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CHAPTER I
INTRODUCTION AND HISTORICAL REVIEW
1 Introduction

Since 1919, when work on the problem began, several theories
have been developed to give the electric field distribution, P(E),
at a point in a completely ionized gas. (Here P(E) is the
probability distribution function for finding an electric field E
at the point in question. Chandrasekharl shows that such a
distribution can also be derived for the magnitude of the gravita-
tional field in, say, a stellar system, since the interaction
is just equal to cr2 in both the electrical and gravitational
cases.) The knowledge of this distribution is prerequisite to
understanding the phenomenon of the broadening of spectral lines
from atoms in an ionized gas,2 and, using the gravitatiomal
distribution, the dynamics of stellar systems.1 P(E) may also
be used to cal-éulate <E2) = S EZP(-E-)dE, which gives the mean
electric energy, U,, of a plasma.3

The original attempt at finding P(E) was made by Holtsmark, and
we shall follow Chandrasekhar's treatment of the theory. In these
calculations the Boltzmann factor, U(El,...fN)/koT, was ignored,
since this permits a great simplication in the theory, and gives
an exact.solution of the problem without further approximation.
This theory is accurate, then, in the range of low density,

1
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high temperature plasmas where particle 'interactions can be
disregarded. However, for more dense, and/or cooler plasmas,
in which the interaction between individual charged particles is
significant, the Holtsmark theory is no longer valid. The problem
of including interaction effects has been considered by several
authors,z-13 and we shall briefly mention the more important of
these later on.

In this first chapter, then, we shall give the results of
the Holtsmark theory, leaving the derivation for an appendix.
Later we shall outline the major attempts at improving upon

Holtsmark's results, concluding with a discussion of one particular

theory which we shall use as the basis for our own work.
2 The Holtsmark Distribution

A complete derivation of the Holtsmark theory is given in
Appendix A of this paper, and only the essential results are
presented here.

We begin by noting that Holtsmark's theory assumes a classical
system of charged particles. It is further assumed that particle
interactions are nonexistent, which implies that the particle
distribution in space is completely random. Now the actual
particle distribution in space is given by the classical

Maxwell-Boltzmann equation
expUE.--R)/K.T]
~(expEUT,---F)/kT] dF---d T,

P, %) = 7 » @D
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where U(f,,...T)) is the potential emergy of the system of N

is the Boltzmann

articles at positions r,,...T. in space, k
p p 1 P b fo)

N
constant, and T is the absolute temperature of the system.
The assumption that particle interactions can be ignored is

equivalent to setting U(fl,...fN)= 0. Thus e U/koT 1, and, since

Sdfj = V(the total volume of the system), we may write

PE,---®) = 1/ VL (2.2)
Now the general expression for the electric field distribution

can be written as

P(E):' S"'SQE»"'E:) S(E“%EL) C!Y-T_'A‘F‘,; ) (2.3)

where 8 (E-é§ Ej) is the Dirac delta function, Ej is the electric
=l

field intensity at the field point due to a charged particle at Ej
(with respect to the field point), and E is the total electric

field intensity at the field point. Thus we may write

- I —

PEY=x (- S(E-£ By dvdg
which is an exact expression for P(E) with the assumption of
no spatial covr: ' *“ions among the particles. This equation,
however, is very difficult to solve in this form, so Holtsmark

turned to its Fourier transform, which is written

Ftry= ({§ P(BYexp((K-E)dE, 2.6 7

and gives, when the proper substitutions are made,

Fi = [ fffexr@RE)4R]" @.5

The solution to Eq.(2.5) is given in Appendix A, and we simply
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note here that it is exact when N and V9 @0, such that n = N/V is

finite and constant, and that it is written

/2.

F(x)= CY?[W )r ‘nre.): (lﬂ)} (2.6)

where e is the charge on a singly ionized atom, and §, is the
so called permittivity of free space.

Since P(E) and F(E) are Fourier transform pairs we have

Pey= oy S Fem expl-ik-E)dk ) e

and this equation can be solved in terms of the tabulated function

H(@>=%§e’*f[:'(€')z/“_]x SmX dX )
where

Xz kE, dx=Edk, 0= E/A"Y,
“A=Dn (BD) (52" (@m*] -

Thus the final result is

Pl(s) = 4 E* PCE) = H(p) A N (2.8)

since P(E) is isotropic, where P'(E) is the probability distribution

an

function for finding an electric field of magnitude EZ fﬁ\ at the
field point.

Let us note the following characteristics of Holtsmark's
solution. First, it is an exact formula for P'(E) (in terms of
the function H(@.) which is tabulated in Appendix A) for a random
distribution of charged particles in a plasma.l Second, the
Holtsmark distribution is valid only for very low particle
densities (n = N/V small), very high temperatures, and small

field strengths, all of which are easily understood since particle
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interactions are assumed to be ignorable.1 Finally, since
U(Tl,...?N) is equal to zero in the theory, the distribution

at a point is the same whether that point is electrically neutral
or charged. This is because the presence of an ion or electron

at the field point, or indeed at any point, can have no effect on
the distribution (assumed to be completely random) of the remaining

particles.
3 Improvements on the Holtsmark Distribution

Since the obvious problem with the Holtsmark distribution
is that it is invalid whenever particle interactions must be
considered, one would like to be able to develop a theory which
would include these interactions, and, at the same time, yield
the Holtsmark distribution in the high temperature, low density
limit., Several attempts at such a theory have been made, as
already pointed out, and in this section we shall briefly mention
the two major methods of approach used.

One method for including particle interactions in the
derivation of P(E) follows the 'collective coordinate' technique

14 This approach was used by A.A. Broyles2

of Pines and Bohm.
and C.¥. Hooper, Jr..lo Broyles' work uses the collective
coordinate formalism in three ways, each of which has some
shortcoming. The first two of his derivations give values for
P(E) which are too high and too low respectively2 (for large E),
and the third does not reduce to the Holtsmark distribution

10

as T=-»e0 and n-§0.2 Hooper's Theory, on the other hand,
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does give the Holtsmark formula for large temperature, and,
although it is an extension of Broyles' work, it is valid at
an ion or at a neutral point (Broyles' work is valid for an ion
point only). Both theories assume an ion gas with point charges,
Coulomb interactions, and a smeared-out neutralizing background.
The systems are also assumed to be classical, and in thermodynamic
equilibrium at temperature T. It should be noted that the
collective coordinate theories are not exact, since, as is shown
in the references given, they each involve several approximations.
The other major theoretical approach to the electric

11,12 and Kelbg.3’13

microfield problem is that used by Mozer
Both begin by expanding Eq.(2.4) in a series involving higher

order correlation functions, g,, defined by15

. -uc.‘!"'- ° - o
QulF)-- T) = o T .:")/kT PELLT L Y
S"'Séuw’""m”kﬂ_d\r‘?---d;’-‘”

However, Mozer makes certain approximations in his expansion11

which Kelbg3 does mnot, although both end up ignoring every term
beyond the two particle correlation term (n = 2). Mozer, then,
writes for his second correlation function, gz(fl, 52), the

equation

gu(%, %)= expl- $L1) /K.T] > 3.

which comes from the Debye-Huckel theory, thereby adding yet

another approximation.ll’lz’16

Note that ¢(1,2) igs the electro-
static potential energy between particles 1 and 2, at fl and 52

respectively.
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At this point Mozer divides the field into two components,
just as Broyles and Hooper do. The electron cloud being treated
like a system of point charges with Coulomb interactions and a
uniform, smeared-out, neutralizing background of iomns, while
the ions are not treated with Coulomb interactions, but are
assumed to be shielded by an electron cloud with one electron
for each ion. The Debye-Huckel theory is again employed to
derive the shielding while the ion-ion interactions are
neglected. Mozer's results like Hooper's and Broyles' are given
separately for the electron and ion fields, and, like Hooper's,
for neutral points and charged (ion) points, as well as for
various values of the temperature and particle density.

This concludes, with one exception, our description of some
of the approaches to the solution of the microfield problem.

So far only the Holtsmark theory has been presented with any
completeness, since it is the limiting case of all results.
The other methods were mentioned here only to acquaint the
reader in a general way with what has been done to include

particle interactions.
4 The Kelbg Theory

As before we shall leave the formal development of the theory
for an appendix, and present here only the essential results.
Kelbg3’13 begins with Egs. (2.3)-(2.4), but does not allow

U(fl,...fN) to go to zero. Hence, as is shown in Appendix B,
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Eq. (2.4) becomes

F(R) = UW[*;‘\“,ZZ,SS T |)3£3Jrax-+»:](41)

d| L]y

and

N, =explik-E] Wy = .\.L_ § g dF, -

Notice that VEVolume of the system, N2 the number of particles

where

in the system, gj; = go(ry, rj) and gy = gl(fj), as defined
in section 3 of this paper. 15
At this point Kelbg shows (see Appendix B) that the term TTOUJ

4=

is just the Holtsmark expression and he writes it in the form

Fo(F) 2 CXP[Zm-S(nq. 1) 9 (% ,,.)dx—] (4. 2)

leaving

N dl .
Q )= [ avh 3 ; (57.: W ""') 3&(‘2:”})3‘23‘:34'“‘ 0 (4.3)
i ,
Now, in Eq.(4.2), @~ labels the different types of particles,
and ng. their number densities. Thus for a two component system,

i becomes i s

0= =}
and if there are the same number of particles of each type, then

ny; = ng. Note also that in order to write -”—W,; in the form

of Eq.(4.2) it is assumed that Ng. (the nurr;!t:r of particles of
each type) approaches infinity along with V, leaving ng = Ng- /v
constant and finite. Thus, since the Holtsmark term is already
tabulated, only F1(1-<) is left to be found before F(k) can be

completely known. Of course, once this is known, for values

of k from zero to infinity, omne is in a position to find P(-E-),
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using the equation

R _ S om
P(E)-‘- (am)® SSS F (R C'Xr(—w k'E) dk . .
It is, then, at this point that Kelbg makes his only »

approximation.3 He writes Eq.(4.3) in the form —

F(k) C'XP[ £- Ytq-‘nt SS(‘&'_"{}T |)%zé\‘;d?z},(4.5)

thereby assuming that all terms of higher order thanm the two
particle intersction term are small. This makes physical sense
for low densities where the chance of interactions involving

three and more particles is small. For higher densities, however,
the higher order terms would presumably contribute substantially,
although these terms would be very difficult to calculate.

Thus since this theory does consider two body correlations it
should be valid for higher densities than the Holtsmark theory,
but there will still be a limiting density above which Kelbg's
equations too are valid.

In summary, then, we have given an introduction to the
problem of finding P(E), the electric microfield distribution,
having mentioned some approaches to its solution. We have
concluded with the Kelbg theory, and have stated that if Eq. (4.5)
can be solved for all values of k, then P(E) can be found. In the
next chapter we shall put this equation in a form which is
"soluble" via numerical methods, and, at the same time, introduce
the temperature and the density parameters upon which its solution

will depend.
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CHAPTER 1II
THE KELBG TELORY FOR A TWO COMPONENT SYSTEM
5 The Two Component Model

The purpose of this thesis is to bring together the electric
microfield theory of Kelbg, and the recently calculated two
component radial distribution functions of D.D. Carley,17 in
a new theory for the calculation of P(E). In particular
we shall find a way of evaluating Eq.(4.5) for all values of k
for a particular physical system.

The system, or model, we choose must be identical to that
used by Carley in calculating gz. It is not, however, our
purpose to evaluate or interpret g,, although the interested
reader may refer to T.L. Hill,15 in addition to Carley's paper,
to get this information. For our work g2 is simply a tabulated,
two particle correlation function which must be plugged into
Eq. (4.5) to give Fl(i), and we choose to use these particular
g, functions. Note that the techniques for evaluating Eq. (4.5)
will not depend on what g's are used. Hence we are not limited
to the model given here, and if a better method for calculating
g is found, its results may easily be used with our equations.

Our model then is a classical system of N hard spheres, half
of which are positively charged and half negatively charged. These
spheres are assumed to be enclosed in a volume V, in thermodynamic

10
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equilibrium at temperature T. The number density of the positive
and negative particles is given by n = N/2V, and is assumed to
remain constant as N and V go to infinity.

Applying this model to Eq.(4.2), and referring to Appendix A,

we have

Rk = exp Pyl ) qmds +ef(€F 2 guipif)
= expff(-e" ™) 1% 43} exp-nf(- 857?'5332@4;3}
"ex?{ nf(-¢ ik F‘)j.tﬁ)d‘f}

This equation results because EA = —Eﬁ, enabling us to write
everything in terms of EA, as indicated at the end of Appendix A.
Note also that the functional form of gy(rp) is the same as gj(rp).

Thus for the model used here

F ()= C‘XP{ ?m( )(I«:) /‘(277’)"*}> (5.1)

where n = N/2V, k = k, and ¢ =

1
4ﬁ E‘ Clearly F (k) depends
on the number density for a given k, with the singly charged
particles assumed here, and different values of un may be used
depending on the physical system.

Turning now to Eq.(4.5) we write the two component correction

term as

Rtry=exp iz o‘?"‘;\ g" eV SS (ﬁ:&, ') @ 5) dmg}-

Now ng = n17 = N/2V as we have already stated. Also note that
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12

We = [expli B-E) P (%) d5
= (expik-E) l\;—iﬂ dve
:—&Sexp(if'fg-) ae

since gl(fo_) = 1 at a neutral point. Hence

We=L§ (75 -1 +1) d
= v L% - S(t-éPE’)dE—J
= 7 [v- 1% ke 4]
= | =3 [[FF) @ (k)] -

This comes from Eq.(A.9) in Appendix A, and, since we are assuming

that N and V go to infinity, thenA(Uqu = 1 for neutral point

calculations. Thus we can write

E(R) = eXP[%Y‘z'i SS (ﬂm_-hn - ') 31(Enﬁz) dﬁ: c!ﬁz.
+ S S@Lmnuz“ ')f]z. (5, %,) dF, d%,

= SE(,QB‘ 'n'ﬂl "'-’) 32(;';' )%3) d%f JFA’Z

+ SS (n a1 ! ) 31‘~% T32) O OS- J‘Bn}]
(5.2)

where the A subscripts refer to positively charged particles,
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13

and the B subscripts to negatively charged particles. The
1 and 2 subscripts refer to the particular particles in the

integrals. Hence fl is the position vector of particle one,

while.fLAl = X" BAl indicates that particle one is a positively

charged particle, since

EA, = Y4TE,

Now

ev ey,
Lp Ly = CXP{L ke (lnrew'-" - 4!»71':‘« q*)} ’

but this has the same functional form as

er
Lg) Ny, = eXPﬁLI‘- (ws,n m)}

except for a minus sign. Note also that gz(EAl’ EBZ) = gz(EBl’ TA9),

from the definition of g, given on page 6 of this paper. Hence

the second and third integrals in the exponent in Eq. (5.2) are
identical if we just switch the particle indexes (1 and 2 subscripts)
in one of them. This we can do since the switch does not effect

the functional form of the integrand, and the two integrals can
thereby be combined into one. The same argument may also be

applied to the first and forth integrals in Eq.(5.2) resulting

in the much more compact expression

= exp{Em [ (hutn+ fadten-) pERIT,

+ SS(«‘LMﬂ-QL* Lo flp "2.) 31(‘14‘)%&)4?:4;:]} I

Note that gAA(fl’ 52) # gAB(fl’ t,), since the distribution of
like charges about each other is not equal to that of unlike

charges, and that gz(EAl, EAZ) = gz(EBl’ fgo) for this model,
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although the latter is not true in general.17

At this point we shall make a substitution which will make
it more comvenient to evaluate Eq.(5.3) numerically. Let go(¥pq, Tp9p)
be equal to GA(fl, r,) + 1, and gz(fAl, EBZ) = GB(i"l, ty) + 1.

Thus our equation takes the form

SS —Q%L% —])(G\(F,,ﬁ)+ |) d¥dT

o e 1= ($n,0,d%d%
= {J ) G mdndn VR -

(5.4)
where (A/L :-"'\'/L_S.n.é d“-:b ) and Y',,Y"a> il(Y‘ 1)
for either the "AA'" or the "AB" case in Eq.(5.3). Note that this
is just an identity, and we shall use the functions G(flfz)
in our numerical calculations later on.
One final change will be made in Eq.(5.3), and again we shall

use only algebraic and trigonometric identities. Hence we write

00, = €XPLLR (B + Bl

= Cos )-_F' (Ep * EM-_)] +L SM[E'(E'“*E“)J !
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15

by Euler's Theorum. But

Cos(AfR)=CoshcosB ¥ S/mA Sm B,

and

SI'Y)(A iB)-'-'*- Svi A CosR * coshd SR )
by trigonometric identity. Note also that
cos (’.”:A):: cos A,

while

Sin(zA)=Esm 4.

And finally note that EAl = _EBl’ i.e. if particle one is negative,

its electric field vector Efl can be replaced by _EAl without

changing anything. DPutting this all together, then, gives us
-n‘m -()"Ag = cos(k: Em) C-°5(F’EM.) ~ S/ (k) S (® Ep)

+ LS Ep) Cos(R-Epy ) +iSim(R- Epy) cos (R B,

SO

'{)‘Bl‘n'ﬁz + ﬂ.mﬂ.m_r- 2[C°S(E' Em) Cos (E' E}n)
= S;V\ (.E‘ Em) St (F' EA:.)]

+ L [S.\q (F'EM) Cos (X E,,) + Sim(E-E,) Cos (k-Ey,)
=Sk Ey,) cos (R EA:.) = St (E- B),) cos (k- EM)_]

=2 cos[-l?-(ﬁ':;‘ + EM‘).] ) (5.4)

and
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D0, + g Ly = EXP[E-(E) - EM)} + exp[d?- (E»:.‘E_mﬂ
= cos (R Ep)cos(F-Epp) + Sm(R-En) S (R-En)
+Cos(R-Byy) cos(f £y + SemlRBy)sim (K En)
+ i SM(E-Ey) cos(R-Epy) ~ (cos(R By ) Sn(E B

+i SCMLE‘*EM) C-éS(F’EM) -1 cos(F é:u) S (k- EA,)

=2 cos[k-(E,~E,)] - 5.9

Clearly, then, upon substitution of Egs.(5.4) and (5.5) into

Eq.(5.3) we get

E(F) = EX?[Y\‘“ {SS(C“‘S[F’(EM +Ep)]~ ')G‘A(“Tknﬁ;)é‘ﬂﬁ
+ SS (.C-oS[F‘(EAu‘ EM.)] )GR( My M)év-érﬂ y(5.6)

which is the form of the two component correction term that we
shall work with.

Upon combining Eq.(5.1) and Eq.(5.6) we can finally write
down F(ﬂ) in a form which reflects our two component model, and

Fe=F & rm
= e'x?[zv\ ) (k c) (:LTT)""]
X eeraz{SSCc»sw-ce,.mJJ-—t)csa F.7)dF dF
+ SSCCOS[F.(E‘:“ ~E)]- 1) ) G, (%,%) dv dv}] )
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17

where

"

N/2V,

4T Eo '

C

qﬁg(ﬁaﬁ) = 32'&’(}"'%) — | )

N = total number of particles in the system,
V = total volume of the system,

and e ® the charge on the positively charged particles.
6 The Temperature-Density Parameter

As was shown in the last section FO(E) depends on n
for a given k (e is assumed to equal the positive electronic
charge, throughout this paper.). It is also easy to see that
Fl(i) depends on n for a given k, if G(fl, ry) depends on n.
Carley17 shows, in fact, that G(¥j, ry) depends on two parameters,
0, and ®. Here U is the particle diameter, and

-9‘ Ko-r W

o ) (6.1)
where ko is the Boltzmann constant, T is the absolute temperature,

and a is a unit of length. We define this unit by

3 1%
QE [4.".“] ) (6.2)

so it is equal to the radius of a sphere, in our system, which

contains, on the average, one positive particle. Hence G(ri, fz)
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is a function of n and/or T (a given©- defining a whole range of
coupled n and T vavlues), and is equal to zero if '1:"1—1?2‘(@" ,
corresponding to our requirement that the particles be hard spheres
of radius @%/2.

It is clear, then, that F(f{) depends not only on the variable
k, but also upon a certain temperature-density parameter 8-.

Thus we wish to include @ in our equations, and to do so we write

S = Rg;« |
\
[q;m] "

E‘ % E * (6.3)

Now Eq. (6.%) simply defines a new electric field vector as a

e,

and

111!

constant mul:iple of the old one, so § may be inserted in our
equations, in place of E, from the beginning without changing
anything. Let us also define

X2 =

to be a length in units of a. We may now write

s

€=+ E

= kT

- L& = . . .
koT (in Gaussian units)

= ezg [ —

x
iy

Ko [X[*a3
=X /IFI*e (6.4)

Using § dinstead of E, we have ¢ = (ezaz)/(koTa), giving
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F.(g)= exp[-an () (€ k)™ @) ]
= expfams (D) (&5 0™ )

= exp[ £ (&) emn)> (6-5)

and

Fite) = e%plrteg § 5§ (cos[E (ép w)] ) Gy 2 dX 4,

_ m?ﬂfw)’“ iﬁ(“* I (B, R )]-1)Gn dXdX

el (- )R]
(6.6)

Since the term k/< keeps occurring in Eq.(6.5) and Eq.(6.6), we

make one final change, writing

""__k
[:_9_?

thereby giving us the final result

F(z) = RL(2) F(£)
= exp[-+ £™ (o) 4]
<X {1 eos L2 (R B- )
% Ga ¥, d¥, +SS(¢.3[Z-(%,-%3)]-DQEAK,J%].(6.7)
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Note that Eq.(6.7) is just the same as Eq. (4.5), except

for the fact that we will now calculate P(E ) instead of P(E).

- ea
This merely amounts to multiplying E by the constant k:T , SO

there is no fundamental difference between Eq. (4.5) and Eq.(6.7).
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CHAPTER III
EVALUATION OF THE KELBG INTEGRALS
7 The Monte Carlo Method

We have now progressed to the point where the evaluation

of P(é) depends on our ability to solve integrals of the form

IA(Z) = S’”S(.C‘”S(B)“ ‘)C‘A(;{n?ﬂasi,d?z (7.1)

Y,
F-(f) = ex?E‘%-'g”&(w}”f]ex? MT(IA ‘*’IQBW.Z)

o

~ ¢ X
Bz 2 (ﬁ: +7—;%F)~.

Since G(fl, iz) is a tabulated function, the analytical form of

where

which we do not know,17 it would be very difficult for us to
evaluate Eq.(7.1) analytically. We therefore turn to the numerical
method outlined in Appendix C. This technique, called the

"Monte Carlo Method,'" has been explored by several authors,lg_21 S0,
as in Appendix C, we shall discuss it here only in operational

terms as it affects the evaluation of Eq.(7.1).

To apply this method to the six dimensional integrals at

hand we simply note that Eq.(7.1) is in the form

L

I =0-[F&.X) G(x X0 dX 4%,

which is a six dimensional analogue of Eq.(C.1). Thus, following

the procedure outlined in Appendix C, we define a probability

21
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distribution‘P(il, iz) as

SRox

- - F@)ZL)
P(X;aX1>"’ S.S F‘(E,).(.-;)@‘X:J Ez ? (7.3)

and write

T(£) = {§-§F&, F)dKIR} 6 PR.R) 6 RRIT AT,

= {§--§ F(R, R)dX 4R} <G (R, R

Now if P(il, iz) is a properly normalized probability function,

it is required that22

@) §<, P(;(‘»:YQ )

S'"S P(Yn 5(-,,)0“(.0’?; = ' e

Thus F(il, iz) must always be greater than zero. Also S...SF dx; dX,

and

must be a real, finite, positive number, and naturally this integral
must be "'solvable'". To meet these conditions we note that F(il,yig)
cannot be written as cos{B)- 1 (see Eq.(7.1)), since this can be

negative. We therefore rewrite Eq.(7.1) in the form

T, = - §J(1-cos@)G, dX. dX, , 00

resulting in

F(X,X) = |-cos(m) . (7.5)

If we attempt to normalize Eq.(7.5), as in Eq.(7.3), the

normalizing constant,

S"'S F(’Es?;) JY: JR‘; )

is not finite, since the integral diverges. Thus if we want
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to put our equations in a form for a Monte Carlo calculation,
F(il, _)22) must be modified. It may be, for example, that we
could find a function, H(il, §2), such that H(_}Zl, -)-{-2) F(il, ig)
would go to zero rapidly, if li]_l or ]}—{zt got large. This not
only would give us the convergence we require, but it might
also effectively reduce the space over which we must integrate,
thereby allowing us to evaluate the integrals with fewer points.
Our problem in this regard is compounded by the fact that if we
modify F(-)El, 5{-2) we will also have to modify G(s-(l, _}—(2), as shown
in Appendix C. And, as was also indicated there, the modified
term, H'l(-}zl, -iz) G(.}-{'l, ')Ez), should be as slowly varying as
possible, so that we need use as few points as possible in the
evaluation of the integral. Thus any function H(il, iz) that

we use to modify Eq, (7.5) must be carefully chosen if all of the

above conditions are to be met,
. =12 2342
8 The Function exp(-}Xq) -le' )

The choice of an H is a difficult one since we do not know
the functional form of G. However, one obvious way to make P,

Eq.(7.3), go to zero if either ’ill or \igl gets large is to write

F’(i_a,)?z)=81f['l§.lz-,S('z)t][)-CoS(Bﬂ° (8.1)

ARSI
_ e 3 I |=Cos(R)]
o) : “-—-i = 2 — - )
P (X” XZ) SS e"lio\ -'Xa‘ D-GOS(B)]Adexa

Thus
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and
G'(R, %) = exp[I%1 1Tl GuR%) »

T,= {$-$F R, 7R § €6/ (R, %0) e

Now the integral

§--§ F(X,%,)dX dX,

can be evaluated as

- ()" Qu ©.

&9(,@) = 3"‘* €"s "“['é] dv . (8.4)

23

where

Eq.(8.4) is solved via a Simpson's rule calculation®” on the
IBM 1620 computer, the details of which are given in Appendix D.
Clearly, then, P, as defined in this section, satisfies all of
the requirements of a probability distribution., Therefore we
can use it to calculate <G'A> for a particular value of the
parameter ,Q. (See Appendix E for an explanation of the computer
program used here.)

Tables I-IIT list the results of these calculations for
the two step lengths and starting points used as indicated
(see Appendix C). Also given are the numbers of times the particles
failed to move, as explained in Appendix C, and this shows clearly
the effect of changing the step length.

This data is presented graphically in Figure 1, in which

curve T corresponds to Table I, etc. Note that curves I and II
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Table I. Monte Carlo calculation of <G'(§1, ié)) , where

G'(X, %) = explIT 1+ %)] GAlR, %a) -

Step Length: 0.3a. Starting Point: x] = .730260, x9 = .453186,

¥y = 445617, yo = -.080333, zy = .423193, 2z, = .251065.
o Number of Points Number of Times G'(Xy, X2)
in Units of 100 Particles Failed
to Move
1 54 -.856069
2 101 -.718523
3 137 -1.027242 -
4 194 -.908586
5 240 -1.341609
6 298 -1.161375
7 358 -1.049808
8 418 -.971139
9 477 -.902549
10 523 -.843671
11 579 -.808534
12 634 -.801743
13 ' 695 -, 764932
14 751 -. 753454
15 800 -.756087
16 854 -.747455
17 915 -.721369
18 967 -,711488
19 1013 -.693245
20 1062 -.678147
21 1121 -.660293
22 1168 -.648782
23 1213 -.644537
24 1264 -.639816
25 1316 -.629133
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Table II. Monte Carlo calculation of «<G'(§1, §2)> , where

Do o~ - - -

— GLR, %)= exp[HT I + IR0 Gu (R0, Ky -
Step Length: 0.3a. Starting Point: x; = .233324, x9 = .283296,
y1 = .063209, yp = -.089085, zy = .452913, z, = .446226.

Number of Points Number of Times G'(il, Xp)
— In Units of 100 Particles Failed
to Move
1 63 -.460805
2 113 -.378514
3 171 -.354120
4 230 -.336638
5 279 -.364649
6 342 -.350849
7 405 -.339125
8 466 -.336208
9 525 -.345720
10 570 -.378879
11 633 -.381811
12 680 -.395412
13 722 -.390185
14 783 -.391491
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Table III. Monte Carlo calculation of <G'(§1, 3—(2)>, where

G (Xl)X;) = E‘XP[IX’I ",le] GA (XH Xz) °
Step Length: 0.5a. Starting Point: xj = ,233324, xp = .283296,
y1 = .063209, yo = -.089085, zqy = .452913, z, = .446226.

Number of Points Number of Times G'(il, X5)
in Units of 100 Particles Failed
to Move —
1 69 -.398466
2 144 -.837358
3 217 -.710722
4 294 -.632067
5 362 -.617953
6 433 -.643368
7 517 -.636353
8 588 -.603364
9 674 -.567420
10 746 -.557411
11 816 -.544317
12 901 -.524384
13 976 -.510393
14 1047 -,508626
15 1121 -.505374
16 1195 -.513994
17 1274 -.501182
18 1344 -.497116
19 1414 -,.509803
20 1488 -.514241
21 1560 -.514550
22 1626 -.525519
23 1694 -.519875
24 1767 -.523368
25 1829 -.526026
26 1911 -.519455
27 1985 -.514515
28 2055 -.515968
29 2126 -.521450
30 2198 ~-.528565
31 2279 -.520496
32 2345 -,517648
33 2413 -.520625
34 2473 -.529732
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have the same step length, but the starting point for curve II

is the finishing point of curve I. Thus curve II is really just

an extension of curve I, and if we had allowed curve I to simply
continue, instead of stopping and starting over with its terminal
point as the new starting point, it would have approached curve III,
It seems, then, that there are at least two regions in the space
which give quite different values for G'. One of these seems

to be at G'&S 0.39, with another at G' larger than 0.8. The
evaluation points jump back and forth between these regions, and
(G'> would eventually approach the proper value,

Now in curve III we see a rather consistent behavior, compared
with curve I. Note also that the Monte Carlo evaluation which led
to curve III had the same starting point as that which led to
curve II, although the step length was lengthened for curve III.
Thuse it is not surprising that curves II and III start, after
one hundred points, with similar values for (G’) . The important
thing, however, is the fact that curve III is, after some initial
fluctuation, quite constant, This may be the result of taking a
longer step length, thereby allowing the various regions in space
to be sampled more consistently., With the longer step length,
however, the evaluation points move only about 25% of the time,
while they move 487% of the time with the shorter step length.

This may or may not be important, but we are inclined to think

that it is not, since the first two curves approach the third

anyway.
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In this section we have shown one solution for Eq. (7.1).
The value of the parameters used here are those that shall be
used throughout the remainder of this work. They are

- I
£ O

o= 4,0 (8.5)

and
= o.5 -

Note that we would have to make similar runs for every value of,? s
and we would also have to evaluate IB(§)> as indicated in Eq.(7.1),
for all points in £~space, before P(E) could finally be calculated
for the ©, and § given above. Note also that our Monte Carlo
evaluation has only given us (G‘> , and that we must also evaluate
Eq. (8.3) before we know IA(I)° This has been done for ¢£= /10,
and thus, if we choose <G'> = -,52 as the best choice from the

Monte Carlo evaluation, we may write

T, ()= {7 - (#%)" (0. 1293} (-0.52)

- 2.4 ©.

where %(n/lO) = ,1283 from Appendix D.

i

9 The Function c:os(-f1 --fz)

If one could eliminate all of the "oscillations" that <G>
goes through in Figure 1, the amount of computer time needed

to evaluate IA(I)’ and thereby F(ﬁ), would be reduced. For
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example we can see that in curve III, of Figure 1, fully 1300
points had to be taken before the function 'settled down,' and
even after that one might argue that the rather stable behavior of
the curve could break down at any time, thereby eroding confidence
in the final value, of (G') = -.52, taken from Figure 1.

To attack this 1.)rob1em we first note that the fluctuations
are probably caused by the nature of the function Gy = gp - 1.
A graph of G, is given in Figure 2, as a function of the particle
separation, in units of our length parameter a, and we see that
at a particle separation of 0.4a there is a sharp discontinuity in
Gp, caused by the hard sphere assumption.l7 This discontinuity pro-
bably contributes greatly to the form of Figure 1, and we shall
try then to eliminate its effect as mush as possible.

In order to accomplish this we shall look for functioms
which will be a minimum when the particle separation becomes small,
and the first ones we shall try involve the term cos('f' -'fa).
When the particle separation, ]321 - EZL is small the chances are
good that ‘ﬁﬁ"&, and cos('ﬂ - f&) 1. When I_)Z]_ - 3&2' is large,
however, 11 may or may not be close to 1%_, but this is not so
important since the problem is only at small particle separations.
Thus if we write .

G/(._ =« _ Gu(%Ka2) exg[li'.l"-:-li,,lﬂ
xn,Xa.)= - [N""Q‘]
N

where

D= li.lz + ,5{2,!1 - 21.)-('“;(1‘ Cos (‘f,-fz))
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D
and if we choose N = 10 to keep (N - ﬁ) positive, then G' will be
reduced when cos(fz- fz) approaches its maximum value, i.e. when -
'ﬁ_.} f’. , thereby smoothing out the step at 0.4a.

Using this function we have

F G, %) =[N - B lexplmitg - cost

BEE’[J%‘ ' l)%‘]
§§ F(%, %) dR.d X,
= 101>~ () 9l 0.1fsm- BT dla e
Qe = { Sr"t PN Jav 1" 0.1

Now Eq.(9.1) is solved by a Simpson's rule calculation just as

Thus

with

Eq.(8.4) was, and for £ = 1/10 we have '(x/10) = .2058. With

this we can write down the equation

T,(F)=45979¢ {G'(X. %)) » 0.2
and turn to the solution of <G'(5(-1, §2)> .
This solution is accomplished in the same manner as before,
and the results are given in Table IV, and are plotted in Figure 3.
We see that the curve is slowly varying in comparison with those
of Figure 1. Thus we might hope that our objective in this regard

has been accomplished. However we have only made a Monte Carlo
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Table IV. Monte Carlo calculation of (G'(il, §2)> , where

G, %)= explIX I +I%)Y) Ga (X, X)) /In- &3 -

Step Length: 0.3a. Starting Point: x; = .233324, xo = .283296,

y, = .063209, y, = -.089085, z] = .452913, 2z, = .446226.
Number of Points Number of Times G'(_}El, X2)
in Units of 100 Particles Failed

to Move
1 63 -.046525
2 113 -.038213
3 158 -.037083
4 213 - -.035733.
5 277 -.038213
6 344 -.038495
7 400 -,.038761
8 461 -.039484

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-0.02

-0.03

{YCTR )

-0.04

-0.05

35

Monte Carlo calculation of <Gil(z,,)-{l)> , where

G'R, K= ex ol R GaRi %) - £

1 ]

¥ ¥
0 2 4

Steps in Units of 100

o ==

Figure 3
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run of 800 points because this new function takes three times

as much computer time to evaluate as does the function in section 8,
It could be, then, that if we had run for a longer while some
oscillation would have occurred. Hence this new function does not
leave us feeling too confident, since we have not really explored

it as thoroughly as we have the others., However we can compare

this result with that of Eq.(8.6) by completing Eq.(9.2), giving

IA(-E') = - .92, (9.3)

where we have chosen as the value for <G'(-}21, }_{2)> , -.039.
This value of IA(n/IO) is 25% higher than that obtained in section 38,
so we see that these two methods are close to agreement, and
presumably if we could have run a little longer with both of
them the agreement ould have gotten even better. Thus our
confidence, at least in the consistancy of our methods, is strengthen-
ed, and we are encouraged to try yet another modification of Eq.(8.1).

This time we shall also use a function involving cos(‘ﬁ'— Ta ),
but in a simpler expression which, hopefully, will not take up
so much computer time. Our new function is simply 1 + cos(‘ﬁ-—f&),

giving

PR, 7 =L coschralendf iR coal

PR radRdr = T (F) Lo

just as in Eq.(8.3), and

Hence
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(LT exp[IXI+1%1 G, (%, %)
Gllaka) = [+ cos(t-1.]

Thus we have

IA(-E)“—" %4. 6933 (G’(Y,,)?;_)) ) (9.5)

where G' is now defined by Eq.(9.4), and P(il, X5) in the integral,

9.4)

Eq.(7.3), involves the functions defined above.

The results of the Monte Carlo evaluation of <G'(§1, §2)> are
given in Tables V-VII, and in Figure 4, for the various step lengths
and starting points indicated in the Tables. We see that the
oscillations in <G'(3{-1, 322)) are still with us, and it is almost
impossible from Figure 4 to tell what the average value of the
function really is, since we did not take enough points. If we

select <G'(§1, §2)> = -0.69, from curve V, then Eq.(9.5) gives us

I, (5)=-3.23, 9.6

which is about 25% and 447 lower than the other two values for
I5(n/10) respectively.

For the first and third evaluations of IA(JI/].O), the
Monte Carlo runs took about eight minutes for every hundred

s . s D
points taken., The second evaluation, using the function [N - _] ,

N
required about twenty-two minutes per hundred points. Thus this
third function has improved the time factor, over the second, but
it has failed to improve upon the consistency of the first function,

and in fact may be even more wildly varying. The reason may be

because the denominator of G' can go to zero, thereby causing G' to
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Table V. Monte Carlo calculation of (G'(il, §2)>, where

s o ) - - R
G'(%,, %) = exp[iKi+ IR G, (K, %) /D +cos(H - £)]-
Step Length: 0.3a. Starting Point: xy = .2333324, xp = .283296,
yi = .063209, y, = -.089085, z1 = .452913, zp = ,446226.

Number of Points Number of Times G' (X1, Xp)
in Units of 100 Particles Failed
to Move

1 63 -.391364
2 120 -.441954
3 182 -.434767
4 249 -.420812
5 290 -.495487
6 345 -.500780
7 395 -.587413
8 438 -.632507
9 485 -.611214
10 549 -.604278
11 601 -.648120
12 653 -1.073069
13 709 -1.073620
14 775 -1.026503
15 837 -.983108
16 894 -.954056
17 963 -.926716
18 1038 -.884736
19 1093 -.864095
20 1158 -.840733
21 1223 -.815911
22 1278 -.799742
23 1339 -,787946
24 1393 -.773363
25 1447 -.772515
26 1500 -,760686
27 1556 -.751144
28 1608 -.763789
29 1669 -.762782
30 1725 -.753234
31 1768 -.749218
32 1833 -.735783
33 1906 -.724123
34 1960 -.712428
35 2009 -.708915
36 2066 ~-.717261
37 2132 ~.710341
38 2194 -.701924
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Table V. Continued

39
40
41
42
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2320
2380
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.690333
.697482
. 688840
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Table VI. Monte Carlo calculation of (G’(il, §2)> , where

G'(R-n R’z): CX PD z,,t+) z).,a] GA(.\ZH;.(2>/E+ C05(‘ﬂ— 'ﬁ&)] °

Step Length: 0.3a. Starting Point: x; = .533946, xp = -.009074,
yp = -.042777, y, = -.358963, zy = .546538, z, = .406052.
Number of Points Number of Times G'(il, X9)
in Units of 100 Particles Failed
to Move

1 61 -.351537

2 137 -.378586

3 209 -.766463

4 282 ~-1.002559

5 338 -.864042

6 393 -.805570

7 444 -.787359

8 492 -.767933

9 555 -.719984

10 622 -.682169

11 670 -.687069

12 727 -.729262

13 802 -.701553

14 862 -.681224

15 906 -.763590
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Table VII. Monte Carlo calculations of <§'(§1, ié)) , where

G'(¥, Xy) = e'xfhza'z“’mzlt] GA&MRz)/D +eos(t-£.)]

Step Length: 0.4a. Starting Point: x7 = .533946, xp = -.009074,
yp = -.042777, yy = -.358963, z; = .546538, z, = .406052.
Number of Points Number of Times G'(Xq, iz)
in Units of 100 Particles Failed
to Move

1 79 -.585734

2 148 -.416910

3 194 -1.205509

4 264 -1.025993

5 334 -.889085

6 416 -,812842

7 484 -. 747090

8 544 -.724571

9 607 -.821318

10 669 -.790463

11 734 -.760627

12 802 -.741753

13 862 -.736566

14 920 -.899169

15 980 -1.037172
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become extremely large. This introduces the very kind of large

fluctuation we had hoped to eliminate,.
10 The Function exp L-lil - 5{-2‘2]

The reason for using the function cos('ﬁ - fz) in the last
section was so that the effect of the discontinuity in G, on <G'>
could be minimized. But the results were poor, so in this section

we turn to another function, that being
Hi%, &) = €xpLIT -1k expl-) T - K-

This function will give

G/(R,, %) = AT+ T+ I G- Rl G, TR
which should not be nearly so wildly varying as before, since for
small particle separations, where G, jumps to -1, exp [,3{—1 - iz’zj
will get very small, This is because )il - EZ)Z is the square
of the particle separation itself. Thus instead of involving
only two coordinates in the separation correlation of G', we
have included the entire particle separation function.

Now we first write
o -y - o e
FU%, %)= expl I B 1= 1K) %= %l [1-costa)]
where B is as defined earlier. But the integral
G- FU(%. %) d XN,
is very difficult to solve analytically, so we are led to make a

change. Let us write, then,
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G’(in .\ZL) - [.' ~cos(B6)] GIA(EHYL> e-’XP[!EI‘L'HigI‘*lY,'%PJ)

and
2 - e - = ia
FI%a %) = explnr-1%ad -1 g-%,00] .

Note that this immediately gives us an unexpected bonus, because

S---SF'(x_n'iaH)TcdR} (10.1)

and, therefore P(S-(]_, 5(-2), is independent of the parameter ,?
That means we need only make one Monte Carlo run for all of the
integrals IA(;Q-), which in itself is a great savings. Thus we
note that Eq.(10.1) is equal to

= 1 =] K12 | K = Kal ®
§--{¢ Y xR, = 59

Now we have

IA (&) = 57446'(X, %, ,2)] ) (10.2)
and the results of the Monte Carlo calculation, for .2 = (n/10),
e are given in Table VIII and Figure 5.
The oscillations are still very much with us, although a
longer step length in the Monte Carlo calculaton might be cut down
on them just as it did in curve III of Figure 1. Note that for

,e = (n/10), if we assume (G'(f('l, -}E2, (ﬂ/lO))>. = -0.655, we have

I, (%)= -39 (102

which is about 37%, 53%, and 177 lower than the other calculated
values respectively. Note also that with a longer run,

<G'(§1, iz, (n/lO))) might have gotten smaller, (see Figure 5),
although this is not certain, But if it had, the agreement with

the other values would have been improved.
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Table VIII. Monte Carlo calculation of '(G'(il, §2)> , where

G'(Y,, Xo) = explIX %I+ Ri- %04 G (R, K, .

Step Length: 0.4a. Starting Point: xq = .111090, x, = .623079,
y1 = -.654167, yp = -.985409, z1 = -.024385, z5 = .290268.
Number of Points Number of Times G' (X1, X3)
in Units of 100 Particles Failed
to Move

1 37 .220369
2 68 .325184
3 114 .359629
4 160 .351531
5 198 .406762
6 240 L422512
7 286 .423250
8 333 .415047
9 367 .401537
10 411 448449
11 452 .433320
12 497 .412912
13 545 .427313
14 589 .418461
15 635 .409141
16 684 .400359
17 720 .396663
18 770 .398270
19 806 .405884
20 854 .395462
21 897 449646
22 939 .471606
23 982 . 505290
24 1018 . 505532
25 1065 .499064
26 1112 .493518
27 1143 .525553
28 1180 . 517703
29 1217 . 513867
30 1264 . 501939
31 1308 .494651
32 1363 .499761
33 1415 .491778
34 1456 . 522101
35 1500 . 516013
36 1544 . 509852
37 1595 . 502810
38 1641 . 501308
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Table VIII. Continued

39
40
41
42
43
44
45
46
47
438
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
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1681
1718
1759
1803
1842
1885
1927
1969
2014
2047
2088
2132
2182
2215
2249
2295
2337
2383
2428
2471
2511
2555
2591
2624
2669
2706
2746
2786
2833
2871
2907
2943
2992
3031
3071
3112
3155
3191
3237
3285
3325
3356
3396
3437
3473
3510
3559
3602

. 500700
.495702
.487612
.493437
.486631
.479031
.484796
.483723
.479333
.887118
.878817
.868986
.867699
.858678
.856530
. 845410
.835691
.828540
. 820339
.814228
.812996
.805277
. 798579
. 794273
. 804382
.799270
.788698
. 780665
.775085
.766132
.761239
. 754477
. 750423
. 742587
.738536
. 734218
.732669
. 725700
. 728508
. 726858
. 724920
.720863
717177
. 715735
.710011
. 704815
.699279
.696741
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Table VIII, Continued

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
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3642
3683
3707
3747
3788
3837
3883
3926
3967
4018
4054
4083
4234
4173
4217
4260
4296
4334
4377

3

.695052
.691570
.689239
. 684957
. 682203
.677702
. 676104
. 674071
.669914
. 666881
.662676
.657629
. 656284
.652223
. 650441
. 647994
. 646390
. 645153
. 644390
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CHAPTER 1V
CONCLUSION
11 Evaluation of Results

The first thing we must note in this chapter is that each
of the four attempts at evaluating IA(ﬂ/lO) made in the last
chapter would indeed give the correct value if enough computer
time were used, thereby allowing enough points to be taken.

In principle, then, we have solved the problem four times over,
since we need allow only an infinite amount of time for each
Monte Carlo process, in any of the "solutions" given, to obtain
the correct result. It is clear, however, that this approach
is quite impractical, and that we must be more critical in our
evaluation,

The four solutions obtained in the last chapter,

(IA(x/10) = -2.44, -1,82, -3.23, -3.89), are of the same order

of magnitude. One might even say that they are quite close
together, or at least that they are ali uniformly inconclusive,
How then can we say that one is better than another, or that

we choose this approach or that as the one best suited for further
use, such as the calculation of P(E:)? The answer is really

quite simple, and we have, indeed, already alluded to it.

The best function found is one used in section 10. The
reason, as we mentioned in that section, is simply that both

49
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S...S F'(il, iz) dil d-)—{z, and P(il, Ez) are independent of the
parameter & , unlike the other solutions considered. Thus we
can generate solutions for IA(E) for all values of Z at once,
with just one long Monte Carlo run, generating just one long
series of steps for all <G'(3(_1, iz, ¥4 )> . With the other func-
tions used we would have had to calculate each Iy (2) separately,
and each of these calculations would have had to have been as
long as the one calculation suggested above. 1In additi(;n we
would have had to repeat the process for each IB(Z), Eq. (7.2),
before F(@ ), and thus P(E ), could be known for all values of L.
With the functions used in section 10, however, neither the
configuration of points, nor the normalizing constant of P(i]_, 3{-2),
depend on .e Hence only two calculations are needed to generate
all of the IA(E) and IB(E), and these calculations can be made
very long and therefore very accurate, while still affording
a great savings in time over the other functions considered. It
should also be noted that the IBM 1620 computer required only about
seven minutes per hundred points, with the function of section 10,
as opposed to eight minutes for the fastest of the other functions,
thereby giving it yet another advantage.

We feel, then, that the relative comnsistency of the four
solutions to IA(Jr/lO) given allows us to have some confidence
that each of the methods would give the correct r.esults. Hence

we turn to the problem of actually calculating P(E).
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12 Suggestions for Further Study

The ultimate objective of research on this problem is the
calculation of P(E ) for several values of the temperature-density
parameter,-®-, and the particle size,{, via the Kelbg theory.

By comparison with the P(E€) calculated from the Holtsmark theory,
one could then determine at which values of € and ¢ the assumption
that U(fl,...fN) = 0 breaks down. Thus one could say that at a
certain density and/or temperature the two component interaction
term must be considered in the calculations.

One could then make a direct Monte Carlo calculation of Eq.(2.3),

PCE) = §--§ P - 5 S(E-£E) dF -~ dF5,
where P(fl,...fN) is defined by Eq.(2.1), and, since this would
presumably include all orders of particle interaction, one could
tell at what density the interactions, higher than the second
order, become important.

All of this can be accomplished by evaluating F(2) for,
perhaps ten or twenty particular values of .e, and these L values
can be determined by doing a Fourier analysis of the problem.

We feel that methods outlined in this thesis, using the functions
given in section 10 will make the calculations quite easy to do,
given a fast enough computer. The IBM 1620, which was used in
our work, is simply too slow for this task. For example the run
which gave the values in Table VIII took over 750 minutes, and

good convergence of the function is still not obtained. With
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the IBM System/360 computer, however, this time will be cut by at

least a factor of ten, thereby making the calculations quite

practical.
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Appendix A
The Holtsmark Distribution

The probability distribution for finding an electric field
of magnitude E at a given point in a classical system of N charged
particles in thermodynamic equilibrium with absolute temperature T,

is given by

PCE) = 4T E* P(E)

=yref-Jpe 584 s:;{_ﬁ"dﬁ, .

where
exp[-UR, - H)/k. T ]
§-SexpFUCE )k T]dF---dF,

Here g is the Dirac delta function, Ei the electric field

Pes,--%y = P

intensity from particle i at the point in question, E the total
electric field intensity at that point, k, is Boltzmann's constant,
and U(fl...fN) is the total electrostatic potential energy of the
system. Now the assumption made in the Holtsmark theory1 is

that there are mno electrostatic particle interactions. Thus

U(t1...Ty) = 0, and we have

' ] .
P =i lJ§E-£E)d% 4% as
since Eq.(A.2) becomes

o | - -
PR, %) = (---§d¥ --- d 7, RYA

Now P(E) is simply a function of E, so we may write its Fourier

54
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transform as

F(R)= SSS P(E)expikK-E) dE, )

so that

P(E) = G-:Tr')'3 EJKF(F) E‘XF(-i k-E)dk. (A.5)
The reason for doing this is that Eq.CA.é) can be evaluated more
easily than Eq.(A.3), and once F(i) is known for all values of k,
Eq.(A.5) can be solved for P(E).

To accomplish this we first write Eq.(A.4) as

l = N~ . om0 N - —n
RF)’W o S(E-g Ez)exp(t-k-E)‘.EJ\'; dE, @.©
and then we integrate over dE to get

FEE)= "\",‘F: §--§ exp&i?-ﬁ E;) fﬁ"dv‘;

ey =l

N
=V [ (exp(i®E) dF

l=)

=‘—~\~;',; Lge.'x?(ip'f) O‘F]-No 4.7

This last form results since the N integrals are identical,

L

and hence the subscripts are not needed. We are now in a position
to go through a series of steps to evaluate this integral in

exact form, starting with
N
Fio = v [fexp GEE) +1 -1)de]
=& [§d7 - SG-exp GREN )"

[i- %89 §0- expGR =]
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Now if N is large, and we shall assume that it is, we use the
identity

L i 1= i’}

N=v00
to give

Fy= expl-4p §U- exp (iR EN =]
QXPL- L. S (l-—exr(iTZ- %‘5 c)) glv'f-] y  (A.8)

e
and c=

3’ = 4n &y )
the integral

-y
-
CcT

where E =

Hence our problem is to solve

TRy = ((-exp(s§ F-F)dFE . @9
To do this we choose k = k@}, i.e. k points along the z-axis.

This gives

(1= expli it.&%f_:ﬁ])\r‘s.‘“e drded P

(1- expi Sl‘_‘-).v__"’_f.?ﬁ-]w"s.‘“sdvglg ,

, we have dU = -Sin@ d@®, resulting in

e
L@)= -2 ((-exp[i 2 ]) dee vdv

= 2T z«-»-;’;—;_— St %)) Nl R (a.10)
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Ke -3/2
Now we let t® _p , so that r2 = S, dr = (-1/2) Re)1/2¢ 24,
t

and te@ as r=p0, thus

TR = -a1m % (ke)”2 2. SLI- isie]f "

= Q,Tr(kc)% SU: smtj-&. dz.-, (A.11)

The integral in Eq. (A.11l) can be solved exactly in the following way:

dey= St %gs - S+ st dt

-3 ¢
=-%t "o Sot'%’s»'\nt dt .
Note thatii
. Vil
(1) §t”s @t cost dt
() .Si:“ costdt= ts\::l cosi] +m—z S-E"HS wt dt

S'E, ‘cost dt = St’l/* simtdt = 'ﬁf ’

Thus we have (for A"‘ ( 2/3)t-3/ZT)

Q)= A +Ery s.;;i:] -& Si Srcost d
£

+ 3/2.
=A+R + TeiD )(312) castﬁ (fl )(311) § st dt

=A+B+C"(;,.s,.:, s.wti +mgt *gostdt
[(-%t P (PE /“'.s.‘»:t + (19F Peost

-/tvaﬂ’ -+ ‘5. W

Now we can write
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cQ(-b) L.w«L—-(C 5_( ‘% A )-&i ~£ /c.ost)

-£ -€ "giw ] +& 1z

-3
= bivn (_3,_ = "?‘5:"'" 'ﬁ") € /2 + (Cons'ha.w'i') E./?'

E€-%0

LY
+Lcohsfaw+>£/&+ ] + %{{?v

Thus the above equation finally becomes

@(t) = %{j; . (A.12)

Substituting Eq.(A.12) into Eq.(A.1ll) gives

T(r) = 2T (kc.)/"‘ “"Q—j )

and substituting this result into Eq.(A.8) yields

FE(K)'“ (g P[‘"“’ STT (ke) Yo (.ZTI')'/’-J ¢ (A.13)

This is an exact solution to Eq. (A 4), and it may now be substituted

into Eq.(A.5) to give

Pc;z- )= S exp A expliK-B) d T,

where AS T - c3/2 (27{)1/2 Using spherical coordinates we have
V 15 Urmw e
- ) AR/ -LkEcese ‘
PE)=s (e é K*siwe dkdeds
6 0 ¢
@ 3 .
! "Ak/" ~tkBcos® , |
= (-——271'),' S e k So\q@clk de.
©
Now let U = Cos® , so dU = - Sin® d@&, thereby giving the

same result as in Eq.(A.10), i.e.
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Peey = Swrr" ARt ;;g salke) k™ dk
co
= (RW)‘E 5 81]’[-,4 ,‘(3/8'3 K Siw (kE) O{Ko
If x® KE, then dK = E dx, glVlng

PE) = (3,7)253 SeXF[A J'KSW\X dX.

Define @E E,’/A”’s ) S0 A/E’/‘L: l/(&’/&.)

and therefore we have

PE) = e § expl ()M sn i

(572
= (,_m%@uz § e‘*?[. (%) JW( S'w% d X

= H) [4mea® . 10

Here we have defined H(§ ) as

He) = _-F-I%— ogexr[—(%’)a/’-]?( S-'w?(d?(> .15

and this function has been tabulated by S. Chr:mdrasek’l'lau:l whose
values are given in our Table (A-1).

We have thus arrived at the final result for the microfield
distribution assuming no particle interactions, and we write

it as

PE)= 4 E*P(E) = E*H(p) [ ¢*A",
but o -Lfa
ET[o"A =
so P(E) - H(g) / A"/S ) (A.16)
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e Az & ZL O ama

)&~
and CE &[/4TWEs o

(A.17)

(A.18)

Notice that the Holtsmark distribution is independent of the

charge of the particles of the system. If they are all negative

e - —
7 , but F(k) and P(E) are unchanged, since a
JtCa

then ¢ =

negative ¢ can be put into Eq. (A 10'") giving

TtR)=2 §[u- g expfi & _]:” dve

i

o (5
= 217 {[2- 25 s (55) T v dres
Clearly Eq.(A.19) is the same as Eq.(A.lO), so no matter what

the sign of the charges in the system, F(i) is as given by
+e

bt Eq

Eq.(A.13), with ¢ =
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o
Table A-1, The Function H(@) =T-F26- §&¥PE(%.)3/2:]X 5.-\1x J‘X.

H(S)

¢ H(B) @
0.0 0.000000 5.0
0.1 0.004225 5.2
0.2~ 0.016666 5.4
0.3 0.036643 5.6
0.4 0.063084 5.8
0.5 0.094601 6.0
0.6 0.129598 6.2
0.7 0.166380 6.4
0.8 0.203270 6.6
0.9 0.238704 6.8
1.0 0.271322 7.0
1.1 0.30003 7.2
1.2 0.32402 7.4
1.3 0.34281 7.6
1.4 0.35620 7.8
1.5 0.36426 8.0
1.6 0.36726 8.2
1.7 0.36566 8.4
1.8 0.36004 8.6
1.9 0.35101 8.8
2.0 0.33918 9.0
2.1 0.32519 9.2
2.2 0.30951 9.4
2.3 0.29266 9.6
2.4 0.27485 9.8
2.5 0.25667 10.0
2.6 0.238 15.0
2.7 0.222 20.0
2.8 0.206 25.0
2,9 0.190 30.0
3.0 0.176 35.0
3.2 0,150 40.0
3.4 0.128 45.0
3.6 50.0
3.8 These values are not 60.0
4.0 given by Chandrasekhar. 70.0
4,2 80.0
4.4 0.06734 90.0
4.6 0.05732 100.0
4.8 0.04944
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.04310
.03790
.03357
.02993
.02683
.02417
.02188
.01988
.01814
.01660
.01525
.01405
.01297
.01201
.01115
.01038
.00967
. 00003
.00846
.00793
.00745
.00701
.00660
.00622
.00588
.00556
.00188
. 00089
.00050
.00031
.00021
.00015
.00011
. 00009
.00005
. 00004
. 00003
. 00002
. 00002



APPENDIX B
The Kelbg Theory

As in Appendix A we write the electric distribution in the form

PE)= (- (Pe, %) §(F gg T‘“ 5, ®D
where

expPl-U(F, -8 /k.T]
PR, R = T e kv =] e @

However, in the Kelbg theoryB’13 one does not assume that

U(fl...fN) =0, i.e. particle interactions are not ignored. Thus,
in order to solve Eq.(B.l), we again write the Fourier transform

of P(E), giving

Fry= (§(pE)explEVdE

N e
::S---'SP(“'\-‘“..-"'N)e'x?(_iE-E) é(E-‘%E;)I[A"Z‘ dE .

Now we integrate over dE. Hence

FCE)?—S’"SPCE,---VN)Wex?(tk EYdE . @3

Define

s exp(ik E;)
S-Q-l: Pl(:;) JY—'Z' *

Note that

¢ ‘U/k.T'd;._,A;; d%,,--- d%
HOE (- (e VT 4= ... 4%

Now write the identity
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Q= w; [+ (F-1]

and substitute this into Eq.(B.3). This gives

FR)= §~§ Peso w0 T 00 05
=~ PLE"-'E’)JIQ" [ +(-'%-:;‘l—s)_] de . 9

Now
. N .
ﬁ"w,_‘ﬂ-a- B )]s oo T (= )]
&= ¢y
N N . . . .
= ITw;;B+ g_(:g—f--l) + %‘%!(%;?%r‘--%?——%é— -H)-s--:]
.ﬁ_w,,[+Z -l +'Li_ (ﬁ’ts .n.., E%i--ﬁ-l)-»-ﬂ,

4:[
Thus Eq.(B.4) becomes

Rk) §-S P, - v-)frw [+Z_( :)+--:] d¥ . @5

iel

Now the second term in the sum above will vanish as we shall

now show. To do this we write

§oe § PO ) (2 = 1) Ao I
= & é.ﬁi’,/k"Tﬁ )T d

§-- Se"u/koT' dF - d¥

S :SQU/’“T('“‘)AY‘-- ch"u - l
(--§ eVl ... dF,

= o7 [$0i BT - Wy

~
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::zl;‘f[w;-w;:}
= O.

Thus Eq.(B.5) becomes

F(F)"' S”'SPCF,---ﬁ)frw;[)+1L§:(%‘%é-—l)+---] dF
ﬁ—w[ -Z.S SP(*«- w U. ))AF...Jrﬂ«B 6)

L=
This last equation results since the h}i are not functions of the

r;, and

(S P, R) T =]

Hence we may divide F(E) into two components

Foy= F(F) FeR)y

E(E)E?ﬁ;wb‘ 5

and Fl(ﬁ) equals the remaining series of terms. Note that so

where

far the derivation has been exact, and that we have simply used
definitions and identities to change the form of the original
form of the equation, Eq.(B.3), into that of Eq.(B.6).

It can now be shown that Fo(i) as defined above is simply

the Holtsmark term. Hence we write

F.(R) Efl‘wa = ﬁ' (n; PE)IRT

-T (exp(ikE;) P(EIdE
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-Tr (S explE-E)expbU/iT) d¥.. d¥
§-§ CXP(-U/:«T) 4 ¥ ...a‘.

‘ﬁ’ SIS-fexpvpe) T A% Jexp(EENIT .
§§ e"‘i’(-"t-i/!m."r‘) 4% -~ dF

At thlS point we make the requirement that the field point at

which P(E) is to be calculated is a neutral point. Note also

that we may write Pl(fj) in terms of the correlation function gq,

as shown earlier, resulting in

¢S e'xf(-U/k,T) TT' 4%
§---S e,'xp(—U/k,T) d‘f; ---ch-;,

But, at a neutral point, the functions gl(fi) are equal to unity

(B.8)

(F=V

so the term in the bracket must equal 1/V, and Eq.(B.7) becomes

Fp= T4 Sexp(iF-E)d7
=1
) — = { _IN
:W[Sex?(dk-E)Ak] . (8.9)

This is identical to Eq.(A.7) which is the Fourier transform of
the Holtsmark distribution. Thus we have shown that F(E) in the
Kelbg theory is just the Holtsmark distribution multiplied by a
series of correction terms of increasing particle correlation,

Clearly then we may write FO(E) as

F (k) = G'XFEV (1- explik-E))d¥ (B.10)
by following the same steps which took us from Eq.(A.7) to Eq.(A.8).
Now Kelbg simply generalizes Eq. (B.10) for the case of a system

of ""S" different types of particles, each having a number density
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given by nj = Nj/V, where there are Nj particles of type "j'" in

the system. Hence Eq.(B.10) becomes

S
F; (]Z) = exp{% ¢ S(ﬂ.q- -l)dﬁ] ) (B.11)

where @ labels the type of particles in this-s-component system.

We now turn to Fl(i), and it is here that Kelbg makes his
one approximation. By assuming that the system‘is sufficiently
tenuous, one could argue that the three-body, and higher correlation
terms, are very small, since the chances of three, or more
particles ''getting together' are similarly small. By making this
assumption, then, one can terminate the series in Eq.(B.6) after
the second term. We may think of this truncated series as the

"linearized'" exponential series,

¥z | +X +9r A+

~ ' + X (for small x),

thereby allowing us to write

F(k) [ +—ﬁ'_ SS“(W“,J -)R(%,®) dRdF .,.']

J

=14 .i’_ S(u,,.,, =Ry 4754 |

L(J.-

==)]+ P (B - 1) TR T4 |

~ &% P[Nz(\%: SS 3'«21 ’)ﬂz d¥dF s ¢.12)

Again we can generalize Eq.(B.12) for an S-component system,

Py

but now we are concerned with two-particle interactions, so
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the generalization must include summations over all possible

combinations. This, then, results in

o= explt 2 Svee (B8 -pudr ]y o

where ) and n,&. are the particle densities of the two types

of particles considered at any one time.
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APPENDIX C

The Monte Carlo Method

The 'Monte Carlo" techniquels-21

for evaluating integrals
numerically will be explained in this appendix. Presenting a
rigorous proof of its validity is not our goal, but the interested
reader may refer to the references given for such a proof. We
shall instead present an "operational' description of the method,
along with an example, using an integral which can be solved

analytically, for verification.

We may write a general integral, then, as

Q
I=§Fo Godx, .1

where F(x) G(x) can be any combination of specific functions,
say e—’Xl cos x. The next step is to normalize one of these
functions, say F(x), by writing

P
P(x) T SY R dx )

S, PCYdx =1 -

Now we have

I = { S:F‘(;x)dx} S;P('x) G(x) dX

so that

= S:F‘Cx)dx (G (.2)

where <G(x)>. is the weighted average value of G(x) in the

range A x §B, since P(x) has become a normalized probability

68
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distribution of points within this range. Note that I(x) is

unchanged by all of this, since we have merely multiplied and
(]

divided Eq.(C.l)by a constant, .SF(X) dx.

As an example let us write

I = ?e’mcosx dx -

Now this can be solved analytically as follows:

I= ZS cosxdx

= ..%, "X(—cosx +s-w<)’ |
which will serve as a check on our results. If we let F(x)= e 1%l
and G(x) g cos x, with A = -9 and B = +@@, we have
¢ °i7(|‘4
(Foodx = § e dx
A L

]
) &)
g
0
§
o
o
x

i
!
b
¢

Hence

and
T=2 §(+e™)cos % dx . (c.3)
This example ;s?nts out one very important problem. That is,
our ability to write Eq. (C.2) depends on our ability to evaluate
S:%(x) dx. Clearly this may not always be possible, for we might

have some F(x) which is itself just as difficult to integrate as

was F(x) G(x). Thus we are faced with the possibility that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69



functions may have been altered, say by substituting F'(x) = H(x) F(x),
and G'(x) = H Y(x) G(x), where H(x) H 1(x) = 1, in the integral.

We then would have

I= g(HL‘ﬂ Fexy) H™'() G () d X

A
2
= {$ e Fendx § CHen G.00)

in accordance with the substitutions made.

If the integral can be put in the form of Eq.(C.2), with
S%T x) dx evaluated, then it can be solved using a computer.
Tge method is similar to any other quadrature technique
(Simpson's Rule, etc.), except that the points at which G(x) is
evaluated are picked under control of the probability function
P(x). Hence more points are concentrated in those regions of
space where the integrand is large than irn those where the
integrand is small. This enables one to use a given number of
points more efficiently than is possible with the other quadrature
methods. B

The points at which G(x) is to be evaluated are chosen by
selecting an arbitrary starting point (in this case any point on
the x-axis). A second point is chosen by adding a random number
between -1 and +1, multiplied by a fixed ''step length'', to the
original coordinate position. Then Pl(x) and Pz(x),(where Pl(x)
is just P(x) at the original point while Pz(xf‘is P(x) at the

new point) are compared. If P, is greater than 131 then G(x) is

evaluated at the new point. If P, is less than Py then 1’2/1’1
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71
is compared with a random number between 0 and 1. If P2/P1
is greater than a random number then G(x) is evaluated at the
new point; if, however, P2/P1 is less than a random number then
G(x) is evaluated at the old point. Once G(x) is evaluated, it
is added to a storage area so that <G(x)> may be finally
calculated after a sufficient number of steps have been taken,
The process is then repeated as many times as desired with the
new starting position being either the previous old or new position
depending upon whether G(x) was evaluated at the old or new point.
Figure (C.1l) gives a block diagram of this process, and Table (C.I)
gives the computer program used to evaluate

L= S e cog x dX .

Figure (C.2) gives tggu;esults of this calculation for increasing
numbers of poinég; and these values should be compared with
the analytical answer I(x) = 1.

Notice that in applying this method there are a few adjustable
parameters which the investigator must cope with. Among these is

the "'step length", L, used to move to a new point. In making

these random moves we write

vaw = Xoid + 2 L(Y‘wndow Nuwmbewr = es))
where the random number is generated by the IBM-1620 RANDF function
and is between 0 and 1. Thus X .. is equal to X514 plus a random
number between -1 and +1 multiplied by L. If L is too small
not enough of the space will be explored with a given number

of moves, and if L is too large Py(x) may be smaller than Pj(x)
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Block Diagram of the computer program
used to make a Monte Carlo calculation

Assign
Initial
Position
.
Assign New
Position
xn=xo+2L(rn—.5)

[Calculate |

PO and Pn

Is Is Pn/PO> rn

Pad %, No Where
0€rn<l

lYES J,
A —" LN
Position

Leave in
(G'> 0ld Position

Punch G
k—— Every 50

Points

Figure C.1
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Table C.I, Fortran IV program for the
Monte Carlo evaluation of the integral

+
?e.'m cos X d¥ -

- 00

1 FORMAT (F10.6,4XF10,6,4X12)
X0SIN=0,0000000
X0=0.0000000
DO 100 I=1,20
DO 101 J=1,50

~ RN=RANDF (. 337)
DEL=(RN-.5)%2,
XN=XO + .5%DEL
PROBO=EXPF (~ABSF (X0))
PROBN=EXPF (-ABSF (XN) )
IF (PROBN-PROBO) 11,10,10
11 RN=RANDF(.337)
IF (PROBN/PROBO-RN) 12,10,10
10 X=XN
GO TO 13
12 X=X0
13 XOSIN=XOSIN+COSF (X)
101 X0=X
XI=I
VALUE=(XOSIN/XI*50.))%2.
100 PUNCH 1, VALUE,XO,I
CALL EXIT
END
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too many times, thereby preventing our evaluation point from
moving enough, which also prevents our exploring enough of the
space.

Another adjustable parameter is the starting point, which
if poorly chosen could put the—éﬁaluation point in such a region
as to make exploration of the entire space more time consuming
thén need be.

-~ Finally note that if we have a G(x) that is slowly varying
the numerical evaluation of (G(x)) will be much easier than if

G(x) is wildly varying. Thus for a particular '"bad" G(x) the

substitutions

Fls)= Hw Feo s
G'(x) = Ho 't G(x)

may have to be made so that G'(x) is as slowly varying as possible,
e
while S F+(x) dx is still solvable.

A

" 'In this appendix we have considered only one-dimensional

and

integrals. Clearly the Monte Carlo method is not limited to
this case.. In fact it is at its best when applied to multi-dimen-

sional integrals, such as those encountered in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix D
The Simpson's Rule Calculation

The so-called Simpson's rule for evaluating an integral,

is given by23

b
h
gfcwdx =~ 3 (Yo + %y, +2Yy2 +4vys

*2yy Foot Y +7n)‘
Here the interval a< x¢b is divided into an even number of
subintervals, n, of length h = (a-b)/n. Then y, = £(a),
y1 = f(a+h), ...yp-1 = £(b-h), y, = £(b).
The integral we consider here is given by Eq. (8.4), and

we write it here

-]
-y
{rte s,v\}:—'g-]dv-.
i
°
The integrand becomes very small for r greater than five, for

at r =5

e

C25 % 25 % 10" %6.74 % )03
1,o5 % jo~7

Thus we integrated over the interval 0.01&rg 5.71 in 570 steps
of length 0.0l1. The computer program, and its result, for

£ = (1/10), are listed in Table (D.I). The program is written
in the Fortran IV language for the IBM 1620 computer. The run
time for this program was about eight minutes. |
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Table D,I, Fortran IV program for the
Simpson's Rule evaluation of

Jloyz §wvesn[&]dv
for £ = =/10.

101

FORMAT (F10.7)

X1=3,1415926/10.

X=0.01

ADD= (X¥%4) ¥EXPF (~X%%2) *SINF (XL/ (X¥%2))
RESULT=(.01*%ADD) /3.

DO 101 J=1,248

X=X+.01

ADD= (X%%4 ) ¥EXPF (~X*%2) *SINF (XL/ (X*¥%2))
RESULT=RESULT+( (.04%ADD) /3.)

X=X+.01
ADD=(X¥%4) ¥EXPF (~X%%2) *SINF (XL/ (X*%2))
RESULT=RESULT+((.02%ADD) /3.)

X=X+,01

ADD= (X¥%%4) ¥EXPF (-X*%2)*SINF (XL/ (X¥%2))
RESULT=RESULT+( (.04%ADD) /3.)

X=X+.01
ADD=(X%%4) ¥EXPF (-X¥%2) ¥SINF (XL/ (X¥%2))
RESULT=RESULT+( (.01%ADD) /3.)

PUNCH 2, RESULT

CALL EXIT

END

RESULT = 0.1283
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An identical program, for the evaluation of Eq.(9.1) was
also written, The only change from that given in Table (D.I) was
that the range extended to 7.03 instead of 5.71, and, of course,

an rb replaced the 4 of Eq.(8.4).
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Appendix E
The Monte Carlo Computer Program for the Kelbg Integrals

In this appendix we give a listing of the Fortran IV computer
program used in evaluating <G'(3(-l, iz, (ﬂ/lO))> in section 10 of
this thesis. This program is identical to those used in all of
the work presented in Chapter III, except for the changes in
PC§1,'§2) and G'(il,liz) indicated in that chapter.

A block diagram of the program is given in Figure (E.1), and
the program is listed in Table (E.I), where the numbered sections
correspond to the blocks in the block diagram. Note that the
block diagram includes only the major steps in the process,
while the program itself has many details not indicated in
Figure (E.l), some of which we shall now discuss.

First note that the program begins by reading in a table
of values of ga for particle separations from .05a to 7.4a, in the
intervals of .05a. These values are called by the subscripted
variable G(I) in the program. Note alsoc that in step 160 we
write GV (defined as gy - 1) equals 0.0 if the particle separation
is greater than 7.4a. This is because gy - 1 approaches zero
very rapidly for particle separations as small as 2.0, which can
be seen in Figure 2 of this thesis. Finally observe that in the
Fortran statement immediately proceding statement number 16,
we have calculated GV by a linear interpolation of the tabulated
values whenever the particle separation (SEP) falls between two

79
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tabulated values,
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Block Diagram of the computer program
used to make a Monte Carlo calculation
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Figure E.1

In 01d
Positions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table E,I. Fortran IV program for the Monte Carlo evaluation of the

integral
'S..«S D- C.OS(JR)] GA (%, X,) d)-(: JY& ’

DIMENSION G(200)
1 FORMAT(F10.6,1XI4,1XF10.6,F10.6,F10.6,F10.6,F10.6,F10.6)
2 FORMAT (I4,2X14)
3 FORMAT (4(1XE14.8))
4 FORMAT (F9.8)
READ 4, XL
10 READ 3, (G(I),I=1,148)
1. X1=.533946
X2=-,009074
Yi=-.654167
v2=-.985409
71=-.024385
72=,406052
VALUE=0, 0000000
NOMOV=0000
DO 100, I=1,9999
DO 101, J=1,100
5. XLN=X1+(RANDF(.159)-.5)%.8
X2N=X2+(RANDF (.159)-.5)%.8
Y1N=Y1+(RANDF(.159)~,5)%,8
Y2N=Y2+(RANDF(.159)-,5)%.8
Z1N=Z1+(RANDF (. 159)-.5)*.8
Z2N=22+(RANDF (. 159)-,5)*.8
3. PO=EXPF (-2 . % (XL¥¥2-HY L% 2+7 1% 2HK 2% 2+Y 24 2+Z 2 %% 2
~X1¥X2-Y1%Y2-Z1%Z2))
PN=EXPF (-2, % (X1N¥%2+Y 1 N¥% 242 L N¥% 24X 2 Nk % 27 2N#%2
+Z2N%¥%2 - XIN¥X 2N Y1 N*Y2N-Z1N¥Z2N) )
IF (PN-PO) 11,12,12
11 IF(PN/PO-RANDF(.159)) 22,12,12
22 NOMOV=NOMOV+1
GO TO 13
12 X1=X1N
X2=X2N
Y1=YIN
Y2=Y2N
Z1=Z1N
72=72N
5 13 SEP=SQRTF( (X1-X2)¥¥%2+(Y1-Y2)%%2+(Z1-Z2)%*2)
IF (SEP-7.4) 150,160,160
150 IF(SEP-.4) 170,151,151
160 GV=0.0
GO TO 101
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Table E.l continued

170 GV=-1.0
GO TO 16
151 XK=(SEP/.05)
K=XK+1,
XK=K
GV=G (K-1)+( (SEP-.05%(XK~1,))*(G(K) -G(K-1))/.05)-1.
16 A=Z1/ ((X1%%2+Y1%%2+Z1%%2) ¥SQRTF (X1 ¥%2+Y1%#24+Z1%%2))
B=22/ ((X2¥%2+Y2%%2+Z2%%2) ¥SQRTF (X2¥%2+Y2¥%2+Z2%%2))
COA=XL% (A+B)
EO=EXPF (2. % (X1¥%2HY 1 ¥%2+Z 1 %% 2-HX2 %K% 2+Y 2%% 2+ Z 2%% 2 - X 1 *¥X 2
-Y1%Y2-21%Z2))
VALUE=VALUE+(1. -COSF (COA) ) ¥EO%GV
6. 101 CONTINUE
XI=I
RESULT=VALUE/ (XI*100.,)
PUNCH 1, RESULT,I,X1,X2,Y1,Y2,21,Z2.
PUNCH 2, NOMOV,I
100 CONTINUE
CALL EXIT
END
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