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A Multiple Classifier System (MCS) is designed to combine classification results of an 

ensemble of different classifiers and consequently to produce the highest possible classification 

output. MCS has recently drawn growing attention and has become a necessity, especially when 

a problem involves a large class of noisy data or when using a single pattern classifier that has 

serious drawbacks in its results. A wide range of pattern recognition applications have benefited 

from the implementation of MCS, these include areas such as handwriting recognition, 

incremental learning, data fusion, feature selection, and a large variety of medical applications.  

To achieve optimal ensemble performance, two design components must be optimized 

carefully which are diversity and the selection of combining rule. This dissertation is focused on 

designing an ensemble decision combining rule which leads the MCS to deliver the highest 

possible accuracy. Several models for decision combining rules, using an ensemble system of N 

classifiers and M classes, are developed. The proposed system can be considered as a unifying 

framework that works with any algebraic decision combining rule. While the results affirm that 

there is no single decision combining rule that can outperform in every classification problem, 

they clearly present the framework to design an optimum decision combining rule based on the 

statistics of the classifiers. Based on the predication extracted from the theoretical models, a 

novel algorithm that achieves optimal classification accuracy is presented in this study.  



The proposed algorithm is tested on six datasets, the experimental results agree with the 

trend predicted by theoretical derivations. Results based on the proposed algorithm show that the 

performance of an ensemble always achieves at least the performance of the best performing 

individual classifier and evades selecting the least performing classifier. In addition, the results 

of the proposed algorithm show a comparable performance in classification accuracy compared 

to the random forest with less computational operations which makes it a good candidate for real 

time classification problems. Finally, the proposed model serves as an in-depth exploration into 

the performance of MCS and brings to the forefront of classification research significant insights. 
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1. Background 

 

The history of the works in Multiple Classifier Systems (MCS) goes back to the 1979 paper 

by Dasarathy and Sheela [1]. In their work, the training space is partitioned into several combined 

classifiers. In 1990, the work given by Hansen and Salamon [2] improved the generalization error 

by combining several neural networks classifiers. The main contribution into ensemble systems is 

done by Schapire [3]. In his work, a strong classifier is generated from combining several weak 

classifiers using boosting. From there, research in ensemble systems grew rapidly under different 

names. The short summary of names and algorithms that have described ensemble systems are a 

combination of multiple classifiers [4] – [8], classifier fusion [9] – [11], classifiers ensembles 

(ensemble systems) [12], [13], mixture of experts [14], [15] and many others. In addition, several 

books have already been written that focus on topics that deal with the development of ensemble 

systems such as [16], [17] and from 2000 until now there are series of annual workshops on 

multiple classifier systems [18]. The purpose of these workshops is to organize and improve 

progress in the area of combined classifier systems. 

 

1.2. Advantages of Using Multiple Classifier Systems (MCS) 

 

There are many advantages of using multiple classifiers over single classifier systems [19]: 

Statistical Reasons: A single classifier system may perform perfectly on classification of training 

data but perform poorly on test data. In this case, the resulting classifiers are said to have a high 

generalization error. In comparison, training an ensemble of classifiers and then taking the average 

of their outputs reduces the generalization error and improves the classification accuracy. Although 

the ensemble performance may not be better than the best performance classifier, it aids in avoiding 

the choice of a poor classifier. 
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Large volume of data: In cases of a large volume of data it is impractical to train a single classifier 

on this data, instead the training data space is divided into several sectors or partitions. Combining 

their outputs appropriately proved to be more effective compared to a single classifiers system. 

Too little data: Ensemble systems are also proven to be an effective application on small training 

data sizes. For example, resampling the original data to generate different copies, then training 

different classifiers on these copies creates an ensemble that has proven to be very effective. 

Divide and Conquer: In cases of a complex and highly nonlinear decision boundary, it is difficult 

to train a single classifier.  Instead if the training space divided into an appropriate number of 

partitions and train different classifiers on these partitions, then the complex decision boundary 

breaks into smaller pieces that can be handled by individual classifiers. In other words, the 

individual classifiers that constitute an ensemble complete the complex decision boundary from 

combining the smaller pieces. 

Data fusion: Data fusion is a term that is used to describe data from different sources in order to 

make a formal decision. Therefore, in cases of data training spaces that comes from different 

sources, it is impractical to train a single classifier on such data. These types of features are called 

heterogeneous features. A better solution to this issue is to partition the training data into subsets 

in order to train different classifiers that are used to construct an ensemble. 

 

1.3. Architecture of Ensemble Systems 

 

Figure 1.1 shows a typical structure for an ensemble system. A collection of a group of 

classifiers is called an ensemble and the fuser is a predefined rule that combines outputs of 

classifiers. Two famous topologies which are used to construct an ensemble are serial and parallel 

configuration figure 1.2 and figure 1.3 respectively.  In both cases the classifiers group is called 

an ensemble. In serial topology, the individual classifiers are connected in a cascade manner, and 

the benefit of this structure is the feature’s spaces are classified sequentially. When a primary 

classifier is uncertain about classifying a given instance then the data is fed to the next classifier 

that specializes in certain difficult instances and the process continues. Using this approach, it 

becomes possible to build a stronger ensemble system based on weak classifiers. Schapire [3] 

showed that it can boost the weak classifiers into a strong one by focusing on the subsets that are 

difficult to classify. On the other hand, the parallel structure is the most used and studied ensemble, 
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in this topology a feature vector is fed to all classifiers and each classifier makes its decision 

independently, then the fuser combine the classifier’s outputs to give the final class label. In 

addition, there are ensemble systems which are based on hybrid topology, i.e. a mixture of parallel 

and serial configurations which are rarely used in practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Classifier #1

Classifier #2

Classifier #N

FuzerFeature Vector
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…
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…
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…
…
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Figure 1.1. Structure of Ensemble Systems 

Classifier #1 Classifier #2 Classifier #N
Feature 
Vector

Final class 
label

Figure 1.2. Serial Structure of Ensemble Systems 



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

To get a better understanding of ensemble systems, figure 1.4 shows a comprehensive 

picture, where the ensemble structure can be divided into four layers. The function of each layer 

is described as follows: 

1. Features generation: this layer is a preprocessing stage which is related to the raw data. 

The purpose is to generate features that achieve high individual accuracy and diversity 

among base classifiers. 

2. Feature manipulation: during the training phase features manipulation is necessary in 

order to achieve diversity among base classifiers. Diversity means all classifiers have 

complementary information which is directly related to the improvement of classification 

accuracy. 

3. Classifiers: In this layer, there are many parameters that optimize the ensemble 

performance such as how to determine the number of base classifiers that are used to build 

an ensemble and which is the best method to train the base classifiers. It is better to train 

them simultaneously or iteratively by adding and removing classifiers. In addition, the 

chosen ensemble topology is very important.  Mainly two topologies are used, and these 

are parallel and serial. In addition, creating diversity among base classifiers is very 

important, in which each individual classifier learns part of the training space. There are 

many methods used to create diversity among base classifiers, for example: 

 

Classifier #1

Classifier #2

Classifier #N

FuzerFeature Vector
Final class 

label

…
…

.…
…
…
…
…
…
…

...

Figure 1.3. Parallel Structure of Ensemble Systems 
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a. Creating an ensemble that is based on a different classifier model. 

b. Using different parameters in training individual classifiers. 

c. Partitioning the training space into different sectors, so that each sector is used to 

train a different base classifier. 

d. Dividing classification labels among different classifiers, in order to ensure that 

classifiers are trained on different classification tasks. 

4. Combiner: a combination or fusion process is the last stage in the classifiers combination, 

and it can be classified as follows: 

a. A non-trainable combiner is a combiner that is not related to the training data 

structure. An example of this is the simple arithmetic combiner such as the average 

and majority vote. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Generation

Feature 
Manipulation

Classifier #1 Classifier #2 Classifier #N

Combiner

……………... Level 3

Level 4

Level 1

Level 2

Figure 1.4. Design Stages for Ensemble Systems 



6 

 

b. A trainable combiner is the combiner that is generated using a special training 

algorithm. An example of this are the weighted combining rules and the combining 

rules that are based on classifier selection methods, in this case a single classifier is 

authorized to classify data for a given feature vector. 

c. A meta classifier utilize the output of individual classifiers as training inputs for a 

new classifier. This approach is called stack generalization. 

 

1.4. Literature Survey 

 

For many theoretical and practical reasons, multiple classifier systems show improvements 

in classification accuracy compared to a single pattern classifier [16], [17], [19], [20], [21], [22]. 

Improvements come mainly from combining several classifiers that have diverse characteristics. 

For example, a single classifier system may give a high recognition rate on training data but 

performs poorly on new data, especially when the trained data is noisy. Consequently, the resulting 

classifier has poor generalization performance. It is better practice to design a classifier with good 

generalization performance. Training an ensemble of classifiers creates individual classifiers with 

different generalization errors, and taking the average performance of these classifiers minimizes 

overall generalization errors [23], [24].  

 

Multiple classifier systems that use parallel structures are composed mainly of three stages. 

The first stage consists of a group of individual classifiers (base classifiers) that are already trained 

to recognize new data. In the second stage, the outputs of these classifiers are combined using a 

predefined combining rule. In the third stage, a class that has a maximum membership value among 

others is chosen as a correct class. The first and second stages are considered as crucial parts in 

the MCS design process. The major research areas in optimizing ensemble performance are 

focusing on diversity among individual classifiers (stage one) and the method used to combine 

their outputs (stage two). Combining multiple classifiers that have the same knowledge about 

feature space would not improve classification accuracy, and some form of diversity is necessary 

to minimize generalization errors [25], [26], [27], [28]. On the other hand, combining methods are 

used to fuse outputs of classifiers, which have been under the spotlight, and several researchers 

have presented different algorithms attempting to improve classification accuracy [16], [17], [18], 
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[29]. Combining rules are divided into three categories depending on the level of the outputs of 

classifiers. The category levels are: abstract level, rank level, and continuous output level. The last 

category is studied extensively since it contains more information about class as compared to the 

others. Combining rules also may consider either simple (unweighted) or weighted rules. In simple 

rules, all base classifiers in the ensemble are considered equally in the combination process since 

all classifiers have equal strengths (classification accuracies). In practice, base classifiers may use 

different classification algorithms or be trained by different data sectors leading to different 

classification accuracies. Therefore, weighting the output of each classifier according to its 

strength guarantees improvements in classification accuracy, and consequently, the weighted 

combining rule is a natural solution to combine base classifiers.  

 

Another issue related to the combination process is the assumption regarding the 

correlation between outputs of classifiers. As the correlation coefficient increases among a group 

of base classifiers, they become redundant and result in lower classification accuracy. Correlation 

level among outputs of classifiers is used to model the diversity level among them [19]. The 

literature has many practical and theoretical works focused on recognition rates under the 

assumption of independent versus dependent classifiers and models that use simple versus 

weighted combining rules as in [30], [31], [32], [33], [34], [35], [36], [37].  

 

In [30], a theoretical and experimental work for combining classifiers is presented. They 

assumed independence between classifiers and considered simple combining rules (product, sum, 

max, min, median and majority vote). Their results show that the sum rule outperforms others. In 

[31], analytical models are derived for six fusion rules. Derivations are based on assumptions that 

outputs of classifiers produce an estimation of the class posterior probability, independent and 

identically distributed for two class distributions: normal and uniform. Results showed that the 

ensemble performance depends on class distribution. The work presented in [32] compares the 

performance of the sum versus majority vote. They proposed a model based on error estimation 

for each classifier. They assumed classifiers are equal in strengths and distribution of classifiers 

outputs are normal, independent and identically distributed. Their results show that the sum always 

outperforms majority vote except for long tail distribution in which majority vote gives         

superior performance over the sum rule. In [33], a theoretical and experimental analysis is done 
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using simple average and weighted average rules. Their results show that the added error of the 

ensemble depends on the performance of individual classifiers and the correlation level between 

their outputs 

 

1.5. Dissertation Purpose 

 

This work is focused on optimizing performance of ensemble systems by managing 

diversity among individual classifiers and the methods used to combine their outputs. Combining 

multiple classifiers that have the same knowledge about features space would not improve the 

classification accuracy, so some form of diversity is necessary to minimize generalization errors. 

In practice, classifiers exhibiting a correlation among their outputs result in decreasing 

classification accuracy. In addition, base classifiers exhibit different classification accuracies on 

test data (each classifier has a different classification strength). To get a realistic model, it is 

necessary to account for the correlation effect and classifiers’ weights into the fusion process. As 

shown in the survey of the previous studies, not all the conditions are considered in evaluating 

ensemble performance. Therefore, theoretical models are needed in order to get a better 

understanding of ensemble performance. One of the purposes of this study is to estimate the 

performance of an MCS that uses weighted combining rules for correlated classifiers.  

On the other hand, methods that are used to combine outputs of classifiers are an interesting 

research area, and many experimental and theoretical studies have addressed this problem. The 

evolution of combining rule performance using experimental studies did not explain clearly the 

interrelated relationship among system parameters, and it is not leading to a deep understanding 

of the system behavior. As a result, mathematical models are needed to help in investigating why 

a specific combining rule works better than others for different classification problems. As shown 

in the literature survey, each combining rule works under a specific ensemble condition. It is 

uncleared which combining rule will work for a given classification problem. So, another purpose 

of this study is to design an optimal combining rule for a given classification problem. 

 

The final dissertation goal is to optimize ensemble systems by creating an ensemble with 

maximum diversity and an optimal fusion rule. For the purpose of validation, the proposed 

algorithm will be tested on challenging classification problems. 
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1.6. Dissertation Contribution 

 

This work is divided into two parts. The first part is focused on theoretical derivations. By 

assuming weighted and correlated classifiers, closed form expressions for probability of 

classification errors are estimated for four weighted combining rules which are: geometric mean, 

average, majority vote and harmonic mean. Theoretical results show there is no single combining 

rules that work for all classification problems, i.e. each combining rule works under a specified 

ensemble condition. In addition, results show that the ensemble performance (classification 

accuracy) degraded exponentially as correlation coefficient increases among individual classifiers.  

Based on the previous results, the derivation is generalized by estimating the classification error 

for generalized mean (power mean) rule. Power mean includes a spectrum of averaging functions, 

the results of theoretical derivations help to select an optimal fusion rule that minimized the 

classification error. 

 

In the second part and guided by the results of theoretical derivations, an algorithm for 

combining classifiers is proposed. The algorithm is tested among six data sets. Experimental 

results agree with predication of theoretical derivations and ensemble classification always provide 

better classification accuracy of individual classifiers and allows for avoiding the worst 

performance classifiers. In addition, the classification results of the proposed algorithm show 

comparable classification results compared to the random forest over six data set under study. 

 

1.7. Dissertation Overview 

 

The rest of dissertation chapters are briefly described as follows: chapter 2 reviewed two 

theoretical frameworks for estimating the performance of ensemble systems which are the 

Kunchava [31] and Tumer-Ghosh [39] frameworks. In chapter 3, closed formulas for classification 

error for majority votes and geometric mean rules are estimated under assumption of unweighted 

classifiers. Chapter 4 extended the derivation presented in Chapter 3 to weighted and correlated 

classifiers and for four weighted fusion rules; geometric mean, majority vote, average                      

and harmonic mean. Chapter 6 generalized the derivation for generalized mean rule under an 

assumption of  𝑁 classifiers and 𝑀 classes. Also, a novel ensemble algorithm is proposed which 
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provided classification results comparable to the standard ensemble classification algorithm. 

Finally, Chapter 6 presented a dissertation conclusion, contribution and future work. 
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CHAPTER II 
 
 

THEORETICAL FRAMEWORKS FOR MULTIPLE CLASSIFIER SYSTEMS 
 
 

2.1. Architecture of Multiple Classifier Systems  

 

Figure 2.1 shows a typical configuration for an ensemble of classifiers that consists 

primarily of three stages. Stage one is related to the classification process on an individual classifier 

level, where a feature vector 𝑥𝑘 defined in  𝑅𝑛 is fed to 𝑁 parallel classifiers.  These classifiers 

may use the same training algorithm such as homogeneous classifiers or use different training 

algorithms such as heterogeneous classifiers. Each classifier in the ensemble is trained to recognize 

𝑀 classes. In case of continuous classifiers outputs and using an appropriate normalization, it can 

be assumed that each one produces at its output an estimation of the posterior class probability 

(𝑑𝑖,𝑗) for 𝑀 classes, i.e. 𝑑𝑖,𝑗 ∈ {0,1}, where 𝑖 = 1,2, … , 𝑁 and 𝑗 = 1,2, … , 𝑀.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.1. A Typical Configuration for a Multiple Classifier System 
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Outputs of classifiers are best described in terms of decision profile matrix (𝐷𝑝(𝑥)) [11], 

as in (2.1). The dimension of decision profile matrix is 𝑁 × 𝑀, its columns represent the support 

given from 𝑁 classifiers to a single class. On the other hand, rows represent the support from a 

single classifier to 𝑀 classes. In this work, a parallel classifiers structure is considered, which is 

the most widely used structure for combining ensembles of classifiers, other structures are also 

used in practice such as serial or hybrid [38]. 
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From (2.1), it can define two correlation domains in the ensemble, one in the vertical 

direction that is among different classifiers for the same class and another in the horizontal 

direction which is among different classes for the same classifier. In the derivation, it assumed two 

classes, thus the focused is on the correlation effect among different classifiers for the same class.  

In stage two, a combining rule or fusion rule combines the output from each classifier (the 

columns of  𝐷𝑝(𝑥)), i.e. 

 

                             MjfordddFxp jNjjj  ,..,2,1    ), ,...,,()/(ˆ
,,2,1  ,                          (2.2) 

    

where 𝑝̂(𝜔𝑗/𝑥) is the estimated class posterior probability for a given class 𝜔𝑗 and 𝐹(∙) is the 

fusion rule used to combine classifiers outputs. Finally, in stage three, the combiner’s output that 

has a maximum membership to a specific class is chosen as the correct class label, which means 
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2.2. Review of Kuncheva Framework 

 

Kuncheva [31] presented a framework for multiple classifiers systems that estimates the 

classification accuracies of combining several classifiers. The fusion rules that are used in the 

framework given in [31] are minimum, maximum, average, median, majority vote and oracle. In 

the derivation, it was assumed the following: 

 

• There are 𝑁 classifiers that work in parallel. 

• Each classifier produces at its output an estimation of the posterior class probability which 

is denoted by 𝑑𝑖,𝑗 ∈ [0,1] where 

 

)()/()(, xxpxd jiji   ,                                             (2.4) 

 

where 𝑥 ∈ 𝑅𝑛 is the feature vector and 𝑝𝑖(𝜔𝑗/𝑥) is the true class posterior probability and 

𝜂(𝑥) is a random variable that could have any distribution, where 𝑖 = 1,2, … , 𝑀 and 𝑗 =

1,2, … , 𝑁. 

• To simplify derivation, it was assumed two classes {𝜔1, 𝜔2}, then 𝑑1,𝑗 + 𝑑2,𝑗 = 1 for 𝑗 =

1,2, … , 𝑁. 

• Classifiers outputs 𝑑𝑖,𝑗 are independent and identically distributed. 

 

In [31] two probability distributions are considered in the derivation which are normal and 

uniform distributions. The probability of classification error is calculated as  

 



5.0
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1 )()5.0(
1

dyyfppp pe ,                                         (2.5) 

 

where 𝑝̂1 = 𝐹{𝑑1,1 , 𝑑1,2 , … , 𝑑1,𝑁 ,}, 𝑝̂2 = 𝐹{𝑑2,1 , 𝑑2,2 , … , 𝑑2,𝑁 ,} and 𝑓𝑝1
(∙) is the probability 

density function of the random variable 𝑝̂1. For a single classifier the probability of classification 

error for normal distribution is  

 



14 
 








 




m
pe

5.0
,                                                   (2.6) 

 

and for uniform distribution is 
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where 𝑚, 𝜎 are the first and second moments of 𝑝̂1 when its distribution is normal while 𝑚 and 𝑏 

are mean and period of 𝑝̂1 when its distribution is uniform. Based on the previous assumptions, 

Kuncheva derived and compared the classification errors for six fusion rules not including product 

rule which do not fit easily into the model presented in [31]. In addition, the assumption of 

independence between classifiers is unrealistic since in practice classifiers shows dependence 

among each other and as a result it is expected to lower the classification accuracy. Therefore, it 

can consider that the independence assumption provides an upper limit of the ensemble 

performance (optimistic estimation). It is important to model the correlation between classifiers 

since it’s directly connected to diversity. Highly correlated classifiers represent less diversity while 

independence represents highly diverse classifiers. Diversity is considered as a cornerstone in the 

ensemble design and model it contributes significantly to the theory of multiple classifiers. 

 

2.3. Review of Tumer and Ghosh Framework 

 

In the following, the framework given by [33] and [39] is briefly reviewed, in order to 

simplify the derivation, it was assumed 𝑀 = 2 but it can be extended to any number. The 

probability density function of two classes are 𝑝(𝜔1/𝑥) and 𝑝(𝜔2/𝑥). In addition, the dimension 

of a feature vector is considered as a scalar for the same reason as above and it can be extended to 

𝑘 dimension. In practice, a trained classifier gives an estimate of the class probability density 

function (𝑓𝑗(𝑥)) that is deviated from true value by 𝜀𝑗  i.e.  

 

21  ),()/()( ,jxxpxf jjj   ,                                            (2.8) 
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where 𝜀𝑗  is the error related to the jth classifier’s output which is considered as a normal random 

variable with mean 𝑚𝑗 (bias error) and variance 𝜎𝑗
2 (variance error).  Figure 2.2 shows the decision 

boundary for a single classifier with two class examples, as shown the overall classification error 

is broken down into two components. The gray area is regarded as a Bayes error while the dark 

area is defined as the added error which is related to the imperfection in the training process, either 

due to noisy data or an incomplete representation of the actual training data space. Due to the 

inaccuracies of trained classifiers, the decision boundary deviated or shifted from the optimum 

decision value (𝑥𝑎) by a value 𝑏 (shift parameter) resulting in the expected added error estimated 

as  
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where 𝐴(𝑏) is the added error region colored in a black as shown in figure 2.2, 𝑝(𝑥) is the 

probability distribution of the feature x and 𝑓𝑏(𝑏) is the probability density function of the random 

variable 𝑏. Using linear approximations 𝑝(𝑥) can be represented by a constant 𝑝(𝑥𝑎) and 𝐴(𝑏) is 

expressed as [33] 

 

Figure 2.2. Definition of Bayes and 

Added Errors for a Single Classifier 

System and Two Class Problem 
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where 𝑠 = 𝑝́(𝜔1/𝑥𝑎) − 𝑝́(𝜔2/𝑥𝑎), and 𝑝́(∙) is the first derivative of 𝑝(∙), then (2.9) is modified 

into 
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Expression (2.11) suggests that the key idea in calculating 𝐸𝑎𝑑𝑑 is estimating the 

probability density function of 𝑏 and its moments. From figure 2.2 and for a single classifier with 

two classes, the random variable 𝑏 is estimated as ([39]) 
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Then the added error for a single classifier is defined as [33] 
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After the brief review of the framework defined in [39] and [33], the work is extended in 

the next chapter to derive an expression for the added error for combined classifier systems.  The 

Tumer and Gosh framework is studied extensively for linear combining rules [34] but no studies 

have been done in nonlinear combining rules. Chapter four is focused on derive a close form 

expression for estimation error for the product rule based on Tumor and Gosh’s framework. 

Kuncheva’s framework presents an excellent derivation to model combining classifiers and 

attempts to estimate the error resulting from inherent interference among classes for given data, 

while Tumer and Gosh’s framework attempts to model the bias and variance error that results from 

poor and over training of base classifiers. The idea of combining both frameworks into a single 

one is considered important toward unifying the theory of multiple classifier systems. 
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CHAPTER III 

 

ANALYSIS OF A MULTIPLE CLASSIFIER SYSTEM USING PRODUCT AND 

MAJORITY VOTING RULES 

 

In this chapter, the performance of product and majority voting rules is studied under 

idealized ensemble conditions then the derivations are generalized in the next chapter. 

 

3.1. Analysis of Product Rule Using Kuncheva Framework 

One of the key factors in designing a successful multiple classifier system (MCS) is 

choosing an appropriate combining rule. Many theoretical and experimental efforts have been 

focused on estimating the probability of classification error for different combining rules. In this 

work, assuming N classifiers and two independent and identically distributed classes, closed 

formulas for product and modified product rules are derived for estimating classification error 

probability under assumption of two class distributions, normal and uniform. The derivations are 

validated with computer simulations. The performance results of product, modified product, 

average, and majority vote rules are compared. The comparisons are done in term of probability 

of classification error as a function of class variance and number of classifiers. Results show that 

the modified product rule outperforms others while the product rule ranks last under the 

assumption of combining classifiers with good classification properties.     

   

3.1.1. Probability of Classification Error               

In this section, a closed form expression is derived for classification error probability 

using product and modified product rules. Assuming two class distributions (normal and 

uniform), N base classifiers (𝑖 = 1,2, … , 𝑁), and two classes  𝑗 = 1,2, 

then  𝑝𝑖(𝜔1 𝑥) = 1 − 𝑝𝑖(𝜔2 𝑥)⁄⁄ . For simplifying expressions, it can set; 𝑝𝑖 =

𝑝𝑖(𝜔1 𝑥⁄ )  𝑎𝑛𝑑  𝑝̅𝑖 = 𝑝𝑖(𝜔2 𝑥)  →  𝑝𝑖 = 1 −  𝑝̅𝑖 ⁄ . 
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A. Product Rule 

The typical formula of product rule is defined as 

 

𝑝̂ = ∏ 𝑝𝑖
𝑁
𝑖=1 ,                                                                (3.1)   

                                                                 

where 𝑝̂ is the overall posterior class probability. The aim here is to estimate the probability 

density function for 𝑝̂ and its moments. By taking the natural logarithm of both sides of (3.1), the 

multiplication process between random variables is converted into addition, that means 

 

log(𝑝̂) = ∑ log (𝑝𝑖)
𝑁
𝑖=1 .                                                      (3.2)  

                                

The purpose here is not estimating the probability density function of log(𝑝𝑖) but rather 

in its first and second moments. From the statistic theory [40], if there is a function 𝑓(𝑥) of a 

random variable 𝑋 provided that 𝑓(𝑥) is differentiable and the moments of 𝑋 are finite, then the 

moments of 𝑓(𝑥)  is approximated as 

 

𝐸[𝑓(𝑋)] ≈ 𝑓(𝑚𝑥) +
𝑓̈(𝑚𝑥)

2
𝜎𝑥

2,                                              (3.3)   

                                    

𝑉𝐴𝑅[𝑓(𝑋)] ≈ (𝑓̇(𝑚𝑥))2𝜎𝑥
2,                                                 (3.4)  

                                    

where 𝑚𝑥 and 𝜎𝑥
2 are the mean and variance of the random variable 𝑋.  𝑓̇(𝑥)  and 𝑓̈(𝑥) are the 

first and second derivatives of 𝑓(𝑥) respectively. In the following, two formulas are derived for 

classification error, one for normal distribution and another for uniform distribution. All random 

variables (𝑝𝑖) are normal, independent and identically distributed, then from (3.3) and (3.4), the 

moments of each one is approximated as 

 

𝐸[𝑙𝑜𝑔(𝑝𝑖)] = 𝑙𝑜𝑔(𝑚𝑔) −
𝜎𝑔

2

2𝑚𝑔
2 ,                                          (3.5)   
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𝑉𝐴𝑅[𝑙𝑜𝑔(𝑝𝑖)] =
𝜎𝑔

2

𝑚𝑔
2 .                                                     (3.6)   

                                                 

According to the central limit theorem, the probability density function of the sum of 𝑘 

random variables approaches normal distribution as 𝑘 become large. Then the resulting mean 

and variance of the random variable (log(𝑝𝑖)) are 

 

𝐸[𝑙𝑜𝑔(𝑝̂)] = 𝑁[𝑙𝑜𝑔(𝑚𝑔) −
𝜎𝑔

2

2𝑚𝑔
2],                                                 (3.7)  

                           

𝑉𝐴𝑅[𝑙𝑜𝑔(𝑝̂)] = 𝐸[(𝑙𝑜𝑔(𝑝̂) − 𝐸[𝑙𝑜𝑔(𝑝̂)])2] =
𝑁𝜎𝑔

2

𝑚𝑔
2 .                                  (3.8) 

 

To find the distribution of 𝑝̂, take the exponent of both sides of (3.2). From the 

probability theory, if 𝑋 and 𝑌 are random variables where Y = 𝑙𝑜𝑔 (X) and 𝑌 has a normal 

distribution with mean 𝑚 and variance σ2 , then the random variable 𝑋 has a lognormal 

distribution with probability density function defined as 

 

𝑓𝑝(𝑥) =
1

𝑥 𝜎 √2𝜋  
𝑒𝑥𝑝 [−1

2
(

𝑙𝑜𝑔(𝑥)−𝑚

𝜎
)

2

] ,                                    (3.9)  

               

𝑤ℎ𝑒𝑟𝑒   0 < 𝑥 < ∞ , with 

 

𝐸[𝑋] = 𝑒𝑚+𝜎2 2⁄ ,                                                      (3.10)   

                                                          

𝑉𝐴𝑅[𝑋] = 𝑒2𝑚+𝜎2
 (𝑒𝜎2

− 1).                                           (3.11)  

                                    

The cumulative distribution is given by 

 

𝐹𝑝(𝑥) = Ф (
𝑙𝑜𝑔(𝑥)−𝑚

𝜎
).                                                 (3.12)   

                                                  

Then the probability of classification error is calculated as follows 



20 
 

𝑝𝑒 = 𝐹(𝑝̂ < 0.5) = Ф (
𝑙𝑜𝑔(0.5)−𝑁[𝑙𝑜𝑔(𝑚𝑔)−

𝜎𝑔
2

2𝑚𝑔
2 ]

√𝑁 𝜎𝑔
𝑚𝑔

 

).                                (3.13) 

 

It is also assumed that the posterior classifier probabilities have uniform distribution with 

mean (𝑚𝑢) and variance  𝜎𝑢
2 = 𝑤2 3⁄ , where 𝑤 is defined within a period of  |𝑚𝑢-w, 𝑚𝑢+w| 

[31]. The rest of the previous assumptions and derivations also hold for uniform distribution with 

minor changes. Then the probability of classification error for uniform distribution is can be 

written as 

 

𝑝𝑒 = 𝐹(𝑝̂ < 0.5) = Ф (
𝑙𝑜𝑔(0.5)−𝑁 [𝑙𝑜𝑔(𝑚𝑢)− 𝑊2

6𝑚𝑢
2 ]

(√𝑁𝑊) (√3𝑚𝑢⁄ )
).                              (3.14) 

                           

B. Modified Product Rule 

A closer look at (3.7) and (3.8) reveals that the mean and variance of log(𝑝𝑖) grows 

linearly with 𝑁. That means the performance of product rule degrades rapidly with increasing 𝑁. 

If the right side of (3.2) is divided by 𝑁, this makes (3.7) independent on 𝑁 as well as reduces 

the variance as defined in (3.8) by a factor of 1 𝑁⁄  . Therefore, the modified version of product 

rule becomes 

 

𝑝̂ = (∏ 𝑝𝑖
𝑁
𝑖=1 )

1
𝑁⁄ .                                                          (3.15) 

                                                            

Equation (3.15) is usually referenced as the geometric mean. In parallel steps of the 

derivations from (3.2) to (3.8), it can get the following 

 

𝐸[𝑙𝑜𝑔(𝑝̂)] = [𝑙𝑜𝑔(𝑚𝑔) −
𝜎𝑔

2

2𝑚𝑔
2],                                            (3.16)                                

𝑉𝐴𝑅[𝑙𝑜𝑔(𝑝̂)] =
𝜎𝑔

2

𝑁𝑚𝑔
2.                                                 (3.17)  
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The results of derivations defined in (3.16) and (3.17) confirmed the conclusions in the 

previous section. The probability of classification error for normal distribution is 

 

𝑝𝑒 = Ф (
𝑙𝑜𝑔(0.5)−[𝑙𝑜𝑔(𝑚𝑔)−

𝜎𝑔
2

2𝑚𝑔
2 ]

𝜎𝑔

√𝑁 𝑚𝑔
 

),                                           (3.18) 

                           

and for the uniform distribution is 

 

𝑝𝑒 = Ф (
𝑙𝑜𝑔(0.5)−[𝑙𝑜𝑔(𝑚𝑢)− 𝑊2

6𝑚𝑢
2 ]

𝑊 (√3𝑁𝑚𝑢⁄ )
).                                           (3.19)  

                               

The formulas defined in (3.13), (3.14), (3.18) and (3.19) are very valuable since it helps 

in predicting the performance of product and modified product rules versus class mean and class 

variance as well as understanding the impact of varying the number of base classifiers. 

 

3.1.2. Results and Discussion 

To validate the derivations for estimating the probability density function (see (3.9)),  a 

computer program is generated that uses 10 classifiers, each classifier gives an estimate of the 

posterior probability density ( 𝑝𝑖). Each estimated 𝑝𝑖 is considered as a random variable with 

normal distribution that has 𝑚𝑔 = 10 and 𝜎𝑔
2=2. The product rule is implemented and estimated 

the overall posterior probability (𝑝̂) by multiplying the individual random variable 

probabilities  𝑝𝑖 for each classifier and computed the pdf of the result. Figure 3.1 shows the two 

density functions from the results of the simulation program and from the mathematical 

derivations (3.9), the x-axis is normalized for the purpose of clarity. The similarity between the 

empirical and theoretical results is clearly evident. There are noticeable small difference between 

the two graphs as may be expected since equations (3.3) and (3.4) used in the derivation are an 

approximation to exact values. 
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Another computer experiment is designed to verify the derivation of the probability of 

classification error as defined in (3.13). The set up in this experiment is similar to the previous 

one, except that there are 20 classifiers and each has a normal distribution with 𝑚𝑔 = 1 and 𝜎𝑔 as 

a variable. Figure 3.2 shows the probability of classification error as a function of  𝜎𝑔. The figure 

clearly shows that the computer simulation and theoretical model are in agreement. The small 

difference between theoretical and practical results again is due to the approximations made in 

(3.3) and (3.4) as well as the limited data distribution generated by a simulation program. Figure 

3.3 displays a two-dimensional plot between 𝑚𝑔 and 𝜎𝑔 as a function of classification error for 9 

classifiers.  

 

 

 

 

 

 

 

Figure 3.1. A Comparison of Probability Density Functions of (𝑝̂) 

Between Theoretical Model and Computer Simulations 𝑚𝑔 = 10, 

𝜎𝑔=√2 and N=10 
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Figure 3.2. A Comparison in Term of the Probability 

of Classification Error Against 𝜎𝑔 Between Theoretical 

Model and Computer Simulation, 𝑚𝑔 = 1 and N=20 
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As shown the operating characteristic with low classification error probability is limited 

to a small region { 𝑚𝑔 > 0.93 & 𝜎𝑔 < 0.1}. Also a careful investigation on the 𝑚𝑔 axis, shows 

that the abrupt change at  𝑚𝑔 ≈ 0.93 exhibits a smooth change on the 𝜎𝑔 axis. It is now clear that 

the behavior of the product rule is very sensitive to changes in 𝑚𝑔 and less to 𝜎𝑔 variations. This 

is due to the fact that the probability density function of 𝑝̂ (as shown in figure 3.1) is 

concentrated into a small region; therefore, a small change in 𝑚𝑔 results in a large change in the 

mean as well as in the variance of the random variable 𝑝̂ (see (3.10) and (3.11)). Such a behavior 

among variables can cause a significant abrupt degradation or improvement in the system 

performance. 

 

 

 

                 

 

 

 

 

          If the condition that all random variables have the same mean and variance is removed, 

and assign different values to each one, then is expected to get a more robust performance. 

Figure 3.4 shows a two-dimensional plot for probability of classification error using modified 

product rule as a function of 𝑚𝑔 and σg for 9 classifiers. It is clear the modified product rule 

exhibits better performance than the product rule since it displays a smoother behavior against 

changes in 𝑚𝑔 and σg as well as it is having a larger region with low classification error 

compared to the product rule performance. 
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Product Rule as a Function of 𝜎𝑔 , mg and N=9 
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Figure 3.5 and figure 3.6 show the performance of the product, modified product, average 

and majority vote rules in term of classification error as a function of  𝜎𝑔 and 𝑤 respectively. 

(Formulas for average and majority vote rules are taken from [31]), for  𝑚𝑔 = 𝑚𝑢 = 1 𝑎𝑛𝑑 𝑁 =

7. The comparison included two distributions, normal and uniform. As shown in figure 3.5 and 

figure 3.6, the product rule exhibits poor performance for 𝜎 values of 0.1 and higher, and its 

overall performance ranked last among the other combining rules. As can be seen, the modified 

product rule outperforms other rules, notably the uniform distribution. These results were 

expected, since figure 3.3 suggested that the low classification error region of the product rule is 

limited to  𝑚 > 0.93 𝑎𝑛𝑑 𝜎 < 0.1. 
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Figure 3.4. Probability of Classification Error for Modified 

Product Rule as a Function of 𝜎𝑔 , mg  and N=9 
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Finally, figure 3.7 shows a comparison of the performance of modified product, average 

and majority vote rules as a function of classifier numbers for  𝑚𝑔 = 0.8  and 𝜎𝑔 = 0.3. It is 

clear that the modified product rule gives superior performance compared to others. The product 

rule is not considered in the comparison because its performance degrades exponentially with the 

increase in classifiers number. This behavior results from the fact that the total class variance of 

product rule increases linearly with the increase of the number of classifiers causing exponential 

performance degradation. 
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Figure 3.6. Classification Error for Different Combining 

Rules as a Function of  w for Uniform distribution, 𝑚𝑢 =

1 and N=7 
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Figure 3.7. Classification Error for Different Combining 
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3.1.3. Section Conclusions 

 

In this section, assuming N classifiers and two classes, a mathematical model is proposed 

for estimating the classification error probability of ensemble of classifiers operating under 

product and modified product rules. It was assumed the posterior class probability is 

independent, identically distributed and for two class distributions, normal and uniform. The 

derivations were verified using computer simulations. The system performance in terms of 

classification error as a function of mean and variance of posterior class probabilities was 

investigated. It also addressed the impact of posterior class variance and the number of classifiers 

on the probability of classification error. Results show that product rule ranks last among other 

combining rules, while the modified product rule outperforms them.  

 

3.2. Analysis of Product Rule Using Tumor-Gush Framework 

 

In order to improve classification accuracy, multiple classifier systems have provided 

better pattern classification over single classifier systems in different applications. The 

theoretical frameworks proposed in [33] and [39] present important tools for estimating and 

minimizing the added error of linearly combined classifier systems. In this section, a theoretical 

model is proposed that estimates the added error using the geometric mean rule which is a 

nonlinear combining rule. In the derivation, it assumed assume classifier outputs are uncorrelated 

and have identical distributions for a given class case. It was shown by setting the number of 

classifiers to one (a single classifier system), the derived formula is modified and matches the 

results given in [33]. Derivations are validated with computer simulations and compared with the 

analytical results. Due to the nonlinearity of the geometric mean, theoretical results show that the 

bias and variance errors are mixed together in their contribution to the added error. It was also 

shown that the bias error dominated the contribution to the added error compared to the variance 

error. It is possible to minimize the variance error by increasing the ensemble size (number of 

classifiers) while the bias error is minimized under specific conditions. The proposed theoretical 

work can help in investigating the added error for other nonlinear arithmetic combining rules.  
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3.2.1. Estimation the Added Error for Geometric Mean Rule 

 

In this section, a formula that estimated the added error for geometric mean rule is 

derived. Due to the inaccuracy of the individual classifiers, the estimated decision boundary is 

deviated from the ideal one. At the decision boundary of the combined classifier outputs, the 

posterior probabilities of two classes are defined as 

 

)()( 21 ga
g

ga
g bxfbxf  .                                                           (3.20) 

 

The subscript 𝑔 refers to the geometric mean fusion process, 𝑓1
𝑔

(∙) and 𝑓2
𝑔

(∙) are the 

combined posterior probabilities for classes 𝜔1 and 𝜔2 respectively. Using the mathematical 

principles defined in (2.12), the shift parameter is written as 
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where 𝑝́𝑔(𝜔𝑗/𝑥𝑎) is the first derivative of 𝑝𝑔(𝜔𝑗/𝑥) for 𝑗 = 1,2. Since the combination process 

is averaged, then the slope of 𝑝́𝑔(𝜔𝑗/𝑥𝑎) is assumed not changed by combination which results 

in 𝑠𝑔 = 𝑠. In order to estimate the probability density function of 𝑏𝑔, the distribution of the term 

𝜂1
𝑔

− 𝜂2
𝑔

 should be estimated.  The Geometric Mean (GM) rule is defined as 𝐺𝑀 = ∏ 𝑥𝑖
1/𝑁𝑁

𝑖=1  

where 𝑥𝑖 is a real positive number, then it can represent 𝜂𝑗
𝑔

 as 
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To simplify (3.22), the natural logarithm is applied to the both sides, as a result the 

multiplication operations is converted into addition as defined below 
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To estimate the added error of the geometric mean rule, it should estimate the probability 

density function of 𝜂𝑗
𝑔

 and its moments. Based on the previous assumptions the probability 

density function of 𝜂𝑖,𝑗 is a normal with mean and variance are 𝑚η𝑖,𝑗
 and 𝜎𝜂𝑖,𝑗

2  respectively, then 

the moments of log (𝜂𝑖,𝑗) are written as 
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For a given class, the random variables 𝜂𝑖,𝑗 are assumed independent, then the moments 

of log (𝜂𝑗
𝑔

) are expressed as follows 
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Since the term log (𝜂𝑗
𝑔

) involves the addition of 𝑁 random variables, then it can 

approximate its distribution as a normal as N become large. In order to get the distribution of 𝜂𝑗
𝑔

 

taking the exponent of both sides of (3.23). From the probability theory if there are two random 

variables X and Y and they are defined as 𝑋 = exp (𝑌) and Y has a normal distribution then 𝑋 

(which is this case 𝜂𝑗
𝑔

) has lognormal distribution with moments defined as follows 
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There is no analytical solution for (3.28) and (3.29) but they can be solved numerically; 

however, an analytical expression helps us understanding the interrelationship roles of the 

ensemble parameters on the overall performance. Using Taylor series it is possible to 

approximate the moments of log (𝜂𝑗
𝑔

).If the moments of  𝜂𝑖,𝑗 are finite then (3.28) and (3.29) can 

be rewritten as follows: 
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In order to simplify the derivation, errors that corrupt the N classifiers for a specific class 

are assumed identical, then 𝑚𝑖,𝑗 = 𝑚𝑗 and 𝜎𝑖,𝑗
2 = 𝜎𝑗

2 for 𝑖 = 1,2, … , 𝑁 and 𝑗 = 1,2, then (3.30) 

and (3.31) evolve into 
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If class 𝜔1 and 𝜔2 are assumed independent then based on the simulation test given in 

section 3.2.2, the distribution of the difference of two independent lognormal distributions (𝑏𝑔) 

can be approximated as a normal distribution. Using (3.21) the moments of 𝑏𝑔 are defined as 

follows 
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Using (2.9) the added error (𝐸𝑎𝑑𝑑
𝑔

) for geometric mean is defined as    

 

.
)(

2

1
exp

22

)(
)]([

2

2

2

2
g

bg

bgg

g

bg

a
g

g
add db

mb
b

sxp
bAEE













 
 






                              (3.36) 

 

It is possible to approximate (3.36) if the moments of 𝑏𝑔 are finite. By using Taylor series 

expansion for 𝐴(𝑏𝑔) around 𝑚𝑏𝑔, the added error is written as  
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where )( gbA   is the second derivative of 𝐴(𝑏𝑔). Using (3.36) and (3.37) the added error is 

written as 
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The added error defined in (3.38) is decomposed into two components 𝑚𝑏𝑔
2  and 𝜎𝑏𝑔

2 . Due 

to the nonlinearity of the geometric mean, the bias (𝑚𝑗) and variance (𝜎𝑗
2) errors are mixed 

together in their contribution to the added error. It can be noted that as N increases, the variance 

component (𝜎𝑏𝑔
2 ) of 𝑏𝑔 as defined in (3.33) and (3.35) is gradually diminished, and the only 

limiting term is the bias component (𝑚𝑏𝑔) of 𝑏𝑔.  As part of the validation of the previous 

derivation, if the number of classifiers in (3.38) is set to 1, then the added error from (3.38) 

should match the added error for a single classifier as expressed in (2.13).  Substitute 𝑁 = 1 into 

(3.34) given that 𝑝(𝜔1/𝑥𝑎) = 𝑝(𝜔2/𝑥𝑎), then  
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and for (3.35)  
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In order to simplify (3.40) Maclaurin series expansion is used for 𝑒𝑥𝑝(∙), where 

𝑒𝑥𝑝(𝑥) ≈ 1 + 𝑥, when 𝑥 ≪ 1, i.e. 𝑝(𝜔𝑗/𝑥𝑎) + 𝑚𝑗 ≫ 𝜎𝑗  then (3.40) modifies to 
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From previous results (3.39) and (3.41), it is clear that the approximation in (3.32) is 

valid over wide range of 𝑚𝑗 and 𝜎𝑗 values while the approximation in (3.33) is valid when 

𝑝(𝜔𝑗/𝑥𝑎) + 𝑚𝑗 ≫ 𝜎𝑗. However, the exact calculation for 𝐸[𝜂𝑗
𝑔

] and 𝑉𝐴𝑅[𝜂𝑗
𝑔

] are obtained by 

solving the numerical integrations given in (3.24) and (3.25). 

 

3.2.2. Results and Discussion 

 

The discussion in this section is divided into two parts. In the first part, the purpose is to 

validate the derivations with computer simulations. In the second part, the performance analysis 

of the geometric mean rule is studied in terms of ensemble parameters 𝑚1, 𝑚2, σ1,  𝜎2 and 𝑁. 

Since 𝑝(𝑥𝑎) is a constant that scales the added error and for comparison, the value of the added 

error is normalized by 𝑝(𝑥𝑎). To validate derivations, a computer simulation model is proposed. 

The purpose is to estimate the probability density function of the shift parameter 𝑏𝑔 

experimentally and compare it with the predication of the theoretical model. In the simulation 

model, the system behavior shown in figure 2.2 is simulated, in which the posterior probability 

of two classes are approximated with linear lines that have slopes {1,-1}, each line is corrupted 

with a normal random variable that represents class error (𝜀𝑗 , 𝑗 = 1,2). The mean and variance of 

𝜀𝑗 are 𝑚𝑗 and 𝜎𝑗
2 respectively, the setting of other parameters are 𝑓1(𝑥) = 1 − 𝑥, 𝑓2(𝑥) = 𝑥, s =

𝑝́(𝜔1/𝑥𝑎) − 𝑝́(𝜔2/𝑥𝑎) = 2, 𝑚1 = 0.2, 𝑚2 = 0.1, 𝜎1 = 𝜎2 = 0.1 and 𝑁 = 10. The steps is 

repeated for 𝑁 = 10 classifiers, then the geometric mean combining rule is applied to combine 

classifier outputs in order to get the final estimate of the final posterior probabilities 𝑓𝑗
𝑔(𝑥), 𝑗 =

1,2. The shift parameter 𝑏𝑔 is calculated when 𝑓1
𝑔(𝑥𝑏) = 𝑓2

𝑔(𝑥𝑏), the previous algorithm is 

repeated 100,000 times in order to get an accurate estimate of 𝑏𝑔. In figure 3.8, an example 

image of an iteration of the procedure is presented, showing the two posterior probabilities 

deviating from the optimum decision boundary (𝑥 = 0.5) due to errors.  
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The bias component of a class error shifts the posterior probabilities up and down 

depending on the level of bias, while the variance component represents a random fluctuation 

about the average value of 𝑓𝑗(𝑥). Figure 3.9 shows a comparison in terms of the probability 

density functions of 𝑏𝑔 between the empirical and theoretical models for the geometric mean 

rule. The parameters used in comparison are s = 𝑝́(𝜔1/𝑥𝑎) − 𝑝́(𝜔2/𝑥𝑎) = 2, 𝑚1 = 0.2, 𝑚2 =

0.1, 𝜎1 = 𝜎2 = 0.1 and 𝑁 = 10, the figure is clearly shown the matching between both models. 

Figure 3.10 shows the error components of 𝐸𝑎𝑑𝑑
𝑔

 (𝜎𝑔 and 𝑚𝑔) are plotted as a function of N.  
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As shown the variance component is minimized gradually as expanding the ensemble 

size while the bias component remains unaffected. A Closer look at (3.32), (3.33) and (3.38) 

reveals that as 𝑁 → ∞ then lim
𝑁→∞

𝐸𝑎𝑑𝑑
𝑔

= (𝑠 2)𝑚𝑏𝑔
2⁄ , where 𝜎𝑏𝑔

2 = 0. The possible ways to 

minimize 𝑚𝑏𝑔
2  is either by generating classifiers with very low individual bias error or for a 

given class, training classifiers that have nearly identical bias errors i.e. making 𝑚1 ≈ 𝑚2 given 

that 𝑚𝑗 ≫ 𝜎𝑗. The performance is tested as a function of the relative mean 𝑚1 − 𝑚2 and under 

equal standard deviation error 𝜎1 = 𝜎2. The reason for this choice is because these definitions 

match the expressions for the bias and variance errors defined in (2.13), (3.34) and (3.35). Figure 

3.11 and figure 3.12 show the added error 𝐸𝑎𝑑𝑑
𝑔

 plotted as a function of 𝜎𝑗 and (𝑚1 − 𝑚2) 

respectively. As shown, the performance degraded severely against the relative bias error while it 

exhibited smoother change against variance error.  
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The reason behind this behavior as defined in (3.32) and (3.33) the variance error is 

scaled by the number of classifiers used in the ensemble while there is no control on the bias 

error in the combination process. Another possible solution for minimizing the bias error is to 

weigh each classifier before the fusion process. The weight should be directly related to the bias 

level of each classifier since the variance error is already scaled by the number of classifiers. In 

order to get a better vision of the system performance, figure 3.13 shows a two-dimensional plot 

in terms of added error as a function of relative bias and variance errors. As shown the system 

performance grows exponentially with the level of bias error. For the given system parameters 
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𝑠 = 2 and 𝑁 = 10, the region of low added error (≤ 0.01) is bounded by (𝑚1 − 𝑚2) < 0.1 and 

𝜎𝑗 < 0.5.  

 

3.2.3. Section Conclusion 

 

The purpose of combining several classifiers is to minimize the added error from each 

one and improve the overall classification accuracy. In this work, a theoretical model is 

developed for estimating the added error of combining 𝑁 classifiers using a nonlinear geometric 

mean rule. The assumptions used in the derivations are based on the framework given by [33] 

and [39] where classifier outputs are considered as an estimation of posterior class probability 

functions which behave as monotonic functions around the decision boundary. The imperfection 

in the training process is modeled as a normal random variable superimposed on classifier 

outputs whose first and second moments represent the bias and variance errors respectively. The 

purpose of the combination process is to minimize the level of the error components. It was 

shown that the variance error is minimized by increasing the ensemble size, while there is no 

control on bias error. Yet, under certain conditions, the effect of bias error can be reduced if 

classifiers are optimized to satisfy the condition of  𝑚1 ≈ 𝑚2 and 𝑚𝑗 ≫ 𝜎𝑗 , 𝑗 = 1,2. Also, the 

results show that the bias error dominates the contribution into overall error compared to the 

variance error. One possible solution for minimizing the effect of bias error is to weigh 

classifiers according to the level of bias error before the fusion process. The developed 

framework for the geometric mean rule gives more intuition into estimating the added error for 

other nonlinear combining rules. 

 

3.3. Performance Analysis of Majority Vote  

 

Combining rules in Multiple Classifier Systems (MCS) play a central role in shaping 

their performance. Many theoretical works are developed to predict the performance using 

different combining rules. Some of the developed works assumed that classifier outputs are 

independent; however, in practice an ensemble of classifiers shows dependent behavior between 

each other. In this work, a theoretical model is derived for estimating the misclassification error 

probability of MCS based on the majority vote combiner. In the derivation, it assumed each 
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classifier produces at its output an estimation of the posterior class probability that has a normal 

distribution. In addition, each classifier assumed to has two classes, and the outputs of classifiers 

are dependent and identically distributed. The model is validated using computer simulations. 

Results show that the ensemble performance is highly sensitive to class variance while exhibits a 

smoother behavior against class mean. Also, results show that as the correlation among classifier 

outputs increases, the probability of classification error decreases exponentially. The trend 

continues until the performance reaches the behavior of a single classifier regardless of the 

number of base classifiers used in the ensemble. The proposed model provides a better 

understanding of the behavior of majority vote combiner in MCS. 

 

3.3.1. Majority Vote Rule 

 

The majority voting rule is considered one of the most commonly used rules in MCS 

[16]. There are three types of majority voting based on a method used in decision making. The 

first method called “Unanimous” voting selects a class that all classifiers are in agreement. The 

second type is called simple majority, in this case, a class is chosen if it is at least one more than 

half number of classifiers are agreed on that class. The third type is called “majority voting”, in 

this type, the class received the heights number of votes will be chosen. The majority voting rule 

is the most popular rule used. The class selection procedure is described as follows. A class 𝜔𝑗 

will be chosen if 
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where N is the number of classifiers in the ensemble, 𝑀 is the number of classes and 𝑑𝑖,𝑗 ∈ {0,1} 

is the decision of the ith classifier for the jth class. Theoretical results shown that as 𝑁 → ∞ the 

probability of classification error approaches 0, when a single base classifier error probability is 

less than 0.5 (𝑝𝑒 < 0.5) and approaches 1 when 𝑝𝑒 > 0.5, [19].  
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3.3.2. Probability of Classification Error for Majority Vote Combiner 

In this section, a mathematical model is derived to estimate the performance of MCS 

using majority vote rule for 𝑁 correlated classifiers. It was considered two classes’ problem 

(𝑀 = 2) [31], [32], [33], since it is presumed that more assumptions about system variables will 

be needed for classification problems with 𝑀 > 2 [31].  Also, it is assumed that classifiers’ 

outputs produce an estimation of the class posterior probability (𝑑𝑖,𝑗) that have identical normal 

distribution with mean m and variance  𝜎2. In order to simplify derivations, let 𝑝i = 𝑑𝑖,1, 𝑝̅𝑖 =

𝑑𝑖,2 = 1 − 𝑝𝑖  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁. For details on these assumptions, one can refer to work done in 

[31] and [41].  

 

Additionally, correlation coefficients 𝜌𝑘,𝑙 between any pair of classifiers are assumed 

identical, i.e. 𝜌𝑘,𝑙 = 𝜌 for all 𝑘 ≠ 𝑙. Consequently, the covariance between each classifiers pair is 

defined as 

      l kpp lklklk  for     ,   ),cov( 2
,                                                   (3.43) 

According to the previous assumptions and from the probability theory, it is possible to 

express the joint normal probability density function of classifiers’ outputs as follows  
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where P is a vector of random variables which representing classifiers’ outputs, 𝛀 is the mean 

vector of the random variable P, (∙)𝑇is a matrix transpose operator and 𝚺 is the covariance matrix 

that should be symmetric and positive definite. P, 𝛀 and 𝚺 are defined as follow     
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To calculate the probability of classification error, it should count all events in which the 

number of base classifiers in error which is equal or more than  (𝑁 + 1 2⁄ ), i.e. 
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𝐹[𝒂, 𝒃] is the cumulative distribution function for jointly normal random variable vector 

P. 𝒂 = [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑁] and 𝒃 = [𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑁] are defining the lower and upper 

integration limits respectively, using (3.44), 𝐹[𝒂, 𝒃] is written as follows 
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 To clarify how to use integral limits defined in (3.47). it was defined two domains; the 

first one is related to the probability of misclassification that is calculated over {−∞, 0.5}  and 

the second is the probability of correct classification that is calculated over {0.5, ∞}. Using (3.44) 

through (3.47), the derived formula for the probability of classification error is described as 

follows   
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where P, 𝛀 and 𝚺 are defined in (3.46). The 𝑘 terms defined in (3.48) stand for misclassification 

probability and (𝑁 − 𝑘) terms correspond to the correct classification probability. The (𝑁 − 𝑘) 

terms only exist when 𝑘 + 1 ≤ 𝑁 otherwise their value are considered to be unity. Proposed 

works in [42], [43], suggested algorithms for numerical computation of the multivariate normal 

distribution function defined in (3.48). In order to investigate the effect of the correlation 

parameter (𝜌) on the classification error probability, expression (3.48) is expanded in terms of 𝜌 

as follows 
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where |𝚺|, 𝜅1 and 𝜅2  are defined by (3.50), (3.51) and (3.52) respectively 
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It is worth noticing that using (3.49) the correlation coefficient can be decomposed into 

two parts. The first part 𝜅1 contributes to the independent random variable components of P 

while the second part  𝜅2 contributes to the joint components.  For 𝑁 ≫ 1, 𝜅1 and 𝜅2 can 

approximate as follows 
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Substitute the values of  𝜅1 and 𝜅2  defined in (3.53) into (3.49) results in 
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The expression defined in (3.54) holds only for 𝑁 ≫ 1. Since the value of correlation 

coefficient varies as 0 ≤ |𝜌| ≤ 1, then as 𝜌 increases, its value contributes exponentially into 

(3.54). Therefore, it can anticipate that the performance of MCS based majority vote combiner 

grows at an exponential rate as the correlation level between classifiers increases. For a special 

case, when 𝜌 = 0 (outputs of classifiers are uncorrelated) the covariance matrix (𝚺) become a 

diagonal matrix with diagonal elements equal to 𝜎2, i.e.  
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where I is 𝑁 × 𝑁 identity matrix then 
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Substituting (3.55) and (3.56) in (3.48) results in 
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It is also possible to get (3.57) by substituting 𝜌 = 0 into (3.49). By making a little 

arrangement in (3.57), results in 
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(3.58)   

       

equation (3.58) describes the performance of MCS for 𝜌 = 0, which is equivalent to the model 

derived in reference [31] (eq. 25). The expression derived in (3.40) or (3.49) can be viewed as a 

generalized version of the formula derived in reference [31]. When removing dependency 

condition among the classifiers’ outputs, both models match in performance as presented in the 

next section. Therefore, the model defined in (3.49) is considered as a tool that helps in the 

analysis of MCS using majority voting combiner. 

 

3.3.3. Results and Concluding Remarks 

In this section, a model is verified in two stages and then discuss the results. In the first 

stage, the model defined in (3.48) is compared with the model proposed in [31]. Since expression 

defined in [31] is derived for uncorrelated classifiers, and for the comparison to be fair, the 

correlation coefficient in (3.48) is set to zero (𝜌 = 0). Figure 3.14 shows two plots one for the 
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expression defined in [31] and another is for the model defined in (3.48) by setting 𝜌 = 0 where 

𝑁 = 9 and 𝑚 = 0.8.  As shown, both models give identical behavior. In the second stage, the 

derived model is needed to validate for different correlation values. To achieve this goal, a 

computer simulation program is built that depicts the stochastic behavior of MCS based majority 

voting combiner.  N jointly normal random variables are generated, the level of dependence 

between these random variables is controlled by the covariance matrix given in (3.45). Each 

random variable is considered as an estimation of the posterior class probability, and each has 

normal distribution with a mean 𝑚 and variance 𝜎2. Then outputs of base classifiers are 

combined using the majority voting rule. According to the voting rule, the ensemble outcome is 

considered as misclassifying the class if the number of classifiers in error is equal or more 

than (𝑁 + 1)/2. The probability of classification error is calculated as the ratio of the number of 

times that ensemble is in error to the total number of trials. In order to get accurate results with 

reasonable execution speed, the total number of iterations is chosen to be 100,000 times. Figure 

3.14 shows a comparison between empirical and theoretical models. The comparison is done in 

terms of classification error probability against class standard deviation (𝜎) for 𝜌 =

{0, 0.25, 0.5}, 𝑚 = 0.8, and 𝑁 = 9. It is clear a match in performance between computer 

simulation and the proposed theoretical model using three values of correlation coefficients. 

 

In order to evaluate the performance of majority voting combiner, three plots are 

generated in figures 3.15, 3.16 and 3.17. These figures show the classification error probability 

as a function of the correlation coefficient for different m, 𝜎 and N values. Careful inspection of 

these figures, one can deduce that the performance of classifier ensemble degrades exponentially 

as the correlation coefficient increases. These results are expected and agree with the prediction 

given by (3.54). As the correlation among classifiers’ outputs increases, more classifiers share 

the same information. As 𝜌 → 1, and for a given 𝑚 and 𝜎 values the overall ensemble 

performance approaches the performance of a single classifier regardless of the number of base 

classifiers used in the ensemble (as shown in figure 3.17). Figures (figure 3.15, figure 3.16 and 

figure 3.17) also show that the sensitivity of ensemble performance against 𝑚, 𝜎 𝑜𝑟 𝑁 varies. 

The ensemble is more sensitive to changes in 𝜎 (figure 3.15), i.e. the performance degraded 

exponentially with a linear increase in 𝜎 while it exhibits smoother behavior versus 𝑚 and 𝑁. 
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Therefore, to get a low classification ensemble error, the value of 𝜎 must be kept at low as 

possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Probability of Classification Error as a 

Function of 𝜌 , for 𝜎 = {0.1, 0.2, 0.3}, m=0.8 and N=9 
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Figure 3.14. A Comparison in Term of Probability of 

Classification Error Between Model Derived in (3.48) 

and Simulated Model for Three Correlation 
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To provide a generalized judgment on the performance of MCS based majority voting 

rule, figure 3.18 and figure 3.19 are generated which are two-dimensional plots of the ensemble 

performance in terms of misclassification error against the class mean and class standard 

deviation for two correlation values 𝜌 = {0, 0.5}. As shown in figure 3.19 (𝜌 = 0) a poor 

ensemble performance for 𝜎 > 0.2 region is obvious. It is also clear from figure 3.18 that the 

ensemble shows sensitive performance against varying 𝜎 while it exhibits a smoother behavior 

with variations in m. Similarly, figure 3.19 shows the performance of the ensemble for 𝜌 = 0.5. 

In which it is evident that the effect of correlation between classifiers output increases the level 

of the region of low classification error probability to higher values. 

 

 

𝜌 

Figure 3.17. Probability of Classification Error as a 

Function of 𝜌, For N= {5, 7, 9} , M=0.8 and  𝜎 = 0.1 
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Figure 3.16. Probability of Classification Error as a 

Function of 𝜌, for m= {0.8, 0.9, 1} , 𝜎 = 0.1 and N=9 
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 3.3.4. Section Conclusion 

Combining rules are considered as one of the crucial layers in the design process of a 

multiple classifier system. The estimation of classification error probability has been proposed 

through many models assuming independence among classifiers’ outputs. However, since 

classifiers exhibit dependent behavior, a theoretical model is derived for estimating the 

performance of MCS using majority voting as a combining rule. The derivation considered that 

the classifiers’ outputs are dependent, normal and identically distributed and for two classes case. 
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Figure 3.18. Two Dimensional Plot of Probability of 

Classification Error as a Function of 𝜎 and m for 𝜌=0 

and N=9 
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To validate the mathematical model, computer simulations is used and verifications result 

confirmed the validity of the proposed model. It also has shown that the performance of the 

classifier ensemble decreases exponentially as the correlation coefficient increases. To get the 

benefit of using MCS in a correlated condition, many ensemble parameters should be optimized 

properly. Values of 𝜌, 𝜎 𝑎𝑛𝑑 𝑚 are the key factors in the ensemble design. For example, to get 

acceptable classification accuracy (< 10−3) in a highly correlated environment with  𝜌 = 0.5. 

The class mean should be more than 0.7 (𝑚 > 0.7), and the class standard deviation must be less 

than 0.2 (𝜎 < 0.2). The proposed model serves as an investigation of the performance of MCS 

using majority voting rule and brings significant insights.  
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CHAPTER IV 

 

AN ANALYTICAL FRAMEWORK FOR WEIGHTED FUSION RULES IN 

COMBINED CLASSIFIER SYSTEMS 

4.1.  Introduction 

 

Fusion rules in a Multiple Classifier System (MCS) are considered one of the major 

design components in improving its classification accuracy. In this work, performance results of 

four weighted combining rules are estimated and compared which are: geometric mean, majority 

vote, average and harmonic mean. The derivations are based on assumptions adapted from 

Kuncheva framework [31] that stated individual classifiers outputs are an estimation of their 

individual posterior class probability, and they are correlated and normally distributed. Also, a 

systematic way to estimate the weights of individual classifiers is developed based on their class 

mean and variance. The results show that the ensemble performance degrades exponentially as 

increases the correlation level among classifiers outputs. In fact, as the correlation coefficient 

value approaches one, the ensemble reaches the performance of a single classifier, which is 

shown mathematically. Upon comparing the ensemble performance against class mean, class 

variance, correlation coefficient and number of classifiers, it found that the ensemble 

performance agrees with the principle of the no-free-lunch theorem in which each combining 

rule works for a given set of ensemble parameter. For a given ensemble condition, this study 

allow us to better understand of the strengths and weaknesses of each rule and thus to choose an 

appropriate rule that minimized the ensemble error. The proposed analytical models can be used 

as tools for the analysis and prediction of the performance of multiple classifier systems. 

 

4.2.  Analytical Analysis 

 

In this section, analytical expressions for estimating the probability of classification error 

is developed using four weighted combining rules. It assumed that there are 𝑁 classifiers that 

work in parallel {𝐶1, 𝐶2, … , 𝐶𝑁}, each classifier classifies data into 𝑀 classes and each classifier’s 

output is considered as an estimation of the class posterior probability represented by 𝑑𝑖,𝑗(𝑥) ∈

[0,1] with weight 𝑤𝑖,𝑗 related directly to a classifier’s accuracy where 𝑖 = 1, 2, … , 𝑁 and           
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𝑗 = 1,2, … , 𝑀. In addition, it assumed that 𝑑𝑖,𝑗(𝑥) has a normal distribution in which the class 

mean is 𝑝(𝜔𝑗/𝑥), and so we have 

 

𝑑𝑖,𝑗 = 𝑝𝑖(𝜔𝑗/𝑥) + 𝜂𝑖,𝑗(𝑥).                                                   (4.1) 

                                                                                                                                                         

The term 𝑝𝑖(𝜔𝑗/𝑥) represents the true class posterior probability density function for a 

given input feature vector in which 𝑥 ∈  𝑅𝐾 and 𝜂𝑖,𝑗(𝑥) is a normal random variable with zero 

mean and 𝜎2 variance, the justifications for the previous assumptions are given in [31] and [41].  

To simplify the derivations, it considered the case of two classes (𝑀 = 2), then (2) is reduced to 

a column vector i.e. 𝐖 = [𝑤1, 𝑤2, … , 𝑤𝑁]𝑇, 𝑑𝑖,1(𝑥) + 𝑑𝑖,2(𝑥) = 1, for 𝑖 = 1,2, … 𝑁. It is possible 

to extend derivations for 𝑀 classes, but it requires including more assumptions about other 

variables. Also let 𝑝𝑖 = 𝑑𝑖,1 and 𝑝̅𝑖 = 𝑑𝑖,2 = 1 − 𝑑𝑖,1 = 1 − 𝑝𝑖, and then the fused output for 

class 𝜔1 is  𝑝̂1 = 𝑝̂(𝜔1 𝑥⁄ ) = Ψ{ (𝑝1, 𝑤1), (𝑝2, 𝑤2), … , (𝑝𝑁, 𝑤𝑁)} and 𝑝̂2 = 𝑝̂(𝜔2 𝑥⁄ ) =

Ψ{ (𝑝̅1, 𝑤1), (𝑝̅2, 𝑤2), … , (𝑝̅𝑁 , 𝑤𝑁)} for 𝜔2. It also considered that classifiers outputs are 

normally distributed since it is the most common distribution that arises in many stochastic 

systems. However, the previous assumptions are applicable to any other distributions. In this 

section, the study is focused on the effects of correlation among 𝑁 classfiers.  

 

To define a systematic way for incorporating classifiers’ weights into analytical models, it 

assumed that the sum of the weights of the classifiers to be 1, i.e.  ∑ 𝑤𝑖
𝑁
𝑖=1 = 1 and 𝑤𝑖>0, then 

the weight of individual classifier is defined as  
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,                                           (4.2)     

   

where 𝑄𝑘 is the probability of correct classifications for the kth classifier, thus 𝑄𝑘 = 1 − 𝑃𝑘, 𝑃𝑘 

is the probability of classification error. For a normal posterior class distribution, the probability 

of classification error for base classifier is defined as, [31] 
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where 𝑚𝑖 and 𝜎𝑖
2 are the mean and variance of the posterior class random variable 𝑝𝑖 and Φ(∙) is 

the cumulative distribution function of 𝑝𝑖. Using (4.3), it can rewrite (4.2) as  
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The expression in (4.4) defines the weight of the ith classifiers based on its class variance 

(𝜎𝑖
2) and mean (𝑚𝑖). In the following derivations, a formula for each combining rule and under 

independent classifiers condition is proposed and then generalized the results for the correlated 

classifiers outputs. analytical models for each rule is briefly described. In the subsequent 

derivations SG, SM, SA and SH are referred to as Simple Geometric, Simple Majority vote, 

Simple Average and Simple Harmonic mean respectively, while WG, WM, WA and WH are 

referred to Weighted Geometric, Weighted Majority vote, Weighted Average and Weighted 

Harmonic mean respectively. 

 

4.3.  Weighted Geometric Mean Rule (WG) 

 

The work defined in [36], showed that the product rule exhibits poor performance 

compared to the geometric mean. Therefore, it would not be included in the discussion. In order 

to propose a suitable definition for WG, the weight is chosen to be the power of estimated class 

posterior probability (𝑝𝑖). This definition means that the classifiers’ weights scale the 

contribution of each classifier’s output to the overall performance according to their individual 

accuracies. The rule used to define the weighted geometric mean for two classes is defined as 

follows 
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In case of equal classifiers’ weights, i.e. 𝑤𝑖 = 1 𝑁⁄ , the expression in (4.5) is modified to 

𝑝̂1 = ∏ 𝑝𝑖
1 𝑁⁄𝑁

𝑖=1 , which represents a simple geometric mean. In order to calculate the 

classification error of the weighted geometric rule, the probability density function of 𝑝̂1 should 

be estimated. The problem of finding the probability density function of the product of 𝑁 random 

variables is extensively studied in different fields such as statistics and engineering [44], [45]. In 

this work, an accurate probabilistic method is proposed that can handle the product of 𝑁 

dependent random variables and estimate the resulting distribution.  By taking the natural 

logarithm of both sides of (4.5), results in  
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The probability density function of log (𝑝̂1) defined in (4.6) approaches a normal 

distribution as 𝑁 becomes larger, and the mean and variance of log (𝑝̂1) are given by 
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where 𝑓(𝑝) is the probability density of 𝑝𝑖. There is no compact expression for  𝑚log (𝑝𝑖) and 

𝜎log (𝑝𝑖)
2  but they can be solved numerically. In order to get useful analytical expressions that 

explain how ensemble’s parameters optimize its performance, the moments defined in (4.7) and 

(4.8) are approximated using Taylor series expansion around 𝑚𝑖 as follows 
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The previous approximation in (4.11) is held over a wide range of values for 𝑚𝑖 and 𝜎𝑖, 

while (4.12) is valid when 𝜎𝑖 ≪ 𝑚𝑖, [36]. The exact value for 𝑚log (𝑝𝑖) and 𝜎log (𝑝𝑖)
2  are given in 

(4.9) and (4.10) respectively and the approximated values are 𝑚log (𝑝𝑖) ≈ [log (𝑚𝑖) − 𝜎𝑖
2 2𝑚𝑖

2⁄ ] 

and 𝜎log (𝑝𝑖)
2 ≈ 𝜎𝑖

2 𝑚𝑖
2⁄ . To find the distribution of 𝑝̂1, take the exponent of both sides of (4.6). It 

is known from probability theory that if 𝑋 and 𝑌 are two random variables defined as 𝑌 =

log (𝑋) and 𝑌 has a normal distribution, then 𝑋 has lognormal distribution, and its cumulative 

distribution is given by  
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Then using (4.7) – (4.13), the average probability of classification error for weighted 

geometric mean is defined as 
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The previous derivation is based on the assumption that classifiers are uncorrelated, in the 

case of correlated classifiers, the correlation coefficient among classifier outputs is defined as 

𝜌𝑘,𝑙 where 𝑘 = 1,2, … , 𝑁 and 𝑙 = 1,2, … , 𝑁 given that 𝑘 ≠ 𝑙.  The mean of the random variable 
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(log (𝑝̂1)) remains the same as defined in (4.11) while the variance is calculated as follows 
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Then the average classification error probability is 
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The expression in (4.16) provides us with an estimate of the ensemble performance based 

on weighted geometric mean and correlated classifiers. A closer look at (4.14) or (4.16) reveals 

that the class mean is inversely related to the variance by a factor of 1 𝑚2⁄ . A key point in the 

ensemble design is as follows: In classifier training phase, if there is no control over minimizing 

the class variance, then it is better to construct an ensemble with classifiers that have as large a 

class mean as possible. This strategy will reduce the overall ensemble error. Then, it expected the 
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performance of geometric mean to improve as 𝑚𝑖  → 1, where the improvement rate is 1 𝑚𝑖
2⁄ . To 

consider a special case when all base classifiers have equal strengths then 𝑤𝑖 = 1 𝑁⁄ , 𝑚1 =

𝑚2 = 𝑚𝑖 … = 𝑚𝑁 = 𝑚, 𝜎1
2 = 𝜎2

2 = 𝜎𝑖
2 … = 𝜎𝑁

2 = 𝜎2, 𝜌𝑖,𝑗 = 𝜌 (where 𝑖 ≠ 𝑗), then (20) 

simplifies to  

 

                       

 
 

 

 

 

Based on the assumption which stated that 𝑚 ≫ 𝜎 and for fully correlated classifiers 

(𝜌 = 1), it can rewrite (4.17) as follows 
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In order to simplify (4.18) more log (𝑥 = 1 2𝑚⁄ ) is expanded using Taylor series around 

𝑥 = 1 then log(𝑥) = (𝑥 − 1) − (1 2)(𝑥 − 1)2 + (1 3⁄ )(𝑥 − 1)3 + ⋯⁄  .   If the value of 𝑥 is 

chosen close to 1 i.e. 𝑚 ≈ 0.5 then log(𝑥) ≈ (x − 1) and (4.18) modified to 
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This is an interesting result since (4.19) is identical to (4.3) which is the probability of 

classification error for a single base classifier. The equation defined in (4.19) suggests that there 

is no benefit in creating an ensemble of identical classifiers because the overall ensemble 

performance will be equivalent to a performance of a single classifier. 
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4.4. Weighted Majority Voting Rule (WM) 

 

In the majority voting rule, three existing algorithms are available. The first, called 

unanimous voting, requires that all classifiers agree on a chosen class. The second, known as 

simple majority, requires that at least one more than half of the number of classifiers agree. The 

third, called majority voting, in which a class is chosen if it gets the largest number of votes. 

Among these algorithms, majority voting is considered an optimal rule compared to the others. 

In this section, it assumed classifiers have different accuracies, therefore a modified version of 

SM is used called weighted majority voting. The formula for WM given the weight of each 

classifier is 𝑤𝑖 is defined as follows 
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The probability of classification error for the simple voting rule which have equal 

weights and independent classifiers is derived in [31]. In case of WM, the situation becomes 

more complicated. For 𝑁 base classifiers, 𝐖 = [𝑤1, 𝑤2, … . , 𝑤𝑁]𝑇 and 𝐏 = [𝑃1, 𝑃2, … . , 𝑃𝑁]𝑇, 

where 𝐖 is the weight vector of individual classifiers in an ensemble and 𝐏 is the vector of 

misclassification probability for each classifier as defined in (4.3). In order to estimate the 

probability of classification error for an ensemble based on weighted majority vote, a formula 

that generates a probability distribution for N classifiers is proposed. The following expression 

achieves this goal  
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where 𝑃(𝑘, 𝑁) is the sum of product of individual classifications’ accuracies for given values of  

𝑘 and 𝑁 and the symbol ⨁ is a modulo 𝑁 addition. The expression defined in (4.21) covers all 

permutations of individual classifiers’ accuracies; 𝑘 represents the number of individual 

classifiers in the ensemble that are in error. Then using (4.3), and (4.21) to compute the 
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probability of classification error for 𝑁 classifiers when the number of base classifiers in error is 

greater than or equal to 𝛼 i.e., 

 



















     
2

1

   1
2

oddisNwhen
N

evenisNwhen
N

 ,                                              (4.22) 

 

then the probability of classification error is written as 
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The expression given in (4.23) is applicable to the simple majority vote in case of 

different classifiers’ weights. It requires to modify (4.23) in order to be applicable to the 

weighted majority vote rule. In order to clarify the idea, an example of three classifiers (𝑁 = 3) 

is considered with a weight vector 𝐖 = [0.6 0.3 0.1]𝑇, and then from (4.23), the terms that 

account for classification error are  

 

 
            iie PQwhereQPPQPPQPPPPPP  1     ,213132321321 ,                  (4.24) 

 

Based on weighted majority rule, the term 𝑃2𝑃3𝑄1 should be excluded from the 

summation in (4.24), since the weight of classifier#1 is 0.6 and the total weights of classifier#2 

and classifier#3 is 0.4. Therefore, the majority decision goes to classifier#1, which represents the 

correct classification. Therefore, it is necessary to include an extra function that identifies these 

terms and removes them from the overall probability of classification error. This function is 
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labeled as 𝛿𝑘,𝑙(𝑤) and defined as 
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Based on the previous discussion and using (4.22) and (4.25), the overall average 

probability of classification error for the weighted majority vote under the condition of 

uncorrelated classifiers is defined as 
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To derive an expression for the probability of classification error in case of correlated 

classifiers, a different approach is followed because the previous method is not applicable to an 

ensemble that used majority voting rule. For 𝑁 correlated classifiers, the probability of 

classification error can be written as 
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where 𝐹(∙) is the joint cumulative distributions for 𝑁 classifiers outputs and 𝛿𝑘,𝑙(𝑤)  is defined 

as in (4.25). If it is assumed that the classifiers outputs are normally distributed, then the joint 

probability density function of 𝑁 classifiers is defined as follows 
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where 𝐏 is a vector of random variables that represents classifiers outputs, ∆ is the mean vector 

of 𝐏 and 𝐊 is the covariance matrix of 𝐏. 𝐏, ∆ and 𝐊 are defined in (4.29) and (4.30) respectively  
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The dimension of the covariance matrix defined in (4.30) is 𝑁 × 𝑁, as a result its size 

expands excessively with 𝑁. For the purpose of implementing (4.27) efficiently a matrix for a 

given 𝑘 and 𝑙 values is generated then using modulo 𝑁 property to get other matrices as 𝑘 and 𝑙 

values varies. 
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Using (4.27) through (4.30), the average probability of the classification error for N 

correlated classifiers is estimated as follows 
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where 𝛿𝑘,𝑙(𝑤) , 𝐏, ∆ and 𝐊𝑘,𝑙 are defined in (4.25), (4.29) and (4.30) respectively. The k 

integration terms in (4.31) represent the probability of classification error, and (𝑁 − 𝑘) terms 

represent the probability of correct classification. (𝑁 − 𝑘) terms are considered to be in unity 

when (𝑙 + 𝑘) > (𝑙 + 𝑁 − 1). Many algorithms in the literature, such as in [42], [43], are used to 

compute the integration of the multivariate normal function that was given in (4.31). For a 

special case, when classifiers outputs are uncorrelated, then substituting 𝜌 = 0 in (4.31) results in 
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The expression defined in (4.33) is identical to (4.26) since both are derived for 

uncorrelated classifiers, though they use different methodologies. In case of equal classifiers’ 

weights then 𝑤𝑖 = 1 𝑁⁄ , 𝑚i = 𝑚, 𝜎i
2 = 𝜎2, , 𝛿𝑘,𝑙(𝑤) = 1, and 𝑝𝑖 = 𝑝 for 𝑖 = 1,2, … , 𝑁, then 

(4.33) is modified to 
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Equation (4.34) is identical to the formula (25) derived in reference [31] since both are 

derived for equal strength and uncorrelated classifiers. As a result, (4.31) can be considered a 

useful formula in analyzing the performance of a MCS based on weighted majority voting and 

under the condition of correlated classifiers. 
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4.5. Weighted Average Rule (WA)  

 

SA rule is simply taking the average sum of classifiers outputs. The benefit of this 

structure is to reduce the random fluctuations in classifiers outputs and to get an estimated value 

that is close to the actual class posterior probability. This rule works when all classifiers have 

equal strength.  If classifiers have different weights, then the weighted average rule would be the 

best choice for improving classification accuracy.  

The weighted average rule for two classes’ problem is defined as 
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where 𝑝̂1 is the estimated posterior probability for class 𝜔1 and 𝑤𝑖 is the ith classifier weight. 

The moments of 𝑝̂1 for independent classifiers’ output are defined as follows 
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The distribution of 𝑝̂1 approaches a normal distribution as 𝑁 become large, therefore the 

probability of classification error is calculated as 
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To find a formula for classification error under correlated classifiers outputs, the variance 

of  𝑝̂1 is modified to 
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Using (4.39), the average classification error probability is estimated for correlated 

classifiers as  
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In (4.40), a case study is considered in which all classifiers have equal strengths then 

(4.40) is reduced to 
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If all classifiers assumed to be correlated with 𝜌 = 1, then (4.41) simplifies as 
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The result given in (4.42) confirms the conclusion given in section 4-3 in which creating 

an ensemble of identical classifiers will not improve the classification accuracy. 

 
 

4.6. Weighted Harmonic Mean Rule (WH)  

 

The harmonic mean is a member of the Pythagorean means family which also includes 

the average mean and geometric mean. The SH is defined as follows [46] 
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If the value of 𝑝𝑖 is limited to positive real values, then it is possible to express the 

harmonic mean in terms of average and geometric mean as follows [46] 
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As shown in (4.44) the harmonic mean is closely related to the SG and SA. For 𝑝𝑖 > 0 

the averaging process of the harmonic mean rank always the last among others i.e. 𝑝𝑚𝑖𝑛 ≤ 𝑆𝐻 ≤

𝑆𝐺 ≤ 𝑆𝐴 ≤ 𝑝𝑚𝑎𝑥. The weighted harmonic is defined as 
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Assuming the distribution of 𝑝𝑖 as normal, the moments of (1 𝑝𝑖⁄ ) are derived as follows 
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where 𝑓(𝑝𝑖) is the probability density function of 𝑝𝑖. The approximation in (4.46) and (4.47) is 
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calculated using the Taylor series at 𝑚𝑖, where 𝑚𝑖 and 𝜎𝑖
2 are the first and second moments of 𝑝𝑖. 

The purpose of the approximations is to get more understanding about the behavior of WH as  

𝑚𝑖 and 𝜎𝑖
2 varies.  In order to find the distribution of 𝑝̂1, the distribution of the sum of (𝑤𝑖 𝑝𝑖⁄ ) is 

approximate as a normal random variable as 𝑁 become larger with first and second moments 

defined as 
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The random variable 𝑝̂1 is inversely related to 𝑌, then the event {𝑌 ≤ 𝑦} occurs when 

𝑌−1 ≤ 𝑝̂1 or 𝑝̂1 ≥ 𝑌−1.  Thus, the cumulative distribution of 𝑝̂1 is written as 
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and probability density function for 𝑝̂1 is 
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Since the distribution of 𝑌 is normal, using (4.50) the probability density function of 𝑝̂1 is 

defined as follows 
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where 𝑚𝑦 and 𝜎𝑦 are defined in (4.48), using (4.49) and for independent classifiers, the 

probability of classification error is calculated as follows 
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In case of correlated classifiers (4.52) is modified as 
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From (4.52) or (4.53), it can expect the performance of harmonic mean outperforms other 

rules for combining classifiers with high class mean (𝑚 ≈ 1) because the overall variance is 

reduced at a rate of 1 𝑚4⁄ , while the rule performs poorly for low class mean values (𝑚 ≈ 0.5).  

 

4.7.    Results and Discussion 

 

To provide a comprehensive assessment of the previous derivations the study is separated 

into two parts. The first part dealt with simple (unweighted) and correlated classifiers, i.e. the 

study is focused on the effects of correlation, class mean, class variance and number of base 

classifiers on the different combining rules. In the second part, the performance of weighted and 

correlated classifier conditions is evaluated. Regarding the first part, the un-weighted classifiers 

implies that all classifiers have equal weights which result in 𝑤𝑖 = 1 𝑁⁄  for 𝑖 = 1,2, … , 𝑁.  This 

means that classifiers outputs are identical random variables with equal mean and variance i.e. 
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𝜎1
2 = 𝜎2

2 = 𝜎𝑖
2 … = 𝜎𝑁

2 = 𝜎2, 𝑚1 = 𝑚2 = 𝑚𝑖 … = 𝑚𝑁 = 𝑚 and 𝜌𝑖,𝑗 = 𝜌 (where 𝑖 ≠ 𝑗). For 

comparison purposes the ensemble parameters (𝜎, 𝑚, 𝑁, 𝜌) are chosen in a way that reflect the 

distinguishing behavior among different rules under comparison.  

 

Figure 4.1 shows the performance of the four-combining rule (SA, SH, SG and SM) as a 

function of 𝜎 for 𝑚 = 0.7, 𝜌 = 0.1 and 𝑁 = 9. As shown, the role of getting the best 

performance is changed over the range of 𝜎 values (𝜎 = [0.1, 0.5]). For low 𝜎 values (𝜎 < 0.1), 

SH achieved the best performance followed by SG, SA and SM.  

 

The situation is changed when 𝜎 increases (𝜎 > 0.3), where the SA outperforms all 

others. Figure 4.2 shows the performance as a function of 𝑚 for 𝜎 = 0.2, 𝜌 = 0.1 and 𝑁 = 9. 

As shown, the performance gets better as 𝑚 improved. This occurs because the error region 

between classes decreases. Again, a similar behavior for figure 4.1 appears in figure 4.2, where 

the best performance role of different rules is changed as class mean improves. These results 

agree with the predictions given in the previous sections in which the overall variance is reduced 

by a factor of 1 𝑚4⁄  and 1 𝑚2⁄  for SH and SG respectively. From figure 4.3 it’s evidence that as 

correlation coefficient increases, the performance degrades exponentially. This is because as 

correlation coefficient increases, more classifiers share the same information about each other, 

resulting in degradation of ensemble performance. This behavior continues until 𝜌 = 1, at this 

point all classifiers are similar to each other and overall performance mimics a single classifier 

system. It also found these results are consistent with predictions given by (4.19) and (4.42).  
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Figure 4.3. Probability of Classification Error as a 
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Figure 4.4 shows the performance against a number of classifiers, where the performance 

improved as a function of 𝑁. This is because the total variance is reduced by a factor of 1 𝑁⁄ . 

However, the rate of improvement varies among combining rules which depends strictly on the 

chosen ensemble parameters. Expanding the ensemble size does not always result in improving 

performance, where other ensemble parameters (𝜎, 𝑚, 𝑎𝑛𝑑  𝜌) have their effects on the 

improving rate. The comprehensive study shown in the previous figures (figure 4.1, figure 4.2, 

figure 4.3 and figure 4.4) helps in choosing the appropriate combining rule for a given set of 

ensemble conditions. In the this section, the performance of SG, SM, SA and SH is investigated 

in a three dimensional (3D) view. Four 3D plots are generated in terms of probability of 

classification error as a function of 𝜎 and 𝑚 for  𝜌 = 0.4 and 𝑁 = 9. These plots are shown in 

figure 4.5, figure 4.6, figure 4.7 and figure 4.8 for SG, SM, SA and SH respectively. As shown 

from these figures, the performance behavior decreases exponentially against 𝜎 while 

maintaining approximately a smooth behavior against 𝑚.  
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In addition, the region (in terms of 𝜎 and 𝑚) of low classification error for SH is smaller 

than others under the same ensemble condition, which means the SH rule gives limited options in 

optimizing the ensemble performance as compared to others. SA and SM rules gives 

approximately similar performances while the SG rule exhibits better performance as 𝑚 → 1 

with low class variance    (𝜎 ≤ 0.1). In the second part of this section, the ensemble performance 

when classifiers’ strengths are unequal and correlated is studied. From (4.4), it is clear that 

classifiers’ weights are directly related to the class mean and variance. To make the comparison 

fair and based on average performance among different combining rules, it considered that both 
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Figure 4.8. Probability of Classification Error as a Function 

of 𝜎 and 𝑚  for SH Where 𝑁 = 9 and 𝜌 = 0.4 
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𝜎𝑖 and 𝑚𝑖 are independent uniform random variables with periods [a1, 𝑏1] and [𝑎2, 𝑏2] for 𝜎𝑖 and 

𝑚𝑖 respectively. This makes the probability of classification error as defined in (4.16), (4.31), 

(4.40) and (4.53) random variables and thus, it is reasonable to get their average or expectation 

values of 𝑃𝑒 (𝐸[𝑃𝑒]) for comparison purposes. Figure 4.9 – figure 4.11 show the performance 

comparison as a function of 𝑁 for average, geometric mean and majority vote. Harmonic mean is 

not considered in this comparison because the probability of low classification error is limited to 

a small area (in terms of 𝜎 and 𝑚), so it will not fit appropriately into our comparison. Each 

combining rule is studied for equal and different classifiers’ weights, with the purpose to find 

how much improvements can be obtained from using a weighted combining rule compared to an 

unweighted.  The periods of class mean and standard deviation are chosen to be 𝑚 = [0.7,1] and 

𝜎 = [0.1,0.3] for average and geometric mean while the range is expanded to 𝑚 = [0.5,1] and 

𝜎 = [0.1,0.5] for majority vote. The range of values is chosen whenever improvements in 

classification accuracy are visible. As shown, for all cases the improvement is negligible for 

small classifier numbers and improve as the ensemble size increases. This happens because as 𝑁 

increases, more individual classifiers with good properties are considered in the final decision 

process.  

 

The previous results provided comprehensive assessments of different combining rules 

under study. For given ensemble parameters (𝜎, 𝑚, 𝑁 𝑎𝑛𝑑 𝜌) and based on derived formulas 

((4.16, (4.31), (4.40) and (4.53))) it is possible to choose the appropriate fusion rule that achieves 

a minimum classification error. 
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Figure 4.9. Probability of Classification Error as a 

Function of 𝑁 For WA, and SA where 𝜌 = 0.1, 𝑚 =
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4.8.  Conclusion 

 

In this chapter, an analytical framework for estimating the classification error of a MCS 

using four weighted combining rules is presented. The rules that considered for study were 

geometric mean, majority vote, average and harmonic mean. In the derivations, it assumed that 

classifiers have different strengths and classifiers outputs are correlated and normally distributed. 

A correlation assumption is used to model a diversity among classifiers. For large 𝑁 and for 
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Figure 4.10. Probability of Classification Error as a 

Function of 𝑁 For WG, and SG Where 𝜌 = 0.1, 𝑚 =
[0.7, 1] and 𝜎 = [0.1, 0.3] 
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Pythagorean mean rules, the derivations are held over wide range of class distributions other than 

normal distribution. This is true since the distribution of averaging 𝑁 random variables approach 

a normal distribution as 𝑁 become large. Results show that the ensemble performance degrades 

exponentially as the correlation coefficient increases. It was expected from the theoretical results 

that the ensemble performance improves as a function of the class mean (𝑚) by reducing the 

total variance by a factor of 1 𝑚2⁄  for geometric mean and 1 𝑚4⁄  for harmonic mean. Most 

previous studies have shown that the average rule outperforms others.  However, a comparable 

study of different combining rules is investigated for different ensemble parameters 

(𝜎, 𝑚, 𝑁 𝑎𝑛𝑑 𝜌). Results show that the ensemble performance follows the principle of no free 

lunch theorem in which of combining classifiers with a high individual classification accuracy, 

harmonic mean gives the best classification accuracy, followed by geometric mean, average and 

majority vote. On the other hand, in case of combining classifiers with a low individual 

classification accuracy, average rule works best, followed by geometric mean, majority vote and 

harmonic mean. If the condition of individual classifiers is unknown, then on average, the 

geometric mean is the best candidate for combined classifier systems. Also, it shows that the 

weighted combining rule always improved classification accuracy in comparison to the un-

weighted rule and that improvements get better with the expansion of the ensemble size.  
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CHAPTER V 

 

A NOVEL APPROACH FOR SELECTING AN OPTIMAL ALGEBRAIC  

FUSION RULE FOR A MULTIPLE CLASSIFIER SYSTEM 

 
 

5.1. Introduction 

Multiple classifier or ensemble systems find wide applications due to the performance 

limitations of single classifier systems. One of the key factors in creating a successful ensemble 

is to design an optimal fusion rule that minimizes classification errors. Finding an optimal fusion 

rule that maximizes ensemble performance is a challenge, due to the lack of a strong foundation 

theory. It is obvious from literature that there is not a single combining rule that will work for all 

classification problems. In this chapter, the problem of selecting an optimal fusion rule for a 

given classification problem is studied. A mathematical model is proposed for estimating the 

classification accuracy for an ensemble made up of N individual classifiers and M classes. The 

performance trend that is predicted by the mathematical model is validated through six real 

datasets. Results show that over all spectrums of algebraic combining rules, there is always a set 

of fusion rules where the ensemble gives poor performance as the worst individual base 

classifier, while other sets give superior performance as the best classifier in the ensemble. As a 

result, performance is strictly dependent on individual classifier output statistics. Based on 

theoretical predication a novel method is developed for constructing an ensemble that produces 

classification accuracy equal or better than the best performing individual classifier. In addition, 

ensemble design shows robust performance against the overfitting problem. Derivations results 

presented in this chapter bring significant insights into the performance of combined classifier 

systems.  

 
 

5.2. Background 

Much work done in modeling of Multiple Classifier Systems (MCS) tries to answer the 

question of how to construct an ensemble that minimizes classification error [16], [17], [19], 

[20]. To answer this question, some literature is focused on experimental implementation to 
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optimize ensemble parameters that minimize classification error, however, a robust mathematical 

theory can provide more insights. In an ensemble design the most crucial designing phases are 

creating diversity among base classifiers and choosing an optimal fusion rule. The purpose of 

diversity is to ensure that each classifier contains complementary information i.e. making base 

classifiers independent. Independence means that base classifiers are uncorrelated with 

maximum diversity while dependence means classifiers are fully correlated with minimum 

diversity. One way to model the diversity among base classifiers is to calculate the correlation 

coefficient among their outputs [19]. Another important phase in the ensemble design is to 

choose an optimal combiner, and there are many developed works targeting this problem such as 

[30], [31], [32], [33], [35], [36], [37], [39], and [47]. 

 

Kuncheva in [31] proposed a framework to evaluate the performance of combined 

classifier systems. [31] presented estimation of the classification errors for six fusion rules which 

are minimum, maximum, average, median and majority vote. Results show that there is no best 

combiner rule and the performance varies and depends on the distribution of the posterior class 

probability. In Tumer and Gosh’s work given in [39], a framework is developed which is based 

on a decision boundary analysis of the posterior class probability. They modeled the inaccuracy 

in training classifiers and decomposed it into bias and variance errors then quantified the error 

and referenced it as the added error. The work presented in [33] takes the idea further and 

extends the work given in [39] by including weighted combining rules under the condition of 

correlated classifiers. They show that performance depends on correlation levels among base 

classifiers. In [35], an extensive theoretical study on majority vote combiners is given for a 

binary classification problem. The estimation given in [35] is for the lower and upper bounds of 

an ensemble performance. A comparison between sum and majority rules are given in [32] based 

on assumptions of independent and identically distributed classifiers outputs with a normal 

distribution. It was shown that the sum rule always outperforms majority vote except under a 

certain condition when majority vote outperforms sum. The work in [30] presented a theoretical 

and experimental comparison for different fusion rules, their comparison shows that the sum rule 

always outperforms others (product, max, min, median and majority vote). The work in [36] and 

[37], presented a closed form expression for estimating classification error using product and 

majority vote combiners. The work showed the modified product rule outperforms sum and 
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majority under certain conditions when combining classifiers with good individual classification 

accuracies. In the work shown in [47], the framework presented in [33] is extended for nonlinear 

combiner rules such as product and geometric mean rules. 

 

Based on the previous literature survey there is no guarantee that a given combiner rule 

would always provide superior performance among others. The paper cited in [48] confirms the 

fact that there is no perfect fusion algorithm that works for all classification problems.  As a 

result the combination of multiple classifiers is lacking a strong foundation theory in order get a 

better understanding of how to optimize ensemble performance. All previous fusion rules 

mentioned in the literature survey are included in what is called the generalized mean rule. Based 

on assumptions given in [31] and [41] a general formula is derived for estimating the 

classification error based on a generalized mean rule. The derivation results enable us to estimate 

the classification error for a whole spectrum of algebraic combining rules and to choose the best 

combiner for a given classification problem. 

 

5.3. Configuration of Ensemble Systems 

 

Figure 5.1 shows the block diagram of a multiple classifiers system, the input features 

vector 𝐱 defined in ℜ𝑛 space is fed to 𝑁 parallel classifiers that already learned features statistics. 

Each classifier produces at its output an estimation of the posterior class probabilities of 𝑀 

classes, and inputs to the classifiers are multivariate feature vectors 𝐱 with a posterior probability 

density function of 𝑝(𝜔𝑗/𝐱). If the output of a trained classifier is normalized appropriately 

between {0,1}, then each individual classifier transforms the multidimensional feature vector 

into a one-dimensional variable 𝑑𝑖,𝑗(𝐱), where 𝑖 = 1,2, … ,𝑁 and 𝑗 = 1,2, … ,𝑀. A compact way 

to describe classifier outputs is in terms of a decision profile matrix (𝐷𝑝(𝑥)) which is defined as 

follows [11] 

 

𝐷𝑝(𝐱) = [

𝑑1,1(𝐱) ⋯ 𝑑1,𝑀(𝐱)

⋮ ⋱ ⋮
𝑑𝑁,1(𝐱) ⋯ 𝑑𝑁,𝑀(𝐱)

].                                           (5.1) 
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Each column of the decision profile matrix is fed to the 𝑗𝑡ℎ combiner that fuses classifier 

outputs for the 𝑗𝑡ℎ class as follows 

 

𝑑𝑗(𝐱) = ℱ(𝑑1,𝑗(𝐱), 𝑑2,𝑗(𝐱),… , 𝑑𝑁,𝑗(𝐱)), 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … ,𝑀,         (5.2) 

 

where 𝑑𝑗(𝐱) is the 𝑗𝑡ℎ combiner output and ℱ(∙) is the fusion function. Finally, the max rule 

chooses the class label that has the maximum membership among 𝑀 combiners  

 

𝑗 = argmax (𝑑𝑗(𝐱)) , 𝑓𝑜𝑟 𝑗 = 1,2, … ,𝑀.                             (5.3) 

 

5.4. Generalized Geometric Mean Rule 

 

Sometimes called power mean, the generalized geometric mean rule is a function that 

aggregates a spectrum of arithmetic fusion operations that includes a variety of functions such as 

arithmetic, geometric and harmonic means. For positive real numbers 𝑘1, 𝑘2, … , 𝑘𝑁 and a real 

number 𝛼, the generalized mean rule is defined as follows  

 

ℳ𝛼(𝑘1, 𝑘2, … , 𝑘𝑁) = (
1

𝑁
∑𝑘𝑖

𝛼

𝑁

𝑖=1

)

1 𝛼⁄

, 𝑤ℎ𝑒𝑟𝑒 − ∞ ≤ 𝛼 ≤ ∞.                            (5.4) 

 

 

Figure 5.1. Structure of a Combined Classifier 
System 
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Some special cases for generalized mean are defined below for different 𝛼 values 

 

ℳ−∞(𝑘1, 𝑘2, … , 𝑘𝑁) = 𝑚𝑖𝑛{𝑘1, 𝑘2, … , 𝑘𝑁} , 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑢𝑙𝑒, 

ℳ−1(𝑘1, 𝑘2, … , 𝑘𝑁) = (
1

𝑁
∑

1

𝑘𝑖

𝑁

𝑖=1

)

−1

, ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛 𝑟𝑢𝑙𝑒, 

ℳ0(𝑘1, 𝑘2, … , 𝑘𝑁) = (
1

𝑁
∏𝑘𝑖

𝑁

𝑖=1

)

1 𝑁⁄

, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑟𝑢𝑙𝑒, 

ℳ1(𝑘1, 𝑘2, … , 𝑘𝑁) =
1

𝑁
∑𝑘𝑖

𝑁

𝑖=1

, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑙𝑒, 

ℳ∞(𝑘1, 𝑘2, … , 𝑘𝑁) = 𝑚𝑎𝑥{𝑘1, 𝑘2, … , 𝑘𝑁} , 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑢𝑙𝑒. 

 

5.5. Estimation of Classification Error for Generalized Mean Rule 

 

In this section, the classification error is estimated for the generalized mean rule by 

changing the parameter 𝛼. This enables us to get different formulas for a whole spectrum of 

aggregating functions. To proceed, it is necessary to set up assumptions to derive the final 

formulas. Generalized the assumptions that are given in [31] to be more realistic by considering 

different weight base classifiers and removing the condition of independence among them. By 

introducing a parameter 𝜌, known as a correlation coefficient, which measures dependency 

among classifiers.  Modeling dependency among classifiers is crucial in ensemble systems 

design since it is a direct measure of the ensemble diversity.  

Each base classifier transforms a multidimensional posterior class probability into a single 

dimensional probability defined as follows 

 

𝑝(𝜔𝑗/𝑝𝑖) = ℑ(𝑝(𝜔𝑗/𝐱)) + 𝜖𝑖,𝑗, 𝑓𝑜𝑟  𝑗 = 1,2, 𝑎𝑛𝑑 𝑖 = 1,2, … ,𝑁,                        (5.5) 

 

where ℑ(∙) is the transform operator that is directly related to the classifier characteristics and 

𝜖𝑖,𝑗 is the error added by ith classifier for the jth class. For a single classifier based on two classes 

of problems, equal prior classes probabilities (𝑝(𝜔1) = 𝑝(𝜔2) = 1 2⁄ ) and identical distribution 

of the classifiers outputs, the probability of classification error is defined in [31] as 
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𝑃𝑒 = Φ(
0.5 − 𝑚

𝜎
),                                                                   (5.6) 

 

where 𝑚 and 𝜎2 are the moments of the classifiers outputs. The study is started by assuming 

there are 𝑁 classifiers with a binary classification problem (𝑀 = 2), then extend the number of 

classes to 𝑀. In this case 𝑑𝑖,1 + 𝑑𝑖,2 = 1 or 𝑑𝑖,1 = 1 − 𝑑𝑖,2 where 𝑖 = 1,2, … ,𝑁. In order to 

simplify derivation, the following is assumed 

 

𝑝𝑖 = 𝑑𝑖,1 = 1 − 𝑑𝑖,2, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁, 

 

𝑝 = ℱ(𝑝1, 𝑝2, … , 𝑝𝑁),                                                      (5.7) 

                                   

where 𝑝𝑖 is the output of the ith individual classifier outputs and 𝑝 is the combiner’s output. 𝑝𝑖 is 

assumed to be a normal random variable. The generalized mean rule is written as  

 

𝑝 = (
1

𝑁
∑𝑝𝑖

𝛼

𝑁

𝑖

)

1 𝛼⁄

.                                                            (5.8) 

 

After clearly defining the required assumptions, the statistic of the random variable, 

should be estimated, i.e. its distribution and moments when 𝛼 is changed over the range −∞ ≤

𝛼 ≤ ∞. 

 

Case 1: when 𝛼 ≥ 0 

The conditional mean and variance of the random variable 𝑝𝑖 are 𝑚𝑝𝑖|𝜔𝑗
 and 𝜎𝑝𝑖|𝜔𝑗

2  

respectively. Using Taylor series expansion around 𝑚𝑖 [36], it can approximate the statistics of 

𝑝𝑖
𝛼 as defined in (5.8) as follows 

𝑚𝑝𝑖
𝛼|𝜔𝑗

= 𝐸[𝑝𝑖
𝛼|𝜔𝑗] ≈ ∑

𝑓(𝑛)(𝑚𝑝𝑖|𝜔𝑗
)

𝑛!
𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗

)
𝑛

]

∞

𝑛=0
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= 𝑚𝛼
𝑝𝑖|𝜔𝑗

+∑
𝑓(𝑛)(𝑚𝑝𝑖|𝜔𝑗

)

𝑛!
𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗

)
𝑛

]

∞

𝑛=2

,                             (5.9) 

 

𝜎𝑝𝑖
𝛼|𝜔𝑗

2 = 𝑉𝐴𝑅[𝑝𝑖
𝛼|𝜔𝑗] ≈ ∑(

𝑓(𝑛) (𝑚𝑝𝑖|𝜔𝑗
)

𝑛!
)

2

𝑉𝐴𝑅 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

]

∞

𝑛=1

.                         (5.10) 

 

Using binomial theorem, it can be approximated as 𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

] and 𝑉𝐴𝑅 [(𝑝𝑖 −

𝑚𝑝𝑖|𝜔𝑗
)
𝑛

] as follows 

 

𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

] = ∑(
𝑛
𝑘
) (−𝑚𝑝𝑖|𝜔𝑗

)
𝑛−𝑘

𝐸[𝑝𝑖
𝑘]

𝑛

𝑘=0

,                                    (5.11) 

 

𝑉𝐴𝑅 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

] = 𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
2𝑛

] − 𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

]
2

,                  (5.12) 

  

 

where 𝑓(𝑛) represents the nth derivative of function 𝑓(∙). A good approximation is achieved to the 

moments of  𝑝𝑖
𝛼 with 𝑛 ≈ 10. The variables 𝑝𝑖, 𝑖 = 1,2, … , 𝑁 are assumed independent and 

identically distributed, that means 𝑚𝑝1|𝜔𝑗
= 𝑚𝑝2|𝜔𝑗

= ⋯ = 𝑚𝑝𝑁|𝜔𝑗
= 𝑚𝜔𝑗

, and 𝜎𝑝1|𝜔𝑗
2 =

𝜎𝑝2|𝜔𝑗
2 = ⋯ = 𝜎𝑝𝑁|𝜔𝑗

2 = 𝜎𝜔𝑗
2 , then 

 

                        𝑚𝛽|𝜔𝑗
= 𝐸 [(𝛽 =

1

𝑁
∑ 𝑝𝑖

𝛼𝑁
𝑖 ) |𝜔𝑗], 

 

= 𝑚𝛼
𝑝𝑖|𝜔𝑗

+∑
𝑓(𝑛)(𝑚𝑝𝑖|𝜔𝑗

)

𝑛!
𝐸 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗

)
𝑛

]

∞

𝑛=2

,   𝑗 = 1,2 ,                (5.13) 
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      𝜎𝛽|𝜔𝑗
2 = 𝑉𝐴𝑅 [(𝛽 =

1

𝑁
∑ 𝑝𝑖

𝛼𝑁
𝑖 ) |𝜔𝑗], 

 

=
1

𝑁
∑(

𝑓(𝑛)(𝑚𝑝𝑖|𝜔𝑗
)

𝑛!
)

2

𝑉𝐴𝑅 [(𝑝𝑖 −𝑚𝑝𝑖|𝜔𝑗
)
𝑛

]

∞

𝑛=1

,    𝑗 = 1,2,                   (5.14) 

 

where 𝑚𝛽|𝜔𝑗
 and 𝜎𝛽|𝜔𝑗

2  are conditional moments of the random variable 𝛽. From (5.14) one 

obvious advantage of combining 𝑁 classifiers are the overall variance is reduced by a factor 

(1 𝑁⁄ ). To finalize derivation, the distribution of 𝑝 should be estimated, the distribution of the 

random variable 𝛽 approaches a normal distribution as 𝑁 become large. The relation between 𝑝 

and 𝛽 is defined as 𝑝 = 𝛽1 𝛼⁄ , then the conditional cumulative distribution of 𝑝 can be written as  

 

𝐹(𝑝|𝜔𝑗) = 𝑃𝑟[𝛽 ≤  𝑝𝛼] = 𝐺(𝑝𝛼|𝜔𝑗), 𝑗 = 1,2,                                            (5.15) 

 

where 𝐹(∙) and 𝐺(∙) are cumulative functions for 𝑝 and 𝛽 respectively, using (5.13) the 

probability density function of 𝑝 is estimated as follows 

 

𝑓(𝑝|𝜔𝑗) = 𝛼 𝑝𝛼−1𝑔(𝑝𝛼|𝜔𝑗), 𝑗 = 1,2,                                                        (5.16) 

 

where 𝑓(∙) and 𝑔(∙) are probability density functions for 𝑝 and 𝛽 respectively, since the 

distribution of 𝛽 is normal then  

 

𝑓(𝑝|𝜔𝑗) = 𝛼
 𝑝𝛼−1

√2𝜋𝜎𝛽|𝜔𝑗
2

exp(−
(𝑝𝛼 −𝑚𝛽|𝜔𝑗

)
2

2𝜎𝛽|𝜔𝑗
2 ) , 𝑗 = 1,2, 𝛼 ≥ 0 ,                        (5.17) 

 

then using (5.15) the probability of classification error is written as 

 

𝑃𝑒
𝛼+ = 𝑃(𝜔1) [1 − Φ(

𝜇 −𝑚𝛽|𝜔1

𝜎𝛽|𝜔1
)] + 𝑃(𝜔2)Φ(

𝜇 −𝑚𝛽|𝜔2

𝜎𝛽|𝜔2
) , 𝛼 ≥ 0,          (5.18)  
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where 𝜇 is the optimum decision value that minimized the overall classification error and 𝑃𝑒
𝛼+ 

refers to the classification error over the range 𝛼 ≥ 0. 

 

Case 2: when 𝛼 < 0 

The derivation defined in (5.13) and (5.14) hold but (5.15) through (5.17) need to be 

modified. So  𝑝 = 𝛽−1 𝛼⁄  or 𝛽 ≥  𝑝−𝛼 that means  

 

𝐹(𝑝|𝜔𝑗) = Pr(𝛽 ≥  𝑝−𝛼) = 1 − 𝐺(𝑝−𝛼|𝜔𝑗).                                   (5.19) 

 
 

The probability density function for the random variable 𝑝 is defined as  
 

 

𝑓(𝑝|𝜔𝑗) = 𝛼
 𝑝−𝛼−1

√2𝜋𝜎𝛽|𝜔𝑗
2

exp(−
(𝑝−𝛼 −𝑚𝛽|𝜔𝑗

)
2

2𝜎𝛽|𝜔𝑗
2 )  , 𝛼 < 0.                             (5.20) 

 

Then probability of classification error is defined as  
 
 

𝑃𝑒
𝛼− = 𝑃(𝜔1)Φ(

𝜇 −𝑚𝛽|𝜔1

𝜎𝛽|𝜔1
) + 𝑃(𝜔2) [1 − Φ(

𝜇 −𝑚𝛽|𝜔2

𝜎𝛽|𝜔2
)] , 𝛼 < 0,      (5.21)  

 

where 𝑚𝛽|𝜔𝑗
 and 𝜎𝛽|𝜔𝑗 are defined in (5.13) and (5.14) respectively and 𝑃𝑒

𝛼−  refers to the 

classification error over the range 𝛼 < 0. Using (5.13), (5.14), (5.18) and (5.21) the derived 

formula for classification error for generalized mean rule is  

 

𝑃𝑒
𝑔
= {

𝑃𝑒
𝛼+ 𝑤ℎ𝑒𝑛 𝛼 ≥ 0

𝑃𝑒
𝛼− 𝑤ℎ𝑒𝑛 𝛼 < 0

.                                                                 (5.22) 

 

The subscript 𝑔 refers to the generalized mean rule. The formulas defined in (5.22) are 

the probability of the classification error for the whole spectrum of the aggregating functions 

generated from the generalized mean rule. These results help in selecting an optimal fusion rule 
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that minimize the classification error for a given ensemble condition. In order to calculate the 

optimum threshold, the likelihood ratio test is used which is defined as  

 

𝑃(𝜔1|𝑝)

𝜔1
≷
𝜔2
𝑃(𝜔2|𝑝).                                                                (5.23) 

 

Expression (5.23) states that the class 𝜔1 is chosen if 𝑃(𝜔1|𝑝) is greater than 𝑃(𝜔2|𝑝) 

otherwise 𝜔2 is selected.  Using Bayes theory equation (5.23) is modified to  

 

𝑃(𝑝|𝜔1)

𝑃(𝑝|𝜔2)

𝜔1
≷
𝜔2

𝑃(𝜔2)

𝑃(𝜔1)
.                                                               (5.24) 

 

Equation (5.24) suggests a decision should be based on measurements at the combiner’s 

output. The decision test is based on a chosen class with maximum probability. Therefore, this 

rule is called the maximum a posteriori criterion. It is also called minimum error criterion since, 

on average, it minimizes the classification error. Using (5.24) it can be rewritten as the likelihood 

ratio test  

 

𝜎𝛽|𝜔2  𝑒𝑥𝑝 (−
𝜇2

2𝜎𝛽|𝜔1
2 )𝑒𝑥𝑝 (−

𝑚𝛽|𝜔1
2

2𝜎𝛽|𝜔1
2 )𝑒𝑥𝑝 (

2𝜇𝑚𝛽|𝜔1

2𝜎𝛽|𝜔1
2 )

𝜎𝛽|𝜔1𝑒𝑥𝑝 (−
𝜇2

2𝜎𝛽|𝜔2
2 )𝑒𝑥𝑝 (−

𝑚𝛽|𝜔2
2

2𝜎𝛽|𝜔2
2 )𝑒𝑥𝑝 (

2𝜇𝑚𝛽|𝜔2

2𝜎𝛽|𝜔2
2 )

𝜔1
≷
𝜔2

𝑃(𝜔2)

𝑃(𝜔1)
,                     (5.25) 

 

where 𝜇 = 𝑝𝛼, in order to simplify (5.25) assume 𝜎𝛽|𝜔1 = 𝜎𝛽|𝜔2 = 𝜎𝛽 then (5.25) rewritten as  

 

𝜇 = 𝑝𝛼 =

𝜔1
≷
𝜔2
 
2𝜎𝛽

2 ln (
𝑃(𝜔2)
𝑃(𝜔1)

) + 𝑚𝛽|𝜔1
2 −𝑚𝛽|𝜔2

2

2(𝑚𝛽|𝜔1 −𝑚𝛽|𝜔2)
      𝑜𝑟                      (5.26) 

 

https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
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𝑝𝑡ℎ =

𝜔1
≷
𝜔2

√
2𝜎𝛽

2 ln (
𝑃(𝜔2)
𝑃(𝜔1)

) + 𝑚𝛽|𝜔1
2 −𝑚𝛽|𝜔2

2

2(𝑚𝛽|𝜔1 −𝑚𝛽|𝜔2)

𝛼

                                   (5.27) 

 

If prior class probabilities are equal, then 

 

𝑝𝑡ℎ =

𝜔1
≷
𝜔2

√
𝑚𝛽|𝜔1 +𝑚𝛽|𝜔2

2

𝛼

= √𝛽𝑡ℎ                                                      (5.28) 

 

For a single classifier system (5.28) modified into  

 

𝑝𝑡ℎ =

𝜔1
≷
𝜔2

𝑚𝜔1 +𝑚𝜔2

2
                                                                (5.29) 

 

When 𝜎𝛽|𝜔1 ≠ 𝜎𝛽|𝜔2, the optimal threshold is deviated from estimated values in (5.27), 

then using (5.25) the optimal threshold is calculated using 

 

                        (
1

𝜎𝛽|𝜔2
2 −

1

𝜎𝛽|𝜔1
2 )𝜇2 + 2(

𝑚𝛽|𝜔1

𝜎𝛽|𝜔1
2 −

𝑚𝛽|𝜔2

𝜎𝛽|𝜔2
2 )𝜇 

 

                              +
𝑚𝛽|𝜔2
2

𝜎𝛽|𝜔2
2 −

𝑚𝛽|𝜔1
2

𝜎𝛽|𝜔1
2 − 2𝑙𝑜𝑔 (

𝜎𝛽|𝜔1𝑃(𝜔2)

𝜎𝛽|𝜔2𝑃(𝜔1)
) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑡ℎ = √𝜇

𝛼               (5.30) 

 

When 𝛼 = 1, expression (5.27) is converted to the arithmetic mean and the probability of 

classification is defined as  

 

𝑃𝑒
𝑎 = 𝑃𝑒

𝑔
 |
𝛼=1

= Φ(
0.5 − 𝑚

𝜎 √𝑁⁄
).                                                  (5.31) 

 

The subscript 𝑎 refers to the arithmetic mean. The expression defined in (5.31) is 

identical to the formula (20) derived in reference [31].  
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In the following, the derivation in (5.22) is generalized for correlated base classifiers with 

different weights and M classes. Each classifier is assumed to have a weight 𝑤𝑖, where   𝑖 =

1,2, … ,𝑁. The weight generalized mean is defined as  

 

𝑝 = (∑𝑤𝑖𝑝𝑖
𝛼

𝑁

𝑖=1

)

1 𝛼⁄

.                                                       (5.32) 

 

The condition of independence is removed so the correlation coefficient among classifier 

outputs is defined as 𝜌𝑘,𝑙 where 𝑘 = 1,2, … ,𝑁 and 𝑙 = 1,2, … ,𝑁 given that 𝑘 ≠ 𝑙. Using (5.13) 

and (5.14) the moments of 𝜃 = ∑ 𝑤𝑖𝑝𝑖
𝛼𝑁

𝑖=1  are defined as follows 

 

𝑚𝜃|𝜔𝑗
= 𝐸 [(𝜃 =∑𝑤𝑖𝑝𝑖

𝛼

𝑁

𝑖=1

) |𝜔𝑗] =∑𝑤𝑖𝑚𝑝𝑖
𝛼|𝜔𝑗

,                                        (5.33)

𝑁

𝑖=1

 

 
 

                                  𝜎𝜃|𝜔𝑗
2 = 𝑉𝐴𝑅 [(𝜃 =∑𝑤𝑖𝑝𝑖

𝛼

𝑁

𝑖=1

) |𝜔𝑗] 

 

                                             = ∑𝑤𝑖
2𝜎𝑝𝑖

𝛼|𝜔𝑗

2 +∑∑𝑤𝑘𝑤𝑙𝜌𝑘,𝑙𝜎𝑝𝑘
𝛼|𝜔𝑗

2

𝑁

𝑙=1

𝑁

𝑘=1

𝜎𝑝𝑙
𝛼|𝜔𝑗

2 .

𝑁

𝑖=1

                             (5.34) 

 

Using (5.33) and (5.34) the probability of classification error for N classifiers and M 

classes is defined as 

 
 

𝑃𝑒
𝑔
=

{
 
 
 
 
 

 
 
 
 
 p(𝜔1)Q(

μ1,2 −𝑚𝜃|𝜔1

𝜎𝜃|𝜔1
) + ∑ p(𝜔𝑗) [Φ(

μ𝑗,𝑗+1 −𝑚𝜃|𝜔𝑗+1

𝜎𝜃|𝜔𝑗+1
) + Q(

μ𝑗+1,𝑗+2 −𝑚𝜃|𝜔𝑗+1

𝜎𝜃|𝜔𝑗+1
)]

𝑀−1

𝑗=2

+p(𝜔𝑀)Q(
μ𝑀−1,𝑀 −𝑚𝜃|𝜔𝑀

𝜎𝜃|𝜔𝑀
)          𝑤ℎ𝑒𝑛 𝛼 ≥ 0

p(𝜔1)Φ(
μ1,2 −𝑚𝜃|𝜔1

𝜎𝜃|𝜔1
) + ∑ p(𝜔𝑗) [Q (

μ𝑗,𝑗+1 −𝑚𝜃|𝜔𝑗+1

𝜎𝜃|𝜔𝑗+1
) + Φ(

μ𝑗+1,𝑗+2 −𝑚𝜃|𝜔𝑗+1

𝜎𝜃|𝜔𝑗+1
)]

𝑀−1

𝑗=2

                                +p(𝜔𝑀)Φ(
μ𝑀−1,𝑀 −𝑚𝜃|𝜔𝑀

𝜎𝜃|𝜔𝑀
)       𝑤ℎ𝑒𝑛 𝛼 < 0,                          (5.35)
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where Φ(𝑥) = 1 − 𝑄(𝑥), expression defined in (5.35) is the generalized version of (5.22) and 

the optimum threshold 𝜇𝑘,𝑙, is defined as  

 

𝜇𝑘,𝑙 =

𝜔𝑘
≷
𝜔𝑙
 
2𝜎𝛽

2 ln (
𝑃(𝜔𝑙)
𝑃(𝜔𝑘)

) + 𝑚𝛽|𝜔𝑘
2 −𝑚𝛽|𝜔𝑙

2

2(𝑚𝛽|𝜔𝑘 −𝑚𝛽|𝜔𝑙)
, 𝑘, 𝑙 = 1,2, … ,𝑀 𝑔𝑖𝑣𝑒𝑛 𝑘 ≠ 𝑙, 𝑙 > 𝑘.      (5.36) 

 

The expression defined in (5.36) holds for each pair of classes if tails contributions from 

𝑀 − 2 distributions are assumed negligible. For identical class distribution with equal priori 

class probabilities (5.35) simplified to 

 

𝑃𝑒
𝑔
=

{
 
 

 
 2(M − 1)

𝑀
Φ(

μ −𝑚𝜃

𝜎𝜃
) 𝑤ℎ𝑒𝑛 𝛼 ≥ 0

2(M − 1)

𝑀
Q(
μ −𝑚𝜃

𝜎𝜃
) 𝑤ℎ𝑒𝑛 𝛼 < 0

 .                                             (5.37) 

  

For a special case when all classifiers have equal strengths, equal prior probabilities, 𝛼 =

1, 𝑀 = 2, 𝑤𝑖 = 1 𝑁⁄ , 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑁 = 𝑚, 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑁
2 = 𝜎2 and 𝑝𝑖,𝑗 = 𝜌 = 1. 

Then (5.37) simplify into 

 

𝑃𝑒 = Φ(
0.5 − 𝑚

𝜎
).                                                                 (5.38) 

 
 

The expression defined in (5.38) is identical to equation (8) derived in reference [31] 

which represents the classification error for a single classifier. Therefore (38) suggested that 

there is no benefit of combining identical classifiers with 𝜌 = 1 since the ensemble performance 

reaches the performance of a single one. So, creating diversity among classifiers is crucial to 

improve the classification accuracy. 
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5.6. Results and Discussions 

 

a) Theoretical Results 

In this section, theoretical results are discussed in terms of how to select the optimal 

fusion rule for a given ensemble condition. Since the focus is on studying the effect of parameter 

𝛼 on ensemble error. Classifiers assumed to have equal weights, independent and identically 

distributed. Studying the effect of other parameters such as correlation and unequal classifier 

strengths are considered in others works. For example, the study in [37] show a correlation 

increases among classifiers outputs, the ensemble error increases exponentially, while the study 

in [33] show the weighted combining rules achieve negligible improvement compared to the 

unweighted one. Thus, expression (5.22) is considered for the comparison study.  In all 

comparison cases, the number of classifiers is chosen to be as large as 10. The reason behind this 

choice is to satisfy the assumption made in the derivations in which the final distribution of 

adding 𝑁 classifiers is a normal distribution.  

 
Since the Taylor series approximation defined in 5.10 is not very accurate for estimating 

the class variance for higher 𝛼 values (𝛼 ≫ 1), so the derivation is simulated using MATLAB. 

Figure 5.2, figure 5.3 and figure 5.4 shows the probability density function as a function 

combiner outputs (𝑝) for the following ensemble parameters (𝑁 = 10,𝑚1 = 0.4,𝑚2 = 0.6,𝑀 =

2). The purpose is to evaluate the effect of class statistics (𝜎1, 𝜎2) on combining 𝑁 classifiers. By 

considering three cases (𝜎1 = 𝜎2 = 0.2), (𝜎1 = 0.1, 𝜎2 = 0.3), (𝜎1 = 0.3, 𝜎2 = 0.1), the results 

are shown in figure 5.2, figure 5.3 and figure 5.4 respectively. To study the effect of each 

combining rule on minimizing classification error, three combining rule cases are considered; 

𝛼 = 10, 𝛼 = 1 and 𝛼 = −10. In the case of symmetrical class distribution (𝜎1 = 𝜎2 = 0.2), the 

average rule displays the best results as compared to others (𝛼 = 10 and 𝛼 = −10), because the 

error is minimum. While in case of 𝜎1 = 0.1, 𝜎2 = 0.3 (figure 5.3) the system improves as 𝛼 →

∞ and the behavior is reversed when 𝜎1 = 0.3, 𝜎2 = 0.1 (figure.5.4) where the performance 

improves as 𝛼 → −∞. 
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Figure 5.2. Probability Density Function For M=2 as a Function 
of Combiner Outputs for 𝛼 = 10, 𝛼 = 1 and 𝛼 = −10 and  𝜎1 =
 𝜎2 = 0.2 
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Figure 5.3. Probability Density Function for M=2 as a Function 
of Combiner Outputs for 𝛼 = 10, 𝛼 = 1 and 𝛼 = −10 and  𝜎1 =
0.1, 𝜎2 = 0.3 
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These results are quite interesting since they confirmed that there is no a single 

combining rule that work for all classification problems and every combining rule works under 

specific conditions. The pervious results matched the principle of the no free lunch theorem 

which states that there is not a single fusion rule which works for all classification problems and 

there is always a worst scenario for each fusion rule when it gives poor performance.  As shown, 

each combing rule scales the resulting posterior class probability differently depend on their 

statistics. When 𝜎1 = 𝜎2 the best improvements are achieved using linear combiner (𝛼 = 1) 

while in the case of 𝜎1 < 𝜎2  the improvement is achieved as 𝛼 → ∞ and for 𝜎1 > 𝜎2 the 

improvement is in the direction of 𝛼 → −∞. So, the previous results help in the predication of 

what is the best combiner rule based on classifiers outputs statistics. Figure. 5.5 shows 

classification error as a function of 𝛼 for different 𝜎1 and 𝜎2 values. As shown in the case of 

symmetrical classes variance (𝜎1 = 𝜎2 = 0.05) a minimum classification error is achieved 

around 𝛼 = 1. While in case (𝜎1 = 0.05, 𝜎1 = 0.1) a minimum classification error occurs at 𝛼 =

−5 and for (𝜎1 = 0.1 , 𝜎1 = 0.05) at 𝛼 = 5. It is clearly evident from these results that selecting 

an optimal combining rule is strongly dependent on classifiers’ statistics. The next section 

attempts to apply these results on real datasets. 
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Figure 5.4. Probability Density Function for M=2 as a Function 
of Combiner Outputs for 𝛼 = 10, 𝛼 = 1 and 𝛼 = −10 and  𝜎1 =
0.3, 𝜎2 = 0.1 



89 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Experimental Results 

In this section, the theoretical predications are verified using six datasets all from the UCI 

repository except diabetes which is from National Institute of Diabetes, Digestive and Kidney 

Diseases.  The datasets that are considered for verification are breast cancer Wisconsin, magic 

gamma telescope, defaults of credit card clients, diabetes, ionosphere and diabetic retinopathy 

debrecen. Some features of the breast cancer dataset are extracted from a digital image of breast 

mass, and the generated attributes describe the cell nuclei characteristics that are presented in the 

image. The overall number of the generated attributes is 32, their values are real and the number 

of instances is 569. Features are classified into two classes (M: malignant, B: Benign). Magic 

gamma telescope dataset is generated for simulating the registration process of gamma particles 

using imaging techniques in a ground-based atmospheric Cherenkov gamma telescope. The 

dataset consists of 11 features in which their values are either integer or real valued and the total 

number of instance is 19020. A data set of credit card default clients is created to classify clients 

as credible or not credible for cases of customer default payments in Taiwan. The number of 

attributes in the dataset are 24 which could be integer and real valued and the number of 

instances are 30000. Diabetes consists from 8 features and 768 instances, the purpose of this 

dataset is to classify whether a patient shows symptoms of debates or not. Diabetic retinopathy 

debrecen data. The dataset contains 20 features and 1151 instances extracted from images to 

predict whether a patient shows symptoms of diabetic retinopathy or not. 
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Figure 5.5. Classification error as a function of 𝛼 for different 𝜎1 
and 𝜎2 values 
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 Ionosphere consists from 34 features and 351 instances, the purpose of this data is to 

classify radar signals reflected from ionosphere to detect free electrons. 

 

The purpose of the derivation is to predict the performance of an ensemble behavior as 

the combining rule varies. It is not expected that derivations would predict the exact behavior of 

the ensemble system trained on a real dataset, but rather it should estimate the performance 

trend, because the derivation are based idealized assumptions to come up with closed form 

expressions. The inaccuracies in the estimation results come from the following:   assumptions of 

the normal posterior class probability are violated in practice since classifiers produce arbitrary 

distributions. Also, the derivations are based on an infinite train data size i.e. it was assumed the 

actual dataset distribution is known while in real cases the available training data is limited in 

size. The estimated error is based on the ratio of the number of times of an ensemble error to the 

total number of trails. Therefore, the expected error rate is biased from the actual value due to 

limited training data size. In addition, for simplification of the derivations it was assumed classes 

have an identical distribution with equal prior class probabilities these assumptions are usually 

violated in the actual dataset. However, the estimated model should predict the performance 

trend as fusion rules change which allow us to predict the best combining rules for a given 

dataset. The study is started by estimating the posterior class probabilities for the datasets under 

study to get an idea on how actual posterior class probability looks for the real datasets. Figure 

5.6 - figure 5.11 show posterior class probabilities for six datasets. The dataset statistics for 

figure 5.6 - figure 5.11 are summarized in table (5.1) 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Statistics of Posterior Class Probabilities for Breast Cancer, Telescope, Credit 
Card, Diabetes, Ionosphere and Diabetic Retinopathy Datasets. 

breast cancer dataset telescope dataset credit card dataset 

Class 𝜔1 Class 𝜔2 Class 𝜔1 Class 𝜔2 Class 𝜔1 Class 𝜔2 

mean variance mean variance mean variance mean variance mean variance mean variance 

0.2153 0.0078 0.7522 0.01 0.5435 0.0182 0.8388 0.0042 0.4989 0.0504 0.7782 0.0056 

diabetes dataset ionosphere dataset Diabetic Retinopathy dataset 

Class 𝜔1 Class 𝜔2 Class 𝜔1 Class 𝜔1 Class 𝜔2 Class 𝜔1 

0.3015 0.0434 0.7986 0.0146 0.2154 0.0197 0.8501 0.0100 0.2683 0.0251 0.5995 0.0182 
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Figure 5.6. Posterior Class Probability for Breast Cancer 
Dataset 
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Figure 5.7. Posterior Class Probability for Telescope Dataset 
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Figure 5.8. Posterior Class Probability for Credit Card 
Dataset 
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Figure 5.10. Posterior Class Probability for Ionosphere Dataset 
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Figure 5.9. Posterior Class Probability for Diabetes Dataset 
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Figure 5.11. Posterior Class Probability for Diabetic Retinopathy Debrecen 

Dataset 
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As shown, the posterior class probabilities show an arbitrary probability density 

distribution for each dataset, the pdf of each class is plotted as a function of the normalized 

classifiers outputs. The classifier used to generate these plots is the Support Vector Machine 

(SVM) with a Gaussian radial basis as a kernel function. In each case, the whole dataset size is 

used in generating these plots (figure 5.6 - figure 5.11), the amount of classification error is 

indicated in the region of the intersection of the two class probabilities. As a result, these plots 

give us an idea about the generalization performance for a given classification task. For example, 

inspecting figure 5.8 shows that the performance is the worst compared to the others since 

posterior class probabilities highly interfere with each other. The classification error comes from 

two sources, the first source is from what is called the Bayes error which is inherent in the 

training data. It can be minimized by the proper selection of features that reduce the interference 

between the class probabilities. The other error source is the added error [39] which is made up 

of two components; bias and variance errors. Bias error results from training a classifier on a 

small training data size which results in a deviation in estimating the posterior class probability, 

while variance error results from over-training. Ensemble learning tries to overcome this 

problem by training a set of diverse classifiers by fusing their outputs. In the next section, an 

ensemble system is trained to compare the predicted results with results obtained from real 

datasets. 

 

An ensemble of 10 SVM classifiers is created based on a Gaussian radial base as a kernel 

function. The datasets are divided into two parts, the first part is the training set which is 

comprised of 80% of the actual data size which leaves 20% for test purposes. To create diversity 

among base classifiers, a subspace training method is used in which each classifier is trained on a 

subset extracted from the available training set. The purpose of this method is to ensure that each 

classifier has complementary information which results in a reduction of correlation and 

increases the diversity among base classifiers. The classifiers outputs are fused using different 

combiners from {-200, 200}.  To classify the fuzzed outputs, a decision threshold (𝜇) was set in 

which, when a fused output is equal or more than 𝜇 class 𝜔1 is chosen, otherwise 𝜔2 is selected. 

The optimal threshold is estimated using an adaptive algorithm that first estimates prior and 

posterior classes’ probabilities, then the optimal threshold is calculated by minimizing the 

classification error using the following formula: 
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𝑃𝑒 = 𝑝(𝜔1)𝐹1(𝑝, 𝜇) + 𝑝(𝜔2)𝐹2(𝑝, 𝜇),                                      (5.39) 

 

where 𝑃𝑒 is the classification error, 𝑝(𝜔𝑖) is the classes prior probabilities, 𝐹𝑖(𝑝, 𝜇) is the 

cumulative distribution function of class 𝜔𝑖, 𝑝 is the combiner output and 𝜇 is the optimal 

threshold. 𝐹𝑖(𝑝, 𝜇) is estimated using the histogram technique during training phase then the 

calculated optimal threshold (𝜇) is used to classify data in the test phase. 

 

Assessments for ensemble classification are based on classification error estimation 

which is calculated as a ratio of misclassification instances to the total number of instances in the 

test set. Figure 5.12 - figure 5.17, show the ensemble performance in terms of ensemble error as 

a function of the fusion rule parameter 𝛼. Figure 5.12 show that ensemble performance improves 

as 𝛼 → ∞ i.e as fusion rule moves toward maximum. this trend trends are predicted by 

theoretical results shown in figure 5.3. The same conclusion can be applied to the telescope, 

credit card, diabetes, ionosphere and diabetic retinopathy datasets in which the system 

performance improves toward 𝛼 = −1 and 𝛼 = 1, 𝛼 = −25, 𝛼 = 25 and 𝛼 = 50 respectively.  

Tables (5.2) – table (5.7), show the ensemble performance as a function of 𝛼 for 12 fusion rules 

and for six datasets. For all six cases, the best fused ensemble shows a performance equal to the 

best individual classifier in the ensemble. That means the optimal fused ensemble always 

achieves minimum classification accuracy among individual classifiers and shows a robust 

performance against the overfitting problem. 

 

 

 

 

 

 

 

 

 

 Figure 5.12. Classification Error as a Function of 𝛼 for Breast 
Cancer Dataset 
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Figure 5.14. Classification Error as a Function of 𝛼 for Credit 
Card Dataset 
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Figure 5.15. Classification Error as a Function of 𝛼 for diabetic 
Dataset 

Figure 5.13. Classification Error as a Function of 𝛼 for 
Telescope Dataset 
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It is clearly shown from tables 5.2 – 5.7 that selecting the appropriate fusion rules plays a 

crucial role in optimizing the ensemble performance and avoiding the worst-case scenario for 

selecting poor individual classifiers. For example, the worst classification accuracy was 76.76%, 

81.49%, 79.08%, 64.94%, 65.71% and 53.18% while the best performance combining rule was 

97.18%, 86.41%, 82.22%, 77.92%, 83.57% and 63.58% for breast cancer, telescope, credit card, 

diabetes, ionosphere and diabetic retinopathy datasets respectively. The improvement achieved 

over the six datasets are 20.42%, 4.92%, 3.14%, 17.86%, 13.43% and 10.4%. The improvement 

is calculated as a difference between the best and the worst ensemble performance. The best 

results achieved on the datasets are directly connected with the predication given in figure 5.6 - 

figure 5.11. For example, the tail probabilities shown in figure 5.6 are slightly interfere which 
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Figure 5.16. Classification Error as a Function of 𝛼 for 
ionosphere Dataset 
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results in good classification accuracy (97.18%,) for the breast cancer dataset while in the case of 

telescope data and credit card data, the pdf tails penetration results in lower classification 

accuracy of 86.41% and 82.22% respectively. As a result, estimation of posterior class 

probabilities provided an indication of how datasets perform on trained classifiers. Removing 

features that causes these interferences among probability tails would improve the ensemble 

performance significantly. This is an interesting research area by training a classifier on a whole 

dataset then removing or transforming features that causes classification errors. These features 

are considered as a main source of errors and to remove them improves classification accuracy 

significantly.  

 

Table 5.8 shows a classification results comparison between the proposed algorithm with 

standard ensemble classification algorithm called random forest for six data sets under study; 

breast cancer, telescope, credit card, diabetes, ionosphere and diabetic retinopathy.  Random 

forest is a standard ensemble classification algorithm in machine learning which was first 

proposed by Ho in 1998 [49] and further improved by Leo Breiman [50].  The idea is based on 

training a set of decision tree classifiers using random subspace method, the classifiers results are 

combined using average combiner. The purpose of the algorithm is to minimize the variance of 

the classification results by combining large number of classifiers. In this work, random forest is 

choosing for comparison since its structure and the proposed algorithm are based on combining 

multiple classifiers. However, the combining process in random forest is fixed by average rule 

while the proposed algorithm is adaptive according to the base classifiers statistics. So, the 

random forest relies on using large number of base classifiers for a fixed combining rule while 

the proposed algorithm uses less base classifiers with flexible combining rule. 

 

As shown the proposed algorithm achieved a comparable classification result with 

random forest with ensemble size of 10 base classifiers compare to 100 base classifiers in case of 

random forest. Since the proposed algorithm used less base classifiers, that results in faster 

execution time as compared to random forest. These results show that ensemble performance is 

strictly dependent on classifiers’ output statistics. Therefore, selecting an optimal fusion rule 

plays an important role in optimized ensemble performance. Figure 5.18 summarized the 

proposed algorithm that is used in generating results given in tables 5.2 - 5.8. 

https://en.wikipedia.org/wiki/Leo_Breiman
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Table 5.2: Ensemble Performance as a Function of 𝛼 for Breast Cancer Dataset with Optimal 
Threshold = 0.699. 

𝛼

= −200 

𝛼

= −100 

𝛼

= −75 

𝛼

= −50 

𝛼

= −25 

𝛼

= −1 
𝛼 = 1 𝛼 = 25 𝛼 = 50 𝛼 = 75 

𝛼

= 100 

𝛼

= 200 

76.76% 77.46% 78.17% 79.58% 81.69% 88.03% 88.73% 96.48% 97.18% 97.18% 97.18% 97.18% 

Table 5.3: Ensemble Performance as a Function of 𝛼 for Telescope Dataset with Optimal 
Threshold = 0.5102. 
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𝛼
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𝛼 = 1 𝛼 = 25 𝛼 = 50 𝛼 = 75 

𝛼

= 100 

𝛼

= 200 

81.49% 81.70% 82.12% 82.60% 83.33% 86.41% 86.38% 84.07% 83.12% 82.65% 82.54% 82.23% 

Table 5.4: Ensemble Performance as a Function of 𝛼 for Credit Card Dataset with Optimal 
Threshold = 0.6449. 
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𝛼

= 200 

79.08% 79.35% 79.55% 79.90% 80.52% 82.00% 82.22% 81.13% 80.92% 80.73% 80.67% 80.57% 

Table 5.5: Ensemble Performance as a Function of 𝛼 for Diabetes Dataset with Optimal        
Threshold = 0.3394. 

𝛼
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𝛼
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𝛼
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𝛼
= 100 

𝛼
= 200 

74.03% 75.32% 75.32% 75.97% 77.92% 72.73% 67.53% 64.94% 64.94% 64.94% 64.94% 64.94% 

Table 5.6: Ensemble Performance as a Function of 𝛼 for Ionosphere Dataset with Optimal      
Threshold = 0.6104. 

𝛼
= −200 

𝛼
= −100 

𝛼
= −75 

𝛼
= −50 

𝛼
= −25 

𝛼
= −1 

𝛼 = 1 𝛼 = 25 𝛼 = 50 𝛼 = 75 
𝛼
= 100 

𝛼
= 200 

65.71% 65.71% 65.71% 65.71% 67.86% 75.00% 75.00% 83.57% 82.14% 80.00% 77.86% 75.00% 

Table 5.7:  Ensemble Performance as a Function of 𝛼 Diabetic Retinopathy Dataset with           
Optimal Threshold = 0.7921. 
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53.18% 53.18% 53.18% 53.18% 53.18% 53.18% 53.18% 62.43% 63.58% 62.43% 61.85% 60.69% 
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As shown from previous results, the proposed algorithm is not outperforming the random 

forest in all datasets cases but it provides a comparable classification accuracy. As known from 

machine learning different classifiers (such as svm, neural network, knn, etc.) exhibit different 

classification accuracy for a given data set. The overall performance of the proposed algorithm is 

dependent on ability of base classifiers to classify data which in this case svm. If these classifiers 

generate unsatisfying results on a certain data set it may affect the overall algorithm 

performance.  

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

Table 5.8: Classification Results Comparison Between Proposed Algorithm and Random Forest 
for Six Datasets; Breast Cancer, Telescope, Credit Card, Diabetes, Ionosphere and Diabetic 
Retinopathy datasets. 

Dataset 
breast 

cancer 
telescope credit card Diabetes ionosphere 

diabetic 

retinopathy 

Proposed algorithm 96.7 % 86.5 % 82.3 % 77.5% 82.0% 64.4% 

Random Forest 95.9% 87.5% 81.6% 75.7% 64.9% 54.2%. 

Figure 5.18. Flow Chart of the Proposed Algorithm 

Start

Prepare a dataset for 10 
folds cross validation 

test.

In each fold divide the 
dataset in two parts; 

training (80%) and 
testing (20%) using 
random sampling 

without replacement.

a

a

In training phase choose 
the best combiner rule 

and calculate the optimal 
decision threshold using 

equation (5.39).

In test phase combine 
classifiers outputs using 

combining rule and 
threshold defined above

In training phase creates 
an ensemble of N SVM 
classifiers trained using 

subspace training 
algorithm

End

Average classification  
results over 10 folds 
cross validation test
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CHAPTER VI 
 
 

SUMMARY AND CONCLUSIONS 
 

6.1. Summary 

 

The idea of combining 𝑁 classifiers is a promising technique to achieve better classification 

performance and lower sensitivity to overfitting problems when compared to single classifier 

systems. In this work, a mathematical model is proposed that estimates the classification error for 

𝑁 classifiers and for 𝑀 classes. A diversity among base classifiers is modeled using a correlation 

operator. Theoretical results show there is not a single combining rule that works for all 

classification problems. Theoretical predication on six real datasets is validated. Guided by 

theoretical derivations, a novel algorithm is developed that achieved optimal classification 

accuracy and avoided the scenario of choosing the worst performing classifiers. The proposed 

algorithm was tested on an ensemble of 10 SVM classifiers that was trained using a subspace 

training algorithm. Results show that the ensemble always gives a classification accuracy that is 

equal to or better than the best individual classifiers in the ensemble. Also, it shows a robust 

performance against the overfitting problem. The classification results of the proposed algorithm 

show a comparable performance against random forest which is a standard algorithm in ensemble 

classification. 

 
 

6.2. Contributions 

 

The dissertation purpose is to optimize the performance of ensemble systems by designing 

an optimal combining rule for a given classification problem. The contribution is divided into two 

parts; theoretical and experimental. In the theoretical part in chapter 3, analytical models are 

proposed for product and majority vote rules. The results show that for equal weight classifiers 

with a normal distribution, a modified product rule (geometric mean) outperforms sum, product 

and majority vote rules under the condition of independent classifiers. Also results show as the 

correlation among classifiers outputs increases, the probability of classification error degrades 

exponentially. The trend continues until the performance reaches the behavior of a single classifier 

regardless of the number of base classifiers used in the ensemble. In Chapter 4, four models are 
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proposed; weighted geometric mean, weighted majority vote, weighted average and weighted 

harmonic mean. Theoretical results show that there is not a single combining rule that works for 

all classification problems. 

 

Part of Chapter 5 focused on designing an optimal ensemble combining rule for a given 

classification problem. A theoretical model is developed for estimating the performance of 

ensemble systems for M classes and N classifiers based on a generalized mean rule. Results show 

how to design an improved combining method based on classifier outputs statistics. The proposed 

theoretical models in Chapter 3,4 and 5 provide a better understanding of the behavior of MCS 

and bring significant insight. 

 

In the experimental part in Chapter 5, a novel algorithm is proposed that predicts an optimal 

combining rule for a given classification problem. Six datasets are used to test the classification 

results of the proposed algorithm, which are breast cancer, telescope and credit card. Results show 

a comparable performance with the random forest. The benefit of the proposed algorithm is to use 

less base classifiers: 10 compared to 100 in the case of random forest which results in reducing the 

computational operation and makes it more suitable in real time classification problems.  

 

 

6.3. Future Directions 

• Dissertation results quantify the Bayes error resulting from combining 𝑁 classifers which 

is directly related to the structure of the training data. The work given in [39] tried to 

estimate what is called the added error which is directly related to the imperfections in a 

classifier training process. The idea is to combine Bayes and added error into one formula 

and test the ensemble against different combining rules. As shown in the previous 

derivations in Chapter 4, different methodologies are applied to derive classification error 

probability. The purpose is to present a unified framework that would work with any 

combining rule. According to the current literature, there is no analytical solution which 

can achieve such a framework. However, a semi analytical method may provide the desired 

results. This would help in building a foundation theory for multiple classifier systems. 

• By mathematical definition the generalized mean rule provides a limited search space for 
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an optimal combining rule so it can maximize the searching space by solving the following 

optimization problem. The key idea is to make an assumption about the joint probability 

density function 𝑓(𝐏) for N combined classifiers. The probability of classification error is 

calculated for N joint cumulative distribution function (𝐹(𝐏)) subjected to the constraint 

of the combining rule i.e, 

 
) , ... , ,( 2211 NN kpkpkpF  , 

 
subject to 
 

ckkk N  ) , ... , ,( 21 ,                                                 (6.1) 
 

where 𝑐 and 𝑘𝑖 (𝑖 = 1,2, … , 𝑁) are constants and Ψ(∙) is the fusion function. The previous 

problem has 𝑁 constraint integrals, solving (6.1) would help in finding an optimum 

combining rule for a given ensemble condition. On the other hand, the problem can be seen 

as an optimization puzzle, in which for any given distribution of the classifiers outputs, it 

can search for a target function (combining rules) that minimizes the ensemble error 

(𝐹(𝐏)). 

 

 

6.4. Conclusion 

In this work, the focused is on designing an optimal algebraic combining rule that 

minimized the classification error. The proposed algorithm is compared with random forest which 

shows a comparable classification accuracy with 10 base classifiers compared to 100 in random 

forest, which reduces the computational calculations significantly. Random forest uses s fixed 

average combining rule and relies on large number of classifiers. While, the proposed algorithm 

uses less classifiers number and flexible combining rule. This provides additional advantage for 

the proposed algorithm for finding the best combining rule that optimized the ensemble 

performance. The proposed algorithm is best suited for applications that are critical in 

classification time such as image processing, biometric applications and computer vision. 
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