nontrivial connected graph, each block of which is either K2 or a cycle

and at least one block of G is a cycle, then Propositions 6.1.3 and 6.1.7 imply that

rd(G) = 2.

We now verify the converse. Assume, to the contrary, that there is a connected graph

G with rd(G) = 2 that does not have the property that each block of G is either K2 or a

cycle and at least one block of G is a cycle. First, not all blocks can be K2, for otherwise,

G is a tree and so rd(G) = 1 by Proposition 6.2.1. Hence, G contains a block that is

neither K2 nor a cycle. By Lemma 6.2.3, there exist two distinct vertices u and v of G

for which G contains at least three internally disjoint u− v paths P1, P2 and P3. Thus,

any u− v rainbow cut R must contain at least one edge from each of P1, P2 and P3 and

so |R| ≥ 3, which is impossible.

We now consider those graphs that are, in a sense, opposite to trees.

Proposition 6.2.5 For each integer n ≥ 4, rd(Kn) = n− 1.

Proof. Suppose first that n ≥ 4 is even. Then λ(Kn) = χ′(Kn) = n−1. It then follows

by Proposition 6.1.2 that rd(Kn) = n− 1. Next, suppose that n ≥ 5 is odd. Then

n− 1 = λ(Kn) ≤ rd(Kn) ≤ χ′(Kn) = n

by Proposition 6.1.2. To show that rd(Kn) = n − 1, it remains to show that there

is a rainbow disconnection coloring of Kn using n − 1 colors. Let x ∈ V (Kn). Then

Kn − x = Kn−1. Since n − 1 is even, it follows that χ′(Kn−1) = n − 2. Thus, there is

a proper edge-coloring c0 of Kn−1 using the colors 1, 2, . . . , n− 2. We now extend c0 to

an edge-coloring c of Kn by assigning the color n− 1 to each edge of Kn that is incident

with x. We show that c is a rainbow disconnection coloring of Kn. Let u and v be two

vertices of Kn, where say u 6= x. Then the set Eu of edges incident with u is a u − v
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rainbow cut. Thus, c is a rainbow disconnection coloring of Kn and so rd(Kn) ≤ n − 1

and so rd(Kn) = n− 1.

By Propositions 6.1.2, 6.1.6 and 6.2.5, if G is a nontrivial connected graph of order

n, then

1 ≤ rd(G) ≤ n− 1. (6.1)

Furthermore, rd(G) = 1 if and only if G is a tree by Proposition 6.2.1. We have seen that

the complete graphs Kn of order n ≥ 2 have rainbow disconnection number n − 1. We

now characterize all nontrivial connected graphs of order n having rainbow disconnection

number n− 1.

Theorem 6.2.6 Let G be a nontrivial connected graph of order n. Then rd(G) = n−1

if and only if G contains at least two vertices of degree n− 1.

Proof. First, suppose that G is a nontrivial connected graph of order n containing at

least two vertices of degree n− 1. Since rd(G) ≤ n− 1 by (6.1), it remains to show that

rd(G) ≥ n−1. Let u, v ∈ V (G) such that deg u = deg v = n−1. Among all sets of edges

that separate u and v in G, let S be one of minimum size. We show that |S| ≥ n − 1.

Let U be a component of G− S that contains u and let W = V (G)− U . Thus, v ∈ W
and S = [U,W ] consists of those edges in G − S joining a vertex of U and a vertex of

W . Suppose that |U | = k for some integer k with 1 ≤ k ≤ n− 1 and then |W | = n− k.

The vertex u is adjacent to each of the n − k vertices of W and each of the remaining

k − 1 vertices in U is adjacent to at least one vertex in W . Hence,

|S| ≥ n− k + (k − 1) = n− 1.

This implies that every u − v rainbow cut contains at least n − 1 edges of G and so

rd(G) ≥ n− 1.

For the converse, suppose that G is a nontrivial connected graph of order n having

at most one vertex of degree n−1. We show that rd(G) ≤ n−2. We consider two cases.

Case 1. Exactly one vertex v of G has degree n − 1. Let H = G − v. Thus,

∆(H) ≤ n− 3. Since

χ′(H) ≤ ∆(H) + 1 = n− 2,

there is a proper edge-coloring of H using n− 2 colors. We now define an edge-coloring

c : E(G) → [n − 2] of G. First, let c be a proper (n − 2)-edge-coloring of H. For each

vertex x ∈ V (H), since degH x ≤ n− 3, there is ax ∈ [n− 2] such that ax is not assigned

to any edge incident with x. Define c(vx) = ax. Thus, the set Ex of edges incident with
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x is a rainbow set for each x ∈ V (H). Let u and w be two distinct vertices of G. Then at

least one of u and w belongs to H, say u ∈ V (H). Since Eu separates u and w, it follows

that c is a rainbow disconnection coloring of G using n−2 colors. Hence, rd(G) ≤ n−2.

Case 2. No vertex of G has degree n − 1. Therefore ∆(G) ≤ n − 2. If ∆(G) ≤
n − 3, then rd(G) ≤ χ′(G) ≤ n − 2 by Proposition 6.1.2. Thus, we may assume that

∆(G) = n − 2. Suppose first that G is not (n − 2)-regular. We claim that G is a

connected spanning subgraph of some graph G∗ of order n having exactly one vertex of

degree n− 1. Let u be a vertex of degree k ≤ n− 3 in G. Let N(u) be the neighborhood

of u and W = V (G)−N [u], where N [u] = N(u) ∪ {u} is the closed neighborhood of u.

Then |N(u)| = k and |W | = n − k − 1 ≥ 2. If W contains a vertex v of degree n − 2

in G, then v is the only vertex of degree n − 1 in G∗ = G + uv. If no vertex in W has

degree n− 2 in G, then let G∗ be the graph obtained from G by joining u to each vertex

in W . In this case, u is the only vertex of degree n− 1 in G∗. It then follows by Case 1

that rd(G∗) ≤ n − 2. Since G is a connected spanning subgraph of G∗, it follows by

Proposition 6.1.6 that

rd(G) ≤ rd(G∗) ≤ n− 2.

Finally, suppose that G is (n − 2)-regular. Thus, G is 1-factorable and so χ′(G) =

∆(G) = n− 2. Therefore, rd(G) ≤ χ′(G) = n− 2 by Proposition 6.1.2.

6.3 Rainbow Disconnection in Grids and Prisms

We now determine the rainbow disconnection numbers of graphs belonging to one of two

well-known classes formed by Cartesian products.

The Cartesian product G � H of two vertex-disjoint graphs G and H is the graph

with vertex set V (G)× V (H), where (u, v) is adjacent to (w, x) in G � H if and only if

either u = w and vx ∈ E(H) or uw ∈ E(G) and v = x. We consider the m×n grid graph

Gm,n = Pm � Pn, which consists of m horizontal paths Pn and n vertical paths Pm.

Theorem 6.3.1 The rainbow disconnection numbers of the grid graphs Gm,n are as

follows:

(i) for all n ≥ 2, rd(G1,n) = rd(Pn) = 1.

(ii) for all n ≥ 3, rd(G2,n) = 3.

(iii) for all n ≥ 4, rd(G3,n) = 3.
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(iv) for all 4 ≤ m ≤ n, rd(Gm,n) = 4.

Proof. (i) That rd(G1,n) = rd(Pn) = 1 for n ≥ 2 is a consequence of Proposition 6.2.1.

For the remainder of the proof, the vertices of Gm,n are considered as the entries of

a matrix, where xi,j denotes the vertex in row i and column j, where 1 ≤ i ≤ m and

1 ≤ j ≤ n.

(ii) For the graph G2,n, n ≥ 3, ∆(G2,n) = 3. First, we define an edge-coloring c of

G2,n. It is convenient to use the elements of the set Z3 of integer modulo 3 as colors

here. Define the edge-coloring c : E(G2,n)→ Z3 by

? c(xi,jxi,j+1) = i + j + 1 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n − 1 (where addition takes

place in Z3);

? c(x1,jx2,j) = j for 1 ≤ j ≤ n.

This is illustrated in Figure 6.3 for G2,7.
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Figure 6.2: A rainbow disconnection coloring of G2,7

Next, we show that c is a rainbow disconnection coloring of G2,n. Let u and v be any

two vertices of G2,n. If u and v belong to two different columns, then there exist two

parallel edges joining vertices in the same two columns whose removal separates u and v.

Each such set of two edges is a u− v rainbow cut. Next, suppose that u and v belong to

the same column. We may assume that u belongs to the first row and v belongs to the

second row. Then either u and v both have degree 2 or both have degree 3. Therefore,

the edges incident with u form a rainbow cut, and so, rd(G2,n) ≤ 3.

Observe that λ(u, v) = 2 if u and v are two vertices of G2,n (1) belonging to the same

row, (2) belonging to different rows and columns or (3) of degree 2 belonging to the same

column; while λ(u, v) = 3 if u and v are (adjacent) vertices of degree 3 belonging to the

same column. It then follows by Proposition 6.1.2 that 3 = λ+(G2,n) ≤ rd(G2,n), and so

rd(G2,n) = 3.

(iii) As with G2,n, we first define an edge-coloring c of G3,n. Once again, we use

the elements of the set Z3 of integers modulo 3 as colors. Define the edge-coloring

c : E(G3,n)→ Z3 by
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? c(xi,jxi,j+1) = i+ j + 1 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ n− 1;

? c(x1,jx2,j) = j for 1 ≤ j ≤ n;

? c(x2,jx3,j) = j + 2 for 1 ≤ j ≤ n.

This is illustrated in Figure 6.3 for G3,7.
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Figure 6.3: A rainbow disconnection coloring of G3,7

Next, we show that c is a rainbow disconnection coloring of G3,n. Let u and v be

any two vertices of G3,n. If u and v belong to two different columns, then there exist

three parallel edges joining vertices in the same two columns whose removal separates u

and v. Each such set of three edges is a u− v rainbow cut. Next, suppose that u and v

belong to the same column. Then at least one of u and v belongs to the top or bottom

row, say u is such a vertex, which has degree 2 or 3. Then the edges incident with u is

a u− v rainbow cut. Thus, rd(G3,n) ≤ 3.

It remains to show that rd(G3,n) ≥ 3. Let u and v be two adjacent vertices of

degree 4 in G3,n (necessarily in the middle row). Then λ(u, v) = λ+(G3,n) = 3. By

Proposition 6.1.2, 3 ≤ λ+(G3,n) ≤ rd(G3,n) ≤ 3 and so rd(G3,n) = 3.

(iv) Finally, we consider Gm,n for 4 ≤ m ≤ n. For every two vertices u and v of

degree 4, there are four pairwise edge-disjoint u − v paths in Gm,n. By Theorem 6.1.1,

λ(u, v) = 4. For any other pair u, v of vertices of Gm,n, λ(u, v) ≤ 3. By Proposition 6.1.2

then, 4 = λ+(Gm,n) ≤ rd(Gm,n). On the other hand, since Gm,n is bipartite, χ′(Gm,n) =

∆(Gm,n) = 4. Again, by Proposition 6.1.2, rd(Gm,n) ≤ 4 and so rd(G4,n) = 4.

Next we determine the rainbow disconnection number of prisms, namely those graphs

of the type G � K2 for some graph G.

Proposition 6.3.2 If G is a nontrivial connected graph, then the rainbow disconnection

number of the prism G � K2 is
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rd(G � K2) = ∆(G) + 1.

Proof. Let G and G′ be the two copies of G in the prism G � K2, and for each

v ∈ V (G), let v′ be its corresponding vertex in G′. We first show that G � K2 has a

proper edge coloring using ∆(G�K2) = ∆(G)+1 colors, that is, χ′(G�K2) = ∆(G)+1.

Let C be a proper edge coloring of G using χ′(G) colors. Color the edges of G and G′

using C, that is, G and G′ have an identical edge coloring C. By Vizing’s Theorem,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1. First assume that χ′(G) = ∆(G). Then assigning the color

∆(G) + 1 to each edge vv′ for every v ∈ V (G) gives a proper edge-coloring of G � K2

with ∆(G) + 1 colors. Next assume that χ′(G) = ∆(G) + 1. Then for each v ∈ V (G), at

least one of the ∆(G) + 1 colors is missing from the colors of the edges incident to v. Let

cv be one such missing color. Note that cv is also missing from the colors of the edges

incident to v′ in G′ because G and G′ have the identical colorings. Hence, assigning cv to

vv′ for each v ∈ V (G) yields a proper edge-coloring of G � K2 having ∆(G) + 1 colors.

By Proposition 6.1.2, it follows that rd(G � K2) ≤ ∆(G) + 1.

To establish the lower bound, let u be a vertex of G with deg u = ∆(G) = ∆. In

G � K2, there exist ∆ + 1 edge-disjoint u − u′ paths, one of which is the edge uu′

and the remaining ∆ of which have the form (u,w,w′, u′), where w ∈ NG(u) and w′

is the corresponding vertex of w in G′. Thus, λ(u, u′) = ∆ + 1. It again follows by

Proposition 6.1.2 that rd(G � K2) ≥ λ+(G � K2) ≥ ∆(G) + 1.

We now determine the rainbow disconnection numbers of the cylinder graphs Pm � Cn

for all integers m ≥ 2 and n ≥ 3.

Proposition 6.3.3 For integers m and n with m ≥ 2 and n ≥ 3,

rd(Pm � Cn) =

{
3 if m = 2
4 if m ≥ 3.

Proof. Ifm = 2, then P2 � Cn = K2 � Cn is a prism. Since rd(P2 � Cn) = ∆(Cn)+1 =

3 by Proposition 6.3.2, we may assume that m ≥ 3. Let G = Pm � Cn. For each integer

i with 1 ≤ i ≤ m, let Fi = (vi,1, vi,2, . . . , vi,n, vi,n+1 = vi,1) be a copy of the cycle Cn of

order n in G. For each integer j with 1 ≤ j ≤ n, let Hj = (v1,j , v2,j , . . . , vm,j) is a copy

of the path Pm of order m in G. First, we show that λ+(G) ≥ 4. Consider the vertices
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v2,2 and v2,3 of G. Since the four v2,2 − v2,3 paths

Q1 = (v2,2, v2,3)

Q2 = (v2,2, v3,2, v3,3, v2,3)

Q3 = (v2,2, v1,2, v1,3, v2,3)

Q4 = (v2,2, v2,1, v2,n, v2,n−1, . . . , v2,4, v2,3)

are pairwise edge-disjoint in G, it follows by Theorem 6.1.1 that λ(v2,2, v2,3) ≥ 4. Hence,

λ+(G) ≥ 4. By Proposition 6.1.2 then, rd(G) ≥ 4.

Next, we show that rd(G) ≤ 4. Again, by Proposition 6.1.2, it suffices to show that

χ′(G) = 4. If n ≥ 4 is even, then G is a bipartite graph and so χ′(G) = ∆(G) = 4. Thus,

we may assume that n ≥ 3 is odd. Define the edge coloring c : E(G) → {1, 2, 3, 4} as

follows.

? For each integer i with 1 ≤ i ≤ m, color the edges of the n-cycle Fi by

c(vi,tvi,t+1) =


1 if t is odd and 1 ≤ t ≤ n− 2
2 if t is even and 2 ≤ t ≤ n− 1
3 if t = n.

? Color the edges of the m-path H1 by

c(vs,1vs+1,1) =

{
2 if s is odd and 1 ≤ s ≤ m− 1
4 if s is even and 2 ≤ s ≤ m− 1.

? For each integer j with 2 ≤ j ≤ n− 1, color the edges of the m-path Hj by

c(vs,jvs+1,j) =

{
3 if s is odd and 1 ≤ s ≤ m− 1
4 if s is even and 2 ≤ s ≤ m− 1.

? Color the edges of the m-path Hn by

c(vs,nvs+1,n) =

{
1 if s is odd and 1 ≤ s ≤ m− 1
4 if s is even and 2 ≤ s ≤ m− 1.

This 4-edge coloring is shown in Figure 6.4 for the graph P6 � C7. Since c is a proper

edge coloring of G using four colors, it follows that χ′(G) ≤ 4. Therefore, rd(G) = 4 by

Proposition 6.1.2.
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Figure 6.4: A proper 4-edge coloring of P6 � C7

Complementary products were introduced in [22] as a generalization of Cartesian

products. We consider a subfamily of complementary products, namely, complementary

prisms. For a graph G = (V,E), the complementary prism, denoted GG, is formed from

the disjoint union of G and its complement G by adding a perfect matching between

corresponding vertices of G and G. For each v ∈ V (G), let v denote the vertex in G

corresponding to v. Formally, the graph GG is formed from G ∪ G by adding the edge

vv for every v ∈ V (G). We note that complementary prisms are a generalization of the

Petersen graph. In particular, the Petersen graph is the complementary prism C5C5. For

another example of a complementary prism, the corona Kn ◦K1 is the complementary

prism KnKn.

We refer to the complementary prism GG as a copy of G and a copy of G with a

perfect matching between corresponding vertices. For a set S ⊆ V (G), let S denote the

corresponding set of vertices in V (G). We note that GG is isomorphic to GG.

Since ∆(GG) = max{∆(G),∆(G)} + 1, Proposition 6.1.2 implies that rd(GG) ≤
max{∆(G),∆(G)}+ 2. This bound is sharp for the Petersen graph P = C5C5 since by

Proposition 6.1.5, rd(P ) = 4 = ∆(C5) + 2. On the other hand, for the complementary

prisms KnKn, Corollary 6.1.11 and Proposition 6.2.5 imply that rd(KnKn) = rd(Kn) =

n−1 = ∆(Kn) < max{∆(Kn),∆(Kn}+2 = n+1. Our next result shows that for graphs

G with sufficiently large girth, rd(GG) is strictly greater than the maximum degree of G.

Proposition 6.3.4 If G is a graph of order n, maximum degree ∆(G) < n − 1, and
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girth at least 5, then

∆(G) + 1 ≤ rd(GG).

Proof. Consider a vertex u in G such that degG u = ∆(G). Let A = NG(u) and

B = V −NG[u]. Thus, in GG, N(u) = B∪{u}. Note that since n−1 > ∆(G), it follows

that B 6= ∅.
We claim there are ∆(G) + 1 edge-disjoint u-b paths, where b ∈ B. To see this note

that one such path is (u, u, b). Next consider the u-b paths containing a vertex a ∈ A.

If a is not adjacent to b in G, then a is adjacent to b in G and (u, a, a, b) is a u-b path.

If ab ∈ E(G), then (u, a, b, b) is a u-b path. Moreover, since g(G) ≥ 5, at most one

vertex in A is adjacent to b, else a 4-cycle is formed. In any case, the collection of these

|A|+ 1 = ∆(G) + 1 paths are edge-disjoint. Hence, by Proposition 6.1.2, it follows that

rd(GG) ≥ λ+(GG) ≥ ∆(G) + 1.

For an example of a complementary prism attaining the lower bound, let G be the

graph formed from a 5-cycle by attaching a leaf x to a vertex v of the cycle. Then,

∆(G) = 3. We show that rd(GG) = 4. First note that the Petersen graph P is a

proper subgraph of GG, and by Propositions 6.1.5 and 6.1.6, rd(GG) ≥ rd(P ) = 4.

Furthermore, there is a proper edge-coloring c of P using four colors such that three

colors are used to color C5 and C5 and the fourth color is used on the matching edges.

Thus, we may assume, without loss of generality, that v is incident to the edges colored

1 and 2 in G and that vv is assigned color 4. We extend c to a rainbow disconnection

coloring of GG as follows: let c(vx) = 3, c(xx) = 4, and c(xu) be the color missing from

the edges incident to u for each u adjacent to x in G. Consider two arbitrary vertices of

GG. At least one of the vertices, say u, is not x. Thus, the edges incident with u are a

rainbow cut separating the two vertices. Since every such vertex u has degree at most 4,

it follows that rd(GG) ≤ 4 and so rd(GG) = 4.

6.4 Extremal Problems

In this section, we investigate the following problem:

For a given pair k, n of positive integers with k ≤ n−1, what are the minimum

possible size and maximum possible size of a connected graph G of order n

such that the rainbow disconnection number of G is k?

We have seen in Proposition 6.2.1 that the only connected graphs of order n having

rainbow disconnection number 1 are the trees of order n. That is, the connected graphs
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of order n having rainbow disconnection number 1 have size n − 1. We have also seen

in Theorem 6.2.4 that the minimum size of a connected graph of order n ≥ 3 having

rainbow disconnection number 2 is n. Furthermore, we have seen in Theorem 6.2.6 that

the minimum size of a connected graph of order n ≥ 2 having rainbow disconnection

number n− 1 is 2n− 3. In fact, these are special cases of a more general result. In order

to show this, we first present a lemma.

Lemma 6.4.1 Let H be a connected graph of order n that is not complete and let x

and y be two nonadjacent vertices of H. Then rd(H + xy) ≤ rd(H) + 1.

Proof. Suppose that rd(H) = k for some positive integer k and let c0 be a rainbow

disconnection coloring of H using the colors 1, 2, . . . , k. Extend the coloring c0 to the

edge-coloring c of H + xy by assigning the color k + 1 to the edge xy. Let u and v be

two vertices of H and let R be a u − v rainbow cut in H. Then R ∪ {xy} is a u − v
rainbow cut in H + xy. Hence, c is a rainbow disconnection (k + 1)-coloring of H + xy.

Therefore, rd(H + xy) ≤ k + 1 = rd(H) + 1.

Theorem 6.4.2 For integers k and n with 1 ≤ k ≤ n − 1, the minimum size of a

connected graph of order n having rainbow disconnection number k is n+ k − 2.

Proof. By Theorem 6.2.6, the result is true for k = n − 1. Hence, we may assume

that 1 ≤ k ≤ n− 2. First, we show that if the size of a connected graph G of order n is

n+ k− 2, then rd(G) ≤ k. We proceed by induction on k. We have seen that the result

is true for k = 1, 2 by Proposition 6.2.1 and Theorem 6.2.4. Suppose that if the size of a

connected graph H of order n is n+ k − 2 for some integer k with 2 ≤ k ≤ n− 3, then

rd(H) ≤ k. Let G be a connected graph of order n and size n+ (k+ 1)− 2 = n+ k− 1.

We show that rd(G) ≤ k + 1. Since G is not a tree, there is an edge e such that

H = G − e is a connected spanning subgraph of G. Since the size of H is n + k − 2, it

follows by induction hypothesis that rd(H) ≤ k. Hence, rd(G) = rd(H + e) ≤ k + 1 by

Lemma 6.4.1. Therefore, the minimum possible size for a connected graph G of order n

to have rd(G) = k is n+ k − 2. [Note that if F is a connected graph of order n and size

m < n+k−2, then m = n+k−a for some integer a ≥ 3. Since m = n+ (k−a+ 2)−2,

it follows that rd(F ) ≤ k − a+ 2 ≤ k − 1.]

It remains to show that for each pair k, n of integers with 1 ≤ k ≤ n − 1 there is

a connected graph G of order n and size n + k − 2 such that rd(G) = k. Since this

is true for k = 1, 2, n − 1, we now assume that 3 ≤ k ≤ n − 2. Let H = K2,k with

partite set U = {u1, u2} and W = {w1, w2, . . . , wk}. Now, let G be the graph of order n
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and size n + k − 2 obtained from H by subdividing the edge u1w1 a total of n − k − 2

times, producing the path P = (u1, v1, v2, . . . , vn−k−2, w1) in G. Since χ′(H) = k, there

is a proper edge-coloring cH of H using the colors 1, 2, . . . , k. We may assume that

c(u1w1) = 1 and c(u2w1) = 2. Next, we extend the coloring cH to a proper edge-coloring

cG of G using the colors 1, 2, . . . , k by defining cG(u1v1) = 1 and alternating the colors

of the edges of P with 3 and 1 thereafter. Hence, χ′(G) = k and so rd(G) ≤ χ′(G) = k

by Proposition 6.1.2. Furthermore, since λ(u1, u2) = k and λ(x, y) = 2 for all other

pairs x, y of vertices of G, it follows that λ+(G) = k. Again, by Proposition 6.1.2,

rd(G) ≥ λ+(G) = k and so rd(G) = k.

For given integers k and n with 1 ≤ k ≤ n− 1, we’ve determined the minimum size

of a connected graph G of order n with rd(G) = k. So, this brings up the question of

determining the maximum size of a connected graph G of order n with rd(G) = k. Of

course, we know this size when k = 1; it’s n−1. Also, we know this size when k = n−1;

it’s
(
n
2

)
. For odd integers n, we have the following conjecture.

Conjecture 6.4.3 Let k and n be integers with 1 ≤ k ≤ n− 1 and n ≥ 5 is odd. Then

the maximum size of a connected graph G of order n with rd(G) = k is (k+1)(n−1)
2 .

Notice that when k = 1, then (k+1)(n−1)
2 = n−1 and when k = n−1, then (k+1)(n−1)

2 =(
n
2

)
. Also, when k = 2, then (k+1)(n−1)

2 = 3n−3
2 . This is the size of the so-called friendship

graph
(
k−1

2

)
K2∨K1 of order n (every two vertices has a unique friend). Since each block

of a friendship graph is a triangle, it follows by Theorem 6.2.4 that each such graph has

rainbow disconnection number 2.

For given integers k and n with 1 ≤ k ≤ n − 1 and n ≥ 5 is odd, let Hk be a

(k − 1)-regular graph of order n − 1. Since n − 1 is even, such graphs Hk exist. Now,

let Gk = Hk ∨ K1 be the join of Hk and K1. Thus, Gk is a connected graph of order

n having one vertex of degree n − 1 and n − 1 vertices of degree k. The size m of Gk

satisfies the equation:

2m = (n− 1) + (n− 1)k = (k + 1)(n− 1)

and so m = (k+1)(n−1)
2 . The graph Hk can be selected so that it is 1-factorable and so

χ′(Hk) = k−1. If a proper (k−1)-edge-coloring of Hk is given using the colors 1, 2, . . . k−
1, and every edge incident with the vertex of Gk of degree n− 1 is assigned the color k,

then the edges incident with each vertex of degree k are properly colored with k colors.

For any two vertices u and v of Gk, at least one of u and v has degree k in Gk, say

degGk
u = k. Then the set of edges incident with u is a u − v rainbow cut in H.
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Since this is a rainbow disconnection k-coloring of G, it follows that rd(Gk) ≤ k. It is

reasonable to conjecture that rd(Gk) = k.

We would still be left with the question of whether every graph H of order n and

size (k+1)(n−1)
2 + 1 must have rd(H) > k. Certainly, every such graph H must contain

at least two vertices whose degrees exceed k.
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Chapter 7

Topics for Further Study

In this chapter, we describe some open questions and concepts resulting from this work.

We also discuss some related topics for further study.

7.1 Problems on 3-Rainbow Connection

1. 2-Connected Graphs

In [8], it was shown that rc2(G) ≤ 3 if G is 2-connected and there is a 2-connected

graph H with rc2(H) = 3. This graph H is shown in Figure 7.1. In fact, rc3(H) = 3

as well and a 3-rainbow coloring using three colors is shown shown in Figure 7.1.
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Figure 7.1: A 2-connected graph H with rc2(H) = rc3(H) = 3

There is reason to believe that for a 2-connected graph, the following is also true.

Conjecture 7.1.1 If G is a 2-connected graph, then rc3(G) ≤ 3.

For connected graphs G with cut-vertices, there is a lower bound for the 3-rainbow

connection number rc3(G) in terms of the number of components in the sub-
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graph of G that results when a cut-vertex is removed. For each cut-vertex v

of G, let τv be the number of components in G − v and let τ(G) = max{τv :

v is a cut-vertex of G}.

Proposition 7.1.2 If G is connected graph with cut-vertices, then rc3(G) ≥ τ(G).

Proof. Let v ∈ V (G) such that τv = τ(G) = τ and let G1, G2, . . . , Gτ be the

components of G − v. For each i with 1 ≤ i ≤ τ , let vi ∈ V (Gi). Since every

3-rainbow coloring of G must assign distinct colors to the τ edges vv1, vv2, . . . , vvτ

of G, it follows that rc3(G) ≥ τ(G).

If G = K1,τ is a star of order τ + 1 ≥ 3, then τ(G) = τ and rc3(G) = τ(G).

Next, let G = 2P ∨ K1, where P is the Petersen graph. Then G has a unique

cut-vertex and τ(G) = 2. Since rc3(G) = 3, it follows that rc3(G) > τ(G). Thus,

it is possible that rc3(G) = τ(G) or rc3(G) < τ(G). These two examples also show

that the 3-rainbow connection number of a connected graph of diameter 2 can be

arbitrarily large. However, in each case, the graph under study is not 2-connected.

2. Realizable Triples

If G is a nontrivial connected graph with pc(G) = a, rc3(G) = b and rc(G) = c,

then 1 ≤ a ≤ b ≤ c. This suggests the following question.

Problem 7.1.3 For which triples a, b, c, does there exist a nontrivial connected

graph such that pc(G) = a, rc3(G) = b and rc(G) = c?

3. Unique 3-Rainbow Paths

A tree T has the property that there exists a 3-rainbow coloring of T such that

every two vertices u and v of T are connected by a unique 3-rainbow u − v path

in T .

Conjecture 7.1.4 If G is a connected graph with a 3-rainbow coloring such that

every two vertices u and v of G are connected by a unique 3-rainbow u− v path in

G, then each block of G is a complete graph.

4. Subgraphs of Diameter 3

For a connected graph G of diameter 3 or more, let

ρ3 = max{rc3(H) : H ⊆ G and diam(H) = 3}.

What is the relationship between ρ3 and rc3(G)?
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7.2 Rainbow Sequences

If G is a nontrivial connected graph and ` is the length of a longest path in G, then

pc(G) = rc2(G) ≤ rc3(G) ≤ · · · ≤ rc`(G) = rc(G) and that the sequence

pc(G), rc3(G), rc4(G), · · · , rc(G)

is referred to as the rainbow sequence of G, denoted by Sr(G).

A nondecreasing sequence of positive integers is a rainbow sequence if it is the rainbow

sequence of some connected graph G.

Problem 7.2.1 Which sequences of positive integers are rainbow sequences?

1. There exist connected graphs G whose longest path has length ` for which

rci(G) = rci−1(G) for each integer i with 2 < i < `. (7.1)

In particular, this is true for all connected graphs G with rc3(G) = rc(G). For

example, let Wn = Cn ∨K1 be the wheel of order n+ 1 ≥ 5, where n is the length

of a longest path. If n and k are integers with 2 < k < n and n ≥ 4, then

rck(Wn) =


1 if n = 3
2 if 4 ≤ n ≤ 6
3 if n ≥ 7.

Which connected graphs G with rc3(G) < rc(G) have the property described in (7.1)?

2. There exist connected graphs G whose longest path has length ` for which

rci(G)− rci−1(G) = 1 for each integer i with 2 < i < `. (7.2)

For integers k and ` with 2 ≤ k ≤ `−1, rck(P`) = k. Thus, if G = P` is the path of

order ` ≥ 3, it follows that rci(G)− rci−1(G) = 1 for each integer i with 2 < i < `.

Which other graphs have the property described in (7.2)?

3. If rci(G) = rci+1(G) for some integer i, does rcj(G) = rci(G) for all j > i?

7.3 k-Rainbow Connectivity

Let G be a graph with connectivity ` ≥ 1 and let k ≥ 3. The following concepts can be

studied.

108



1. The k-rainbow connectivity of G is the minimum number of colors needed in an

edge-coloring of G such that every two distinct vertices u and v of G are connected

by ` internally vertex-disjoint k-rainbow u− v paths.

2. The k-rainbow edge connectivity of G is the minimum number of colors needed

in an edge-coloring of G such that every two distinct vertices u and v of G are

connected by ` edge-disjoint k-rainbow u− v paths.

3. The 2-mixed connectivity of G is the minimum number of colors needed in an edge-

coloring of G such that every two distinct vertices u and v of G are connected

by both a rainbow u− v path and a non-rainbow proper u− v path or by both a

rainbow u− v path and a non-rainbow k-rainbow u− v path.

7.4 Color Disconnection in Graphs

There are several open questions dealing with rainbow disconnection in edge-colored

graphs. We list some of them below.

1. Are there classes of graphs G for which rd(G) = ∆(G) + 1?

2. Does there exist a prism which does not have a proper rd-coloring?

3. Do 3-by-n grid graphs, for n ≥ 3, have proper rd-colorings?

4. Does there exist a graph G for which λ+(G) < rd(G)? Can this gap be arbitrarily

large?

5. Does there exist a graph G for which λ+(G) < rd(G) < χ(G)?

There is a related disconnection concept that is closely related to rainbow discon-

nection in edge-colored graphs. A set R of edges in an edge-colored graph G is called

a proper set if no two adjacent edges in R are colored the same. A set R of edges is a

proper cut of G if R is both a proper set and an edge-cut. A proper cut R is said to

separate two vertices u and v of G if u and v belong to different components of G− R.

Any such proper cut in G is called a u − v proper cut in G. An edge coloring of G is a

proper disconnection coloring if for every two distinct vertices u and v of G, there exists

a u− v proper cut in G. The proper disconnection number pd(G) of G is the minimum

number of colors required of a proper disconnection coloring of G. A proper disconnec-

tion coloring with pd(G) colors is called an pd-coloring of G. Since every rainbow-cut

is a proper cut, it follows that pd(G) ≤ rd(G) for every graph G. We plan to study this

concept.
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[7] J. A. Bondy and V. Chvátal, A method in graph theory. Discrete Math. 15 (1976)
111-136.

[8] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa and
Z. Tuza, Proper connection of graphs. Discrete Math. 312 (2012) 2550-2560.

[9] F. Buckley, Z. Miller and P. J. Slater, On graphs containing a given graph as center.
J. Graph Theory 5 (1981) 427-434.

[10] P. Camion, Chemins et circuits hamiltoniens des graphes complets. C. R. Acad.
Sci. Paris 249 (1959) 2151-2152.

[11] G. Chartrand. Highly Irregular in Graph Theory - Favorite Conjectures and Open
Problems (ed. by R. Gera, S. Hedetniemi and C. Larson) Springer, New York (2016)
1-16.

[12] G. Chartrand, G. L. Johns, K. A. McKeon and P. Zhang, Rainbow connection in
graphs. Math. Bohem. 133 (2008) 85-98.

[13] G. Chartrand, G. L. Johns, K. A. McKeon and P. Zhang, The rainbow connectivity
of a graph. Networks 54 (2009) 75-81.

[14] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 6th Edition, Chapman
& Hall/CRC, Boca Raton, FL (2015).

110



[15] G. Chartrand and P. Zhang, Chromatic Graph Theory. Chapman & Hall/CRC
Press, Boca Raton, FL (2009).

[16] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dover, New York
(2012).

[17] G. A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2 (1952)
69-81.

[18] P. Elias, A. Feinstein and C. E. Shannon A note on the maximum flow through a
network. IRE Trans. on Inform. Theory IT 2 (1956) 117-119.

[19] A. B. Ericksen, A matter of security, Graduating Engineer & Computer Careers
(2007) 24-28.

[20] H. Fleischner, The square of every two-connected graph is Hamiltonian. J. Combin.
Theory Ser. B 16 (1974) 29-34.

[21] L. R. Ford, Jr. and D. R. Fulkerson, Maximal flow through a network. Canad. J.
Math. 8 (1956) 399-404.

[22] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The comple-
mentary product of two graphs. Bull. Instit. Combin. Appl. 51 (2007) 21-30.

[23] K. Hirohata, Long cycles passing through a specified path in a graph. J. Graph
Theory 29 (1998) 177-184.

[24] F. Fujie, P. Zhang, Covering Walks in Graphs. Springer, New York (2014).

[25] L. H. Hsu and C. K. Lin, Graph Theory and Interconnection Networks. CRC Press,
Boca Raton, FL (2008).
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