A COMPARATIVE STUDY OF CRYOBALLOON, RADIOFREQUENCY, AND LASER ABLATIONS FOR THE TREATMENT OF ATRIAL FIBRILLATION

Amanda Croft

Chair: Dr. John Spitsbergen

Committee Member: Dr. John Jellies

April 25, 2019

Western Michigan University
Lee Honors College
OUTLINE

• What is heart disease?
• Atrial Fibrillation Introduction
• Current Treatments for Atrial Fibrillation
• Introduction to Ablation Techniques
• Research Aims
• Methods of Study
• Conclusions
• Future Implications
What is Heart Disease - America's Number 1 Killer

The Plumbing of the Heart

- Typically associated with myocardial infarctions (heart attacks), bypass grafting, stenting, etc.
- Each can be classified under Coronary Artery Disease
- This is the “plumbing” of the heart

The Electrical Signaling

- Arrhythmia: Disruption in the heart’s electrical circuit
- The “electrical” of the heart
- Ventricular tachycardia, premature ventricular contractions, supraventricular tachycardia, and atrial fibrillation (AF)
• Blood is pumped from the atria to the ventricles
• Pumping is stimulated by the electrical circuit
• AF originates in the pulmonary veins
• This disrupts proper pumping action
• Atria fibrillate

Why is this a problem?
• AF is not deadly
• Complications
• Symptoms can be debilitating or deadly
ATRIAL FIBRILLATION

Debilitating Symptoms
- Palpitations
- Fatigue/Lethargy
- Dizziness
- Tachycardia (RVR)
- Anxiety

Stroke Risk
- The left atrium fibrillates, causing the blood to pool and coagulate
- Stroke is a large risk associated with atrial fibrillation
- First step when diagnosed with AF is assess need for anticoagulation
CURRENT TREATMENTS

Treatment progresses from most conservative to most invasive

1. Medications
 - Anticoagulation
 - Beta Blockers
 - Anti Arrhythmic

2. Cardioversion

3. Intervention
 - Surgical- Cox Maze
 - AV node ablation and Pacemaker implantation
 - Pulmonary vein isolation/ Ablation
ABLATIONS

Three Explored in this Study

• Cryoballoon (CB) Ablation
• Radiofrequency (RF) Ablation
• Laser (LA) Ablation

1. Catheter inserted into a vein in the groin
2. Travels up through the vein to the right atrium
3. Punctured into left atrium
4. Cauterizes tissue around pulmonary veins
CRYOBALLOON ABLATION

- Freezes
- Delivers spherical burn
- Not fit for all anatomy
• Burning radiation
• Single point burn
• Fit for all/most anatomy
• Used in first time and re-do ablations
LASER ABLATION

- Burning radiation
- Adjustable balloon
- Uses real-time camera imaging to view the atrium as it is being ablated
RESEARCH AIMS

• To compile one cohesive study comparing Laser, Cryoballoon, and Radiofrequency ablation techniques

• To suggest which techniques have the highest efficacy and/or lowest incidence of complications
METHODS

• 4 major studies selected
 • Discussed with Electrophysiologist

• Not all studies encompassed data on all techniques, but at least one and at least one the highlighted risks/recurrence data

• Risks Explored in this study: Thromboembolic events (TE), groin hematoma, major bleeding, and phrenic nerve paralysis

• Compiled into one cohesive document
RESULTS

<table>
<thead>
<tr>
<th>Technique versus Study</th>
<th>Orange Study</th>
<th>Green Study</th>
<th>Blue Study</th>
<th>Yellow Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryoballoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Patients</td>
<td>311.00</td>
<td></td>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td>86.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>7.00</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>7.00</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>Radiofrequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Patients</td>
<td>376.00</td>
<td></td>
<td></td>
<td>56.00</td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td>171.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>1.00</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Patients</td>
<td>167.00</td>
<td>71.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td>61.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>2.00</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td></td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>6.00</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Orange/Green/Blue/Yellow studies**
- Does show number of patients in this table
- **Green and Blue discussed LA solely**
- **Yellow discussed CB and RF**
RESULTS

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>Orange Study</th>
<th>Green Study</th>
<th>Blue Study</th>
<th>Yellow Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryoballoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td>27.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td></td>
<td></td>
<td></td>
<td>54.00</td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>2.25</td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td>45.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td></td>
<td></td>
<td></td>
<td>66.07</td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td></td>
<td></td>
<td></td>
<td>1.79</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>3.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>0.27</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence at 10 months</td>
<td></td>
<td></td>
<td>36.53</td>
<td></td>
</tr>
<tr>
<td>Recurrence at 1 year</td>
<td></td>
<td>1.20</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td>1.20</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Groin hematoma</td>
<td>4.23</td>
<td>1.41</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>0.00</td>
<td>1.41</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>Phrenic nerve Paralysis</td>
<td>3.59</td>
<td>5.63</td>
<td>5.63</td>
<td></td>
</tr>
</tbody>
</table>

- Expressed as a percentage of total subjects
Studies that both included a report on a risk/recurrence listed were averaged
• PNP risk is less than 5% for each technique
 • 9 patients CB
 • 1 RF
 • 10 LA

• LA had the highest, then CB, then RF

• All cases resolved with patient regaining function of PN either peri-operatively or post-operatively

• Perhaps technique dependent
RESULTS

- Each Study exhibited incidence in less than 1% of patients
 - CB: 0.32%
 - RF: 0.27%
 - LA: 0% (0.0084%)
- Perhaps technique dependent
• Both hematoma and major bleeding fall under “bleeding”

• RF had highest major bleeding, but lowest GH

• Results suggest that bleeding is not technique dependent
• **Purpose of Ablation** is to have long-term/lifelong results

• **Why assume the risk** if there is not a promising outcome?

• All data collected after 3 month blanking period

• LA had lowest recurrence, then CB, then RF
CONCLUSIONS

• Each technique has its own advantages and disadvantages

• Bleeding did not suggest any one technique being superior to another

• Thromboembolic events were clearly less frequent in laser ablations, though rates were consistently below 1%

• Phrenic nerve paralysis was least frequent in radiofrequency ablations

• Recurrence was least prevalent with laser ablations

• Suggests that the circumstances of each patient should be thoroughly explored before deciding on technique, however laser ablation may offer the best chance at a lifelong cure
• While informational, this study was limited. In the future the study could be repeated for primary data at one institution.

• Laser ablation is an up-and-coming technique and hospitals who perform AF ablations should consider implementing LA technology.
REFERENCES

ACKNOWLEDGEMENTS

Dr. John Spitsbergen
Dr. John Jellies
Dr. Wassim Jawad, M.D.
Lee Honors College
Troy deHagen
THANK YOU!
Yellow Study:

Green Study:

Blue Study:

Orange Study: