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CHAPTER O
INTRODUCTION
This paper is primarily a study of the Lommel functions which

are solutions of the differential equation
(B) 25" + ay' + (2% - VAy =P, v = q/4g,

where z is a complex variable and V, k,jand_ﬁL are constants,
Two observations should be made here, One is that the associated
homogeneous equation of (E) 4is the Bessel equation with parameter
V. Hence the Bessel functions are important in the study of the
Lommel functions., The second observation is that the only singular
points of (E) are a regular singular point at z = 0 and an irregu-
lar one at z = @ ., Thus for a study of solutions of (E) for all z,
the power series solution of (E) in powers of z and the asymptotic
, expansion of a solution of (E) for large Izi are needed.

An interest in the asymptotic behavior of the Lommel functiéns
and the Bessel functioné is evidenced by papers published during
the past few years. It has been shown that the Lommelvfunctions
are of importance in the solution of certain différential equations
arising from physical problems involving thin toroidal shells.(e.g.
see[31,07],and[81 ).

The first chapter is a brief discussion of nonhomogeneous
differential equations., It includes an outline of two methods for
solving differential equations, namely the Frobenius method and

the method of variation of parameters., These two methods will be
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used in later chapters. The second chapter is a discussion of the
Bessel functions, solutions of the Bessel equation. The properties
of the Bessel functions discussed in this chapter are those related
to the detailed development of the Lommel funcLions made in chapter
three. Of special importance in chapter two is a discussion on the
asymptotic behavior of the Bessel function'whiéh includes an out-
line of an elementary method developed by F. Brauer [ 2] for deter-
mining the first term of the asymptotic expansion of a Bessel func-
tion, x
The third chapter is devoted to the development of the Lommel

functions., First the power series solution of (E) in powers of z
is de#eloped by two methods, the Frobenius method and the method
~of variation of parameters. Then a second solution is developed
byvthe Frobenius method. For this solution an asymptotic ekpansion
is developed for large 12l 3 and through the use of Brauer's tech-

nique a method is presented for finding the first term of this

asymptotic expansion.
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CHAPTER I
NONHOMOGENEOUS LINEAR DIFFERENTTAL
EQUATIONS OF THE SECOND ORDER

1, The Solution

The general nonhomogeneous ordinary linear differential equa-

tion of the second order can be written in the form
(r.1y . - - ao(z)y" + al(z)y' + az(z)y = £(z)

where ak(z) (k = 0,142) and f(z) are defined in a domain D in the

Z-plane and a, # 0 in D. The associated homogeneous equation is

. ' " <! v =

(1.2) 2 (2)y" +a,(2)y' +a,(z)y = 0.

The complete solution of equation (1.2) can be written in the form
= +

(1.3) Yy clul(z) cguz(z)

where cy and c, are arbitrary constants and Uy and uz are linearly
independent solutions of equation (1.2) in D. Finally the complete

solution of (1.1) can be written as
= o+ <
(1.4) - y(@) =y,(2) JP(Z)

where yp(z) is any particular solution of equation (1.1). We note
here that if a, is not 0 and ak(k = 1,2) are continuous in D, then
a neceésary and sufficient condition that u, and U, be linearly

independent in D is that their Wronskian,
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(1.5) W=

is different from zero for all z in D.

]
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2. The Frobenius Method
If (1.2) is written in the form

(2.1) oy + p(R)yt +py(2)y =0,

the behavior of the solutions near a point z = zoAdepends on the
analyticity of pl(z) and pz(z) atz =12z . If pl(z) and pz(z) are
both holomorphic in a domain containing 29 then the point z, is
said to be an ordinary point. Otherwise it is said to be a singu-
lar point, If 2 is a singular point and the products (z-zojpl(z)
and (z-zo)zpz(z) are holomorphic in a neighborhood of 2,5 then z_
is said to be a regular singular point., Otherwise Z, is called an
irregular singular point.

The Frobenius method is a method frequently used for finding
a series solution of a differential equation at a regular singular
point., This method applied to (2.1) consists éf'the following

steps. First we let

(2.2) vy = (z-zo)sZAk(z-zo)k s A 40

where s is a constant, Feal or complex, to be determined., Then we
substitute (2,2) and its first two derivatives in (2.1). Since
the right-hand side is zero, the coefficient of each power of z-2

is equal to zero. When we set the coefficient of the lowest such
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|
power equal to zero, we get an equation in s which is called the

indicial equation. From this equation we get values for s which
may or may not give us linear independent solutions of (2,1).
Setting the coefficients of the higher degrees of Z-2 equal to

zero, we obtain relationships between the A, 's in (2.2), Thus we

k
get one or two independent solutions of (2.1) in the form of (2.2),
valid in their regions of convergence, If the indicial equation
mentioned above gives us two distinect roots which do not differ by
an integer, then (2.2) will yield two linearly independent’solu;
tions and thus the complete solution of (2,1). However, if the
roots of the indicial equation are equal or differ by an integer,
there may exist solutions of (2.1) not in the form of (2.2).

- If the indicial equation gives two like roots, Sy = S, the

second solution is given by

L o7,(2)
(2.3) y,(2) = —jéfg—— i
where
®
(2.4) ys(z) = (zfzo)s ZE{:Ak(S)(Z-ZO)k .
' k=0

When s1 differs from.s2

solution is given by

by an integer and say s, > Sy the second

1
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(2.5) ) = 4 5 (s-s v @] ¢ . |
s s=s
2
To apply the Frobenius method to the type nonhomogeneous

differential equation of interest to us, namely
(2.6) y" *+ p(2)y' + py(2)y = cz"

we proceed as before to find the solution of the associated homoge-
neous equation. Then to find a particular solution of (2.6), we
alter the procedure slightly by letting s = mt+2. This. causes the
least degree of 2=z on the left-hand side of (2.6) to be m which
allows us to set its coefficient-equal to ¢, The coefficients of
the higher powers of z-z  are respectively equal to zero. Hence

we get a particular solution in the form (2.2).
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3. The Method of Variation of Parameters

A method for finding a particular solution of a nonhomogeneous
' differential équation whén the complete solution of its associated
homogeneous equation is known, is the variation of parameters
method. To illustrate this method, we first consider the homogene-
ous equationl(l.Z) and its complete solution (1.3). Then we assume
a particular solution of (1.1) in terms of the two linearly inde-

] pendent solutions of (1.2), u, and u,, namely

(3.1) | yp = ViU + Vo,

where v1 and v2

we have two unkmowns, v

are functions of z., Since Uy and u, are known,

1 and Voo to determine. Therefore we need
two conditions such that we can solve for these unknowns. One
conditioh, that (3.1) is a solution of (1.1), is fixed. We obtain

the other condition by taking the first derivative of (3.1),

? = ] ] ] L}
(3.2) ' =g vyt bty f vy,
and setting
' ' =
(3.3) - vy'uy tvyu, S0

When we substitute Vo and its first two derivatives in (1.1) to
satisfy our fixed condition, we use our condition (3.3) and the

fact that u, and u, satisfy (1.2), to simplify the fixed condition

1
to
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(34) vyt vyt = f(z)

Next we note that the coefficient determinant of our system of two

equations, (3.3) and (3.6), is

(3.5) W= 21,

which is the Wronskian of our two linearly independent solutions of

(1.2). Since u; and u, are linearly independent solutions of (1.2),

we know that W does not vanish, Cramer's rule then assures us of a

solution for vl' and v2'. Having these solutions, integration

| gives us the vl and ) necessary to substitute in (3.1). As we are
interested in a particular solution, the constants of integration

are immaterial,
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CHAPTER IT
BESSEL FUNCTIONS -~

4, The Bessel Functions of the First Kind

The Bessel functions are solutions of the Bessel equation,

(4.1) zzy" + zy' + (zz-l/z)y = 0,
or
2
ORI - Ky =o,
! Z

i

where V/ is a constant. From (4.1)' we see that the Bessel equa-
tion has a regular singular point at 2=0. Applying the Frobenius
method to (4,1) at the point z=0, we get an indicial equation with

+
the roots -~ V ., The root V yields the :solution

@
(4.2) v = A(z/2) z (=17 (2/2)*F
r! [ (v +r+1)
‘ r=0

!
’ where A is an arbitrary constant. The infinite series in (4.2)

converges uniformly in every circle jz < R, for any positive R.

The Bessel functions of the first kind of order L are defined

to be
_ )
(4.3) Jy (2) = (a/2)¥ Z (1) (z/2)%
| r! ' (V1)
r=0
10
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11

where (z/2)Y = exp(1 log(z/2)) with log(z/2) having its principal
value. Thus (z/2) ald Jp (z) is holomorphic over the finite plane.

In a2 similar manner -}/ yields a second solution

m .
o r 2r
(4.4) J . (2) = (2/2)V (=1)"(z/2)
- v ’ Z I. r! [ (—p 4r+1)
r=0

which is not necessarily independent of JV(z) . The Wronskian of

Iy (z) and J-V (z),

(4.5) W(J, (2) , J . (z) ) = =2sinfTd ,
v g i Tz

shows us that the two solutions are linearly independent if and
only if L/ is not an integer. Thus if 1/ is not an integer, the

complete solution of (1.2) is -

(4.6) y = Ad, (2) + BJ_V((Z) R

when A and B are arbitrary constants,
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5. The Recurrence Formulas

Four recurrence formulas which are useful in working with
Bessel functions can be derived from the definition of J y (z).
The last two of these formulds are obtained by finding respectively

the sum and the difference of the first two. The formulas are

(5.1) g, 4(8) +0,(2) =22 (2),
(5.2) | Iy _1(2) = Jy, 51(2) =20, '(2),

(5.3) L@ +a,@ =0, @),
(5.4) L) -0, =0, (),

12

‘
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6. Bessel Functions of the Second and Third K:'Lndsv

{

As shown in section 4, JV(Z) and J I/(Z) are linearly inde-
- i
pendent if and only if L/ is not an integer. We shall outline a
method for producing a second solution of (4.1) which is linearly

independent of Jl/ (z) for all L.

Bessel's integral,

T

(6.1) Jn(z) = cos(n@ - 2z sin Q)d@, (n an integer) ,

2
T

(@]

can be developed from the definition of J V(z) given in (4.3),

after applying Hankel's formula [51,

| (o+)
(6.2) L = fsett"/'r"ldt s
ly+e1) 2mi
-

where the path of integration is taken along the lower edge of a
cut in the z-plane from - ® to O, around zero in the positive
sense, and back to - ® along the upper edge of the cut, (i.e.

larg t1 $77). From (6.1) it can be shown that

i
f o? sinh t - ntdt, (n an integer).

~TTi

6.3) J (z) =
( n” 274

13
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14
The equation (6.3) will be used to find the Bessel functions of
i

the third kind,

First it is assumed that there exists a sqlution of (4.1) of

the form
b
(6.4) ¥ =f o? Sinh t - tht, (Va constant),
' a

Substitution of (6.4) and its first two derivatives in (4,1) leads

to the functions

{
o -(M+Qa)i

(6.5) | f eZ sinh t —tht,
- +QA1i
o +H{TT-qa)i
1(6.6) < f ez sinh t -l/tdt, '
- +QA1i

which are solutions of (&4.1) s valid when z lies in the sector
-T/2 + A + 8 Sargz S 7T/2=+CL - 8.,wherecl, is a real
constarlmt and 8 is an arbitrary positive number. The Bessel func=-
tions of the third kind of order LV , also called Hankel functions

of order L , are defined to be

® *TTi
(6.7) Hz(/l)(z) = i f o2 Sirh b - Uty
Ti
¢ 9]
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15

® -1

o2 sinh t = p t

(6.8) H(Vz)(z) = =L dt, |arg_z! <T/2 .

i

- @

These functions are obtained from (6.6) by letting L = O.and thus
are solutions of (4.1) y valid for general V/. The Hankel func-
tions can be continued analytically over the z-plane through the
use of (6.6) by specializing .

i The Hankel and Bessel functions can be shown to be related by

the equations
LoD (2)
(6.9) 2JZ/ (z) = Hy) (z) + HV (z) ,
' - Vi (1) -V i (2)
(6.10) ZJ-.Z/(Z) e HI/ (z) + e HV (z)
provided that larg z| < 7. Finally it is easily seen from the

Wronskian of the Hankel functions,

(1) (2) _ 4
(6.11) W( H)) (z) , Hy (z) ) = 7-7'::2' s

that the Hankel functions are linearly independent, and thus
G (2)
(6.12) y = A7 (2) + BH 7 (2)

is a complete solution of (4.1). However we wish to retain JI/ (z)
as a basic Bessell function because of its simple behavior near the

origin., Therefore we define the Bessel function of the second kind
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to be
(6.13) e =2 e -aPer

Comparing (6.13) with (6.9), we see that JI/(Z) and YV(Z) are
linearly independent for general L . Thus we have a general

solution for (4,1),

(6.14) | y = A (2) +BY), (2)

which contains JV(Z) 'as one of the independent solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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7. The Asymptotic Expansion of the Bessel Functions

Section 6 provided an outline for the development of the
complete solution of Bessel's equation in terﬁs of series which
converge for 21l {z! < @, However these series converge so slowly
for large |z| that the initial terms of the series give little
information regarding its sum., Therefore we wish to outline a
development of a series which is asymptotic to the Bessel functions
for large |2z .

In order to find the asymptotic expansion of the Bessel func-

tions we shall use the following lemma of Watson [10]

Lemma. Let us suppose that f(t) is a holomorphic function, save

possibly for a branch-point at the origin, when |t S a+ 8 ’

where a and 8 are positive, and let

@

£(t) = Zamt(m/r)'l

m=1

when H;l < 2, r being positive. ILet us suppose further, that,

when t 1s positive and t 2 2,

I£(8)] < KePt

where K and b are positive numbers independent of t. Then

17
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18
® ® l
e [ eteom =S rame
0 m=1

when |z| is large and |arg z| pS zg - A, where A is an

arbitrary positive number.

To use this lemma for our purposes, we need an integral that
is the solution of (4.1) and has the properties listed above., We

shall use a form of Hankel's function, c.f.(6.6),

® +(T-Q)i
(7.1) Hg/l) (z) = ;r.l.- f o7 Sivh £Vt
1
~-otQi

where |arg(ze’ai)l < /2.,

Since (7.1) is notbin the form we need, we proceed to put it
in the desired form. To do this we use a method developed by
Debye [ 41, called the method of steepest descents., First we find
a zero of d/dt (sinh t), which lies on the contour of (7.1), to be
t = % . This is a saddle-point in the surface defined bjr the

equation
i

(7.2) u(x,y) = Rl sinh(x + iy)

in a space in which (x,y,u) are Cartesian coordinates. We wish to

begin our contour at t = 7—-[2-3* » Maldng the substitutions

3 K] 7T-
(7. e=Thaw, o=0eM, Lea+y,
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19

in (7.1) we get '
(7.4) WieJZh;VWiHZ(/l)( g eai)

o + (T-[)1

]
V)

exp geﬁl cosh wp cosh Vw dw, largz;l<7T/2

where w = 0 is the point at which our path of steepest descent is
to begin. Keeping the imaéinary part of e * cosh w constant, we
get the path of steepést descent from our saddle.point. Therefore

since

v
!

(7.5) eﬁi coshw:egi sy W=0 |,

.

we have the following equation for our steepest paths .

(7.6) eBi cosh w = e’afL - T

( T is real).

We next solve (7.6) and find that the path of steepest descent
occurs when T is positive. Moreover, when T =+ + ®» one 'path of
w moves in the direction of w = @ + (’7T-18):'L, which coincides with
the direction of the contour in (7.4). Thus without changing the

value of the integral in (7.4) we get

(7.7) ’Trie%VWiHS') (Q & i)
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@
-2 exp(é 6/8:1) f e-(:’r - dsinh Vw1
v aT
0

[

Now we have (7.7) which is in the form needed for Watson's lemma.
Since the function d sinh Lw/dT satisfies the conditions in

Watson's lemma, We can apply the lemma to (7.7) to get

i
(7.8) HS)(Z)"J(?TZ'E)Z exp [:‘L(z I )]><_

@

_ E D v,r)
>< (2i2)F
r=1

where

) - e ?a?) @rPs®) ot pferan®

(V,r
22rr!
Using the relation
(7-9) Hgf) (Z) = -eVWlHZ(/:,].) (ze'ﬂ-l) ’

|
we determine the asymptotic expansion of ‘II(/Z )(z). Then using

(6.9) and (6.13) we get

1
z
(7.10) I (Z)NJ*('T-?—Z) [cos(z - —%—z——T - -:’ET ) X
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5
(22)°T 2

®
XZ (<)% v,2r) - sin(z - ¥ _ _ZI )X
=0

@® ' ,
(DT (v ,2rH1)
XZO (22)2r+1 ] ’
r:

1

(7.11) - YV(Z)"J(T-%) : [sin(zu- ZZ.-— - % ) X

[0)]} . .
(=D (v, 2r) Y T
XZ (22)%% =+ cose - 2 4 X
r=0
@ | )
N (<D, 2r+1)
XZ (22)2r+§ ‘ ] ’
r=0 ‘

which hold for large values of |z| provided that |arg z| < TT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21



8. An Elementary Method for Calculating
the First Term of the Asymptotic Expansion of Jh,(x)
F, Brauer [ 2 ] developed an elementary method for evaluating
the first term of the asymptotic expansion of Jn(x) where n is a
positive integer and x is real, In this section we shall give an
outline of his procedure.

Firsi: we substitute v = y VX in

(L. )" ny" + xy' + (x2 - nz)y = 0
and get
2
(8.1) v"+{l+lﬁ~%L}v=0 .
. )

Then by letting v

1 =V and v, = v]', we get the system of equations
2 2
_ _h” - 1/4 xD))v
' - [
(8.2) vy Y, s v, 5 1 .
X
By letting
e 1 0 0
a(x) = 3 b(x) =] 5 UL 5
1l B -
-1 0 x2 0
(8.3)
v
@ o= ),
V2

we get the vector equation

22
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-

(8.4) v o= [alx) +b(x] v .

Next we compare (8.4) with the vector equation

(8.5) T = alx)u
which has a fundamental matrix solution

' cos X sin x
(8.6) ' D(x) = .

~sin X  cos X

Therefore any solution of (8.5) is of the form

t

(8.7) ux) = dx)e

{

=
where ¢ is a constant vector. Now we assume a solution of (8.4)

to be of the form

(8.8) wx) = D)W .

(Note here that if w(x) were a constant then ¥(x) = alx) ). Next
we substitute (878) in (8.4) and see that (8.8) is a solution if

{

and only if

-

(8.9) F(x) = dHDPERDETR .

{

Applying lemmas 1 and 2»[1] , to (8.9) we see that w(x) -f;;(cn), a

constant, as x = ® and further that

(8.10) 1 w(x) - wWe)l S K/x
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where K is a constant and x is large, Now comparing (8.7) and

(8.8) we get

(8.11) 1 v(x) -~ u(x) 1 = 1P (x)W(x) - DE)W(0) | $ MWx ,

where M is a constant and x is large. This tells us that the dif-
ference between v and u is O(X-l> and thus enables us to express

the function Jn(x) in the forms

Jn(x) = Anx z cos(x - Sn) + O(X’%) ’
(8.12)
Jn'(x) = -A x z sin(x - Sn) + O(x-%) .

Using (8.12) and the recurrence formulas in Section 5, we find

that An and Sn can be expressed as follows.

o .
(8.13) A = A ’ O = 80+n_.71:’ n=0,l,2,"'. .

Next by comparing

‘(8.14) ' x%Jo(x) F—J’(Z/TT)% cos(x - /W) X = ®

i

3 .
with (8.12), we get A= (2/1)% and Oo = I7/4, It follows from

(8.13) thai:,

(8.15) A = /)% s S, =(n+1) Th, n=0,1,2"

Finally when we substitute (8.15) in (8.12) we get
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i

(8.16) J_(x) = —,r-% ® cos [;; - (2n+1) lTLT] +o(x?), n=0,1,2;"".

Thus we have the first term of the asymptotic ekpansion of Jn(x) .
Similarly we can get

1
(8.17) Yn(x) = ,—7—%{-)? sin[x - (2n+1) —7—5]+ O(x'%),n E 0,142,000,
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CHAPTER TIIT
l THE LOMMEL FUNCTIONS

9. The Function s

1L,V (z) -

In this chapter we shall study the particular solutions of the

differential equation

2
' _]; ' _.......2/ = -1 . ' = g'...
O S L 2 keH ot <

where 2z is an independent complex variable and s Vg4 and k are

constants, or

(9.1)" 25" + 2yt + (27 - L)y = kM

which is equation (E) mentioned in the introduction., Since the
only singularities of the associated homogeneous equgtion are
z = 0 which is regular, and z = @ which is irregular, we shall
find two different types of series solutions corresponding to each
of these singulafities.

First we shall use the Frobenius method to find a series solu-
tion in powers of z. Considering (9.1) and the explanation given .
in the last paragraph of Section 2, we begin by assuming a solu-

-

tion of (9.1)' to be

@®

r L]
=0

]

26
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Substituting (9.2) and its first two derivatives in (9.1)" we get

the identity

|

: - | )
(9.3) 4 Z [(I‘+/-L+l)2 . VZ:]arzr-i-}_L-ﬁ-l + z arzr"'H'.*.B
) r=0 ‘ r=0 .

= kzl'j'ﬂ'

Setting coefficients of like powers of z equal we get

(1) 2, [(}ul)?‘ - 1/2] =k
(0.8) (11 sy [(i® - 1P| =0
(iii) a = -.ar-z , r = 2’3’4’ see .

r (r+/~L+1)2 _VZ

If neither ot V nor /J. -V i.s a negative integer, the equations
(i1) and (iii) show us that a, = 0y r =1,3,5, *°* . Substituting

(9.4) in (9.2) we get

2H*L H+3 :
(9-5) vy = k[“—T———i - S ZZI > 5 + -..]
(L) v [()u+1) -V ] [(;_L+3) Y ] |
2
=y =1 z
k? [ (L+r+D(L-v+)  ~

_ b
]
RS (VR (VR 7 L (TR V) B ] -
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- -l . (2/2)°
: V.1
B+ 5-%+p)

o L
LT T e ey
therefore,
® | ;
(9.5)" y=kzu'lz[%J,_lg_(:l%.]r@a[j:ika,l]
r=0 r41 L2 2 Zen

| 2 V.1
T Z (DR (/22 [0S + 5+ Irg-E 4 D
1‘(-%+—’g-+r +-g-)ir(%_.l§.+r _,._g_)

r=0

where

Ea)r_‘_l}: (CL)(CL +* 1) ene (CL*'I‘) - F((l&r + 1)
[(a)

For the sake of conciseness we let

, @

v 1
(9.6) s, 4 (2) = z#’lz(-l)r(Z/Z)zﬁzr(‘% rEeyre-Lep
Hs r(%"‘—%‘i-:r'i'%) F(%—-’fi+r+%)

r=0

This is our first Lommel function. It is not defined for /L & V

L ]

“an odd negative integer since | (-n), n = 0,1,2, are not.

. : +
defined, Thus for H - V not equal to -n, n = 1,3,5, *°°° we see
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that the complete solution of (9.1) is
1 .

9.7y y= AJZ/ (z) + BJ-Z/ (z) + ks (z), V # an integer

oV

9.7)" ¥ Z‘AJZ/ (z) + BY,, (z) + ks (z), v a»constant.

% [TRY
In order to get an integral representation of s/‘L y, (z), we
g 9

use the method of variation of parameters to find a solution of

(9.1). For L not an integer, JV (z) and J_, (2) are linearly

v

independent and we assume a solution of (9.1) to be
(9.8) y = A(Z)JV (z) + B<Z)J-Z/ (z)y V # an integer.
Tl?en our two conditions are

(1) Az) JI/ (z) + B(z) J-l/' (z) =0

(9.9) |
| (1) A(a) 3, () + B2 T () 5 -t

Solving for A(z) we get

0. J-Z/ (z)
| , kz"l"l Jd . Y2)
(9.10) A(z) = -V .
Jl/ (z) J-V (z)
JV' (z) J"Z/' {z)

Hoting that the denominator in (9.10) is the Wronskian of J)/ (2)

and J-V (z), we use (4,5) to get

i
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-T2

JL-1. .
kel @) TR

(9.11) A'(2)

kvrz“J_V(z)
2 sin (V 7] *

And finally after integrating we get

Z

(9.12) M2) =zt | o, e .

In a similar manner B(z) is found to be

(9.13) B(z) = Z—-ﬁ%.’TTT z}‘LJV (z)dz .

Therefore
Z

(9.14) = —2———;-1—1;77—1;—7;)— [JVf z‘“LJ_V (z)dz - J_Vf z/“LJV (z)dz]

if V is not an integer. In a similar manner we can get an eXxpres-

sion valid for all )/, of the form

Z Z

(9.14) ¢ v = B—Z-LTIE_(V (z)f z}'LJV (z)dz - I (z)f Z)J-YV (z)dz] .

In (9.14) and (9.14)', if-both the numbers /-Li—V + 1 have
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31
positive real parts, the lower limits may be taken to be zero,
With the above restrictions on [ TV we have their sums and dif-
ferences not equal to an odd negative integer. Upon expanding
(9.14) as'a series in ascending powers of Zzy We see that the powers
of z are |L+ 1, L+ 3, L+ 5, °"" , the same powers as those in

(9.5). FPurther we see that the coefficient of Z/J'ﬂ“ in each case

is the same., Therefore we have

. %
_ gis
(9.25) sy () -m["z/ fo oy, e -

Z .
- J_;/ fz# J;I/ (2) dz] ’ V# an integer.
0

Similarly it can be showm that

2z

(9.16) S}J.,V (z2) = -721 {YV (z)f ZFLJV (z)dz =
0

z
- Jl/ (z)f ZI-LYV (z)dz]
o )

for general V.
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10. The Lommel Function S}.L,Z/ (z)

In Section 9 we developed a solution of (9.1)° corresponding
to the regular singular point z = 0, In this section we shall
develope a solution corresponding to the irregular singular point
zZ = ®., For the associated homogeneous equation as shown in

Ince [6], the solution can be expressed in the form

(10.1) y = e¢(z)u(z)

where C}S s the determining factor, is a polynomial in z; and u is
an infinite series in 1/z which, though divergent, is asymptotic,
However, as we are interested in getting a particular solution we
do not need the determining factor qs . We shéll develope a formal
solution for (9.1) which is a -divergent series except when it
terminates, This series will terminate for certain valuestof the
parameters K and ., For these values we shall develope the
function S}J.,l/ (z)e In a later section wé shall show that

S 1Ly (z), through a limiting process, can be defined when

s LoV (2) is not defined (i.e. when F I V' is a negative integer) .

We begin the development of S, , (z) by assuming a solution

s
of (9.1)' to be
®
(r0,1)? y = Zarzc'r-
r=0
32
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Formally differentiating and substituting (10,1)' and its firét

two derivatives in (9.1)' we get

@®

(10.2) Zar_z [(c +2.02. 1/2] Zc+2-‘r +

r=2

r=0
Letting
(10.3) c+2 = [L+1
we get
(10.4) c = (-1

and the substitution of (10.4) in (10.2) gives us

@
(10.5) Z a._o [(p,+1 -r)Z - V2:| L Htl-r
r:
a
+ z arzu+l'r = Ml
‘=0

which, when we consider the coefficients of the different powers of
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24 gilves

(i) a =k

(10.5)* (i1) a; =0

(131) 2, = -2, _, [( L+ 1 - 2. 2/2], r=2,3,h, 0" .

From (ii) and (iii) above we see that a, = 0, r =1,3,5,""" .

Therefore the formal solution of (9.1)' may be written in the form

2 2
(10.6) y = ket [1 RN vy

2
2

L DDA ;/Zjuuyu-s)z- v21 }

2

Factoring the numerators of terms after the first we see that the
‘fac%;ors are of the form [.Lt VvV - (2p ‘li 1), p = 0,1,2, """ .

V'I'hus the series terminates when L -V or /_j_+1/ is an odd posi-
tive integer. Otherwise the series diverges. Therefore (10.4) is
a solution of (9.1)' if and only if the series terminates. Tn this

Ho

case we denote the right~hand side of (10.6) by kS (z), and
S/_L y (z) is called the' second Lommel function.
L
Next we wish to express S z) in terms of s z) and

Bessel functions. Letting p,-z/ = 2p + 1 we have
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P
(0.6)" 5, (@) = ab-t [1 +z ifz‘—,);m X
m=1

XL -y -1 (r-p=3) [;,L-z/ ..(2m.1ﬂ X

KLty =1) = }_L'H/-(Zm-l)]

p
o [1 +Z (-i)mmx
m=1 2 :
V=1l e (el 2m| (Lt 2)) bl [l 121
Xt‘z)(’zm'?_; zm]
p
_ a1 "
HN DD X
m=0 2

BT Z (=D (p+1) [(p+41)
(2/2)%" T (pmt1) T (1 -mt)

m=0

Next we replace m by p - m and get
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p
y (2) '(-1)Pz#-1v (-1)™(2/2)2"2P ['(pr1) [(pty+1)
H L

k1) [ (el +2)
m=0

®

L ATE| I D €77 il
[(ort1) T (bl +2)

m=0

X (o) [ +1) - (1P -1 X

@
% Z (=1)™(2/2) *™=2P [ (1) [(p+y+1)
[(m1) [t/ +2)
m=ptl l

= (DPHIPE - K e Tk s K DX

XJU(Z) - (;1)PH-L X

S e p ¥ oY ik gl
| F(HL +m+2) r(’%"l')/‘f'm-l-%)

m=0
= (PH L P - L dy P Ky DX
><JV (Z) + S}J_ ,I/ (Z)

R R AN A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36



Xetn [p 4 DTT] 3, () +5 ), ()

=Mt ph -k a ) P B b

cos %— (L+V)r
v vk I VACIL TR VAL

[

where )/ is not an integer. Therefore when L is not an integer

and /J_ -} 1is an odd positive integer we have

ok = bk ed

(Q07) '3, )y () = sy, () 4 o= X
00"}‘( V)Tt J . (2) -cos-]-'-( +p)T e J.(z)

X[ sz -V 2 M Y, ] ’
since cos % (}..L-I/)’TT' vanishes under these conditions. S (z)

Hov

is an even function of V/, thus

(10.8) )

“S/_L,]/(z) = S[J.,-I/(Z

and the requirement that |L -l be an odd positive integer be-
comes equivalent to the requirement that [L - (~V/) be an odd pos-

itive integer. Therefore S is defined as a terminating

(z)
Hov
series if either H +V or L=V is an odd positive integer and
if V is not an integer. When UV is an integer we use the equiva-

lent form
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(10.9)

) Sj.L,l/ (z) =

TICRE AR AL LE

XIe+ £ +3) foin

N

(}J.-Z/)’TT . JI) (z) -

- COS

(RL=p)T 2 Y, (z)] .

N

‘We adopt (10.7) and (10.9) as the general definitions of the

second Lommel function S

1LV (z).
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11. The Recurrence Formulas

In this section we shall develope recurrence formulas for

I

both the functions SIJ‘ y (z) and S (z). First we observe that
9

v

by using (9.5) we get

(11.1) (z) o
. : S, zZ = -
ILF2,1 (P~+3)2- 2
s .
K32 - 2] () - P '
From (11.1) we see that
(11.2) Aol JTE RS )
T ‘()_L+1)2 - L2 (p.+1)[2- p 2 S}-L’V i )

Ve may write (11.2) as

(12.2)" s/J_+2,2/ (z) = ML [(}_L-l-l)z- )/2} s}_i’,/ (z) .

Next we wish to consider

(11.3)

Edz—[zysli,?/ (z)] = 12”1 (2) + 2’ s ' (2) .

From (9.5) we see that

(1.4 v = V| et
(s e dz[sfi”/(z)] ’ (L) - 12

39
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Lo

- (Ln g2 Y ves
( %. % ()Pl 2 ]
We also have
1L
(11.5) -1 ) = o |—KZ -
5 Vz S#,V (z VA [(/-L+l)2-z/2
- l/z-;‘l"l'2 | FRERR } .

[(L+D)? - 2T L+ ® - 2]

Combining (11.4) and (11.5) we find the right-hand side of (11.3)

to be
(11.6) | VZV-ISFL,I/ (z) + ZVS}J_’I/ ' (2)
| = gV (P"'V"l)sp,-l,)/-l(z) .
Thus we have ‘
(11.6)* TANOR =z s @
= (/-L+V"l)sp_—l,1/-1(z) R
and similai'ly
(1.7 s/._L,V.' (z) - -Zz-/- S,J_,l/ (z)

=V~'(}‘L"V'1)SI_L-1,V+1(Z) .-
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Adding and subtracting (11.6) and (11.7) we get

(11.8)! ZS,LL,V' (z2) = (IJ‘+V"1)S}L-1,I/-1(Z) +
+ (/-L-Z/-l)s#_l’l/_‘_l(z) ‘
(11.9)" = Sy (2 = (HAv-s) ) ()

- (}L-V-l)s#_l,yﬂ_(Z) .

Next we show that the recurrence formulas for S TRy, (z) can
]

be obtained from the above formulas by replacing functions of the

type SI_L,)/ (z) by functions of the type S,LL,I/ (z). From (10.7)

we have

(110" 5, (2) = 2t [(,u+1)2-1/2]'s#,1/ (z) -

- [(;ul)z-uz] 2= X

- K hrdke L)
>< sin (Y TT} ><

X[eos 5 (1) T3_(2) = cos § (M+1) T3, (2)]

=ML [(pa®o)? s @ -

We consider
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(11.11) s ' (z2) = s ' (z) +

Hov HaV
2k r<&~—-+->m£%-+—-—+-§—>><
sin [V TT)

+

X fos § (L=1)T 23 " (2) = cos RHL+L)T -3, * (a)]

= . —i-/— s}l,)/. (z) + ()_L+Z/'-1)s)u‘_1’l/~1(z) +

el p - X+ b+ Ev )

. 2
sin TI/ ’TTT

X[COS }2’ (I...L-D)Tr ['"Z:'J_V (Z) - J—(]/-l)(Z)-] -

- cOs -:éL- (}.L-i-’/)’f-" [-— -—5 JI/ (z) + Jz/_l(zj ]

Y‘

T () (HvDs ()

2Lt - B=l o hrEslie 22w Hluep)

* - sin (v -1)’77' ><

X[cos 3 [(p-D - D)7 [0y, @) -

{

- cos £ [(p-1) + (w177 [.Jy_l(zﬂ

_ v
z

S#,,/ (2) + (L+V/-1)s (z) .

L-1,1-1
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Now we proceed as we did for s# Y (2) to get the recurrence for-
14
milas,

(11.12)° SP_,V' (z) + (V/Z)SH,V (z) = (;.LH/-l)S/LL_l,V_l(z) s

i

(11.13)" S0 (@ - D8 () = ey DS ()

(11.14) (zz//Z)SH’V(z) = (/«L+2/_1)s#_1,1/_1(z) -

- (F‘L')/'l)sp,-l,)/ﬂ_(z) y

(11.15)° 23#,2/ (z)A = (}L+1/-1)s}_,;_1’1/_1(z) +

+ (/.L-y_l)s#_l’,/ﬂ(z) .
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12. Lommel's Function When

H*V 3is an 0dd Negative Integer

We have seen that ks/_l.,l/ (z) and ks;_L,)/ (z) are solutions of
(4.1) when [LE L 1is not an odd negative integer. Now we shall
use S}“L L (2) to develope a solution when KLV is an odd nega-

b
tive integer. Since SFL Y (z) is an even function of L/, it will
’

suffice to consider the case when [L-1/ is a negative odd integer.
First we shall express S)/-Zp-l,V (z) in terms of SI/-l,l/ (z), for
any positive integer p. Using the recurrence formula (11.10)' we

see that if neither (1 - 1 )p nor p vanish, then

U =2p

(2) = -‘SZ/-?.p"'l,I/ (2) + 2

(12.1) s
y-zp-1,V (L -2p)2 . VP (v-2p)?. V2

!
= Z 7/ "ZP
(-2p) (2 -2p)

z V2pt2 -5 L oAl (z)
" (-2p) (2 -2p) (-2p+2) (2V ~2p+2)

2V =2P

i 22(-13)(1/ -p)

LV -2pt2
-p) (=p*+1) (1 =p) (L ~p+1)

22+2(

+ (-1)2??./@111/ (Z)
25%2(-p) (1 =0,

Ll
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p-1 L -2pt2
=Z (-D)" (-1, , ), ()

+
22 ENp) g (U =Bl gy 27PCR) (M ep)

m=0
p-1

Z (_l)mZ)/ -2p+2m .
22 p) (D)

m=0

(-1)%,, 1 ), (2)

+
22P(Lp) (ept1) . ** (-1) (V=p) *** (V-1)

p-1
=Z (-1)" Y/ -2PTen (-1, ), @)

+
2+2m 2p
- YV “pr'(l-
=0 2 ( p)m+1('/ p)m-l—l 27pi(1 V)p

Therefore if the above conditions on L/ and p hold, we know that

for any S}J.,Z/ (z) for which -V is an odd negative integer, we

can write an equivalent expression in terms of SFL 1.V (z) . Next
=1,V

we consider S (z). Using (11.10) " we see that

V-l

s L, @
(12.2) 5, v @ =@ 0 H=v-1

is indeterminate. However, since the equation (10.7) is holo-
morphic in S z) is a holomorphic function of near
b }J" }_L+2, ]/( ) b o }_L
H = V- 1. Therefore we define S (z) in the following
VTl,V

mahner.
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| . 2H s (@)
(12.3) 5 5 ), (2) =Jﬁfy_l (L) (LD D) ’
|

and use L'Hospital's theorem td get

' JL+1 % t
2 log 2 — (s A{2) )
(12.4) 52/_1’2/ (z) = - ,L.L'L-f > H+2,V ll: U

=~—1--—[zz/logz- 6

7, éﬁ(sf‘j'+2’)/ (z) )] pL=v-1.

V]

From (10.9) we see that S (z) can be expressed as the sum of

}—L+2’1/
three terms. Differentiatimgeach of these with respect to H we

get

(12.5) 88#_[5#&,1/ (Zgl =y g'[z

l‘ N
H+l

T

L Y .,.3 Y .2
m;=0| p?‘ 5t z)mﬂ(}ziJ’ 5 2)m+1

H=y -1

®

(=D)™(a/2)2™2 .

= zI/ log z
+og () L +1) e o o (U 4t )

m=0
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%4 )4
Xt%f3*§m1%+?+%m1X
-1 -1
x:iugmuﬁ. L, Y,3 ]
OHLLIZ 2 2fp 2+2m+l =yl
@
_ v (=1)™(2/2)?™2 (L +1)
2" log z (m+1)zzi“(1/+m+2) *
m=0 -

@
% (-1)"(2/2) ™2 T+
T Z {(mﬂ)zr(zzmz) = X

m=0

(T Fedinen  rBedeDeny
Th-F+3 i+ 5+

2 2 2

STT————
- =+

+ 2 4y
\ rE-% %ﬂ#+~+%

@
= VF(V+1)Z §=D)Xa/2) X

(nt+1) ! (Y 4mrt2)

m=

X%ogz- .g}l[hg F(%""Z{""%*m*l) +
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+ log r(%+ 4

-§—+%+m+l) - log F(&-—%*—%) -

-1 [“(#L-+Z-+2)] | |
g 2 "2 72 H= v-1

Now by the use of the notation

VL) = [ (/T (L)

we have

(12.6) - (/2 T +1)X

F [S“+2’V ) } HL=V-1

me=1 2m - -
YZ (7%“)(1/-(% /3_3_) \\2 log z + V(v+1) + V(1) -
m=1

- V(V+m+1) - \V(m“rl)J
Next we need

G2 - éi[ RS LD Tkt e e B

| 1 ' |
! : X eos 2 (F=p42) T = 1) (2) J KL=y -1

Y D) F, ()

o V-

b T vy, (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

and

(12.8) Séfi [2”“ I“(H— V 2’-) F(#L-+--+ 3)X

in ( V‘*‘Z)Tr'J()]
X si H- 2 Ty

={2’/F(z/+1) log 2 + 2% F(%—{-a—%} X

v
X rg+5+d X

X

dy,(2)

g %3 S5 SEY

F(l“—L-—-’—/-Jrz\ D+ X4 2
2 2 2 L=

a

_l)m 2) 2tV
[ z ! [‘%Lmﬂ)

m=0

Xfoe 2+ 3 V) + ¥ (v

Putting (12.6), (12.7), and (12,8) into (12.4) we get

)

(12.9) Sz/'-l,l/<z) = %—V- {z’/ log z - [5 [T(v+1) ><

mel 2m
XZL-D[’(V('F/I?D (2 log z + V() + V(v+) -

m=1

D
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S W(VHm +1) - \Ifcmfl) ) + 2V /2 T+ X

@®
n-. 2n
XZ@?? ()/(f/:ll)' (2 log 2 + V(1) + W(V+1) ) +

=0
+ ZV'J"TFF(V"’DYV (Z)]
_ zl/lzll/og zZ ., 11;1/ V(L)X
a

) m ' 2m
X m%l)[ﬁ(;%)m 7y (21 2 - Vo) -

m=0

- : 1 v IR V5 N
- V(v+ntl) ) -3 2 2logz - 5352 A
i

X Tt (=)

@

m 2m
2V (v mLTl)f’ gzl‘//i)m+l) (2 log (z/2)-

=i

m=0

- Vn+l) - Y(V+n+l) ) - 2”'27TF(2/‘)YV (z).

This formula holds when L is neither zero nor a negative integer.

We note that SLL,I/ (z) is an even function, and use (12.9) to get
I

(12.10) s

&

RPNy (2) S_) 1,1 (2)

!
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[¢2]
Y irl)m 2y2m
m=0

-2

-V (m+l) - W(-p+m+l) ) - 2 T[T, (2)

Thus if L/ is positive we use (12.9) and if LV is negative we use
(12,10). !
Finally we look at the case where V = 0. From (12.3) we

i
have

ZLL+1

_5 )
(12.11) 5, o(2) = lin l““g’o(z
. ~Ls H- -1 (HL+1)

é@%[zpﬂ

!
a3 o

“Spiez,0l?) ] =1

By a procedure similar to that used in the development of (12.9)

we get

<]

2 |
Z (-D"(z/2)%" {mg 2 - Ym)? -

(m!)2

(12.12) s

AT o

_1,0¢%)

m=
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13. The Asymptotic Expansion of S Y (2)
; I__L,

1

We shall find the asymptotic expansion of S/*L Y (z) as izl
H
tends to ®in an appropriate sector of the z-plane using Barne's

method., First we shall consider

. _ZI‘L_]‘
(13.1) I(z) = ~ ST X
1
®i-pt3 2s
1 1 %4 1 v 2
XU[ M-+ rG-E -5 o) md .

) -1 ; v 1 d v .

FG-5+PrG-5-49 snkm,

with p chosen a large enough integer such that the only poles to
the left of the contour are ones involving sin (s 7). We shall

show that

(13.2) ' I(z) = o(zM-2P
and that
| 2 2
(13.3) I(z) =z M1 [1_ LH-—1>2~U 2o o4
Z

e (Pt Kwen®op? 1l (epn1 2]
2(p=1) |

TRONE

52
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thus showing that the difference between S VRY (z) and the sum of
-

the first m terms of the series

(13.5) oMl [1 e®op? | e A en® P o]

2

. .
(for m 2 p) is O(z;" Zm) whereas the least degree of these first

1
. -2mt
n terms is z-"_L 2 1.

. 1L_ KL, Y. 1L _KL_ LY
For convenience we let 5 5 + 5 = a and > 5 b.

Al f o

Under this substitution our integrand becomes

l

Mo - ) D (b -s) T (2/2)°
(13.5) : r?a), T (b) zin_,(s’z% )

Next we consider the order of the integrand as is| becomes large.

!

We let

(13.6) s = Ri-p+z

we

and-we let R tend to @ or -® depending on which is applicable.

Since !
. o 1 . fros 1
1(R:1_-p+—2-47r _1(R1..p+-é-’77' s R 7T
. - . e - e < e + e
(13.7) Isin(sT = 5 L . ,
we have
(13.7)" | Isin (57 = O(exp(TTIRD ) .
Also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(13.8) 1(2/2)%° 1 = |(z/2)?Ri=2p*1 |

Ie(ZRi-Zp‘i'l)(log Iz/21 + i arg(z) )|

= e(-Zp +1) log |z/2| - 2R arg(z)
gives

(13.8)' 1(2/2)%°1 = O(exp(-2R arg(z) ) ) .

Using the definition(see Whittaker and Watson [11] ),
S 1 .
(13.9) I [(c+5s)l= exp[ (s +¢c = —2—)(log sl + 1 arg(s) ) -
[

‘ -5 + 3 log 27T:l ,

N[

where ¢ is a constent; larg(s)! S 77 - 8,8 > 0; and |s| tends

to @ ; we get V i

(13.20) T (a=s)! (»2'7-”)é lexp[(-s +a - %)(1og}-,sl + 1 arg(-s))'b-s]l

(27)% leXP[(-Ri + p+a-1)(1ogV R2+‘(p- 1) ; +

2l
. . 1
+1arg(-s))+R1-p+-é-]’ .

Therefore
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T
0 lexp ((p* a-1)log V R%+ (p - %)2 +

erales) -+ Y

IT(a-s)|

i

O[ IR pta-l exp(R arg(-s) )] .
Thus we have

(13.11) [(aws) [ (bas) T (2/2) %5
l [ (a) [ (b) sin(sT)

=0 [:RI 2p+a+b-2 X

X exp(=2R arg(z) - TRl + 2R arg(-s) )]

where the last two terms in the exponent are negative for large

Is]e

Now we shall show that, if larg(z)l < 77, then

(13.12) | - 1(3?:3) ;EE;SZZ;({E/%ZS < s IRI <R

where Ro is a positive number. First we consider the order of

(13.11) as R tends to @, We let s = Rleié) - Then we note that

as R tends to .o, Rl tends to mand»@ tendsﬁtlo 12—T . When R

f.ends to -®@, Rl tends f‘,o ®. and ﬁ.tendé to — -2—- . Considering

the term 2R arg(-s), we see that if R tends to ., arg(-s) tends
_i to — -—;—r- and 2R arg(-é) tends to -TTR. If R tends to -® , then

2R arg(-s) tends to =TTR. On the other hand, if we maximize

o~ o
-2R arg(z), we get 2 IR|‘(’7T-6) where O is a fixed positive

[
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number. The above implies that

(13.13) T (a=s) T(b=8)Tr (2/2)2°

2p+ a + b2
[ (2) [ (b) sinlsT) pre

= o[ R| exp(-2 Ing )]

for large |RI., From (13.13) we see that for large IRl we have
(13.12). But the fact that

@
1
f Rz &
A A
(o]

converges implies that our integral converges uniformly by the

. M-test.

Since I(z) converges uniformly for |arg z|<Tl, we have

Ri-p +-:-2L—

ML  Lacs) [(bag) 77
(328 1@ € |2r—1n f a) L) sin B

. 1
~Ri-p+ 5

Xle(ZRi-Zpi'l)(log (z/2)] + i arg(2)) [ds||

-l 2pHL
¢l 15 X

!

v [ D) Dm0 or(re$
[ Lgabeen merd)
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|
where the limit factor converges. Therefore we have

(13.15) I(z) = o(zH-2Py |

Next we wish to evaluate I(z) using the Residue theorem.
First we note that we have a finite number of poles in each unit
interval to the right of our contour and that the poles in each
‘interval are respectively one unit distance from the ones in the
preceding interval. Therefore we choose a radius R and center
-p *+ %— such that a semicircle drawn to the right of our contour
passes through no pole of the integrand. We let R tend to @ by
increasing it one unit at a time. We next consider the integral

around the closed contour as R tends to wmand let o represent the

path along the semicircle from -p + %—— Ri to -p + -]2:*' Ri, Then:

-

2H1 [ T(ans) [(bas)T(2/2)%° L1
(13.16) [I(z) + r(a(ta)s)rl“(é) :gnéz?/ﬂ) dsJ /

is equal to the sum of the residues of the poles of the lintegrand
inside the closed contour. We shall show that the integral over
the semicircle contributes nothing to the integral over the closed
path when R tends to w.

In order to do this, we shall investigate the order of the

integrand on the semicircle when
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(1) s = R ei@

1
(13.17)
(11) = £+71
and
(13.18) 2 = Wil |

Using (13.17)(i) we have

iR._L(cos 6 +1isin @ YT liRl(éos @ + i siy;@ yIT
e . -

(13.19) |sin sTi=

21

=R, Tl si R. TT si
! 51n@+el s:m@

<
2

Therefore

(13.19)° |sin sH | = OCexp(RyTr) ) .

Vhen we consider i(z/Z)zsl , we use (13.17)(i1) and (13.18) to get

(13.20)  |(2/2)°5 | = |exp(2 £+ 2i7)) (log Ik/21 + 1 arg(z) )|

o /2135 exp(-21 W) )

It

and we use (13.17) and (13.18) to get

(13.20) | (a-s)| = (2'77')% exp[(- f “i7) +a - %) (log Ry +
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+ 1 arg(-s) ) + {- +T7i] “

- +a — —]—'-
= O[Rl 5 2exp( 7) arg(-s) +g)], Iarg('-s)l < T,

Therefore the order of the integrand on the semicircle, except where
targ(-s)l = T, is

C(azs) [(b-0) T (2/2)° |
(13.22) 'J ar?ajlf‘(b)s sinz(s’ﬂ')

/.
'

= O[R-2;+a+ b-1 ]k/2|2 RES exp(27) arg(-s) -

= o[r,*5
_277\[/-221’”')] .

As R tends to o, Rl tends to @ and we have three cases.

|

(1) {f tends to @, mj is finite,
(13.23) (11) M| tends to w , |§ |is finite,
S (411) Mltends to o, ‘éh,ends to @ .

Now we shall examine (13.23) case by case. In case (i) sincelT)I

is finite and || is infinite we have

(Rl)ZE' +%c . ’

[ (a-s) r(b-s)'fr(z/Z)zs
(13.24) [
: [ (2) F(b) sin (sTr)
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where thends to o, ftends to 4y c =at+b-l, and M =

2 .
(1k/21e)®. 1In case (ii) where I7) | is infinite and Ig lis finite

we have
T(ae _ 2s c l
(13.25) [ e LT/ | = o(r, ™) exp(a 7 arg(es) -

- 27’]'\1/ - Rl‘ﬂ') , ey = .2 f +a+bh.l .

Since Rl < 27) and n < Rl we have

[ '(a-5) ['(b-5)TT(2/2) 2s
() T(b) sinfs 77)

(13.26)

%
=0o(7 exp(2 7) arg(-s) -

-2y - TN .

Since 7) and arg(-s) always have opposite sign, the term
2 T) arg(-s) is always negative. As R tends to o, the minimum

-
value of larg(-s)|l tends to - . Therefore the maximum value of

<

27) arg(-s) tends to - T I7jlas R tends to @ . Since larg(z)I<TT

. i N
we have the max value of -27) WV = 2 (MI(T7-0), S >0. Therefore

[(a-s) [(b-0)TT (2/2)%° _ (02
(13.27) ST e e - o T em(2m13) )

il
o
Py
3
-
~
{

) ’r)tends to ®.

In case (iii) when both éand IT) Vare infinite we consider cases

(1) and (ii) and get
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[a-s) [(b-s) T(2/2)%% _ g . 7
(13.28) - o
[(2) () sinls™) (Rl) 26 4 2m)l 6’

where M,c,cl,g, are constants; and é' s 171y Rl all tend to w.

Next we consider the integral

n D(a-s) [(bos) T (2/2) %
(13.29) [ f T T sl 9

< T R(max
s€ cR

[as) To-)T(2/2)%° |
[ (a) [(b) sinft {s ) .

But the right-hand side of (13.28) tends to zero as R tends to m.
Therefore we have shown that the integral over the semicircle con-
tributes nothing to the integral over the closed path when R tends
to @ sxcept possibly in & neighborhood of the poii
larg(-s)i = ’IT Since the contou'}c‘ does not pass throug.h. a2 pole, we

can bound the integrand in a neighborhood of s = Rl R

’

( [(a=s) [ (b-5) T(2/2)%°
(13.30) | BT stm le 7]

A
< M s

for any given radius. Then we have

< ueAs

[ (a-s) [(0-5)TT(2/2)*®
(13.31) ‘ f F(Z) [“(b)ssinlz’n’) ds
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where A s te}nds to zero. Therefore we prove that the :‘Lntegral over
the semicircle tends to zero when R tends to @
Since the integral contributes nothing on the semicircle, we

know that I(z) is equal to the sum of the residues of

A lacs) [ (b=s)Tr(2/2)>S
() (b) sinfs7T)

(13.32) 2

at the poles

O’ -1, b 9 "'(p"'l)
l, 2, 3, oo \

(13.33) '
By a+1,at2, e

by b+ 1, b+ 2, "

Since we integrate in the positive sense, we consider

. 1

®i-p + 3 :

” _ -1 el [aes) Do) (2/2)%
(1358 3(2) = 37 [ o (ai“?a) =) sifnz({sﬁ') ds
- i-p + %
-~® i=p *+ %
= '2-:"]}3- f 't;“(s)_ ds

® i-p + B

which is equal to the sum of the residues of F(s) at the poles above,

where F(s) is the integrand of (13.34). In the first set of (13.33)‘
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we have simple poles -m where m = 0y 1, <<*, (p-1). Therefore

_ 11 Datm) Dokn) T(z/2) =20
(13.35) Res (F(s),-m) =z} r(i?r(b)Wcos(fm’ﬂ') ’

p-1
(13.36) Z Res (F(s),~m) = Z‘-L-l[l _ F(ag) [t
5 “ (z/2)°T (2) ['(v)
m‘:

b er + (> Lerp) [op) ] -
(2/2)22 () [ (v)

) Zu‘l{l" 2 5 hoeee # (-1)P-1X
(z/2) |

><(ab) o0 ( (atp-2) (btp=2) )
] (2/2)P-%

2
Z

:'ZLL-l [1.. (1‘f‘L+V)(1‘f'L‘V) + eee +

+ (Pt [(,FL"DZ'- ke KD [J(;L-LZD-B))Z-I/ZJ ]
zZp-Z -

For the second set of poles, m =1, 2, 3, *++, we have -

- ® : @

— 2
@31 ) s (et < o7 L LGl

m=1 m=1

Using [ (p) [ (1-p) = Trese M p we get
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® @ 2m
€
(13.38) ZRes (F(s),m) = zH~ Z £— X
‘ m=1 m=1 - -0

1’ % 1 Vv
F('é—%—-i--—-m)r('z*-%——é--m)

2
rC-L-5ra-E-Z

X

@®

RNV N D %

g QT G-

z -1 ] AR ><
CG+g-F+m

m=1

LE+E+S

2 2
- e [+ *!:2‘ + 5+
§‘ince
T ese [(a-m)7] T ese [(b-m)7]  _
(13.39) T ese’ (aTr) T cse (b7r) =41 .

Then replacing m by m+1 we get

® ® - )
(13.40) %RGS (F(s),m) = -zH-t % .< ) 2] [G+5 2)>(
TR+ _Zom 2

m=1 ‘ m=0 2 2 2

LG+E+5

e e

—S/J_ ,V (Z) .

t
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The sum of the residues at the poles, a + my m = 0,1,2,¢+¢, is

given by | o
<

(13.41) Res (F(s) ya+tm)
=
m:-‘

®
= g H-1 1im s-(atm)) [ (a-s) rib-s)W(z/Z)zs
amatm [(a) [ (b) sin (sT7)

m=0

cmaty (a=s)(a¥l-s)ee-(atm-s) [ (2) [ () sin (sT7)

i t

] i )
=Z“"1zlim (oot [y -e) [ (oos) (/2%
m=0

=_gH=1 T (-y-m %
..1) nlG-E+5TEc-£-L

i
m=0 2

T(Z/i ..}..d-l/-l-?m
sm(— - H- + V) e cos(mr)

X

e - .

TG E el B BT G- L B

a
(2/2) V0 (s

m=0
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I s N VR Y 2,
- _2Mrg+E-BH T (o)) V¥
l“(!z-_ L __1_/_) Ll m [ (I+V+4m) sin(-1T7) cos(-m TT)

2 2 =0

Hlrrd s Boky
=217Tr(2+1/2 2 X g, .
G -& -5 sin(T) v

In the same manner we could show that

. |
ol i+ K K
(13.42) Z Res (F(s) ,btm) = R X3 @,

- G -5 +X) sy
-

i

Adding (13.41) and (13,42) and factoring

TG YT f g
sin (V)

out iof each term we get

Al L hrdi e £d
sin (L 7T)

(13.43)

{

J_V(z)’Tr
1 V 1
[a - <§+%-—2~))I‘(§+%—-—’§-

»

JV(Z)’Tr

TTa-GrE eI TE s v K

2
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Al ) N
sin (V7T)

X

2
s T

Y N (L V.
J—I/(Z) T sin(3 + =+ =) T _ Jy, (2) Tsin(z + Ko By

MG E-PrE g s
sin (V77)

XFLV(Z) cos(%(}.L-V)’TT) - 9y (2) COS(%(/;L-H/)’/T} .

But the sum of -s}_‘L N (z) and (13.43) is "S;J.,V (z) and thus we

have

(13.44) s

pov

. s '
0) ._/Z;J""l [1 ( -1 N-I/ +
- - 2

i

(S

L en®ev? L((,LL-a)z-z/'?) _ J
b ’
z

for large Izl when jarg(z)i< 77, -
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14, A Method for Determining the First
Term of the Asymptotic Expansion of S}J_ )y (z)
b}

The method developed in this section is based in part on
Brauer's method which was outlined in Section 8. PFirst we make the

substitution v = yVz in

(L"ol) Zzy" + Zy. + (22 - Z/Z)y = kzu'+l
and get
e L
2
(14.1) w1 Govdt s w2
Next we let
(14.2) vEv o vl' =v,

which gives us the system of equations

| (1) vl' = v,
(1%.3) .
/_L—- —_
(11) v,' = [.1-+ (V2 - -L]i)/zz}vl + k' 2
If we let — ,'
| o 1 0 0
(14.4) a(z) = : » b(z) = ’
a0 (V2 -l o

68

N
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v:L 0 |
v(z) = , clz) = FL"%
v2 kz
we get the equation
(14.5) v ' (2) = (alz) +b(z) ) ¥(z) +e(z)

Using (7.10) and (7.11) from Chapter IT on Bessel functions, we get
a fundamental solution P(z) of

(14.6) v ' (2) = (a(z) +b(z) ) v(z)
namely,
.7 D)

f—

___;, coS(Z—(Z)/'*'l)'E/Tr') + O(Z

§?
=5

y= sin(z-(2141) 1) +0(z™)

Joo

{/7?? sin(z-(2L 4D )+ 0(z7H /= cos{a-(2141)30) ¥o(z"])

where the first line consists of the respective first terms of the

asymptotic expansions of _J,/(z) and Y, (z). Since P (z) is a
{

fundamental solution of (14.6), it has the property

(1%4.8) D ' (2) = (a(z) + b(z) ) D(z) .

Next we consider the solution of (14.5) to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69



70

z
- -1
(14.9) ?p(Z) = D(a) f ch(t)} o(t) dt
@®

where the path of integration is taken along the ray emeréifug from

the origin and p§ssing through z. Since

(14200 (2] = = cos™(z-(21+1) P +

{

+ "%r" sin?(z-(2 1/+1)35T-) + 0(z™h

+ O(Z-l) ’

which is different from zero in a neighborhood of z = @, P(2)
|

has an inverse in that neigh’borhood. Using properties of asymptotic

expansion (e.g. see Wasow [9]), we get

(w1 (b )™t =
\/:,Zr- cos(z=(2 ’/+1)l;—) +O(z-l) —-1/%- sin(z-(ZZ/‘-t'l)jLTT-) +O(z-1)

VZ sin(a-(2v4) I +0(z™) —V/-E-r-. cos(z=(2L+1) ) +0(z™1)

2 -1
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JE cos(z-(21/+1) 1) +0(z™) —1/5’-2?- sin(z-(2142)0) +0(z™h)
' |

J—Zf— sin(z-(2L+1) D) +0(z™Y) \/—12?- cos(z-(éz/ﬂ)%) +o(z"hy/ .

Next we note that (14.9) is a solution of (1%4.5). When we substi-

tute -C-’p(z) of (14.9) into the left-hand side of (14.5), we get

(14.12) dD(z) f ép(t) S(t)dt + o(z)

: -l
= (a(z) + b(z) ) cb(@f @:(t)] c(t)dt + o(z)

= (a(z) + b(z) ) w_r'p(Z) + o(z)

(i.e. ;p(z‘) satisfies (14.5) ). If we let

!
1

(14.13) £(z) = z-(2V40)T

we have

2 cos(e) 4oa 2 sinte@) ot

(14.14) ?r’pl(fz), o X
-2 . -
v; sin(£(z)) +0(z 1 \/751, cos(f(z)) +0(2™1)
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cos(£(t)) +0(t™h) sin(£(t)) +0(t™L)

=
&

0
X [ | | 1 |dt
: CHT 3
@ \/_—_725 sin(f(t}) fo(t'?) —g— cos(r(t)) +0(t'l) kt
Z cos((z)) +0(z™Y) - £ sin(2(2)) +o(z"})
_ X

3™

cos(£(z)) +o<zj1)

I

sin(f£(z)) +o(z'l)

| - * -2

. ‘k'/’—‘zi t'u 2 s;n(f(t)) +O(tl~L 2y
X J X dt
L1 -2
®\ /T2 costztn) v 2)

Integrating by parts we get

'\/:I?T— cos(f(z)) +O(zfl) -

=

- sin(£(z)) +0(z"h)
(1%4.15) x’r’p(z) =

JJZ sinte(a)) +o7h V& coste(a) +0(z™)

=7 - = -2
..k\j'—g- (—ZH Z)COS(f(Z)) '*'O(ZH 2y

X
-2

| IR
\ k@ ( ZH') 2)s:’m(f(z)) + O(zH— 2) /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

>< :



73

Since
o
| vRLZ) ]
(14.16) ?p(z) = . ,
\ vp' (2)
we have
-3 1 2
| n [~ 5 -
(14.17) v (2) = w2 cos?(£(z)) + w2 sin2(£(z)) + O(z}_L %
-3 -2
=kZI—L Z ., O(ZP 2
But ; |
1
(14.18) AOR 2° 7@ ‘,
implies that
(14.19) AONE k% o(zH-2y .

Thus we obtain the first term of (13.%4 ). .We note here that by
carrying one more term in each of the entries in the matrix P(z),

we could get thé more accurate formula

(14,20) v = Mt 1+ 01
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