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In the past decades, software development for mission critical applications has drawn 

great attention not only in various mission critical communities but also software engineering 

communities. One of the important reasons is that the failure of these systems can lead to some 

serious consequences such as huge financial loss and even loss of life. Therefore, software 

certification has become an important activity for mission critical applications in that software 

assurance for such a system should be certified. With the increasing complexity of a software 

system in mission critical sectors, certifiers have found hard time to understand how a software 

system has been developed to ensure software assurance. Assurance cases have been 

increasingly considered by many emerging standards and government guidelines as an important 

argument structure for software certification. An assurance case represents an argumentation 

structure which lays down all arguments made behind each step or activity during a Software 

Development Life Cycle (SDLC) as well as the relevant artifacts as evidence. In this dissertation, 

we develop a framework, called SPIRIT, to aid the development and certification of mission 

critical applications for both system developer and certifier by means of the Model Driven 

Architecture (MDA). The SPIRIT framework is tripartite and consists of: i) a pattern-based 

assurance case generation via safety patterns to automatically support assurance cases, ii) 

maintenance of an assurance case, and iii) a confidence calculation that applies the Dempster-



 

Shafer theory as a mathematical model to further deduce confidence of an assurance case for the 

certification purpose. As the results, the SPIRIT framework leverages both developers’ and 

certifiers’ capability as a means to develop assurance-based software development for mission 

critical applications. 
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CHAPTER I  

INTRODUCTION 
 
 

In the past decades, software development for mission critical applications has drawn 

great attention not only in various mission critical communities but also software engineering 

communities. One of the important reasons is that the failure of these systems can lead to some 

serious consequences such as huge financial loss and even loss of life. For instance, the failure of 

Therac-25 radiation therapy machine gives patients overdoses of radiation during radiation 

therapy, and three injured patients died due to the overdose of radiation. Another example is that 

the Northeast blackout of 2003 affected over 55 million people for two days. The primary cause 

of the blackout was a programming error of the alarm system. The last example we mention here 

is, in 2004, over 400 aircrafts lost the communication to the Los Angeles Air Route Traffic 

Control Center due to the failure of the voice communication system. Almost 800 flights were 

disrupted because of the software failure of the software upgrade to a subsystem for the Voice 

Switching and Control System (VSCS).  

As a result, some international standard documents or governmental documents have 

been released to ensure that a software system for a mission critical application should be well 

designed to achieve all the goals and not produce any serious consequence to its clients and the 

public. Most of these standard documents not only stipulate some specific development process 

to follow but require some strict testing and validation requirements on some system activities 

and artifacts as well. For instance, DO-178C, Software Considerations in Airborne Systems and 

Equipment Certification [1] specifies the requirements related to the software testing such as test 

case selection: “Specific test cases should be developed to include normal range test cases and 

robustness, that is, abnormal range test cases”. Also, DO-178C has requirements on testing 

methods: “Requirements-Based Hardware/Software Integration Testing: This testing method 

should concentrate on error sources associated with the software operating within the target 

computer environment, and on the high-level functionality.  The purpose of requirements-based 

hardware/software integration testing is to ensure that the software in the target computer will 

satisfy the high-level requirements”. Last, DO-178C on Test Coverage Analysis has the 

following requirement: “Requirements-Based Test Coverage Analysis. The purpose of this 

analysis is to determine how well the requirements-based testing verified the implementation of 
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the software requirements. This analysis may reveal the need for additional requirements-based 

test cases.”.  

Software engineers have spent a great effort to follow the development process and 

maximally satisfy the requirements on the system artifacts. However, recent study showed that, 

while great effort has been made, current approaches based on testing and inspection are 

generally not enough to ensure the correct behavior of a system. Especially, “Testing, for 

instance, cannot yield assurance for many kinds of failures related to security and non-

deterministic.” According to [2], the correct behavior of a software system can be summarized as 

software assurance properties, or simply referred to as software assurance, which includes 

quality-related attributes such as reliability, security, robustness, and safety as well as 

functionality and performance. Software assurance costs account for 30 to 50 percent of total 

project costs for most software projects whose behavior still cannot be guaranteed.  

Software certification has become an important activity for mission critical systems in 

that software assurance for such a system should be judged by a third party such as a 

governmental agency, like Federal Drug Administrator (FDA) in the medical industry, instead of 

a team of software engineers who have developed a software system. In doing so, some human 

factors can be maximally reduced and judgement on software assurance can be made based on 

unbiased way. However, this leads to another challenging issue facing both the software 

engineering community and the certification community. With the increasing complexity of a 

software system in mission critical sectors, certifiers have found hard time to understand how a 

software system has been developed to ensure software assurance due to the following reasons. 

First, the heterogeneity of artifacts produced during a software development lifecycle (SDLC) 

hampers the capability of certifiers to understand the rational of how and why these artifacts 

have been produced. Second, missing traceability information linking the artifacts together 

further hinders certifiers the understanding how these artifacts have been developed and how 

they are related to each other according to standard documents. Last, lack of some automatic 

mechanism impedes the efficiency of certifier to draw a sensible decision on whether a system 

satisfies software assurance or not. In all, traditional software development for mission critical 

application should be upgraded to satisfy increasingly strict requirements on software assurance 

with its certification. 
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To demonstrate whether a software system has been developed to satisfy software 

assurance, software engineers should provide an argumentation structure which lays down all 

arguments made behind each step or activity during an SDLC as well as the relevant artifacts as 

evidence. The argumentation structure is called an assurance case in mission critical sectors and 

an assurance case bears considerable resemblance to a legal case, providing a convincing and 

persuasive argumentation with a wealth of reliable and supporting evidence information. 

Currently, there are two notations to represent an assurance case. One is Claims, Arguments and 

Evidence (CAE) [3]. The CAE notation was created by Adelard for presenting a safety argument. 

The CAE notation consists of three types of elements. A “Claim” element represents a statement 

asserted in an argument that can be evaluated as true or false. An “Argument” element explains 

the argument approach to support the parent “Claim”. An “Evidence” element reference to an 

evidence to support a “Claim” or an “Argument.”. The other one is called Goal Structuring 

Notation (GSN) [4]. GSN is a graphical argumentation notation to document an assurance case 

graphically. GSN represents the individual elements of any safety argument and the relationships 

between these elements to visualize an argument structure, which is called as a goal structure, to 

support a claim is true. In GSN, a claim is represented by a “Goal” node. An argument is 

represented by a “Strategy” node, and an evidence is represented by a “Solution” node. For any 

goal structure, the purpose is to show how goals are broke-down to sub-goals until a claim can be 

directly supported by referencing evidence. By using the GSN, it is possible to make clear that 

how the argument strategies are adopted and the context that a goal is stated. In many industries, 

GSN is considered as a standard format to represent an assurance case graphically. In this 

dissertation, we mainly consider GSN in that it has been widely used in safety critical industry.  

As mentioned before, traditional software development concentrates on the activities as 

well as the artifacts to be produced during an SDLC but lacks the rational argumentation behind 

these activities and their produced artifacts. While recent progress made in the traceability 

community to emphasize on the establishment the relationship among artifacts produced by 

different activities, we think it is still far from what an assurance case should provide to convince 

software assurance in a software system. Therefore, we think traditional software development 

for mission critical applications should be upgraded to emphasize on an assurance case as a 

backbone which connects each argumentation to the corresponding activities and their output 

artifacts during an SDLC. However, manual generation of an assurance case where connection of 
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each argumentation to the corresponding activities is provided is time consuming and error 

prone; and in real applications this is real challenging if not impossible. For example, the 

preliminary assurance case for co-operative airport surface surveillance operations [5] is about 

200 pages and is expected to grow as the interim and operational safety cases are created. As a 

result, some automation in support of assurance cases as a backbone of software development for 

mission critical applications should be sought.  

Model Driven Engineering (MDE) [6] gains the popularity due to the complexity of 

problem domains where software system should be developed. MDE aims to bridge the gap 

between the problem domain and its implementation solution and therefore leverages the 

capability of software engineers to develop a software system in an effective and efficient 

manner. Thanks to the latest development in MDE, it is possible for MDE to develop a domain 

specific language tailoring for special needs in a specific domain. In line with the spirit of 

development of a domain specific language, we apply MDE to support the automation in 

generation and maintenance of assurance cases as a backbone during an SDLC.  The main idea is 

that MDE enables us to integrate the generation of assurance cases into an SDLC by means of 

some safety patterns. The application of design patterns is not new and has been employed in 

software design in the past two decades. Design patterns have been proved to be an effective 

solution to develop a software system. Likewise, some safety patterns provide an effective 

method to reuse some successful structures from existing cases which can be from the same 

sector or even a different sector. The application of design patterns increases the success rate on 

software assurance as well as shorten a development lifecycle.  

Furthermore, MDE enhances the capability to deal with software maintenance. Software 

evolution becomes an important feature for modern software development. Thus, the cost to 

maintain a software system accounts for a large portion of the total software cost. In the past, 

great human effort has been made to make sure that a system can work appropriately in a new 

evolving environment but the result is still far from being impressive. In this case, some progress 

especially some automation in support of software maintenance should be made for mission 

critical applications. Due to the automation in generation of assurance cases, it is feasible to 

develop some automatic mechanism to support assurance maintenance. In all, we can track an 

assurance case to a set of system artifacts which are linked to the assurance case. Once some 

modification is made in a system artifact, we trigger some automatic mechanism to monitor the 
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validity of the affected node(s), which further evaluates other nodes in the assurance case. Once 

the validity of a node in an assurance case becomes obsolete, we should be able to flag the 

invalidity as an error.  

An assurance cases provides software engineers with an important means to convince 

certifiers that a software system has been well designed and implemented to achieve some goals 

about software assurance. It is the assurance case that transfers the confidence about a software 

system from software engineers to finally certifiers. Thus, confidence calculation of an assurance 

case is rather crucial to both software engineers and certifiers to serve the goal of software 

certification. While many theories on uncertainty reasoning has been proposed in the last several 

decades, these theories unfortunately cannot be directly applied to the evaluation of an assurance 

case. One of the reasons is that a software development is more like human-centric human 

activities. These human-centric activities cannot be accurately modeled as those theories on 

uncertainty reasoning. Fortunately, artificial intelligence (AI) has made impressive progress in 

the past decade; and a software system called Alpha Go can defeat the best human player, 

bearing the latest success of AI. In this dissertation, we employ some machine learning 

techniques to aid the theories on uncertainty reasoning in the evolution of confidence for an 

assurance case. We employ various models from the uncertainty theories on the calculation of an 

assurance case to find when these models are more appropriate in some circumstances.  

The main contributions of this dissertation are summarized as follows:   

1) Use a UML class diagram to model a standard document and automatically generate a 

UML profile with OCL constraints from the standard model.  

2) Check the conformance of a domain model against the standard.  

3) Use a pattern-based approach to support the auto generation of an assurance case.  

4) Maintenance and Evaluation of an assurance case. 

 

The remainder of this dissertation is organized as follows. Chapter II discusses the 

existing approaches for assurance case generation and evaluation. Chapter III introduces the 

overview of our SPIRIT framework. Chapter IV presents our approach to support the evaluation 

of the satisfaction of standards of a domain model. Chapter V presents our pattern-based 

approach to support the generation of assurance cases. Chapter VI discuss the maintenance and 

evaluation of an assurance case. Chapter VII illustrates a case study example using the coupled 
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tanks control system to demonstrate the use of our framework and analyze the experimental 

results. Chapter VIII concludes. 
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CHAPTER II  

RELATED WORKS 
 

2.1 Assurance Case Generation 

Construction of an assurance case has been a hot topic since the software-intensive 

safety-critical systems are becoming popular and increasing complex. How to build a compelling 

argument draws more attention in safety-critical industry. Many challenges have remained in the 

assurance case community [7]. Various techniques have been proposed to address the problems 

and difficulties in the construction of an assurance case. Some researchers have presented the 

application of pattern in building an assurance case.  

Kelly first proposed the assurance pattern as a way of documenting and reusing 

successful structures [8], the proposed pattern elements and the notations are further included in 

GSN standard document [4]. Since then, various approaches and techniques have been proposed 

to leverage the application of safety case patterns in safety-critical domains.   

For instance, Ayoub et al. [9] proposed a safety case pattern for a system developed using 

a formal method. The pattern considers the satisfaction between a design model in terms of a 

formal notation and its implementation model. In this paper, they proposed a safety pattern, 

called from_to pattern, to support the construction of an assurance case for the Patient Controlled 

Analgesic (PCA) infusion pump. Their pattern defines two types of variables, the {from} 

variable and the {to} variable. The {to} variable refers to implementation of a system, and the 

{from} variable refers to a model of this system. But they did not present how to systematically 

generate a specific assurance case based on their template.  

Schaetz et al [10] proposed a pattern library facilitates the definition and generation of a 

safety case for a specific project via MDA. In their approach, they defined a set of pattern library 

elements to represent a pattern which encapsulates all information on an assurance case into a 

library element and discussed a mechanism for the pattern instantiation. But, they failed to 

integrate the generation of a safety case into a design model.  

Hauge et al. [11] proposed a pattern-based method to facilitate software design for safety 

critical systems. Under the pattern-based method is a language that offers six different kinds of 

basic patterns as well as operators for composition. One of the important ramifications of this 
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method is the generation of safety case, which is connected to the artifacts produced by the same 

method during a development process.  

Denny et al. [12] proposed a lightweight methodology to automatically create the safety 

case from a given set of artifacts. Their approach was implemented by an algorithm which can 

create safety case fragments. Actually, their approach can be regarded as an instance of the 

application of SPIRIT since their algorithm was implemented based on the specific set of 

documents created in tabular format. They also proposed a new pattern language to generate an 

assurance case [13]. Their approach required a data table to connect system artifacts and 

variables in a safety pattern during its instantiation. Obviously, the mapping relationship between 

all system artifacts and variables would be manually provided. In that case, their approach does 

not support the evolution of the system. For example, if the relationships between system 

artifacts are changed, it requires a manual review of the data table and make multiple changes in 

the corresponding fields.  An example to illustrate Denney’s assurance case generation approach 

is shown in Figure 1. In this example, a safety pattern in GSN is defined as shown in Figure 1(1). 

In a safety pattern, the variables are defined in the pattern to represent abstract entities. For 

example, a variable {s} in defined in node G1. To generated an assurance case based on a safety 

pattern, the variables defined in a safety pattern are instantiated by specific system artifacts. In 

this example, the system artifacts in Figure 1(2) shows a specific System sys, two hazards, H1, 

H2, three safety requirements, SR1, SR2, and SR3 and two Report A and B are considered as the 

Figure 1 An example to illustrate Denney's assurance case generation approach 
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artifacts of a system. In Denney’s approach [13], a data table as shown in Figure 1(3) provides 

the instantiation information for each node in a safety pattern. For example, the second column 

in Figure 1(3) shows that the variable {s} is instantiated by system artifact “sys” in node G1. As 

the result, an assurance case is generated in Figure 1(4), and the content of node G1 is replaced 

by “sys” is safe in the assurance case. When an assurance case is generated for a system with a 

large amount of system artifacts based on a safety pattern, a large data table is required to specify 

the information for the variable instantiation. Without the integration of a design model, create 

and maintenance of the data table need to be done manually and become a time-consuming task. 

 Hawkins et al. proposed a Model-Based approach to weave an assurance case from 

design [14]. They use a reference model to model all artifacts and their relationship for a specific 

project and a GSN metamodel to denote an assurance case. When a pattern is instantiated, a 

weaving table is used to generate a specific assurance case. We use the same pattern with the 

same system artifacts as shown Figure 1 to illustrate Hawkins’s [14] assurance case generation 

approach in Figure 2. Instead using a data table, Hawkins proposed a weaving model as shown 

Figure 2(2) to specify the relationships between the variables defined in a safety pattern and the 

system information metamodel. A weaving model shown in Figure 2(2) consists of an 

information metamodel shown in the right and the classes derived from each role in the pattern 

shown in the left. In this example, the information metamodel consists of four classes: System, 

Hazard, Report, and SafetyRequirement, and the classes s, r, h, and sr are derived from the 

Figure 2 An example to illustrate Hawkins's assurance case generation approach 
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variables in the safety pattern in Figure 2(1). In a weaving model, the associations between the 

classes derived from variables and the classes in the information metamodel specifies the 

mapping relationships. In this example, variable {s} maps to class System, variable {r} maps to 

class Report, variable {h} maps to class Hazard, and variable {sr} maps to class 

SafetyRequirement. With the system artifacts as shown in Figure 2(3), an assurance case shown 

in Figure 2(4).  is generated by instantiating the variables to specific artifacts via the weaving 

model. But the simple mapping relationship cannot generate a correct underlying reasoning chain 

in an assurance case because the relationships between variables in the pattern are not specified 

in their pattern. Therefore, different instantiations can be applied to the pattern based on the same 

set of system artifacts. In that case, an incorrect instantiation may be applied to instantiate a 

variable with inappropriate system artifacts when generating an assurance case. In this 

dissertation, we give a detail discussion of Hawkins’s approach and our solution to resolve to 

problem in section 5.2. 

Jee et al. [15] discussed the construction of an assurance case for the pace-maker 

software using a model-driven development approach, which is similar to ours. However, their 

approach emphasizes on the later stage of a software development such as a timed automata 

model as a design model and C code as implementation language. The approach considers the 

application of the results from the UPPAAL tool and measurement-based timing analysis as 

evidence. 

Attwood et al. [16] proposed an approach to apply a linguistic model of understanding to 

identify mismatches and provide guidance on composition and integration when constructing an 

assurance case. Dominguez et al. [17] presented an experience in developing an assurance case 

for a rebreather system via the Goal Structuring Notation. Ray et al. [18] demonstrate an 

approach for safety assurance case argumentation based on the Generic Patient Analgesic Pump 

(GPCA).  
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2.2 Assurance Case Evaluation 

The assurance case evaluation approaches can be categorized into two major categories, 

the Qualitative Approaches and the Quantitative Approaches. In Qualitative Approaches, 

Hawkins et al. [19] discussed a new structure, called assured safety argument, to verify the 

confidence of an assurance case via the confidence argument. An assurance safety argument 

consists of two types of arguments, the safety argument provides argument or evidence directly 

related to the system safety, and the confidence argument justifies the sufficiency of the evidence 

in the safety argument. Their approach identified the Assurance Claim Points (ACP) of a safety 

case and built the confidence arguments for each ACP to justify the safety case assertions. An 

example as shown in Figure 3 illustrates the ACPs identified from an assurance case. In this 

example, three ACPs, ACP1, ACP2, and ACP3 are identified and attached on the links of the 

assurance case, each of which corresponding to a different type of assertion. ACP1 

corresponding to an asserted inference, ACP2 corresponding to an asserted context, and ACP3 

corresponding to an asserted evidence. Different confidence arguments, which are represented as 

assurance cases, are generated for each type of ACP. For an ACP corresponding to an asserted 

inference as ACP1, the purpose of the confidence claim demonstrates why the satisfaction of 

sub-claims can support the root claim. For an ACP corresponding to asserted context as ACP2, 

Figure 3 An example of ACP [19] 
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the purpose of a confidence claim demonstrates the context is appropriate to the assurance case 

elements where the context is applied. For an ACP corresponding to asserted evidence as ACP3, 

the purpose of a confidence claim demonstrated the evidence is appropriate to support the claim, 

and the trustworthiness of the evidence.   

Ayoub et al. [20] proposed an approach to systematically identify the deficiency of an 

assurance case. Similar to Hawkins’s approach [19], the components of an assurance case are 

separate into safety argument and confidence argument. They propose a common characteristics 

map to provide guidelines to support the systematically construction of a confidence argument. 

The deficits of an assurance case are identified during the construction of a positive confidence 

argument if any of the branches in a confidence argument is not supported by sufficient 

evidence. 

The Quantitative Approaches apply mathematical models to calculate the confidence of 

an assurance case. Some authors directly use Bayesian Belief Networks (BBNs) to the safety 

case. Denney et al. [21] uses BBNs to build the confidence argument for the safety case and 

measure the confidence in the claims via the computation of the joint distribution based on the 

quantified sources presented in the safety argument. Zhao et al. [22] discussed how to convert an 

assurance case to a BBN model discussed the guidelines to measure the confidence for each 

claim in an assurance case based on confidential probability table (CPT) assigned to the non-leaf 

node of BBN.  

Some assurance case confidence calculations are based on the Dempster–Shafer (D-S) 

theory of evidence developed by [23]. In the D-S theory based approaches, belief, disbelief, and 

uncertainty of each node in the confidence network are explicitly computed. Guiochet et al [24] 

proposed a confidence calculation model to model an assurance case in GSN and measure the 

confidence of the confidence calculation model based on the belief and uncertainty value of each 

node in the confidence network. Three different types of arguments, simple argument, alternative 

argument, and complementary argument are defined in their approach to propagate the 

confidence in a safety case. Wang [25]  proposed a similar assurance case confidence 

measurement approach based on the D-S theory. According to [25], the confidence calculation of 

a claim depends on the trustworthiness of its sub-claim and the appropriateness of the sub-claims 

supporting the claim. The trustworthiness of a claim is given by a 3-tuple, denoting the 

confidence of the claim. The appropriateness of sub-claims to support their parent claim 
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considers how these sub-claims make contribution to support their parent claim. And Duan et al 

[26] proposed the confidence measurement approach based on the Baconian probability with the 

beta distribution to visualize the Baconian probability representing confidence.  

The existing confidence calculation approaches for assurance cases requires a manual 

configuration of the values of some variables in a calculation model to calculate the confidence 

value of the root claim. For instance, Wang et al. [25] used the Dempster Shafer (D-S) theory as 

their main calculation model in order to deduce the confidence of an assurance case, where they 

manually set up the values for all variables in the calculation model. In that case, assurance case 

evaluation requires the certifiers’ domain knowledge and experience, and the certification of a 

system has been conducted manually. As a result, the development process can be hindered, 

deployment of new systems can be delayed, and developers’ creativity can be stifled. 
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CHAPTER III  

APPROACH OVERVIEW 

 

The V-model [27] is commonly used to represent the software development process in 

different domains. A V-model consists of three major phases: the verification phases, coding 

phase, and the validation phases. The verification phases consist of 1) Requirements analysis 

sub-phase collects the requirements from analyzing the needs from users. 2) The system design 

sub-phase generates software specifications to satisfy the requirements and design the complete 

system. 3) The Software Architecture sub-phase breaks down the design of system into modules, 

each of which takes up different functionalities of the system. 4) The module design sub-phase 

defines the actual logics of a module. The coding sub-phase implements the module design to a 

program. The validation consists of 1) Unit testing sub-phase executes the unit test plans at code 

level or unit level to verify each module can function correctly. 2) Integration testing sub-phase 

tests verifies the internal modules can coexist and communicate with each other. 3) System 

testing sub-phase checks the functionality and the communication of the entire system to verify 

all system requirements are met. 4) Acceptance testing sub-phase verifies the system meets 

user’s requirements.  

But the traditional software development process cannot support software for mission 

critical applications due to two major reasons. First, the system design of mission critical 

application must satisfy the standard documents. Second, an assurance case has been 

increasingly considered by many emerging standards or governmental guidelines as an important 

argument structure for certifier’s certification of a mission critical application, which is called 

assurance-based software. To support the two aspects of the mission critical application 

development in the satisfaction of standard documents, generation, maintenance, and evaluation 

of an assurance case. We proposed a framework, called SPIRIT, illustrated in Figure 4.  

The first goal of our proposed framework aids to check the conformity of a domain model 

against the requirements in a standard document. The main purpose of this goal is to ensure and 

assure the satisfaction of a standard document during an entire development lifecycle for a 

mission critical software system [28]. Because most of the standard documents in different 
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domains are written in a natural language, the assessment of conformance is not straightforward 

because the description of the standard document is ambiguous [28].To achieve this goal, the 

SPIRIT framework automatically converts a standard conceptual model to a Unified Modeling 

Language (UML) [29] profile. Object Constraint Language (OCL) [30] constraints are generated 

and attached to the UML profile. When a system developer provides a domain model as input, 

SPIRIT can check the conformity of the domain model against the standard. That is to ensure 

that a domain model satisfies all standard requirements.  

The second goal of SPIRIT is to aid both engineers and certifiers to develop and certify a 

mission critical system in an effective and efficient manner. We thus address the following 

problem statement: Given a specific development process employed by engineers, while software 

assurance is finally made by a human judgement of fitness for use, how can we provide some 

maximal automation to generate an assurance case which not only lays out an argument 

structure with supporting evidence to support a claim about software assurance but also evolves 

during software maintenance. To attack the challenging problem statement, SPIRIT provides the 

automation of the creation and maintenance of an assurance case in support of development and 

certification of software intensive systems. The Assurance Case Activities target on three major 

Figure 4 SPIRIT framework 
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aspects: 1) Automatically support of assurance case generation, 2) Maintenance of the generated 

assurance case, and 3) Evaluation of an assurance case. 

The SPIRIT framework consists of six major activities, each of which targets on a 

specific task during a software development lifecycle for a mission-critical system: 1) Profile 

Generation activity takes a UML conceptual model as input and generates a UML profile as 

output. A UML class diagram models the concepts of the standard documents is thus called a 

conceptual model of a standard. The purpose of this activity is to formalize the standard 

documents written in natural language using a UML profile, so that the constraints defined in 

standard documents can be applied to a target domain model to verify if the design of a domain 

model satisfies the standard constraints. 2) The Standard Conformity Check activity takes a 

domain model developed based on the standard profile as input and generates an evaluation 

report as output. Domain model is a “visual representation of conceptual classes or real-world 

objects in a domain of interest” [31]. In SPIRIT, a domain model is represented as a UML class 

diagram to model the abstract components or artifacts in a specific domain. The purpose of this 

activity helps the user to verify the proposed domain model conforms to the standard document 

in the early phases of the development life cycle. Once a standard profile is generated by 

SPIRIT, a user can apply the generated profile to their proposed domain model. SPIRIT verifies 

the proposed domain model conforms to the standard document by checking if the proposed 

domain is valid instance of the standard profile or not. In any constraints defined in the standard 

profile is violated by the proposed domain model, then the proposed domain model is an invalid 

instance of the standard profile. In other words, some of the requirements defined in the standard 

documents are not satisfied.  3) The Domain Specific Pattern Generation activity takes the 

domain model, generic safety patterns, mapping tables, and configuration tables as input and 

generates a complete safety pattern for a specific domain represented as an Atlas Transformation 

Language (ATL) [32] program as output. This complete safety pattern is called a domain specific 

pattern. The purposes of this activity are: First, the framework generates a complete safety 

pattern via the combination of the generic safety patterns. Second, the framework ensures that a 

complete safety pattern can be appropriately instantiated based on the provided domain model. 4) 

The Assurance Case Generation activity takes the domain specific pattern, the domain model, 

and the system artifacts as input and generates an assurance case as output via the execution of 

the ATL model transformation. A domain model models the abstract concepts for different 
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systems within the same domain, the system artifacts is represented as a UML object diagram, 

which is an instance of the domain model. 5) The Maintenance activity monitors any 

modification in a domain model or any artifacts related to the project and carries out the impact 

calculation to figure out how the previous assurance case is affected by highlighting the affected 

nodes in the assurance case. 6) The goal of the Evaluation activity is to automatically deduce 

values for the assessment parameters such as the trustworthiness and appropriateness, i.e., 

disjoint contributing weights, and use the parameters to evaluate an unknown assurance case. 

The inputs of this activity are two assurance cases generated from the same safety pattern(s) for 

the same project in activity 4). The first assurance case is determined to be acceptable as the 

training data of the activity. Since the second assurance case is derived based on the safety 

pattern where the first assurance case is derived, the derived parameters are applied to the second 

assurance case to finally deduce its confidence. 
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CHAPTER IV  

CONFORMITY CHECK 
 

4.1  Standard Conceptual Model 

To illustrate the standard document in a formal representation, we use a UML class 

diagram to model the concepts of the standard documents, and this class diagram is thus called a 

conceptual model of a standard. In a conceptual model, each concept is modeled as a UML class. 

And the relation between concepts are represented as associations between the corresponding 

classes. The method that how to elicit the concepts from a standard document is proposed by 

Panesar-Walawege et.al in [33].  

 

For example, section 5.1.2.h of the DO-178C standard [1] in Figure 5 shows that “Each 

system requirement allocated to software should be traceable to one or more high-level 

requirements.” Terms “system requirement” and “high-level requirement”, highlighted in bold, 

are elicited from the description of the standard to produce two classes SystemRequirment and  

HighLevelRequirement respectively. Likewise, an association called “traceToHighLevelReq” is 

produced based on the text highlighted in italic in Figure 5 to represents a “trace” relationship 

between system requirement” and high-level requirement. A conceptual model example derived 

from the text is shown in Figure 6. The multiplicity indicates that how many instances of 

“HighLevelRequirement” can be related to an instance of “SystemRequirement”. The multiplicity 

value “1..*” defines the range composed by the lower bound and upper bound value. In this 

Figure 6 A conceptual model example 

Figure 5 DO178C 5.1.2.h [1] 



19  

example, the lower bound is 1, the upper bound * indicates an unbound upper bound value to 

represent the “one or more” relations described in the standard document.  As the result, a partial 

conceptual model derived from DO-178C chapter 5 is shown in Figure 7.  

The DO178-C chapter 5 addresses the requirements of the software development process.  

Based on description of the standard document shown in Figure 8, the software development 

processes are Software requirements process, Software design process, Software coding process, 

and Integration process. Therefore, four concept classes, “SWRequirementProcess”, 

“SWDesignProcess”, “SWCodingProcess”, and “IntegrationProcess”, are generated in the 

conceptual model, which are corresponding to the four processes illustrated in the document 

shown in Figure 7. And these four classes are considered as sub-classes of a general concept 

class “SWDevelopmentProcess.”  

Similarly, a list of concepts and associations are extracted from the standard document 

shown in Figure 9. A concept “SoftwareRequirement” is extracted from the standard. 

“SoftwareRequirement” class has two sub-classes to address the “HighLevelRequirement” and 

“LowerLeverRequirement”. An association between the “DevelopmentProcess” and 

Figure 7 A partial conceptual model derived from DO178-C Chapter 5 

Figure 8 DO178-C software development processes [1] 
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“SoftwareRequirement” reflects the “produce” relation between the development process and 

software requirement. The next sentence describes that development process analyze system 

requirements and system architecture to produce the High-level requirements. Therefore, two 

concepts “SystemRequirement” and “SystemArchitecture” are generated and the associations 

between “DevelopmentProcess” and these two classes reflect the “analyze” relationship 

extracted from the description. The last sentence indicates that the lower levels requirements are 

produced during the software design process. A corresponding association between 

“DesignProcess” and “LowerLevelRequirement” is generated in the conceptual model. Similar to 

the previous example shown in Figure 6, the multiplicity “1..*” in this association shown that the 

“one or more” relations that the software design process produce one or more lower levels of 

requirements. 

Another section in DO-178C chapter 5 shown in Figure 10 describes the activities 

involved in the software design process. Since the relation to address the low-level requirement 

are develop during the software design process is captured in our conceptual model from the 

previous section, we only add a new association between “DesignProcess” and 

“SoftwareArchitecture” to reflect the “define” relation between design process and software 

architecture. The last sentence describes another type of requirement. The derived requirement is 

produced during each software development process. Therefore, another concept, 

“DerivedRequirement”, is created in the conceptual model, and “DerivedRequirement” is 

Figure 9 DO178-C software requirement [1] 

Figure 10 Software design process [1] 
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considered as a subclass of “SoftwareRequirement”. Since the “produce” relationship is extracted 

from the standard description shown in Figure 9, and an association is created between 

“SWDevelopmentProcess” and “SoftwareRequirement”. Therefore, there is no need to create 

additional association in the conceptual model. 

 

4.2  UML Profile of a Standard Document 

The previous section proposed an approach to formalize a standard document to a UML 

class diagram. To achieve the automatically conformity check of a domain model to a standard, 

an approach proposed in [33] illustrates a manual method to generate a UML profile from a 

standard conceptual model. In our approach, SPIRIT provides a feature to generate a profile from 

a conceptual model automatically. UML provides a generic extension mechanism which allows a 

user to define a customized model for a specific domain and ensure that the customized model is 

still a valid UML model. The primary extension construct in a UML profile is Stereotype. “A 

stereotype defines how an existing metaclass may be extended, and enables the use of platform 

or domain specific terminology or notation in place of, or in addition to, the ones used for the 

extended metaclass.” [29] The OCL constraints defined in a profile are evaluated when a profile 

is applied to a UML model. When the SPIRIT framework automatically builds a UML profile 

from a standard conceptual model, all classes, associations, and properties defined in the 

conceptual model are transferred to stereotypes in a profile as output. The OCL constraints are 

automatically generated from the multiplicity of association ends and attached to the 

corresponding stereotypes in the output profile. To achieve the UML profile generation feature, 

SPIRIT takes the standard conceptual model generated from the previous section as input 

represented as a UML file. SPIRIT reads the contents of the input conceptual model in UML file 

Figure 11 A UML profile example 
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via the eclipse UML2 API [34]. When a UML element is identified from the input model, 

SPIRIT reads the name and the type of this element and generates a stereotype which extends the 

corresponding UML metaclass. To generate the OCL constraints in the output profile, SPIRIT 

defines several OCL constraint templates to serve different types of standard requirements. 

When SPIRIT captures certain requirements from the standard conceptual model, the 

corresponding OCL constraint template is selected to generate an OCL constraint statements and 

attach to the corresponding stereotype. In the implementation of SPIRIT, we consider three 

different types of OCL constraints and three templates are used accordingly. The three types 

include 1) Multiplicity constraint, Type 2) Association constraint, and Type 3) Type constraint.  

The Multiplicity constraint enforces that an association ends multiplicity satisfies the constrained 

value defined via the lower bound and the upper bound attributes. The Association constraint 

enforce that a class has an association associated to a specific class. The Type constraint enforces 

that an association is set between two correct classes via checking the type of the two association 

ends of an association.  A profile example shown in Figure 11 is based on the conceptual model 

shown in Figure 6. Four OCL constraints are generated in the profile:  

The constraint 1 shown in Figure 12 is an example of our Type 1) constraint which 

enforces that a class applied stereotype “SystemRequirement” must have an association 

associated with at least one class applied stereotype “HighLevelRequirement”. An OCL 

expression shown in Figure 12 specifies the stereotype where an OCL constraint is attached via a 

keyword “context”. In constraint 1, the reserved word “context” denotes a context, i.e. 

SystemRequirement”, where the OCL constraint is applied. When SPIRIT generates an OCL 

constraint, the OCL constraint is automatically attached to a specific stereotype and only the 

constraint body is generated by SPIRIT. The reserved word “self” refer to the contextual instance 

[30], in this case, the instance of “SystemRequirement” stereotype. The OCL constraint 1 checks 

context: SystemRequirement 

self.base_Class.ownedAttribute-> select(p|p.association<>null)->collect(c:Property | 

c.association)-> collect(a|a.memberEnd.class)->collect(c|c.getStereotypeApplications())-> 

select(s|s.oclIsKindOf(DO178CProfile::HighLevelRequirement))->size()>=1 or 

self.base_Class.allParents().attribute->select(p|p.association<>null)->collect(c:Property | 

c.association)-> collect(a|a.memberEnd.class)->collect(c|c.getStereotypeApplications())-> 

select(s|s.oclIsKindOf(DO178CProfile::HighLevelRequirement))->size()>=1 

Figure 12 OCL constraint 1 
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whether the class, where the stereotype has been applied, has at least one property whose type is 

applied stereotype “HighLevelRequirement” to ensure that any instance of system requirement is 

related to at least one high-level requirement instance.   

The OCL constraint 2 shown in Figure 13 is similar to constraint 1. In this case, the 

constraint checks that the class applied stereotype “HighLevelRequirement”, has a property 

whose type is applied stereotype “SystemRequirement”. 

Constraint 3 shown in Figure 14 is an example of our Type 3) constraint. This constraint 

checks that an association applied stereotype “traceToHighLevelReq” is between two classes, 

one class has stereotype “SystemRequirement” applies to it. And the other class has stereotype 

“HighLevelRequirement’ applies to it. Constraint 4 shown in Figure 15 is an example of our 

Type 2) constraint. In this example, the constraint checks that a class applied stereotype 

context: HighLevelRequirement 

self.base_Class.ownedAttribute-> select(p|p.association<>null)->collect(c:Property | 

c.association)-> collect(a|a.memberEnd.class)->collect(c|c.getStereotypeApplications())-> 

select(s|s.oclIsKindOf(DO178CProfile::SystemRequirement))->size()=1 or 

self.base_Class.allParents().attribute->select(p|p.association<>null)->collect(c:Property | 

c.association)-> collect(a|a.memberEnd.class)->collect(c|c.getStereotypeApplications())-> 

select(s|s.oclIsKindOf(DO178CProfile::SystemRequirement))->size()=1 

context: HighLevelRequirement 

self.base_Class.ownedAttribute->collect(c:Property | c.association)->select(a:Association |not 

a.getAppliedStereotype('DO178CProfile::traceToHighLevelReq').oclIsUndefined())->size() 

=1 or self.base_Class.allParents().attribute->collect(c:Property | c.association)-

>select(a:Association |not 

a.getAppliedStereotype('DO178CProfile::traceToHighLevelReq').oclIsUndefined())->size() 

=1 

context: traceToHighLevelReq 

self.base_Association.memberEnd->collect(p:Property|p.class.getStereotypeApplications())-

>select(s|s.oclIsKindOf(DO178CProfile::SystemRequirement))->size()=1 and 

self.base_Association.memberEnd->collect(p:Property|p.class.getStereotypeApplications())-

>select(s|s.oclIsKindOf(DO178CProfile::HighLevelRequirement))->size()=1 

Figure 13 OCL constraint 2 

Figure 15 OCL constraint 4 

Figure 14 OCL constraint 3 
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“HighLevelRequirement” has an association which has stereotype “traceToHighLevelReq” 

applies to it. 

 

4.3  Conformity Check 

The definition of conformity is “conformity is a noun and means compliance with 

standards, rules, or laws” [35]. In our approach, we consider that a domain model conforms to a 

standard if the domain model is a valid instance of the standard. A UML model is considered as 

a valid instance of a UML profile if all constraints defined in the profile are satisfied by the 

model. When a UML profile is automatically generated from a standard document via SPIRIT, a 

user can apply the standard profile to their domain model, SPIRIT provides a feature to check the 

conformity of the domain model to the standard via the evaluation of the constraints.  When any 

OCL constraints are not satisfied by a domain model, a constraint violation report is generated by 

SPIRIT, indicating the violated constraints and their related domain classes.  
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CHAPTER V  

ASSURANCE CASE GENERATION 
 
 

5.1  Introduction to Assurance Case 

Assurance case is a structure to provide a convincing and persuasive argumentation with a 

wealth of reliable and supporting evidence information. The definition of an assurance case is: 

“A reasoned and compelling argument, supported by a body of evidence, that a system, service 

or organization will operate as intended for a defined application in a defined environment.” [4] 

An argument is defined as “A connected series of claims intended to establish an overall claim.” 

[4]. GSN defines six types of elements shown in Figure 16 (a) and two types of relationships 

shown in Figure 16 (b). A “goal” node represents a claim which contains a statement that can be 

assessment to be true of false. A “strategy” node describes the inference that how a goal node is 

supported by its supporting goal node(s). A “solution” node reference an evidence item. A 

“context” node presents a contextual artifact which describes the background information. An 

“assumption” node presents an unsubstantiated claim. A “justification” node presents a statement 

of rationale. The “SupportedBy” represents an inferential or evidential relationship. And the 

“InContextOf” represents a contextual relationship.  

Figure 16 GSN notations 
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A GSN assurance case example illustrated in the GSN standard is shown in Figure 17.  In 

this assurance case example, a goal node G1 contains a root claim of the argument structure 

which claims the control system is acceptably safe to operate. An explicit statement of the 

context is required for a claim in order to evaluate a statement is true or false [4], the context 

statements are provided in the context nodes in an assurance case. In this example, context nodes 

C1 and C2 are link to node G1 to explain the operating roles and the definition of the control 

system. While a claim cannot be directly evaluated to be true or false, a high-level goal can be 

decomposed or re-stated to a number of sub-goals. In this example, node G2 and G3 are sub-

goals of G1, and G1 is the parent goal of G2 and G3. An assertion is made in an assurance case 

that when the sub-goals of a goal node are true, it is sufficient to establish that the claim in the 

parent goal is true [4]. In this assurance case example, the claim of G1 is re-stated to G2 and G3, 

which claims that all identified hazards are eliminated or sufficient mitigated, and the software in 

the control system are developed to safety integrity level (SIL) appropriate to the hazards 

involved. Context nodes C3, C4, and C5 are documented in the assurance case to interpret the 

Figure 17 An assurance case example from GSN standard [4] 
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tolerability targets, method used to identify the hazards, and the guidelines and processes of 

safety integration level.  When describing how a claim is supported by sub-claims, a strategy 

node can be used to document the reasoning step [4] and link the parent goal and its sub-goals. In 

this example, goal nodes G4, G5, and G6 are documented in the assurance case to support node 

G2, each of which claims a specific hazard is eliminated or mitigated. The strategy node S1 is 

documented in the assurance case to state the relationship between G2 and its sub-goals. Similar 

to G2, node G3 is supported by G7 and G8 via strategy S3, which claims the correspond SIL 

level of the primary protection system and secondary protection system respectively. Sometimes 

a claim or a strategy relies on an assumption to hold valid, an assumption is explicitly 

documented as an assumption node in GSN [4]. In this example, assumption node A1 is 

documented which assumes that all hazards in this system are identified. A justification provides 

the explanation that why a claim or strategy is considered acceptable [4]. In this example, 

justification node J1 justifies the use of SIL by asserting that SIL apportionment is correct and 

complete. When evidence can support the truth of a claim, the evidence is documented as a 

solution node in an assurance case. In this assurance case example, solution node S1 shows that 

the formal verification result support the truth of the elimination of hazard H1, the fault tree 

analysis result shown in solution node S2 support the truth of the mitigation of hazard H2 and 

H3, and process evidence for SIL 4 and SIL 2 are considered as evidences to support the truth 

SIL level of the primary and secondary system.  

 

 

5.2  Pattern-Based Assurance Case Generation 

 Based on our experiment of the assurance case generation for different projects, we 

noticed that different assurance cases can share similar argument structures. Therefore, pattern-

based assurance case generation approaches are applied in various environments. An assurance 

case pattern is called safety pattern. In the pattern-based assurance case generation approaches, 

safety pattern represents a pattern of generic argument that can be reused. The GSN extension to 

support argument patterns is defined in GSN standard [4]. In summary: 1) GSN pattern allows a 

user to define “roles” in a node statement to represent an abstract entity. These roles are 

instantiated by system artifact when an assurance case is generated for a specific system. 2) The 

Structural abstraction allows a user to define the “Multiplicity” and “Optionality” on GSN 
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relations. 3) The Modular extensions allow a user to represent the relationships between 

interrelated modules of argument.  

Great efforts have been made to construct an assurance case to support software 

certification for safety critical systems. Denny et al. proposed a new methodology in the aviation 

domain to automatically assembly a lower level safety case based on the verification of the 

safety-related properties of the autopilot software in the Swift Unmanned Aircraft System (UAS) 

[36]. The methodology applied the annotation schema, which models the information such as the 

definition of a program variable during the verification of the safety-related properties, to 

automatically generate a safety case fragment. But, the annotation schema cannot be employed to 

model system artifacts and a high-level safety case thus is manually assembled.  

Especially inspired by rapid and successful application of design patterns in software 

development, researchers have proposed safety patterns in construction of an assurance case. 

Hawkins [14] proposed a pattern-based approach to generated an assurance case based on 

mapping the roles defined in a safety pattern to the classes defined in the information metamodel 

via a weaving model generated based on the information metamodel.  An example shown in 

Figure 22 illustrates how an assurance case is generated based on a safety pattern. In this 

example, four roles {s}, {h}, {sr}, and {r} are defined in the safety pattern shown in Figure 

18(1).  A weaving model shown in Figure 18(2) consists of an information metamodel shown in 

the right and the classes derived from each role in the pattern shown in the left. In this example, 

Figure 18 A weaving assurance case generation approach 
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the information metamodel consists of four classes: System, Hazard, Report, and 

SafetyRequirement, and the classes s, r, h, and sr are derived from the roles in the safety pattern 

in Figure 18(1). In a weaving model, the associations between the classes derived from roles and 

the classes in the information metamodel specifies the mapping relationships. In this example, 

role {s} maps to class System, role {r} maps to class Report, role {h} maps to class Hazard, and 

role {sr} maps to class SafetyRequirement. A table shown in Figure 18(3) illustrates a set of 

instances of the information metamodel represents the system artifacts of a specific system.  In 

this example, sys is an instance of System, which contains two Hazard instances, H1 and H2. 

Hazard H1 links to two SafetyRequirement, SR1 and SR2, and one Report, A.  And Hazard H2 

links to one SafetyRequirement, SR3, and one Report, B. Based on the mapping relationship 

defined in the weaving model, when a set of system artifacts are given, a project specific safety 

case can be generated from the safety case pattern shown in Figure 18(4) by instantiating the 

roles to the system artifacts.  In this example, the role {s} in node G1 is instantiated by sys, role 

‘h” is instantiated by H1 and H2. The multiplicity, “number of h”, attached on the link between 

S1 and G2 generates two goal nodes G2_1 and G2_2, and each node claims a specific hazard is 

mitigated. In the first goal node, G2_1, role {h} is instantiated by hazard H1, and role {sr} is 

instantiated by safety requirements SR1, SR2. In the second goal node, G2_2, role {h} is 

instantiated by hazard H2 and role {sr} is instantiated by safety requirements SR3. G2_1 and 

G2_2 are supported by two different solution nodes Sn1_1 and Sn1_2. In Sn1_1, role {r} is 

instantiated by report A. In Sn1_2, role {r} is instantiated by report B. In this approach, the 

relationships between roles are not specified in the pattern. Therefore, more than one 

instantiations can be made to generate different assurance cases based on the same weaving 

model and system artifacts. An assurance case shown in Figure 19 is generated from the same 

safety pattern, weaving model, and system artifacts shown in Figure 18(3). In this assurance 

case, role {sr} in node G2_1 and G2_2 are instantiated by SR1, SR2, and SR3, which are the 

safety requirements related to the system Sys. But this instantiation of role {sr} is not appropriate 

since hazard H1 addressed in G2_1 has no relation to safety requirement SR3. And hazard H2 

addressed in G2_2 has no relation to safety requirement SR1 and SR2.   

On the other hand, all current pattern-based approaches keep the argumentation structures 

of two safety patterns when combination. But, our experience in safety critical domains has 

shown that reusability of a safety pattern is increased when the argumentation structure can be 



30  

augmented when combing with a second safety pattern in another application scenario. To 

provide the flexibility of the use of safety patterns, SPIRIT supports two types of pattern 

combinations based on the type of node involved in the combination.     

5.3  Extension of GSN Pattern 

To address the problems in the existing approaches, we proposed our extension of the 

GSN pattern in the following aspects: 1) SPIRIT contains the definition of two types of roles, the 

expression of a role is combined with OCL expressions to illustrate explicit relations between 

roles and the multiplicity of relations. With the use of mapping tables, we provide an 

unambiguous mechanism to support the generation of an assurance case based on the 

instantiation of a safety pattern. 2) We propose the safety pattern catalog which provides not only 

a safety pattern in the extended GSN but also includes the description and applied metamodel to 

which the pattern can be applied. 3) We define a formal representation to illustrate a safety 

Figure 19 An assurance case example with inappropriate instantiations 
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pattern. 4) SPIRIT provides a pattern combination mechanism which allows a user to create a 

domain specific pattern based on the combination of multiple safety patterns.     

5.3.1 Extension of Pattern Syntax 

We extend the syntax of GSN to accommodate the introduction of new variables as 

shown in Figure 20(1). Basically, there are two types of variables. One is given by the {s} 

variable where s is mapped to a class in an applied metamodel. We also extend the syntax of 

GSN via some expressions in the OCL. For instance, in Figure 20(1), expression “s.h” denotes 

the objects of class H via the role name h at the association end on class H which is connected to 

class C via an association. Furthermore, “s.h.allInstance()” denotes all objects of class H related 

to a given instance, given by c, of class C. In doing so, some variables are linked together and so 

are the corresponding instances required for an assurance case.  The other type is given by {$a} 

where variable $a denotes a string during the instantiation of a pattern.  

With the extension of the GSN pattern syntax, the safety pattern in Figure 18 (1) is 

represented in the new notation shown in Figure 20(1). In our approach, the mapping relation is 

provided via a configuration table as shown in Figure 20 (3). Therefore, role {h.sr.allInstances()} 

defined in node G2 denotes a set of safety requirements related to a specific hazard. With the 

same system artifacts as shown in Figure 18(3), only one valid instantiation of the pattern is 

made by SPIRIT to generate an assurance case as shown in Figure 18(4).     

Figure 20 Safety pattern with syntax extension 
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The existing pattern-based approach [14] does not consider the standard documents in the 

generation of an assurance case. The weaving model illustrated in [14] only consider the relation 

between the pattern and the information metamodel for a specific project or domain. The relation 

between guidance and pattern and the relation between guidance and the project are not captured 

by the weaving model. In order to connect the safety case pattern, standard, and domain model, 

we proposed a two steps mapping approach to build the relations between Guidance, Pattern, and 

Project in SPIRIT. An example of the two steps mapping approach is shown in Figure 21. In this 

example, a node in the safety pattern contains a role {x}. The first step maps a role to a concept 

class defined in the conceptual model. In this example role {x} is mapped to class 

HighLevelRequirement. The second step maps a concept class to a domain class defined in the 

domain model. In this example, HighLevelRequirement is mapped to SystemProperty. Based on 

the two steps mapping, a derived mapping relationship is built which maps role {x} to domain 

class SystemProperty.  

5.3.2 Safety Pattern Catalog 

Unlike the other existing safety pattern-based approach, we propose a safety pattern 

catalog is necessary for the application of the safety pattern in that the catalog provides not only 

a safety pattern in the extended GSN but also includes the description and applied metamodel to 

which the pattern can be applied. The purpose of the safety pattern catalog representation is to 

provide the description of what a safety pattern does and thus the guidance about how to use a 

safety pattern. With the use of safety pattern catalog, a safety pattern can clearly demonstrate 

how it is applied in a concrete environment via an applied metamodel combined with the 

description. A pattern catalog consists of the following sections: 1) The graphical assurance 

pattern section, 2) The Description section contains the description of the overall purpose of a 

pattern and the description of each role defined in the safety pattern, and 3) The metamodel 

Figure 21 A two steps mapping example 
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section helping the explanation of what the safety pattern does given in the description section. 

Figure 22 shows a safety pattern catalog whose pattern in the extended GSN is supported by 

SPIRIT. In this example, the pattern catalog describes a safety pattern to re-state a root goal “{s} 

satisfies property {$a}” to sub-goal(s) “{h} satisfies property {$c}”. To reason the restatement of 

the root goal to the sub-goal(s), a strategy node describes the relationship between the root goal 

and the sub-goal(s) is based on the relationship between {s} and {h}. The context node in this 

pattern displays an object of Class s and its related objects of Class h as described in the previous 

section. The metamodel section of this example illustrates the relationship between variable {s} 

and variable {h}, it provides the guidance to the user to use this pattern. In this example, if s is 

mapped to class C1 and h is mapped to class C2. An association is required between C1 and C2.  

 

Figure 22 Safety pattern catalog example 

 

5.3.3 Pattern Definition 

To illustrate a safety pattern formally, we define some variables which are shown in 

Figure 23. First, all literals are denoted as the LI set. Generally speaking, a variable used in a 

safety pattern can be a simple literal string, denoting a class or type in a metamodel. Let literal 
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string s be such a variable. Then OCL expression s.f denotes another variable and so does 

s.f.allInstances() which denotes a set of instances of a Class associating with the class mapped by 

variable s. A formal definition of a variable is shown in Figure 23. All variables are denoted as 

the V set. A variable node n is denoted as a tuple <L, R> where L represents a subset of all 

Literals and R represents a subset of all Variables V. As a convention, for a general tuple 

t=<f1,f2>, we use t.f1 to denote the first element of the tuple while t.f2 the second element of the 

tuple. A variable node is used in a safety pattern. When R, in node n, is empty, i.e. Ф, the 

variable node n become a normal node so n is called a node. A link l is denoted as a tuple <sn, tn, 

m>, where sn ϵ N ∪ VN and tn ϵ N ∪ VN represent the source node and the target node of a 

link respectively, and m is an OCL expression showing how a link is set up. Next, a pattern p is 

denoted as a tuple <VN’, L’>, where VN’ represents a set of all variable nodes and normal nodes 

in p, and L’ represents a set of all links in p. In order to support the instantiation of a safety 

pattern in a specific project via its domain model, we introduce the following two concepts. A 

mapping relationship mp is denoted as a tuple <v, dc> which maps variable v to the class dc in a 

domain model, and all mapping relationships are denoted as the MP set. A configuration table c 

is denoted as a tuple <p, MP’>, where p ϵ P is a safety pattern and MP’ is a set of all mapping 

relationships in c. A configuration table plays a crucial role when a safety pattern is instantiated. 

Figure 23 Definition of variables 
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All configuration tables are denoted by the C set. In general, a configuration table c shows a 

safety pattern c.p as well as a set of mapping relationships for all variables in p. Next, to combine 

two safety patterns during the instantiation time, we introduce the concept of a pattern 

connection. A pattern connection pc is denoted as a tuple <sp, tp, n, m>, where sp ϵ C specifies a 

source configuration table, tp ϵ C is a target configuration table, n ∈ sp.p.VN’ is the node of the 

pattern defined in source configuration table sp to be connected to the root node of the target 

pattern, and m is an OCL expression showing how two patterns are connected together. The 

formal representation of the safety pattern in Figure 22 is shown in Figure 24. 

 

5.4  Assurance Case Generation  

The assurance case generation flowchart is shown in Figure 25 which provides a detail 

view of the “Domain Specific Pattern Generation” and “Assurance Case Generation” activities 

illustrated in the SPIRIT framework shown in Figure 4. As mentioned in the previous section, 

our pattern-based assurance case generation approach is based on the instantiation of the 

variables defined in the safety pattern to concrete system artifacts. To ensure that a safety pattern 

can be correctly instantiated by the system artifacts, the sub-activity 1) shown in Figure 25 takes 

the Generic Assurance case patterns, Configuration tables, and a Domain model as inputs to 

validate if all of the roles defined in the assurance case patterns are appropriately mapped to 

domain classes via the mapping information defined in the configuration tables. If a pattern is 

instantiable, the sub-activity 2) aims to generate a domain specific pattern by replacing all 

variables in a safety pattern with domain classes via a configuration table. Sub-activity 3) 

employs pattern connection tables to generate a composite domain specific pattern via the 

combination of the generic safety patterns. As a result of activities (1), (2) and (3) a complete 

Figure 24 Formalized safety pattern 1 
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domain specific pattern is produced by an ATL program. For a specific project, the ATL 

program takes all artifacts, which are a valid instance of a domain model, as input and generates 

an assurance case as output. 

5.4.1 Instantiable Validation and Variable Replacement 

The instantiable validation sub-activity checks whether or not the safety case pattern can 

be instantiated for the target system. In other words, it checks if all roles/role expressions in the 

pattern can be appropriately mapped to elements in the domain model. During the validation sub-

activity, SPIRIT uses configuration table to ensure that each role and role expression in a safety 

case pattern is valid.  A role is valid if the following constraints can be satisfied: 

• C1: For a variable role r, it should be mapped to a class in the domain model according to 

the configuration table. 

• C2: For a derived role r.x, if r and x are mapped to classes C_1 and C_2, in the domain 

model, then C_1 and C_2 should have (at least) one association between them. 

A role expression is valid if the following constraints are satisfied: 

Figure 25 Assurance case generation flowchart 
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• C3: If a role expression has the form e.allInstances() where e is a derived role r.x and the 

association between the classes mapped from r and x is a, then the multiplicity at the end 

of the class mapped from x for the association a must be more than 1. 

• C4: If a role expression is a derived role r.x that does not end with allInstances() and the 

association between the classes mapped from r and x is a, then the multiplicity at the end 

of the class mapped from x for the association a must be 1. 

Intuitively speaking, constraint C1 requires that each variable role be mapped to a class in 

the domain model.  For a role expression, SPIRIT makes sure that all classes mapped from the 

role expression have: 1) the appropriate associations (constraint C2); and 2) the correct 

multiplicity value at the appropriate end of each association (constraints C3 and C4). 

An example shown in Figure 26 illustrates the different types of constraint violations. A 

node in this pattern example contains two roles {X} and {X.Y} shown in Figure 26 (1). A 

configuration table shown in (2) violate constraint C1. In this example, the mapping relationship 

between role {Y} and a domain class is not specified in the configuration table. A configuration 

table shown in Figure 26(3) fixes the error. In this configuration table, a new row is added to 

address the mapping relationship between {Y} and a domain class, SystemDesign. The domain 

model shown in Figure 26(4) violates constraint C2 based on the safety pattern in (1) and the 

configuration table (3). In this example, an association between Hazard and SystemDesign is 

required. The domain model shown in Figure 26(5) violates constraint C4 based on the safety 

pattern in (1) and the configuration table in (3). In this example, the role {X.Y} does not end 

with allInstances(). Therefore, the multiplicity at the end of class SystemDesign must be 1. A 

domain model example that can pass the instantiable validation is shown in Figure 26(6).  

Figure 26 Instantiable validation example 
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Once a pattern is confirmed as instantiable by SPIRIT, a complete safety pattern for a 

specific domain is produced and this is called a domain specific safety pattern. All variables in 

each safety pattern are replaced with the classes in a specific domain model. An example shown 

in Figure 27 illustrates a domain specific pattern (4) is generated based on the generic safety 

pattern in Figure 27(1), domain model in Figure 27(2), and configuration table in Figure 27(3). 

In this example, role {s} defined in the generic safety pattern is replaced by {System}, role 

{s.h.allInstances()} is replaced by {System.Hazard.allInstances()}, role {h} is replaced by 

{Hazard}, role {h.sr.allInstances()} is replaced by {Hazard.SafetyRequirement.allInstances()}, 

and role {h.r} is replaced by {Hazard.Report} in the domain specific pattern shown in Figure 

27(4). 

5.4.2 Pattern Combination 

To increase the flexibility of the generation of an assurance case from safety patterns, 

SPIRIT provides the pattern combination feature which allows a user to generate a domain 

specific pattern via the combination of the generic safety patterns. When two safety patterns are 

combined together, SPIRIT employs the information from a pattern connection to find how 

nodes in first safety pattern and second safety pattern are connected to each other. SPIRIT 

supports two types of pattern connections based on the type of a node involved in the connection 

to build a complete safety pattern.   

Figure 27 Domain specific pattern 
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The first type, which does not alter an argumentation structure of any safety pattern and 

has been widely used by current pattern-based approaches, combines two patterns via the 

duplicate nodes between the two patterns. This type of connection requires the identical nodes 

generated in the first pattern and a starting node of the second pattern. Figure 28 illustrates the 

generation of a combined safety pattern shown in Figure 28(2) via the connection of duplicate 

nodes between two patterns shown Figure 28(1). In this example, the combined safety pattern 

shown in Figure 28(2) is generated by connecting pattern 1 to itself via a link between node G2 

and G1 in pattern 1 (shown in Figure 28(1)). In a domain specific pattern, all variables are 

replaced with a domain class. Note a domain specific pattern can be generated by the same safety 

pattern multiple times as shown in Figure 28(1). A variable can be replaced with different 

domain class when generating the domain specific pattern. Specifically, in Figure 28(2), variable 

{s} is replaced with domain class Hazard in the first application of pattern 1 while variable {s} is 

replaced with domain class SWContribution in the second application of pattern 1. When a 

combined safety pattern is generated via a connection of duplicate nodes, SPIRIT checks the 

identity between the two duplicate nodes involved in the connection after replacing all variables 

with the domain classes in the first and second pattern respectively. Two nodes are identity if the 

variables are mapped to same domain class or replaced by the same string. For example, {h} in 

G2 in the first application of pattern 1 is mapped to domain class SWContribution, and {$c} is 

Figure 28 Pattern combination via duplicated nodes 
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replaced by string “addressed”. Variable {s} in G1 in the second application of pattern 1 is also 

mapped to domain class SWContribution, and {$a} is also replaced by “addressed”. In this case, 

these two nodes are identical. In the combined safety pattern, a new link is set between the parent 

node of the duplicate node in the first pattern and the starting node of the second pattern; and the 

duplicate node in the first pattern is discarded in the combined safety pattern. Therefore, in 

Figure 28(2), node G2 in first pattern is discarded in the combined safety pattern, and the starting 

node G1 in the second pattern in Figure 28(1) is added as a new node G2.1 to the combined 

safety pattern in Figure 28(2). A new link is set between S1.1 and G2.1 in the complete safety 

pattern in Figure 28(2) and the link between S1 and G2 in the first pattern is removed.  

The second type of connection which alters an argumentation structure of a first safety 

pattern combines two patterns via the connection of a node in the first pattern to a starting node 

of the second pattern. In this case, a node of the first pattern is different from a starting node of 

the second pattern during combination. For example, Figure 29 shows how two safety patterns 

are combined to generate a domain specific safety pattern via the second type of connection. In 

this example, the combined safety pattern is generated via the connection between node S1 in the 

first pattern and starting node G3 of the second pattern (shown in Figure 29(1)), and a link 

between node S1.1 and G3.1 is added in the combined pattern (shown in Figure 29(2)). In 

SPIRIT, the type of pattern connections is an input provided by a client. If a client chooses an 

Figure 29 Pattern combination via node connection 
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away goal node in the first pattern, then the first type of connections is chosen. Otherwise, the 

second type of connection is carried out by our framework. 

We outline the algorithm to generate a complete domain specific safety pattern in Figure 

30. The algorithm takes a configuration table as input given by the c parameter and all pattern 

connections, given by the PC parameter. This algorithm generates an ATL program which is 

ready to produce an assurance based on a domain specific pattern such as the one in Figure 

29(2). Note that a configuration table includes a safety pattern to be instantiated. The algorithm 

starts from generating an empty pattern denoted by variable newp at line 3. Next, it calls method 

addNode at line 5. Generally speaking, the addNode method copies a generic safety pattern 

whose root node is given by parameter n to a domain specific pattern denoted by parameter newp 

(from line 12 to line 19). At the same time, when a node is copied from a generic safety pattern 

to a domain specific pattern, the algorithm replaces each variable with a corresponding domain 

class (from line 12 to line 15). After a generic safety pattern is copied, the addNode method 

checks whether the current safety pattern is linked to some other safety patterns via the list of 

pattern connections given by parameter PC (lines 20 and 21). In particular, method 

checkPatternConnection mainly finds whether such a list of target safety patterns exist or not. If 

yes, the checkPatternConnection method returns the list. If a list is returned, the addNode 

method iterates each safety pattern connection (from line 22 to line 32). For each safety pattern 

connection, our framework identifies which type of pattern connections based on whether an 

away goal node is involved or not (on line 24). If an away goal node is involved in a connection, 

the combination of two patterns is set up via duplicate nodes (from line 25 to line 28) as the first 

type of pattern connections. In a duplicate node connection, our framework first checks if the 

two nodes involved in a connection are identical (on line 25) and get the parent node of the 

duplicate node in the first pattern and the link between the parent node and this duplicate node 

(on line 26). In a pattern connection via duplicate nodes, the addNode method creates a link from 

the parent node of the duplicate node in the first pattern to the root node in the second pattern. 

And the duplicate node will be removed from the domain specific pattern (from line 27 to line 

28). If the node in the first pattern involved in the pattern connection is not an away goal node, 

the second type of pattern connection is applied to the pattern combination. In a second type of 

connection, the addNode method creates a link from a node in a source pattern to the root node 

in a target pattern and next establishes an appropriate link relationship based on the information 
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from a pattern connection (from line 29 to line 30). After that, the addNode method add the link 

to the domain specific pattern (on line 31) and calls itself to copy the second safety pattern to the 

domain specific pattern (on line 32).  

Figure 30 Pattern combination algorithm 
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To further illustrate how the algorithm works, we take two safety patterns shown in 

Figure 28 and Figure 29 into account and show how two patterns are combined together via the 

first and second type of pattern connection.  Assume the algorithm takes configuration tables 

(Figure 31(1)) and pattern connection table (Figure 31(2)) as input. First, the new pattern cp in 

(Figure 29 (2)) is generated from line 3 in Figure 30. The pattern used in this example is p1, 

therefore, the root node of p1 is identified from line 4 in Figure 30 as G1. For node G1, variable 

{s} is replaced by domain class {Hazard} from line 14 in Figure 30. Node G1.1 is added to cp 

from line 15 in Figure 30. Node G1 links S1 in p1. Therefore, this link is added to cp from line 

18 in Figure 30 and method addNode is called from line 19 in Figure 30 which adds S1.1 to cp. 

Line 20 in Figure 30 checks if G1 is links to another pattern via method checkPatternConnection 

from line 34 to line 42 in Figure 30, since there is no link between G1 to any other pattern, 

method checkPatternConnection returns an empty list, and the addNode method called on node 

G1 is finished.   

Similarly, our algorithm adds the rest of nodes, S1and C1, in p1 to cp (S1.1 and C1.1) via 

the recursion of method add Node. Since node S1 links to p2 as defined in the Pattern 

Connection Figure 31(2), a second type pattern connection is identified by our algorithm when 

the addNode method is called for adding node S1 to cp, the checkPatternConnection returns a 

PatternConnection in line 41 of Figure 30. The root node G3 of p2 is identified from line 23 in 

Figure 31 Pattern combination inputs 
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Figure 30, and a new link between S1.1 to G3.1 is added to cp from line 31 in Figure 30 which 

connects node S1 in p1 to node G3 in p2. Node G3.1 is added to cp from line 32 in Figure 30. 

Our algorithm stops when all nodes in p1 and p2 are added to the combined pattern cp.  

A first type pattern connection is identified when method addNode is called for node G2 

in the first pattern (Figure 28(1)), node G2 is temporary added to the combined safety pattern cp 

from line 15 in Figure 30. Line 20 in Figure 30 checks if G2 is links to another pattern via 

method checkPatternConnection from line 34 to line 42 in Figure 30. Since node G2 links to p1 

is defined in the Pattern Connection Figure 31(2), the checkPatternConnection returns a 

PatternConnection in line 41 of Figure 30. The root node G1 of p1 is identified from line 23 of 

Figure 30. Line 24 identifies the type of G2 is away goal node. Therefore, Line 25 in Figure 30 

checks G2 in the first application is identical to G1 in the second application after replacing all 

variables in both nodes. The parent node of G2, S1, is identified from Line 26 in Figure 30, and a 

new link between S1.1 and G2.1 is generated from line 27 in Figure 30. After the new link is 

generated, the duplicate away goal node G2 is removed from the combined safety pattern cp 

from line 28 in Figure 30. The new link between S1.1 and G2.1 is added to cp from line 31 in 

Figure 30, and node G2.1 is added to cp from line 32 in Figure 30. 

5.4.3 ATL Program Generation 

To model an assurance case in GSN, the GSN working group develop the GSN 

metamodel conforms with GSN standard [37]. The GSN metamodel is an extension of the 

Structured Assurance Case Metamodel (SACM) [38]. Therefore, the generation of an assurance 

case can be done by a transformation from the instance model of a domain model (specific 

system) to an instance model of the GSN metamodel (assurance case). Atlas Transformation 

Language (ATL) is a model transformation language and toolkit which provide a mechanism to 

produce target models from a number of source models. In SPIRIT, we translate a domain 

specific safety pattern into an ATL program.  

 An ATL program is composed of a set of transformation rules and helpers. Each rule 

defines how the target model element is generated from the source model element. ATL defines 

two types of transformation rules: matched rule and called rule. An ATL matched generates 

target model elements based on the matched model element in the source model. An ATL 

matched rule is composed of two required section, from section and to section, and two optional 

section, using section and do section. The from section specifies the type of source model 
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element matched by a matched rule. The to section specifies the target model elements generated 

by a matched rule. The using section allows the declaration of local variables of a matched rule. 

A local variable declared in the using section can be used in the using section, to section, and do 

section within the same matched rule. The do section specifies the ATL imperative statements 

that is executed after the generation of the target model elements is complete in a matched rule. 

An ATL called rule is executed when the called rule is invoked from the action block within a 

matched rule or the body of a called rule. A called rule is composed of three optional sections, to 

section, using section, and do section. Compared with the ATL matched rule, an ATL called rule 

does not have from section and the to section is optional and an ATL called rule can accept 

parameters.  

ATL allows a user to define methods in an ATL program, a method in ATL is called 

helper. ATL provides two different kinds of helper: the functional helpers and attribute helpers. 

An attribute helper is referred to as an attribute, and a functional helper is referred to as a helper. 

Similar to a method in an object-oriented language such as Java, a functional helper can accept 

parameters and has a return value. An attribute helper allows a user to define a global variable in 

an ATL program by specifying the name, type, and an initial value of a variable.  

Figure 32 An ATL program example 
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An ATL program example is shown in Figure 32. Line 1 in this program specifies the 

name of this ATL module, sacm_gsn. Line 2 specifies the input metamodel is WBSModel, and 

the output metamodel is SACM. That is, an instance model of WBSModel is transformed to an 

instance model of SACM. An attribute helper is defined in line 4. In this example, an Integer type 

global variable called varR1 is declared with initial value 1 in this ATL program. An ATL 

matched rule is defined from line 6 to line 19 in Figure 32. In this example, the name of this ATL 

matched rule is R1. Line 7 and line 8 specifies the from section of rule R1. In this example, the 

from section indicates the matched type of source model element is class Software of the 

WBSModel and this matched type is called s. That is, this matched rule is executed for every 

Software in the source model. Line 9 to line 15 specifies the to section of rule R1. In this 

example, two target model elements are generated when rule R1 is executed. The first target 

element generated by this rule, arg1, is an instance of Argumentation class of SACM model 

specified shown in line 10, the id attribute of this Argumentation instance is assigned a value 

“MyAssuranceCase” in line 11. The second target element generated by rule R1, g1, is an 

instance of class Claim of SACM model in line 13. As mentioned in the previous section, GSN 

metamodel is an extension of SACM metamodel, the mapping relationships between GSN 

metamodel elements and SACM metamodel elements is shown in Table 1. A GSN assurance 

case is represented as an instance of Argumentation, and a GSN goal node is represented as an 

instance of Claim. Therefore, a GSN assurance case and a Goal node are generated in line 10 and 

line 11 when this matched rule is executed.  Line 14 set the value of the id attribute of this claim 

instance based on the value of the global variable varR1. In this example, the value of id is set to 

“G1.1”. Line 16 to line 18 specifies to do section of rule R1. The do section is executed after the 

execution of the to section of rule R1 is complete. In this example, a called rule called001 is 

invoked from the do section of R1 in line 17, and three arguments are passed to the called rule, 

which are the software instance matched by R1, and the two target model elements generated by 

R1. An ATL called rule is define from line 21 to line 27 in this ATL program. Line 21 and line 

22 specifies the name and the parameters of this called rule. In this example, the name of this 

called rule is called001. Three parameters are defined in this called rule: the first parameter p0 

whose type is Software in WBSModel, the second parameter c whose type is ArgumentElement in 

SACM model (Claim is a subclass of ArgumentElement), and the third parameter arg whose type 

is Argumentation. In this example, the called rule called001 only contains a to section which 
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generates an instance of class ArgumentReasoning in the target model. Based on the mapping 

information shown in Table 1, a GSN strategy node is represented as an instance of 

ArgumentReasoning. Therefore, a GSN strategy node is generated in line 24 when this called 

rule is invoked. And the id attribute of this strategy node is set to “S1” in line 25. In summary, 

when a source model contains a software instance is loaded by this ATL program, a target model 

is generated with three elements: 1) an instance of Argumentation with id “MyAssuranceCase” 

to represent a GSN assurance case, 2) an instance of Claim with id “G1.1” to represent a Goal 

node in the generated assurance, and 3) an instance of ArgumentReasoning with id “S1” to 

represent a Strategy node in the generated assurance case.  

As the mapping information shown in Table 1, different GSN elements may map to the 

same SACM element. These GSN elements are distinguished based on the attribute value and the 

relationships involved by these elements. For example, GSN Goal node, Assumption node, and 

Justification node are mapped to the same SACM class, Claim, as shown in Table 1. If the 

assumed attribute of an SACM Claim instance is set to true, then this Claim instance represents a 

GSN Assumption node. Otherwise, if this Claim instance is involved in an AssertedInference 

Table 1 Mapping relationships between GSN elements and SACM 1.0 elements 

GSN Element SACE Element Attributes of SACM 

Element 

GSN:Goal SACM:Claim assumed = false 

GSN:Strategy SACM:ArgumentReasoning 
 

GSN:Solution SACM:InformationElement 
 

GSN:Context SACM:InformationElement 
 

GSN:Assumption SACM:Claim assumed = true 

GSN:Justification SACM:Claim assumed = false 

GSN: X SupportedBy Y SACM:AssertedEvidence source = Y, target = X 

GSN: X SupportedBy Y SACM:AssertedInference source = Y, target = X 

GSN: X InContextOf Y SACM:AssertedContext source = Y, target = X 
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relationship to support another node in an assurance case, then this Claim instance represents a 

GSN Goal node. Otherwise, if this Claim instance is involved in an AssertedContext relationship 

as a context of another node, then this Claim instance represents a GSN Justification node. In 

GSN, a Goal node can be supported by Goal node(s) or supported by Solution node(s). If a Goal 

node A is supported by another Goal node B, an instance of AssertedInference is used to 

represent the SupportedBy relationship where the source attribute of this AssertedInference 

instance is set to B and the target attribute of this AssertedInference instance is set to A. If a 

GSN Goal node C is supported by a GSN Solution node D, an instance of AssertedEvidence is 

used to represent the SupportedBy relationship where the source attribute of this 

AssertedEvidence instance is set to D and the target attribute of this AssertedEvidence instance is 

set to C. When a GSN Goal node is supported by another Goal node via a Strategy node, an 

AssertedInference instance is used to represent the SupportedBy relationship where the source is 

the child Goal node and the target is the parent Goal node, and the describedInference attribute 

of this Strategy node is set to this SupportedBy relationship. For example, a GSN Goal node A is 

supported by GSN Goal node B via a GSN Strategy node S. An instance of AssertedInference, r, 

represents the SupportedBy relationship where r.source = B and r.target = A and 

S.describedInference = r. 

In SPIRIT, we propose an approach to automatically generate an ATL program from a 

domain specific pattern. The basic ideal of the ATL program generation is illustrated as below:  

1. An ATL matched rule is generated as the entry point of an ATL program to generated 

root goal node of an assurance case in GSN. 

2. Three called rules are generated in the ATL program to create the GSN SupportedBy 

and InContextOf relations between the GSN nodes in an assurance case. 

3. The algorithm visits all nodes defined in the domain specific pattern from the root node 

to the leaf nodes. An ATL called rule is generated for each visited node (besides the 

root node), and the parameter of a called rule is generated based on the role expressions 

between a parent node and its child nodes(s).  

4. The links between any two nodes in a domain specific pattern are generated by invoking 

the two called rules specified in 2. 

5. Role(s) and Literal(s) defined in a node in the domain specific pattern is translated as 

assignment statements in the corresponding ATL rules.  
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An algorithm shown in Figure 33 illustrates the top-level pseudo codes for ATL 

generation from a domain specific safety pattern. First, the root node of a pattern is identified in 

line 3 and then the root node is visited in line 4. When the root node is visited, and ATL matched 

rule is generated from line 9 where the name of this rule is based on the ID of the visited node. 

Our approach requires the root node of a domain specific pattern must have at least one variable 

role so a matched type of source model element can be specified in the matched rule. A goal 

node may contain more that on variables, in this case, our algorithm finds the appropriate source 

model class via the findMatchedSourceElement method in line 10. After the source model class 

is identified for the root node, the from section of this matched rule is generated and the matched 

source model class is set in the from section in line 11. The to section of a matched rule is 

created in line 13. Two target model elements are generated in this matched rule: the first 

element generated from this rule is an instance of SACM Argumentation to represent a GSN 

assurance case via the addElement method in line 14, and all elements within an assurance case 

are owned by an Argumentation instance. The second element generated a GSN node based on 

the type of “node” via the addElement method in line 15. In this example, an instance of SACM 

Claim is generated to represent a GSN goal node in the generated assurance case. Next, the do 

section of this matched rule is generation in 16. In SPIRIT, three types of statements are added in 

the do section of an ATL rule: 1) Set the value of an attribute of a node, 2) Add the statements of 

a node, the statements including variables and literals in a node, and 3) Add a statement to 

invoke an ATL called rule. Line 17 set the value of ID attribute of the generated GSN Goal node, 

and Line 18 set the assumed attribute to false of the Goal node. For each role and literal defined 

in the root node, line 19 converts the element to an ATL statement in the do section. From line 

21 to line 26, three ATL called rule are generated for the three SACM relationship elements: 

AssertedInference, AssertedEvidence, and AssertedContext. These ATL called rules are invoked 

when a relation defined in a safety pattern is identified. Line 27 identifies all outgoing 

relationships of the root node, that is, all relationships between the root node and its child nodes. 

For each outgoing relation, the child node of the root node is visited via the VisitNode method in 

line 29, and line 30 add an expression in the do section to invoke the ALT called rule generated 

by the VisitNode method. 

Line 34 to line 68 illustrates the VisitNode method of our algorithm. The VisitNode 

method is called when a node defined in a safety pattern is visited. The main purpose of this 
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VisitNode method is to generate an ATL called rule for a node identified from the safety pattern. 

An ATL called rule is generated in line 36 where the name of this rule is based on the ID of the 

Figure 33 Top level pseudo code for ATL generation 
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visited node. As described previously, an ATL called rule can have parameters. In a generated 

ATL program, a target model element can be referenced in different ATL called rule via 

parameters. The parameters of an ATL called rule are identified in line 38 based on the roles 

defined in a safety node. The identified parameters are set to this ATL called rule in line 39. An 

ATL called rue does not have the from section, the to section of an ATL called rule is generated 

in line 40, and an SACM element is generated based on the type of the visited node in line 41. 

Line 42 generates the do section of this rule. Similar to VisitRoot method, the ID and assumed 

attributes of the generated SACM element are set in line 43 and line 44. From line 46 to line 60, 

the algorithm identifies the relationship between this visited node and its parent node in the 

pattern in order to build a correspond link in a generated assurance case. If the relationship 

between this visited node and its parent node is an InContextOf relation, an SACM 

AssertedContext instance is generated via method calledAssertedContextRelation in line 47. The 

source and target attributes of this AssertedContext instance are set via the two arguments, node 

and node.parent, of this method call in line 47. A SupportedBy in GSN can map to SACM 

AssertedInference or AssertedEvidence as shown in Table 1. Line 52 in Figure 33 generates an 

instance of AssertedEvidence via calledAssertedEvidenceRelation method if the visited node is a 

GSN Solution node. Otherwise, two different situations need to be considered separately if the 

visited node is a GSN Goal node: 1) If this visited Goal node supports its parent Goal node via a 

Strategy node, an instance of AssertedInference is generated where the source attribute is this 

visited Goal node node, and the target attribute is the parent Goal node of node retrieved via 

node.parent.parent in line 55, where node.parent returns the Strategy node links to node and the 

parent node of this Strategy node is the parent Goal node of node. 2) If this visited Goal node is 

directly support the parent Goal node, and instance of AssertedInference is generated where the 

source attribute is this visited Goal node node, and the target attribute is the parent Goal node of 

node retrieved via node.parent in line 58. For each role and literal defined in the root node, line 

62 converts each role and literal to an ATL statement in the do section. For each outgoing 

relation, the child node of this visited node is visited via the VisitNode method in line 65, and 

line 66 add an expression in the do section to invoke the ALT called rule generated by the 

VisitNode method. This program stops when all nodes defined in a domain specific pattern are 

visited. 
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The description of the methods used in the top-level algorithm in Figure 33 is shown in  

Figure 34. Method findMatchedSourceElement is illustrated from fine 1 to line 13 in Figure 34. 

This method is called from line 10 in Figure 33 to find the appropriate domain model class as the 

source model element specified in the from section of an ATL matched rule. The root Goal node 

in a pattern must contain at least one variable role to represent a specific system artifact where a 

claim is being evaluated. But a root Goal node may contain more than one variable roles. In that 

case, the findMatchedSourceElement finds the appropriate variable role and return the domain 

class mapped by this role as the source model element specified in the from section of an ATL 

matched rule. Line 4 creates an empty list to store all domain classes mapped by the roles 

defined in the root node of a domain specific pattern. Recall that each variable role in a domain 

specific pattern is replaced by the name of a domain class, line 5 finds the domain class for each 

role in this node and add the domain class to the class list. An appropriate domain class is 

defined as a class that has associations to all other domain classes in the class list. Line 11 finds 

this appropriate domain class and returns this class to the caller of this method. Method 

addElement is illustrated from line 15 to line 19 in Figure 34. This method is called from line 15 

and line 41 in Figure 33 to generate an assurance case element defined in the to section of an 

ATL rule. The target model element generated by an ATL rule is represented as syntax “ 

varName : varType” where varName specifies the variable name of a generated element and the 

varType specifies the type of the generated target model element. An example shown in Figure 

32 line 10 illustrates a variable called arg1 whose type is Argumentation in SACM model is 

generated in rule R1. In our algorithm, we use a variable to generate a unique variable name for 

each target model element generated in an ATL rule, and the type of the generated element is 

provided by the parameter type. An ATL statement is generated in Figure 34 line 18 in the to 

section of an ATL rule. Method createdRelationRule is illustrated from line 21 to line 33 in 

Figure 34. This method is called from line 21, 23, and 25 in Figure 33 to generate an ATL called 

rule for specifying a relationship between two assurance case nodes. Recall that the GSN 

SupportedBy and InContextOf are represented by three SACM classes, AssertedInference, 

AssertedEvidence, and AssertedContext. The purpose of this method is used to generate the 

called rules in an ATL program. A relationship between two nodes in an assurance case is 

generated by invoking the called rule from another ATL rule. This method takes two parameters, 

the name of the called rule and the type of the target model element generated by this rule. Line 
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23 in Figure 34 create an ATL called rule and set the rule name via the ruleName parameter. The 

relationship between two assurance case nodes is set via the source and target attributes of the 

AssertedInference, AssertedEvidence, and AssertedContext classes as shown in Table 1. Line 24 

and line 25 in Figure 34 specifies the two parameters of this called rule. The to section of this 

called rule is generated from line 26, and one target model element is generated in this called rule 

in line 27. The type of this generated target model element is provided from parameter type of 

the CreateRelationRule method in line 21. The do section of this called rule is generated in line 

28. Two descriptions are generated in line 29 and line 31 to set the value of source attribute and 

target attribute. And these two descriptions are added to the do section of this called rule in line 

30 and line 32. 

Figure 34 Pseudo code of methods description 1 
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When a role defined in a node within the safety pattern is identified by our algorithm, an 

ATL statement is generated from the addStatement method shown in Figure 35 based on the type 

of a role expression as discussed in section 4.4.1. The role expression and its corresponding ATL 

statements is summarized in Table 2. Line 38 in Figure 35 identifies the type of a role. Based on 

the type of a role, this method creates different ATL statements within the do section of an ATL 

rule from line 44 to line 86. The mapped domain model class is identified and stored to variable 

X via the findMappedClass method in line 46 and line 51. If a role expression is a derived role 

(e.g. a.b or a.b.allInstances()), two domain classes are identified and stored to variable X and Y 

in line 52, 53 and line 71, 72. The association a between X and Y is retrieved from the 

findAssociation method in line 54 and line 73. Since two domain classes may have more than 

one association, SPIRIT allows a user to provide which association is selected by the algorithm 

by specifying the association role name of the second mapped class. Otherwise, SPIRIT will 

prompt a user to select an association during the generation of an ATL program. Line 55 and line 

74 finds the role name r of association a at the end of the second mapped domain class of a 

Table 2 ATL statements for different types of roles 

Type Role/Literal Mapped 

Class 

ATL Statements 

R1 {a} a -> X content <- content + X.ID; 

R2 {a.b} a -> X 

b -> Y 

content <- content + X.y.ID; 

R3 {a.allInstances()} a -> X for(e in DomainModel!X.allInstances() ) { 

     IDs <- IDs + e.ID+' '; 

} 

content <- content + IDs; 

R4 {a.b.allInstances()} a -> X 

b -> Y 

for(e in X.y) ) { 

     IDs <- IDs + e.ID+' '; 

} 

content <- content + IDs; 

L Literal “L” 
 

content <- content + L; 
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derived role, and the ATL statements are generated from in line 48 for a role whose type is R1, 

line 57 for a role whose type is R2, line 63 to line 67 for a role whose type is R3, line 76 to line 

80 for a role whose type is R4, and line 85 for role whose type is L.      

Figure 35 Pseudo code of methods description 2 
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  Figure 36 illustrates the addStatement method for setting the value of an attribute of an 

assurance case element and adding a statement to invoke an ATL called rule from another rule. 

Line 91 to line 97 illustrates the addStatement method for setting the value of an attribute. This 

method takes a parameter description which composed of the name of an attribute and the value 

being set. Line 93 gets the attribute name from description and stored the information to variable 

attributeName, and line 94 gets the attribute value from description and store the information to 

variable attributeValue. An ATL statement is generated in the do section to assign the 

attributeValue to attributeName in line 96. Line 99 to line 120 illustrates the addStatement 

method for adding a statement to invoke an ATL called rule from another rule. Recall that our 

algorithm generates ATL called rules for every node defined in a safety pattern (besides the root 

node), but the assurance case elements are generated only when a called rule is invoked. This 

method is called when a relation is identified from a safety pattern during the visiting of a node. 

A parameter relation is required for this method. Line 101 gets the outgoing node of a relation 

and stored the information to a variable n. Line 102 finds the ATL called rule, r, for node n, 

which is the called rule being invoked. The arguments are identified based on the parameters of 

r, and the multiplicity of m of relation is identified in line 104. If the multiplicity of a relation is 

Figure 36 Pseudo code of methods description 3 
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1, an ATL statement is generated in line 108 to invoke the called rule r for one time. Otherwise, 

iterative ATL statements are generated from line 117 to line 118 to invoke the called rule 

multiple times based on the number of system artifacts.    

5.4.4 ATL Model Transformation 

Once an ATL program is generated from a domain specific safety pattern, an ATL 

transformation generates an assurance case for a specific system by executing the ATL program. 

Three input files are required for an ATL transformation: 1) the domain model represented in an 

Ecore model [39] as the Source metamodel, 2) the SACM metamodel represented in an Ecore 

model as the Target metamodel and 3) the system model represented in an XMI file, which is an 

instance of the domain model, as the Source model. The output of this ATL transformation is a 

Target model, which is an assurance case for a specific system. The generated assurance case is 

formatted as an XMI file, which is an instance of the SACM metamodel. The assurance case file 

is represented in a standard format which can be recognized by the commercial GSN editor tools 

such as Astah GSN [40]. By loading the assurance case file from the Astah GSN editor, a 

graphical representation of an assurance case can be easily generated to show an assurance case 

as a diagram as an example shown in Figure 46.  
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CHAPTER VI  

ASSURANCE CASE MAINTENANCE  

AND EVALUATION 
 

While the judgement of software assurance is a decision finally made by humans, some 

effort has been made to automatically identify the areas where a decision must be rendered. 

Specifically, various models have been proposed to calculate the confidence of the root node in 

an assurance case. While various calculations have been carried out, most existing approaches 

use a model to calculate the confidence of nodes affected by the evidence which is linked to 

system artifacts. They then set up a threshold to show and determine which nodes may be below 

the threshold. These nodes confidence is then in doubt. Therefore, the confidence of all nodes 

along the path to the root of an assurance is reduced and the software assurance about the system 

is in jeopardy. If the confidence of a node is not below the threshold, then the node’s confidence 

is not reduced. This implies it should not affect the confidence of the other nodes in an assurance 

case. To this end, we take a most conservative model in this paper where once the framework 

detects a node whose linked artifact is modified, then the framework highlights all nodes along 

the path from this node to the root node of the assurance case. The rational behinds this idea 

comes from the following: To support the evolution of an assurance case, we propose that any 

miss of highlighting nodes whose confidence is in jeopardy is a costly mistake when evaluating 

software assurance of a system. Therefore, the system should highlight all potential nodes whose 

confidence could be undermined by modifications. 

 

6.1  Assurance Case Maintenance 

An assurance case can be generated via SPIRIT during the system development. 

Therefore, the system artifacts may be changed after an assurance case is generated. When a 

system artifact is changed, SPIRIT helps the user to identify the nodes in an assurance case that 

may be affected by the change of system artifact. In SPIRIT, the nodes potentially affected by 

the change are highlighted and report to the user. We identify the affected nodes in an assurance 

case based on three major aspects: 1) Identify the affected nodes based on the artifact references. 

If a node references to the changed artifact, this node is considered as an affected node. When an 

assurance case is generated via SPIRIT based on the safety pattern, all roles specified in the 
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safety pattern are instantiated to specific system artifacts. When a role in node is instantiated by a 

specific system artifact, we consider the system artifact is referenced by this node. SPIRIT stores 

the referenced system artifacts information in the generated assurance case. During the 

maintenance of an assurance case, SPIRIT identifies the nodes reference to specific system 

artifacts in the assurance case. 2) Propagation of affected nodes based on the assurance case 

structure. Once a node is identified as an affected node, the parent node of this affected node is 

also considered as an affected node. 

Therefore, when a node is considered as an affected node, all ancestor nodes of this node 

are highlighted as affected nodes. 3) Identify the affected nodes based on traceability of system 

artifacts. When a system artifact is changed, all other artifacts derived from the changed artifact 

may be affected by the change. The traceability information is provided in the domain model. 

When a system artifact is changed, SPIRIT identifies the type, which is a domain class of the 

changed artifacts, and then find other classes that are derived from this class. Once the derived 

domain model classes are identified, SPIRIT find the instances of these domain model classes 

which are link to the changed system artifact, and all nodes in the assurance case that reference 

to these system artifacts are considered as affected nodes. 

The algorithm for maintenance of an assurance case is outlined in Figure 37. The 

maintenance algorithm takes an assurance case generated by SPIRIT, all artifacts to be 

monitored, and a computation model as inputs to detect affected nodes in an assurance case. The 

algorithm uses another method detect_modification on line 1 which returns a list of modified 

artifacts. Next, the algorithm is enumerating all modified artifacts starting from line 2. For each 

modified artifact, the algorithm calls method detect_affected_nodes to find a list of nodes in an 

assurance which are affected by the modified artifacts. The algorithm then employs the 

Figure 37 Assurance case maintenance algorithm 
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computation model provided as input to calculate a list of affected nodes. The returned list of the 

affected nodes is added to variable highlighted_nodes which is finally returned as output of the 

algorithm.   

 

6.2  Assurance Case Evaluation 

Software certification has become an important step for a software system in safety 

critical sectors due to the potential impact on society. Assurance cases have been increasingly 

considered by many emerging standards or governmental guidelines as an important argument 

structure linking the claims about software assurance properties to the evidence supporting these 

claims [41]. However, the evaluation of assurance cases demands the certifiers’ domain 

knowledge and experience. Thus, most software certification has been conducted manually; and 

this hinders the development of a software system in safety critical sectors, delays the 

deployment of a new system to market, and finally stifle developers’ creativity in safety critical 

sectors.  

But the latest development in uncertainty theories and software traceability has given us 

aspiration to leverage the capability of software certification by means of some automation. 

Notice safety patterns have been employed to generate new assurance cases so many assurance 

cases have some similar structure. For a regular system certification, a certifier starts with the 

evaluation of each evidence node in an assurance case and then propagate the confidence 

information up towards the root claim of an assurance case. The goal of this feature is to monitor 

how a certifier chooses an acceptable assurance case and then infer an accurate model, where 

confidence can be calculated from leaf claims upwards into a root claim. Next, the accurate 

model can be automatically applied to a second assurance case to deduce its confidence. Many 

existing approaches employ some theories, then manually configure the values for variables in 

these theories, and finally calculate a confidence value of an assurance case [20, 21, 24, 42, 43, 

44]. In SPIRIT, we employ the Dempster Shafer (D-S) theory as a main calculation model to 

illustrate some variables’ values can be configured in automation. 

To reduce the manual setting values for variables when applying the D-S theory, SPIRIT 

takes two assurance cases in GSN as input, i.e. an acceptable assurance case and an unknown 

assurance case. For an acceptable assurance case, SPIRIT generates a set of assurance cases, 

which is called a set of learning data, with the same structure except for the leaf claims which are 
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directly supported by an evidence node in GSN. When using the D-S theory, the values for a set 

of disjoint contributing weights, which are supposed to be manually provided when the 

confidence value of a root node can be deduced from its child nodes, can be inferred by means of 

making the first acceptable assurance case to be better than most assurance cases in the set of 

learning data. Last, the values for the set of disjoint contributing weights are applied to the 

second assurance to deduce its confidence. In this way, SPIRIT provides some automation to 

leverage certifiers’ capability to perform the software certification. 

SPIRIT supports the confidence evaluation of an assurance case whose generation is 

based on a safety pattern. The goal of the evaluation feature of SPIRIT is to aid a certifier to infer 

the confidence of a second assurance case, if the certifier carefully evaluates the first acceptable 

assurance case when both assurance cases are instantiated from a same safety pattern. Here, a 

careful evaluation of the acceptable assurance case means that a certifier compares the 

acceptable assurance case with some other assurance cases that have the similar structure. This 

comparison allows us to infer the calculation model which is used by a certifier and can be 

applied to the second assurance case.  

To calculate the confidence of a second assurance case, SPIRIT requires the following 

inputs: for each argument: the type of the argument and discounting factor, which will be 

explained in the later section on the application of the D-S theory in assurance cases. Next, the 

framework carries out the following tasks: 

 Convert an assurance case into a confidence calculation model where D-S theory 

can be applied. 

 Use Vector Space Model to calculate similarity values as confidence for all leaf 

nodes in a confidence calculation model. 

 Apply the D-S theory to infer all the disjoint contributing weights in the top 

structure, which is shared by the two assurance cases, using the fact that the first 

assurance case is acceptable.  

 Apply all the disjoint contributing weights in the second assurance case to deduce 

its confidence. 

Confidence evaluation of an assurance case starts with leaf nodes in its corresponding 

confidence calculation model. We notice that many assurance cases have the traceability 

information as leaf node. So, instead of asking for confidence as input for each leaf claim, which 
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is directly supported by an evidence node, we employ some similarity calculation models such as 

the Vector Space Model to calculation a similarity value for each leaf node. In SPIRIT, the 

evaluation feature mainly follows Wang et al.’s formulation for the D-S theory calculation [45]. 

When performing calculation propagation, the confidence of a top claim is based on the 

evaluation of the trustworthiness of each child claim and the appropriateness of all children 

claims. Thus, there are two assessment parameters corresponding to these two aspects. The first 

assessment parameter denotes the trustworthiness of a claim, say P, denoted as a 3-tuple (bel(P), 

dis(𝑃), uncer(P)) showing belief, disbelief, and uncertainty of claim P, respectively. The second 

assessment parameter represents the appropriateness of a claim, i.e., the degree that the claim can 

independently contribute to the trustworthiness of its parent claim. The degree is called a disjoint 

contributing weight denoted as w. A simple assurance case with the trustworthiness and 

appropriateness information is shown in Figure 38 where 𝑤𝐵 and 𝑤𝐶, that are called disjoint 

contributing weights of B and C respectively, denote the appropriateness of B and C to support 

A. Thus, a disjoint contributing weight of a claim is also called an appropriateness value of the 

claim.  

SPIRIT abstracts an assurance case into a calculation model which includes the main 

claim nodes and evidence nodes in the assurance case. In a calculation model, a claim node, 

denoted as P, is measured by three tuples, i.e. belief, disbelief, and uncertainty, and denoted as 

bel(P), bel(𝑃̅), and uncer(P) respectively. The 3-tuple format is used when applying the D-S 

theory. A frame of discernment Ω𝑃 is {𝑃, 𝑃̅}, where 𝑃̅ denotes false of P. The mass 𝑚𝛺𝑃(𝑃) 

shows the degree of belief committed to the hypothesis that truth lies in P [45]. The 3-tuple is 

thus defined as follows: 

Figure 38 D-S theory for confidence calculation 
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{

𝑏𝑒𝑙(𝑃) = 𝑚Ω𝑃(𝑃) = 𝑔𝑃
𝑑𝑖𝑠(𝑃̅) = 𝑚Ω𝑃(𝑃̅) = 𝑓𝑃

𝑢𝑛𝑐𝑒𝑟(𝑃) = 𝑚𝛺𝑃(𝛺𝑃) = 1 −𝑚
𝛺𝑃(𝑃) − 𝑚𝛺𝑃(𝑃̅) = 1 − 𝑔𝑃 − 𝑓𝑃

(1) 

The confidence calculation of a claim depends on its sub-claims. Two types of sub-claim 

contributions can be used to support a parent claim, i.e., a dependent argument and redundant 

argument. A dependent argument is the contribution of one child claim to its parent claim 

depends on another (i.e., sibling) child claim. For example, in an argument, claim A: “the system 

is acceptably safe” is supported by claim B: “the system is passed by verification” and claim C: 

“the system is passed by testing”. In this case, the type of this argument is redundant since, being 

two different techniques, either B and C can support A in some degree without being dependent 

on the other one. A dependent argument denotes the contribution of a child claim to support its 

parent claim has some degree of overlap with another child claim. For instance, in another 

argument, claim A: “The system is acceptably safe” is supported by claim B “the test process is 

sound” and claim C “the test results are correct”. In this argument, the type is dependent since 

the test results given by C to support claim A depends on the test process given by claim B. 

Since it is not possible to infer that the trustworthiness of a claim can be derived from all its 

children claims via the appropriateness, i.e., the completeness of all children claims mentioned 

earlier, we use the discounting factor v to denote the uncertainty about the appropriateness of all 

children claims to support their parent claim. For instance, for the latter argument, claims B and 

C cannot have a large value of v since a system being acceptably safe cannot be highly ensured 

when only the testing approach is adopted.  

Next, we consider how the trustworthiness of a parent claim can be deduced by the 

trustworthiness of its all sub-claims in a calculation model by using the formula from [46]. The 

trustworthiness of a claim denoted as A with an n-claims dependent argument is given as 

follows: 

{
  
 

  
 𝑏𝑒𝑙(𝐴) = 𝑣[(1 −∑𝑤𝑖

𝑛

𝑖=1

)∏𝑔𝑖

𝑛

𝑖=1

+∑𝑔𝑖𝑤𝑖]

𝑛

𝑖=1

= 𝑔𝐴 

𝑑𝑖𝑠(𝐴̅) = 𝑣[(1 −∑𝑤𝑖

𝑛

𝑖=1

) [1 −∏(1 − 𝑓𝑖)]

𝑛

𝑖=1

+∑𝑓𝑖𝑤𝑖]

𝑛

𝑖=1

= 𝑓𝐴

𝑢𝑛𝑐𝑒𝑟(𝐴) = 1 − 𝑔𝐴 − 𝑓𝐴

(2) 

where each 𝑤𝑖 (i=1, 2, …, n) denotes a disjoint contributing weight of the ith sub-claim to 

support its parent claim. Again, due to space constraints, the formula for the trustworthiness of a 
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claim with an n-claims redundant argument is omitted and can be found in [45]. The research 

goal of this paper is to find the appropriate values of wi (i=1, 2, …, n) when the total 

appropriateness value of all children claims in an argument is given, i.e., ∑ 𝑤𝑖
𝑛
𝑖=1 = 𝑐 where c is 

a preset value. Similarly, the trustworthiness of a claim denoted as A with an n-claims redundant 

argument is given as below: 

{
  
 

  
 𝑏𝑒𝑙(𝐴) = 𝑣[(1 −∑𝑤𝑖

𝑛

𝑖=1

) [1 −∏(1 − 𝑔𝑖)]

𝑛

𝑖=1

+∑𝑔𝑖𝑤𝑖]

𝑛

𝑖=1

= 𝑔𝐴 

𝑑𝑖𝑠(𝐴̅) = 𝑣[(1 −∑𝑤𝑖

𝑛

𝑖=1

)∏𝑓𝑖)

𝑛

𝑖=1

+∑𝑓𝑖𝑤𝑖]

𝑛

𝑖=1

= 𝑓𝐴

𝑢𝑛𝑐𝑒𝑟(𝐴) = 1 − 𝑔𝐴 − 𝑓𝐴

(3) 

Another format of trustworthiness of a claim represents a certifier’s evaluation on claim P 

using a 2-tuple (dec(P), conf(P)) where dec denotes a certifier’s confidence value and conf 

represents the confidence about the method used by a certifier to have a value for dec. We thus 

call a dec value of a claim a trustworthiness value of the claim in that a dec value directly 

denotes a confidence value given by a certifier. Since the 2-tuple and 3-tuple formats reflect two 

different perspectives on confidence of a claim, some conversion is necessary. For instance, a 

certifier’s evaluation on a leaf claim via a 2-tuple is converted to a 3-tuple so the D-S theory can 

be carried out. Likewise, a 3-tuple of a root claim is converted to a 2-tuple after the calculation, 

mimicking a certifier’s evaluation. Formulas (4) and (5) show the conversions between a 3-tuple 

and a 2-tuple of a claim. Following the common practice, we accept an assurance case or not 

based on a trustworthiness value of a root in the assurance case and we use 0.7 as a threshold 

value. 

{

𝑏𝑒𝑙(𝑃)  =  𝑐𝑜𝑛𝑓(𝑃) ×  𝑑𝑒𝑐(𝑃)

𝑑𝑖𝑠(𝑃) =  𝑐𝑜𝑛𝑓(𝑃) × (1 −  𝑑𝑒𝑐(𝑃))

𝑢𝑛𝑐𝑒𝑟(𝑃) = 1 −  𝑏𝑒𝑙(𝑃) −  𝑑𝑖𝑠𝑏(𝑃) 
                    (4)     

{

𝑐𝑜𝑛𝑓(𝑃) =  𝑏𝑒𝑙(𝑃) +  𝑑𝑖𝑠𝑏(𝑃)

𝑑𝑒𝑐(𝑃) =  𝑏𝑒𝑙(𝑃) / (𝑏𝑒𝑙(𝑃) +  𝑑𝑖𝑠𝑏(𝑃)),   𝑖𝑓 𝑏𝑒𝑙(𝑃) +  𝑑𝑖𝑠𝑏(𝑃)  ≠  0 
𝑑𝑒𝑐(𝑃) = 0, 𝑖𝑓 𝑏𝑒𝑙(𝑃) +  𝑑𝑖𝑠𝑏(𝑃)  =  0 

         (5) 

 The derivation of all disjoint contributing weights for the top structure which is shared by 

the two assurance cases is the key step performed by SPIRIT. Since the first assurance case is 

acceptable, a certifier should compare the first assurance case with some other assurance cases 

which have the same structure except for leave sub-goals.  For instance, assume leaf goal node 
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contains a claim statement “artifact a1 traces to artifact b1 at the System”, a certifier considers 

the claim statement as “artifact a1 traces to artifact b2 at the System”. In this case, the certifier 

uses the evidence node to figure out a new confidence value for the leaf goal node.  Based on this 

fact, the framework generates a certain number of assurance cases to infer the disjoint 

contributing weights for the top structure. In the coupled tanks control system, we generate 300 

assurance cases using the following procedure. 

To change the claim from “artifact a1 traces to artifact b1 at the System” to “artifact a1 

traces to artifact b2 at the System” for the goal node, SPIRIT first generates a similarity table for 

each leaf claim, sorts the similarity value in a descending order, and finally chooses the best, 

average, and worst similarity values as a candidate set to generate a new assurance case. The 

reason to do so is to make sure some so-called best similarity values can be chosen but the 

disjoint contributing weights can still be correctly derived. Next, for each leaf goal node, SPIRIT 

randomly chooses a value from the candidate set and an assurance case is generated once all leaf 

goal nodes are considered.  

Besides values of disjoint contributing weights, SPIRIT calculates the trustworthiness for 

all sub-goals before formula (2) is used to calculate the trustworthiness of the parent goal node.  

Likewise, the framework calculates the trustworthiness for each sub-goal. As such, the 

trustworthiness calculation of our framework uses the bottom up strategy, starting with leaf goal 

nodes. But since the two assurance cases have different structures in the bottom portions, 

respectively, the framework assigns equal weights to all disjoint contributing weights for an 

argument. Finally, the confidence of a leaf node is converted by formula (4) using the similarity 

value as a dec value and 0.8 as a conf value. Next, SPIRIT finds a set of values for all disjoint 

contributing weights to assign the first assurance case with the highest dec value among the set 

of assurance cases used as learning data. Finally, the framework applies the values to the second 

assurance case and calculates a 3-tuple for the root claim and then converts the three-tuple back 

to a 2-tuple element using formula (5), thereby automatically generating the confidence of the 

second assurance case that would otherwise be performed manually by a certifier. 

6.2.1 Evaluation Process 

 The goal of the SPIRIT assurance case evaluation process is to automatically deduce 

values for the assessment parameters such as the trustworthiness and appropriateness, i.e., 

disjoint contributing weights, of claims from the first assurance case, which has been determined 
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to be acceptable.  Since the second assurance case is derived based on the safety pattern where 

the first assurance case is derived, the derived disjoint contributing weights are applied to the 

second assurance case to finally deduce its confidence. To do so, the process has two phases 

shown in Figure 39: 

 The Training Phase. First, the framework converts an assurance case into a 

confidence calculation model where D-S theory can be applied. Second, the 

framework uses Vector Space Model to calculate similarity values as confidence for 

all leaf claims in a confidence calculation model. Third, the framework generates a 

set of similar assurance cases as learning data using the similarity values. Last, the 

framework applies the D-S theory to infer all the disjoint contributing weights in a 

common structure of two input assurance cases, using the fact that the first assurance 

case is acceptable.  

 The Application Phase. The framework initially converts a second assurance case 

into a confidence calculation model. Next, the framework employs the disjoint 

contributing weights to the confidence calculation model so the D-S theory is 

applied to deduce the confidence of the second assurance case. Fourth, apply all the 

disjoint contributing weights in the second assurance case to deduce its confidence. 

Figure 39 Overview of SPIRIT assurance case evaluation process 
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6.3 Implementation of Assurance Case Evaluation 

In this section, we introduce the technical details for implementing the assurance case evaluation 

feature. 

6.3.1 Confidence Calculation Model and Vector Space Model 

Since an assurance case includes auxiliary information about how an argument structure 

is formed (e.g., a strategy node, justification node, and context node in an assurance case), we 

remove this information, such that only claims and evidence nodes are included in a confidence 

calculation model. Furthermore, if a claim called c_1 is supported by only one child claim c_2 

that is further supported by child claim c_3, then we have claim c_1 is directly supported by 

child claim c_3 without including child claim c_2 in a confidence calculation model. In this case, 

an appropriateness value of a child claim is equal to the value given in a safety pattern.  

Confidence evaluation of an assurance case starts with leaf claims, i.e., evidence nodes, in 

its corresponding confidence calculation model. We notice that many assurance cases have 

traceability information at the leaf claim level. Therefore, instead of asking for a confidence 

value as input, we use the Generalized Vector Space Model (GVSM) [47] to calculate a 

similarity value to mimic how a certifier evaluates a leaf claim. 

6.3.2 Generation of a Set of Learning Data  

Since the first assurance case is acceptable, a certifier usually compares it with some 

other assurance cases which have the same structure except for leave claims. Based on this fact, 

the framework generates a certain number of assurance cases to infer the disjoint contributing 

weights for the same structure of two GSNs.  

SPIRIT first generates a similarity table for each leaf claim in the first input assurance 

case using GVSM [47] Next, SPIRIT sorts the similarity value in a descending order, and finally 

chooses the best, ideal, average, and worst similarity values as a candidate set to generate a new 

assurance case. The reason to do so is to make sure no extreme learning data can be generated. A 

candidate set is stored as a table attached to each leaf claim and used to generate new assurance 

cases.  

The createTrainingData method shows how a training data set is created as shown in Figure 

40. The method initializes the output variable list TD by adding the acceptable assurance case ac 

as the list first element at line 1. For each of the two case studies in this paper, we generate 300 

assurance cases for the training data set. Next, the creatingTrainingData method enters a loop 
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statement whose execution generates one assurance case and add it to the TD list from line 2 to 

line 12. For each generation of an assurance case, the creatingTrainingData method gets a 

random number, i.e., variable x, at line 3 such that x leaf claims in ac are modified to produce a 

new assurance case. To do so, at line 4, the method initializes the list CN, that stores a list of leaf 

claims to be modified in a new assurance case, to be empty. Starting at line 5, the method enters 

another loop to collect x leaf claims to be modified in a new assurance case. Specifically, at lines 

6 and 7, a leaf claim should be randomly chosen from all leaf claims of ac such that the chosen 

leaf claim should not be duplicate to any current existing leaf claim in CN. At line 8, the method 

copies ac to a new variable ac’ that stores a new generated assurance case. From line 9, the 

method iterates each leaf claim in CN so that the leaf claim is modified in ac’. At line 10, each 

modification is carried out using the similarity table attached to the leaf claim of ac. After the 

loop statement of line 9, the method generates a new assurance case ac’ that has x different leaf 

claims from ac. Next, the method updates TD by adding ac’ at line 11 and replaces ac with ac’ at 

line 12 since the next round of generation is based on the currently generated assurance case. At 

the end of the loop, a training data set is created. 

6.3.3 Derivation of Disjoint Contributing Weights  

Once types of arguments as well as total appropriateness values of child claims together 

are set based on a structure of a safety pattern, SPIRIT starts the confidence calculation with leaf 

Figure 40 Create training data algorithm 
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claims via the D-S theory algorithm. Next, SPIRIT employs the following schema for each 

argument. For instance, consider a goal node has three sub-goals in an assurance case, three 

disjoint contributing weights are defined as  𝑤1, 𝑤2, and 𝑤3 respectively. To find the best 

configuration of these disjoint contributing weights, the framework uses a preset step value, 

which is 0.1, and then employs the following formula (6) to find the value for 𝑤1, 𝑤2, and 𝑤3. 

∑𝑤𝑖

3

𝑖=1

= 0.9, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 ∈ { 0.1, 0.2, … , 0.7}    (6) 

The framework iterates each configuration and assurance case in a training data set to 

ensure that the acceptable assurance case is ranked as top as possible. To do so, method 

IdentifyConfiguration as shown in Figure 41 takes the accepted assurance case as parameter ac, 

and the training data as parameter trainingData. The method starts with calling method 

find_all_confs(ac) to find all possible configuration according to the structure of ac at line 1. 

Then, the method initializes the variables including the outputs from line 2 to line 4. From line 5, 

the method finds a best configuration by entering a loop statement. For each loop, i.e., each 

Figure 41 Identify disjoint weights algorithm 
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configuration c, the method retrieves each assurance case ac from trainingData, calls method 

Calculate_Using_DS (..) to calculate a trustworthiness value of ac under configuration c, i.e., a 

2-tuple element, and adds the value to list declist from line 7 to line 9. Next, the method gets the 

rank of the accepted assurance case among trainingData via calling method findRankofFirstAC 

(..) at line 10. If the new rank is better than the previous best one, i.e., variable best_rank, or the 

new rank is equal to the previous best one but the current configuration has a large dec value 

than the previous best one’s, i.e. the trustworthiness variable, then the method updates the 

outputs so the current configuration, rank and trustworthiness are assigned to the corresponding 

output variables. Note that the confidence calculation of our framework uses the bottom up 

strategy, starting with leaf claims. So disjoint contributing weights for all arguments can be 

derived and the framework finds a set of values for all disjoint contributing weights to assign the 

first assurance case with the highest dec value among the set of assurance cases used as learning 

data. There exist scenarios where sections of two assurance cases have different structures even 

though they are both derived from the same safety pattern. In this case, we skip the calculation of 

disjoint contributing weights. Instead, the framework assigns equal weights to all disjoint 

contributing weights for all children claims instead of considering all sets of disjoint contributing 

weights satisfying formula (6).   
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CHAPTER VII  

CASE STUDY 
 

7.1 Coupled Tanks Control System 

In this dissertation, we applied SPIRIT to an aircraft fuel tank system called coupled 

tanks control system [48] to illustrate the generation, maintenance, and evaluation of an 

assurance case in support mission critical software development. The coupled tanks control 

system is proposed by the Verification and Validation of Complex Systems (VVCS) group 

within AFRL/RQQA [48]. The coupled tanks control system is a cooling tanks system stores 

liquid for some process and then releases the liquid into a bottomless sink. The system contains 

coupled tanks, each of which is controlled by independent controllers that operate four actuators 

and receive feedback from five sensors. The development process of the coupled tanks control 

system consists of three major activities. The requirement analysis activity uses the Specification 

and Analysis of Requirements (SpeAR) framework to prove that a given model meets its formal 

specification. The architecture analysis activity uses the Assume Guarantee Reasoning 

Environment (AGREE) to evaluate the behavior of the subsystem components with the greater 

system. The model analysis activity uses Simulink Design Verifier (SLDV) to prove that the 

guarantees (and original requirements) hold true throughout the modeling phase. In this case 

study, we build an assurance case mainly focuses on the requirements elicitation and the SpeAR 

model properties elicitation of the coupled tanks control system. The coupled tanks control 

system considers two types of requirements: 1) the concept of operations (CONOPS) 

requirements illustrates the high-level requirements target on the challenging problems of a 

cooling tank system [49] and 2) The system requirements define the system behaviors of the 

coupled tanks control system in different aspects based on the compositional architecture of the 

system [48]. The compositional architecture of the coupled tanks control system is shown in 

Figure 42. The root claim of the first assurance case claims that all system requirements are 

adequately elicited and documented in the corresponding document(s) based on the different 
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aspects of the coupled tanks control system architecture. For the system aspect requirements, the 

requirements should address the challenging problems targeted by the CONOPS requirements. 

Therefore, each CONOPS requirement is addressed by the coupled tanks control system 

requirement(s) at the system aspect, and each requirement at the system aspect is derived from 

the CONOPS requirement(s). The requirements at the system aspect are further refined to the 

requirements at the environment aspect and controller aspects. Therefore, each requirement at the 

system aspect addressed by the requirement(s) at environment aspect or controller aspect, and 

each requirement at environment aspect and controller aspect should derived from the 

requirement(s) at the system aspect.  

To verify that the behaviors of the coupled tanks control meets the requirements, the 

coupled tanks control system SpeAR models are generated and the system requirements are 

formalized to the SpeAR model properties. An analysis can be performed to identify the 

problems of the SpeAR models including the Directly property conflict, Requirement conflict, 

and Under specification [50] based on the model checking techniques. The root claim of the 

second assurance case claims that all SpeAR model properties are adequately elicited and 

documented in the document(s) based on the different aspects of the coupled tanks control 

system architecture. For each aspect of the coupled tanks control system, a system requirement is 

formalized to the SpeAR model property(properties). And each SpeAR model property is 

derived from the system requirement(s).   

 

Figure 42 Coupled tanks control system compositional architecture 
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7.2 Safety Pattern 

A safety pattern catalog shown in Figure 43 illustrates a safety pattern to support the 

argument structure of the claim of the adequate elicitation of the requirements and SpeAR model 

properties of the coupled tanks control system. The pattern catalog contains a catalog 

metamodel. The metamodel denotes the structure of a system (class S) is organized by its 

compositional architecture element (e.g., levels or aspects of a system) denoted by class L. A 

type of system artifact denoted by class R is associated with a specific architecture level or aspect 

denoted by class L. Class HL represents another architecture level or aspect in S, and class HR 

represents another type of system artifacts associated with HR. The document to store R and HR 

related to L and HL is represented by class F. A safety pattern illustrated in the pattern catalog 

defines seven variable roles and four string roles. Each variable role denotes a variable whose 

type which is the corresponding to the upper-case letter in the catalog metamodel. The four string 

roles are used to illustrate a domain class. In this example, $a illustrates a description of domain 

class mapped by r, $b illustrates a description of domain class mapped by f, $c illustrates a 

description of domain class mapped by L, and $d illustrates a description of domain class 

Figure 43 Safety pattern catalog for artifacts elicitation 
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mapped by HR. In this pattern, the top goal is that all instances of R (represented by {$a} of a 

cyber physical system S are adequately elicited and documented in F. To do so, the pattern 

considers the compositional structures L in S. For each instance of L, the claim of adequate 

elicitation of {$a} is decomposed by the claim of the completeness and correctness of R related 

to L. The claim of correctness is argued by each instance of R related to L is derived from a 

source, which is an instance of HR related to HL. The claim of completeness is argued by each 

instance of HR related to HL is covered by an instance of R related to L. In the end, the report to 

check the traceability support the claim of correctness and completeness of each L in S. 

  The mapping table shown in Table 3 illustrates the mapping relationships between roles 

defined in the safety pattern and the Cyber Physical System (CPS) domain model classes and the 

string values for generating the assurance case to argue all coupled tanks control system 

requirements are adequately elicited and documented. The mapping table shown in Table 4 

illustrates the different mapping relationships which maps the same roles defined in Figure 43 to 

another sets of CPS domain classes for generating the assurance case to argue all coupled tanks 

control system SpeAR model properties are adequately elicited and documented. A partial CPS 

domain model is shown in Figure 44 to illustrate the relationships between the CPS domain 

classes mapped by the roles via the mapping relationship shown in Table 3. Two domain specific 

patterns are generated as shown in Figure 45. The generated domain specific patterns replace all 

roles defined in the safety pattern shown in Figure 43 to the CPS domain model classes based on 

the mapping relationships specifies in Table 3 and Table 4.  

Table 3 Mapping table for requirement 

elicitation 

 

Table 4 Mapping table for SpeAR 

properties elicitation 
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7.3 Assurance Case  

Based on the generated domain specific patterns shown in Figure 45 and the CPS domain 

model shown in Figure 44, two ATL programs are generated via SPIRIT.  After the ATL 

programs are generated, the ATL programs take the coupled tanks control system artifacts as 

shown in Table 5 and the CPS domain model shown in Figure 44 as inputs to generate the 

assurance cases for the coupled tanks control system. In this case study, we consider one instance 

of CyberPhysicalSystem, the Coupled tanks control system, four instances of Level are 

considered in this case study, which including the CONOPS level and three aspects of the 

Coupled tanks control system: System aspect, Environment aspect, and Controller aspect. Two 

instances of Document are considered in this case study, the CONOPS document stores the 

CONOPS requirements and the Two Tanks Basic PA document stores the system requirements 

and SpeAR model properties. Five CONOPS requirements are defined in the CONOPS 

document including HR1, HR2, HR3, HR4, and HR5. Eight system aspect requirements are 

defined in the coupled tanks control system including SysR01 ~ SysR08. Thirty-five environment 

aspect requirements are defined in the coupled tanks control system including env_R01 ~ 

env_R35, and eleven controller aspects requirements are defined in the coupled tanks control 

Figure 44 A partial CPS domain model 



76  

system including Ctrl_R01 ~ Ctrl_R11. Eight system aspect SpeAR model properties are defined 

in the coupled tanks control system including p_sys_01 ~ p_sys_08. Twenty-six system aspect 

SpeAR model properties are defined in the coupled tanks control system including p_env_01 ~ 

p_env_10, p_pump_01, p_pump_02, p_pump_r01, p_pump_r02, p_sensor_01, p_sensor_02, 

p_t1_01, p_t1_02, p_t1_calculated_height, p_t2_01, p_t2_02, p_t2_03, p_t2_calculated_height, 

Figure 45 Domain specific pattern for requirement elicitation 
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p_valve_01, p_valve_02, p_valve_r01, and p_valve_r02. Fifteen controller aspect SpeAR model 

properties are defined in the coupled tanks control system including p_ctrl_01, p_ctrl_02, 

p_ctrl_03, p_ctrl_04 p_t1ctrl_p01, p_t1ctrl_r00, p_t1ctrl_r01, p_t1ctrl_r02, p_t2ctrl_01, 

p_t2_ctrl_02, p_t2ctrl_r00, p_t2ctrl_r01, p_t2ctrl_r02, p_t2ctrl_r03, and p_t2ctrl_r04.  

The generated assurance cases for the requirements elicitation and SpeAR model 

properties elicitation are represented graphically using the Astah GSN editor. Due to the large 

number of the nodes in the assurance case, a simplified assurance diagram for the requirements 

elicitation is shown in Figure 46.  In this assurance case diagram, we highlight some key nodes 

to illustrate the major claims of this assurance case. The root goal node of this assurance case 

claims that Coupled tanks control system requirements are adequately elicited and documented 

in the requirement document. The System aspect, Environment aspect and Controller aspect are 

considered in the coupled tanks control system as shown in Table 3, three goal nodes, 0G1.2.1, 

0G1.2.2, and 0G1.2.3, are generated in the assurance case, each of which claims the system 

requirements at a specific aspect are adequately elicited and documented. The claim of the 

adequate elicitation of each aspect in the coupled tanks control system is supported by the two 

Table 5 Coupled tanks control system artifacts 
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identified criteria, completeness and correctness. Therefore, goal nodes 0G1.2.1, 0G1.2.2, and 

0G1.2.3 are supported by two sub-goal nodes respectively, the first sub-goal node, 0G1.3.1, 

0G1.3.2, and 0G1.3.3 claims the requirements at a specific aspect are correct, and the second 

sub-goal node, 0G1.4.1, 0G1.4.2, and 0G1.4.3 claims the requirements at a specific aspect are 

complete. The definition of correctness and completeness is derived from [51]. In this assurance 

case, the correctness is defined as all requirements are derived from a source. For the 

requirements at the system aspect, the claim of correctness is supported by the sub-claims that 

every requirement at system aspect traces to the CONOPS requirement(s) as goal nodes 0G1.7.1 

to 0G1.7.8. For the requirements at the environment aspect, the claim of correctness is supported 

by the sub-claims that every requirement at environment aspect traces to the requirement(s) at 

system aspect as goal nodes 0G1.7.9 to 0G1.7.43. For the requirements at the controller aspect, 

Figure 46 Coupled tanks requirements elicitation assurance case 
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the claim of correctness is supported by the sub-claims that every requirement at controller 

aspect traces to the requirement(s) at system aspect as goal nodes 0G1.7.44 to 0G1.7.54. The 

completeness is defined as all requirement are covered by the requirement(s) at different aspect. 

For the requirements at the system aspect, the claim of completeness is supported by the sub-

claims that every CONOPS requirement traces to the requirement(s) at system aspect as goal 

nodes 0G1.8.1 to 0G1.8.5. For the requirements at the environment and controller aspect, the 

claim of completeness is supported by the sub-claims that every requirement at system aspect 

traces to the requirement(s) at environment and controller aspects as goal nodes 0G1.8.6 to 

0G1.8.21. The coupled tanks system artifacts trace check report is considered as the evidence to 

support the traceability between these requirements are correct and complete. 

   The simplified assurance diagram for the second assurance for SpeAR model properties 

elicitation is shown in Figure 47. Similar to the assurance case diagram shown in Figure 46, we 

highlight the key goal nodes in the generated assurance case as shown in Figure 47. In the 

coupled tanks control system, the system requirements are formalized to the SpeAR model 

properties. The root goal node of this assurance case claims that Coupled tanks control system 

SpeAR model properties are adequately elicited and documented in the SpeAR model 

documents. The System aspect, Environment aspect and Controller aspect are considered in the 

coupled tanks control system as shown in Table 3, three goal nodes, 0G1.2.1, 0G1.2.2, and 

Figure 47 Coupled tanks SpeAR properties elicitation assurance case 
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0G1.2.3, are generated in the assurance case, each of which claims the SpeAR properties at a 

specific aspect are adequately elicited and documented. The same criteria, correctness and 

completeness are applied to this assurance case for the claim of the adequate elicitation of each 

aspect in the coupled tanks control system. Goal nodes 0G1.2.1, 0G1.2.2, and 0G1.2.3 are 

supported by two sub-goal nodes respectively, the first sub-goal node, 0G1.3.1, 0G1.3.2, and 

0G1.3.3 claims the SpeAR properties at a specific aspect are correct, and the second sub-goal 

node, 0G1.4.1, 0G1.4.2, and 0G1.4.3 claims the SpeAR properties at a specific aspect are 

complete.  

In this assurance case, the correctness is defined as all SpeAR properties are derived from 

coupled tanks control system requirements at the same aspect. For the SpeAR properties at the 

system aspect, the claim of correctness is supported by the sub-claims that every SpeAR property 

at system aspect traces to the requirement(s) at the system aspect as goal nodes 0G1.7.1 to 

0G1.7.8. For the SpeAR properties at the environment aspect, the claim of correctness is 

supported by the sub-claims that every SpeAR property at environment aspect traces to the 

requirement(s) at environment aspect as goal nodes 0G1.7.9 to 0G1.7.34. For the SpeAR 

properties at the controller aspect, the claim of correctness is supported by the sub-claims that 

every SpeAR property at controller aspect traces to the requirement(s) at controller aspect as goal 

nodes 0G1.7.35 to 0G1.7.49. The completeness is defined as all system requirements are covered 

by SpeAR properties at the same aspect. For the SpeAR properties at the system aspect, the 

claim of completeness is supported by the sub-claims that every system requirement at system 

aspect traces to the SpeAR properties at system aspect as goal nodes 0G1.8.1 to 0G1.8.8. For the 

SpeAR properties at the environment aspect, the claim of completeness is supported by the sub-

claims that every requirement at environment aspect traces to the SpeAR properties at 

environment aspect as goal nodes 0G1.8.9 to 0G1.8.43. For the SpeAR properties at the 

controller aspect, the claim of completeness is supported by the sub-claims that every 

requirement at controller aspect traces to the SpeAR properties at controller aspect as goal nodes 

0G1.8.44 to 0G1.8.54. 

 

7.4 Maintenance 

In this case study, we consider a coupled tanks control system requirement (ID) is 

changed and analyze how the nodes in assurance cases are affected by the change. To 
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demonstrate the case study example, two partial assurance cases for the coupled tanks control 

system requirements elicitation and SpeAR properties elicitation are shown in Figure 48. When 

coupled tanks system requirement Sys R01 is changed, SPIRIT first identifies the assurance case 

nodes reference to Sys R01. In this example, node 0G1.7.1 are identified as affected nodes based 

on the change of (Sys R0x), these affected nodes are marked with ① in Figure 48(i). Secondly, 

SPIRIT identifies the affected nodes based on the structure of the assurance case. The ancestor 

Figure 48 Coupled tanks control system assurance case maintenance example 
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nodes of 0G1.7.1 are identified. Therefore, these nodes are considered as affected nodes and 

marked with ② in Figure 48(i). Thirdly, SPIRIT identifies the affected nodes based on the 

traceability of system artifacts. In this case study example, the type of requirement Sys R01 is 

domain model class Requirement as shown in Table 5. Based on the CPS domain model as 

shown in Figure 44, domain class SystemProperty is derived from Requirement. SPIRIT 

identifies SpeAR model properties p_sys_05 and p_sys_06 are derived from Sys R01 based on 

the traceability information between the coupled tanks control system artifacts.  SPIRIT 

identifies node 0G1.7.3 and 0G1.7.4 in the SpeAR model properties elicitation assurance case 

are affected by the change and marked with ③ in Figure 48(ii). Lastly, the ancestor nodes of 

0G1.7.3 and 0G1.7.4 in Figure 48(ii) are also considered as affected nodes. These affected nodes 

are marked with ④ as shown in Figure 48(ii). 

 

7.5 Evaluation Result 

To support the certification of a generated assurance case, SPIRIT evaluates the 

assurance case for the coupled tanks control system via applying the Dempster Shafer (D-S) 

theory for the assurance case confidence calculation. To calculate the confidence of the coupled 

tanks control system requirement elicitation assurance case shown in Figure 46, SPIRIT 

generates the confidence calculation model for the requirement elicitation shown in Figure 49 

Figure 49 Confidence calculation model for requirements elicitation 
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based on the assurance case. In a confidence calculation model, all context nodes, assumption 

nodes, justification nodes, strategy nodes, and the intermediate goal nodes are eliminated from 

the assurance case. The confidence calculation model of the coupled tanks control system 

requirements elicitation is built from the highlighted goal nodes and the solution nodes in Figure 

46. To calculate the confidence of an assurance case, the confidence of the evidence (solution 

nodes) must be known by SPIRIT. The confidence of evidence is usually decided by the certifier. 

But in some cases, the confidence for the evidence can also be calculated. In this case study 

example, the evidence to proof the traceability between requirements are correctly set up is based 

on how close these requirements are related to each other. One way to measure how close these 

requirements are related to each other is calculating the similarity between the description of a 

requirement and the description of another requirement. In other words, if two requirements are 

claimed to have a traceability between each other, the similarity value between these two 

documents provides a measurement that how confidence that the traceability is set correctly. In 

this case study, we use the Vector Space Model [47] to calculate the similarity between the 

requirements and use the similarity values to calculate the confidence of a solution node. 

Different models are applied to the assurance case confidence calculation such as Dempster-

Shafer Theory (D-S theory) and Bayesian belief network (BBN). In this case study, we apply a 

confidence assessment framework proposed by Wang [45] to calculate the confidence of the 

generated assurance cases based on the D-S theory.  In this confidence assessment framework, 

the confidence of the root node is based on two factors: 1) The trustworthiness to each sub-goal 

nodes in the confidence calculation model and 2) the appropriateness of the sub-goal nodes 

related to the root node. In this case study, the trustworthiness of a node is calculated based on 

the VSM similarity results. To specify the appropriateness of the sub-goal nodes related to its 

parent goal nodes and how the trustworthiness propagates from the sub-goal nodes to the parent 

goal node, additional information is required by the framework to construct a confidence 

calculation model. First, the appropriateness of a sub-goal node to its parent node is represented 

by a disjoint contributing weight called w. This value indicates that the degree that a sub-goal 

can independently contribute the trustworthiness to its parent goal. Second, the confidence 

assessment framework defines two argument types to specify how the trustworthiness of the sub-

goal nodes contributed to the parent goal node. The two argument types are defined as 

Dependent Argument and Redundant Argument. The Dependent Argument indicates that the 
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contribution of a sub-goal to its parent node is depends on the trustworthiness of other sub-goal 

nodes. The Redundant Argument indicates that the sub-goal nodes have overlapping to each 

other to contribute the trustworthiness to the parent node.  

 In our case study, we manually review the structure of the generated assurance case and 

assign the type of argument for every level of the confidence calculation model. After we review 

the structure of the safety pattern, we assign the Dependent Argument type for all levels of the 

confidence calculation model. For the disjoint contributing weight of each node, we adopted a 

machine learning approach to find the most appropriate configuration for a confidence 

calculation model. To identify the most appropriate configuration of a confidence calculation 

model, we made an assumption that with the most appropriate configuration setting, the 

assurance case with correct traceability links between requirements at the different aspects 

should have higher root node confidence compared with an assurance case contain incorrect 

traceability links. Therefore, we define the most appropriate configuration of a confidence 

calculation model as following: 1) a configuration of a confidence calculation model is called an 

appropriate configuration if the calculation of the confidence based on the configuration of this 

confidence calculation model results in a higher value of the root node confidence compared 

with the root node confidence values of other confidence calculation models with the same 

structure but contains incorrect traceability links in the claim statements. 2) If there exist more 

than one appropriate configurations, the most appropriate configuration is the appropriate 

configuration that calculates the highest confidence value of the confidence calculation model. 

After the root node confidence of a confidence calculation model is calculated based on the most 

appropriate configuration, a decision scale is assigned to the root node based on its confidence 

value.     

To compare the root node confidence between the assurance case with correct traceability 

and other assurance cases combined with correct and incorrect traceability, we randomly 

generate a set of assurance cases based on different traceability setting of the coupled tanks 

control system requirements elicitation assurance case. These random generated assurance case 

has the same structure compared with the original assurance case, but the leaf nodes confidences 

are different to the original assurance case. SPIRIT takes the original assurance case and the 

randomly generated assurance cases as the training set to identify the most appropriate 

configuration for the coupled tanks control system requirements elicitation confidence 
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calculation model. To generate an assurance case with random traceability, we consider the 

representative traceability sets for each goal node in the confidence calculation model that is 

supported by the solution nodes. The coupled tanks control system requirements elicitation 

assurance case contains 75 goal nodes that are supported by the solution nodes as shown in 

Figure 46. Recall that the claims that are supported by the solution nodes in the requirements 

elicitation assurance case contains a statement that a requirement, R, traces to a set of 

requirements, S, at aspect A, and S contains N requirements. To generate the training set 

assurance cases, a similarity table, ST, is generated for every requirement R to all requirements at 

the aspect A. In a similarity table, each row represents a requirement at aspect A, called A’, and 

the similarity value between R to A’. The similarity table are sorted based on the similarity value 

from the highest value to the lowest value.  

In this case study, we choose four representative sets based on the similarity values for 

every requirement R and all requirements at aspect A stored in a similarity table. The four 

representatives’ sets are: 1) The set of requirements S that has the best similarity rank with R, 

that is, select the top N requirements from ST. This set is called SBest, 2) The set of requirements 

S that are defined in the original assurance case, called SIdeal, 3) The set of requirements S that 

has the average similarity rank with R, that is, select the middle N requirements from ST. This 

set is called SAverage, and 4) The set of requirements S that has the worst similarity rank with R, 

that is, select the bottom N requirements from ST. This set is called SWorst. In this case study, 

the four representative sets are generated for all 75 goal nodes supported by the solution nodes. 

When a new assurance case is randomly generated, each of the 75 goal nodes selects one out of 

the four representative sets as the set S in the node statement, and the corresponding similarity 

values are identified for calculating the confidence of the supported solution node.  

 In the confidence calculation model for requirements elicitation, the configuration of the 

disjoint contributing weights as shown in Figure 50 includes weight W1.2.1, W1.2.2, W1.2.3 for 

node 0G1.2.1, 0G1.2.2, and 0G1.3.3. Weight W1.3.1 and W1.4.1 for node 0G1.3.1 and 0G1.4.1, 

weight W1.3.2 and W1.4.2 for node 0G1.3.2 and 0G1.4.2, and weight W1.3.3 and W1.4.3 for 

node 0G1.3.3 and 0G1.4.3. For the goal nodes that are directly supported by the solution nodes 

in the confidence calculation model, we assign the equal weights for the goal nodes support the 

same parent node. Based on the definition of the disjoint contributing weights in [45], the sum of 

the disjoint contributing weights for all sub-goal nodes support the same parent node is less than 
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or equals to 1, and a factor called CA is introduced to represent the dependency and redundancy 

among sub-goals support the same parent node. The value of CA is between 0 and 1, and the sum 

of CA and the disjoint contributing weights for all sub-goal nodes support the same parent node 

is 1. In this case study, we define the value of CA to 0.1, and the sum for the disjoint contributing 

weights for all sub-goal nodes support the same parent node is 0.9 (e.g. W1.2.1 + W1.2.2 + 

W1.2.3 = 0.9, and W1.3.1 + W1.4.1 = 0.9). In order to identify the most appropriate 

configuration for these disjoint contributing weights, we define the minimum weight value for 

Table 6 Configuration parameters table 

 

Figure 50 Disjoint contributing weights of the requirements elicitation confidence model 
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every node is 0.1, and we consider all possible combinations for all disjoint contributing weights 

with step 0.1. A table shown in Table 6 illustrates the configuration parameters of the coupled 

tanks control system requirements elicitation confidence calculation model. In this case study, 

SPIRIT verifies all 14,336 combinations (28*8*8*8) and identity the most appropriate 

configuration for the confidence calculation model based on the original assurance case and 299 

randomly generated assurance cases as the training set for the identification of the most 

appropriate configuration. To evaluate the configuration identified by SPIRIT, we design an 

experiment to evaluate the most appropriate configuration result. In this case study, the 

experiment contains 100 runs. For each run of the experiment, we randomly generate 299 

assurance case and compare the root node confidence with the original assurance case. We apply 

the most appropriate configuration for these 300 assurance cases, the result is a rank value 

indicates the root node confidence of the original assurance case among the 300 assurance cases. 

The rank value for each run is between 1 to 300, and we calculate the average rank for 100 runs. 

In this experiment, the average rank for the coupled tanks control system is 2.71. Compare with 

the ideal average rank, 1, this experiment result shows that with the most appropriate 

configuration identified by SPIRIT, the root node confidence for the confidence calculation 

model derived from the original assurance case with the correct traceability is higher than the 

confidence calculation models derived from the assurance cases with incorrect traceability, 

which is corresponding to our expectation. And the confidence value of this root node is around 

0.772, which is corresponding to the tolerate decision scale.  

 

7.6 Evaluation Result Analysis 

In this section, we evaluate the SPIRIT framework based on two case studies. Based on 

the safety patterns used in the two case studies, we preset the value of c, i.e., the total disjoint 

contributing weights of all child claims, to 0.9, each argument type to redundant, and the value of 

v to 1. For the training phase, we find that the first assurance case using the input of the training 

phase is acceptable based on the disjoint contributing weights derived by the framework. We 

further investigate the following questions: 

Q1: Can the training phase produce an appropriate set of disjoint contributing weights based on 

the first acceptable assurance case? 
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In order to answer this question, we do experiments based on the following two criteria. 

The first criterion is the rank and the other is the relationship between the appropriateness and 

trustworthiness of a claim. Since the first assurance case is acceptable, an appropriate set of 

disjoint contributing weights should make the assurance case have a higher rank than most other 

assurance cases, independent of how a training data set is generated. As for the relationship 

criterion, we find that when a certifier compares two claims having the same parent claim, in 

most cases, if claim A has a larger trustworthiness value than claim B, then the appropriateness 

value of A to its parent claim has a larger value than the appropriateness value of B. 

 Q2: Can the disjoint contributing weights generated by the training phase be successfully used 

in the application phase? 

We compare the framework with randomly generated disjoint contributing weights by 

adopting the Matthews Correlation Coefficient (MCC) that has been widely used by researchers 

[52]. The MCC is used in machine learning as a measure of the quality of binary (two-class) 

classifications. Taking into account true and false positives and negatives, the MCC is essentially 

a correlation coefficient between the observed and predicted binary classifications; it returns a 

value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 means no better 

than random prediction, and −1 indicates total disagreement between prediction and observation. 

A value is between 0 and 1 means the prediction is better than a random prediction while a value 

between -1 and 0 indicates the prediction is worse than a random prediction. In our scenario, the 

MCC is employed to indicate whether the derived set of disjoint contributing weights by the 

framework is better than a randomly generated set. 

Before answering the two research questions, we briefly introduce the gear controller system that 

was designed according to the informal requirements delivered by Mecel AB to illustrate the 

applicability of UPPAAL [53]. In the gear controller system, there are five components, each of 

which was modeled by a timed automaton according to the original requirements from Mecel 

AB. Meanwhile, safety and liveness requirements are converted from the informal description of 

the system to UPPAAL queries. The UPPAAL queries are further validated against the timed 

automata to ensure all safety and liveness requirements are satisfied. In this case study, we 

employ two assurance cases that claim the correct design of time automata and derivation of the 

UPPAAL queries respectively shown in Figure 51 and Figure 52. Similar to the coupled tanks 

system, the assurance cases for the gear controller system are generated by SPIRIT based on the 
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domain model shown in Figure 53, the safety pattern shown in Figure 54, the mapping tables 

shown in Table 7, and the system artifacts shown in Table 8.  For the assurance case to claim the 

Figure 51 Gear controller system design of automatons assurance case 

Figure 52 Gear controller system derivation of UPPAAL queries assurance case 
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design of time automata being adequate, the assurance case starts with the top claim, i.e., “All 

gear controller automatons are adequately designed in the gear controller system”. For the 

second assurance case to claim the derivation of UPPAAL queries being correct, we start with 

the top claim, i.e., “All gear controller UPPAAL queries are adequately derived in the gear 

controller system”.  

To support the top claim, both assurance cases employ a strategy that targets the five 

components in the gear controller system, i.e., the Interface, Gear Controller, Gearbox, Engine, 

and Engine components. For each component, one child claim, labelled as 0G1.2.x where x is {1, 

2, …, 5}, is formed to ensure the automaton for the component is adequately designed. Due to 

space constraints, we only highlight the key nodes in Figure 51 and Figure 52.  

For each sub-claim 0G1.2.x, two sub-claims are further developed to support its 

correctness and completeness via a strategy node 0S1.2.x. For the assurance case on automata, 

the correctness child claim ensures that the automaton of a component traces to the 

corresponding component description, and the completeness child claim asserts that the 

component description matches the automaton in terms of similarity. For the assurance case on 

the UPPAAL queries, the correctness child claim ensures that the UPPAAL queries related to a 

specific component can trace to the related system requirements, and the completeness child 

Figure 53 Domain model of the gear controller system 
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claim asserts that the system requirements related to a component match the UPPAAL queries in 

terms of similarity. At the bottom part of the two assurance cases, both the correctness claim and 

the completeness claim are supported by traceability check reports between the related system 

artifacts. 

Figure 54 Safety patterns of the gear controller system 
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Answer to Q1: the rank aspect.  To determine whether the first acceptable assurance case 

has a higher rank than the other assurance cases, we first fix the derived set of disjoint 

contributing weights given by the training phase and generate 100 groups of experimental data, 

each of which consists of 300 assurance cases including the first acceptable assurance case. 

Except for the acceptable assurance case, there is no assurance case that occurs in two or more 

groups. Next, we apply the disjoint contributing weights derived from the training phase to these 

100 groups and then find the ranks of the acceptable assurance case in these groups.  

Table 7 Mapping tables of the gear controller system 

Table 8 Gear controller system artifacts 
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For the coupled tanks system case study, the rank distribution of the acceptable assurance 

case among the 100 groups is shown in Figure 55, where the acceptable assurance case ranks 

first among 23 groups, second among 30 groups, third among19 groups, fourth among 16 groups, 

and fifth or higher among 16 groups. The result shows that the average trustworthiness value of 

the acceptable assurance case is 0.772, and the average rank is 2.71, which means the acceptable 

assurance case has a better trustworthiness value than more than 99% of the randomly generated 

assurance cases using the derived set. 

For the gear controller system case study, the rank distribution of the acceptable 

assurance case among the 100 groups is also shown in Figure 55, where the acceptable assurance 
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case ranks first among 21 groups, second among 13 groups, third among 22 groups, fourth 

among 16 group, and fifth or higher among 24 groups. The average trustworthiness value of the 

acceptable assurance case is 0.752 and the average rank is 3.28, indicating the acceptable 

assurance case has a better trustworthiness value than more than 98.9% of the randomly 

generated assurance case. 

Next, we generate 5 sets of disjoint contributing weights and apply to the above 100 sets 

of training data so we can check whether the derived set outperforms the random set in terms of 

the rank. The results for the two case studies are shown in Table 9 and  Table 10 respectively. 

Furthermore, we employ the boxplot to demonstrate the rank distributions based on the 

experimental data for both case studies, which are shown in Figure 56 and Figure 57 

Figure 56 A boxplot of ranks for the coupled tanks system 

Figure 57 A boxplot of ranks for the gear controller system 
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respectively. The conclusion is that average rank of the derived set is higher than the randomly 

selected 5 sets.  

Answer to Q1: the relationship aspect. To identify the relationship between a 

trustworthiness value, i.e., a dec value showing the certifier’s perspective, and a disjoint 

contributing weight of a claim, we do two experiments. The first one is to randomly generate 5 

assurance cases with different dec values for child claims to study how the appropriateness 

values of these children claims are distributed. The second experiment tries to fix the 

trustworthiness value of a child claim and change the trustworthiness values of the other children 

claims to see how the appropriateness values of children claims are distributed. For simplicity, 

we only consider the top-level assurances cases.  

In the first experiment, we generate 5 assurance cases for both the coupled tanks system 

case study and the gear controller case study. To observe the relationship between the 

trustworthiness values of a claim and the derived weight value, we focus on the trustworthiness 

values as well as appropriateness values of claims related to the top argument. The experimental 

results in Table 11 confirms that a node with the highest dec value in an assurance case leads to a 

largest weight value for all 10 assurance cases.     

The second experiment tries to fix the trustworthiness value of a child claim and change 

trustworthiness values of the rest child claims to see how the appropriateness value of fixed child 

claim is changed. For each experiment, we select one child claim and fix the trustworthiness 

value of the selected claim, and then change the trustworthiness value of the other child claims 

using the ideal similarity, average similarity, and worst similarity values. To do so, we can 

change the rank of the fixed branch so its appropriateness value change can be observed. The 

Table 11 Relationship between trustworthiness and disjoint 

contributing weights 
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root claim of coupled tanks system case study has 3 children claims so that there are 9 

experiments to test all combinations. For the coupled tanks case study, we show the results when 

the three children claims are each fixed in Figure 58 (i), (ii), and (iii) respectively. For the gear 

controller system case study, the root claim has 5 children claims, and so we have 15 

experiments for configurations. Likewise, for the gear controller case study, the results when the 

five children claims are each fixed are shown in Figure 59 (i) to (v) respectively. Note that the 

total appropriateness value of all children claims is 0.9 and we use 0.1 as the step function. So, 

when a rank of a fixed child claim is improved to 1, its disjoint contributing weight value is 

increased to reach a maximum value, i.e., 0.7 for the coupled tanks case study and 0.5 for the 

gear controller case study. Likewise, when a rank of a fixed child claim drops from 1, its disjoint 

contributing weight value is also decreased from a maximum value too and hits a lowest value 

when the rank drops to a bottom level.  

Answer to Q2. To find whether a derived set of the disjoint contributing weights from 

the training phase can be successfully used in the application phase, we manually generate 100 

assurance cases with the same structure as the second assurance case. The first criterion of the 

manual review is based on the average trustworthiness value of the entire assurance case. We 

first set a threshold value to be an average trustworthiness value of all leaf claims in the 100 

assurance cases. The rationale behind this criterion is that if an average trustworthiness value is 

too low, then it is impossible for the case to be accepted. Next, we select all assurance cases 

whose average trustworthiness value is greater than the threshold value for further manual 

Figure 58 Relation between rank and weight (Coupled Tanks) 

Figure 59 Relation between rank and weight (Gear Controller) 
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review. For the coupled tanks system assurance cases, there are a total of 45 assurance cases 

selected for manual review and the other 55 assurance cases are immediately rejected. For the 

second phase of manual review, after communicating with the developers on the system design 

multiple times, we find the System aspect artifacts play an important role in the early design and 

analysis process in that the system aspect, as the first step of the process, is further decomposed 

to the environmental aspect and controller aspect. Thus, we further review the 45 assurance cases 

selected from the first phase. Among the 45 assurance cases, we manually select 25 assurance 

cases as the acceptable set based on the assurance structure under the first branch, i.e. the claim 

0G1.2.1 in Figure 46. 

Next, we calculate the MCC value of the coupled tanks case study by applying the 

derived set of the disjoint contributing weighs from the training phase to the 100 assurance cases. 

The experiment result shows that the set of derived disjoint contributing weights can correctly 

Table 12 Assurance cases that are accepted by the manual review 
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identify 22 assurance cases that acceptable (True positive) among the originally accepted 25 

assurance cases; and 71 assurance cases that are unacceptable (True negative) among the 

originally rejected assurance cases. Also, 3 acceptable assurance cases are rejected by the set of 

derived disjoint contributing weights (False negative) and 4 unacceptable assurance cases are 

accepted by the set (False positive). The acceptable assurance cases that are passed the manual 

review are shown in Table 12(i). The MCC value of our framework is 0.816. In this case, we 

conclude that the derived set of the disjoint contributing weights from the training phase is better 

than a random set for the coupled tanks case study.  

For the gear controller system assurance cases, we employ the same criterion for the first 

phase by calculating a threshold value based on an average trustworthiness value of all leaf 

claims in the 100 assurance cases. Thus, there are totally 44 assurance cases selected for manual 

review and the rest 56 assurance cases are immediately rejected due to a low average 

trustworthiness value. Next, we study the five components in the gear controller system and 

concentrate on the gear controller artifacts since the gear controller is the main part in this case 

study, as is confirmed by one of the authors who has extensive experience in this case study 

since he actively involved to the design and verification in the past. Based on this criterion, after 

reviewing the 44 assurance cases, we manually select 14 assurance cases as the acceptable set.  

Likewise, we use the same manner to calculate the MCC value for the gear controller 

case study. We calculate the MCC value by applying the derived set of the disjoint contributing 

weighs from the training phase to the selected 100 assurance cases. In this scenario, the 

experiment result shows that using the set of derived disjoint contributing weights the framework 

has 13 assurance cases acceptable (True positive) among the 14 acceptable assurance cases; and 

77 assurance cases unacceptable (True negative) among the originally rejected assurance cases. 

Furthermore, 1 acceptable assurance case is rejected by the framework (False negative) and 9 

unacceptable assurance cases are accepted by the framework (False positive). The acceptable 

assurance cases that are passed the manual review are shown in Table 12(ii). The MCC value of 

Table 13 MCC value in application phase 
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our framework is 0.69. The detailed results for both case studies are shown in Table 13. In this 

case, we conclude that the derived set of the disjoint contributing weights from the training phase 

is indeed better than a random set for the gear controller case study.     
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CHAPTER VIII  

CONCLUSION 
 

8.1 Concluding Remarks 

This dissertation has developed the SPIRIT framework to support the validation and 

certification of a system during the development process. The validation of the domain model 

activity as described in chapter III helps the system developer to check the proposed domain 

model against to the standard documents. To do that, SPIRIT takes a standard conceptual model 

as input and automatically derive a UML profile with OCL constraints to represent the standard. 

When a user provides a domain model to SPIRIT, a validation report is generated to inform the 

user weather the domain model satisfies the standard document or not by evaluating the OCL 

constraints. To demonstrate whether a software system has been developed to satisfy software 

assurance, software engineers should provide an argumentation structure called assurance case 

which lays down all arguments made behind each step or activity during an SDLC as well as the 

relevant artifacts as evidence. The assurance case generation activity as described in chapter IV 

helps the system developer automatically builds an assurance case based on the system artifacts. 

To reach the automatic generation of an assurance case, SPIRIT first extends the GSN safety 

pattern to define the relation between roles and achieved unambiguous instantiation when an 

assurance case is generated from the safety pattern, which provides the user to reuse successful 

safety case patterns in constructing convincing safety cases for their own devices in an efficient 

manner. The safety pattern catalog provides the description of what a safety pattern does and 

thus the guidance about how to use a safety pattern. To improve the flexibility of the use of 

safety patterns, SPIRIT supports two types of pattern connections based on the type of a node 

involved in the connection to build a complete safety pattern for a specific domain, called 

domain specific pattern. To generate an assurance case from a domain specific pattern, SPIRIT 

converts the domain specific pattern as an ATL model transformation program. In a generated 

ATL program, each node defined in the domain specific pattern is represented as a rule and the 

relationship between nodes is captured via the invocation of rules. Once the ATL program is 

created by SPIRIT, the execution of ATL model transformation generates an assurance case for 

the specific system. Since system artifacts may be changed during the SLDC of a system, it is 
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important for the system developer to identify the impaction of the system caused by the 

modification of system artifacts. SPIRIT maintenance feature as described in chapter V identifies 

the system artifacts and the assurance case nodes that may be affected by the modification of a 

system artifact, and then generates a report to the system developer. Once an assurance case is 

generated, it is important for the certifier to review an assurance case to ensure the root goal of 

an assurance case is sufficiently supported based on the argument structure of the assurance case 

and the system artifacts as evidence. To help the certifier to review a generated assurance, the 

SPIRIT assurance case evaluation feature supports the calculation of the confidence of a 

generated assurance case. In SPIRIT, a confidence calculation model is automatically generated 

from an assurance case. With the use of D-S theory, the confidence of each node in a confidence 

calculation model is calculated by SPIRIT.  

To evaluate the use of SPIRIT, we apply SPIRIT to the coupled tanks control system and 

the gear controller case studies as described in chapter VI. In this case study, a safety pattern 

catalog is generated as shown in Figure 43 to claim the system artifacts are correct and complete 

elicited and documented. With a domain model for the Cyber Physical System shown in Figure 

44 and the mapping tables provide the mapping relationships between roles and domain classes 

as shown in Table 4 and Table 3 as inputs, SPIRIT create two domain specific patterns as shown 

in Figure 45 and derive two ATL programs to represent the domain specific patterns. The 

assurance cases are generated based on the coupled tanks control system artifacts as summarized 

in Table 5. After the assurance cases are generated for the coupled tanks control system, we 

analyze how the assurance case nodes are affected by the modification of a coupled tanks control 

system requirement. The evaluation of the coupled tanks control system assurance cases consists 

of two steps. The first step takes the confidence calculation model derived from the coupled 

tanks control system assurance case as input to identify the most appropriate configuration based 

on the machine learning approach. The experiment based on the most appropriate configuration 

shows that the assurance case with correct traceability settings has higher average ranks 

compared with the assurance case contains incorrect traceability settings. In the end, we analyze 

the configuration identified by SPIRIT and apply the configuration to the second assurance case. 

The result shows that the identified configuration can be applied to other assurance cases with 

similar structure.  

  



102  

8.2 Future Works 

One important feature can be developed in the future is to support the run-time adaption 

of the assurance case. Since SPIRIT support the generation of an assurance case during different 

phases of software development life cycle, it is important to support the user to edit or update an 

assurance case to reflect the change of system. This work can include an interface to connect the 

domain model, system artifacts, and the assurance case. The interface will monitor any 

modification of the system artifacts and automatically update the assurance case to reflect the 

modification. Once an assurance case is updated, the confidence of the new assurance case will 

be calculated and report to the user for further analyze.      
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