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ANALYZING RISKY DECISION MAKING 

Vinay B. Gavirangaswamy, Ph.D. 

Western Michigan University, 2017 

The process or activity of making choices when subject to gain or loss can be understood 

as risky decision making (RDM). Risky Decisions consists of outcomes of decisions that may 

probabilistically result in unfavorable results. Every organism that lives faces this challenge and 

recent research suggests that there is a computational process involved in making these decisions. 

This has led to new approaches in the study of RDM. My dissertation is towards contributing to 

expand on the existing knowledge of RDM processes. 

The core contribution of my work is an analysis and development of high performance 

computing techniques that improves contemporary research by providing new tools. An open 

source toolkit called RDMTk was developed as a part of this work that is available for use in the 

form of Software as a Service. RDMTk uses cloud based computing resources for running analysis 

code on demand by a researcher. 

Computational challenges are addressed for a reinforcement learning algorithm currently 

used in identifying individual differences in RDM [71]. A central objective was an exhaustive 

analysis for improving this technology using shared and distributed memory. Algorithms for MPI 

(Message Passing Interface) based distributed memory and CUDA-GPU (Compute Unified 

Device Architecture-Graphic Processing Unit) based shared memory are developed and tested 

using extensive experiments. Our implementation on distributed architecture was able to achieve 



almost a linear speedup (e.g. 44.79x using 48 MPI threads). And showed a 130x speedup for CPU-

GPU based shared memory implementation over CPU only. We also discuss a novel Floor Tiles 

Planning theoretical approach to further reduce the computational overhead in RDM algorithms.  

This approach exploits spatial & temporal dependencies in computing resource allocation along 

with associated data dependencies. Data for our RDM research is collected through open source 

RDMTk toolkit, developed as a part of the dissertation work. 
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CHAPTER I 

INTRODUCTION 

1. Introduction

Regardless as to whether individuals are making personal or professional choices, every 

choice involves a decision to assess the advantages and disadvantages of a given choice, and every 

choice involves, by necessity, a negation of the other possibility. Decision making then assumes 

an onerous burden, particularly when some choices carry with them not only the possibility of a 

greater benefit, but also the possibility of a substantial risk, aside from the factor of negation and 

the loss of the other potential opportunity cost. Yet, individuals are involved in decision making 

at all phases in their lives: to attend a certain university; to pursue a particular career path; to marry 

a certain individual; to divorce, among many others. The results of decision making – the 

anticipation or expectation of a gain or a reward that prompts an individual to engage in “risky” 

behavior – is a factor that is not well understood. The ability to study risky decision making (RDM) 

and to potentially predict or forecast the evolution of such behavior presents researchers with fertile 

opportunities for exploration – the objective of this research. 

Traditionally research in RDM was spearheaded by people with a background in 

psychology; however recent developments indicate increased interest by other domains including 

economics and neuroscience. Computer Science is a recent addition among other fields that can 

contribute towards developing richer understanding of RDM through intelligent and scalable 

algorithms to detect and predict RDM patterns. Various new fields of study have stemmed out 
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recently in response to latest developments in RDM such as, Neuroeconomics, Neurodevelopment, 

and Emotion Regulation (ER) etc. Neuroeconomics researchers have formalized a process of 

economic decision making with respect to activity center in the brain and related models/axioms 

thereof. In neurodevelopment people study about RDM across different ages starting from early 

childhood to old age. These new studies consider the existence of computational model for 

decision making, which involves modeling interaction among neurons. Neuropsychology tries to 

study structure and process in brain corresponding to decision making and behavior. 

Computational modeling of RDM is an extension of neuropsychology where people have tried to 

formulate decision making in terms of neural activity and brain structures for corresponding 

stimuli. All extensions of RDM research use and benefit from a variety of tools and techniques. 

Figure 1. Different aspects of my dissertation where computer science is incorporating or 

building upon previous contributions from data science, economic, mathematics, machine 

learning, statistics, and psychology. 
 

Computer 
Science

Psychology

Economics

Mathmatics

Statistics 

Data Science

Machine 
Learning
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Contemporary researchers are trying to better understand individual preferences of people 

while making a decision under risky situations. Much of the theoretical work in understanding 

risky decision making comes from economics and psychological literature. Researchers have 

developed theories using statistical and mathematical structures to account for risky decision 

making and its various aspects. Computer science can offer to further extend RDM understanding 

by incorporating machine learning on top of the existing knowledge base. Theories for decision 

under uncertainty have been broadly classified as descriptive, prescriptive and normative. 

Descriptive theories try to explain how and why a pattern of decisions were taken. Prescriptive 

theories try to suggest what course of decisions one should make. And normative theories try to 

come up with the most profitable decision making patterns. However, currently literature lacks a 

good understanding of individual’s preferences and changes in preferences while making these 

decisions. 

My dissertation is contributing towards the existing literature for risky decision making by 

providing an enhanced toolkit and techniques for analyzing behavioral data from a computational 

perspective. 

2. Significance of the Research

This research is an effort to better understand different preferences in people’s decision 

making. There are two aspects towards this, one is to collect relevant data that would enable us 

with the second part, to develop models for the data to verify hypotheses under investigation. 

Models used to analyze data are computationally intensive and we address some of the problems 

that would arise from running these on large datasets. 
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Recent developments in computer science offers a significant improvement to existing 

technology and methodology by which these studies are conducted by researchers studying RDM. 

Games/tasks developed requires software installation and sometimes development of additional 

features. Also, a typical study involves collecting data from different sources/sensors. Most of the 

toolkits currently available are commercial and require license to use; this limits collaboration 

among researchers and hinders further improvements of task/game used. Our proposed Risky 

Decision-Making Toolkit is designed and built to the state-of-the-art as open-source toolkit. We 

used web and cloud technologies to make the toolkit available as “Software as a Service” (SaaS), 

thus making global research studies, data collection and analysis easier. 

Developing models that predict patterns in RDM data will benefit researchers across 

various disciplines. These models could be based on analytical, machine learning or both 

algorithms. Researchers can derive more consistent and productive results if they have access to a 

wider range of datasets. Establishing relationship between analytical or machine learning models 

with psychological theories is the central challenge. 

3. Research Objectives

Computer scientists have a plethora of innovations to contribute towards researching RDM. 

My dissertation work is an effort to answer some of the open challenges faced by researchers in 

RDM. Below we list our main contributions: 

a) Designing and building a state-of-the-art open-source toolkit to make it easier to collect the

data. Exploit web and cloud technologies to make the toolkit as a SaaS - this would allow 

scalability, availability, collaboration, reachability, diversity, and larger-data-collection 

(making even global data collection easier). This way envisioned Risky Decision-Making 



5 

 

Toolkit will provide the necessary capability to researchers who study RDM 

computationally. It also includes tools to analyze data collected through experiments. Our 

approach thus enables a researcher to identify an individual, as well group decision making 

approaches. 

b) Improved computational performance of the existing popular RDM reinforcement 

algorithm through HPC techniques. 

4. Methodology 

A. Toolkit 

Developing a toolkit from scratch is a challenging task. Principles of software engineering 

including modern practices such as agile scrum in conjunction with iterative development process 

and Feature Driven Development are used. 

B. High Performance Computing Versions of Algorithms 

Enabling RDM algorithms to use, a high-performance computing environment was done 

using test driven software development process. 

5. Main Results 

The primary goal of my dissertation was to improve risky decision making research from 

a systems perspective. Towards this end I worked at improving the techniques currently being used 

by both researchers and practitioners. More precisely following are the key take away from my 

work 

• Development of RDMTk, an open source software as a service application tool to use 

in studying RDM. 
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• Analysis and improvement of reinforcement learning algorithm on distributed systems

that is 40x faster compared to sequential version. 

• Analysis and improvement of reinforcement learning algorithm on shared memory

systems that is 130x faster compared to sequential version. 

• Development of a Floor Tiles Planning (FTiP) theoretical framework for optimizing

computational resource utilization in RDM algorithms. 

The rest of the document is organized as follows. In Chapter II we briefly discuss previous 

work related to existing tools used in RDM empirical experiments, existing approaches in RDM 

data analysis and its high-performance computing solutions. Chapter III introduces an open source 

toolkit developed as part of the dissertation work. A formal model specification for reinforced 

learning algorithm for RDM is given in Chapter IV. In Chapter V we discuss a distributed memory 

based implementations and reduction in time complexities. Chapter VI lists the implementation of 

the algorithm using CPU-GPU combination. Further improvements to reduce the RDM algorithm 

in regard to computational resource and complexity is highlighted in Chapter VII. Chapter VIII 

introduces new approach to predict risk preferences in CUPS task. We then conclude with a brief 

discussion on directions for future advances in Chapter IX. 
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CHAPTER II 

 

 

BACKGROUND 

 

 

 

 

 

1. Introduction 

We summarize the related previous work into three sections. The first, few paragraphs 

discuss tools, techniques and the need for a comprehensive toolkit for RDM researchers. The 

second section is about the need for improving computational performance in a RDM data analysis 

approaches. We foresee a necessity for improvement in terms of analysis methods and discuss 

major work done towards RDM predictions at the last section. 

2. Tools and Techniques 

Initially, RDM researchers relied primarily on self-reporting measures. Self-reports, 

however, were prey to both falsification of information and biases. Subsequently, many RDM 

researchers began to experimentally control participant behavior [59, 100, 7, 35, 92, 108] in order 

to assess the decision-making process. This experimental control often took the form of games or 

tasks. These tasks/games were shown to improve both the breadth and depth of assessment of risk-

taking behavior. A number of tools have been designed and developed as a result. Error! 

Reference source not found. lists a selection of the most prominent assessments that were 

developed, along with the toolkits in which they are implemented. Error! Reference source not 

found. compares the toolkits and their features. Unfortunately, not all are available for use under 
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open source. Even for those that are open source developing applications to study different aspects 

of RDM is time-consuming. Therefore, we believe providing a prebuilt set of tasks/games will 

ease the data-collection process. We will now describe a few of the existing toolkits presently used 

by the RDM community. 

Table 1 Some available toolkits used in RDM and their constituent tools. 
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RDMTk   √ √ √ √   √ √ 

SoPHIE           √     

SuperLab               √ 

Tatool             √   

Webexp2             √   
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Table 2 Toolkits and their features comparison. 
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A. jsPsych 

jsPsych is a library for developing psychological experiments using web-based technology. 

The JavaScript library is used to formalize the experimental setup and uses graphic notations that 

can be used during code implementation. It is an open source library made available to the research 

community by Josh de Leeuw at Indiana University [22]. 
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B. E-Prime 2.0 

E-Prime [85] toolkit provides a platform to design, data collection and analyze 

experiments. It has a graphical user interface to design games/tasks, which is back by a scripting 

language similar to visual basic. 

C. Inquisit 

Inquisit 4 [26] is web enabled application that gives flexibility to work from anywhere in 

the globe. It houses a wide range of psychological experiments and more can be developed using 

the software. 

D. The Paradigm Experiment Builder 

The Paradigm [48] experiment builder claims to be “One of a Kind”. Paradigm allows 

creating experiments without needing to learn complex user interface and scripting language. The 

developers think it is the easiest experiment builder available. 

E. PEBL 

PEBL [69] is a toolkit that is designed with its own programming language. This toolkit 

implements many standard tasks, and more can be implemented. It is supported on Windows, 

Linux and Macintosh operating systems and is implemented in C++, flex and bison. PBEL is 

provided freely under GPL license. 

http://www.scienceplus.com/e-prime-2-0-professional
http://www.millisecond.com/products/inquisit4/weboverview.aspx
http://www.paradigmexperiments.com/index.html
http://pebl.sourceforge.net/
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F. Presentation 

Presentation [70] is a toolkit designed to run on Windows PC. It delivers many 

experiment/stimuli. It integrates fMRI, ERP, MEG, psychophysics, eye movements, reaction times 

and other performance measures. Presentation is the world's most popular experimental control 

software with 75172 registrations and 167505 downloads. 

G. PsychMate 

PsychMate [30] consists of classic and current experiments in psychology. It is used to 

teach students about research method and data collection. Students can also participate in 

experiments as real participants. Their data is submitted automatically over internet and complete 

analysis is provided. 

H. PsychoPy 

PsychoPy [76] is used in neuroscience, psychology and psychophysics experiments. It is 

an open-source application, free, powerful alternative to Presentation or e-Prime. It was developed 

in Python. 

I. Psychtoolbox-3 

Psychtoolbox [54] is free software provided under GNU GPL-2 lisence. It is used to study 

psychophysics experiments in Matlab. Tasks/Experiments can be programmed using technologies 

included e.g. OpenGL, C etc. It supports sub-millisecond timing, vertical screen trace, and low 

latency audio. Data analysis is done through Matlab. It is designed to work under Windows, Linux 

and Mac OS. 

http://www.neurobs.com/
http://www.pstnet.com/software.cfm?ID=54
http://www.psychopy.org/
http://psychtoolbox.org/
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J. SoPHIE 

SoPHIE (Software Platform for Human Interaction Experiments) is developed and 

maintained by Achim Hendriks. This is an open source software product with a web interface. The 

project was initially intended to provide computerized support for experiments in economics, but 

has progressed into multiple development cycles with wider usage. It uses a Berkeley Software 

Distribution (BSD) style license [42]. 

K. SuperLab 

SuperLab was initially designed to work on Max OS as a general purpose psychological 

experimentation toolkit. It allows to participation in experiments and data collection. Stimuli input 

can be given through RB Series, Lumina, SV-1, keyboard, mouse and etc.  Output includes 

Stimtraker, Cedrus Response Device. Latest version of SuperLab also delivers cross-platform 

freedom: a license allows you to run it on either Mac or Windows [40]. 

L. Tatool 

Tatool (Training and Testing tool) is a Java-based tool that was developed to assist 

researchers who wanted to develop computer-based training software, experiments, and 

questionnaires. It uses a platform-independent, object-oriented framework for designing 

experiments. It also provides predefined functions for configurable training schedules, adaptive 

training algorithms, and individual training statistics [96]. 

Other toolkits not reviewed in this paper also tend to focus on a limited set of tasks and do 

not scale well for global-scale studies of RDM. The RDMTk hopes to fill that gap. 

http://www.sophie.uni-osnabrueck.de/
http://www.superlab.com/
http://www.tatool.ch/
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Some of the tasks require additional software installation, and some require the 

development or customization of additional features. Custom-building an application for each 

aspect of a study is a time-consuming task. Hence, providing a prebuilt set of tasks/games under 

one umbrella that ease the data-collection process should allow researchers to focus on research 

questions and experimental manipulations. 

Furthermore, nearly all the existing packages lack any features to manage data. In this 

period of free information exchange, active and healthy research should be supported by providing 

a platform on which reusable research data could be shared. This will not only reduce costs when 

conducting empirical studies but also diversify research activities globally. 

3. High Performance Computing for RDM Models 

A number of statistical and machine learning models are used to analyze data collected 

from empirical experiments studying risky decision making. For example the Iowa Gambling Task 

(IGT) task is studied using models based on reinforcement learning such as EV model, baseline 

model, Prospect Valence Learning (PVL) model, and PVL-Delta [1, 8, 17, 29]. For instance, 

reinforced learning (RL) models were successfully applied to categorize IGT experiment data for 

participants in healthy and substance abusers (cannabis users) by Fridberg et al. in [11]. Their 

analysis concentrated around how the controlled group performed compared to cannabis abusers 

and what were the individual differences. A very compelling case for using hierarchical Bayesian 

methods in cognitive science is made in [25]. Their survey work is interesting as they clearly layout 

the need for applying advanced statistical and machine learning algorithms. In short, they surmise 

that models should provide insight and understanding, facilitate prediction and generalization, 



14 

 

direct empirical exploration and account for group vs. individual performances. Even though each 

model discussed gave interesting insight into either individual or group performance; none of the 

models used was able to capture all or most of the individual level differences and subsets of 

groups. According to Steingroever et al. in [26]; none of the models considered (EV, PVL, EV-

PU combination of EV & PVL) provide good fit across different experiment data and concluded 

that search for better analysis technique is still a work in progress. Authors in [27] support 

Steingroever et al.’s conclusion in [26], while distinguishing models into post hoc absolute fit and 

simulation methods. They emphasize accounting for models with absolute performance before 

using its results from comparisons to other model’s adequacy (which is the case with post hoc 

absolute fit models). 

 

Figure 2. Word cloud of article titles that refer to original ensemble clustering algorithm 

publication. 
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Ensemble clustering algorithm can be defined as a computational technique deviced from 

using an agglomeration of clustering algorithms for meta-analysis on the data and was first 

proposed by Strehl and Ghosh [91]. Analysis of the word cloud (see Figure 2) from article titles 

obtained using Google scholar search for works directly citing Strehl and Ghosh’s original 

publication on ensemble clustering algorithm gives us interesting insights. The most common 

constituent clustering algorithms in the ensemble so far are Spectral, Hierarchical/Agglomerative, 

Kmeans, Cmeans, Bayesian and Fuzzy clustering. It is used in the context of analyzing, learning, 

detection, and searching or discovering knowledge from images, gene expression, social text, 

brain, cancer, chemical and web datasets. The analysis also reveals that algorithm commonly uses 

a graph, and other high-dimensional structures stored as sparse or dense matrix data structures of 

different formats. It is interesting that little work is done in parallelizing it despite its popularity in 

data analysis scenarios which could easily lead to important problems in the big data arena [14, 

36, 63, 66, 67, 89, 109, 111]. A few notable examples of algorithm’s usage, tools and 

parallelization efforts are discussed next. 

Glerean et al. [37] have used the ensemble clustering algorithm to identify group level 

analysis for finding differences among individuals suffering from autism spectrum disorder. Xu et 

al. applied the algorithm to recognize different individuals’ handwriting [106]. Works such as [3, 

62, 80, 97] are a few examples that discuss the application of the ensemble clustering algorithm to 

specific contexts and are made up of either single base clustering or more than one. Benmounah 

and Batouche [8] discussed the implementation of ensemble clustering algorithm using 

MATLAB’s Parallel Computing Toolbox to analyze gene expression profiling. Literature also 

reveals MATLAB and R based tools such as LinkCluE [47], CLUE [44] and MATLAB Cluster 



16 

 

Ensemble Toolbox [83] in existence for specific problem scenarios. Ozyer and Alhajj [21] discuss 

a parallel implementation of a multi-objective clustering based on a genetic algorithm using a 

divide and conquer approach for analyzing large datasets. Their article does not give details of 

parallelization techniques but mentions that they used libraries from R statistical software as well 

as MATLAB [73]. Our two works are similar in the sense that both are trying to parallelize multi-

objective clustering algorithms but are different as their approach is to partition dataset into smaller 

pieces to run in a distributed fashion whereas ours is designed for shared memory and CPU/GPU 

hybrid. Arnaldo et al. implemented an ensemble learning system called FLASH that utilizes GPU 

technology [4]. However, their work is very specific to genetic programming regression in shared 

memory and does not combine other classifiers. 

We separate previous work specifically related to ensemble clustering into two sub topics. 

The first is, fundamental research work that produced improvements in the effectiveness of the 

algorithm to accurately partition the given dataset. The second is subsidiary research that 

undertook the necessary steps of making these algorithms run faster by addressing computational 

requirements. 

The primary problem to improve algorithm effectiveness has been tackled by several 

researchers from an optimization perspective since its original proposal by Strehl and Ghosh [28]. 

These improvements to ensemble clustering algorithm are categorized as theoretical contributions 

via variations in the modeling and implementation algorithms. For example, optimizations can be 

based on graph partitioning algorithms, genetic algorithms, ant colony, greedy methods etc. [2, 9, 

21, 24]. In general, to improve performance one needs to address each of the 2 aspects (clustering 
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ensemble and consensus function) either individually or together. We refer readers to one of the 

survey publications for detailed insight [12, 14, 30]. 

Secondly, one must also consider practical implications of using such computationally 

intensive algorithm in applications. Very little work is done for performance improvements that 

capitalize on today’s readily available computation power; our work falls into this second category. 

There is some work that is an exception to above. For example, authors in [15] applied map-reduce 

technique to ensemble clustering. In their approach a given dataset is first partitioned and these 

data partitions are distributed in the map-phase that computes locally optimal labels, namely, 

partial output from objective functions, and in the reduce-phase partial outputs are condensed to 

form the final consensus. Their experimental results compared number of dataset size, models and 

nodes. They achieved linear speedup when models were kept constant, but data size was varied. 

However, researchers did not get encouraging results for varying number of models. Mohamad et 

al. [22] propose the use of parallelization techniques to improve performance of neural ensembles. 

ANN were trained on different partitions of data and combined to form consensus. Individual ANN 

of the ensemble learns different patterns by varying initial conditions, network architecture, 

training dataset, and training algorithm. Mohamad et al. also saw increased speedup with 

increasing number of processors. In [10] Fern et al. have published results from an empirical study 

of ensemble clustering techniques’ capability to handle high dimensionality with respect to 

ensemble construction methods, and consensus functions. Their study found that random 

projections produce better diversity, and consensus functions based on bipartite graph partitioning 

performed better. To the best of our knowledge, utilization of parallelization technology for 
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improving computational performance of algorithms analyzing risky decision making is yet to be 

researched exhaustively; not much work has addressed this space. 

4. Empirical Analysis of RDM Datasets

Researchers have applied several formal models and analysis techniques in the decision 

making domain. Throughout our background research we came across repeated discussions of not 

having adequate models that would account for variations in analyzing RDM data [26, 27]. Data 

analysis is, of course, one of the primary aspects for any experimental study. Analysis techniques 

must be tailored to specific application domain. Thus, a person performing data analysis should 

have prior knowledge of the data in context. Newman [71] used an exhaustive ensemble of 

clustering algorithms to generate better clusters and inferences. Other previous research related to 

analyzing decision making has typically used classification techniques such as k-means, 

agglomerative hierarchical, spectral clustering, and general linear model [93, 71, 17]. Much of the 

focus has been to find behavioral patterns in terms of groups of participants; in other words 

performance assessment is generalized in most cases and geared towards group averages. These 

participants were derived from a particular background or nature of study; for instance [24] 

discusses implication of substance use disorder (SUD, alcohol in this case) over risky decision 

making. Data analysis was done through general linear model using ANOVA toolkit. Acar and 

Yener in [1] surveyed use of multiway data analysis in neuroscience domain. Their study 

highlights that computational neuroscience is best analyzed with multiway models such as 

PARAFAC. Toolboxes such as ERPWAVELAB [68] have been developed earlier that runs on 

MATLAB platform. Toolbox was helpful in modeling electroencephalogram (EEG)/Even-Related 

Potentials (ERP) signals, functional Magnetic Resonance Imaging (fMRI) data. We have found 
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that most research work adapts similar approaches. The next section discusses approaches typically 

applied to analyze data. 

4.1 Individual Differences vs. Group Behavior 

Lauriola et al, [56] work is the first paper that discusses individual differences and 

predicting RDM among participants. Suhr and Tsanadis studied IGT in terms of Behavioral 

Inhibition Scale / Behavioral Activation Scale (BIS/BAS scale) and Positive Affect, Negative 

Affect Schedule (PANAS) [93]. Their results show that individuals higher in BAS Fun Seeking1 

performed worst on IGT, relative to individuals who were lower on BAS scales, and individuals 

high on only BAS Drive and Reward. They suggested a need to assess different dimensions when 

trying to assess IGT performance. One can also use graph-based approaches. Hofmans and Mullet 

develop in [43] a series of clustering procedures that can be used to study individual differences, 

integration rules, and also individual differences in other stages of information processing. 

Horstmann et al. [45] hypothesized that performance on IGT depends on a combination of 

features rather than a single feature of participants. They used a system of linear equations to model 

IGT data that estimates weights to quantify the influence of each individual feature on decision 

making in IGT. Their model disentangles the individual features and quantifies the impact of 

features. Their cluster analysis of estimated feature weights also revealed sub-groups of 

participants with different weight patterns and hence decision behavior. 

1 BIS and BAS are components of Gray’s Reinforcement Sensitivity Theory (RST). BIS & BAS indicate anxiety 

and reward situations, respectively. Also BAS is divided into three categories namely, Drive, Reward 

Responsiveness and Fun Seeking. 



20 

 

According to [98] risky choices or risky decisions that might be inferred directly or 

indirectly are domain specific, instead of a stable attitude or trait across scenarios. This work 

further explains: 

• The content-specificity of risk taking, especially with respect to individual differences. 

• A new approach that allows researchers and practitioners to assess both conventional 

risk attitudes and perceived-risk attitudes. 

In [65], Maia and McClelland argue that there is a relation between working memory (WM) 

and performance on IGT. Working memory refers to a person’s ability to remember symbols for 

a short term. The number of distinct symbols that one person remembers is called their capacity. 

Their study shows participants prior knowledge/bias towards the game. Most of their studies are 

conducted to explicitly test this behavior among participants. They also express interest in 

techniques that will be able to detect similar kind of participants exhibiting risk indifference. 

4.2 Preferences in RDM 

Recent research has suggested that one or more intuitive process contribute towards risky 

decision making [38, 5]. These intuitive processes are termed as implicit associations in neural 

mappings. In [84], implications for conceptualizations of value, risk aversion, inter temporal 

choice, and a dual-process theory of decision making is addressed. This work elaborates on relation 

/ influence between intuitive process and deliberativeness on each other. IGT and Stroop have been 

used in situations that evoke emotional experience that may exert a covert influence on behavior 

[92]. It would be useful if we can derive implicit association between performed actions and map 

them to discrete states to quantify risky decision making. Examples listed below further 
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substantiate other similar work that attempts to predict hidden patterns from the data without prior 

configuration about expected patterns. 

Data driven classification approach offers a fundamental difference from the existing 

algorithms such as k-means, SOM and GMM where one assumes prior knowledge of patterns or 

expected functional curve. In case of hierarchical clustering, algorithms prune data in an ad-hoc 

manner. For instance, Ma et al. in [64] introduced Smoothing Spline Clustering (SSC) model that 

uses properties of gene expression over time. It allowed discovery of related pattern of gene 

expression and underlying functions without prior specification of either the cluster number or the 

functional form. 

In [39] Golland et al. applied a hypothesis-free, unsupervised two-class clustering 

algorithm (k-means) to a large set of fMRI data. Their study mapped cortical activates according 

to tasks or decision making. Their clustering results confirmed that the intrinsic–extrinsic 

subdivision constitutes a fundamental cortical divide. Their approach contrasts with others by 

demonstrating the benefit of using clustering to construct a top-down model of global activation 

patterns in the brain. Their study was repeated for different values of k and found encouraging 

results of delineation at finer levels (when k=3) whereas it was consistent when k =2. This 

approach demonstrated applicability of neuroanatomical research in revealing data-driven 

subdivisions within the human cortex. 

4.3 Predictive Modeling of RDM 

Dougherty and Thomas propose General Monotone Model (GeMM) as a predicting 

algorithm for predicting rank orders from a set of predictor variables. They used it to study 
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psychological data that has nonlinear relations in the data without a need to make precise 

assumptions. This is important to our work as this substantiates the need for researchers to have 

tools that allow flexible modeling [25]. 

In [71] L. Newman used linear discriminant based methodology to validate reinforcement 

learning model’s fit by predicting cluster. He used data from IGT, and his model accounted for 

individual differences. Using his models Newman was able to identify the existence of multiple 

decision making styles previously unknown. 

Data collected from MRI sensors while participants completed the BART task was used in [41] 

to predict if individuals would make risky or safe decisions. This method was able to predict 

correctly 71.8% of the time based on activity centers in the brain. This study also shed some light 

on the amount of required data density for prediction accuracy. 
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CHAPTER III 

RDMTk: A TOOLKIT FOR RISKY DECISION MAKING 

1. Introduction

Decision Making (DM), and in particular Risky Decision Making (RDM), has become a 

cross-disciplinary field of interest. Many people ask "Why do some people have better life 

outcomes than others?" The economist might ask "Why do some people make certain financial 

decisions?" Psychologists wonder "Why do certain people have a higher appetite for risk than 

others?" The organizational behaviorist ask "How will these decisions affect the organization?" 

Neuroscientists wonder "Are there certain areas of the brain that are tied to risky decision-making 

processes?" The computer scientist ask "Can networks predict when actors will make risky 

decisions?" And these are just a few of the many ways in which risky decision making has become 

a widely studied phenomenon. Unfortunately, this analysis is often done independently across 

different fields, using disparate toolkits, disparate analysis methods, and only moderate cross 

disciplinary pollination. There are no universally accepted tools and measures for risky decision-

making. Historically, assessments of risky decision making were made using self-reports as 

measuring instruments. 

As the field has evolved, data from previously published research has shown that not all 

individuals possess the ability to assess and accurately report on their behavior. Our assumption is 

that, under uncertain situations, even the most sophisticated response formats, including multiple-

choice, multiple-selection, short and extended constructed-response and performance task, etc. are 
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inadequate to account for the complex cognitive processes involved in the decision. Diagnostic 

instruments constructed in laboratories offered better self-report tools at the cost of smaller test 

subject pools. Since then, the use of experimental manipulation has become prevalent. For 

example, psychologists would often present participants with hypothetical decision games [18]. 

Economists began to present participants with lists of hypothetical scenarios [50]. These 

experimental manipulations naturally found their way to computerized interfaces, which enabled 

ease of use in manipulation, data collection, and scale. More recent developments show test takers 

prefer internet based assessments over paper based (Chapter 7) [86]. Virtualized versions of in 

laboratory measuring techniques using computer technologies offer cost effective and enhanced 

replicas of the same. 

Reservations against incorporating computer and information technologies in 

psychometric measurements were much debated during the 1980’s and 1990’s; including over 

what is possible and the accuracy of results, compared to paper based methods. The situation has 

changed today, as computers are now available in much wider forms such as smart phones, tablets, 

surface and touch devices when compared to previous decades [86]. With the widespread 

acceptance of computer usage, International Test Commission, Inc. (ITC) [87] has developed 

guidelines for computer-based and internet-based testing in psychometric assessments. 

As a result, the number of techniques and packages exploded. E-Prime [85], Inquisit 4 [26], 

MouseLabWeb [102], PEBL [69], PsychMate [30], PsychoPy [76], The Paradigm experiment 

builder [48], Presentation [70], SuperLab [40], SurveyWiz and FactorWiz [11], Visual DMDX 

[33],Webexp2 [52], WEXTOR [81] all provide tasks that can be used for RDM analysis 

experiments. There are also several laboratories such as the Laboratory for Cognitive and Decision 
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Sciences [78], Laboratory of Biological Dynamics and Theoretical Medicine [75], and The Brain 

and Mind Research Institute, which have historically focused on developing such tools. 

Experimenters often pair the tools with specialized add-ons. For instance, The Black Box Toolkit 

[77] is designed to give precise timing control and tracking for psychology researchers to remove 

timing errors. 

This proliferation of disparate packages for RDM research has created a burden for 

researchers in the design and operationalization phases. Further, almost none of these tools have 

been designed to scale to a global community and plug into a variety of experimental methods, 

incorporate modern analytical tools geared for machine learning. None have been accepted as 

standards. 

In this chapter, we introduce Risky Decision Making Toolkit (RDMTk), a new toolkit used 

for researching decision-making processes and related activities made under risky situations. 

RDMTk provides researchers with a scalable, reliable, open-source experimentation and analysis 

framework. There has been significant work dedicated to producing tools to support RDM 

research, but there are several areas still to be addressed. Many of the single instruments currently 

used in a laboratory environment fail to capture RDM’s multidimensional nature on their own and 

researchers are required to use a multitude of packages or design their own kits. By providing it 

all in one place, at scale, the toolkit hopes to improve the quality of Risky Decision Making 

research. Also, RDMTk tries to incorporate suggestions from ITC and can be used on multiple 

computing devices types such as smart phones, tablets, surfaces devices, etc. 
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2. RDMTk- An Overview

Technological innovations are changing the dynamics of conducting empirical experiments 

for behavior analysis. We created this toolkit in response to the open challenges faced by RDM 

researchers, such as the burden created during the design and operationalization phases because of 

the proliferation of disparate packages. The RDMTk toolkit is designed around a one-stop-shop 

design philosophy. It offers ways, to not just build and present experimental tasks but also to store 

and analyze data, using statistical, mathematical and analytical (machine learning) packages. 

RDMTk is available under the “Software as a Service” (SaaS) model and is provided under a 

General Public License (GPL); hence, RDMTk is an open source project. It is a free environment 

that can be used to conduct experiments on a global basis. RDMTk allows resources to scale, and 

can be used in a variety of environments in order to obtain different types of measurements. The 

initial release of the toolkit incorporates the six most popular experimental paradigms. However, 

it is the authors’ intention to develop and incorporate much more over time through community 

collaboration. Our aspiration is for RDMTk to become the preferred toolkit for studying risky 

decision making, which will encourage global research studies, as well as simplified data 

collection and sharing. 

Like many open source projects before, our toolkit is a proposal that needs to be nurtured 

through community collaboration, and contribution. By incorporating best practices, appropriate 

tools, and relevant resources, it is our intention to develop RDMTk as a state of the art expert 

system geared towards studying and analyzing risky decision making in the future. 
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Recent advances in Computer Science bring a number of innovations that haven't found 

their way into existing RDM tools. Development in cloud computing bring new options for 

resource and infrastructure sharing. The open source framework of RDMTk provides extended 

Figure 3. Overall design and architecture for RDMTk.  
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analytical capabilities to help researchers create, manage, conduct, monitor, collaborate, and 

analyze their experiments on a global basis. RDMTk studies can be integrated with such popular 

crowd-sourcing labor markets as Amazon's Mechanical Turk (mTurk), Google Forms, Qualtrics, 

and Survey Monkey. As shown in Figure 3, the analytical framework of RDMTk is built on 

MRAN, a Microsoft R statistical programming platform running on Amazon Web Services Elastic 

Computing Cloud (AWS EC2), a computer cluster on the cloud. 

By bundling robust data analysis tools with features for supporting empirical 

experimentation, we hope to open doors for collaboration between researchers from diverse 

backgrounds across political boundaries. This toolkit should significantly improve the quality of 

research for everyone in the RDM / DM areas. 

Consistent with recommendation from ITC, toolkits like RDMTk should support three 

types of accounts: Administrators, Researchers, and Participants. Our emphasis has been on the 

last two account types - researchers who are designing and conducting empirical experiments and 

those who are participating in the experiments. The interface for each account type takes the form 

of a customized dashboard with a toolbar at the top, menu items on the left, and a central display 

section on the right. Below is a description of available account types. 

a. Administrators 

The administrator is the person who takes responsibility for the overall operation of the 

RDMTk application. The administrator is the point of contact for troubleshooting problems and 

for resolving issues related to deployment and accessibility. 
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b. Researchers 

RDMTk distinguishes between two types of researchers: 

1) Researchers who are focusing on task design and development; these can be categorized 

as task or paradigm developers. 

2) Researchers who are conducting empirical studies, running tests, interpreting data, and 

communicating results to the wider community. 

c. Participants 

People using RDMTk for taking part in an experiment are categorized as participants. 

There are multiple ways for participants to access experiments. Participants can access the 

experiment at their convenience via mTurk, Qualtrics or through another online labor and data 

collection framework. 

The use of a standardized interface to access the software makes using the toolkit simple 

and intuitive. 

3. Technical Details  

When implementing RDMTk, we relied on the most current technologies and practices. 

This is expected to facilitate contributions from other developers in future development cycles and 

also to encourage contributions from people who have a non-technical background. As illustrated 

in Figure 4, the design of the toolkit uses a four-layered architecture: (1) RMDTk tasks layer, (2) 

RDMTk software layer, (3) system software layer, and (4) the hardware layer. RDMTk is currently 

provided as a SaaS (Software as a Service) product, hosted by the WiSe (Wireless Sensornets) Lab 

within Western Michigan University's Computer Science Department. 
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Each task within the toolkit is implemented as an independent application that integrates 

itself as an add-on to the remaining layers. Tasks in RDMTk can be developed using the latest web 

development technologies, such as HTML5, web 3D rendering libraries, and PHP, with MySQL 

providing the underlying database support. Tasks use web animation technologies such as 

GreenSock’s TweenLite and TweenMax in combination with Three.js. This provides a 

lightweight, extremely fast and flexible animation framework for realizing new tasks in the RDM 

domain. 

A. The RDMTk Software Layer 

RDMTk was developed using PHP 5.3, JavaScript, Laravel 4.1/5, and MySQL. The toolkit 

is structured around a dashboard-based UI design that provides support for the three different types 

of accounts (Administrators, Researchers, and Participants) described in Section 2. 

 

 

Figure 4. RDMTk’s four-layered architecture. 
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B. The System Software Layer 

To the extent possible, open source technologies were used to implement RDMTk. 

Currently, RDMTk is hosted on a LAMP server running the Linux-based Ubuntu 14.04 operating 

system, Apache web server, and MySQL database. The R statistical software is used as the main 

workhorse for analysis. R is exposed to the web using the OpenCPU library. 

C. The Hardware Layer 

The underlying server architecture is divided into three layers - a front end server, a storage 

server, and Amazon EC2 instances for analysis on the backend. Instances in Amazon EC2 are 

configured to use HPC technologies such as OpenMP, MPI, and GPGPU-CUDA depending on 

the analysis model. We expect this configuration will change over time as computing needs evolve. 

RDMTk is provided under GPL and is an open source project. We hope the community 

will find the idea and principals behind developing this toolkit appealing and that they will 

contribute towards its success. We refer the reader to the related technical documentation on the 

toolkit website for more details. 

D. Security and Authentication 

RDMTk implements strict application-level security through two access measures:   

1) A unique ID is used by unregistered users to access the tasks landing site. In the 

case of mTurk, it is the mTurk Identification (MID).  

2) A unique username and password is needed for full access to RDMTk, with login 

controlled using the SSL (secure socket layer) protocol.  
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Administrator accounts are created manually on an as-needed basis. Other accounts can be 

created from the RDMTk login screen; the individual creating the account will be required to select 

either "researcher" or "participant" access. 

RDMTk stores all sensitive information, including account passwords, using a Bcrypt hash. 

User access to dashboard operations is restricted on the basis of the user's specific account type. 

User logins are monitored for inactivity, and are automatically logged out after 3 minutes of 

inactivity. Finally, access to the high-performance computing resources on AWS EC2 is tracked 

on the basis of pre-configured instance credentials associated with the specific analysis being 

performed. 

4. Integrating New Tasks and Games into the RDMTk Framework 

 

The current configuration of RDMTk includes the six most commonly used RDM tasks. 

However, it is our intention is to allow collaborating researchers to readily integrate new tasks into 

Figure 5. Step involved in integrating a new task into RDMTk. 
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the existing toolkit deployment. To support this, we have developed an easy to use interface for 

adding new tasks to the toolkit.  

The addition of a new task, which is only available to researchers, is initiated via the ‘Add 

a New Task’ menu option; Figure 5 shows the four steps required to add a new task; the individual 

steps are shown below. 

Step 1: Provide basic task information– 

The researcher must first enter the task name and the task id. Since the task name and task 

id must be unique, RDMTk will prompt the user to provide different values if either value is 

already in use (Figure 6). 

Figure 6. RDMTk step 1 - form to add a new task to the toolkit. 
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Steps 2 & 3: Upload the task code files – 

The researcher next uploads the zip file that includes all the task files to be uploaded. A 

sample zip file can be downloaded as an example for specific details needed (Figure 7). This 

uploaded file should reflect the modified computer code primarily written in php and JavaScript 

programming language. 

 

Figure 7. RDMTk step 2 - form to add a new task to the toolkit. 
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Step 4: Upload the configuration file – 

Finally, the researcher needs to provide a description of the database table (or tables) 

needed to support the task. This description is provided as an xml file named config.xml. Note that 

any table names are restricted to contain only letters, digits, and the underscore character. For 

further information, you can examine the sample file that is available on the upload web page.  

 

 

 

 

 

 

Figure 8. RDMTk step 3 - form to add new task to the toolkit. 
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The xml file is expected to have the following tree-like structure: 

<tables> 

<table name="table_name"> 

<field_name type="data_type">Field Name 1 </field_name> 

<field_name type="data_type"> Field Name 2 </field_name> 

... 

... 

</table> 

<table name="table_name"> 

... 

... 

</table> 

... 

... 

</tables> 

The supported data types are restricted to 'integer,' 'float,''string, and ''DateTime.' Also, the 

script automatically creates a primary key field named 'S_no' for each new table. This primary key 

field assigns a unique sequence number to each new record that is added to the table. 

As presently configured, RDMTk includes six commonly used risky decision making tasks 

- four "risky decision-making tasks" and two "lower-level cognitive tasks." A major feature of 

RDMTk, though, is the ability to readily add new tasks to this set. The tasks are implemented in a 
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manner that allows a researcher to readily configure the task for specific applications. Assessment 

processes and delivery are designed to be consistent across all experiments and participants. The 

specific tasks already included in RDMTk are listed discussed next. 

5. Risky Decision-Making Tasks

A. Iowa Gambling Task 

The Iowa Gambling Task (IGT) is one the more popular tasks used to study RDM [7]. 

Participants are given four decks of cards in the game. Each deck has a monetary reward as a 

payout and offers varying amounts as payouts during trials. A payout can be advantageous, 

disadvantageous or both. Participants initially begin with $4000 and try to make as much money 

as possible. Note that the original design of this task [6] used an initial stake of $2000. Our current 

implementation supports only one payout scale as given in Table 3; future releases will 

accommodate multiple scales. 

Table 3 Iowa Gambling Tasks payout scale included in RDMTk toolkit. 

Deck Gain amounts Loss frequency Loss amounts Expected value 

A $80 to $170 50% -$150 to -$350 -$72 

B $80 to $170 10% -$1250 to -$2500 -$72 

C $40 to $95 50% -$25 to -$75 +$32 

D $40 to $95 10% -$250 to -$375 +$32 

B. Balloon Analog Risk Task 

The Balloon Analog Risk Task (BART) is a digital game that was initially developed for 

use in the laboratory. The participant is presented with a balloon that can earn a larger payout with 

each user click. The participant can cash-out at any time. With each click, the balloon becomes 

more inflated. At some point, a threshold is reached, the balloon pops, and the participant gets no 
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payout. The task measures actual risky behavior similar to real-world situations involving 

impulsivity. Riskiness is rewarded up to a point at which further risk results in poorer outcomes 

[59]. RDMTk’s BART implementation uses Three.js in combination with TwelineLite and 

TimelineMax to create a 3-dimensional balloon that spins around its vertical central axis like a real 

balloon. During each trial, a new balloon of a different color is presented to the participant. 

C. Cups Task 

The Cups Task was developed to assess decisions about potential gains and potential losses 

as well as relationship of these decisions to different neural structures [100, 108]. In their study, 

the authors used cups to analyze adaptive decision making under risk. They examined whether an 

individual’s ability to make adaptive decisions differentially for gains and losses is affected by 

either damage to neural structures, or by changes in the subject's emotional state. The Cups Task 

is a simulation that forces participants to make risky decisions by forcing them to choose from 

gain and loss domain cups. These cups can either contain a reward or deduct an amount based on 

the domain from which they are derived. The participant’s goal is to increase the reward amount 

as much as possible. The payout scale for the implementation in RDMTk is as given in Table 4. 

Table 4 CUPS tasks payout scale included in RDMTk toolkit. 

Gain Domain Loss Domain 

Number of Cups Points Number of Cups Points 

2 2 2 -2 

3 3 3 -3 

5 5 5 -5 

2 3 2 -3 

2 5 2 -5 

3 5 3 -5 

3 2 3 -2 

5 2 5 -2 

5 3 5 -3 
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D. Delay Discounting Task 

In this task, the participant is presented with a series of choices related to the receipt of 

differing amounts of money. For example, the participant might be asked to choose between 

"Receive $1.00 now" or "Receive $10.00 in a year's time". In this task, there is a predefined set of 

sample questions that can be used by the researcher or the researcher can create a unique set of 

questions which cannot be seen by other researchers. These questions can only be modified by the 

researcher who created them. 

Lower-Level Cognitive Tasks 

E. Stroop Task 

The Stroop task was designed by Stroop [92] for studying the effect of interference on 

performance. During the test, participants are presented with words written in different ink. In each 

trial, the participant is required to recognize the color of the ink rather than the word. For example, 

a word written in blue ink may be more difficult to recognize than a word written in red ink. The 

time required to recognize the ink color when given an advantageous trial (the word and ink in the 

same color), a disadvantageous trial (the word and ink in different colors), and a neutral trial (the 

word and ink have no correlation) is recorded. 

F. N-Back Task 

In this task, participants are presented with a series of stimuli in the form of alphabetic 

letters. The participant’s task is to detect whether the current letter stimulus matches with the letter 

shown N times earlier. The challenge can be made more or less difficult by adjusting the value N, 

the number of letters the participant should remember. The N-back task was developed by Kirchner 

as part of his research into short-term memory [53]. 
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Researchers can create experiments based off any of these six preinstalled tasks or other 

tasks that were integrated into RDMTk by other contributors. 

6. Experiments

The 'Experiment' phrase is a generic term used inside RDMTk that involves a number of 

different phases of the experimental design procedure. Traditionally, a research group decides on 

a research question or hypothesis before a target audience or any other specifics are identified. 

RDMTk has features allowing the researcher to navigate through this experimental design process. 

Upon selecting the Experiments menu item, all of the experiments that have been created 

are listed in the main display area (see Figure 9). This screen allows new experiments to be set up 

as shown in Figure 10. Researchers are given more control over the experiments during the creation 

phase. Researchers can select different types of tasks, the number of trials, the trial response type, 

and the experiment end type. These experiments can be integrated into modern survey tools such 

as mTurk and Qualtrics by accessing the unique URL created for each experiment and is accessible 

through the view button next to each experiment in the list of experiments (Figure 9). 

Figure 9. RDMTk experiments page. 
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Some of the procedures from experimental design such as deciding on the data required for 

the experiment can be performed at this stage. The toolkit allows users to choose one among the 

tasks described below. We have also implemented an optional feature that records the participant's 

mouse tracking. 

7. Collecting Data 

Participants’ performance on the task is monitored to gather relevant information and this 

data is stored for later analysis. Researchers can derive a more meaningful conclusion if they have 

detailed insight into a participant’s behavior during the experiment. RDMTk enables 

geographically-separate research teams to collaborate through sharing their experiments and data 

as participants are not restricted to a single location. Participants’ performance data are kept 

Figure 10. RDMTk create experiment screen. 
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confidential and is only made available to the administrators and researchers who own the 

experiment. Data can currently be downloaded as an Excel file. Currently, toolkit does not support 

researcher specific access control on the experimental data. However, future versions will 

incorporate such features. 

A participant’s decisions are captured during a task and stored in a MySQL database for 

future analysis. RDMTk can collect additional data during an experiment in addition to the task-

specific data. For example, collecting response times, mouse movement, or eye tracking provide a 

much more detailed perspective on a participant’s behavior during an experiment. The toolkit 

currently tracks the time taken by participants during each trial. Tracking mouse movements for 

each participant is an optional feature that can be enabled at any point. Additional sensory features 

are planned to be integrated in the future. 

Generally, data have variable characteristics. For instance, the data collected from 

participants have different variability and visualization features. These variations exist because 

each researcher may have his own unique approach to the same problem. Using RDMTk, many 

researchers may use similar tools/tasks to conduct experiments with minor or no modifications. 

8. Experiment-monitor

The experiment-monitoring feature in RDMTk gives real-time status and a progress tracker 

for a selected experimental design. This tool helps a researcher to assess the number of participants 

that took part in the experiment and gives cues on when to stop recording data. The experiment 

monitor is built based on power analysis or power test. Unlike traditional methods, this feature 

allows statistical significance of the data collected dynamically or on the fly compared to a 

statically predetermined sample size. The experiment monitor feature needs to be configured by 
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creating an experimental design type for a task type. Previously set experimental designs are listed 

in the right-most drop-down list illustrated in Figure 11. Selecting one of the experimental designs 

will start the monitoring feature as shown in the figure. 

 

9. Data Analysis 

RDMTk provides data analysis and visualization capabilities primarily through R statistical 

software, which is exposed to the web using the Open CPU library [72]. Analytical features are 

run on Amazon AWS EC2 in the back end. RDMTk needs to be bootstrapped with AWS EC2 

before a researcher can use the analytical features on the cloud. Because high computational power 

is a necessity, an analysis back end integrated with Amazon’s AWS EC2 allows usage of the latest 

HPC technologies and opens large-scale big data computer capabilities to RDMTk. A researcher 

is no longer restricted to the limitations of his or her workstation and can now leverage Amazon’s 

cloud computing capabilities. The current RDMTk version implements Base Model, Random 

Model and EVL model [12] for the IGT paradigm. 

Figure 11. RDMTk form to monitor real-time experimental status and progress tracker. 
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10. Bootstrapping RDMTk and Amazon Elastic Compute Cloud

Researchers are able to use the analysis features after creating an AWS account and will 

need to bootstrap their RDMTk account with an instance of an AWS EC2 machine. RDMTk 

decouples the analysis model selection, submission, and execution internally into three different 

stages as shown in Figure 13. Submitted jobs and results are available on the toolkit dashboard. 

Once models are selected for execution, appropriate configuration entries are created in the 

database. Upon successfully configuring the database, a pre-configured EC2 instance is launched 

Figure 12. RDMTk’s data analysis module on amazon AWS EC2 infrastructure. 

Figure 13. RDMTk and amazon EC2 Bootstrapping. 
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to execute these models. Results from successfully executed models are stored back in the database 

and made available to the researcher. 

One typically conducts these studies involving a sample of participants. Analyzing 

experimental data for appropriate inferences is an extensive process that usually requires the use 

of enhanced tools from a statistical or mathematical software package. Different models are used 

to analyze the data collected from these studies. Modeling RDM can be approached from various 

perspectives. 

Our approach is to enhance these techniques and automate them in comparison to what 

currently exists - whether a researcher is interested in the identification of individual differences 

in participant performance [71, 57] or looking for traditional generic group behavior. As more 

advanced techniques are still currently being developed, we have provided some commonly used 

models in the current release of the toolkit. We have implemented tools to give summary statistics 

(see Figure 14) for selected experiments. 

Figure 14. Summary statistics for an RDM experiment. 
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11. Contributing to RDMTk Development

The source code of RDMTk is provided under GPL license. It is available on Github. 

Code: https://github.com/guptagithub/RDMTk 

Live: https://rdmtk.wise.cs.wmich.edu/ 

12. Summary

Research into Risky Decision Making (RDM) has become a multidisciplinary effort. 

Conversations cut across fields such as psychology, economics, insurance, and marketing. How 

and why an individual makes decisions concerning risk is an important concern. This broad interest 

highlights the necessity for collaborative investigation of RDM to understand and manipulate the 

situations within which it manifests. Technological innovations modify and transform traditional 

methods to fit the needs of this new paradigm and open new possibilities. A holistic understanding 

of RDM has been impeded by the independent development of diverse RDM research 

methodologies across different fields. Many behavioral assessment tools have been used, including 

behavior observation, self-reports, assessments, interviews, and tests. However, there is no 

software specific to RDM that combines paradigms and analytical tools based on recent 

developments in high-performance computing technologies. This paper presents a toolkit called 

RDMTk, developed specifically for the study of risky decision making. RDMTk provides a free 

environment that can be used to manage globally-based experiments while fostering collaborative 

research. The toolkit's one-stop-shop philosophy provides access to tests and analytical features 

used in the context of RDM. The integration of RDMTk with external tools such as Amazon AWS, 

mTurk, and R further facilitates this. The incorporation of machine learning and high-performance 

computing (HPC) technologies in the toolkit further open additional possibilities such as scalable 
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algorithms for analyzing non-experimental data sets and big data problems arising from global 

scale experiments. By fostering collaboration through community support, we hope RDMTk 

becomes the preferred toolkit for studying RDM.  
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CHAPTER IV 

REINFORCED LEARNING MODEL USED IN ANALYZING RISKY DECISION MAKING 

1. Introduction

Researchers design and use game/task(s) that allow one to capture data for specific aspects 

of decision making. Balloon analog risk task (BART), Cups task (CUPS), and Iowa gambling task 

(IGT) are some commonly used tasks in studying decision making behaviors [3, 19, 31]. RDM 

research involves analyzing huge amount of data collected from experiments based on individuals 

taking these or similar tests and recording various parameters. 

Analyzing RDM data collected from experiments involves various steps. Through analysis 

one might want to (i) discover associations between participant’s performance/behavior to task’s 

core phenomena, (ii) identify individuals and groups for similarity, (iii) identify individual 

differences, etc. The discussion revolves around developing better statistical and/or machine-

learning techniques that could be used to identify similar groups as well as individual differences 

in data collected through empirical studies [4, 25]. 

Combinatorial and multi-objective data analyses are gaining traction among many data 

scientists. This is particularly true in life sciences and related research areas, such as analyzing 

risky decision making (RDM) behaviors, where initial sample sizes are small when compared to 

contemporary counterparts involving big data scenarios. While efforts are also under way to 

increase logistical capabilities for collecting and analyzing data from a large pool of participants 
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both at experimental and industrial scales, underlying algorithms will be same or similar in nature. 

Figure 15. Conceptual overview of ensemble clustering solution [23]. 

The ensemble clustering algorithm, which is also known as meta-clustering or ensemble 

approaches, was originally proposed by Strehl and Ghosh [91]. Using an ensemble of clustering 

methods in combination instead of individual classifiers yields a superior technique. It improves 

the robustness, quality of the classification, and experimental results [79, 112]. 

A promising reinforcement learning model is applied to RDM by Newman in his PhD 

dissertation in [23] and was shown to provide better insights compared to other RDM studies (see 

Figure 15). Taking a new approach to studying RDM, he applied a number of clustering algorithms 

on resample data forming an ensemble. Results from the individual algorithms are gathered and 

summarized through a consensus function that is customized for IGT. We will explain the 

algorithm in greater detail in the reminder of the chapter. Among the computational intelligence 

community this approach is commonly known as ensemble clustering. Newman’s work provides 

greater insights into RDM and is different from traditionally used models. Even though his 
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approach marks an important milestone for applying machine learning algorithms to RDM, it is a 

computationally intensive process. 

Ideally one expects a clustering algorithm to accurately partition a given dataset into 

appropriate subsets with minimal error irrespective of the permutations. Most clustering 

algorithms operate on the premise of a multi objective optimization problem. It is a well-known 

fact that most optimization problems can be solved in polynomial time, however in worst case 

scenarios, converging to the most optimal solution takes time and has no known polynomial 

solution. Essentially speaking, clustering for optimality can be treated as NP-Hard, as it’s related 

or can be transformed into one of the known NP-Complete problems like 3-coloring, minimum 

edge coloring, minimum cut or knapsack [16, 20]. Hence clustering techniques on large data sets 

tend to be computationally expensive and resource intensive. 

2. Ensemble Clustering as Reinforcement Learning Algorithm

A central focus of the algorithm considered is to account for individual differences among 

participants through reinforced learning. Application of ensemble clustering as a reinforcement 

learning algorithm has proven to be good fit for the IGT task [23]. It analyzes the dataset from 

multiple dimensions, which is achieved by creating and analyzing numerous partitions of the 

original data collected through empirical experiments. 

The complete ensemble algorithm can be broadly classified into three separate parts. The 

first step is to preprocess data and generate data bootstraps. The second step is to create the 

clustering ensemble and the latter phase is used to extract relevant information giving insight into 

participant’s performance on the task. The process of creating bootstrap boot samples is given in 
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Algorithm 2. Bootstrap resamples are created after removing outliers. Constructing co-association 

graph COA on Π can be summarized as shown in Algorithm 3. 

A. Removing outliers from Data 

Removing outliers is important because of the bootstrapping step in the algorithm. It 

involves computing inter-object distances for (X, X) using either Euclidean or Mahalanobis 

distance measure. 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒〈𝑋𝑖, 𝑋𝑗〉 = √∑ (𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2𝐹

𝑘

2

 ....................................................... (1) 

𝑚𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒〈𝑋〉 = √∑ (𝑋𝑖𝑘 − 𝜇𝑘) 𝑆−1(𝑋𝑖𝑘 − 𝜇𝑘)
𝐹
𝑘

2
 .................................. (2) 

Any data object whose computed z-score (based on either Euclidean or Mahalanobis 

distance) is greater than or equal to cut off is removed from further analysis. Z-score can be 

computed as 

𝑧𝑠𝑐𝑜𝑟𝑒 =
𝑋−𝜇

𝜎
 ................................................................................................................. (3) 

B. IID Bootstrap Resampling 

For 1:nBootstraps 

a. Simulate N i.i.d in uniform distribution for generating integers 𝑢𝑖 |1 ≤𝑖 ≤ 𝑁 (with 
replacement) 

b. Construct a bootstrap resample 

i. 𝑋𝑏
∗ = {𝑋𝑢1

, 𝑋𝑢2
, … , 𝑋𝑢𝑁

} 
c. Compute the mean for 𝑋𝑏

∗ (optional) 
d. Estimate the standard error for 𝑋𝑏

∗ (optional) 

End 

Algorithm 1. Method to resample data using i.i.d jackknife method. 
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Given input data is resampled using bootstrapping. Bootstrap resampling is currently done 

as given in Algorithm 1. We assume an underlying statistical distribution that explains the 

statistical properties of the observations do not change. As the algorithm shows data resampling is 

done using I.I.D Jackknife approach. This processing done during the preprocessing step of 

Algorithm 2.  Jackknife method was originally discussed by Efron [28] and subsequently been 

researched extensively. The algorithm assumes that data are independent and identically 

distributed (IID). 

A. Create Clustering Ensemble 

In the first phase of reinforcement learning algorithm for RDM we partition original 

experimental data into multiple partitions through variation in dimensions across a number of data 

re-samples (bootstraps, see Algorithm 1). Ensemble creation step also involves running different 

clustering algorithm on the bootstrap dataset to get cluster label assignments. clustering algorithms 

1. Preprocess data
2. Determine statistical variation
3. Remove outliers
4. Create Bootstrap resampling
5. Reorganize models
6. Create Ensemble:
7. For(nModels:µ)

a. calcDistance()
b. runModel()

8. end
9. Extract Solution
10. Construct co-association graph COA
11. For(nPartitions:KP)
12. Partition COA using spectral clustering
13. Convert spectral indices to data object centers
14. Count object assignments to labels
15. Compute SSE
16. end

Algorithm 2. Ensemble clustering algorithm using co-association consensus function.
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that are reinitialized multiples times to avoid local optima, the number of clusters and various 

distance measures. By doing this one can enhance the statistical significance of the original data 

and also increase the probability of discovering weak correlations. These label assignments, in 

turn, become input to ensemble solution extraction step (step 9, in Algorithm 2). The process of 

extracting solution i.e. the number of individual groups supported by data is given in Algorithm 3. 

At a broad level, ensemble creation step encompasses sub process that is responsible for generating 

model variations. Another major parameter is different inter-object distances from which we drive 

models. After constructing object similarities (X, X) matrix, different base clustering algorithms 

are applied with variation in configurations. 

Clustering result from each individual run is stored temporarily along with its dimensions 

(meta-data). Accumulated results from all the clustering runs across dimensions are passed to the 

third phase (see Algorithm 3). 

B. Extract Result from Ensemble 

Final solution is extracted by analyzing a matrix produced by a consensus function; and is 

called consensus matrix. It is derived from the results computed during first phase. Consensus 

function’s algorithmic logic is based on the counting principle. For the sake of brevity, we do not 

1. Find co-association counts for all partitions.

2. Construct co-association graph:

3. For 1: Kp Partitions

a. Construct co-associations for partition kp

b. Accumulate counts across partition kp 

4. End

5. Find edge weights for the graph

Algorithm 3. Constructing co-association graph on cluster labels for ensemble models.
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expand on various ideas for deriving consensus matrix except that in simplest of terms, it 

essentially operates by counting the number of times a participant was assigned to the same cluster 

across all the partitions in the ensemble. 

The sequential time complexity of ensemble algorithm can be seen as follows. Running 

each model in M and collecting results will depend on the base clustering algorithm’s time 

complexity (see Table 5). Algorithm 3 takes O(N2)-time. Converting spectral indices to centers 

can be done in O(KpNF) time. Finding the sum of square involves creating scatter matrix on the 

input data objects and has a sequential time complexity of O(N3).  

It can thus be easily seen that for a reasonable size of input data, these could lead to long 

computation times, and can be measured in terms of days. 

C. Ensembles configuration 

Ensemble configuration has arguments that determine a total number of partitions involved 

in the algorithm. Ensemble clustering complexity is directly proportional to these partitions. As 

mentioned in Table 6, one will need to specify a list of values for K with parameter values as kList, 

base clustering procedures in the format of gmm, kmeansxxx, medoidxxx, spectralxxx and 

Table 5  Base clustering algorithms in the ensemble and their time complexities. 

Clustering Algorithm Time Complexity (one distance measure) 

K-means O(NKF) 

K-medians O(NKF) 

Agglomerative O(N2log N) 

GMM O(NKF) 

Spectral O(N3) 
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aggxxxyyy where xxx denotes distance metric and yyy denotes linkage metric. Arguments 

nBootstraps and nReps control a number of bootstrap samples and replications respectively. 

Table 6 PST structure to configure ensemble clustering. 

Parameter Name Values 

outlier cutoff Can be varied and typically specified by researcher. 

outlier metric mahal or euc 

ensemble.kList Eg. [1:15,20:5:60] 

ensemble.modelList Eg.'kmeanseuc','kmeanscit','kmeanscor','kmeanscos', 

‘spectraleuc','spectralcit','spectralcor','spectralcos', 

‘aggeucwar','aggeucavg','aggeuccom',.'aggcitavg','aggcitcom',.'ag

gcoravg','aggcorcom',.'aggcosavg','aggcoscom' 

ensemble.nBootstraps Can be varied and typically specified by researcher. 

ensemble.nReps Can be varied and typically specified by researcher. 

extract.kList extract solutions at these k 

extract.consensusMethod 'coassoc' or 'vote' 

extract.extractionMethods spectral or agglom 

D. Solution extraction configurations 

Configuration parameters for extracting solution from partitions include a list of Kp (kList) 

for many partitioning of the COA graph. Consensus extraction method (consensusMethod) – 

current implementation only supports co-association matrix. However, other methods can be 

incorporated as easily. Extraction method (extractionMethods) can be either spectral or 

agglomerative. 
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3. Model Formulation

Mathematically ensemble clustering can be summarized based on different models (M). 

Models can be derived from variations on parameters shown in Table 6. 

Each data object has F features associated with it. Models derived from the above 

parameters can be denoted as 𝑀 = {𝑚1, 𝑚2, … ,𝑚𝜇}. Output from running these models gives the 

different labeling (Π) for data objects in X. Clustering labels in 𝛱 = {𝜋1, 𝜋2, … , 𝜋𝜇} are extracted 

from running individual models in 𝑀 = {𝑚1, 𝑚2, … ,𝑚𝜇}. Inner mathematical workings of each 

model are specific to clustering algorithms and detailed discussion of such clustering algorithms 

is out of the scope for this dissertation. A reader is referred to one of the many survey articles 

already published on various clustering algorithms such as [9, 31, 107]. 

After running models in M, the solution is extracted from Π, a μ * N matrix whose (i. j)th 

cell value is the clustering label assigned by model i to object j, for 1 ≤ i ≤ μ and 1 ≤ j ≤ N. A co-

association hypergraph representation COA (V, E) is constructed from objects labeling (Π) that 

co-occurred in the clusters. Where, 

V- Vertices are objects and its associated model in M. 

Table 7  Ensemble clustering model variation parameters. 

Data objects X {𝑥1, 𝑥2, … , 𝑥𝑁}

Data bootstrap B {𝑏1, 𝑏2, … , 𝑏𝛽} 

Base cluster Algorithms C {𝑐1, 𝑐2, … , 𝑐𝛾} 

Inter-object distance D {𝑑1, 𝑑2, … , 𝑑𝛿}

Number of clusters 1 ≤ 𝑘 ≤ 𝐾 

Given number of partitions for COA hyper-graph. 1 ≤ 𝑝 ≤ 𝐾𝑝 
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E – Edges connect these vertices with weights equal to a percentage of co-occurrence. 

More formally, graph COA can be constructed by applying the following operations: Let 

the co-occurrence of objects i and j by model k be defined as 

COO𝑘(𝑖, 𝑗) = {
1 objects i & j get same label by model k
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ......................................... (4) 

for 1 ≤ k ≤ μ, and 1 ≤ i ≤ N, 1 ≤ j ≤ N. Then 

𝐶𝑂𝐴(𝑖, 𝑗) =
∑ COO𝑘(𝑖,𝑗)𝑘

|Π(∗,𝑗)|
 .................................................................................................. (5) 

where |Π(∗, 𝑗)| indicates the number of entries in column j of Π, i.e., number of times 

object j is present in the µ models. This is like finding Jaccard index and can be expressed as. 

𝐶𝑂𝐴(𝑖, 𝑗) =
#of models giving same label to objects i & j

total #models labeling objects i & j
 ........................................................ (6) 

A. COA - co-association and co-occurrence (COO) computation example 

To illustrate construction of COA graph let’s consider the example with µ = 5 and N = 5. 

For the purpose of giving an brief explanation of steps in the algorithm we are starting with 

a randomly generated Π matrix. 

Π =  

[
 
 
 
 
1 1 2 3 3
1 1 1 1 1
1 2 1 2 1
1 2 3 4 1
1 2 3 4 5]

 
 
 
 

Following equation (4) we construct COOk for each row of Π as shown below. 
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𝐶𝑂𝑂1 = 

[
 
 
 
 
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0]

 
 
 
 

𝐶𝑂𝑂2 = 

[
 
 
 
 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0]

 
 
 
 

𝐶𝑂𝑂3 = 

[
 
 
 
 
0 0 1 0 1
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
1 0 1 0 0]

 
 
 
 

𝐶𝑂𝑂4 = 

[
 
 
 
 
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0]

 
 
 
 

𝐶𝑂𝑂5 = 

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

Final process in calculating COA matrix is further divided into two steps. In the first step we 

perform summation over all the COO matrices. And in the next step and final step do a dot division 

on the resulting matrix with number rows in Π. 

𝐶𝑂𝑂1 + 𝐶𝑂𝑂2 + 𝐶𝑂𝑂3 + 𝐶𝑂𝑂4 + 𝐶𝑂𝑂5 = 

[
 
 
 
 
0 2 2 1 3
2 0 1 2 1
2 1 0 1 2
1 2 1 1 1
3 1 2 2 0]
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COA =  

[
 
 
 
 
 
 
 
 
 
 
0

5

2

5

2

5

1

5

3

5
2

5

0

5

1

5

2

5

1

5
2

5

1

5

0

5

1

5

2

5
1

5

2

5

1

5

1

5

1

5
3

5

1

5

2

5

2

5

0

5]
 
 
 
 
 
 
 
 
 
 

 𝑜𝑟 

[
 
 
 
 

0 0.4 0.4 0.2 0.6
0.4 0 0.2 0.4 0.2
0.4 0.2 0 0.2 0.4

0.2 0.4 0.2 0.2 0.2
0.6 0.2 0.4 0.4 0 ]

 
 
 
 

Another important metric that is of interest is the sum of squared error (SSE) with respect 

to each partitioning p of COA (1 ≤ 𝑝 ≤ 𝐾𝑝). SSE is used to validate the number of clusters 

supported by the data. pth partition is obtained by performing a spectral cut over COA. SSE can 

then be found by first centering data objects in the pth partition of graph COA. Let 𝑛′ be the total

number of objects in a sub-graph of COA induced by partition p and 𝑥𝑖𝑗 be the value of the jth 

feature of object i in this sub-graph. Then 𝑥𝑖𝑗 − 𝑥𝑗̅ is the normalization (or centering) of 𝑥𝑖𝑗 for 1 

≤ i ≤ n’ and 1 ≤ j ≤ F which gives us an n’ * F matrix XC, where  𝑥𝑗  is the average feature over the 

objects in the same partition of COA, and calculated as 

𝑥𝑗̅ = 
1

𝑛′
∑ 𝑥𝑖𝑗𝑖    ............................................................................................................... (7)

We find SSE for each partition by adding diagonal elements of the scatter matrix (SM) 

over XC. Which is 

𝑆𝑀 =  𝑋𝐶
𝑇 ∗  𝑋𝐶 ............................................................................................................ (8)

𝑆𝑆𝐸 =  ∑ 𝑆𝑀𝑓𝑓
𝐹
𝑓=1  ......................................................................................................... (9) 
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A more descriptive explanation can be found in [46]. Work published by Singh et al. in 

[88] is a good place to start on the mathematical proofs behind ensemble clustering algorithm. 

Even though this technique has numerous merits, it faces challenges while cross-validation and 

recent work by Brusco and Steinley highlight the same [15]. 

4. Summary

Ensemble clustering (which Newman has shown to be a better than previously proposed 

research methodologies and promising approach for RDM model analyses) applies a number of 

clustering techniques thereby consumes even more computational resources, which certainly limits 

even further the size of RDM datasets that can be analyzed using existing algorithms on 

conventional hardware. For example, in terms of program execution time it took more than 3457 

minutes (about 57 hours) for 1000 participants on an Intel Xeon processor, 8 GB RAM, 120 GB 

hard drive workstation running Ubuntu 12.04 – a typical workstation on a researcher’s desk. 

Therefore, in order to obtain a high performance technique for RDM, we first propose parallelizing 

this step. Currently proposed ensemble consists of Agglomerative, Kmeans, Kmedoids, GMM, 

and Spectral clustering algorithms at its core. Thus, we discuss parallelization of ensemble 

clustering technique for RDM on distributed and shared memory systems in the next chapters. 
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CHAPTER V 

DISTRIBUTED MEMORY PARALLELIZATION FOR THE REINFORCED LEARNING 

ALGORITHM TO FIND INDIVIDUAL DIFFERENCES 

1. Introduction

Researchers have employed different approaches to improving the computational 

performance of individual clustering algorithms. A number of parallel implementations of widely 

used clustering algorithms (such as kmeans, gmm, kmedoids etc.) can be found in [5, 7]. However 

very few have looked into the parallelization of ensemble clusters as a whole. Ensemble clustering 

algorithm composes of well-known and extensively researched machine learning techniques that 

are executed over multiple dimensions. 

Ensemble clustering computational cost can be easily derived from the constituent 

clustering algorithms and the cost of the consensus function. An ensemble of clustering algorithm 

results in a solution that uses different formats to represent clusters. Aggregating these to form a 

final result can be difficult and falls in the category of solving correspondence problem [28]. This 

is because ensemble clustering algorithm is a multi-objective algorithm working on different 

number of data dimensions and is classified as an NP-Hard problem for variable number of data 

partitions. However, in our case we are using a simpler version of a consensus function, whose 

cost primarily depends on the number of dimensions and partitions computed. Hence, for this 

reason we assume cost of computing a consensus function will be negligible in comparison to 

computing the ensemble. Also, distance calculation is another subtle aspect. Although computation 
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cost varies across different distance measures, execution times are within tolerable range of each 

other, for consideration towards further optimization. 

In general, we evaluated parallelization of ensemble clustering algorithm from 3 different 

perspectives. One could Parallelize individual clustering algorithms (approach 1); Concurrently 

execute ensemble clustering across the number of data partitions resulting from variations in 

parameters forming dimensions (approach 2); or Use a hybrid approach resulting from doing both 

(approach 3) i.e. individual clustering algorithms are parallelized and operate on different data 

partition concurrently. 

Table 8. Notations, used throughout the chapter. 

n number of data points 

d dimensions or features 

t  number of nearest neighbors 

m number of edges in the graph or Arnoldi length in using an eigen solver  

h number iterations required to converge or -#restarted Arnoldi in ARPACK [18] 

k Number of desired clusters 

p, q Number of MPI threads used for parallelization 

ΔS Number of models based on spectral clustering 

ΔK Number of models based on k-means plus k-medoids clustering 

ΔA Number of models based on agglomerative clustering 
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Table 9  Time complexity for different parallelization approaches. 

Sequential 

Ο(∆𝑠(𝑛
2𝑑 + 𝑛2 log 𝑡 + (𝑚3 + (𝑛𝑚 + 𝑛𝑡) ∗ (𝑚 − 𝑘)) ∗ ℎ + (𝑛𝑘2) ∗ #𝑘 𝑚𝑒𝑎𝑛𝑠))

+ Ο(∆𝑘(𝑛𝑘𝑑)) + Ο(∆𝐴(𝑛2 log 𝑛))

Parallelize across models 

Ο(
∆𝑠

𝑝
(𝑛2𝑑 + 𝑛2 log 𝑡 + (Ο(𝑚3) + (Ο(𝑛𝑚) + Ο(𝑛𝑡)) ∗ Ο(𝑚 − 𝑘)) ∗ ℎ − Ο(𝑛𝑘2)

∗ (#𝑘 𝑚𝑒𝑎𝑛𝑠))) + Ο(
∆𝑘

𝑝
(𝑛𝑘𝑑)) + Ο(

∆𝐴

𝑝
(𝑛2 log 𝑛))

Parallelize Individual Clustering Algorithm 

Ο(∆𝑠(𝑛
2𝑑 𝑞⁄ + 𝑛2 log 𝑡 𝑞⁄ + (𝑚3 + (𝑛𝑚 𝑞⁄ + 𝑛𝑡 𝑞⁄ ) ∗ (𝑚 − 𝑘)) ∗ ℎ + (𝑛𝑘2 𝑞⁄ ) ∗ #𝑘 𝑚𝑒𝑎𝑛𝑠))

+ Ο(∆𝑘(𝑛𝑘𝑑 𝑞⁄ )) + Ο(∆𝐴(𝑛 ∗ 𝑛 𝑞⁄ log 𝑛))

Hybrid Parallelization 

Ο(∆𝑠 𝑝⁄ (𝑛2𝑑 𝑞⁄ + 𝑛2 log 𝑡 𝑞⁄ + (𝑚3 + (𝑛𝑚 𝑞⁄ + 𝑛𝑡 𝑞⁄ ) ∗ (𝑚 − 𝑘)) ∗ ℎ + (𝑛𝑘2 𝑞⁄ )

∗ #𝑘 𝑚𝑒𝑎𝑛𝑠)) + Ο(∆𝑘 𝑝⁄ (𝑛𝑘𝑑 𝑞⁄ )) + Ο(∆𝐴 𝑝⁄ (𝑛 ∗ 𝑛 𝑞⁄ log 𝑛))

Analysis on the time complexity for each of these approaches can be found in Table 9. 

Each approach has its strengths and weaknesses depending on the data size and resulting overhead 

from communication. In our case, individual data partition in the ensemble is fairly small 

compared to the number of models, hence we chose to parallelize using second approach and 

listing in Algorithm 4 corresponds to it. But if the size of individual partition is large then analyzing 

it across various models might not be feasible on low compute capable machines. And opting for 

distributed memory architecture might be inevitable hence one will have to use approach 3 (i.e., 

the hybrid approach). 
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In our approach to diffuse the computation load across worker threads, each thread needs 

to know configuration parameters of the model being executed. This meta data is maintained in a 

FIFO queue; steps 1 through 9 in the Algorithm 4 shows populating this queue with correct 

parameter settings. Each thread fetches a model to execute after successful completion of previous 

model execution. Making this approach dynamic in nature. Note in Algorithm 4 different 

clustering algorithms are run variation on the number of clusters (K). Bootstrap data sample is 

used to run clustering algorithms. As there are number of these bootstrap data in the model’s 

configuration each clustering algorithm is run over same bootstrapped data resample with other 

variations. Chapter IV give details on these variations in the algorithm. 



65 

In the above ALGORITHM 2, sections highlighted in gray forms the code for worker threads. 

1. Load data

2. Compose cluster parameters

3. // Make preparations to run ensemble in accordance to (ii) i.e

4. // Create FIFO data structure to record Models

5. FIFO_Q_MODELS = EMPTY; //

6. for m = 1 :  nClustMthd

7. for k=1 : kList

8. for b = 1 : nBootstraps

a. for r = 1 : loopReplicates

b. switch(clustMthd)

c. case KMEANS:

i. insert_into(FIFO_Q_MODELS);

d. case KMEDIAN:

i. insert_into(FIFO_Q_MODELS);

e. case AGGLOMETATIVE:

i. insert_into(FIFO_Q_MODELS);

f. case SPECTRAL:

i. insert_into(FIFO_Q_MODELS);

9. EN_RESULT = NULL;

10. // Create Ensemble: cluster_ensemble_create() – Start processing in Parallel

11. model_parameters =  get_frm_queue(FIFO_Q_MODELS, PID);

12. model = get(model_parameters)

13. temp_result = null;

14. switch(model)

15. case KMEANS:

a. temp_result =doKmeans();

16. case KMEDIAN:

a. temp_result =doKmedian();

17. case AGGLOMETATIVE:

a. temp_result =doAgglo();

18. case SPECTRAL:

a. temp_result =doSpectral();

19. Append temp_result to EN_RESULT

20. // END Parallel code

21. // Extract Result: cluster_ensemble_extract() – Sequential Code

22. for m= 1 : nMethod

23. C = get_partition_centers(EN_RESULT);

24. D = distance_partition_centers(EN_RESULT);

25. for k =1 : kList

26. get cluster indices for centers using spectral clustering

27. for n =1 : nSamples

a. find closest centers to each sample in EN_RESULT

Algorithm 4. Parallel ensemble clustering algorithm used for analyzing RDM data.



66 

2. Experimental Results

As mentioned earlier, we analyzed performance of a multi-objective machine learning 

algorithm namely ensemble clustering to analyze data collected through IGT for RDM. All 

experiments were run on M40 nodes of the penguin computing pod cluster [6] which has QDR 

Infiniband interconnect, 10GigE data network, and minimum 4GB RAM per core. Sequential 

execution times over different data set sizes (200, 400, 600, 800 and 1000 participants) were 

recorded to identify bottlenecks in the performance. Data size from a RDM experiment study was 

varied for different number of participants while the number of data partitions that are analyzed in 

the ensemble is kept constant at 20400 to resemble Newman approach [23]. Recall that, our 

primary goal for this study was to first identify performance bottlenecks and then design a HPC 

solution to analyzing RDM. 

Figure 16. Execution times and speedup for parallelized RDM reinforcement learning 

algorithm using ensemble clustering for 1000 participants on a penguin computing POD 

cluster. 
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Ensemble Configuration parameter used during the experiments for measure execution 

times on distributed execution environment is as given in the Table 10. 

Table 10  Ensemble clustering configuration parameters used for distributed memory 

parallelization experiments. 

Parameter Name Values 

outlier cutoff 3 

outlier metric mahal 

ensemble.kList 1, 2, 3, 4, 5, 

6,7,8,9,10,11,12,13,14,15,20,25,30,35,40,45,50,55,60 

ensemble.modelList kmeanseuc,kmeanscit,kmeanscor,kmeanscos,spectraleuc,spectral

cit,spectralcor,spectralcos,aggeucwar,aggeucavg,aggeuccom,agg

citavg,aggcitcom,aggcoravg,aggcorcom,aggcosavg,aggcoscom 

ensemble.nBootstraps 50 

ensemble.nReps 20 

extract.kList 1,2,3,4,5,6,7,8,9,10 

extract.consensusMethod 'coassoc' 

extract.extractionMethods spectral 

Initial analysis of algorithm’s experimental results revealed that for 1000 participants on a 

single machine it took over 3457 minutes in total (about 57 hours or over 2 days), where the 

machine was Intel Xeon processor, 8 GB RAM, 120 GB hard drive running Ubuntu 12.04. 

Individually k-means, agglomerative and spectral clustering algorithms took 75, 5.5, and 3376 

minutes, respectively. This trend follows across different data set sizes. To improve the overall 
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computational performance of the algorithm, we ran different models of ensemble concurrently. 

Figure 16 is an example plot for run times taken for experimental results where data size is 1000 

participants on a penguin computing pod cluster. 

Table 11  Run times, speedup and efficiency of ensemble clustering after parallelization for 1000 

participants’ data on penguin cluster. 

#MPI threads 1 2 4 8 12 24 48 

Exec Time 

(in sec) 

14237 7198 3603 1808 1251 645 317 

Speedup 1 1.97 3.95 7.87 11.37 22.04 44.79 

Efficiency 1 0.98 0.98 0.98 0.94 0.91 0.93 

Above Table 11 lists corresponding runtimes. Runtime using one MPI process was 14327 

seconds which decreased to 1251 seconds using 12 MPI threads – an almost linear speedup. Similar 

trend can be seen in the plot in Figure 16, which shows a direct linear proportionality between 

runtimes and the number of threads, i.e., runtimes decreases proportional to the number of threads. 

We chose this parallelization approach because of the nature of problem. In the current example 

our initial data set is small, i.e., only 1000 participants data. However, algorithm analyzes it from 

several dimensions by partitioning. If one supposes to use approach 1 for parallelization, speedup 

achieved would be offset by the communication overhead between different MPI threads, resulting 

in almost negligible performance improvement. This suggests that shared memory 

implementations should also be explored for ensemble clustering in addition to distributed memory 

approaches. 
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Execution time’s perspective alone is not enough. We also analyzed individual clustering 

algorithm’s call hierarchy, and memory requirements along with execution times. Figure 17 shows 

the call graph for agglomerative, kmeans, kmedians, and spectral clustering algorithms. Each node 

in the figure also shows the relative percentage of time spent in the step. Analyzing the time spent 

in each step shows that agglomerative clustering costs almost 2x that of kmeans. And each 

clustering algorithm spends significant amount of time in calculating distance, among which 

cosine seems to be the most expensive at 27%. Hence, one can strategize techniques to generate 

bootstraps (resample data sets) such that one can minimize repetitive computation over same or 

statistically similar datasets without compromising output from the consensus function. 

Figure 17. Call graph of agglomerative, kmeans, kmedians and spectral clustering with relative 

percentage computation time for each step. 
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Analysis of memory requirements for each algorithm was also collected through 

experiments. Agglomerative, kmeans, kmedians and spectral clustering was run across all the 

variants in dimensions. All the algorithms used just one thread to get accurate memory footprint. 

Our experimental results reveal variation in cluster number (k) did not have any impact on the 

memory requirement for any of the considered clustering algorithms. However, we see that 

memory requirement gradually increases with time (iteration) for kmeans and agglomerative 

clustering across dimensions. This is an interesting finding as theoretical approximation do not 

give any indication for such behavior. System and program implementation can be considered 

probable cause for such symptoms in memory footprint; however, it would be worthwhile to 

investigate further as a separate research effort. 

This behavior has little impact when data size is small but will be clearly evident when 

large data sets are considered, resulting in significant implications on the scalability of RDM 

techniques wherein experiments are envisioned to be designed on a global scale for a wide range 

of studies. 

The code and relevant datasets for relevant datasets for reproduce results have been kept 

in the repository 

https://github.com/vinaybabug/distributed_impl_reinforced_learning_algorithm_rdm.git 

3. Summary

Analyzing datasets for Risky Decision Making (RDM) is a challenging task involving the 

identification of varied decision making patterns and the categorization of individuals. Researchers 

from various fields as diverse as psychology and marketing are actively working to identify 
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suitable techniques, which will allow understanding decision making processes better. Researchers 

have commonly used machine learning algorithms to model decision making processes. However, 

the high computational costs of most machine learning algorithms make such endeavors 

challenging for increasingly large datasets. One of the most promising approaches is to use 

ensemble clustering for RDM analysis. Ensemble clustering is computationally intensive and thus 

we propose to improve its performance. Our study reveals that computational overhead is 

introduced through the use of dimensions in ensemble cluster RDM analyses. Improving 

performance requires more than the parallelization of individual clustering techniques of the 

ensemble. We therefore propose a FIFO queue based implementation for analyzing RDM datasets 

using a HPC cluster on a distributed system. Our technique is able to achieve almost a linear 

speedup (e.g. 44.79x using 48 MPI threads). Possible shortcomings of the proposed method, 

opportunities for future work, and alternative parallelization scenarios are also discussed later in 

this dissertation. 
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CHAPTER VI 

SHARED MEMORY PARALLELIZATION FOR THE REINFORCED LEARNING 

ALGORITHM TO FIND INDIVIDUAL DIFFERENCES 

1. Introduction

Ensemble Clustering has been cited approximately two-hundred times per year since its 

original announcement in 2003 and has a total of 2900+ citations. Scholarly works are referring to 

Strehl and Ghosh [91], in turn, has been listed as reference 52000 times, indicating the level of 

influence this technique has during data analysis. Computer scientists, statisticians, 

mathematicians, and researchers from many other fields are developing analytical & machine 

learning models, based on ensemble clustering. The work in references [19, 71, 79] show some of 

the examples from the decision-making analysis domain. Work in [3, 12] uses ensemble clustering 

for medical applications such as magnetic resonance images, cancerous cells identification using 

FTIR spectroscopy, medical diagnostics and DNA data, [106] uses it for handwriting recognition, 

and [10] for application identification based on network traffic, etc. Although our discussion is 

focused more towards the RDM domain, in particular, the algorithm proposed by Newman in [71] 

which allows the identification of individual differences among participants making decisions 

under uncertainty, performance improvements in ensemble clustering is applicable to a wide 

variety of other problems and disciplines. 

Currently, scientists studying decision making involving risk (Risky Decision Making, 

RDM), work with a relatively small sample of experimental data and use ensemble clustering 
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techniques. Data for studying RDM is collected during empirical studies. However, using an 

ensemble clustering algorithm on a typical off-the-shelf desktop machine entails unacceptably long 

computation times. This is a typical case for researchers with non-computational backgrounds who 

may not be able to justify investing in high-performance computing (HPC) machines. Our previous 

work in Chapter VI improved execution times in a distributed memory system using MPI. In this 

chapter, we explore performance improvements on a shared-memory desktop computer using CPU 

& GPU parallelization. 

2. CUDA, Libraries and Related Tools 

Graphics processing hardware technology has made herculean improvements over the past 

decade. It is now being used for general purpose computation in many applications. It is best suited 

for algorithms designed for single instruction multiple data (SIMD) type of operations. Nvidia’s 

graphics cards are commonplace and implement SIMD functionality using several threads running 

  

Memory hierarchy Programming model 

 Figure 18. GPU memory hierarchy and CPU-GPU heterogeneous programming model [105]. 
 



74 

on streaming multiprocessors [105]. It is commonly known as single instruction multiple thread 

(SIMT) model in the community. Threads on the GPU device can be assigned in a three-

dimensional space. Our implementation tries to assign threads in these dimensions for maximum 

utilization of the device. The ratio of transistors in GPU’s hardware is purposed for high arithmetic 

operations instead of data access and caching. This is different from CPU’s as GPU device lacks 

built-in optimizations for memory operations compared to CPU. This burden is mitigated to the 

programmer. Because of which the performance of an application depends on efficient 

vectorization of data structures and its operations. As shown in Figure 18 programs written in 

CUDA are organized into three-level memory hierarchical model. It primarily consists of global 

memory, shared memory, thread local memory and texture memory. We have used texture 

memory to keep data objects that are most commonly accessed. Using shared memory as 

intermediary storage appropriately reduces memory latency as compared to accessing from global 

memory. 

Not all parts of a program are suitable for efficient vectorization and execution on GPU. 

Hence typical programming model in CPU-GPU based technique is as shown in Figure 18. Our 

implementation also utilizes programmer productivity tools and libraries such as Thrust, and 

NSight. Thrust is based on C++ standard template library but for GPU devices. Below are some 

of the tools that support our implementation. 

A. cuBLAS 

It is a set of linear algebra routines optimized for GPU architecture and comes bundled 

with Nvidia’s CUDA software development kit (SDK). It is also a part of a much wider array of 
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GPU-accelerated libraries2 such as cuSPARSE, Thrust, etc. provided by Nvidia. cuBLAS is 

reported to be much faster compared to other CPU based BLAS libraries. 

B. ARPACK, LAPACK, and OpenBLAS 

ARPACK is a set of Fortran-based routines designed specifically for solving large scale 

eigenproblems [58]. It is designed to compute a eigenvalues efficiently. ARPACK provides 

reverse communication interface making it possible to integrate with third party technologies and 

tools such as CUDA. 

C. MATLAB/OCTAVE 

MATLAB and OCTAVE both are software used in scientific and engineering disciplines. 

MATLAB is a proprietary software whereas OCTAVE is its open source alternative. They are 

important in our research as application scientists use them often for their built-in clustering 

algorithms and their capability to work efficiently with matrices and plotting routines. Our 

implementation can be easily linked against these two software’s libraries to provide the capability 

to read and write data understood in this software. 

3. Implementation – An Overview

Our implementation of ensemble clustering is targeted to be generic to facilitate data 

analysis from different domains. The program accepts MATLAB structure called parameter 

structure (PST) with inputs to facilitate easy configuration of the models that will compose the 

ensemble (see Table 6, Chapter IV). 

2 https://developer.nvidia.com/gpu-accelerated-libraries 
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Models in ensemble clustering algorithm are composite of the certain base clustering 

algorithms. Running these models is at least equivalent if not more expensive than running 

individual clustering algorithms. To have a parallel implementation of the ensemble clustering 

algorithm, one will need to have parallelized individual clustering algorithms. We found many 

parallel implementations of the popular cluster algorithms such as kmeans, gmm and spectral 

clustering algorithm. 

Our ensembles consist of GMM, k-means, k-medoids, agglomerative and spectral 

clustering. Our base clustering algorithms’ CUDA implementation uses a modified version of 

algorithms implemented by Andrew D. Pangborn [74] for GMM, by Wei-keng Liao & Serban 

Giuroiu [99] for kmeans and by Yu Jin [49] for spectral clustering. CUDA implementation for 

kmedoid and agglomerative was done by us as part of this work. Some parts of the code have been 

based off Open Source Cluster Project: Cluster 3.0 by De Hoon et al. [21]. Again, for brevity, 

details on the individual clustering algorithm’s CUDA implementation are left to those references. 

Several other subsequent articles have also been published which have in depth discussion on these 

topics. 

Upon computing, cluster indices / labels for each model, cluster indices for bootstrap data 

need to be converted to cluster indices for original data. This is done using 

cluster_util_bootpartition2partition() method and takes O(N) linear time. 

E. Ensemble Solution Extraction Step 

Extracting optimal solution from the ensemble turns out to be an expensive process, and 

previous literature has proved it to be NP-Hard. In this work, as mentioned earlier, we have only 

implemented acceptable-solution extraction through co-associations. 
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The second half of Algorithm 3 describes the solution extraction process at a higher level. 

The COA graph is constructed only once using the method in Algorithm 2, and method 

cluster_ensemble2cam() implements the algorithm. This method, in turn, uses 

cluster_util_partition2cam() which is used to track and identify partitions where a given object was 

assigned the same label and takes O(N2) time for sequential CPU execution. As 

cluster_ensemble2cam() is computed over all the partition the overall time complexity of 

constructing COA is O(µN2). As mentioned in Chapter V, µ is the total number of models in M or 

the number of partitions specified in the PST configuration (β, γ, δ, K, p). 

Once COA graph is constructed, we extract solutions for a requested number of subgraphs 

of COA via Kp parameter list in PST. The overall computational cost of this phase is more than 

O(N3). It includes performing a spectral cut for all Kp listed in COA. Followed by reverse tracing 

of spectral labels to an original data object in methods cluster_util_indices2centers() and 

cluster_util_ssw(). It is used to calculate SSE for each Kp. We utilized cublasSgeam from cuBLAS 

for calculating SSE. 

The output from the solution extraction phase is written back to files system as a MATLAB 

structure (.mat) file. Program’s input and output interface are made to be through MATLAB or 

octave structure files because domain scientists tend to use MATLAB and our intention was to 

provide a seamless interface to them. 

4. Experimental Results

The parallelized CPU-GPU version of the ensemble clustering algorithm presented is 

primarily being used for detecting the presence of different categorical groups in the given data. 

These datasets in our experiments were derived from the risky decision-making domain, where a 
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common practice is to collect data from participants via surveys and computer based paradigms. 

These paradigms are analogous to computer games and collect data about the person’s behavior 

(decision making). The solution from the algorithm is validated using several validations criteria 

(in our experiments we used eleven validation criteria). Mean, and median of error rate is among 

these and give the final summary. Summary of validation criteria gives an indication of the valid 

number of clusters supported by the solution. For a detailed description of the validation 

procedures, the reader is referred to the doctoral dissertation by Newman [71], as a discussion on 

model validation is extensive and out of the scope of this article. 

As can be easily seen from our discussion so far, implementing ensemble clustering in a 

native language is an immense undertaking. In the following section, we only highlight some of 

the salient features. Table 14 and Figure 20 present and compare speedups gained by running 

shared memory based CUDA plus CPU (i.e., CPU-GPU) vs. CPU only implementations. 

A. Datasets: Iowa Gambling Task / Paradigm 

Iowa gambling task (IGT) is one of the popular and widely used computer based paradigm 

for RDM analysis. IGT is a card playing game, where the goal is to make more money by the game 

end. All participants start with the predefined initial amount. During the game, a participant 

repeatedly selects a card from one of the four decks. Decks reward can be positive, negative or 

both. The game simulates reinforcement learning by design [7]. In task the main dependent 

variable is the payout during each trail and the deck selected. Datasets for our experiments was 

collected using an open source toolkit called RDMTk. 
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Table 12  Computer specification used for evaluation. 

CPU Model Intel Xeon i7 

CPU Cores 4 

DRAM Size 64GB 

GPU Model Quadro K1200; Tesla K80 

Device Memory Size 4GB GDDR5 

SMs and SPs 4 and 128 

Compute Capability 5.0 

CUDA SDK 7.5 

PCIe Bus interconnect PCIe x 16 Gen2 

OS Ubuntu 14.04 LTS 

The ensemble configuration parameter used during the experiments for measure execution 

times on shared memory execution environment is as given in the Table 13. 

Table 13  Ensemble clustering configuration parameters used for shared memory parallelization 

experiments. 

Parameter Name Values 

outlier cutoff 3 

outlier metric mahal 

ensemble.kList 1, 2, 5 

ensemble.modelList kmeanseuc,kmeanscit,kmeanscor,kmeanscos,medoideuc,medoid

cit,medoidcor,medoidcos,spectraleuc,spectralcit,spectralcor,spec

tralcos,aggeucwar,aggeucavg,aggeuccom,aggcitavg,aggcitcom,a

ggcoravg,aggcorcom,aggcosavg,aggcoscom,gmm 

ensemble.nBootstraps 5 

ensemble.nReps 2 

extract.kList 1,2,3,4,5,6,7,8,9,10 

extract.consensusMethod 'coassoc' 

extract.extractionMethods spectral 
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B. Pairwise Distance Matrix Computation 

Our implementation currently supports pairwise distance computation using Euclidean, 

squared Euclidean, City Block, Pearson, Weighted Pearson, Kendall, Cosine, Mahalanobis, 

Jaccard, Chebyshev, and Hamming distance measures. A distance matrix is symmetrical across 

the diagonal; one will only keep track of either the upper or the lower half triangle. As only unique 

distance values are stored, data storage results in a jagged array and is dynamic memory allocation 

intensive. Our CUDA implementation utilizes texture memory on the device to cache data. 

Computation on GPU using non-texture memory vs. texture memory is compared in Figure 21. 

Using texture memory on average is 1000 times faster compared to performance on global and 

shared memory based implementations. 

This improvement is achieved in two folds by enhancing data locality [23]. We need an 

efficient data allocation to threads that support coalesced data access while calculating distance 

metrics. As we only need to compute jagged distances measures, storing this data in a 2D array 

Figure 19. Example: CUDA thread assignment with jagged indices calculation. 
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will result in increased paging problems internally on the CUDA device. Computing distance 

measure across different models (M) requires repeated access to data. Repeated allocation and 

deallocation of dynamic 2D memory is bad by design [104] for spatial and spatiotemporal data 

locality. Therefore, we use 1D arrays. 

We also employed the following strategy to localize the data for the thread and memory 

hierarchy of the CUDA device. Using roots of the quadratic equation ax2+bx+c=0 to allocate the 

two data objects on which the thread computes distance metric increases spatiotemporal locality. 

It localizes data access based on tIdx, ensuring fetch and store during calculation of all pairwise 

distance is uniformly distributed across different blocks. 

𝑜𝑏𝑗𝑒𝑐𝑡1 =  𝑓𝑙𝑜𝑜𝑟𝑓 (
(−1 + 𝑠𝑞𝑟𝑡𝑓(1 − (4 ∗ 1 ∗ (−𝑡𝐼𝑑𝑥 ∗ 2))))

2
) .............................................. (10) 

𝑜𝑏𝑗𝑒𝑐𝑡2 =  𝑡𝐼𝑑𝑥 − (
(𝑟𝑜𝑤∗(𝑟𝑜𝑤 + 1))

2
) ......................................................................... (11) 

Figure 19 gives an example of thread assignment with jagged indices calculation. Where 

tIdx is the thread id calculated by using blockIdx.x, blockDim.x, and threadIdx.x. 
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Table 14  Run times in seconds for executing ensemble clustering algorithm on CPU & CPU-

GPU. 

#Participant

s 

Parallel BLAS-ARPACK Sequential CUBLAS-ARPACK 

Preprocessing 

Ensemble 

Creation 

Ensemble 

Extraction Total Preprocessing 

Ensemble 

Creation 

Ensemble 

Extraction Total 

512 0.000002 0.027031 0.200994 0.228027 0.008813 0.920119 0.596379 1.52531 

1024 0.000004 0.065028 0.829694 0.894726 0.034078 3.890402 1.2575 5.18198 

2048 0.000008 0.179218 1.74629185 1.9255178 0.133376 24.678988 3.91411 28.7264 

4096 0.000025 0.353409 4.55996992 4.9134039 0.5259915 178.714399 10.220642 189.460 

8192 0.000097 0.918421 16.4327205 17.351238 2.0748 1325.326938 36.832031 1364.23 

10240 0.000197 1.4468 25.6589273 27.105924 3.240139 2550.207621 57.5115 2610.95 

11264 0.000228 1.762412 31.1415162 32.904156 3.89515 3374.181781 69.8000851 3447.87 

12288 0.000216 1.773678 36.1456167 37.919510 4.637481 4361.379918 81.016194 4447.03 

13312 0.000254 8.05293 42.3747132 50.427897 5.440463 5515.57373 94.977989 5615.99 

14336 0.000309 2.353111 48.4853123 50.838732 6.315224 6858.803793 108.674186 6973.79 

Figure 20. Speedup achieved for running 

ensemble clustering on CPU vs. CPU-GPU. 

Figure 21. Comparison of running distance 

matrix kernels using texture vs. non-texture 

memory.  

(1) (2) (3) (4) 
Figure 22. Comparison of running (1) agglomerative, (2) kmeans, (3) spectral, and (4) kmedians 

clustering kernels using texture vs. non-texture memory. 
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Figure 23. Normalized criteria value for the 

number of supported clusters for nine validity 

criteria.

Figure 24. Validity criteria summary showing 

consensus for 5 or 8 clusters. 

C. Memory Optimizations for the Clustering Algorithms 

Our implementation uses previously developed codes for individual clustering algorithms 

except for Kmedians and Agglomerative as mentioned earlier. Individual clustering algorithms, 

e.g., Kmeans, Kmedoids, and Spectral were also modified from original to use shared memory and

texture memory. We compared the performance of original and modified versions. The distance 
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Figure 25. Run times for unordered vs. batch reconfigured model sequence execution. 
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metric and number of clusters were kept constant while collecting execution time measurements. 

As seen in Figure 22 use of texture memory speeds up execution by order of 100 – 1000 times. 

D. Unordered vs. Batch Reconfigured Model Execution Sequence 

The complexity of ensemble clustering algorithm depends on parameter values for β, γ, δ, 

K and p. These parameters determine the limit on μ (Table 7) or the total number of model 

iterations. Calculation of distances for each model is redundant. Similarly, there are several 

calculations that are repeated over the order of the model’s execution cycle. Such as in 

agglomerative clustering, tree construction for dendrogram is computed each time a model 

variation occurs. In spectral clustering, Eigen values are calculated from scratch for each model 

variation. These operations would have been repeated during each iteration of M in a naïve 

implementation. Also, setting up texture memory, launching CUDA kernels and data transfer 

between CPU and device are required during each iteration. These operations are expensive and 

are limited by the PCIe bus interconnect bandwidth. 

Our implementation reduces some of these redundancies. This is achieved by reconfiguring 

and batching the model execution order. The configuration of models is similar in principle to 

software engineering 101, however, modified for HPC scenarios. Figure 25 shows that execution 

times for optimized version is 2-5x faster than unordered sequence for configuration parameter 

values of β=5, γ=5, δ=14, K = 60 and p=10. 

Researchers want to identify the number of clusters data supports, upon successful 

completion of the algorithm. Figure 23 and 24 show results for an RDM dataset with 1700+ 

participants having 22 features. Figure 23 shows normalized criteria values for different number 

of clusters for the 9 validation criteria (Calinski-Harabasz (ch) [16], Silhouette Euclidean (sileuc), 
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and  Cityblock (silcit) [51], Davies-Bouldin (db) [20], Tibshirani's Gap criterion  (gappc), and with 

uniform distribution (gapuni) [95], Improed Hubert Gamma (hubi) [110], Krzanowski-Lai (ki) 

[55] and Dunn (dunn) [27]), and the best supported clusters are those whose criteria value is the 

largest. For example, Calinski-Harabasz (ch) suggests a solution with 8 clusters (having a peak 

normalized criteria value nearly equal to 1; note that zero or no cluster solutions are ignored). 

Figure 24 plots mean and median validities of the clustering suggestions from individual validation 

criteria of Figure 23. We can now infer that the data supports 5 or 8 valid clusters from looking at 

the peaks of the mean criteria value in Figure 24. 

The code and relevant datasets for relevant datasets for reproduce results have been kept 

in the repository 

Sequential: https://github.com/vinaybabug/EnsembleClusteringSequential.git 

Parallel: https://github.com/vinaybabug/EnsembleClusteringParallelCUDA.git 

5. Summary

Ensemble clustering algorithm is frequently used in machine learning algorithms, but it is 

also one of the most computationally intensive components thereby limiting their scalability. 

Parallel implementations of these algorithms enable researchers to pose bigger questions using 

larger datasets. The combinatorial and multi-objective nature of ensemble clustering algorithm 

makes running a large number of ensemble models a time-consuming task. In this chapter, we 

present a CPU-GPU based implementation of ensemble clustering algorithm. Ensemble consists 

of agglomerative, gmm, kmeans, kmedians, and spectral clustering algorithms. Our 
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implementation shows a 130x speedup over CPU only implementation. Primary usage and datasets 

used in our research are derived from risky decision making (RDM) domain.
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CHAPTER VII 

DISCRETIZATION AND SCHEDULING MODEL EXECUTION OF RDM RL ALGORITHM 

STEPS AS FLOOR TILES PLANNING 

1. Introduction

It is becoming increasingly evident that current processor/hardware technologies are 

beginning to fail at satisfying Moore's Law. Researcher and practitioners are now considering new 

possibilities. New construction materials that reduce heat dissipation in circuits, computing 

technologies based on quantum computing, neural networks, and other advances made towards 

finding a suitable replacement for general purpose computing. There is another paradigm, as with 

IBM’s Blue Gene, in which computers built specific to applications or processing of particular 

kinds of data or algorithms. 

We firmly believe that the software aspect of computing begins to pull its weight by 

pushing the limits of scalability. In these efforts, we propose a conceptual framework around 

algorithms belonging to a particular class, i.e. combinatorial, bootstrap based algorithms similar 

to reinforced learning algorithm for RDM based on ensemble clustering discussed in previous 

chapters. One can reduce computational time by controlling execution sequence of different codes 

and considering their spatial and temporal data dependencies. We call this approach Floor Tiles 

Planning (FTiP), as it is analogous to fitting together tiles of different shapes. The same name was 

coined when engineers tried to fit scores of circuits on a VLSI design. The basic idea is to divide 
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the algorithm into small computing entities and assign a different amount of computing resources 

to it based on spatial and temporal dependencies in data. 

The problem is a variation on the dynamic knapsack problem [32]. Consider the algorithm 

that is parallelized as an object that needs to be fit in a bag. Filling the portion of the bag is 

analogous to executing the algorithm’s steps proportional to the bag filled. One of the methods of 

trying to fill the bag is to try and put all same size objects. Another method would be to use variable 

sized objects. We can easily see various optimization strategies to the problem. Likewise, 

analogous to what most parallelization efforts do, we instead propose to divide the parallelization 

effort by dividing it into units of various forms. These units can then be blown up to different sizes, 

representing some resources assigned to each model’s consumption (refer to Chapter V, for 

explanation of model representation), the question then arises, can we fit all these models into one 

bag (i.e. can we execute them at the same time). If not, they will be executed in batches. If these 

models cannot fit into a single “bag,” we will need multiple bags. If so, how many bags do we 

need? How big should each model be? How will this affect the total number of bags required to 

hold these models? 

In our framework, we assume multiple kernels can be executed simultaneously. Each 

kernel represents running a model with different launch configurations. Models are derived from 

variations in different clustering algorithms (see Chapter IV, section on Model Formulation). A 

set of models executing on GPGPU execution simultaneously for a determinant period T is 

considered one floor. 
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Figure 26. GPGPU threads and resources as floor tiles. 

2. FTiP Problem Statement for Reinforced Learning Algorithm

Given the RDM reinforced learning algorithm; which can be represented by M models and 

its discretization into K sub models M={m1, m2, m3,…mk}& N a list of dependencies, represented 

as (𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑘); where mi has a corresponding dependency ni. Find a floorplan F such that 

cost(F) is minimized over period (time) T. Our goal is to have cost(F) to be smaller than TSequential; 

where TSequential is the time taken to execute all models and its sub-models mi on the cuda device 

(SIMD) using Tmax threads in a sequential manner i.e. one model after another [94, 90, 29]. 

Where, 

A model mi is launched as a kernel, which is a programmer-defined C function. When mi 

is executed, it runs in parallel with a specified number of CUDA threads and other resources as 

dictated by the programmer. 

The number of threads on the GPU device executing code in parallel is organized into, 
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• Thread groups which can be identified using a 1D, 2D or 3D indexes -txi (nx, ny,nz).

• Thread in 1D, 2D or 3D form thread block of the corresponding dimension- bxi(nx,

ny,nz) 

• Blocks are organized into 1D, 2D or 3D grid of thread blocks- gxi(nx, ny,nz)

The model mi is a generic term used to represent a group of threads executing a kernel 

code. Also, an assignment of txi threads to model mi can be in the form of a group of threads 

arranged in 1D, 2D or 3D within blocks and grids of size (Bxi, Gxi). And {m1, m2, m3,…, mk}is a 

set of models derived from the discretization of a bigger program M. 

As mentioned earlier, we define dependencies N as a list (𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑘); each ni in turn 

is made up of vectors. Dependency list size equals the number of models k. Each ni is a vector of 

dependencies on other models for mi. 

Dependency for model mi is based on the subset dj of data D it operates on. 

Data D is bootstrapped to subsets of the same size by resampling. Any two subset 

bootstraps dj and dk are related to each other by the number of participants (rows) they share in 

common because of being resampled data from the same base set. 

Given two subsets dj and dk resampling D, we define πjk the link strength (redundancy 

coefficient). Redundancy factor gives the relationship (link) strength between any two-data 

bootstrapped from same base superset D. 

A similar relation is drawn for any two models mj and mk, where πjk will represent the 

dependency based on the link strength between the constituent datasets of the models. Extending 

this definition further, we define matrix π 
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Table 15  Dependency list and link strength. 

Π11 Π12 Π13 Π14 

Π21 Π22 Π23 Π24 

Π31 Π32 Π33 Π34 

Π41 Π42 Π43 Π44 

The above matrix in Table 15 is a sample of a dependency matrix for an instance of a 

problem with four models, where πjk represents dependency degree and strength between model i 

and model j. 

A floorplan (F) is an assignment/execution of models in M on a CUDA device plane over 

a period T such that no models overlap one another and are executed at most once while satisfying 

dependencies listed in N. For example, model m6 may depend on {m1, m25, m31}. Dependency 

imposes a constraint on the order of models execution. It could mean any of the following three 

• The models that mi depends on could/must be executed concurrently

• Those must complete before mi

• Dependent models that must execute after mi

A floorplan is described as a sequence of floors {f1, f2, f3,…, fm}=F over corresponding 

period T divided as {t1, t2, t3,…, tp}. 

The floorplan has a cost associated with it. Cost(fi) – is measured by the expense of the 

largest subset of models in M satisfying dependencies in N that can be scheduled at ti. 

The total cost of F is the sum of costs overall individual constituent floors fi in the optimal 

solution or an approximation of the optimal solution. 
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A. Variables affecting the cost of the various component floors fi 

Cost for running a model mi as a kernel on a GPU device with CUDA depends on the 

following variables 

D –Given data with dimensions P x Y, where P accounts for the number of participants and Y is 

the number of columns for features. 

Given data D (super set) is bootstrapped, i.e. resampled to create subsets {d1, d2, d3, …, 

dn}; each of the subset di is of same dimensions P x Y 

Model mi’s time and space complexity K are denoted as time(mi) and space(mi), 

respectively. Time and space complexity of each model is different. However, in practice, each 

model is derived from one of a few base model types B1, B2, …, Bt, where t is small. For simplicity, 

we will assume t <=5 for the rest of our discussion. 

Note: Both the execution order of threads within a block and blocks within a grid is 

undefined while all the threads in a block will be scheduled at once. 

B. Type I variables cost for executing model mi ignoring dependencies N 

Variables in type I costs are regarding number warps. If w represents unit warp cost, then 

warp cost for running model mi for type I variables will be (G is the number of variable in Type I) 

𝑐𝑜𝑠𝑡_𝑡𝑦𝑝𝑒1(𝑚𝑖)𝑓𝑗,𝑡𝑘
= ∑ 𝜇ℎ ∗ 𝑤𝐺

ℎ=1  ........................................................................... (12) 

Example for Type I -Variables that put constraints on the system because of user 

µ1 - #warps required for sync data access for model mi numdataUniform 

µ2 -#warps required that are async data access for model mi numdataDivergent 
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µ3  #warp required when all threads execute same/ uniform code for model mi  

µ4  #warp required where thread code is async/divergent for model mi

µ6  #warp shuffle (exchange data) in model mi 

µ7  #warps branches in model for model mi

A. Barriers and synchronization 

µ8-lock-free synchronization 

µ9- lock-based synchronization 

µ10 – Number of Fences 

µ11 – Number of Barriers 

µ12 - Shared memory access times * amount of memory access for model mi 

µ13 - Global memory access times * amount of memory access for model mi 

µ14 - Thread local access times * amount of memory access for model mi 

µ15- GPU coalesce concurrent reads by the threads in a group for model mi 

C. Type II variables cost for executing model mi ignoring dependencies N 

Based on variables identified above, the cost of executing model mi in floor fj at time tk is 

written as (H is the total Type II variables) 

Some portion of Ci * cost of Ci

𝑐𝑜𝑠𝑡_𝑡𝑦𝑝𝑒2(𝑚𝑖)𝑓𝑗,𝑡𝑘
= ∑ 𝛾ℎ ∗ 𝐶ℎ

𝐻
ℎ=1  .......................................................................... (13) 
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In the above equation 𝑐𝑜𝑠𝑡(𝑚𝑖)𝑓𝑗,𝑡𝑘
represents the cost of scheduling / executing model mi

as part of the floor fj at time tk. Cost of executing mi on a different floor at different instance of 

time will remain same if dependencies are ignored and is given by (2). 

The term γ represents the portion of total resource of a particular kind. A portion of the 

resource that is allocated should be strictly integer, as the fractional amount of resource cannot be 

allocated. 

Example for Type II - Variables that put resource constraints on the application 

C1  # of GPU multiprocessor 

C2  #in device memory allocation 

C3  Per block shared memory 

C4  Per thread private memory 

C5 maxnreg- the maximum number of registers to be allocated to a single thread args (n - #regs) 

C6 maxntid -  the maximum number of threads in a thread block (CTA) args(nx, ny, nz) 

C7 reqntid – the required number of threads in a thread block (CTA) args(nx, ny, nz) 

C8 minnctapersm – the minimum number of threads block to be scheduled on a single 

multiprocessor (SM) 

C9 nregx – the current number of registers allocated per thread. 

Total cost for model mi can be given as 

𝑐𝑜𝑠𝑡(𝑚𝑖)𝑓𝑗,𝑡𝑘
= 𝑐𝑜𝑠𝑡_𝑡𝑦𝑝𝑒1(𝑚𝑖)𝑓𝑗,𝑡𝑘

+ 𝑐𝑜𝑠𝑡_𝑡𝑦𝑝𝑒2(𝑚𝑖)𝑓𝑗,𝑡𝑘
 ................................. (14)
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3. Solution Approaches

A. Method 1 

One idea might be a graph approach to solving above and perform LP optimization [2] to 

find the static schedule. 

B. Method 2 

Use set-partitioning approach to finding an optimal set if we have multiple tables shown 

above. 

C. Using the partitioning method to solve for the optimal space, using integer programming 

approach  

In the matrix – F below each row represents a floor plan. A column of each row accounts 

for model mi 1<i<=|M|. Only following two values can be assigned to a cell 

𝐹(𝑓𝑖 , 𝑚𝑗) = {
0, 𝑚𝑗  𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛 𝑓𝑙𝑜𝑜𝑟 𝑓𝑖  

1, 𝑚𝑗  𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛 𝑓𝑙𝑜𝑜𝑟 𝑓𝑖
 ............................................... (15) 

Table 16. Models execution sequence as floorplan. 

m1 m2 … mj 

F1 1 1 0 

F2 1 0 0 

F3 

. 

. 

. 

Fn 1 0 1 

Each floor has a limited amount of resources. These resources are dependent variables, and 

listed as Type II in the previous section. Being constrained on the available resource puts a bound 

on the number of models it can fit. Each model mi has different costs, and hence each floor can 

accommodate multiple numbers and combinations of models. 
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D. Digital Logic Circuit based solution on filling floor plan 

One method to find a feasible solution might be to utilize a digital logic circuit made up of 

logical gates to fill each floor. We might also need to put a bound on the number of levels. 

E. Bound for each floor for variables based upon user control (Type I) 

There is no upper limit on the Type I variables for the total warps cost for model mi. 

However, the solution should try to minimize the warp cost for Type I variables across the floors. 

i.e. for each floor, we want to reduce below equation’s resulting warp cost. 

𝑀𝑖𝑛 |∑ 𝑓(𝑓𝑖 , 𝑚ℎ) ∗ 𝑐𝑜𝑠𝑡_𝑡𝑦𝑝𝑒1(𝑚ℎ)𝑓𝑗,𝑡𝑘
 𝑀

ℎ=1 | ............................................................ (16) 

F. Bound for each floor on variables based upon maximum available resource (Type II) 

Each variable listed under Type II, for each variable Cx the total portion of resource 

allocated in frame fi at time tk should be less than or equal to 1. 

∑ 𝑓(𝑓𝑖, 𝑚ℎ) ∗ 𝛾𝑓𝑗,𝑡𝑘,𝑚ℎ

𝑀
ℎ=1 ≤ 1 .................................................................................... (17) 

Variables that put resource constraint on the system have a maximum of the upper bound. 

4. Summary

Floor Tiles Planning (FTiP) is a conceptual structure used in scheduling an RDM 

algorithm’s code execution by considering spatial and temporal dependencies. FTiP can improve 

the performance of computer algorithms for problems falling into the class of combinatorial, 

bootstrap based algorithms. The computational overhead in these algorithms is introduced using 

dimensions and redundant computations in data analyses. Hence, we propose original floor tiles 

planning to engineer solutions for shared and distributed memory systems, minimizing 
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calculations across algorithm steps. Computational steps such as distance matrix, Eigenvector 

calculations, etc. are prevalent in most data analysis algorithms. It is done by discretization of the 

algorithm into models and scheduling them for execution for efficient utilization of computing 

resources. This approach will also apply to various hardware software architectures like GPGPU, 

multiprocessors systems, smart memory systems, etc. The work detailed in this chapter is unique 

to GPGPU architecture and programming environments. 
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CHAPTER VIII 

CLASSIFICATION AND PREDICTION OF PREFERENCES SHIFTS IN CUPS TASK 

1. Introduction

An individual’s decision making is influenced by various factors such as cognitive, 

memory, and neurological. Culmination of these results in differences in decision making under 

uncertainty. Decision making uncertainty can be broadly classified into three categories [101]. 

1) Decision Making Under Certainty (DMUC)

2) Decision Making Under Ignorance (DMUI)

3) Decision Making Under Risk (DMUR)

 Different individual’s risky decision making can be again classified into 

1) Risk-avoidant

2) Risk-aversive

3) Risk-seeking

2. Models in RDM

Previous research has established that people’s behaviors is adaptive. Behavior or decision 

making adaptability is subject to individual preferences. Framing effects is used to describe shifts 

in risk preferences [82]. A contemporary research argument is towards using conceptual models 

such as fuzzy trace theory for explaining framing effects. Below is a list of some of these models 
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• association theories

• axiomatic utility theory

• expected utility theory

• fuzzy-trace theory

• MINERVA-DM model

• Multiple Regression Model

• normative analysis

• Protection-motivation theory

• prototype/willingness model

• schema theory

• security-potential/aspiration theory

• self-regulation model

• subjective expected utility

• weighted utility function

Detailed explanation and analysis for each of the above-mentioned models is out of scope 

for current work. However, we encourage readers to refer one of many articles published on the 

same. Current literature still lacks a detailed survey article on risk preferences. Typically, scientists 

and practitioners studying decision making collect data for analysis either using non-experimental 

(real world) or experimental procedures. Experimental procedures include Q&A based self-reports 

and psychological tasks or games. One such task is CUPS task. 
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3. CUPS Task

The CUPS task is a computer based psychological simulation environment. It is used to 

measure individuals risk preferences [60]. On each side of the screen, you will see a certain number 

of cups (either 2, 3, or 5). The cups will have a return value over them, either positive or negative. 

For each trial, you will be given the option of choosing a cup from either side by clicking on your 

choice. The side with multiple cups has one cup with the return value under it. The other cups have 

nothing under them. So, your goal is to choose the best cups to maximize your score. Figure 27 is 

showing all the variations of trials belonging to gain or loss domain. Each of the domain (gain or 

loss) in turn is composed of three distinct payout scales. These payout scales can be categorized 

into risk advantageous, disadvantageous or neutral; depending on the expected value for making 

risky choice. 

Figure 27. Summary of CUPS task trial type and expected values in each. 
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Commonly measured quantities in CUPS TASK are: 

• Total number of decisions

• Total number of risky decisions

• Number of risky decisions – Gain domain

• Number of risky decisions – Loss domain

• Total number of advantageous risky decisions

• Number of advantageous risky decision – gain domain

• Number of advantageous risky decisions – loss domain

• Total number of disadvantageous risky decisions

• Number of disadvantageous risky decision – gains domain

• Number of disadvantageous risky decision – loss domain

• Total risk adjustment (i.e. # of advantageous risky decisions - # of disadvantageous risky

decisions)  

• Risk adjustment – gain domain

• Risk adjustment – loss domain

And interpreted measure of performance are 

1. Optimal performance / Non- optimal performance = risky advantageous is high, and risky

disadvantageous is low 

2. Risk seeking / Risk aversion = total number of risky decisions is high / total number of

risky decisions is low 

3. Loss seeking = Total number of risky decision is high in loss domain.
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4. Loss aversion = optimal performance in gain domain, risk aversion profile in loss

domain. 

5. Risk insensitive / Risk sensitive (Gain Domain) = Risk adjustment index near zero in

gain domain. 

6. Risk insensitive / Risk sensitive (Loss Domain) = Risk adjustment index near zero in gain

domain. 

7. Risk insensitive / Risk sensitive (Both Domains) = Risk adjustment index near zero in

both domains. 

Overall a participant can be categorized into one of twelve categories mentioned above. 

4. Research Objective

Currently, state of the art research is lacking in terms of computational and mathematical 

models to identify preference shifts. There is no implementation of such for CUPS task. 

In this project we want to apply advance mathematical and machine learning approach to 

1. Identify patterns in preference shifts for CUPS tasks

2. Predict preferences in CUPS task

We would like to implement a deep neural network based model to analyze data collected 

for CUPS task to study prospects theory. 

5. Experimental Setup

We collected data on preference in risky decision making and also time taken to make these 

decisions during each trial. CUPS task was used to collect data from 325 subjects. The task was 

published in an online survey using Amazon mTurk. Amazon mTurk is a workforce market place 
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to recruit human intelligence. On mTurk we created a human intelligence task (HIT) to recruit 

participants. Subjects from anywhere on the planet could perform the HIT. Participants were paid 

real money proportional to the final score on the task. This was done to keep the experiment in 

line with prospect theory and motivate the subjects for taking risky choices. 

The CUPS Task was administered through RDMTk toolkit. The task was designed to have 

90 trials in total. In turn both gain and loss domain had 45 trials each. Our experiment was designed 

to administer these trial domains in random order. Cups containing a risky option was also 

randomized for the cup containing the points along with the side for multiple cups placement. We 

also kept records of time taken during each trial. 

6. Model Specifications

The model specified in this section is formulated generic across all tasks instead of being 

more specific to cups task alone. We want to develop a model which would help us detect presence 

or absence of seasonality of predictable pattern in subjects’ preferences. For this purpose, notation 

and approach can be reused for others with little or no modification. Hence, we formulate cups 

task data in terms of trial data for N subjects. Which in turn consists of 

T a set consisting of trials per subject. 𝑇 ∈ 𝑡1, 𝑡2, 𝑡3, …, 𝑡𝜏; where τ is the total number of 

trials for the subject. It is same across all the subjects in an experiment. 

F is a set of features for each ti, 𝐹 ∈  {𝑓1, 𝑓2, 𝑓3, … , 𝑓𝜖}; where ϵ is the number of features

(data types) collected per trial. Variations in values of fi for a trial categorizes subject’s preference 

for risky decision making. 
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P is a set 𝑃 ∈ 𝑝1, 𝑝2, 𝑝3, …, 𝑝𝜌; which represents distinct measured preferences learned 

from trials for all N subjects. The total number of trials across all the subjects is determined as 

N*τ. 

The purpose of the model (Figure 28) is to predict preference labels of future trials using 

the data available from past trial. 

Figure 28. Model to predict risk taking preference shifts. 

The proposed model can be categorized into two variations depending on the method used 

to determine set P from the past trials of the same individual. 

• Unsupervised prediction model for preference shifts if P is determined from analyzing

historical data first. 

• Supervised prediction model for preference shifts if P is a given as an input parameter to

the model. 
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In the current model implementation for the CUPS task, P is given as an input parameter 

and also learned using a reinforcement-learning algorithm [71]. 

The model has two parts; in the first stage participants trial data is compared against global 

trial record to determine preference category for the trial. And the second stage is to check for 

seasonality and predict future preferences. Changes in the preference labels across trials gives us 

hints on the rate at which subject’s preferences shifts. 

A. Supervised Prediction for Preference Shifts 

Subject’s performance in CUPS task is categorized as one of the twelve trial preferences 

domains [60, 61] (see Section 3). In our model we are identifying preferences P as a set of 

numerical labels ranging from {1:12}. 

We identify trials that are closest to each other and give same preference label. One naïve 

method to find trials closest to each other can be done by reducing the squared distance among 

trials that are given same label. This can be achieved by grouping all the trial data into twelve 

categories. Mathematically, we would like to minimize error from grouping similar trials across 

all subjects and can be written as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑒) =  ∑ ∑ (|𝑡𝑖 − 𝑡𝑗|)
2𝑁∗𝜏

𝑗=1
12
𝑖=1  ...................................................................... (18) 

Where i and j are indices of trials being compared. The trials representing centroids are 

chosen at random (i.e. trials for index i). In terms of features in the trials the above equation 

becomes 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑒) =  ∑ ∑ ∑ (|𝑓𝑖𝑘 − 𝑓𝑗𝑘|)
2𝜖

𝑘=1
𝑁∗𝜏
𝑗=1

12
𝑖=1  ......................................................... (19) 
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Here, |𝑡𝑖 − 𝑡𝑗| or |𝑓𝑖𝑘 − 𝑓𝑗𝑘| represents the Euclidean distance between trials i and j or 

features of those trials respectively. This clustering can be accomplished by applying kmeans 

clustering algorithm. 

a) KMeans

It is one of the most common clustering technique, and steps in the algorithm are as 

described below. It uses an iterative refinement approach, as seen above 

The K-Means is a greedy, computationally efficient technique, being the most popular 

representative-based clustering algorithm. 

B. Unsupervised Prediction for Preference Shifts 

The unsupervised prediction model is similar to supervised approach except that the size 

of set and preference labels are learned through analyzing historical data across participants. There 

are a number of different approaches to determine preference labels from the analysis of features. 

In our current work we discuss results obtained from using an ensemble clustering model. 

We first divide the data into 70:30% ratio; where 70% is used for training and 30% for 

testing. Our model uses patterns in the preference shifts among 70% trials per subject of the 

1. Define the initial group of k centroids (selected at random).

2. Assign each trial to the closest cluster centroid.

3. Recalculate cluster centroids.

4. Repeat steps 2 and 3 iteratively until trials assigned to same cluster is constant.

Algorithm 5. KMeans clustering algorithm. 
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training data to predict preferences in the other 30% of trials. We used ARIMA based prediction 

as we were interested in finding presence of seasonality. 

C. Prediction Layer 

a) ARIMA

Most parametric models such as averaging, weighted moving average, exponentially 

weighted moving average, ARMA (auto regressive moving average) and ARIMA (auto regressive 

integrated moving average) proposed by [13] work on the principle that future/predicted values 

depend only on immediate historical value. For predicting preference shifts, in ARIMA we also 

assume that data consists of preference label at trial t, Pt, and a random noise (white noise εt of 

zero mean and standard deviation). General form of ARIMA with order p and q to determine 

vectors a and d respectively, namely ARIMA(p, q) is 

𝑃𝑡 = 𝑎1𝑃𝑡−1 + ⋯+ 𝑎𝑝𝑃𝑡−𝑝 + 𝜀𝑡+𝑑1𝜀𝑡−1 + ⋯+ 𝑑𝑞𝜀𝑡−𝑞 ........................................... (20) 

Using backshift operator B, the model can be succinctly written as 𝐴𝑝(𝐵)𝑋𝑡 = 𝐷𝑞(𝐵)𝜀𝑡

where Ap(.) and Dq(.) are polynomials 

𝐴𝑝(𝐵) = 1 − 𝑎1𝐵 − 𝑎2𝐵
2 − ⋯− 𝑎𝑝𝐵𝑝  .................................................................... (21)

𝐷𝑞(𝐵) = 1 +  𝑑1𝐵 + 𝑑2𝐵
2 ⋯+ 𝑑𝑞𝐵

𝑞  ..................................................................... (22)

with 𝐵𝑘𝑍𝑡 = 𝑍𝑡−𝑘 , 𝑓𝑜𝑟 𝐾 =  1, 2, ⋯  𝑍 = 𝑋 𝑜𝑟  𝜀.

ARIMA consists of AR, MA and a combination of both (ARMA); order of p and q in 

ARIMA determines the selection of appropriate model. This is achieved by analyzing 
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autocorrelation function (ACF) and partial autocorrelation function (PACF). Table 17 gives 

properties of ACF and PACF for the corresponding models. 

Table 17. Properties of ACF and PACF to determine ARIMA model. 

MA(q) AR(p) ARMA(p, q) 

ACF 
Spikes up to lag q, and 

cuts off afterwards. 

Slow decay, infinite tails 

off, declined exponential 

and/or cosine waves 

Declined exponential 

and/or cosine waves 

after p-q 

PACF 

Slow decay, infinite 

tails off, declined 

exponential and/or 

cosine waves 

Spikes up to lag p, and 

cuts off afterwards 

Declined exponential 

and/or cosine waves 

after p-q 

Autocorrelation function measures the linear relationship between values of a time series 

lagged by k units. Estimate of the kth lag autocorrelation γk is 

γ
k

=
ck

c0
 , where ck =

1

N
∑ (zt − z)(zt+k − z)N−k

t=1 , k = 0,1,2,⋯ , K and z is the mean, with z 

= X or ε. 

Auto covariance is used to make series stationary and also explains correlation between 

neighboring pair of time series values. The covariance between zt and its value zt+k separated by k 

intervals of time is called auto-covariance at lag k. 

Figure 29's ACF and PACF corresponds to ARMA(p, q) for data without differencing to 

account for seasonal factor. And Figure 30 corresponds to same data with differencing d=1 that 

removes seasonality, it has a corresponding AR(p) model. 
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Figure 29. ACF and PACF for data without differencing. 

Figure 30. ACF and PACF for data with differencing. 

ARIMA also assumes that series is linear and stationary with respect to statistical properties 

of the given preference sequence. If autocorrelation cuts off fairly quickly, or dies down quickly 

then the time series is considered to be stationary and on the contrary if it dies down very slowly 

then it is considered non-stationary. We can convert a non-stationary series into stationary by 

differencing. When differencing, d, is used in ARIMA to make it a stationary time series it is 

denoted as ARIMA(p,d,q). 

Precise estimate of fairly quickly or slowly is not defined and is contextual. For this reason, 

historical data is preprocessed by smoothing and de-trending. As can be seen in the ACF and PACF 

plots (Figure 29 and Figure 30) data with no differencing is fitted by an ARIMA(p, q) model 

whereas after differencing it is fitted by an AR(p). For preferences in CUPS task trial data, 
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developing such contextual knowledge is difficult and nearly impractical when developing a model 

for large scale implementation across subjects. For this reason ARIMA is run iteratively for various 

values of p, d, and q to account for all permutations of model order and its implications. 

Time complexity for ARIMA(p,d,q) can be computed as follows. Using the ARIMA 

formulation given in [13], 

𝛼 = 𝑖𝑛𝑣(𝑀𝐴
𝑇𝑀𝐴)𝑀𝐴

𝑇𝑀𝑏   ................................................................................ (23) 

where, α is the vector of AR coefficients, matrices MA and Mb are of the following form, 

𝑀𝐴 =

[
 
 
 
 

𝑋𝑝

𝑋𝑝+1

𝑋𝑝+2

𝑋𝑝−1

𝑋𝑝

𝑋𝑝+1

⋮

𝑋𝑡−1

⋮

𝑋𝑡−2

…

…

…

𝑋1

𝑋2

𝑋3

…

…
⋮

𝑋𝑡−𝑝]
 
 
 
 

 𝑀𝑏 =

[
 
 
 
 
𝑋𝑝+1

𝑋𝑝+2

𝑋𝑝+3

⋮

𝑋𝑡 ]
 
 
 
 

Equation 1 is used to compute both the p and q values. Computation of AR and MA 

coefficients thus takes Ο((𝑁 − 𝑝)𝑝2) and Ο((𝑁 − 𝑞)𝑞2) time, respectively, where N is the length

of historical values. Hence the total time will be 

Ο((𝑁 − 𝑝)𝑝2 + (𝑁 − 𝑞)𝑞2) 

We can easily see that model complexity grows significantly as we consider higher order 

values for p and q. 

b) SARIMA

SARIMA incorporates both seasonal and non-seasonal aspects of a time series as a 

multiplicative model of the two as discussed in [103]. Mathematically it can be represented by 

𝑎𝑝(𝐵) 𝐴𝑝(𝐵
𝑠) 𝑋𝑡 = 𝑑𝑞(𝐵) 𝐷𝑞(𝐵

𝑠) 𝜀𝑡 ......................................................................... (24)
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where, 𝑎𝑝(𝐵) 𝑎𝑛𝑑 𝑑𝑞(𝐵) is the non-seasonal and 𝐴𝑝(𝐵𝑠) 𝑎𝑛𝑑 𝐷𝑞(𝐵
𝑠) represent the 

seasonal part for the data and white noise. Time complexity can be computed similar to ARIMA, 

except that SARIMA also consists of ARIMA as its subcomponent, therefore we can easily see 

that SARIMA time complexity is  

Ο(∑((
𝑁

𝑆𝑖
− 𝑝𝑖) 𝑝𝑖

2 + (
𝑁

𝑆𝑖
− 𝑞𝑖) 𝑞𝑖

2)

𝐿𝑠

𝑖=1

+ (𝑁 − 𝑝)𝑝2 + (𝑁 − 𝑞)𝑞2) 

where, Ls is number of seasonality being considered and Si is the seasonality. 

Preference labels for CUPS task data shows different seasonality patterns depending on the 

subject. Most common patterns are across trials. We can also mine for seasonality in different 

dimensions. 

7. Experimental Results 

Historically CUPS task has been analyzed for mean number of times risky decision was 

made by subjects in gain and loss domain. Figure 31 shows the number of risky decisions took for 

gain vs. loss domains and each trial in turn is divided three sub categories i.e. risk advantageous, 

risk disadvantageous and risk neutral. From the graph we can infer that subjects took most risky 

decisions during risk advantageous trials for gain domain. And risk disadvantageous trials have 

the most risky decisions for the loss domain. 



112 

Figure 31. Means of risky choices in (a) the loss and (b) the gain domain, as a function of subject 

group and expected-value (EV) level (risk advantageous trials; risk equal expected value trials; 

risk disadvantageous trials). Subjects received 15 gain trials and 15 loss trials for each of the 

three EV levels. 

If we drill down into data we can realize more details. 

Table 18  Measure of average number of risky decisions across gain, loss domains and overall. 

advantageous and disadvantageous risky decisions are also listed. 

Total number of decisions 90 

Total number of risky decisions 55 

Number of risky decisions – Gain domain 27 

Number of risky decisions – Loss domain 27 

Total number of advantageous risky decisions 29 

Number of advantageous risky decision – gain domain 15 

Number of advantageous risky decisions – loss domain 14 

Total number of disadvantageous risky decisions 25 

Number of disadvantageous risky decision – gains domain 12 

Number of disadvantageous risky decision – loss domain 13 
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Measuring number of risky decisions in each domain and keeping track of advantageous 

ones verses disadvantageous per subject categorizes him / her (as given in Table 18) into one 

among twelve interpreted risk preferences (as shown in figure 32). 

Figure 32. Categorization of subjects of prospects theory experiment into twelve risky 

preferences types as suggested in the literature. 

Calculating counting statistics for the number of, advantageous and disadvantageous risky 

decisions made by each subject allows categorization into different risk preference types. In the 

below experiments results we categorized each trial by subject according to risk preference type it 

would lead. We fixed the total number of distinct preference types at 12, for supervised prediction 

of preference shifts. 

We are showing results from a few representative subjects; as our model predicts future 

risky preferences types per subject and listing all 324 subjects is unnecessary. Figure 33 represents 
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a typical sample of subject’s performance on the CUPS task. It is important to notice presence of 

a seasonal pattern and trend in the subject response to different risk domains. In Figure 33 the x-

axis is the trial number and y-axis is different for each sub graph. For data y-axis represents the 

numeric label given to preference measures. 

y

Figure 33. Typical data sample for subject's performance on CUPS task, revealing seasonality, 

and trend. 

A. Presence of seasonality in risky preferences 

An important result of our analysis of CUPS task data is identification of seasonality 

presence. Each subject tends to cycle through a set of preference types at frequent intervals. 
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Figure 34. Seasonality patterns for four random subjects selected from survey pool of 324 

subjects from prospects theory experiment. All subjects showed a definite sign of seasonal 

pattern across 90 trials as shown in the figure. 

Our analysis revealed that each subject showed evidence for having seasonal pattern (see 

Figure 34). From the presence of seasonal patterns, one can infer that subjects go through a set of 

risk preference types. Their performance on the task can be further modeled as transitions through 

these fixed number of risk preferences. Risk preferences for each participant is different. Analysis 

of same data using supervised modeling showed that switching pattern between preference types 

is more frequent. On the other hand, same data when analyzed using unsupervised modeling 

showed more stability. This contradiction warrants further investigation. Our initial hypothesis is 

that unsupervised learning yielded fewer categories thereby resulting in fewer preference type 

shifts. 

B. Predicted vs. actual risk preferences 

The number of risk preference types were fixed to twelve for supervised model. And 

unsupervised model learned the number of risk preference types in the data to be five (see Figure 

35). We are ignoring two clustering solutions as that would suggest only a binary risk preference 
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type. For CUPS task that would translate to checking if participants choose to take risk or go with 

certain (fixed) gain or loss option. 

Figure 35. Reinforced learning model output showing valid number of clustering result for 

subject’s performance in prospects theory experiment. 

Figure 36 and 37 are samples of predictions, after running supervised and unsupervised 

version of our prediction model. The x-axis represents the trial number and corresponding values 

on the y-axis gives the preference label. The darker and lighter shaded regions represent the 80 

and 90 percentile prediction intervals. Our work establishes the capability to predict shifts in 

preferences in risky decision making. However, visual inspection and validation metric shows 

room for improvement in the accuracy and thus the need for more thorough investigation 
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Validation metrics used in our analysis were AIC (Akaike information criterion), BIC (Bayesian 

Information Criterion), and RMSE (Root Mean Square Error). 

Figure 36. Example for predicted reference shifts in subjects’ performance using supervised 

model. 

Figure 37. Example for predicted preference shifts in subjects’ performance using unsupervised 

model. 
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Table 19 and 20 lists validation metrics of predicted values for supervised and unsupervised 

models respectively. The fitting models are chosen as that values of validation metrics i.e. AIC, 

BIC and RMSE are minimized. 

Table 19  Validation metrics of predicted preference shifts using supervised model. 

Subject# AIC BIC RMSE 

1 353.943 402.867 2.429392 

2 369.918 431.604 2.483127 

3 355.747 398.29 2.807285 

4 348.092 386.381 2.667318 

Table 20  Validation metrics of predicted preference shifts using unsupervised model. 

Subject# AIC BIC RMSE 

2 -323.81 -260 0.008554 

4 -194.73 -188.14 0.04179 

5 -241.03 -219.76 0.026996 

33 -275.89 -265.25 0.021981 

8. Summary

In this work we analyzed 324 subject’s performances on the CUPS task. We developed 

two variations of a model to identify and predict preference shifts in subject’s choices. The results 

revealed a frequently changing risk preference characteristic in the supervised model; whereas 

unsupervised model showed that changes in risk preference were more stable. However, both 

showed that there is definite change in preference patterns. Also, the number of risk preference 

types present in data detected by unsupervised version of the model was far lesser at five than 

literature suggested twelve. 
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Currently developed model identifies the presence of risk preferences by matching across 

various subject’s trial performance for similarity. However, we know from the empirical study that 

subject’s performance and risk preference in subsequent trials is based on past experiences learned 

over time. This temporal dimension is currently missing in the current model to account for varying 

risk preferences types. Also, the prediction model used in this work is rather a naïve seasonal 

ARIMA model with very less accuracy. Our model fails to improve on prediction accuracy for 

subjects who change risk preferences more frequently over the course of the task. In the future a 

more accurate and robust model needs to be developed both in terms of identification of risk 

preference type from the historical data and also the prediction model. 
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CHAPTER IX 

GENERAL DISCUSSION, CONCLUSIONS AND FUTURE WORK 

The main goal of my dissertation was to pave way for future research in RDM analysis 

through interesting works in various directions. We addressed two main problem areas among 

RDM researchers: One to collect data globally and second to improve computational performance 

of RDM analysis algorithms. The second aspect of my research is to enable analysis on even 

smaller devices to enable non-computational scientists to run RDM analyses. 

RDMTk was developed with a different design principle than contemporary toolkits. It 

allows the researcher to spend more time in the design phase of a DM study as opposed to the 

creation and data collection phases. It also provides a new methodology to enable a participant’s 

decision-making behavior to be visually analyzed. An advanced clustering and deep neural 

network learning algorithm are currently being developed and planned to be incorporated in the 

near future. We hope its ease of use and innovativeness will encourage the RDM community to 

contribute and develop the tool further. We believe all researchers in the decision-making 

community will benefit, as it is an open source toolkit. 

In the future, RDMTk can be applied to a host of domains that involve risk. We will 

integrate multiple data sources, including fields such as intelligent transportation systems (ITS) to 

help avoid risky situations on the road. In the finance arena, risky situations can be applied to loan 

applications, loan recovery, and stocks. Marketing information can be used to deter or motivate 
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purchasing patterns. The toolkit can also be used to make better administrative decisions. Figure 

38 depicts our vision and future development road map for RDMTk. 

In our work to analyze computation requirement for the commonly used RDM techniques, 

we identified ensemble clustering part (that uses Agglomerative, K-means, K-medians and 

Spectral clustering) to be the main limiting factor for the high scalability of RDM analysis tools. 

Through empirical analysis we identified spectral clustering to be one of the most expensive 

among the three clustering algorithms used in Newman’s work. Using distributed memory based 

parallel implementation and parallelized algorithm across different models in the ensemble gave 

us excellent speedups and improved efficiency for varying the number of models/partitions while 

keeping data size constant. Contrary to Huang et al., our approach scales well across different 

models when data size is kept constant. However, for studying large datasets using ensemble 

Figure 38. RDMTk application bird’s eye view. 
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clustering with the suggested approach still remains to be carefully investigated, as a number of 

big-data challenges will need to be tackled. In future work we also plan to parallelize individual 

clustering algorithms on distributed systems along with models in ensemble for further 

improvement. Also, minimizing computations across ensemble, such as distance matrix, eigen 

vector calculations etc. should be explored. Reduction in the number of bootstraps required to give 

existing consensus function result will also be a challenging task and worth investigating. 

Parallelization of ML algorithms such as this is still a new domain and obviously a lot of challenges 

need to be addressed, especially for the big-data situations (volume, storage, transfer and 

analytics), and we intend to continue our pursuit to push the scalability limits by improving the 

performance in the context of RDM techniques and the corresponding toolkits. 

Shared memory CPU-GPU implementation of ensemble clustering algorithm achieves a 

speedup of 130x over its counterpart CPU based sequential version. The parallel implementations 

discussed here are planned to be incorporated as a part of RDMTk [34]. Researchers in RDM can 

then run ensemble cluster analysis just by clicking few buttons. Implementation of multiple CPU 

threads using OpenMP and GPU and using MPI to run even bigger datasets across different 

machines and accumulating single result is the next phase of progression for this line of research 

work. 

We proposed a floor tiles planning based framework for a new and novel approach to 

minimizing computations by reducing redundancy in algorithms, specifically in the class of 

combinatorial, bootstrap based algorithms. More research is needed to evaluate and address the 

applicability of the approach through more precise theoretical formulations. Simulations will test 

the validity of the approach on different computer processor and system architectures such as 
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multi-core processors, GPGPU devices, and smart devices (or smart memory devices). Questions 

remain, such as how best to implement this approach or whether it can be driven from processor 

architecture through runtime systems? Answers to these issues could lead to a truly reconfigurable 

system. Dynamic code injection can result in a more efficient runtime system. There should also 

be an investigation into applying this approach to both distributed and shared memory systems. 

This topic needs more thorough examination, and many more questions should be asked to verify 

its validity and applicability. 
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APPENDIX 

 

 

RDMTK USER MANUAL 

 

 

 

 

 

1. Introduction 

There is no systematic structure to serve as a guideline to assist researchers to conduct 

RDM studies. The toolkit attempts to encourage organized thinking and implementation of 

Figure 39. Typical process for analyzing RDM from experiments. 
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repetitive tasks. We hope RDMTk will reduce errors and optimize resource usage. Our unified 

toolkit standardizes methodologies for reusability and sharing. Results can be made available to a 

larger community base where best practices and lessons learned will be easier to integrate because 

RDMTk is a centralized collaborative tool that can be used for conducting studies globally. Figure 

39 describes a typical flow chart for studying RDM using empirically collected data.  

2. RDMTk Toolkit Accounts 

Toolkit primarily supports 3 different types of accounts:  

• Administrators   

• Researchers  

• Participants 

Toolkit is primarily intended for the later two, i.e. people conducting empirical experiments 

and participating in them.  

A. Administrators 

Administrator is the person who plays vital roles in overall operation of the RDMTk 

application. The Administrator will be the point of contact to troubleshoot problems or issues 

related to deployment and accessibility. 

B. Researchers 

Toolkit categorizes researchers into two different types of audience: 

• Researchers focusing on task design and development 

• Researchers conducting empirical studies 
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C. Participants 

People using the toolkit for participating in an experiment are categorized as participants. 

There are two interfaces for participants to access experiments. Participants can be access the 

experiment via mTurk or Qualtrics or through another online labor and data collection framework.  

Use of one common interface to access the software makes using Toolkit simple. Figure 

40 shows the login page, which has a link to sign up for a new participant account as well as the 

login screen. 

 

Figure 40. RDMTk login screen. 
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A participant will have to click on the link to sign up for a new account.  

 

Figure 41. RDMTk account registration page. 

In the account registration page, one can create an account for participating in the tasks or 

by checking the Research Account check box to create a researcher’s account. Participant accounts 

will only allow taking tests and provide a dashboard for them only listing available experiments 

that are set up. However, a researcher’s account will allow one to manage different experiments, 

collect data and analyze results.  

3. Dashboard 

Dashboard has a simple user interface; it is divided into three sections: a top toolbar, left 

side menu items, and on the right side there is a main display section.  
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A. A quick start with the Researcher’s account 

As showing in Figure 42`, a researcher account’s dashboard allows one to access advanced 

features to conduct psychological experiments for RDM globally. They have advanced features 

compared to participants, such as access to:  

• Experiments 

• Adding new tasks 

• Data management 

• Analysis Tools 

 Each of these features is discussed in detail during later sections. 

 

Figure 42. RDMTk researcher’s dashboard view. 
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B. A quick start with the Participant account 

 

Figure 43. RDMTk participant’s dashboard view. 

As illustrated in Figure 43, a Participant account provides the user with a task list in the 

left navigation menu. On clicking a task, all of its experiments are visible to the user, among which 

the user may choose and participate in one. The participant can start the experiment by clicking 

the Start button next to the experiment name. 

4. Tasks 

Following are the default tasks in the toolkit: 

1. Balloon Task – In this task, participant can inflate the balloon by clicking. The user 

can either keep inflating or collect points. If the user collects the points before the 

balloon explode, he gets all the points, which is proportional to the number of 

clicks.If the balloon explodes, the user will get no points in that trial. 

2. Iowa Gambling Task - In this experiment, you will be asked to repeatedly select a 

card from one of four decks. You select a card by clicking the mouse on one of the 

decks. With each card, you can win some money, but you may also lose some. 

Some decks will be more profitable than others. You try to choose cards from the 
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most profitable decks so that your total winnings will be as high as possible. You 

will get 100 chances to select a card from the decks that you think will give you the 

highest winnings. Your total earnings and the number of cards selected will be 

displayed on screen. You start with $4000. 

3. Cups Task – In this task, you are going to choose cups to get the highest score. On 

each side of the screen, you will see a certain number of cups (2, 3, or 5). The cups 

will have a return value over them, either positive or negative. For each trial, you 

will be given the option of choosing a cup from either side by clicking on your 

choice. The side with multiple cups has one cup with the return value under it. The 

other cups have nothing under them. So your goal is to choose the right cups to 

maximize your score. Please read the payouts for each trial carefully. 

4. N Back - Using your right hand, you will put your thumb on the spacebar. You will 

see a string of letters presented one at a time. If the letter you saw is the same as the 

letter before the last one, press the spacebar as soon as you can. For example, if you 

see a sequence line '...m k h k p...', then you should press the spacebar on the second 

'k'. The user gets a short practice session before the experiment begins. 

5. Stroop - In this task, you will be asked to name the color of the ink the words are 

printed in as fast as you can, ignoring the actual word that is printed in each item. 

You will put your left middle finger on ‘D’, left index finger on 'F', right index 

finger on 'J' and right middle finger on 'K'. The user should memorize which button 

to press in correspondence to different ink colors before the experiment begins. 

6. Delayed Discounting Task - You will be presented with a series of choices in which 

you must indicate preference in a form to receive a given quantity of money. For 
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example, choose between "R$1.00 now" or "R$10.00 in a year's time." In this task, 

there is predefined set of sample questions that can be used by the user or the user 

can make his own set of questions that can be only used by him and cannot be seen 

by other researchers. These questions further can be modified by him only. 

5. Experiments 

Inside RDMTk, experiment is a generic term that is used to describe an instance that 

enables researchers to collect data from participants for a particular task. A task can be one among 

BART, CUPS, IGT, etc. Each experiment can be configured to suit individual necessities. Basic 

CRUD (create, read, update, delete) operations can be performed on experiments as described 

below.  

A. Creating Experiments 

Step 1: Navigate to Experiments menu. 

Click on the Experiments tab in the left side menu panel. 

 

Figure 44. RDMTk menu item “experiments”. 
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Step 2: Click on Add Experiment. 

 

Figure 45. RDMTk menu item: experiments->add experiment. 

Step 3: Fill in the form fields to create an RDMTk experiment for your study. 

 

Figure 46. RDMTk create experiment form. 

Experiment Name: Researcher decides a name for the experiment and the experiment will 

be stored in the toolkit with this name. 
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Task Name: Choose a task (Balloon, IGT, etc.) from a drop-down menu. 

Number of trials: The researcher selects the number of trials for the participants of the 

experiment being created. 

Trial Duration Type: Each trial in the experiment can have a randomized outcome or 

predetermined. For example, in case of BART task, balloon burst points can be randomized for 

each participant and trial (RANDOM) or predetermined fixed balloon burst points across all 

participants (FIXED). Select the one appropriate to your needs. 

• Random: The questions would be displayed in random order. 

• Fixed: The questions would be displayed in the proper sequence. 

Confirmation Page Type: Upon completion of all the trials, the participant is shown a 

confirmation message. This message can be either a default message which gives participants a 

code for their successful participation or a customized message for that particular experiment. If 

the researcher is integrating an experiment with mTurk or Qualtrics, it’s suggested they use the 

default option with a confirmation code. 

Default: A default text that is displayed to the participant after the completion of the task. 

Confirmation Code: It is the code that would be given to the participant after his completion 

of the experiment. 

Custom Text: If the researcher selects Confirmation Page Type as "CUSTOM_TXT" ,he 

can define the text to be displayed in this text box. 

Add-On features: Additional features that could be included in the experiments. 
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Enable mouse tracking: It is used to store the data regarding the mouse locations of the 

participant while going through the experiment, which can be studied and analyzed further by the 

researcher. 

Step 4: Click Submit. 

B. View Experiments 

To view, edit or delete an experiment, go to Experiments->View Experiments. 

 

Figure 47. RDMTk experiments list view. 

This will show you all the experiments created by the logged in user along with the options 

to view details, edit and delete an experiment. Each page shows 5 experiments at a time and if 

there are more than five, one can browse these experiments using navigation links highlighted in 

blue circle buttons.  

C. Show Experiment  

To see details for an existing experiment, click on the highlighted “So” button.  
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Figure 48. RDMTk “So” button to view experiment details. 

The “So” button will give access to the experiment URL, which is used to integrate with 

mTurk and Qualtrics. It also lists other relevant details for the experiment as shown below. 

 

Figure 49. RDMTk form listing experiment details. 

D. Edit Experiment  

To edit details for an existing experiment, click on the highlighted “Ed” button 

corresponding to it.  
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Figure 50. RDMTk “Ed” button to edit existing experiment details. 

The “Ed” button will pull up a form very similar to one in “create experiment”. Here, a 

researcher can modify experiment parameters for an already existing experiment. It should be 

noted that these changes will not reflect in the data collected for participants who already took a 

test. 
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Figure 51. RDMTk edit experiment details form. 

E. Delete Experiment  

To delete an experiment permanently, click on the highlighted “Dlt” button corresponding 

to it.  
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Figure 52. RDMTk “Dlt” button to delete an experiment. 

F. Experimental Design 

A researcher can create an experimental design before a study by selecting the highlighted 

“Experimental Design” link in the menu. 

 

Figure 53. RDMTk menu item for “experimental design”. 

Upon selecting to design a study using preexisting experiments, first currently existing 

study designs are listed.  
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Figure 54. RDMTk existing experimental design list and link to add new relations. 

Click on “Create new relation” to add a new experimental design. This link will give access 

to a form that will let the researcher design a study. 

 

Figure 55. RDMTk create experimental relationship form. 

In the above form, a researcher can select either the “Between Subjects” or “Independent 

Measures” design. Existing experiments are listed in group A and B list, upon selecting a particular 

task type. Experiments listed in group A and B will be of the same type. For creating a “Between 

Subjects Design,” the experiment in “Group A” needs to be different from the one in group B. 

However, to create an “Independent Measure Design” study, the experiments in group A and B 

should be same. 
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6. Integration with Amazon mTurk 

Researcher can recruit workers once experiment is created and experimental design 

finalized. 

  

Figure 56. Amazon mTurk interface to setup RDMTk experiments. 

RDMTk experiment is given as input in the highlighted box, see Figure 56 the right-side 

image. 

7. Data Management 

Data from all the individual experiments is stored in one central database. Described next 

are the menu options that give access and features to this data. 
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A. Download Experiment Results 

The current version of toolkit only supports the ability to download data as an Excel 

workbook. To accomplish this, follow the steps below: 

Step 1: Navigate to the download section: Data Management->Download Result. 

 

Figure 57. RDMTk download experiment results menu item. 

Step 2: Choose the task name which was used to create the desired experiment. 

Step 3: Choose the experiment's name from the drop-down list. 

Step 4: Click on download. 
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Figure 58. RDMTk form to download experiment’s data. 

 

8. Adding a New Task to RDMTk 

RDMTk currently supports six tasks; however, this is definitely not a complete list. To 

enhance toolkit’s usability, we have developed an easy to use interface that allows adding new 

tasks to toolkit. Adding a new task is a three-step process. This option is available only to 

researchers. To access this feature, click on Manage Tasks->Add a New Task, as highlighted in 

red below. 
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Figure 59. RDMTk step 1 form to add new task to toolkit. 

Step 1: Basic task information - 

Enter the task name and task id. If any of them is already in use, then the user will get the 

message to enter different details. 

 

Figure 60. RDMTk step 2 form to add new task to toolkit. 

Step 2: Upload the task code files - 



156 

 

Upload the zip file that includes all of the task files to be uploaded. A sample zip file can 

be downloaded for more understanding. 

NOTE: It is required that the index page in the task is a file named 'task.php'. 

Step 3: Upload the config.xml file which is required to create a new table in the database 

for the task. The table name may only contain letters, numbers, and dashes. No spaces are allowed. 

A sample config.xml file is also available on the page to provide better understanding. 

 

Figure 61. RDMTk step 3 form to add new task to toolkit. 

The config file will provide the toolkit information about the tables that it needs to create 

for the new task to be integrated. 
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The xml file needs to adhere to the following tree structure: 

<tables> 

<table name="table_name"> 

 <field_name type="data_type">Field Name 1 </field_name> 

 <field_name type="data_type"> Field Name 2 </field_name> 

 ... 

 ... 

</table> 

<table name="table_name"> 

 ... 

 ... 

</table> 

... 

... 

</tables> 

 

The data types should be strictly chosen from the following: 'integer' , 'float' , 'string' , 

'dateTime' . The script automatically creates an auto increment primary key field called 'S_no' for 

each new table. 

9. Analysis Tools 

RDMTk integrates data analysis features alongside other tools used to conduct empirical 

studies to reduce work load on the researcher. This feature will enable RDMTk to be eventually 
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grown towards being an expert system over time. Currently, it supports a feature to monitor an 

experiment using power test and a model to analyze data from IGT. Models implemented for IGT 

are to show proof of concept on the capabilities of RDMTk.  

RDMTk’s analysis backend is implemented to run on Amazon Web Services (AWS) to 

support compute-intensive operations. AWS is a collection of computing services that can scale to 

meet varying application resources. It is commonly referred to as cloud computing.  

Its integration with advanced data analysis tools such as R statistical package will empower 

researchers. Even though RDMTk does not provide an extensive set of models to complement 

currently implemented six tasks, it is designed to incorporate new techniques and models written 

in the R programming language seamlessly. 

10. Experiment Monitor 

Experiment monitoring feature give real time status and progress tracker for a selected 

experimental design. This tool helps a researcher to assess the number of participants that took 

part in the experiment(s), and also gives cues on when to stop recording data. This tool is built 

based upon power analysis or power test. Traditionally, the researcher would perform power test 

prior to conducting an actual experiment to determine the minimum sample size (in our case, 

participants) that would give good statistical significance for desired properties. The 

implementation in RDMTk is different from contemporary approaches because, in this case, the 

researcher would start the experiment without any predetermined sample size. During the course 

of an experiment, the researcher would assess statistical significance of the data collected so far 

by looking at effect size and power value. Based on these two values, it can be determined whether 

to stop the experiment or encourage larger sample.  
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The experiment monitor feature can be accessed by clicking on the “Experiment Monitor” 

link in the menu. Upon clicking, the menu dashboard shows the screen for monitoring an 

experiment. It consists of two sections, where in the first part, the researcher needs to select the 

experiment design and task type, upon which previously configured experimental designs are listed 

in the third dropdown list. Selecting one of the experimental designs starts the monitoring feature 

as shown in the figure below.   

 

Figure 62. RDMTk step 1 form to monitor real time experimental status and progress tracker. 

11. Analysis Models for IGT 

RDMTk implements the following three most commonly used analysis models for IGT as 

proof of concept of its capacity to analyze data fetched from the database on the R statistical 

platform running on Amazon Web Service (AWS). RDMTk implements a two-step approach in 

analyzing data collected through experiments. In the first step, the researcher can request to execute 

a specified model. Results after the computation are stored in a database as the model execution 

can be sometimes time consuming and results are not available immediately. These results are 

made available at a later time when the computation is completed. 
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To run one of these models, the researcher would click on the highlighted link in the menu 

and select the appropriate model. Currently implemented models are [12]:  

A. Base Model 

B. Random Model 

C. Expectancy Valence Learning (EVL) Model 

Once the model is selected, all the IGT experiments are listed. The researcher has the 

following three options: 

1. View model results – by clicking on “View” button. The button is enabled only if 

the model result is available to view.  

2. Download model results as a csv file – by clicking on “Dwnld” button. The button 

is enabled only if the model result is available to download.  

3. Execute model – by clicking the “Exec” button, the researcher submits a job to 

AWS for running the specified model on the cloud computing system. 

Resubmitting a job will override any results from previous runs. 
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Figure 63. RDMTk menu item to access IGT analysis models. 

 

a) Base Model Results 

 

Figure 64. RDMTk base model results sample. 
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b) Random Model Results 

 

Figure 65. RDMTk random model results sample. 

c) EVL Model Results 

 

Figure 66. RDMTk EVL model results sample. 
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