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Abstract 

 Digital dashboard displays with critical driver information are found in all modern 

vehicles. Examples of such information available to the driver include a speedometer, odometer, 

engine RPM, fuel gauge and more. The current 2016 Sunseeker solar car already has numerous 

displays that can show critical information to the driver, however, there are several problems that 

exist. Each display itself is less than two inches in size, the text on the screens is difficult to read, 

and the measurements have no units. Furthermore, these displays were made by a company that 

no longer exists, thus preventing the solar car team from purchasing any more for their 2020 

version of the vehicle. Therefore, the next version of the Sunseeker solar car required a next 

generation driver display that supports strict power, weight, and space considerations. A 7-inch 

full-color LCD touch screen display with a Serial Peripheral Interface (SPI) was chosen as the 

new digital dashboard of the solar car. This display was integrated into the Driver Control unit of 

the existing solar car, which already possessed some of the critical driver information. The new 

Display and Driver Control (DDC) unit integrates in a single subsystem driver switches, 

controls, accelerator measurements, and CAN bus communications with interfacing for the 

display. CAN bus data and software programming allow for a screen of customized vehicle 

information to be available to the driver. A custom printed circuit board and housing has been 

designed, developed and tested, resulting in a DDC with fewer electronic modules, less wires 

and cables, and significantly greater capability than before.  

  



 

iii 
 

 
DISCLAIMER 

 This report was generated by a group of engineering seniors at Western Michigan University.  
It is primarily a record of a project conducted by these students as part of curriculum 
requirements for being awarded an engineering degree.  Western Michigan University makes 
no representation that the material contained in this report is error free or complete in all 
respects.  Therefore, Western Michigan University, its faculty, its administration or the 
students make no recommendation for use of said material and take no responsibility for such 
usage.  Thus persons or organizations who choose to use said material for such usage do so at 
their own risk. 

 
  



iv 

WESTERN MICHIGAN UNIVERSITY 
COLLEGE OF ENGINEERING AND APPLIED SCIENCES 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 
KALAMAZOO, MICHIGAN 49008 

SENIOR DESIGN PROJECT REPORT RELEASE FORM 

In accordance with the "Policy on Patents and Release of Reports Resulting from Senior Design Projects" as adopted by 
the Executive Committee Of the College of Engineering and Applied Sciences on Feb. 9, 1989, permission is hereby 
granted by the individuals listed below to release copies of the final report written for the Senior Design Project entitled: 

PROJECT TITLE: Sunseeker Display and Driver Controller 

PROJECT SPONSOR* Did this project have a sponsor?   YES   ✓   (see footnote)   NO_____

Contact person and email address &/or telephone: Dr. Bradley Bazuin (brad.bazuin@wmich.edu) 

Company Name: WMU Sunseeker Solar Car team 

Design team has requested sponsor to verify in writing to course coordinator that all promised deliverables have 

been received.    YES____ NO  ✓    (please check)

TEAM MEMBERS NAMES: 

NAME PRINTED NAME SIGNED  DATE 

Alec Kwapis  ______________________________ ________ 

Conner McCarthy  ______________________________ ________ 

Nathan Heffington  _______________________________ ________ 

_________________________  _______________________________ ________ 

_________________________  ______________________________ ________ 

* Those teams with a sponsor must have sponsor provide the course coordinator with written evidence that they
have provided the sponsor with a copy of the final project report as well as with other items that the team has
promised to the sponsor.  The evidence could be a short note via email, fax or US mail from the sponsor 
indicating receipt of a copy of the report and all promised deliverables. 

4/13/20

4/13/20






















































 

v 
 

Acknowledgements/Permissions 

 Thank you to Dr. Bradley Bazuin, advisor of the project, and the Sunseeker solar car 

team for providing their time, funds, resources, and laboratory space throughout the course of the 

project.  

 Special thank you to Austin Gilbert and Velocity Design & Engineering, for 3D printing 

the housing for the printed circuit board. 

 We allow and encourage solar car teams to reproduce and improve on this project for 

their own solar cars.  

 
 
  



 

vi 
 

Table of Contents 

Abstract ........................................................................................................................................... ii                       

Disclaimer ...................................................................................................................................... iii 

Release Form ................................................................................................................................. iv 

Acknowledgments/Permissions .......................................................................................................v 

List of Tables ................................................................................................................................. ix 

List of Figures ..................................................................................................................................x 

 

Introduction 

 Background ..........................................................................................................................1 

 Problem Statement ...............................................................................................................2 

 

Discussion 

Hardware Design .................................................................................................................3 

Display .....................................................................................................................3 

Block Diagram .........................................................................................................4 

Electrical Schematics ...............................................................................................5 

PCB Layout ............................................................................................................11 

Bill of Materials .....................................................................................................13 

 Mechanical Design.............................................................................................................18 

  Overview ................................................................................................................18 

 Dimensions ............................................................................................................21 

 3D Printed Enclosures............................................................................................23 



 

vii 
 

 Software Design .................................................................................................................24 

 Introduction ............................................................................................................24 

 FT812 Display Controller ......................................................................................25 

 Frame Layout .........................................................................................................26 

 EVE Screen Editor .................................................................................................28 

 Adding New Measurements to the Display ...........................................................29 

 Display Commands ................................................................................................30 

 Types of SPI Transactions .....................................................................................34 

 Memory Read and Write ........................................................................................35 

 Coprocessor Engine ...............................................................................................36 

 Display Initialization ..............................................................................................40 

 Transmitted CAN Messages ..................................................................................43 

 Received CAN Messages .......................................................................................44 

 Testing and Verification ....................................................................................................50 

 Overview ................................................................................................................50 

 MSP430 Clock Frequencies ...................................................................................50 

 Digital Inputs .........................................................................................................52 

 Display Measurements ...........................................................................................53 

 

Conclusion 

 Evaluation of Specifications ..............................................................................................63 

 Physical Characteristics .........................................................................................63 

 Design ....................................................................................................................64 



 

viii 
 

 Functionality ..........................................................................................................65 

 Recommendations ..............................................................................................................67 

 

References ......................................................................................................................................68 

 

Appendices 

 Appendix A ....................................................................................................................... A1 

 Appendix B ....................................................................................................................... B1 

 Appendix C ....................................................................................................................... C1 

 Appendix D ....................................................................................................................... D1 

 Appendix E ....................................................................................................................... E1 

 Appendix F........................................................................................................................ F1 

  

  

 

  



 

ix 
 

List of Tables 

Table 1: Bill of Materials ...............................................................................................................17 

Table 2: MSP430 Clock Frequencies ............................................................................................25 

Table 3: MCP2515 Masks and Filters ...........................................................................................45 

Table 4: Filter and Mask Truth Table ............................................................................................47 

Table 5: Accepted CAN Messages ................................................................................................47 

Table 6: Battery Protection System CAN Messages .....................................................................49 

 

 

 

 

 

 

 

  



 

x 
 

List of Figures 

Figure 1: NHD-7.0-800480FT-CSXV-T .........................................................................................3 

Figure 2: High Level Block Diagram ..............................................................................................4 

Figure 3: Electrical Schematic Sheet 1 ............................................................................................6 

Figure 4: Electrical Schematic Sheet 2 ............................................................................................7 

Figure 5: Electrical Schematic Sheet 3 ............................................................................................8 

Figure 6: Digital Protection Circuitry ............................................................................................10 

Figure 7: PCB Layout ....................................................................................................................12 

Figure 8: Completed PCB ..............................................................................................................14 

Figure 9: PCB Component Overview Page 1 ................................................................................15 

Figure 10: PCB Component Overview Page 2 ..............................................................................15 

Figure 11: PCB Enclosure Overview – Top View .........................................................................18 

Figure 12: PCB Enclosure Overview – Left View ........................................................................19 

Figure 13: Display Enclosure Overview – Top View ....................................................................20 

Figure 14: Display Enclosure Overview – Rear View...................................................................20 

Figure 15: PCB Enclosure Dimensions .........................................................................................21 

Figure 16: PCB Enclosure Dimensions – Top Piece .....................................................................22 

Figure 17: Display Enclosure Dimensions ....................................................................................23 

Figure 18: Screen Layout ...............................................................................................................26 

Figure 19: EVE Screen Editor Software ........................................................................................28 

Figure 20: GAUGE Command – Recreated Documentation .........................................................31 

Figure 21: GAUGE Command – Datasheet Page 1 .......................................................................32 

Figure 22: GAUGE Command – Datasheet Page 2 .......................................................................33 



 

xi 
 

Figure 23: Coprocessor Engine Memory Space ............................................................................37 

Figure 24: Coprocessor Engine – Empty Buffer............................................................................38 

Figure 25: Coprocessor Engine – Written Commands ..................................................................39 

Figure 26: FT812 Initialization Sequence Flowchart ....................................................................41 

Figure 27: External MSP430 ACLK Output .................................................................................51 

Figure 28: External MSP430 MCLK Output .................................................................................51 

Figure 29: External MSP430 SMCLK Output...............................................................................52 

Figure 30: Simulated Motor Velocity Message .............................................................................54 

Figure 31: Updated Speed Measurement on Display ....................................................................55 

Figure 32: Simulated Maximum Cell Voltage Message ................................................................56 

Figure 33: Updated Maximum Cell Voltage Measurement on Display ........................................56 

Figure 34: Simulated Minimum Cell Voltage Message ................................................................57 

Figure 35: Updated Minimum Cell Voltage Measurement on Display .........................................58 

Figure 36: Simulated Maximum Cell Temperature Message ........................................................59 

Figure 37: Updated Maximum Cell Temperature Measurement – 90F .........................................59 

Figure 38: Updated Maximum Cell Temperature Measurement – 110F .......................................60 

Figure 39: Simulated Net Current Message ...................................................................................61 

Figure 40: Updated Net Current Measurement (1 Amp) ...............................................................61 

Figure 41: Updated Net Current Measurement (-1 Amp) ..............................................................62 

 

 

 

 



 

1 
 

Introduction 

Background 

 The Western Michigan University Sunseeker solar car team has been designing, building, 

and racing solar powered vehicles in the American Solar Challenge for nearly 30 years. The 

vehicle contains a large solar array that covers nearly the entire topside of the vehicle, which is 

meant to capture as much energy from the sun as possible. The solar array charges the main 

battery, which provides power to the vehicle’s electric motors and the rest of its subsystems. In 

the cockpit of the vehicle sits the driver’s controls and the displays which show the driver critical 

information, such as speed, current battery voltage, maximum and minimum cell voltages, and 

more. However, these displays have proved to be a problem for the Sunseeker team in several 

ways.  

The screen of the displays are less than two inches in size, which only allows one value to 

be viewed at a time. The driver must switch between values by pressing a button located near the 

displays. Drivers of the solar car have reported that the screens are difficult to read, which can be 

attributed to the viewing angles and brightness of the panels. Furthermore, values displayed on 

the screens have no units because there is not enough room on each screen to display both the 

value and the unit label. Each display has a set of LEDs that show which value is currently being 

displayed. These LEDs are also very hard to see in the daylight. Perhaps the largest issue with 

these displays is that they can no longer be purchased, as their manufacturer, Tritium, has gone 

out of business.  In fact, this is also true for the existing driver controller as well.  

The driver controller module connects directly to the driver’s controls in the cockpit and 

controls switches such as the turn signals, ignition, forward or reverse, the brake, and perhaps the 

most important – the accelerator pedal. The existing driver controller came in a discrete box that 
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could be purchased from Tritium and added to any solar car with other Tritium modules, such as 

the displays.  

 

Problem Statement 

 Because of the problems with the current displays, and the fact that the original 

manufacturer no longer exists, a new display was added to the 2020 version of the solar car and 

combined with the recreation of the existing driver controller module. The driver controller is 

already responsible for setting the speed of the vehicle, which is a critical measurement that is 

displayed on the new screen. Because of this, it was logical to combine the display and driver 

controller module into a single module, which is now called the Display and Driver Control 

(DDC) unit. More critical measurements were added to the new display, such as battery voltage, 

minimum and maximum cell voltages, maximum cell temperature, state of charge, and net 

current of the battery. The new 7-inch full-color LCD touchscreen display has a user interface 

that is easy to read and understand. Furthermore, adding new measurements to the display is 

made easy by the well-structured and modular code that was written for it. A custom printed 

circuit board (PCB) was designed for the recreation of the driver controller, which connects to 

the display via a ribbon cable. 3D printed housings for both the PCB and the display were 

designed to prevent damage and make mounting in the solar car easier.  
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Discussion 

Hardware Design 

Display 

The electronic hardware components consist of a PCB and the display. The display itself 

was purchased and consists of a 7-inch 800x480 full-color TFT resistive touch LCD panel, and 

an FT812 display controller. The display is pictured below in Fig. 1. 

 

Figure 1: NHD-7.0-800480FT-CSXV-T 

 
Although the display is touchscreen, this feature was not used nor was it prototyped during any 

part of the project. However, all the connections made during the PCB design phase support the 

touch screen interface. The software is the only part that would need to be changed to support the 

touchscreen. The display’s panel features a software-controlled backlight, which allows it to be 

adjusted from completely off and up to 100% brightness. Because the display uses around 3W of 

power at 100% backlight brightness, the backlight was configured at 15% brightness, which still 
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allows the content on the screen to be viewed easily. The FT812 display controller is the 

interface between the actual panel and microprocessor of the DDC’s PCB.  

Block Diagram 

A high-level block diagram of the PCB and the display is shown below in Fig. 2.   

 

Figure 2: High-level block diagram 

 
The display is depicted in the bottom block. The DDC’s PCB is shown in the upper block. 

Within the display, the FT812 (labeled as ‘FTDI Display Driver’) connects directly to the panel. 

The only connections that the DDC PCB makes with the display is for power (the red line) and 

for communications (the black line). Both the display controller and panel are powered by 3.3V, 

which comes from the DDC PCB. The communication interface between the DDC PCB and the 

display controller is the Serial Peripheral Interface (SPI). At the center of the DDC PCB (labeled 

as ‘Custom PCB’) is the MSP430F5438A, which is a specific variant of the MSP430 family of 
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microprocessors manufactured by Texas Instruments that has been used in the Sunseeker solar 

car in other modules. It is for this reason, and the fact that the MSP430 is extremely low power, 

that this variant was selected for use in this project.  

 The driver control inputs (labeled ‘Multiple switch inputs’) and the accelerator 

potentiometer input both connect to the protection circuitry block. Because the driver’s switches 

are powered from a 12V rail, each input must have its own set of protection circuitry so that the 

input pins of the MSP430 are not damaged by the high voltage. The CAN controller is an 

integrated circuit (IC) that processes the logic for the CAN bus. It consists of transmit and 

receives buffers that store CAN messages to be sent to and received from the CAN bus. The 

MSP430 communicates with the CAN controller via an SPI interface. The CAN controller 

communicates to the CAN transceiver via a set of TX and RX signals. The CAN transceiver is 

responsible for converting the logic high and logic low level signals from the CAN controller 

into a pair of differential signals titled CANH (CAN high) and CANL (CAN low). These are the 

standard signals of any CAN bus, and they connect to all the other modules in the solar car. The 

Sunseeker’s CAN bus also contains power for every module connected to it, which comes in the 

form of 13.8V. Therefore, the DDC PCB contains a buck converter that steps down the 13.8V to 

3.3V, which is used by every IC on the board.  

Electrical Schematics 

 The schematic and PCB layout for the DDC was created in Altium Designer. The 

electrical schematic of the DDC PCB is shown on the following pages in Fig. 3, Fig. 4, and Fig. 

5. 
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Figure 3: Electrical Schematic Sheet 1 
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Figure 4: Electrical Schematic Sheet 2 



 

8 
 

Figure 5: Electrical Schematic Sheet 3 
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Fig. 3 contains the main schematic for the DDC PCB. The MSP430F5438A is depicted in the 

center, with external crystals and bypass capacitors. While the external crystals are not necessary 

for the function of the MSP430, they generate a more precise clock over using the built in 

digitally controlled oscillator (DCO). The bypass capacitors are necessary for the function of the 

MSP430. At the top of the schematic is the MCP2515 (CAN controller), which connects to the 

SN65HVD235D (CAN transceiver). On the left side of the schematic are LEDs that are used for 

debugging and showing the status of the driver controller. On the right side of the schematic are 

buttons and jumpers, all of which (except the reset button) can be controlled via software to 

perform a specific function. The bottom of the schematic contains two connectors. The first 

connector is a JTAG header, which is used by a debugger such as the MSP-FET to reprogram the 

MSP430 with a new version of its software. The second connector is the header for the display, 

which is a 20-pin IDE box header. The leftmost part (BAT54C) contains a series of diodes that 

allows only the MSP430 to be powered and reprogrammed using the MSP-FET. When the CAN 

bus cable is connected, the CAN bus powers all the components on the board. However, when 

the CAN bus cable is disconnected and the debugger is connected via the JTAG header, only the 

MSP430 is powered so that it can be reprogrammed and debugged. Both the CAN bus cable and 

the debugger can be connected at the same time; however, it is not recommended.  

 Fig. 4 contains the schematic for the protection circuitry. There are 18 digital inputs to 

the driver controller, 2 analog inputs, and 2 digital outputs that are currently configured as timer 

modules. The DB37 connector is the same connector used in the existing driver controller, 

therefore, it was logical to choose the same connector and place the input and output pins in the 

same place and orientation so the cable in the solar car would not have to be modified.  
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The same protection circuitry existed on the previous driver controller, and therefore was 

recreated for the new DDC. Fig. 6 shows one of these circuits for one of the rotary encoders in 

the solar car. All digital inputs work in the same manner, and so the one in Fig. 6 will be used as 

an example. The ENC1_A_IN input comes from the DB37 connector, which is connected to a 

rotary encoder’s ‘A’ pin. The input pin of any digital input circuit can be connected to any 

single-pole-single-throw (SPST) switch, pushbutton, or a more complex switch as long as there 

is a logic high and logic low value provided by the switch. If a normally open pushbutton switch 

was connected to ENC1_A_IN, then its other pin should be connected to ground. When the 

button is open, the MOSFET sees 12V at its gate, which turns on the 2N7002, thus pulling 

ENC1_A to 0V. If the button is being pressed, the MOSFET sees 0V at its gate, thus pulling 

ENC1_A to VCC, which is 3.3V. This is how the digital inputs function on a 12V rail, but the 

MSP430 only ever sees 0V or 3.3V, thus protecting the MSP430 from the high voltage.  

 Fig. 5 contains the schematic for the DDC’s power supply. The CAN V input on the left 

is connected directly to the 13.8V from the CAN bus. The VCC output on the right supplies the 

board’s components with 3.3V. This is a custom design for a buck converter using an LM2596, 

which is a step-down voltage regulator. This means that the CAN bus voltage can vary 

significantly, and the LM2596 will always try to keep VCC at 3.3V. The values of R92 and R93 

Figure 6: Protection Circuitry for a Digital Input 
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determine the output voltage and the feedback (FB) pin of the LM2596 is what causes it to 

maintain the current output voltage. The diode D30 and the fuse F3 are used as protection 

measures for the CAN bus, on top of creating the 12V rail. In fact, 12V is merely used as a 

naming convention, this voltage is closer to 13.3V because of the voltage drop across the 

Schottky diode. Nonetheless, this voltage difference does not impact the switches that are 

connected to its rail. With the display at 15% backlight brightness, the power supply generates an 

efficiency of around 60%. Furthermore, the DDC draws around 100 mA of current at 13.8V, to 

produce a power draw of less than 1.5W.   

PCB Layout 

 Once the schematic for the DDC was finished, the PCB layout was started. Creating the 

PCB layout was done in Altium designer, which is made easy by simply adding a PCB to the 

project and importing the schematic to the PCB. The layout editor will generate ratsnest lines, 

which logically shows the connections that must be made on the PCB by using traces. The 

completed layout for the PCB is shown below in Fig. 7. The board itself was designed to be 9.5” 

by 6.5”, with four screw holes sized for M5 screws. The stackup of the PCB consists of only two 

layers, a bottom layer (shown in blue) and a top layer (shown in red). Ground planes were added 

to both layers, with stitching vias placed between the layers to create a strong ground connection. 

The right side of the board consists of the protection circuitry and the DB37 connector. The 

MSP430 is placed toward the center of the board with its bypass capacitors and crystals placed 

close to the chip. The rest of the connectors were placed on the left-hand side of the board with 

the LEDs. 
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Figure 7: PCB Layout 
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The trace thickness was kept at ten mils (ten thousandths of an inch) except in the power supply, 

where the trace thickness was set to 35 mils. The thicker traces in the power supply were used so 

that the high current draw of the display would drop less voltage across the traces. This was also 

the reason for placing the power supply so close to the display header. When the layout was 

complete, the design rule check (DRC) was run to make sure that the PCB layout passed the 

design rules set by the PCB manufacturer. A design rule file was imported into Altium Designer 

from JLCPCB, the PCB manufacturer that was chosen to manufacture the board. Once the PCB 

layout passed all DRC checks, the Gerber files were exported from Altium Designer and an order 

for ten PCBs was placed with JLCPCB. The turnaround time from order placement to delivery 

was eight days. After placing an order with Digi-Key for the components and soldering two 

complete boards, the electronic hardware portion of the project was complete. One of the 

completed boards is shown in Fig. 8 below. An overview of the board and its components is 

provided in Fig. 9 and Fig. 10. 

Bill of Materials 

  The bill of materials (BOM) for one fully assembled PCB is shown in Table 1. The total 

cost for each PCB may not be exactly accurate, as the Digi-Key order that was placed was for 

three complete boards. Therefore, price breaks occurred in the bulk order. Furthermore, Table 1 

does not include the cost for shipping. For a total of ten PCBs from JLCPCB, the cost was 

$32.20. Therefore, the unit cost is $3.22. This could also prove to be an inaccuracy to the cost of 

only one board. A deeper financial analysis would have to be performed to better estimate the 

cost of each board. Nonetheless, a decent estimate still exists.  
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Figure 8: Completed PCB 
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Figure 9: PCB Component Overview Page 1 
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Figure 10: PCB Component Overview Page 2 
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Index Designator Quantity Digi-Key Part Number Description Unit Price Extended Price
1 C1, C2 2 399-1193-1-ND CAP CER 12PF 50V C0G/NP0 1206 0.27 0.54
2 C3, C4, C16, C17 4 399-1194-1-ND CAP CER 15PF 50V C0G/NP0 1206 0.184 0.74
3 C5, C10, C11, C12, C13, C14 6 399-1250-1-ND CAP CER 0.1UF 50V X7R 1206 0.219 1.31
4 C6, C7 2 511-1463-1-ND CAP TANT 10UF 20% 10V 1206 0.53 1.06
5 C8, C15, C50 3 399-8171-1-ND CAP CER 2200PF 50V C0G/NP0 1206 0.336 1.01
6 C9 1 399-5771-1-ND CAP CER 0.47UF 50V X8L 1206 0.9 0.90
7 C18, C19, C20, C21, C22, C23, C24, C25, C26, C27 20 399-1250-1-ND CAP CER 0.1UF 50V X7R 1206 0.1239 2.48
8 C58 1 493-2226-1-ND CAP ALUM 100UF 20% 50V SMD 0.51 0.51
9 C59 1 493-2267-1-ND CAP ALUM 680UF 20% 16V SMD 0.89 0.89

10 All Test Points 7 36-5015CT-ND PC TEST POINT MINIATURE 0.382 2.67
11 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D1 22 BAV99WT1GOSCT-ND DIODE ARRAY GP 100V 215MA SC70-3 0.0556 1.22
12 D29 1 B340A-FDICT-ND DIODE SCHOTTKY 40V 3A SMA 0.41 0.41
13 D30 1 MBRS340T3GOSCT-ND DIODE SCHOTTKY 40V 4A SMC 0.47 0.47
14 DS1, DS7 2 516-1434-1-ND LED GREEN DIFFUSED CHIP SMD 0.51 1.02
15 DS2, DS3 2 350-1817-ND LED 3MM LOW CURR GREEN 1.36 2.72
16 DS5 1 350-1818-ND LED 3MM LOW CURR YELLOW 1.36 1.36
17 DS4, DS6 2 350-1816-ND LED 3MM LOW CURR RED 1.36 2.72
18 J2 1 732-2100-ND CONN HEADER R/A 20POS 2.54MM 1.04 1.04
19 L1 1 732-1244-1-ND FIXED IND 33UH 4.2A 45 MOHM SMD 2.41 2.41
20 P1 1 182-37FE-ND CONN D-SUB RCPT 37POS R/A SOLDER 3.63 3.63
21 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q1 18 2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 0.1078 1.94
22 R4, R5, R81, R97, R98 5 311-47.0KFRCT-ND RES SMD 47K OHM 1% 1/4W 1206 0.071 0.36
23 R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R1 56 311-10.0KFRCT-ND RES SMD 10K OHM 1% 1/4W 1206 0.0291 1.63
24 R61, R63 2 311-1.00MFRCT-ND RES SMD 1M OHM 1% 1/4W 1206 0.1 0.20
25 R78, R79 2 YAG5901CT-ND RES SMD 1206 1/2W 1% 330 OHM 0.56 1.12
27 R80, R96 2 YAG3810CT-ND RES SMD 120 OHM 1% 1/4W 1206 0.1 0.20
28 R82, R83 2 311-665FRCT-ND RES SMD 665 OHM 1% 1/4W 1206 0.1 0.20
29 R84 1 541-750FCT-ND RES SMD 750 OHM 1% 1/4W 1206 0.1 0.10
30 R86, R95 2 541-820FCT-ND RES SMD 820 OHM 1% 1/4W 1206 0.1 0.20
31 R92 1 311-2.70KFRCT-ND RES SMD 2.7K OHM 1% 1/4W 1206 0.1 0.10
32 R93 1 RMCF1206FT1K60CT-ND RES 1.6K OHM 1% 1/4W 1206 0.1 0.10
33 SW1, SW2, SW3 3 450-1657-ND SWITCH TACTILE SPST-NO 0.05A 24V 0.17 0.51
34 U1 1 296-37147-1-ND IC MCU 16BIT 256KB FLASH 100LQFP 6.81 6.81
35 U2 1 BAT54C-FDICT-ND DIODE ARRAY SCHOTTKY 30V SOT23-3 0.19 0.19
36 U3 1 MCP2515-I/SO-ND IC CAN CONTROLLER W/SPI 18SOIC 1.82 1.82
37 U4 1 296-15229-5-ND IC TRANSCEIVER HALF 1/1 8SOIC 3.13 3.13
38 U7 1 296-35399-1-ND IC REG BUCK ADJ 3A TO263-5 4.77 4.77
39 Y1 1 XC1911CT-ND CRYSTAL 32.7680KHZ 12.5PF SMD 0.72 0.72
40 R99 1 YAG3909CT-ND RES SMD 88.7 OHM 1% 1/4W 1206 0.1 0.10
41 Y2, Y3 2 XC983CT-ND CRYSTAL 16.0000MHZ SERIES SMD 1.12 2.24
42 F3 1 F1222CT-ND FUSE BRD MNT 1A 125VAC/VDC 2SMD 2.55 2.55
43 J1 1 A101791-ND CONN HEADER VERT 14POS 2.54MM 1.72 1.72
44 J3 1 277-2689-ND CONN PLUG MALE 5POS GOLD SOLDER 23.8 23.80
45 1 Fabricated PCB 3.22 3.22

Total $86.84

Table 1: Bill of Material for one PCB 



18 
 

Mechanical Design 

Overview 

 Both the display and the PCB required a housing to make mounting them in the solar car 

easier, and for protection. Using PTC Creo Parametric, a box was designed to hold the PCB with 

cutouts for the external connector, LEDs, and switches. The box was designed to be held 

together with four screws that are inserted from the top of the enclosure. An overview of the 

encosure is shown in Fig. 11 below. 

 

Figure 11: PCB Enclosure Overview (Top View) 

 
An overview of the connectors on the left side of the box is shown in Fig. 12 below. 
  



 

19 
 

 
Figure 12: PCB Enclosure Overview (Left View) 

 
The holder for the display was designed to completely encapsulate the display, with a cutout on 

the top of the display for the screen and a cutout of the rear of the enclosure for the connector. 

Four screws are meant to hold the two separate pieces together, which go all the way through the 

two pieces and stick out on the rear of the enclosure. Lock washers and knurled nuts are meant to 

be placed on the exposed screws to hold the enclosure together. An overview for the display’s 

enclosure is shown in Fig. 13 below. 
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Figure 13: Display Enclosure Overview (Top View) 

 
An overview of the connector on the rear of the enclosure is shown in Fig. 14 below. 
 

 
Figure 14: Display Enclosure Overview (Rear View) 

 
Both enclosures were 3D printed using exported STEP files from PTC Creo Parametric. The 

display enclosure fit the display on the first 3D print, however, the enclosure for the PCB was 

modified and reprinted after the first version proved to be too small for the PCB. This is because 
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the inside of the box was designed with the exact dimensions of the PCB. Therefore, a tenth of 

an inch was added as a tolerance in the next version of the 3D print.  

Dimensions 

A dimensioned version of the PCB enclosure is shown below in Fig. 15 and Fig. 16.  

 

Figure 15: PCB Enclosure Dimensions 
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Figure 16: PCB Enclosure Dimensions (Top Piece) 

 

A dimensioned version of the display holder is shown below in Fig. 17. 
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Figure 17: Display Enclosure Dimensions 

3D Printed Enclosures 

Pictures of the 3D printed enclosures are shown in Appendix F. 
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Software Design 

Introduction 

 The software for the display and the driver controller is written in the C programming 

language. When the display was prototyped, its own set of code was created separately from the 

driver controller code. Then, the code for both segments of the project were combined in Code 

Composer Studio, an integrated development environment (IDE) specifically created for Texas 

Instruments’ line of processors. Because there is already an existing version of the driver 

controller, the code was taken and ported to the MSP430F5438A. The existing driver controller 

used a different variant of the MSP430 and had less pins. Therefore, the driver controller code 

had to be modified slightly to fit the new variant of the MSP430. Because these changes are very 

minor and the driver controller code already existed, most of the software for the driver 

controller will not be described in this document. The only software that will be described 

consists of the CAN messages that are received and sent by the new DDC. Therefore, the bulk of 

the content in this section pertains to the software written for the display and the information that 

needs to be understood so that a member of the solar car team can add new measurements to the 

screen or alter the layout of the screen.  

 As mentioned in the hardware design section of this report, the display consists of the 

panel and the FT812 display controller. The FT812 display controller is the device that the 

MSP430 communicates with directly to send display commands. The MSP430 never 

communicates directly with the panel. The communication interface between the FT812 and the 

MSP430 consists of a 4-line SPI interface with an SPI clock frequency of 8 MHz. The MSP430 

consists of three main clocks, and the SPI clock frequency can be programmed to be a prescaler 
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of any two of the three main clocks. Table 2 shows the various clocks of the MSP430 and their 

corresponding frequencies.  

Table 2: MSP430F5438A Clock Frequencies 
Clock Frequency 

MCLK 8 MHz 

SMCLK 8 MHz 

ACLK 32.768 kHz 
 

The MCLK is the master clock of the microprocessor and is used directly by the CPU and the 

system. The SMCLK and the ACLK are the sub-main clock and the auxiliary clock, respectively, 

and are selectable to be used by individual peripheral modules, such as the SPI module. The 

DDC PCB contains a 16 MHz high frequency crystal and a 32.768 kHz watch crystal. The 16 

MHz external crystal is prescaled with a factor of 2 and used as the source for both the MCLK 

and the SMCLK. The external watch crystal is used as the source for the ACLK directly, without 

any prescaler. The SPI clock for the FT812 SPI module uses the SMCLK directly, which is why 

the SPI clock frequency is 8 MHz.  

FT812 Display Controller 

 The FT812 is a little-endian memory mapped device, which means that the contents that 

are meant to be displayed on the panel are simply written to the FT812’s memory, with the least 

significant bit always being stored at the lowest address. Once all graphics commands have been 

written, a command is then sent to the FT812 to refresh the display with the contents of its 

memory. All data and commands are sent over the SPI interface. Therefore, there exists multiple 

layers of abstraction in the software. There are functions that represent the actual display 

command, such as the drawing of a gauge. This command calls the memory-write functions, 

which write the command into the FT812’s memory. These memory-write functions call the spi-
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transmit functions, which are responsible for transmitting the data over the SPI interface. This 

process is repeated for each display element on the screen.  

Frame Layout 

The current layout of the screen is displayed in Fig. 18 below. 

 
Figure 18: Current Screen Layout 

 

As Fig. 18 shows, the current active measurements consist of the following: 

1. Speedometer  

a. Displays the current speed of the solar car in miles-per-hour 

b. Uses the GAUGE, TEXT, COLOR_RGB, and NUMBER commands 

2. Maximum cell voltage 

a. Displays the voltage value for the cell that has the maximum voltage 

b. Uses the TEXT and NUMBER commands 
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3. Minimum cell voltage 

a. Displays the voltage value for the cell that has the minimum voltage 

b. Uses the TEXT and NUMBER commands 

4. Net current 

a. Displays the net current of the battery. A positive value will be displayed in green 

with a ‘+’ sign and a negative value will be displayed in red with a ‘-’ sign 

b. Uses the COLOR_RGB, TEXT, and NUMBER commands 

5. Pack temperature 

a. Displays the temperature value for the cell that has the maximum temperature 

b. Uses the COLOR_RGB, TEXT, and NUMBER commands 

6. Turn Signals and Hazard 

a. Displays the left or right turn signal, or both for a hazard 

b. Uses the VERTEX command 

The current inactive measurements consist of the following: 

1. Pack Voltage 

a. Displays the current overall voltage of the battery 

b. Uses the TEXT and NUMBER commands 

2. State of charge 

a. Displays the current charge of the battery as a percent of the total battery capacity 

b. Uses the PROGRESS, TEXT, and NUMBER commands 
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The pack voltage and state of charge are currently inactive measurements because they 

share the same CAN bus message. Another CAN bus message must be added to the Battery 

Protection System (BPS) to support both measurements.  

EVE Screen Editor 

The layout for the screen was created in the EVE Screen Editor software, which is a 

software package provided by the manufacturer of the display to support prototyping of the 

display. This software package as well as other utilities can be obtained from the following link: 

https://www.ftdichip.com/Support/Utilities.htm  

Fig. 19 shows a screenshot of the EVE Screen Editor Software. 

 
Figure 19: EVE Screen Editor Software 

 

As shown in Fig. 19, the environment consists of the frame to be displayed on the screen as well 

as a list of commands that correspond to elements on the screen. The command list is not written 

in the C language, it is only a list of commands with parameters. These commands must be 
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slightly modified when transferring them to the C code, which includes appending the text 

“EVE_” to the beginning of each command and changing the zero value of the command to the 

desired value. The project in the EVE Screen Editor software that has the current screen’s layout 

will be electronically delivered to the Sunseeker solar car team for their future use.  

Adding New Measurements to the Display 

The following sequence is the recommended way to add a new measurement from the CAN bus 

to the display. 

1. Configure the CAN filters and masks of the MCP2515 (CAN controller) to accept the 

CAN message that has the value to displayed on the screen. This will be expanded on 

later in this report. 

2. At the top of the EVE.h header file, declare the variable for the specific measurement to 

be added to the screen, however, do not initialize this variable. 

3. At the top of the main.c file (under ‘Display values’), add two variables for the new 

measurement, one variable to hold an old value of the measurement and one variable to 

hold the new value of the measurement. The new value will be set when the MSP430 

receives the specific CAN message with the desired value. The old value will be set to 

the new value when the display is updated with the new value. Therefore, the display is 

only ever updated if the new value is different from the old value.  

4. Add a case statement to the switch statement that begins when the MSP430 checks if the 

CAN_nINT input is low. This occurs around line 785. The code corresponding to this 

new case statement must set the new value of the variable declared in step 3 above. Make 

sure that the right value from the CAN bus is sampled, there is a HIGH word and a LOW 

word. 
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5. In the section where the MSP430 handles communication events (above the 

aforementioned switch statement), add an if statement to compare the new value and the 

old value declared in step 3 above. Update the value declared in step 2 above with the 

new value declared in step 3 above. Set the old value to the new value for the next time 

around the loop. Set the ‘needUpdate’ variable to ‘true’ so that the display knows it needs 

to be refreshed.  

6. Design the measurement in the EVE Screen Editor program and port the related 

commands over to the EVE_BuildFrame function in the EVE.c file. Now, whenever the 

MSP430 receives the specified CAN message, the measurement on the screen will be 

updated with the value from the CAN bus if its value changed from a previous reception.  

 

Display Commands 

Each measurement on the display can have a number of commands that define the way 

the measurement will look or function on the display. Each individual command is a series of 

bytes that are written to the FT812’s memory. The FT81X Programmers Guide lists all of the 

available commands in chapter 5 [1]. However, only the commands that were used in this project 

will be referenced. The main commands that were used in this project are presented in Appendix 

A, and their corresponding C function is located in the EVE.c file under the ‘EVE commands’ 

section. As an example, the GAUGE command will be examined, both from the FT81X 

Programmers Guide, and the documentation that appears in Appendix A. The recreated 

documentation from Appendix A is shown in Fig. 20 below. The original pages from the FT81X 

Programmers Guide appear in Fig. 21 and Fig. 22. 
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Figure 20: Recreated documentation of the GAUGE command 
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Figure 21: Original datasheet description of the GAUGE command Page 1 [1] 
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Figure 22: Original datasheet description of the GAUGE command Page 2 [1] 
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As seen from either Fig. 20, Fig. 21, and Fig. 22, the command layout is presented in a 

series of bytes. The first four bytes of the command is what defines it as the GAUGE command. 

These four bytes are somewhat of an ‘opcode’ to the FT812; it knows once it sees these four 

bytes what parameters the following bytes will correspond to. There are a number of parameters 

for the gauge, such as location (X and Y parameters, referenced from the top left of the screen), 

the radius of the gauge (R parameter), and the actual value to be displayed (value parameter). All 

these different parameters have their own byte offsets in the command. The total length of the 

command is 20 bytes long, which never changes. The TEXT command, for example, is a 

variable-length command, as each character to be printed on the screen consumes one byte of 

memory. The layout of the commands that have already been implemented in the display 

software do not need to be fully understood. However, it is recommended that time is taken to 

understand how each command was interpreted from the FT81X programmers guide into a C 

function. This way, more commands can be added in the future with ease. Each row of the 

command encoding (or layout) must be written to the FT812’s memory separately. This is done 

by the memory-write functions. The memory-write functions are called multiple times in the 

GAUGE command function, one function call for each parameter. In fact, this is true for all the 

commands that have implemented. 

Types of SPI Transactions 

 As mentioned earlier, the memory-write functions call the spi-transmit functions. The SPI 

transactions must occur following a set of guidelines, so that the FT812 can decipher a memory-

write command from a memory-read command, or from a host command. These are the three 

types of commands sent over SPI, with the memory-write command being used the most often 

and during the writing of display commands to memory. The memory-read command is only 
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used during initialization of the display, which will be described later in this document. The host 

command is also only used during initialization of the display. The layout of these three types of 

commands in shown in Appendix B. For example, a memory-write function is executed over SPI 

by sending a 3-byte address with the two most-significant bits set to 2’b10. When the FT812 sees 

these two bits, it knows that the following SPI transaction will be a memory-write. After the 3-

byte address has been sent, the data is transmitted byte-by-byte. Any number of bytes can be sent 

because the internal address pointer of the FT812 is automatically incremented after each byte. 

The memory-read functions are executed in a similar manner, but by sending 2’b00 as the two 

most significant bits and sending a dummy byte in between the address and the data to be 

received by the MSP430. Furthermore, the underlying SPI function for the second half of a 

memory-read command is the spi-exchange function, not the spi-transmit function. In the spi-

exchange function, the MSP430 sends a byte and waits until the entire byte has been sent before 

sampling the return byte from the FT812. On the other hand, the spi-transmit function does not 

expect anything in return. A host command layout is also shown in Appendix B.  

Memory Read and Write 

 The diagrams in Appendix B are the underlying templates for the memory-write, 

memory-read, and host command functions in the C code. For example, there are multiple 

memory-write functions in the software for the display. There is a function to write a single byte, 

two bytes, or four bytes. Likewise, there are multiple memory-read functions. There is a function 

to read a single byte and to read two bytes. There is only one host command function, which only 

requires the command to be executed by the FT812 to be sent. These are all fixed length 

commands, which is why only one function is required. The main point here is that all the 

memory-write functions are based off the host memory-write template and all memory-read 
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functions are based off the host memory-read template. The different memory-write and 

memory-read commands are shown in Appendix C.  

 The GAUGE command presented in Fig. 20, Fig. 21, and Fig. 22 uses the two-byte and 

the four-byte memory-write functions, which are shown in Fig. C2 and Fig. C3 in Appendix C, 

respectively. The first four bytes of the GAUGE command (the ‘opcode’) will use the four-byte 

memory-write function and the rest of the parameters will use the two-byte memory-write 

functions. The GAUGE command was only used as an example; however, it shows that all 

graphics commands that are meant to be displayed on the screen use a form of the memory-write 

functions, which are all based off the host memory-write template. All memory-read functions 

are based off the host memory-read template, and the host command function is based off the 

host command template, both of which are only used in the initialization of the display and will 

be described later in this document.  

Coprocessor Engine 

 Up to this point, the MSP430’s software has been described in detail as to how graphics 

commands are written to memory using the memory-write functions and the spi-transmit 

functions. However, not much detail as to where these commands are written or how the display 

processes these commands has been mentioned. Graphics commands are written to the FT812 

coprocessor’s memory. The coprocessor is responsible for reading the graphics commands stored 

in its memory, processing all the commands, and then refreshing the display with the new frame. 

The coprocessor’s memory space is 4 KB (4096 bytes) in size and its starting address in the 

FT812’s memory map is labeled RAM_CMD in the software, which is 0x308000. Graphics 

commands are written into this memory space starting at the next available memory location. 
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The first time the MSP430 writes to the coprocessor, it will begin at memory location 0x308000. 

Conceptually, the coprocessor’s memory space is depicted in Fig. 23.  

4K/0K

1K

2K

3K

Commands

Free
Space

 
Figure 23: Coprocessor memory space 

 

The coprocessor’s memory space is depicted as a circular buffer, as seen in Fig. 23. The 

importance of this will be mentioned later in this section of the report. Nonetheless, the gray 

portion of the diagram represents graphics commands written to memory by the MSP430 and the 

white portion of the diagram represents free space. The MSP430 must keep track of the current 

offset in the buffer so it knows where to write each graphics command. This variable in the 

display’s software is called ‘cmdOffset’. The coprocessor keeps track of two pointers that are 

used to update the display with the commands stored in memory. REG_CMD_WRITE is a 

register in the memory of the FT812 (outside of the coprocessor’s memory space) that contains 

the offset of the next available memory location in the buffer. Likewise, REG_CMD_READ is 

very similar, except it contains the offset of the next graphics command to be processed by the 

coprocessor. Before any commands are written to the coprocessor, the buffer is empty and both 
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pointers point at 0x308000 (REG_CMD_WRITE = REG_CMD_READ = 0x308000). A 

depiction of this is in Fig. 24 below.  

REG_CMD_READ
4K/0K

1K

2K

3K

REG_CMD_WRITE

 
Figure 24: Empty Coprocessor Buffer 

 
Because both pointers are pointing to the same location in the coprocessor’s memory, it appears 

as if the buffer is empty and therefore, the coprocessor has no commands to execute. All 

commands written into the buffer must be four-byte aligned (a multiple of four). An error occurs 

in the coprocessor if a complete graphics command is not 4-byte aligned. This is not the case for 

individual memory-write commands, but for the graphics command as a whole. For example, the 

PROGRESS command is padded with two extra bytes, which simply prevents an error in the 

coprocessor and has no meaning graphically. Immediately after commands are written into the 

buffer, Fig. 25 depicts what the buffer would look like.  
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Figure 25: Coprocessor buffer immediately after commands have been written 

 
 In order for the coprocessor to execute the new commands stored in its memory, the 

pointer REG_CMD_WRITE must be updated with the new value of cmdOffset. Because all the 

commands have been written, cmdOffset contains the offset of the very next location after the 

last graphics command in memory. Therefore, updating REG_CMD_WRITE with cmdOffset 

will select all the graphics commands that were just written so they can be processed by the 

coprocessor. This process is done by calling EVE_UPDATE in the MSP430’s code. 

EVE_UPDATE will write the value of cmdOffset to the register REG_CMD_WRITE. The 

moment REG_CMD_WRITE is updated, the two pointers are no longer equal, which signifies to 

the coprocessor that there are commands to be executed. The coprocessor processes each 

command in memory and increments REG_CMD_READ until the two pointers become equal 

again. Once the two pointers become equal again, the new frame will be visible on the display. 

To update the values in the frame, the corresponding values should be changed in the C code and 



 

40 
 

then the BuildFrame function should be called. This function rewrites the entire frame to the 

coprocessor’s memory in the next available location.  

 Because the same frame is rewritten to the display over and over, the current frame it will 

fit in the 4 KB memory space of the coprocessor about five times. When the sixth frame must be 

written, it will overwrite the first frame at the beginning of the circular buffer. The cmdOffset 

variable in the MSP430’s code accounts for the size of the coprocessor’s memory space and will 

start at zero again once it is incremented past 4095, which is the index of the last location in the 

coprocessor. On the display’s side, the coprocessor is intelligent enough to wrap the 

REG_CMD_READ pointer around the buffer back to the beginning as it processes the 

commands. Therefore, the same frame can be rewritten to the coprocessor indefinitely as long as 

a single frame is less than 4 KB in size.  

Display Initialization 

 In order for the display to begin processing commands, it must be initialized. This 

involves sending host commands and reading from the FT812’s memory to determine if it is 

ready to receive graphics commands. The MSP430’s code has a function that turns on the display 

and initializes it so that it can receive graphics commands. The flowchart presented in Fig. 26 

shows this initialization sequence. Each block in the flowchart has a drilled down diagram that 

can be found in Appendix D, except for the ‘Initialize FT812 Registers’ and the ‘Build Frame’ 

steps. These flowcharts will be delivered electronically to the Sunseeker solar car team. The 

purpose of each step will be described briefly.  
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Figure 26: Recommended FT812 Initialization Sequence 
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FT812 Initialization Sequence 

1. Power Cycle (Fig. D2) 

The power cycle sets the EVE_PDN pin (output of MSP430, input to FT812) low for 6 

ms, then the same pin is set high. This powers down the FT812 and powers it back up, 

resetting the chip. 

2. Activate Clock (Fig. D3) 

A host command is sent to the FT812 to select the internal clock as the main clock. 

3. Activate FT812 (Fig. D4) 

A host command is sent to the FT812 to activate it and turn it on. 

4. Read Chip ID (Fig. D5) 

The MSP430 continuously reads the REG_ID register until its value is 0x7C. When this 

occurs, the FT812 has completed its startup sequence. This function will timeout after 

2000 consecutive reads. 

5. Check CPU Status (Fig. D6) 

The MSP430 continuously reads the REG_CPURESET register until both the 

coprocessor engine and the touch engine are ready. This function will timeout after 2000 

consecutive reads. 

6. Initialize FT812 Registers 

The MSP430 writes resolution-specific values to several different registers to configure 

the FT812 to process commands at a specific resolution. 

7. Set Backlight Brightness (Fig. D7) 

The MSP430 turns on the panel’s backlight to 15% brightness by writing to the 

REG_PWM_DUTY register.  
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8. Wait for Display to Refresh (Fig. D8) 

Waits until REG_CMD_READ is equal to REG_CMD_WRTIE. When this occurs, the 

coprocessor engine is ready to receive graphics commands.  

9. Build frame 

The first frame is written to the coprocessor. All measurements have a value of zero. 

After this function call, the frame becomes visible on the display. 

 

Using this recommended process, the display is initialized, and the first frame is written to the 

display. Every subsequent display refresh uses the same function in the MSP430’s code to 

rewrite the same frame to memory and refresh the display. This not only saves code but makes it 

very easy to change the variable for a measurement in the code and have the value updated on 

the display. 

Transmitted CAN Messages 

 The driver controller sends four different messages to the CAN bus, which are expected 

by the other devices on the bus. The layout of these four commands can be found in Appendix E. 

The DC_CAN_BASE message, shown in Fig. E1, contains a serial number in the high word and 

the string “TRIb” in the low word. In all the messages that the driver controller transmits, the 

high word is always sent to the CAN bus first. This means that when the CAN bus is probed, the 

most significant four bytes of the data field will be the high word and the least significant four 

bytes will be the low word. Within each word, the least significant byte is sent first, and within 

each byte, the most significant bit is sent first. The DC_CAN_BASE message has an ID of 

0x500 and is sent over the CAN bus once every second. Fig. E1 shows the layout of this message 

bit-by-bit. 
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 The DC_DRIVE message is shown in Fig. E2. Its ID on the CAN bus is 0x501 and the 

message is sent over the CAN bus every 100 ms. The high word contains the desired motor 

velocity in meters per second and the low word contains the desired motor current as a 

percentage of the maximum allowed current. Both of these values are sent as IEEE 754 single-

precision floating point numbers; therefore, each word has a sign bit, eight exponent bits, and 23 

mantissa bits. Both the motor velocity and the motor current are a function of the analog-to-

digital (ADC) conversion value from the accelerator potentiometer. The DC_POWER message is 

shown in Fig. E3. Its ID on the CAN bus is 0x502 and the message is sent over the CAN bus 

every 100 ms. The high word is reserved and does not contain any value. The low word contains 

the bus current, which is described in Fig. E3. The bus current always has a fixed value of 1.0, 

which is converted to IEEE 754 single-precision floating point format before being sent over the 

CAN bus.  

 The DC_SWITCH message is shown in Fig. E4. Its ID on the CAN bus is 0x504 and the 

message is sent every 100 ms. The high word contains the current switch position from the 

switch inputs on the DB37 connector. The bitwise layout of these switches is shown in the 

accompanying table in Fig. E4. The low word contains the switch activity and its bit positions 

are identical to the high word. A bit in the switch activity word will be high if the corresponding 

bit in the switch position word has changed from the last CAN frame that was sent. This means 

that the specific switch on the DB37 has changed state.  

Received CAN Messages 

 The MCP2515 (CAN controller) has two receive buffers that store the contents of a CAN 

message received from the CAN bus. For a message to be received into a one of the two receive 

buffers, its ID on the CAN bus must be one that is accepted by the MCP2515’s filters and masks. 
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The filters and masks are software configurable registers that can allow a single CAN ID to be 

accepted, or a range of CAN IDs. There are two masks that are shared among the six filters. The 

current configuration of these filters and masks is shown below in Table 3. 

 
Table 3: MCP2515 Masks and Filters 

Buffer Filter Filter Value Mask Mask Value Accepted IDs 

RXB0 RXF0 0x403 RXM0 0xFBE0 0x403, 0x423 

RXB0 RXF1 0 RXM0 0xFBE0 - 

RXB1 RXF2 0x500 RXM1 0xFC00 0x500 – 0x51F 

RXB1 RXF3 0x580 RXM1 0xFC00 0x580 – 0x59F 

RXB1 RXF4 0 RXM1 0xFC00 - 

RXB1 RXF5 0 RXM1 0xFC00 - 
 

As shown above, filters RXF0 and RXF1 apply to RXB0 and RXF2 through RXF5 apply to 

RXB1. Likewise, RXM0 applies to RXB0 and RXM1 applies to RXB1. The filter registers of the 

MCP2515 are broken into two separate registers, RXFnSIDH and RXFnSIDL, for standard 

identifier high and low. The length of the identifier for the filter is only 11 bits long – SID[10:3] 

is contained in RXFnSIDH and SID[2:0] is contained in the most 3 significant bits of 

RXFnSIDL. Therefore, when writing to the RXFnSIDH and RXFnSIDL registers of the 

MCP2515, the value written would be 0x4030 for RXF0, for example. The mask registers are 

also broken into two separate registers, RXMnSIDH and RXMnSIDL. The same concept from 

the filter register is also true for the mask registers – the length of the mask identifier is only 11 

bits long. SID[10:3] is contained in RXMnSIDH and SID[2:0] is contained in RXMnSIDL. The 

values in the mask value column of Table 3 represent the absolute value of the RXMnSIDH and 

RXMnSIDL registers combined. The most significant byte is written to RXMnSIDH and the 

least significant byte is written to RXMnSIDL. This is not true of the presentation of the filter 

values, where only the actual filter value is represented.  
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 The existing driver controller’s software already had filters and masks configured, 

however, these had to be modified to accept new CAN messages with the specific values that 

were to be presented on the screen. In the addition of a new accepted CAN message, the filter 

value should be modified first. If preventable, the mask value should not be changed, as this 

would affect the other filters that use that mask. There are three more filters available to accept 

more CAN messages. The process of modifying a filter value can be done through somewhat of 

a trial and error process. The filter value must be compared to the mask value, and a value of one 

in the mask means that an incoming CAN message ID must have the same value of the 

corresponding filter bit. For example, RXM0 is applied to RXF0 as follows: 

RXM0 
HEX  F B E 0 
BINARY 1111 1011 1110 0000   
Where the bolded portion represents the actual mask value 
Therefore, the actual mask value is 
BINARY 111 1101 1111 
 
RXF0 
The actual filter value is 
BINARY 100 0000 0011 
 
Comparing the mask and the filter 
MASK BINARY 111 1101 1111 
FILTER BINARY 100 0000 0011 
Where the bolded portion represents the bit that will always be accepted 
Therefore, the only two accepted IDs under RXF0 are 0x403 and 0x423 
 
The same process is repeated for the rest of the filters to verify the accepted IDs. The filter and 

mask truth table is presented in Table 4 below. 
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Table 4: Filter and Mask Truth Table from the MCP2515 Datasheet (Table 4-2) [2] 

Mask Bit Filter Bit 
Message Identifier 

Bit 
Accept or Reject Bit 

0 x x Accept 

1 0 0 Accept 

1 0 1 Reject 

1 1 0 Reject 

1 1 1 Accept 
 

 As shown in Table 4, if a filter’s corresponding mask bit is zero, then that incoming 

message ID bit will always be accepted. An example of this was shown above with RXM0 and 

RXF0. If a filter’s corresponding mask bit is one and the filter bit is zero, then the incoming 

message ID bit must always be zero for that bit to be accepted. Likewise, if a filter bit is one, 

then the incoming message ID bit must always be one for that bit the be accepted. The CAN 

messages corresponding to the accepted IDs are shown in Table 5 below. 

Table 5: Message IDs and Corresponding CAN Messages 
Accepted Values Messages 

0x403, 0x423 MC_VELOCITY from both motor controllers 

0x500 – 0x51F 
All Driver Controller messages for RTR 

frames 
0x580 – 0x59F All BPS messages 

 

The accepted value range for the last two rows in Table 5 go beyond the CAN message IDs 

present on the CAN bus. However, this is not a problem because the MCP2515 will never accept 

these out-of-range CAN IDs, as their messages are not present on the CAN bus. The extended 

range of IDs was only present to make configuring the masks and filters easier. The driver 

controller must be able to accept messages with its own message IDs so that it can respond the 

remote transmit requests. In such a case, another device on the CAN network will send the driver 

controller a message in which the ID is equal to one of the four from the driver controller. The 
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driver controller recognizes this condition and responds with the requested message. The 0x580 

– 0x59F accepts all the BPS’s CAN messages, as most of them are used. The BPS’s messages 

are shown in the Table 6. The layout of the data for each message corresponds to how the data 

appears on the actual CAN bus. The high word will appear on the CAN bus first and is the most 

significant word of the data segment. Likewise, the low word will appear on the CAN bus 

second, and is the least significant word of the data segment. 

 The driver controller uses all the BPS’s CAN messages except BP_CAN_BASE. While 

the MCP2515 accepts all the BPS’s messages, BP_CAN_BASE will not be used for anything, 

however, it will be accepted into one of the two receive buffers. This is not a problem because 

the BP_CAN_BASE message is only sent once every 100 seconds. The BP_VMAX message is 

used for the maximum cell voltage display measurement and the BP_VMIN message is used for 

the minimum cell voltage display measurement. The BP_TMAX message is used for the pack 

temperature display measurement, however, it must be noted that this measurement displays the 

maximum cell temperature, and not the overall battery temperature. The BP_PCDONE message 

is only used during the driver controller initialization and does not display anything graphically. 

The BP_ISH message is used for the state of charge measurement and the net current 

measurement. 
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Table 6: Battery Protection System CAN Messages 

Identification CAN ID Period Data Type High Word Low Word 

BP_CAN_BASE 0x580 100 seconds Uint32, Char[4] Serial Number “BPv1” string 

BP_VMAX 0x581 10 seconds Float, Float 
Max voltage cell 
number 

Max voltage value 
(V) 

BP_VMIN 0x582 10 seconds Float, Float 
Min voltage cell 
number 

Min voltage value 
(V) 

BP_TMAX 0x583 10 seconds Float, Float 
Max temp cell 
number 

Max temp value (F) 

BP_PCDONE 0x584 RTR/PC Uint32, Char[4] Serial number “BPv1” string 

BP_ISH 0x585 10 seconds Float, Float SOC (mA/sec) Current (mA) 
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Testing and Verification 

Overview 

 Testing the DDC PCB in the current version of the solar car was not possible at the time 

of writing this report. Therefore, the completed PCB was tested using a CAN test bench and an 

Analog Discovery 2. The CAN test bench consists of a small dongle that plugs into any 

computer’s USB port. The other end of the dongle contains a DB9 connector that is meant to be 

connected to the CAN bus. The dongle contains a Phillips SJA1000 CAN Controller and a 

Phillips 82C251 CAN Transceiver. Therefore, no other CAN devices were required to be 

connected to the CAN bus other than the DDC, as a CAN bus requires at least two devices on the 

network for full functionality. The CANUSB dongle was purchased from canusb.com, and along 

with a piece of software to send and receive CAN messages over USB, the test bench setup was 

complete. The software was borrowed from the solar car team and required an installation of 

Windows XP, which was done in a virtual machine, for correct function of the software.  

MSP430 Clock Frequencies 

 To verify that the MSP430’s clocking system was configured correctly, the 

corresponding test points on the PCB were probed using an Analog Discovery 2. Table 2 shows 

the expected clock frequencies of the three different clocks. Fig. 27 shows that the frequency of 

the measured ALCK signal was 32.768 kHz, which matches the configured frequency from 

Table 2.  
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Figure 27: External ACLK output of the MSP430 

 

The measured MCLK signal and its corresponding frequency is shown in Fig. 28 below. The 

measured frequency matches the configured frequency from Table 2.   

 
Figure 28: External MCLK output of the MSP430 
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The measured SMCLK signal and its corresponding frequency is shown in Fig. 29 below. The 

measured frequency matches the configured frequency from Table 2. 

 
Figure 29: External SMCLK output of the MSP430 

 

Digital Inputs 

 To verify the correct function of the 18 different digital inputs, the DC_SWITCH CAN 

message was used. The high word of the DC_SWITCH message contains the current switch 

position on the DB37 connector. Therefore, to test the digital input protection circuitry, the 

driver controller code, and the correct function of the driver controller CAN messages, all 18 

digital inputs on the DB37 connector were tested both in the ON and OFF state. However, for the 

purpose of this report, only one digital input, BRAKE_1, will be presented. The CANUSB 

software contains a terminal window which prints out all the messages on the CAN bus. 

Therefore, the message with an ID of 0x504 was found and the data segment was the message 

was analyzed. For the first test case, the switch for the BRAKE_1 input was left open on the 
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DB37 connector. Because the digital protection circuit has a pull-up resistor to the 12V rail, the 

MOSFET will be on, which will pull the input to the MSP430 low. An example of this scenario 

is explained with Fig. 6. Therefore, we can expect the BRAKE_1 bit in the DC_SWITCH CAN 

message to be low as well. This CAN message, as received by the CANUSB software, is as 

follows: 

id = 00000504 timestamp = 000B4800 len = 8 data =00 00 00 00 00 00 00 00 

All values of the CAN message are presented in hexadecimal. As seen from the data segment of 

the message, the high word consists of all zeros, which is what was expected. Next, the 

BRAKE_1 switch was closed. In this scenario, the input to the MSP430 should be high, and 

therefore, the BRAKE_1 bit of the DC_SWITCH message should also be high. The 

corresponding CAN message is as follows: 

id = 00000504 timestamp = 0014C988 len = 8 data =10 00 00 00 00 00 00 00 

As seen from the data segment, the most significant byte of the high word is 0x10. If this is 

compared to the bit layout in Fig. E4, then it can be confirmed that the BRAKE_1 bit is high in 

the DC_SWITCH message. This same process was repeated for the 17 other digital inputs to 

verify the correct function of both the physical hardware and the software. The two analog inputs 

and the two analog outputs were tested with a potentiometer to simulate the correct function of 

the accelerator. This also proved to be successful.  

Display Measurements 

 Perhaps the most important testing that was done was testing the measurements on the 

display. The measurements were tested by sending the associated CAN message through the 

CANUSB software, which would be sent from the motor controllers and the BPS. Only the 

active measurements were tested, which excluded the state of charge and the pack voltage 

measurements. The active measurement values were sent in IEEE 754 single-precision floating 
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point format, which is how the motor controllers and the BPS send the values for these 

measurements. For the speed measurement, an ID of 0x403 was set in the CANUSB software 

and a speed of 10 meters/second was set. Using an IEEE 754 floating point converter, a 

hexadecimal value of 0x41200000 was obtained. Because the driver controller software sends 

data to the CAN bus least-significant byte first within each word, messages are also expected to 

be received in this manner as well. Therefore, the data was inputted to the CANUSB software as 

shown in Fig. 30.  

 
Figure 30: A motor velocity of 10 m/s sent to the DDC 

 

Because the motor velocity in meters/second is the low word of the data segment of the CAN 

message, 0x41200000 was set in the low word of the data to be sent. Notice that the most 

significant byte of 0x41200000 is set in the least significant byte’s position. Once the message 

was sent to the CAN bus, the speed value was updated on the display as shown in Fig. 31 below. 
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Figure 31: Updated speed value from the CAN bus 

 

This is the correct value to be displayed on the screen because 10 meters/second converted to 

miles per hour is 22.3694, which the display rounds down to 22. Therefore, the correct function 

of the speed measurement has been proven.  

 To test the maximum cell voltage measurement, an ID ox 0x581 was set in the CANUSB 

software. A value of 3.5V was chosen to represent the maximum cell voltage, which is not 

necessarily representative of the actual solar car’s maximum cell voltage. After converting 3.5V 

to IEEE 754 format, the obtained hexadecimal value was 0x40600000. The ID and data were set 

in the CANUSB software as shown in Fig. 32 below. 
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Figure 32: A maximum cell voltage of 3.5V sent to the DDC 

 

The maximum cell voltage value was set in the least significant word of the data segment, which 

is how the BPS would send the message. After transmitting the message to the CAN bus, the 

maximum cell voltage measurement on the display was updated as shown in Fig. 33 below. 

 
Figure 33: Updated maximum cell voltage value from the CAN bus 
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Therefore, the correct function of the maximum cell voltage measurement has been proven. 

 To test the minimum cell voltage measurement, an ID ox 0x582 was set in the CANUSB 

software. A value of 2.5V was chosen to represent the minimum cell voltage, which is not 

necessarily representative of the actual solar car’s minimum cell voltage. After converting 2.5V 

to IEEE 754 format, the obtained hexadecimal value was 0x40200000. The ID and data were set 

in the CANUSB software as shown in Fig. 34 below. 

 
Figure 34: A minimum cell voltage of 2.5V sent to the DDC 

 

The minimum cell voltage value was set in the least significant word of the data segment, which 

is how the BPS would send the message. After transmitting the message to the CAN bus, the 

minimum cell voltage measurement on the display was updated as shown in Fig. 35 below. 
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Figure 35: Updated minimum cell voltage from the CAN bus 

 

Therefore, the correct function of the maximum cell voltage measurement has been proven. 

 To test the pack temperature measurement - which is really the maximum cell 

temperature - an ID ox 0x583 was set in the CANUSB software. A value of 90 F was chosen to 

represent the maximum cell temperature, which is not necessarily representative of an actual 

value from the solar car. After converting 90 F to IEEE 754 format, the obtained hexadecimal 

value was 0x42B40000. The ID and data were set in the CANUSB software as shown in Fig. 36 

below. 

 



 

59 
 

 
Figure 36: A maximum cell temperature of 90F sent to the DDC 

 

The maximum cell temperature value was set in the least significant word of the data segment, 

which is how the BPS would send the message. After transmitting the message to the CAN bus, 

the maximum cell temperature measurement on the display was updated as shown in Fig. 37 

below. 

 
Figure 37: Updated maximum cell voltage from the CAN bus 
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The maximum cell temperature appears in green text because it is under the current threshold of 

100 F. The value was changed to 110 F and retransmitted to the CAN bus, which is expected to 

read 110 F in red text, as this value is above the current temperature threshold. This is shown in 

Fig. 38 below. 

 
Figure 38: Updated maximum cell voltage from the CAN bus 

 

Therefore, the correct function of the pack temperature measurement has been proven. 

 To test the net current measurement, an ID of 0x585 was set in the CANUSB software. A 

value of 1A was chosen to represent the net current, which would be sent by the BPS as 1000 

mA. After converting 1000 mA to IEEE 754 format, the obtained hexadecimal value was 

0x447A0000. The ID and data were set in the CANUSB software as shown in Fig. 39 below. 
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Figure 39: A net current value of 1A sent to the DDC 

 

The net current value was set in the least significant word of the data segment, which is how the 

BPS would send the message. After transmitting the message to the CAN bus, the net current 

measurement on the display was updated as shown in Fig. 40 below. 

 
Figure 40: Updated net current from the CAN bus 
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The net current measurement appears in green text because its value is positive, which indicates 

that a net current of 1A is going into the battery. The value was changed to -1A and retransmitted 

on the CAN bus, which is expected to be shown in red because it represents a net current of 1A 

coming out of the battery. This is shown in Fig. 41 below. 

 
Figure 41: Updated net current from the CAN bus 

 

Therefore, the correct function of the net current measurement has been proven. 

 The turn signals are the only graphical elements on the screen that are not currently 

controlled by a CAN message, they are controlled instead by digital inputs. The turn signals and 

hazard were tested and when activated, appeared on the display correctly. 
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Conclusion 

Evaluation of Specifications 

The following subsections explain how the characteristics of the finished Display and 

Driver Controller PCB compare to the proposed characteristics in three categories: physical 

characteristics, design, and functionality.  

Physical Characteristics  

Sizing 

1. Display must have appropriate sizing to allow it to be mounted within the 

cockpit. This should be anywhere from 5”- 10.” 

The 7-inch display is housed in a 3D printed enclosure that is 

8.74 inches diagonally. Therefore, this specification was met. 

2. There must be an overall decrease in size from the previous driver controller 

box and display controller box. There will be a reduction from two boxes and 

two PCBs to one box and one PCB. 

The completed design consists of a single PCB and its enclosure that 

measures 9.85 inches by 6.85 inches. Therefore, the specification was met. 

Cosmetic  

1. This display will be able to show more information than before and in a 

clearer and more concise way. 

The new display shows all necessary information on a 7-inch color LCD 

screen. The information displayed on the previous design was smaller, 

unclear, and presented on four different screens. Therefore, this 

specification was met.  
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2. Mounting case must be designed and 3D printed to mount the display inside 

the solar car’s cockpit. 

The enclosure for the display was 3D printed and can be mounted inside 

the solar car’s cockpit. Therefore, this specification was met. 

3. PCB must be housed in a box in a similar fashion as other main components. 

The PCB is housed in a 3D printed box that can be mounted in the solar 

car. Therefore, this specification was met. 

Design  

Microcontroller  

1. Display and Driver Control Unit must use a low power microcontroller. 

The DDC uses an MSP430F5438A, an ultra-low power 

microcontroller. Therefore, this specification was met. 

Power Rating 

2. There is not a hard number that can be exceeded as far as power consumption 

for the combination of the PCB and Display, but the whole system should be 

in the range of a few watts at most. Preferably, the power consumption would 

be less than 1W. 

The whole system uses roughly 1.25W when the display’s backlight is 

configured at 15% brightness. At this brightness, the display is still visible 

and easily readable. Therefore, this specification was met. 
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Functionality 

User Interface of Display Unit 

1. Display must be programmed to display results in a friendly interface that can 

easily be interpreted by the driver of the vehicle. Display should feature a 

functional speedometer, state of charge, min/max battery cell voltage, pack 

voltage, net current of the battery, and temperature of the battery, amongst 

other non-critical information such as time, turn signal indicators, etc.  

The display presents all measurements in an intuitive manner. These 

 measurements include speed (presented in both analog and digital), state 

of charge, minimum and maximum cell voltage, pack voltage, net current, 

pack temperature, turn signal indicators, and hazard indicators. Therefore, 

this specification was met. 

Driver Controller 

1. Send CAN messages to motor controller based on acceleration pedal 

potentiometer reading. 

2. Send CAN messages to light board to control turn signals and other LEDs 

based on user input. 

3. Send CAN messages to BPS board based on enable signal during car startup. 

The microcontroller communicates respective measurements on the CAN 

bus with the motor controller, light board, and BPS board. Therefore, this 

specification was met. 
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Connectivity 

1. Display unit must interface using SPI with a microcontroller to receive 

accurate measurements of speed, state of charge, etc. The microcontroller will 

interface with the CAN network to get all the information to display and then 

control the display with that information. 

The microcontroller communicates to the display’s controller via SPI, 

which communicates directly with the panel. Therefore, this specification 

was met. 

2. Driver Controller and Display Driver must be consolidated into one PCB and 

maintain all pre-existing functionality, while adding additional functionality. 

This PCB will have GPIO, CAN, and SPI connectivity. 

The new DDC consolidated the previous driver controller and display 

driver into one PCB while maintaining all functionality. Additional 

functionality was implemented by adding more meaningful measurements 

to the display. The PCB has general-purpose-input-ouput (GPIO) pins, 

CAN, and SPI connectivity. Therefore, this specification was met. 
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Recommendations 

 Several recommendations have been prepared for future groups that partake in a follow-

up project, or anyone who decides to reproduce this project. There would be some merit to using 

an STM32 microprocessor instead of an MSP430. While an MSP430 provides a more immersive 

hardware engineering experience and ideal specifications for this application, using an STM32 

microprocessor would save a significant amount of time in programming. This would leave more 

time for improvements in other areas of the project. STM32 microprocessors can be programmed 

easily using STMCubeMX, which is a tool that does not currently exist for the MSP430 family 

of microprocessors. Using an STM32 microprocessor is only a loose recommendation as it 

would not improve any functionality of the project but would allow more time to be invested 

elsewhere. 

 In the reproduction of the hardware components of the project, it is recommended to 

decrease the overall size of the PCB. This project produced a first-generation product, and the 

size of the PCB was not as much of a consideration as the overall functionality. Therefore, this is 

something that should be considered in the future. Furthermore, while 3D printing technology 

allowed the design of the PCB to occur first, this is something that should also be considered in 

the next generation of the DDC. It took three 3D prints to finalize the enclosure for the PCB 

because of tolerance issues, as there was little mechanical experience among team members. 

Given a team with little 3D printing experience and resources, it is recommended to design the 

PCB to fit an existing enclosure with tolerances in mind.   
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Appendix A 

 

Figure A1: CLEAR_COLOR_RGB and CLEAR commands 
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Figure A2: GAUGE command 
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Figure A3: TEXT command 
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Figure A4: COLOR_RGB and NUMBER commands 
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Figure A5: PROGRESS command 
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Figure A6: VERTEX command



 

B1 
 

Appendix B 

 

 

 

Figure B1: Host Memory Write Transaction Template 



 

B2 
 

 

Figure B2: Host Memory Read Transaction Template 
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Figure B3: Host Command Template 
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Appendix C 
 

 
Figure C1: Memory Write 8 Bits Function Flowchart 
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Figure C2: Memory Write 16 Bits Function Flowchart 
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Figure C3: Memory Write 32 Bits Function Flowchart 
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Figure C4: Memory Read 8 Bits Function Flowchart 
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Figure C5: Memory Read 16 Bits Function Flowchart 
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Appendix D 
 

 
Figure D1: Display Initialization Flowchart  
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Figure D2: FT812 Power Down Sequence Flowchart 
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Figure D3: Selecting FT812 Internal Clock Host Command 
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Figure D4: FT812 ACTIVE Command Flowchart 
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Figure D5: Reading the FT812 Chip ID Flowchart 
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Figure D6: Reading the FT812 CPU Status Flowchart 
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Figure D7: Setting the Display’s Backlight Brightness Flowchart 
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Figure D8: Waiting for a Display Refresh Flowchart 
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Appendix E 

 

Figure E1: DC_CAN_BASE Message 
The above layout shows what the actual message looks like on the CAN bus 
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 Figure E2: DC_DRIVE Message 
The above layout shows what the actual message looks like on the CAN bus 
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Figure E3: DC_POWER Message 
The above layout shows what the actual message looks like on the CAN bus 
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Figure E4: DC_SWITCH Command 
The above layout shows what the actual message looks like on the CAN bus 
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Appendix F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure F1: PCB Enclosure Top View 
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 Figure F2: PCB Enclosure Left View of Connectors 
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Figure F3: PCB Enclosure Front View of Switches 
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Figure F4: PCB Enclosure Right View of DB37 Connector
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Figure F5: PCB Enclosure with Removed Top Piece 
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Figure F6: Display Enclosure Top View 
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Figure F7: Display Enclosure Rear View of Connector 
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Figure F8: Fully Assembled and Functional DDC Unit 
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