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Abstract

Digital dashboard displays with critical driver information are found in all modern
vehicles. Examples of such information available to the driver include a speedometer, odometer,
engine RPM, fuel gauge and more. The current 2016 Sunseeker solar car already has numerous
displays that can show critical information to the driver, however, there are several problems that
exist. Each display itself is less than two inches in size, the text on the screens is difficult to read,
and the measurements have no units. Furthermore, these displays were made by a company that
no longer exists, thus preventing the solar car team from purchasing any more for their 2020
version of the vehicle. Therefore, the next version of the Sunseeker solar car required a next
generation driver display that supports strict power, weight, and space considerations. A 7-inch
full-color LCD touch screen display with a Serial Peripheral Interface (SPI) was chosen as the
new digital dashboard of the solar car. This display was integrated into the Driver Control unit of
the existing solar car, which already possessed some of the critical driver information. The new
Display and Driver Control (DDC) unit integrates in a single subsystem driver switches,
controls, accelerator measurements, and CAN bus communications with interfacing for the
display. CAN bus data and software programming allow for a screen of customized vehicle
information to be available to the driver. A custom printed circuit board and housing has been
designed, developed and tested, resulting in a DDC with fewer electronic modules, less wires

and cables, and significantly greater capability than before.

i



DISCLAIMER

This report was generated by a group of engineering seniors at Western Michigan University.
It is primarily a record of a project conducted by these students as part of curriculum
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Introduction
Background

The Western Michigan University Sunseeker solar car team has been designing, building,
and racing solar powered vehicles in the American Solar Challenge for nearly 30 years. The
vehicle contains a large solar array that covers nearly the entire topside of the vehicle, which is
meant to capture as much energy from the sun as possible. The solar array charges the main
battery, which provides power to the vehicle’s electric motors and the rest of its subsystems. In
the cockpit of the vehicle sits the driver’s controls and the displays which show the driver critical
information, such as speed, current battery voltage, maximum and minimum cell voltages, and
more. However, these displays have proved to be a problem for the Sunseeker team in several
ways.

The screen of the displays are less than two inches in size, which only allows one value to
be viewed at a time. The driver must switch between values by pressing a button located near the
displays. Drivers of the solar car have reported that the screens are difficult to read, which can be
attributed to the viewing angles and brightness of the panels. Furthermore, values displayed on
the screens have no units because there is not enough room on each screen to display both the
value and the unit label. Each display has a set of LEDs that show which value is currently being
displayed. These LEDs are also very hard to see in the daylight. Perhaps the largest issue with
these displays is that they can no longer be purchased, as their manufacturer, Tritium, has gone
out of business. In fact, this is also true for the existing driver controller as well.

The driver controller module connects directly to the driver’s controls in the cockpit and
controls switches such as the turn signals, ignition, forward or reverse, the brake, and perhaps the

most important — the accelerator pedal. The existing driver controller came in a discrete box that



could be purchased from Tritium and added to any solar car with other Tritium modules, such as

the displays.

Problem Statement

Because of the problems with the current displays, and the fact that the original
manufacturer no longer exists, a new display was added to the 2020 version of the solar car and
combined with the recreation of the existing driver controller module. The driver controller is
already responsible for setting the speed of the vehicle, which is a critical measurement that is
displayed on the new screen. Because of this, it was logical to combine the display and driver
controller module into a single module, which is now called the Display and Driver Control
(DDC) unit. More critical measurements were added to the new display, such as battery voltage,
minimum and maximum cell voltages, maximum cell temperature, state of charge, and net
current of the battery. The new 7-inch full-color LCD touchscreen display has a user interface
that is easy to read and understand. Furthermore, adding new measurements to the display is
made easy by the well-structured and modular code that was written for it. A custom printed
circuit board (PCB) was designed for the recreation of the driver controller, which connects to
the display via a ribbon cable. 3D printed housings for both the PCB and the display were

designed to prevent damage and make mounting in the solar car easier.



Discussion
Hardware Design
Display
The electronic hardware components consist of a PCB and the display. The display itself
was purchased and consists of a 7-inch 800x480 full-color TFT resistive touch LCD panel, and

an FT812 display controller. The display is pictured below in Fig. 1.

SETTINGS HELP
SECURITY CODE ;
REQUIRED ‘

ENTER 5-DIGIT CODE

Figure 1: NHD-7.0-800480FT-CSXV-T

Although the display is touchscreen, this feature was not used nor was it prototyped during any
part of the project. However, all the connections made during the PCB design phase support the
touch screen interface. The software is the only part that would need to be changed to support the
touchscreen. The display’s panel features a software-controlled backlight, which allows it to be
adjusted from completely off and up to 100% brightness. Because the display uses around 3W of

power at 100% backlight brightness, the backlight was configured at 15% brightness, which still



allows the content on the screen to be viewed easily. The FT812 display controller is the
interface between the actual panel and microprocessor of the DDC’s PCB.
Block Diagram

A high-level block diagram of the PCB and the display is shown below in Fig. 2.

> CANH

Multiple switch inputs Protection - L CAN - >
Circuitry f——p| MSP430 - | CAN Controller |« »|  Transceiver

Accelerator Potentiometer Input < >

CANL
A AA 4 T

4

+13.8V from CAN Bus

Buck Converter |«

+3.3V

Custom PCB

vy

FTDI Display

Driver
Panel

Display

Figure 2: High-level block diagram

The display is depicted in the bottom block. The DDC’s PCB is shown in the upper block.
Within the display, the FT812 (labeled as ‘FTDI Display Driver’) connects directly to the panel.
The only connections that the DDC PCB makes with the display is for power (the red line) and
for communications (the black line). Both the display controller and panel are powered by 3.3V,
which comes from the DDC PCB. The communication interface between the DDC PCB and the
display controller is the Serial Peripheral Interface (SPI). At the center of the DDC PCB (labeled

as ‘Custom PCB’) is the MSP430F5438A, which is a specific variant of the MSP430 family of



microprocessors manufactured by Texas Instruments that has been used in the Sunseeker solar
car in other modules. It is for this reason, and the fact that the MSP430 is extremely low power,
that this variant was selected for use in this project.

The driver control inputs (labeled ‘Multiple switch inputs’) and the accelerator
potentiometer input both connect to the protection circuitry block. Because the driver’s switches
are powered from a 12V rail, each input must have its own set of protection circuitry so that the
input pins of the MSP430 are not damaged by the high voltage. The CAN controller is an
integrated circuit (IC) that processes the logic for the CAN bus. It consists of transmit and
receives buffers that store CAN messages to be sent to and received from the CAN bus. The
MSP430 communicates with the CAN controller via an SPI interface. The CAN controller
communicates to the CAN transceiver via a set of TX and RX signals. The CAN transceiver is
responsible for converting the logic high and logic low level signals from the CAN controller
into a pair of differential signals titled CANH (CAN high) and CANL (CAN low). These are the
standard signals of any CAN bus, and they connect to all the other modules in the solar car. The
Sunseeker’s CAN bus also contains power for every module connected to it, which comes in the
form of 13.8V. Therefore, the DDC PCB contains a buck converter that steps down the 13.8V to
3.3V, which is used by every IC on the board.

Electrical Schematics

The schematic and PCB layout for the DDC was created in Altium Designer. The

electrical schematic of the DDC PCB is shown on the following pages in Fig. 3, Fig. 4, and Fig.

5.
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Fig. 3 contains the main schematic for the DDC PCB. The MSP430F5438A is depicted in the
center, with external crystals and bypass capacitors. While the external crystals are not necessary
for the function of the MSP430, they generate a more precise clock over using the built in
digitally controlled oscillator (DCO). The bypass capacitors are necessary for the function of the
MSP430. At the top of the schematic is the MCP2515 (CAN controller), which connects to the
SN65HVD235D (CAN transceiver). On the left side of the schematic are LEDs that are used for
debugging and showing the status of the driver controller. On the right side of the schematic are
buttons and jumpers, all of which (except the reset button) can be controlled via software to
perform a specific function. The bottom of the schematic contains two connectors. The first
connector is a JTAG header, which is used by a debugger such as the MSP-FET to reprogram the
MSP430 with a new version of its software. The second connector is the header for the display,
which is a 20-pin IDE box header. The leftmost part (BAT54C) contains a series of diodes that
allows only the MSP430 to be powered and reprogrammed using the MSP-FET. When the CAN
bus cable is connected, the CAN bus powers all the components on the board. However, when
the CAN bus cable is disconnected and the debugger is connected via the JTAG header, only the
MSP430 is powered so that it can be reprogrammed and debugged. Both the CAN bus cable and
the debugger can be connected at the same time; however, it is not recommended.

Fig. 4 contains the schematic for the protection circuitry. There are 18 digital inputs to
the driver controller, 2 analog inputs, and 2 digital outputs that are currently configured as timer
modules. The DB37 connector is the same connector used in the existing driver controller,
therefore, it was logical to choose the same connector and place the input and output pins in the

same place and orientation so the cable in the solar car would not have to be modified.
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Figure 6: Protection Circuitry for a Digital Input

The same protection circuitry existed on the previous driver controller, and therefore was
recreated for the new DDC. Fig. 6 shows one of these circuits for one of the rotary encoders in
the solar car. All digital inputs work in the same manner, and so the one in Fig. 6 will be used as
an example. The ENC1_A_IN input comes from the DB37 connector, which is connected to a
rotary encoder’s ‘A’ pin. The input pin of any digital input circuit can be connected to any
single-pole-single-throw (SPST) switch, pushbutton, or a more complex switch as long as there
is a logic high and logic low value provided by the switch. If a normally open pushbutton switch
was connected to ENC1_A 1IN, then its other pin should be connected to ground. When the
button is open, the MOSFET sees 12V at its gate, which turns on the 2N7002, thus pulling
ENC1_A to OV. If the button is being pressed, the MOSFET sees 0V at its gate, thus pulling
ENC1_A to VCC, which is 3.3V. This is how the digital inputs function on a 12V rail, but the
MSP430 only ever sees 0V or 3.3V, thus protecting the MSP430 from the high voltage.

Fig. 5 contains the schematic for the DDC’s power supply. The CAN V input on the left
is connected directly to the 13.8V from the CAN bus. The VCC output on the right supplies the
board’s components with 3.3V. This is a custom design for a buck converter using an LM2596,
which is a step-down voltage regulator. This means that the CAN bus voltage can vary
significantly, and the LM2596 will always try to keep VCC at 3.3V. The values of R92 and R93

10



determine the output voltage and the feedback (FB) pin of the LM2596 is what causes it to
maintain the current output voltage. The diode D30 and the fuse F3 are used as protection
measures for the CAN bus, on top of creating the 12V rail. In fact, 12V is merely used as a
naming convention, this voltage is closer to 13.3V because of the voltage drop across the
Schottky diode. Nonetheless, this voltage difference does not impact the switches that are
connected to its rail. With the display at 15% backlight brightness, the power supply generates an
efficiency of around 60%. Furthermore, the DDC draws around 100 mA of current at 13.8V, to
produce a power draw of less than 1.5W.
PCB Layout

Once the schematic for the DDC was finished, the PCB layout was started. Creating the
PCB layout was done in Altium designer, which is made easy by simply adding a PCB to the
project and importing the schematic to the PCB. The layout editor will generate ratsnest lines,
which logically shows the connections that must be made on the PCB by using traces. The
completed layout for the PCB is shown below in Fig. 7. The board itself was designed to be 9.5”
by 6.5, with four screw holes sized for M5 screws. The stackup of the PCB consists of only two
layers, a bottom layer (shown in blue) and a top layer (shown in red). Ground planes were added
to both layers, with stitching vias placed between the layers to create a strong ground connection.
The right side of the board consists of the protection circuitry and the DB37 connector. The
MSP430 is placed toward the center of the board with its bypass capacitors and crystals placed
close to the chip. The rest of the connectors were placed on the left-hand side of the board with

the LEDs.

11
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The trace thickness was kept at ten mils (ten thousandths of an inch) except in the power supply,
where the trace thickness was set to 35 mils. The thicker traces in the power supply were used so
that the high current draw of the display would drop less voltage across the traces. This was also
the reason for placing the power supply so close to the display header. When the layout was
complete, the design rule check (DRC) was run to make sure that the PCB layout passed the
design rules set by the PCB manufacturer. A design rule file was imported into Altium Designer
from JLCPCB, the PCB manufacturer that was chosen to manufacture the board. Once the PCB
layout passed all DRC checks, the Gerber files were exported from Altium Designer and an order
for ten PCBs was placed with JLCPCB. The turnaround time from order placement to delivery
was eight days. After placing an order with Digi-Key for the components and soldering two
complete boards, the electronic hardware portion of the project was complete. One of the
completed boards is shown in Fig. 8 below. An overview of the board and its components is
provided in Fig. 9 and Fig. 10.
Bill of Materials

The bill of materials (BOM) for one fully assembled PCB is shown in Table 1. The total
cost for each PCB may not be exactly accurate, as the Digi-Key order that was placed was for
three complete boards. Therefore, price breaks occurred in the bulk order. Furthermore, Table 1
does not include the cost for shipping. For a total of ten PCBs from JLCPCB, the cost was
$32.20. Therefore, the unit cost is $3.22. This could also prove to be an inaccuracy to the cost of
only one board. A deeper financial analysis would have to be performed to better estimate the

cost of each board. Nonetheless, a decent estimate still exists.
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CANH/CANL Test Points
Probes the CAN bus

MCP2515 Clockout Test Point
When enabled, probes the clock
output of the MCP2515

L
+8Y 91 €84 Z8Y

DVCC LED Jumper

Jump leftmost two positions — DS8 will
illuminate green when power is
supplied on DVCC rail

Jump rightmost two positions — MSP430
controls DS8 illumination on pin P6.4

=
N

VCC/GND Test Points

Nominal voltage is 3.3V
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Programming

Connect debugger to
reprogram MSP430

Display and Driver Controller
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SMCLK/MCLK/ACLK Test Points
Probes clock outputs of MSP430
SMCLK = MCLK = 8 MHz

ACLK =32.768 kHz

Mounting Screw Holes

General Jumpers

Can be programmed as inputs

Pull-up resistors provide a HIGH input level
— when left open

Input will be LOW when jumped

P5 jumper connected to pin P8.3

P4 jumper connected to pin P8.4

VCC LED Jumper
When jumped, DS7 will illuminate green
when power is supplied to VCC rail

Illuminates green when DEBUG switch is

pressed (SW2)

Figure 9: PCB Component Overview Page 1

15



Display and Driver Controller
WMU 2020

SN65HVD235D CAN Transceiver i ; " GROUND
Converts differential CANH/CANL signals to . O .
TX/RX signals for MCP2515

Connected directly to the CAN bus

L |

MCP2515 CAN Controller

Processes all CAN logic between the CAN bus and MSP430
Communicates with CAN bus through

CAN transceiver (TX/RX signals)

Communicates with MSP430 through an SPI interface
Needs an external high-frequency crystal for operation
Can be programmed to output a divided clock to TP2
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MSP430F5438A

Main processor of driver controller PCB

Needs bypass capacitors for operation

External crystals are used instead of internal clock
for a more accurate clocking system

Z
Power Supply Digital/Analog Circuitry
Buck converter that steps down 13.8V from CAN bus to Protects MSP430 from high voltage
3.3V/3.0V for display and MSP430, respectively. 3.3V Drops 12V used by switches to 3.3V for MSP430

output placed close to the display header to prevent
voltage drop in trace because of high current draw.

Figure 10: PCB Component Overview Page 2
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Index |Designator Quantity | Digi-Key Part Number Description Unit Price|Extended Price
1 [c1,c2 2 399-1193-1-ND CAP CER 12PF 50V COG/NPO 1206 0.27 0.54
2 |C3,C4,C16,C17 4 399-1194-1-ND CAP CER 15PF 50V COG/NPO 1206 0.184 0.74
3 |C5,C10,C11,C12,C13,C14 6 399-1250-1-ND CAP CER 0.1UF 50V X7R 1206 0.219 1.31
4 |C6,C7 2 511-1463-1-ND CAP TANT 10UF 20% 10V 1206 0.53 1.06
5 |C8,C15,C50 3 399-8171-1-ND CAP CER 2200PF 50V COG/NPQ 1206 0.336 1.01
6 |C9 1 399-5771-1-ND CAP CER 0.47UF 50V X8L 1206 0.9 0.90
7 |C18,(C19,C20,C21,C22,C23,C24,C25,C26,C27 20 399-1250-1-ND CAP CER 0.1UF 50V X7R 1206 0.1239 2.48
8 |C58 1 493-2226-1-ND CAP ALUM 100UF 20% 50V SMD 0.51 0.51
9 |C59 1 493-2267-1-ND CAP ALUM 680UF 20% 16V SMD 0.89 0.89
10 [All Test Points 7 36-5015CT-ND PC TEST POINT MINIATURE 0.382 2.67
11 |D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D1 22 BAV99WT1GOSCT-ND DIODE ARRAY GP 100V 215MA SC70-3 0.0556 1.22
12 |D29 1 B340A-FDICT-ND DIODE SCHOTTKY 40V 3A SMA 0.41 0.41
13 |D30 1 MBRS340T3GOSCT-ND  |DIODE SCHOTTKY 40V 4A SMC 0.47 0.47
14 |DS1, DS7 2 516-1434-1-ND LED GREEN DIFFUSED CHIP SMD 0.51 1.02
15 |DS2, DS3 2 350-1817-ND LED 3MM LOW CURR GREEN 1.36 2.72
16 |DS5 1 350-1818-ND LED 3MM LOW CURR YELLOW 1.36 1.36
17 |DS4, DS6 2 350-1816-ND LED 3MM LOW CURR RED 1.36 2.72
18 |J2 1 732-2100-ND CONN HEADER R/A 20P0S 2.54MM 1.04 1.04
19 |L1 1 732-1244-1-ND FIXED IND 33UH 4.2A 45 MOHM SMD 2.41 2.41

20 |P1 1 182-37FE-ND CONN D-SUB RCPT 37POS R/A SOLDER 3.63 3.63
21 ]Q1,Q2,Q3,04, 05, 06,Q7 Q8 Q9 Q10,Q11,Q1 18 2N7002NCT-ND MOSFET N-CH 60V 115MA SOT-23 0.1078 1.94
22 [R4,R5,R81,R97,R98 5 311-47.0KFRCT-ND RES SMD 47K OHM 1% 1/4W 1206 0.071 0.36
23 [R6,R7,R8, R9, R10, R11, R12, R13, R14, R15, R1 56 311-10.0KFRCT-ND RES SMD 10K OHM 1% 1/4W 1206 0.0291 1.63
24 [R61,R63 2 311-1.00MFRCT-ND RES SMD 1M OHM 1% 1/4W 1206 0.1 0.20
25 [R78,R79 2 YAG5901CT-ND RES SMD 1206 1/2W 1% 330 OHM 0.56 1.12
27 [R80, R96 2 YAG3810CT-ND RES SMD 120 OHM 1% 1/4W 1206 0.1 0.20
28 [R82,R83 2 311-665FRCT-ND RES SMD 665 OHM 1% 1/4W 1206 0.1 0.20
29 |R84 1 541-750FCT-ND RES SMD 750 OHM 1% 1/4W 1206 0.1 0.10
30 [R86,R95 2 541-820FCT-ND RES SMD 820 OHM 1% 1/4W 1206 0.1 0.20
31 |R92 1 311-2.70KFRCT-ND RES SMD 2.7K OHM 1% 1/4W 1206 0.1 0.10
32 |R93 1 RMCF1206FT1K60CT-ND |RES 1.6K OHM 1% 1/4W 1206 0.1 0.10
33 [SW1,SW2,SwW3 3 450-1657-ND SWITCH TACTILE SPST-NO 0.05A 24V 0.17 0.51
34 [ul 1 296-37147-1-ND IC MCU 16BIT 256KB FLASH 100LQFP 6.81 6.81
35 [u2 1 BAT54C-FDICT-ND DIODE ARRAY SCHOTTKY 30V SOT23-3 0.19 0.19
36 (U3 1 MCP2515-1/SO-ND IC CAN CONTROLLER W/SPI 1850I1C 1.82 1.82
37 [u4 1 296-15229-5-ND IC TRANSCEIVER HALF 1/1 8S0IC 3.13 3.13
38 |U7 1 296-35399-1-ND IC REG BUCK ADJ 3ATO263-5 4.77 4.77
39 |Y1 1 XC1911CT-ND CRYSTAL 32.7680KHZ 12.5PF SMD 0.72 0.72
40 [R99 1 YAG3909CT-ND RES SMD 88.7 OHM 1% 1/4W 1206 0.1 0.10
41 |Y2,Y3 2 XC983CT-ND CRYSTAL 16.0000MHZ SERIES SMD 1.12 2.24
42 |F3 1 F1222CT-ND FUSE BRD MINT 1A 125VAC/VDC 2SMD 2.55 2.55
43 [J1 1 A101791-ND CONN HEADER VERT 14POS 2.54MM 1.72 1.72
44 113 1 277-2689-ND CONN PLUG MALE 5P0OS GOLD SOLDER 23.8 23.80
45 1 Fabricated PCB 3.22 3.22

Total $86.84

Table 1: Bill of Material for one PCB
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Mechanical Design

Overview

Both the display and the PCB required a housing to make mounting them in the solar car

easier, and for protection. Using PTC Creo Parametric, a box was designed to hold the PCB with

cutouts for the external connector, LEDs, and switches. The box was designed to be held
together with four screws that are inserted from the top of the enclosure. An overview of the
encosure is shown in Fig. 11 below.

Screw Holes
M5-0.8 x 10 mm (x4)

DB37 connector for switches

RESET Switch Switch
When pressed, resets the MSP430 Unused

DEBUG Switch

When pressed, illuminates debug LED on PCB

Figure 11: PCB Enclosure Overview (Top View)

An overview of the connectors on the left side of the box is shown in Fig. 12 below.
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/

Reset LED
Illuminates red when RESET pushbutton

switch is pressed

Display Connector

CAN Status LED Yellow LED 20-pin IDE box header for display cable
connector Blinks green at 1.5 Hz (90 blinks/minute) Unused
Connects board to CAN bus (purple
cable). Power for the board is also
supplied through the CAN bus CAN Activity LED Error LED
Blinks green on CAN activity associated llluminates red on CAN bus errors, such
with driver controls as loss of comms

Figure 12: PCB Enclosure Overview (Left View)

The holder for the display was designed to completely encapsulate the display, with a cutout on
the top of the display for the screen and a cutout of the rear of the enclosure for the connector.
Four screws are meant to hold the two separate pieces together, which go all the way through the
two pieces and stick out on the rear of the enclosure. Lock washers and knurled nuts are meant to
be placed on the exposed screws to hold the enclosure together. An overview for the display’s

enclosure is shown in Fig. 13 below.
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Display Screw Holes (Through-hole/Unthreaded)
800 x 480 resolution (WVGA) TFT Color LCD 6-32x 1" screws (x4)
4mm lock washers (x4) and 6-32 knurled nuts on the back (x4)

Figure 13: Display Enclosure Overview (Top View)

An overview of the connector on the rear of the enclosure is shown in Fig. 14 below.

Display Connector
20-pin IDE box header for display cable

Figure 14: Display Enclosure Overview (Rear View)

Both enclosures were 3D printed using exported STEP files from PTC Creo Parametric. The
display enclosure fit the display on the first 3D print, however, the enclosure for the PCB was

modified and reprinted after the first version proved to be too small for the PCB. This is because
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the inside of the box was designed with the exact dimensions of the PCB. Therefore, a tenth of
an inch was added as a tolerance in the next version of the 3D print.
Dimensions

A dimensioned version of the PCB enclosure is shown below in Fig. 15 and Fig. 16.

Figure 15: PCB Enclosure Dimensions
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Figure 16: PCB Enclosure Dimensions (Top Piece)

A dimensioned version of the display holder is shown below in Fig. 17.
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Figure 17: Display Enclosure Dimensions

3D Printed Enclosures

Pictures of the 3D printed enclosures are shown in Appendix F.
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Software Design
Introduction

The software for the display and the driver controller is written in the C programming
language. When the display was prototyped, its own set of code was created separately from the
driver controller code. Then, the code for both segments of the project were combined in Code
Composer Studio, an integrated development environment (IDE) specifically created for Texas
Instruments’ line of processors. Because there is already an existing version of the driver
controller, the code was taken and ported to the MSP430F5438A. The existing driver controller
used a different variant of the MSP430 and had less pins. Therefore, the driver controller code
had to be modified slightly to fit the new variant of the MSP430. Because these changes are very
minor and the driver controller code already existed, most of the software for the driver
controller will not be described in this document. The only software that will be described
consists of the CAN messages that are received and sent by the new DDC. Therefore, the bulk of
the content in this section pertains to the software written for the display and the information that
needs to be understood so that a member of the solar car team can add new measurements to the
screen or alter the layout of the screen.

As mentioned in the hardware design section of this report, the display consists of the
panel and the FT812 display controller. The FT812 display controller is the device that the
MSP430 communicates with directly to send display commands. The MSP430 never
communicates directly with the panel. The communication interface between the FT812 and the
MSP430 consists of a 4-line SPI interface with an SPI clock frequency of 8 MHz. The MSP430

consists of three main clocks, and the SPI clock frequency can be programmed to be a prescaler
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of any two of the three main clocks. Table 2 shows the various clocks of the MSP430 and their
corresponding frequencies.

Table 2: MSP430F5438A Clock Frequencies

Clock Frequency
MCLK 8 MHz
SMCLK 8 MHz
ACLK 32.768 kHz

The MCLK is the master clock of the microprocessor and is used directly by the CPU and the
system. The SMCLK and the ACLK are the sub-main clock and the auxiliary clock, respectively,
and are selectable to be used by individual peripheral modules, such as the SPI module. The
DDC PCB contains a 16 MHz high frequency crystal and a 32.768 kHz watch crystal. The 16
MHz external crystal is prescaled with a factor of 2 and used as the source for both the MCLK
and the SMCLK. The external watch crystal is used as the source for the ACLK directly, without
any prescaler. The SPI clock for the FT812 SPI module uses the SMCLK directly, which is why
the SPI clock frequency is 8§ MHz.
FT812 Display Controller

The FT812 is a little-endian memory mapped device, which means that the contents that
are meant to be displayed on the panel are simply written to the FT812’s memory, with the least
significant bit always being stored at the lowest address. Once all graphics commands have been
written, a command is then sent to the FT812 to refresh the display with the contents of its
memory. All data and commands are sent over the SPI interface. Therefore, there exists multiple
layers of abstraction in the software. There are functions that represent the actual display
command, such as the drawing of a gauge. This command calls the memory-write functions,

which write the command into the FT812’s memory. These memory-write functions call the spi-
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transmit functions, which are responsible for transmitting the data over the SPI interface. This

process is repeated for each display element on the screen.
Frame Layout

The current layout of the screen is displayed in Fig. 18 below.

[ )
0% SOC

0.00 A

Net Current

0.00 F

Pack Temp

0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage

<- 0 >

MPH

Figure 18: Current Screen Layout

As Fig. 18 shows, the current active measurements consist of the following:
1. Speedometer
a. Displays the current speed of the solar car in miles-per-hour
b. Uses the GAUGE, TEXT, COLOR_RGB, and NUMBER commands
2. Maximum cell voltage
a. Displays the voltage value for the cell that has the maximum voltage

b. Uses the TEXT and NUMBER commands
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3. Minimum cell voltage
a. Displays the voltage value for the cell that has the minimum voltage
b. Uses the TEXT and NUMBER commands
4. Net current
a. Displays the net current of the battery. A positive value will be displayed in green
with a ‘“+’ sign and a negative value will be displayed in red with a ‘-’ sign
b. Uses the COLOR RGB, TEXT, and NUMBER commands
5. Pack temperature
a. Displays the temperature value for the cell that has the maximum temperature
b. Uses the COLOR RGB, TEXT, and NUMBER commands
6. Turn Signals and Hazard
a. Displays the left or right turn signal, or both for a hazard
b. Uses the VERTEX command
The current inactive measurements consist of the following:
1. Pack Voltage
a. Displays the current overall voltage of the battery
b. Uses the TEXT and NUMBER commands
2. State of charge
a. Displays the current charge of the battery as a percent of the total battery capacity

b. Uses the PROGRESS, TEXT, and NUMBER commands
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The pack voltage and state of charge are currently inactive measurements because they
share the same CAN bus message. Another CAN bus message must be added to the Battery
Protection System (BPS) to support both measurements.

EVE Screen Editor

The layout for the screen was created in the EVE Screen Editor software, which is a
software package provided by the manufacturer of the display to support prototyping of the
display. This software package as well as other utilities can be obtained from the following link:

https://www.ftdichip.com/Support/Utilities.htm

Fig. 19 shows a screenshot of the EVE Screen Editor Software.

Net Current

0.00 F
Pack Temp

0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage

Figure 19: EVE Screen Editor Software

As shown in Fig. 19, the environment consists of the frame to be displayed on the screen as well
as a list of commands that correspond to elements on the screen. The command list is not written

in the C language, it is only a list of commands with parameters. These commands must be
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slightly modified when transferring them to the C code, which includes appending the text

“EVE_” to the beginning of each command and changing the zero value of the command to the

desired value. The project in the EVE Screen Editor software that has the current screen’s layout

will be electronically delivered to the Sunseeker solar car team for their future use.

Adding New Measurements to the Display

The following sequence is the recommended way to add a new measurement from the CAN bus

to the display.

1.

Configure the CAN filters and masks of the MCP2515 (CAN controller) to accept the
CAN message that has the value to displayed on the screen. This will be expanded on
later in this report.

At the top of the EVE.h header file, declare the variable for the specific measurement to
be added to the screen, however, do not initialize this variable.

At the top of the main.c file (under ‘Display values’), add two variables for the new
measurement, one variable to hold an old value of the measurement and one variable to
hold the new value of the measurement. The new value will be set when the MSP430
receives the specific CAN message with the desired value. The old value will be set to
the new value when the display is updated with the new value. Therefore, the display is
only ever updated if the new value is different from the old value.

Add a case statement to the switch statement that begins when the MSP430 checks if the
CAN_nINT input is low. This occurs around line 785. The code corresponding to this
new case statement must set the new value of the variable declared in step 3 above. Make
sure that the right value from the CAN bus is sampled, there is a HIGH word and a LOW

word.
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5. In the section where the MSP430 handles communication events (above the
aforementioned switch statement), add an if statement to compare the new value and the
old value declared in step 3 above. Update the value declared in step 2 above with the
new value declared in step 3 above. Set the old value to the new value for the next time
around the loop. Set the ‘needUpdate’ variable to ‘true’ so that the display knows it needs
to be refreshed.

6. Design the measurement in the EVE Screen Editor program and port the related
commands over to the EVE BuildFrame function in the EVE.c file. Now, whenever the
MSP430 receives the specified CAN message, the measurement on the screen will be

updated with the value from the CAN bus if its value changed from a previous reception.

Display Commands

Each measurement on the display can have a number of commands that define the way
the measurement will look or function on the display. Each individual command is a series of
bytes that are written to the FT812’s memory. The FT81X Programmers Guide lists all of the
available commands in chapter 5 [1]. However, only the commands that were used in this project
will be referenced. The main commands that were used in this project are presented in Appendix
A, and their corresponding C function is located in the EVE.c file under the ‘EVE commands’
section. As an example, the GAUGE command will be examined, both from the FT81X
Programmers Guide, and the documentation that appears in Appendix A. The recreated
documentation from Appendix A is shown in Fig. 20 below. The original pages from the FT81X

Programmers Guide appear in Fig. 21 and Fig. 22.
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EVE_CMD_GAUGE
Found on page 187 of FT812 Programmer Guide

Encoding

+0 CMD_GAUGE (OXFFFFFF13) 4 bytes
+4 X 2 bytes
+6 Y 2 bytes
+8 R 2 bytes
+10 Options 2 bytes
+12 Major 2 bytes
+14 Minor 2 bytes
+16 Value 2 bytes
+18 Range 2 bytes
Parameters

X - X-coordinate of gauge center, in pixels
Y - Y-coordinate of gauge center, in pixels
R - Radius of the gauge, in pixels

Options - By default the gauge dial is drawn with a 3D effect and the value of options is zero.
OPT_FLAT removes the 3D effect. With option OPT_NOBACK, the background is not
drawn. With option OPT_NOTICKS, the tick marks are not drawn. With option
OPT_NOPOINTER, the pointer is not drawn.

Major - Number of major subdivisions on the dial, 1-10

Minor - Number of minor subdivisions on the dial, 1-10

Value - Gauge indicated value, between 0 and range, inclusive

Range - Maximum value

Description

Draws a gauge widget. The total length of the command is 20 bytes.

Figure 20: Recreated documentation of the GAUGE command
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5.33 CMD_GAUGE - draw a gauge

C prototype
void cmd_gauge( int16_t x,

intl6_ty,
intl6_tr,
uint16_t options,
uint16_t major,
uint16_t minor,
uint16_t val,

uintl6_t range );

Parameters
X

X-coordinate of gauge center, in pixels

y

Y-coordinate of gauge center, in pixels
r

Radius of the gauge, in pixels
options

By default the gauge dial is drawn with a 3D effect and the value of options is zero.
OPT_FLAT removes the 3D effect. With option OPT_NOBACK, the background is not
drawn. With option OPT_NOTICKS, the tick marks are not drawn. With option
OPT_NOPOINTER, the pointer is not drawn.
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Figure 21: Original datasheet description of the GAUGE command Page 1 [1]
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major

Number of major subdivisions on the dial, 1-10

minor

Number of minor subdivisions on the dial, 1-10

val

Gauge indicated value, between 0 and range, inclusive

range

Maximum value

Description

The details of physical dimension are:

e The tick marks are placed on a 270 degree arc, clockwise starting at south-west

position
e Minor ticks are lines of width r*(2/256), major r*(6/256)
e Ticks are drawn at a distance of r*(190/256) to r*(200/256)

e The pointer is drawn with lines of width r*(4/256), to a point r¥(190/256)from the

center

e The other ends of the lines are each positioned 90 degrees perpendicular to the

pointer direction, at a distance r*(3/256) from the center

Refer to Co-processor engine widgets physical dimensions for more information.

Command layout

+0 CMD_GAUGE(0xffffff13)
+4 X

+6 Y

+8 R

+10 Options

+12 Major

+14 Minor

+16 Value

+18 Range

Product Page
Document Feedback
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Figure 22: Original datasheet description of the GAUGE command Page 2 [1]
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As seen from either Fig. 20, Fig. 21, and Fig. 22, the command layout is presented in a
series of bytes. The first four bytes of the command is what defines it as the GAUGE command.
These four bytes are somewhat of an ‘opcode’ to the FT812; it knows once it sees these four
bytes what parameters the following bytes will correspond to. There are a number of parameters
for the gauge, such as location (X and Y parameters, referenced from the top left of the screen),
the radius of the gauge (R parameter), and the actual value to be displayed (value parameter). All
these different parameters have their own byte offsets in the command. The total length of the
command is 20 bytes long, which never changes. The TEXT command, for example, is a
variable-length command, as each character to be printed on the screen consumes one byte of
memory. The layout of the commands that have already been implemented in the display
software do not need to be fully understood. However, it is recommended that time is taken to
understand how each command was interpreted from the FT81X programmers guide into a C
function. This way, more commands can be added in the future with ease. Each row of the
command encoding (or layout) must be written to the FT812’s memory separately. This is done
by the memory-write functions. The memory-write functions are called multiple times in the
GAUGE command function, one function call for each parameter. In fact, this is true for all the
commands that have implemented.

Types of SPI Transactions

As mentioned earlier, the memory-write functions call the spi-transmit functions. The SPI
transactions must occur following a set of guidelines, so that the FT812 can decipher a memory-
write command from a memory-read command, or from a host command. These are the three
types of commands sent over SPI, with the memory-write command being used the most often

and during the writing of display commands to memory. The memory-read command is only
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used during initialization of the display, which will be described later in this document. The host
command is also only used during initialization of the display. The layout of these three types of
commands in shown in Appendix B. For example, a memory-write function is executed over SPI
by sending a 3-byte address with the two most-significant bits set to 2°b10. When the FT812 sees
these two bits, it knows that the following SPI transaction will be a memory-write. After the 3-
byte address has been sent, the data is transmitted byte-by-byte. Any number of bytes can be sent
because the internal address pointer of the FT812 is automatically incremented after each byte.
The memory-read functions are executed in a similar manner, but by sending 2°b00 as the two
most significant bits and sending a dummy byte in between the address and the data to be
received by the MSP430. Furthermore, the underlying SPI function for the second half of a
memory-read command is the spi-exchange function, not the spi-transmit function. In the spi-
exchange function, the MSP430 sends a byte and waits until the entire byte has been sent before
sampling the return byte from the FT812. On the other hand, the spi-transmit function does not
expect anything in return. A host command layout is also shown in Appendix B.
Memory Read and Write

The diagrams in Appendix B are the underlying templates for the memory-write,
memory-read, and host command functions in the C code. For example, there are multiple
memory-write functions in the software for the display. There is a function to write a single byte,
two bytes, or four bytes. Likewise, there are multiple memory-read functions. There is a function
to read a single byte and to read two bytes. There is only one host command function, which only
requires the command to be executed by the FT812 to be sent. These are all fixed length
commands, which is why only one function is required. The main point here is that all the

memory-write functions are based off the host memory-write template and all memory-read
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functions are based off the host memory-read template. The different memory-write and
memory-read commands are shown in Appendix C.

The GAUGE command presented in Fig. 20, Fig. 21, and Fig. 22 uses the two-byte and
the four-byte memory-write functions, which are shown in Fig. C2 and Fig. C3 in Appendix C,
respectively. The first four bytes of the GAUGE command (the ‘opcode’) will use the four-byte
memory-write function and the rest of the parameters will use the two-byte memory-write
functions. The GAUGE command was only used as an example; however, it shows that all
graphics commands that are meant to be displayed on the screen use a form of the memory-write
functions, which are all based off the host memory-write template. All memory-read functions
are based off the host memory-read template, and the host command function is based off the
host command template, both of which are only used in the initialization of the display and will
be described later in this document.
Coprocessor Engine

Up to this point, the MSP430’s software has been described in detail as to how graphics
commands are written to memory using the memory-write functions and the spi-transmit
functions. However, not much detail as to where these commands are written or how the display
processes these commands has been mentioned. Graphics commands are written to the FT812
coprocessor’s memory. The coprocessor is responsible for reading the graphics commands stored
in its memory, processing all the commands, and then refreshing the display with the new frame.
The coprocessor’s memory space is 4 KB (4096 bytes) in size and its starting address in the
FT812’s memory map is labeled RAM_CMD in the software, which is 0x308000. Graphics

commands are written into this memory space starting at the next available memory location.
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The first time the MSP430 writes to the coprocessor, it will begin at memory location 0x308000.

Conceptually, the coprocessor’s memory space is depicted in Fig. 23.

4K/0K

3K

Free
Space

2K

Figure 23: Coprocessor memory space

The coprocessor’s memory space is depicted as a circular buffer, as seen in Fig. 23. The
importance of this will be mentioned later in this section of the report. Nonetheless, the gray
portion of the diagram represents graphics commands written to memory by the MSP430 and the
white portion of the diagram represents free space. The MSP430 must keep track of the current
offset in the buffer so it knows where to write each graphics command. This variable in the
display’s software is called ‘cmdOffset’. The coprocessor keeps track of two pointers that are
used to update the display with the commands stored in memory. REG_ CMD_ WRITE is a
register in the memory of the FT812 (outside of the coprocessor’s memory space) that contains
the offset of the next available memory location in the buffer. Likewise, REG_ CMD READ is
very similar, except it contains the offset of the next graphics command to be processed by the

coprocessor. Before any commands are written to the coprocessor, the buffer is empty and both
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pointers point at 0x308000 (REG_CMD_WRITE = REG_CMD_READ = 0x308000). A

depiction of this is in Fig. 24 below.

REG_CMD_READ

4K/0K

REG_CMD_WRITE

3K 1K

2K

Figure 24: Empty Coprocessor Buffer

Because both pointers are pointing to the same location in the coprocessor’s memory, it appears
as if the buffer is empty and therefore, the coprocessor has no commands to execute. All
commands written into the buffer must be four-byte aligned (a multiple of four). An error occurs
in the coprocessor if a complete graphics command is not 4-byte aligned. This is not the case for
individual memory-write commands, but for the graphics command as a whole. For example, the
PROGRESS command is padded with two extra bytes, which simply prevents an error in the
coprocessor and has no meaning graphically. Immediately after commands are written into the

buffer, Fig. 25 depicts what the buffer would look like.
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REG_CMD_READ

4K/0K
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Figure 25: Coprocessor buffer immediately after commands have been written

In order for the coprocessor to execute the new commands stored in its memory, the
pointer REG_CMD_ WRITE must be updated with the new value of cmdOffset. Because all the
commands have been written, cmdOffset contains the offset of the very next location after the
last graphics command in memory. Therefore, updating REG_ CMD_WRITE with cmdOffset
will select all the graphics commands that were just written so they can be processed by the
coprocessor. This process is done by calling EVE_UPDATE in the MSP430’s code.

EVE UPDATE will write the value of cmdOffset to the register REG_ CMD_WRITE. The
moment REG_ CMD_ WRITE is updated, the two pointers are no longer equal, which signifies to
the coprocessor that there are commands to be executed. The coprocessor processes each
command in memory and increments REG_ CMD READ until the two pointers become equal
again. Once the two pointers become equal again, the new frame will be visible on the display.

To update the values in the frame, the corresponding values should be changed in the C code and
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then the BuildFrame function should be called. This function rewrites the entire frame to the
coprocessor’s memory in the next available location.

Because the same frame is rewritten to the display over and over, the current frame it will
fit in the 4 KB memory space of the coprocessor about five times. When the sixth frame must be
written, it will overwrite the first frame at the beginning of the circular buffer. The cmdOffset
variable in the MSP430’s code accounts for the size of the coprocessor’s memory space and will
start at zero again once it is incremented past 4095, which is the index of the last location in the
coprocessor. On the display’s side, the coprocessor is intelligent enough to wrap the
REG_CMD READ pointer around the buffer back to the beginning as it processes the
commands. Therefore, the same frame can be rewritten to the coprocessor indefinitely as long as
a single frame is less than 4 KB in size.

Display Initialization

In order for the display to begin processing commands, it must be initialized. This
involves sending host commands and reading from the FT812’s memory to determine if it is
ready to receive graphics commands. The MSP430’s code has a function that turns on the display
and initializes it so that it can receive graphics commands. The flowchart presented in Fig. 26
shows this initialization sequence. Each block in the flowchart has a drilled down diagram that
can be found in Appendix D, except for the ‘Initialize FT812 Registers’ and the ‘Build Frame’
steps. These flowcharts will be delivered electronically to the Sunseeker solar car team. The

purpose of each step will be described briefly.
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Power Cycle

Activate Clock

Activate FT812

Read Chip ID

Check CPU Status

Initialize FT812
Registers

Set Backlight
Brightness

Wait for Display to
Refresh

Build Frame

Figure 26: Recommended FT812 Initialization Sequence
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FT812 Initialization Sequence

1.

Power Cycle (Fig. D2)

The power cycle sets the EVE PDN pin (output of MSP430, input to FT812) low for 6
ms, then the same pin is set high. This powers down the FT812 and powers it back up,
resetting the chip.

Activate Clock (Fig. D3)

A host command is sent to the FT812 to select the internal clock as the main clock.
Activate FT812 (Fig. D4)

A host command is sent to the FT812 to activate it and turn it on.

Read Chip ID (Fig. D5)

The MSP430 continuously reads the REG _ID register until its value is 0x7C. When this
occurs, the FT812 has completed its startup sequence. This function will timeout after
2000 consecutive reads.

Check CPU Status (Fig. D6)

The MSP430 continuously reads the REG_CPURESET register until both the
coprocessor engine and the touch engine are ready. This function will timeout after 2000
consecutive reads.

Initialize FT812 Registers

The MSP430 writes resolution-specific values to several different registers to configure
the FT812 to process commands at a specific resolution.

Set Backlight Brightness (Fig. D7)

The MSP430 turns on the panel’s backlight to 15% brightness by writing to the

REG PWM DUTY register.
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8. Wait for Display to Refresh (Fig. D8)
Waits until REG_ CMD_ READ is equal to REG_ CMD_WRTIE. When this occurs, the
coprocessor engine is ready to receive graphics commands.

9. Build frame
The first frame is written to the coprocessor. All measurements have a value of zero.

After this function call, the frame becomes visible on the display.

Using this recommended process, the display is initialized, and the first frame is written to the
display. Every subsequent display refresh uses the same function in the MSP430’s code to
rewrite the same frame to memory and refresh the display. This not only saves code but makes it
very easy to change the variable for a measurement in the code and have the value updated on
the display.
Transmitted CAN Messages

The driver controller sends four different messages to the CAN bus, which are expected
by the other devices on the bus. The layout of these four commands can be found in Appendix E.
The DC_CAN_BASE message, shown in Fig. E1, contains a serial number in the high word and
the string “TRIb” in the low word. In all the messages that the driver controller transmits, the
high word is always sent to the CAN bus first. This means that when the CAN bus is probed, the
most significant four bytes of the data field will be the high word and the least significant four
bytes will be the low word. Within each word, the least significant byte is sent first, and within
each byte, the most significant bit is sent first. The DC_CAN_BASE message has an ID of
0x500 and is sent over the CAN bus once every second. Fig. E1 shows the layout of this message

bit-by-bit.
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The DC_DRIVE message is shown in Fig. E2. Its ID on the CAN bus is 0x501 and the
message is sent over the CAN bus every 100 ms. The high word contains the desired motor
velocity in meters per second and the low word contains the desired motor current as a
percentage of the maximum allowed current. Both of these values are sent as IEEE 754 single-
precision floating point numbers; therefore, each word has a sign bit, eight exponent bits, and 23
mantissa bits. Both the motor velocity and the motor current are a function of the analog-to-
digital (ADC) conversion value from the accelerator potentiometer. The DC_ POWER message is
shown in Fig. E3. Its ID on the CAN bus is 0x502 and the message is sent over the CAN bus
every 100 ms. The high word is reserved and does not contain any value. The low word contains
the bus current, which is described in Fig. E3. The bus current always has a fixed value of 1.0,
which is converted to IEEE 754 single-precision floating point format before being sent over the
CAN bus.

The DC_SWITCH message is shown in Fig. E4. Its ID on the CAN bus is 0x504 and the
message is sent every 100 ms. The high word contains the current switch position from the
switch inputs on the DB37 connector. The bitwise layout of these switches is shown in the
accompanying table in Fig. E4. The low word contains the switch activity and its bit positions
are identical to the high word. A bit in the switch activity word will be high if the corresponding
bit in the switch position word has changed from the last CAN frame that was sent. This means
that the specific switch on the DB37 has changed state.

Received CAN Messages

The MCP2515 (CAN controller) has two receive buffers that store the contents of a CAN

message received from the CAN bus. For a message to be received into a one of the two receive

buffers, its ID on the CAN bus must be one that is accepted by the MCP2515’s filters and masks.

44



The filters and masks are software configurable registers that can allow a single CAN ID to be
accepted, or a range of CAN IDs. There are two masks that are shared among the six filters. The

current configuration of these filters and masks is shown below in Table 3.

Table 3: MCP2515 Masks and Filters

Buffer Filter Filter Value Mask Mask Value | Accepted IDs
RXBO0 RXFO 0x403 RXMO 0xFBEO 0x403, 0x423

RXBO0 RXF1 0 RXMO 0xFBEO -

RXB1 RXF2 0x500 RXM1 0xFCO00 0x500 — Ox51F
RXB1 RXF3 0x580 RXM1 0xFCO00 0x580 — 0x59F
RXB1 RXF4 0 RXM1 0xFCO00 -

RXB1 RXF5 0 RXM1 0xFCO00 -

As shown above, filters RXFO and RXF1 apply to RXB0 and RXF2 through RXFS5 apply to
RXBI1. Likewise, RXMO applies to RXB0 and RXM1 applies to RXB1. The filter registers of the
MCP2515 are broken into two separate registers, RXFnSIDH and RXFnSIDL, for standard
identifier high and low. The length of the identifier for the filter is only 11 bits long — SID[10:3]
is contained in RXFnSIDH and SID[2:0] is contained in the most 3 significant bits of
RXFnSIDL. Therefore, when writing to the RXFnSIDH and RXFnSIDL registers of the
MCP2515, the value written would be 0x4030 for RXFO, for example. The mask registers are
also broken into two separate registers, RXMnSIDH and RXMnSIDL. The same concept from
the filter register is also true for the mask registers — the length of the mask identifier is only 11
bits long. SID[10:3] is contained in RXMnSIDH and SID[2:0] is contained in RXMnSIDL. The
values in the mask value column of Table 3 represent the absolute value of the RXMnSIDH and
RXMnSIDL registers combined. The most significant byte is written to RXMnSIDH and the
least significant byte is written to RXMnSIDL. This is not true of the presentation of the filter

values, where only the actual filter value is represented.
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The existing driver controller’s software already had filters and masks configured,
however, these had to be modified to accept new CAN messages with the specific values that
were to be presented on the screen. In the addition of a new accepted CAN message, the filter
value should be modified first. If preventable, the mask value should not be changed, as this
would affect the other filters that use that mask. There are three more filters available to accept
more CAN messages. The process of modifying a filter value can be done through somewhat of
a trial and error process. The filter value must be compared to the mask value, and a value of one
in the mask means that an incoming CAN message ID must have the same value of the
corresponding filter bit. For example, RXMO is applied to RXFO0 as follows:

RXMO

HEX F B E 0

BINARY 1111 1011 1110 0000

Where the bolded portion represents the actual mask value

Therefore, the actual mask value is

BINARY 111 1101 1111

RXFO

The actual filter value is

BINARY 100 0000 0011

Comparing the mask and the filter

MASK BINARY 111 1101 1111

FILTER BINARY 100 0000 0011

Where the bolded portion represents the bit that will always be accepted
Therefore, the only two accepted IDs under RXFO are 0x403 and 0x423

The same process is repeated for the rest of the filters to verify the accepted IDs. The filter and

mask truth table is presented in Table 4 below.
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Table 4: Filter and Mask Truth Table from the MCP2515 Datasheet (Table 4-2) [2]

Mask Bit Filter Bit Message;sli:lentiﬁer Accept or Reject Bit
0 X X Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

As shown in Table 4, if a filter’s corresponding mask bit is zero, then that incoming
message ID bit will always be accepted. An example of this was shown above with RXMO0 and
RXFO. If a filter’s corresponding mask bit is one and the filter bit is zero, then the incoming
message ID bit must always be zero for that bit to be accepted. Likewise, if a filter bit is one,
then the incoming message ID bit must always be one for that bit the be accepted. The CAN
messages corresponding to the accepted IDs are shown in Table 5 below.

Table 5: Message IDs and Corresponding CAN Messages

Accepted Values Messages
0x403, 0x423 MC VELOCITY from both motor controllers
0x500 — Ox51F All Driver Controller messages for RTR
frames
0x580 — 0x59F All BPS messages

The accepted value range for the last two rows in Table 5 go beyond the CAN message IDs
present on the CAN bus. However, this is not a problem because the MCP2515 will never accept
these out-of-range CAN IDs, as their messages are not present on the CAN bus. The extended
range of IDs was only present to make configuring the masks and filters easier. The driver
controller must be able to accept messages with its own message IDs so that it can respond the
remote transmit requests. In such a case, another device on the CAN network will send the driver

controller a message in which the ID is equal to one of the four from the driver controller. The
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driver controller recognizes this condition and responds with the requested message. The 0x580
— 0x59F accepts all the BPS’s CAN messages, as most of them are used. The BPS’s messages
are shown in the Table 6. The layout of the data for each message corresponds to how the data
appears on the actual CAN bus. The high word will appear on the CAN bus first and is the most
significant word of the data segment. Likewise, the low word will appear on the CAN bus
second, and is the least significant word of the data segment.

The driver controller uses all the BPS’s CAN messages except BP. CAN BASE. While
the MCP2515 accepts all the BPS’s messages, BP. CAN_ BASE will not be used for anything,
however, it will be accepted into one of the two receive buffers. This is not a problem because
the BP. CAN BASE message is only sent once every 100 seconds. The BP. VMAX message is
used for the maximum cell voltage display measurement and the BP. VMIN message is used for
the minimum cell voltage display measurement. The BP. TMAX message is used for the pack
temperature display measurement, however, it must be noted that this measurement displays the
maximum cell temperature, and not the overall battery temperature. The BP. PCDONE message
is only used during the driver controller initialization and does not display anything graphically.
The BP_ISH message is used for the state of charge measurement and the net current

measurement.
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Table 6: Battery Protection System CAN Messages

Identification CANID Period Data Type High Word Low Word

BP CAN BASE 0x580 100 seconds Uint32, Char[4] Serial Number “BPv1” string

BP VMAX 0x581 10 seconds | Float, Float Max voltage cell | Max voltage value
— number V)

BP_VMIN 0x582 10 seconds | Float, Float Min voltage cell | Min voltage value
— number V)

BP TMAX 0x583 10 seconds Float, Float Max temp cell Max temp value (F)

number
BP PCDONE 0x584 RTR/PC Uint32, Char[4] Serial number “BPv1” string
BP ISH 0x585 10 seconds Float, Float SOC (mA/sec) Current (mA)
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Testing and Verification

Overview

Testing the DDC PCB in the current version of the solar car was not possible at the time
of writing this report. Therefore, the completed PCB was tested using a CAN test bench and an
Analog Discovery 2. The CAN test bench consists of a small dongle that plugs into any
computer’s USB port. The other end of the dongle contains a DB9 connector that is meant to be
connected to the CAN bus. The dongle contains a Phillips SJA1000 CAN Controller and a
Phillips 82C251 CAN Transceiver. Therefore, no other CAN devices were required to be
connected to the CAN bus other than the DDC, as a CAN bus requires at least two devices on the
network for full functionality. The CANUSB dongle was purchased from canusb.com, and along
with a piece of software to send and receive CAN messages over USB, the test bench setup was
complete. The software was borrowed from the solar car team and required an installation of
Windows XP, which was done in a virtual machine, for correct function of the software.
MSP430 Clock Frequencies

To verify that the MSP430’s clocking system was configured correctly, the
corresponding test points on the PCB were probed using an Analog Discovery 2. Table 2 shows
the expected clock frequencies of the three different clocks. Fig. 27 shows that the frequency of
the measured ALCK signal was 32.768 kHz, which matches the configured frequency from

Table 2.
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[ c1 | c2 |8192 samples at 800 kiz | 2020-04-05 13:27:32.805 N [ v | veasurements 8 x
4add, =, [lest = show, & .
[ Name Value
C1 Frequency 32763kHz

Manual Trigger | | Discovery2 sN:21032

Figure 27: External ACLK output of the MSP430

The measured MCLK signal and its corresponding frequency is shown in Fig. 28 below. The

measured frequency matches the configured frequency from Table 2.

€2 8192 samples at 100 MHz | 2020-04-05 13:28:36.426 RN [ v | veasurements

Name Value

C1 Frequency 8.0026 MHz

4 Add, == [\ Edit show, & .

Manual Trigger | | Discovery2 SN:21032

Figure 28: External MCLK output of the MSP430
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The measured SMCLK signal and its corresponding frequency is shown in Fig. 29 below. The

measured frequency matches the configured frequency from Table 2.

€2 |8192 samples at 100 MHz | 2020-04-05 13:29:12.714 QL= @ Y || Measurem ents 8 X

4 Add, == [UEdt : Show, & .
Name Value

C1 Frequency 8.0025MHz

Manual Trigger | | Discovery2 SN:21032

Figure 29: External SMICLK output of the MSP430

Digital Inputs

To verify the correct function of the 18 different digital inputs, the DC_SWITCH CAN
message was used. The high word of the DC_SWITCH message contains the current switch
position on the DB37 connector. Therefore, to test the digital input protection circuitry, the
driver controller code, and the correct function of the driver controller CAN messages, all 18
digital inputs on the DB37 connector were tested both in the ON and OFF state. However, for the
purpose of this report, only one digital input, BRAKE 1, will be presented. The CANUSB
software contains a terminal window which prints out all the messages on the CAN bus.
Therefore, the message with an ID of 0x504 was found and the data segment was the message

was analyzed. For the first test case, the switch for the BRAKE 1 input was left open on the
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DB37 connector. Because the digital protection circuit has a pull-up resistor to the 12V rail, the
MOSFET will be on, which will pull the input to the MSP430 low. An example of this scenario
is explained with Fig. 6. Therefore, we can expect the BRAKE 1 bit in the DC_ SWITCH CAN
message to be low as well. This CAN message, as received by the CANUSB software, is as
follows:

id = 00000504 timestamp = 000B4800 len = 8 data =00 00 00 00 00 00 00 00
All values of the CAN message are presented in hexadecimal. As seen from the data segment of
the message, the high word consists of all zeros, which is what was expected. Next, the
BRAKE 1 switch was closed. In this scenario, the input to the MSP430 should be high, and
therefore, the BRAKE 1 bit of the DC_SWITCH message should also be high. The
corresponding CAN message is as follows:

id = 00000504 timestamp = 0014C988 len = 8 data =10 00 00 00 00 00 0O 00
As seen from the data segment, the most significant byte of the high word is 0x10. If this is
compared to the bit layout in Fig. E4, then it can be confirmed that the BRAKE 1 bit is high in
the DC_SWITCH message. This same process was repeated for the 17 other digital inputs to
verify the correct function of both the physical hardware and the software. The two analog inputs
and the two analog outputs were tested with a potentiometer to simulate the correct function of
the accelerator. This also proved to be successful.

Display Measurements

Perhaps the most important testing that was done was testing the measurements on the
display. The measurements were tested by sending the associated CAN message through the
CANUSB software, which would be sent from the motor controllers and the BPS. Only the
active measurements were tested, which excluded the state of charge and the pack voltage

measurements. The active measurement values were sent in IEEE 754 single-precision floating
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point format, which is how the motor controllers and the BPS send the values for these
measurements. For the speed measurement, an ID of 0x403 was set in the CANUSB software
and a speed of 10 meters/second was set. Using an IEEE 754 floating point converter, a
hexadecimal value of 0x41200000 was obtained. Because the driver controller software sends
data to the CAN bus least-significant byte first within each word, messages are also expected to
be received in this manner as well. Therefore, the data was inputted to the CANUSB software as

shown in Fig. 30.

2 Lawicel CAN driver test application..
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All values can be given in decimal or in hexadecimal form (0x...) Clear Data
Msgid Flags Data
0x403 I Extended [~ RTR 0:0 [0x0 [0x0 [0x0 [0x0 [0x0  [0x20 [Ox41

250
Get Adapters Send Burst
Avaiable serial numbers Serial # to open Close m Big Burst

[LwrukkFr  w] 5> | LWRUKKF

Flags ™ Test Callback
™ Timestamp I NoLocal Send

™ Queue Replace
= f A serial # is needed for the virtual test

™ Slow Mode Virtual Test

Message List
<-§ id = 00000502 timestamp = 001CA446 len = 8 data =00 00 00 00 00 00 80 3f -~
<-§ id = 00000504 timestamp = 001C4446 len = 8 data =00 00 00 00 00 00 00 00

<-S id = 00000501 timestamp = 001C4446 len = 8 data =00 00 00 00 00 00 00 00

<-$S id = 00000502 timestamp = 001CA3ES len = 8 data =00 00 00 00 00 00 80 3f

<-S id = 00000504 timestamp = 001CA3ES len = 8 data =00 00 00 00 00 00 00 00

<-S id = 00000501 timestamp = 001CA3ES len = 8 data =00 00 00 00 00 00 00 00

<-S id = 00000502 timestamp = 001CA37B len = 8 data =00 00 00 00 00 00 80 3f

<-§ id = 00000504 timestamp = 001CA37B len = 8 data =00 00 00 00 00 00 00 00

<-S id = 00000501 timestamp = 001CA378 len = 8 data =00 00 00 00 00 00 00 00

z Sent frames: 1
Version Status I Noautofetch Received frames: 6369

Selectiv read

ReadFirst id flags

Figure 30: A motor velocity of 10 m/s sent to the DDC

Clear msg-list | Exit

Because the motor velocity in meters/second is the low word of the data segment of the CAN
message, 0x41200000 was set in the low word of the data to be sent. Notice that the most
significant byte of 0x41200000 is set in the least significant byte’s position. Once the message

was sent to the CAN bus, the speed value was updated on the display as shown in Fig. 31 below.
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o
0.00 V Pack Voltage /

0.00 V Max Cell Voltage A
0.00 V Min Cell Voltage - 22

MPH

Figure 31: Updated speed value from the CAN bus

This is the correct value to be displayed on the screen because 10 meters/second converted to
miles per hour is 22.3694, which the display rounds down to 22. Therefore, the correct function
of the speed measurement has been proven.

To test the maximum cell voltage measurement, an ID ox 0x581 was set in the CANUSB
software. A value of 3.5V was chosen to represent the maximum cell voltage, which is not
necessarily representative of the actual solar car’s maximum cell voltage. After converting 3.5V
to IEEE 754 format, the obtained hexadecimal value was 0x40600000. The ID and data were set

in the CANUSB software as shown in Fig. 32 below.
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% Lawicel CAN driver test application..

- All values can be given in decimal or in hexadecimal form (0x...) Clear Data
[~ Msgid - Flags | Data
04581 [~ Estended |~ RTR W'WWWWWWW
e Baudiate Send Message

250
Get Adapters S I I—
Avaiable serial numbers Serial # to open Close Big Burst I
JLwruKkF1  v| >> | [LWRUKKF E_]

I Test Callback

I Timestamp [ NoLocal Send
B

I™ Blocking Mode A serial # is needed for the virtual test

I Slow Mode | Vitual Test |

<-S id = 00000502 timestamp = 001F1EDEB len = 8 data =00 00 00 00 00 00 80 3f
<-S id = 00000504 timestamp = 001F1EDB len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 001F1EDE len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000502 timestamp = 001F1EGE len = 8 data =00 00 00 00 00 00 80 3f

<-S id = 00000504 timestamp = 001F1EEE len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 00TF1EEE len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000502 timestamp = 001F1E10 len = 8 data =00 00 00 00 00 00 80 3f

<-S id = 00000504 timestamp = 001F1E10 len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 001F1E10 len = 8 data =00 00 00 00 00 00 00 00

Message List

([

|

Sentframes: 2

Version | Status | I™ No auto fetch Received frames: 11389

Selectiv read

—ml flags I Clear msg-list | Exit

Figure 32: A maximum cell vo/tage of 3.5V sent to the DDC

The maximum cell voltage value was set in the least significant word of the data segment, which

is how the BPS would send the

message. After transmitting the message to the CAN bus, the

maximum cell voltage measurement on the display was updated as shown in Fig. 33 below.

0.00 V Pack Voltage
3.50 V Max Cell Voltage
0.00 V Min Cell Voltage

Figure 33: Updated maximum cell voltage value from the CAN bus
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Therefore, the correct function of the maximum cell voltage measurement has been proven.

To test the minimum cell voltage measurement, an ID ox 0x582 was set in the CANUSB

software. A value of 2.5V was chosen to represent the minimum cell voltage, which is not

necessarily representative of the actual solar car’s minimum cell voltage. After converting 2.5V

to IEEE 754 format, the obtained hexadecimal value was 0x40200000. The ID and data were set

in the CANUSB software as shown in Fig. 34 below.

2 Lawicel CAN driver test application.. @

Message
All values can be given in decimal or in hexadecimal form (0x...) Clear Data
Msgid Flags Data
0x582 I~ Extended I~ RTR 00 |00 |0x0 |0x0 |0x0 |0x0  |0x20 |0x40
Get Adapters fazt Send Burst
Avaiable serial numbers Serial # to open Close Big Burst
|twrukkFr  w| >> | JLWRUKKF1 El
Flags ™ Test Callback
™ Timestamp ™ NoLocal Send
™ Queue Replace
r b A serial # is needed for the virtual test
I~ Slow Mode Virtual Test
4' Message List
<-S id = 00000502 timestamp = 00207C29 len = 8 data =00 00 00 00 00 00 80 3 -~
<-S id = 00000504 timestamp = 00207C29 len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 00207C19 len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000502 timestamp = 00207BBC len = 8 data =00 00 00 00 00 00 80 3f
<-S id = 00000504 timestamp = 00207BBC len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 00207BBC len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000502 timestamp = 00207B5E len = 8 data =00 00 00 00 00 00 80 3f
<-S id = 00000504 timestamp = 00207B5E len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 00207B4E len = 8 data =00 00 00 00 00 00 00 00 B
Veson | Status | [ Noauofetch Reced s, 14139
Selectiv read
m‘ id flags Clear msg-list | Exit

Figure 34: A minimum cell voltage of 2.5V sent to the DDC

The minimum cell voltage value was set in the least significant word of the data segment, which

is how the BPS would send the message. After transmitting the message to the CAN bus, the

minimum cell voltage measurement on the display was updated as shown in Fig. 35 below.
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0.00 V Pack Voltage
0.00 V Max Cell Voltage
2.50 V Min Cell Voltage

Figure 35: Updated minimum cell voltage from the CAN bus

Therefore, the correct function of the maximum cell voltage measurement has been proven.

To test the pack temperature measurement - which is really the maximum cell
temperature - an ID ox 0x583 was set in the CANUSB software. A value of 90 F was chosen to
represent the maximum cell temperature, which is not necessarily representative of an actual
value from the solar car. After converting 90 F to IEEE 754 format, the obtained hexadecimal
value was 0x42B40000. The ID and data were set in the CANUSB software as shown in Fig. 36

below.
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- Lawicel CAN driver test application..

- Message
All values can be given in decimal or in hexadecimal form (0x...) Cleal Data
~Msgid - Flags - Data
0x583 I Extended |~ RTR ‘ I 0x0  |0x0 |0x0  |0x0  |0x0  |Oxbd4 |0xd2 ‘
adapes Baukte
Adapters Send Burst I
Avaiable serial numbers Serial # to open Close Big Burst I
juwRukkFr w| > | [LWRUKKF1 ’,LE'
~Flags I Test Callback
™ Timestamp I No Local Send
™ Queue Replace :
I™ Blocking Mode A serial # is needed for the virtual test
I Slow Mode Vitual Test
- Q Message List
<-S id = 00000502 timestamp = 0022896E len = 8 data =00 00 00 00 00 00 80 3f A
<-S id = 00000504 timestamp = 0022896E len = 8 data =00 00 00 00 00 00 00 00 =
<-S id = 00000501 timestamp = 0022836E len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000502 timestamp = 00228300 len = 8 data =00 00 00 00 00 00 80 3f
<-S id = 00000504 timestamp = 00228300 len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000501 timestamp = 00228300 len = 8 data =00 00 00 00 00 00 00 00
<-S id = 00000500 timestamp = 00228843 len = 8 data =01 00 00 00 62 49 52 54
<-S id = 00000502 timestamp = 00228843 len = 8 data =00 00 00 00 00 00 80 3f
<-S id = 00000504 timestamp = 00228843 len = 8 data =00 00 00 00 00 00 00 00 3
Version I Status I Noaauto fetch Flece?vz ::a'nes: :8291
[ Selectiv read
—NJ flags Clear msg-list | Exit

Figure 36: A maximum cell temperature of 90F sent to the DDC

The maximum cell temperature value was set in the least significant word of the data segment,

which is how the BPS would send the message. After transmitting the message to the CAN bus,

the maximum cell temperature measurement on the display was updated as shown in Fig. 37

below.

0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage

+ O0.00 A

Net Current

90.00 F

Pack Temp

Figure 37: Updated maximum cell voltage from the CAN bus
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The maximum cell temperature appears in green text because it is under the current threshold of
100 F. The value was changed to 110 F and retransmitted to the CAN bus, which is expected to
read 110 F in red text, as this value is above the current temperature threshold. This is shown in

Fig. 38 below.

0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage -

Figure 38: Updated maximum cell voltage from the CAN bus

Therefore, the correct function of the pack temperature measurement has been proven.

To test the net current measurement, an ID of 0x585 was set in the CANUSB software. A
value of 1A was chosen to represent the net current, which would be sent by the BPS as 1000
mA. After converting 1000 mA to IEEE 754 format, the obtained hexadecimal value was

0x447A0000. The ID and data were set in the CANUSB software as shown in Fig. 39 below.
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% Lawicel CAN driver test application..

All values can be given in decimal or in hexadecimal form (0x...) Clear Data
Msgid  Flags - Data
(W‘I’Emnmr‘mn po [pa o Ppo oo [pa o P
Adapters Baudrat Send Message

250
_Getadsptes | =
Avaiable serial numbers Serial # to open Close Big Burst
[LwRukkFt  w] 5> | [LWRUKKFT »El

Flags 5 [ Test Callback

™ Timestamp I NoLocal Send

u QueueReplace )
IE IBlocking Mo A serial # is needed for the virtual test

I SowMods Vitual Test

Message List

00000502 timestamp = 00264445 len = 8 data =00 00 00 00 00 00 80 3f

00000504 timestamp = 00264445 len = 8 data =00 00 00 00 00 00 00 00
00000501 timestamp = 00264445 len = 8 data =00 00 00 00 00 00 00 00
00000502 timestamp = 00264308 len = 8 data =00 00 00 00 00 00 80 3f
00000504 timestamp = 002643D8 len = 8 data =00 00 00 00 00 00 00 00
00000501 timestamp = 002643D8 len = 8 data =00 00 00 00 00 00 00 00
00000500 timestamp = 00264374 len = 8 data =01 00 00 00 62 43 52 54
00000502 timestamp = 00264374 len = 8 data =00 00 00 00 00 00 80 3

00000504 timestamp = 00264374 len = 8 data =00 00 00 00 00 00 00 00

Yoreon | Slalue L iheuiieicr Recsived iames, 36594

- Selectiv read

& flags Clear msg-list | Exit

Figure 39: A net current value of 1A sent to the DDC
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The net current value was set in the least significant word of the data segment, which is how the
BPS would send the message. After transmitting the message to the CAN bus, the net current

measurement on the display was updated as shown in Fig. 40 below.

1.00 A

Net Current

000 F

Pack Temp
0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage

Figure 40: Updated net current from the CAN bus
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The net current measurement appears in green text because its value is positive, which indicates
that a net current of 1A is going into the battery. The value was changed to -1A and retransmitted
on the CAN bus, which is expected to be shown in red because it represents a net current of 1A

coming out of the battery. This is shown in Fig. 41 below.

Net Current

0.00F
Pack Temp
0.00 V Pack Voltage
0.00 V Max Cell Voltage
0.00 V Min Cell Voltage

Figure 41: Updated net current from the CAN bus

Therefore, the correct function of the net current measurement has been proven.
The turn signals are the only graphical elements on the screen that are not currently
controlled by a CAN message, they are controlled instead by digital inputs. The turn signals and

hazard were tested and when activated, appeared on the display correctly.
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Conclusion
Evaluation of Specifications
The following subsections explain how the characteristics of the finished Display and
Driver Controller PCB compare to the proposed characteristics in three categories: physical
characteristics, design, and functionality.
Physical Characteristics
Sizing

1. Display must have appropriate sizing to allow it to be mounted within the

cockpit. This should be anywhere from 5”- 10.”

The 7-inch display is housed in a 3D printed enclosure that is
8.74 inches diagonally. Therefore, this specification was met.

2. There must be an overall decrease in size from the previous driver controller

box and display controller box. There will be a reduction from two boxes and

two PCBs to one box and one PCB.

The completed design consists of a single PCB and its enclosure that
measures 9.85 inches by 6.85 inches. Therefore, the specification was met.
Cosmetic

1. This display will be able to show more information than before and in a

clearer and more concise way.

The new display shows all necessary information on a 7-inch color LCD
screen. The information displayed on the previous design was smaller,
unclear, and presented on four different screens. Therefore, this

specification was met.
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2. Mounting case must be designed and 3D printed to mount the display inside

the solar car’s cockpit.

The enclosure for the display was 3D printed and can be mounted inside
the solar car’s cockpit. Therefore, this specification was met.

3. PCB must be housed in a box in a similar fashion as other main components.

The PCB is housed in a 3D printed box that can be mounted in the solar
car. Therefore, this specification was met.
Design
Microcontroller

1. Display and Driver Control Unit must use a low power microcontroller.

The DDC uses an MSP430F5438A, an ultra-low power
microcontroller. Therefore, this specification was met.
Power Rating

2. There is not a hard number that can be exceeded as far as power consumption

for the combination of the PCB and Display, but the whole system should be

in the range of a few watts at most. Preferably, the power consumption would

be less than 1W.

The whole system uses roughly 1.25W when the display’s backlight is
configured at 15% brightness. At this brightness, the display is still visible

and easily readable. Therefore, this specification was met.
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Functionality
User Interface of Display Unit

1. Display must be programmed to display results in a friendly interface that can

easily be interpreted by the driver of the vehicle. Display should feature a

functional speedometer, state of charge, min/max battery cell voltage. pack

voltage, net current of the battery, and temperature of the battery, amongst

other non-critical information such as time, turn signal indicators, etc.

The display presents all measurements in an intuitive manner. These
measurements include speed (presented in both analog and digital), state
of charge, minimum and maximum cell voltage, pack voltage, net current,
pack temperature, turn signal indicators, and hazard indicators. Therefore,
this specification was met.

Driver Controller

1. Send CAN messages to motor controller based on acceleration pedal

potentiometer reading.

2. Send CAN messages to light board to control turn signals and other LEDs

based on user input.

3. Send CAN messages to BPS board based on enable signal during car startup.

The microcontroller communicates respective measurements on the CAN
bus with the motor controller, light board, and BPS board. Therefore, this

specification was met.
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Connectivity

1. Display unit must interface using SPI with a microcontroller to receive

accurate measurements of speed, state of charge. etc. The microcontroller will

interface with the CAN network to get all the information to display and then

control the display with that information.

The microcontroller communicates to the display’s controller via SPI,
which communicates directly with the panel. Therefore, this specification
was met.

2. Driver Controller and Display Driver must be consolidated into one PCB and

maintain all pre-existing functionality, while adding additional functionality.

This PCB will have GPIO, CAN. and SPI connectivity.

The new DDC consolidated the previous driver controller and display
driver into one PCB while maintaining all functionality. Additional
functionality was implemented by adding more meaningful measurements
to the display. The PCB has general-purpose-input-ouput (GPIO) pins,

CAN, and SPI connectivity. Therefore, this specification was met.
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Recommendations

Several recommendations have been prepared for future groups that partake in a follow-
up project, or anyone who decides to reproduce this project. There would be some merit to using
an STM32 microprocessor instead of an MSP430. While an MSP430 provides a more immersive
hardware engineering experience and ideal specifications for this application, using an STM32
microprocessor would save a significant amount of time in programming. This would leave more
time for improvements in other areas of the project. STM32 microprocessors can be programmed
easily using STMCubeMX, which is a tool that does not currently exist for the MSP430 family
of microprocessors. Using an STM32 microprocessor is only a loose recommendation as it
would not improve any functionality of the project but would allow more time to be invested
elsewhere.

In the reproduction of the hardware components of the project, it is recommended to
decrease the overall size of the PCB. This project produced a first-generation product, and the
size of the PCB was not as much of a consideration as the overall functionality. Therefore, this is
something that should be considered in the future. Furthermore, while 3D printing technology
allowed the design of the PCB to occur first, this is something that should also be considered in
the next generation of the DDC. It took three 3D prints to finalize the enclosure for the PCB
because of tolerance issues, as there was little mechanical experience among team members.
Given a team with little 3D printing experience and resources, it is recommended to design the

PCB to fit an existing enclosure with tolerances in mind.
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Appendix A

EVE_CLEAR_COLOR_RGB
Found on page 121 of FT812 Programmer Guide
The encoding table is wrong in the datasheet!

Encoding
31 24 23 16 15 8 7 0

0x02 Red Green Blue

Parameters
Red — The Red value used when the color buffer is cleared.
Green — The Green value used when the color buffer is cleared.
Blue — The Blue value used when the color buffer is cleared.

Description
Sets the color values used by a following EVE_CLEAR command.

EVE_CLEAR
Found on page 118 of FT812 Programmer Guide

Encoding

31 24 23 |
0x26 Reserved CIS|T

Parameters

C - Clear color buffer. Setting this bit to 1 will clear the color buffer of the FT81X to the
preset value. Setting this bit to 0 will maintain the color buffer of the FT81X with an
unchanged value.

S - Clear stencil buffer. Setting this bit to 1 will clear the stencil buffer of the FT81X to
the preset value. Setting this bit to 0 will maintain the stencil buffer of the FT81X
with an unchanged value.

T - Clear tag buffer. Setting this bit to 1 will clear the tag buffer of the FT81X to the
preset value. Setting this bit to 0 will maintain the tag buffer of the FT81X with an
unchanged value.

Description
If all three buffers are cleared at the same time, this command will change the
background to the color specified by the function EVE_CLEAR_COLOR_RGB.

Figure A1: CLEAR_COLOR_RGB and CLEAR commands
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EVE_CMD_GAUGE
Found on page 187 of FT812 Programmer Guide

Encoding
[ofttec  Tearameter i |

+0 CMD_GAUGE (OxFFFFFF13) 4 bytes
+4 X 2 bytes
+6 Y 2 bytes
+8 R 2 bytes
+10 Options 2 bytes
+12 Major 2 bytes
+14 Minor 2 bytes
+16 Value 2 bytes
+18 Range 2 bytes
Parameters

X - X-coordinate of gauge center, in pixels

Y - Y-coordinate of gauge center, in pixels

R - Radius of the gauge, in pixels

Options - By default the gauge dial is drawn with a 3D effect and the value of options is zero.
OPT_FLAT removes the 3D effect. With option OPT_NOBACK, the background is not
drawn. With option OPT_NOTICKS, the tick marks are not drawn. With option
OPT_NOPOINTER, the pointer is not drawn.

Major - Number of major subdivisions on the dial, 1-10

Minor - Number of minor subdivisions on the dial, 1-10

Value - Gauge indicated value, between 0 and range, inclusive

Range - Maximum value

Description
Draws a gauge widget. The total length of the command is 20 bytes.

Figure A2: GAUGE command
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EVE_CMD_TEXT
Found on page 213 of FT812 Programmer Guide

Encoding
+0 CMD_TEXT (OxFFFFFFOC) 4 bytes
+4 X 2 bytes
+6 Y 2 bytes
+8 Font 2 bytes
+10 Options 2 bytes
+12 S 1 byte
1 byte
0 (null character to terminate string) 1 byte
Parameters
X - x-coordinate of text base, in pixels
Y - y-coordinate of text base, in pixels
Font - font to use for text, 0-31. See ROM and RAM Fonts
Options - By default (x,y) is the top-left pixel of the text and the value of options is zero.
OPT_CENTERX centers the text horizontally, OPT_CENTERY centers it vertically.
OPT_CENTER centers the text in both directions.
OPT_RIGHTX right-justifies the text, so that the x is the rightmost pixel.
Text - The text string itself
Description

This is a variable length command that draws text on the screen. Because the display is designed
to read ASCII characters, each character is a byte. Furthermore, because each graphics command
must be 4-byte aligned, the very minimum length of this command is 16 bytes. The C function
always rounds up to the nearest 4-byte multiple. For example, if the string was “Hi”, the C
function would write ‘H” at +12, ‘i’ at +13, 0x00 at +14 for the null termination character, and
0x00 at +15 to pad the length to 16 bytes.

Figure A3: TEXT command
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EVE_COLOR_RGB
Found on page 126 of FT812 Programmer Guide
The encoding table in the datasheet is wrong!

Encoding
31 24 23 16 15 8 7 0
0x04 Red Green Blue

Parameters
Red — The Red value for the current color.
Green — The Green value for the current color.
Blue — The Blue value for the current color.

Description
Sets the color values to be used for the following draw operation. This function is NOT
the same as EVE_CLEAR_COLOR_RGB, which only applies to an EVE_CLEAR command.
This function applies to all draw commands.

EVE_CMD_NUMBER
Found on page 218 of FT812 Programmer Guide

Encoding

+0 CMD_NUMBER (OxFFFFFF2E) 4 bytes
+4 X 2 bytes
+6 Y 2 bytes
+8 Font 2 bytes
+10 Options 2 bytes
+12 n 4 bytes
Parameters

X - x-coordinate of text base, in pixels

Y - y-coordinate of text base, in pixels

Font - font to use for text, 0-31. See ROM and RAM Fonts

Options - By default (x,y) is the top-left pixel of the text. OPT_CENTERX centers the text
horizontally, OPT_CENTERY centers it vertically. OPT_CENTER centers the text in both
directions. OPT_RIGHTX right-justifies the text, so that the x is the rightmost pixel. By
default the number is displayed with no leading zeroes, but if a width 1-9 is specified
in the options, then the number is padded if necessary with leading zeroes so that it
has the given width. If OPT_SIGNED is given, the number is treated as signed, and
prefixed by a minus sign if negative.

number - The number to display, is either unsigned or signed 32-bit, in the base specified in the
preceding CMD_SETBASE. If no CMD_SETBASE appears before CMD_NUMBER, it will
be in decimal base.

Description
Draws a number on the screen. The total length of the command is always 16 bytes.

Figure A4: COLOR_RGB and NUMBER commands
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EVE_CMD_PROGRESS
Found on page 200 of FT812 Programmer Guide

Encoding
[offet  [rarameter  Jemgh |

+0 CMD_PROGRESS (OxFFFFFFOF) 4 bytes
+4 X 2 bytes
+6 Y 2 bytes
+8 w 2 bytes
+10 H 2 bytes
+12 Options 2 bytes
+14 Value 2 bytes
+16 Range 2 bytes
+18 Padding 2 bytes
Parameters

X - x-coordinate of progress bar top-left, in pixels

Y - y-coordinate of progress bar top-left, in pixels

W - width of progress bar, in pixels

H - height of progress bar, in pixels

Options - By default the progress bar is drawn with a 3D effect and the value of options is zero.
Options OPT_FLAT remove the 3D effect and its value is 256

Value - Displayed value of progress bar, between 0 and range inclusive

Range - Maximum value

Description

Draws a progress bar on the screen. The total length of the command is 20 bytes because 2 bytes
must be added to keep the command 4-byte aligned.

Figure A5: PROGRESS command



EVE_VERTEX
Found on page 146 of FT812 Programmer Guide

Encoding
31 30 29 21 20 12 11 7 6 (0]

0x2 X Y handle cell
L 1 1 | 1 |

Parameters
X - x-coordinate in pixels.
Y - y-coordinate in pixels.
Handle - Bitmap handle. The valid range is from 0 to 31.
C - Cell number. Cell number is the index of the bitmap with same bitmap layout and
format. For example, for handle 31, the cell 65 means the character "A" in built in font
31.

Description
Draws a character on the screen for a specific font. The characters use their ASCIl equivalent
code. EVE_BEGIN and EVE_END must be called before and after this command, respectively, for it
to work properly.

Figure A6: VERTEX command
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Appendix B

Host Memory Write Transaction

- To start a memory write command, the two most significant bits of the address must be
2'b01. Then, send the 22-bit address starting with the MSB.

- Multiple bytes can be written in one transaction, because the address pointer of the
FT812 auto-increments to the very next memory location.

- Send the LSB of the data first, ending with the MSB of the data.

Corresponding C Function

spi_transmitEVE 1 | 0 | Address[21:16]

Write
spi_transmitEVE Address[15:8] Address
spi_transmitEVE Address[7:0]
spi_transmitEVE Byte O (Least Significant Byte)

Write

Data
spi_transmitEVE Byte n (Most Significant Byte)

Figure B1: Host Memory Write Transaction Template
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Host Memory Read Transaction

- To start a memory read command, the two most significant bits of the address must be
2'b00. Then, send the 22-bit address starting with the MSB.

- Next, a dummy byte must be sent so the FT812 has time to put the contents of that
memory location in its transmit buffer

- Lastly, exchange a byte with the FT812 to receive a byte in return. The FT812 always sends
the LSB of the data first, ending with the MSB of the data.

- The address pointer of the FT812 will auto-increment to the next memory location

Corresponding C Function

spi_transmitEVE 0 0 Address[21:16]

spi_transmitEVE Address[15:8] Read
Address

spi_transmitEVE Address[7:0]

spi_transmitEVE Dummy Byte

spi_exchangeEVE Byte O (Least Significant Byte)
Read
Data

spi_exchangeEVE Byte n (Most Significant Byte)

Figure B2: Host Memory Read Transaction Template

B2



Host Command

- There are a number of hosts commands listed in Table 4-5 of the FT81x data sheet.

- The only host commands used in the driver controller activate the FT812 and select the
internal clock.

- Table 4-5 shows exactly what values to send for all 3 bytes.

Corresponding C Function

spi_transmitEVE 0 1 Command[5:0]
spi_transmitEVE Parameter for the command
spi_transmitEVE 0 0 0 0 0 0 0 0

Figure B3: Host Command Template

1" byte
2" byte

3" byte
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Appendix C

void EVE_memWrite8(uint32_t address, uint8_t data)

Writes 8 bits (1 byte) to the memory location specified
by ‘address’. The data to be written is contained in
‘data’.

Sets chip select LOW for EVE’s SPI

NOTE: All addresses are identified by interface, starting a transaction

only 24 bits, not 32, however, the C
language does not have a uint24_t
datatype. Bits 31 .. 24 can be ignored in

any address. OR the MSB of the address with

MEM_WRITE to set bit 23 to 1, bit 22
will always be a 0 regardless. This
identifies the transaction as a memory
write command. Transmit this byte

NOTE: MEM_WRITE is 0x80 (8'b1000 0000).
When OR’d with another byte, bit 7 will
always become 1. Bit 6 will remain
unchanged, however, it will always be 0
because of the way the addresses are

designed in the FT812's memory map. Transmit the middle byte of the

address

Transmit the least significant byte of
the address

Transmit the single byte of data. This
will be written to the specified
memory location.

Sets chip select HIGH for EVE’s SPI
interface, ending a transaction

Figure C1: Memory Write 8 Bits Function Flowchart
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Writes 16 bits (2 bytes) to the memory location
specified by ‘address’. The data to be written is
contained in ‘data’.

NOTE: All addresses are identified by J

only 24 bits, not 32, however, the C
language does not have a uint24_t
datatype. Bits 31 .. 24 can be ignored in
any address.

void EVE_memWrite16(uint32_t address, uint16_t data) 4—‘ -
Sets chip select LOW for EVE’s SPI
interface, starting a transaction

OR the MSB of the address with
MEM_WRITE to set bit 23 to 1, bit 22
will always be a 0 regardless. This
identifies the transaction as a memory
write command. Transmit this byte

NOTE: MEM_WRITE is 0x80 (8'b1000 0000).
When OR’d with another byte, bit 7 will
always become 1. Bit 6 will remain
unchanged, however, it will always be 0

b e of the way the addr

designed in the FT812's memory map.

Transmit the middle byte of the
address

Transmit the least significant byte of
the address

Transmit the LSB of the data. This will
be written to the specified memory
location.

Transmit the MSB of the data. This will
be written to the specified memory
location + 1.

Sets chip select HIGH for EVE’s SPI
interface, ending a transaction

Figure C2: Memory Write 16 Bits Function Flowchart
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Writes 32 bits (4 bytes) to the memory location
specified by ‘address’. The data to be written is
contained in ‘data’.

NOTE: All addresses are identified by J

only 24 bits, not 32, however, the C
language does not have a uint24_t
datatype. Bits 31 .. 24 can be ignored in
any address.

void EVE_memWrite32(uint32_t address, uint32_t data) 4—‘

Sets chip select LOW for EVE’s SPI
interface, starting a transaction

OR the MSB of the address with
MEM_WRITE to set bit 23 to 1, bit 22
will always be a 0 regardless. This
identifies the transaction as a memory

NOTE: MEM_WRITE is 0x80 (8'b1000 0000). write command. Transmit this byte

When OR’d with another byte, bit 7 will
always become 1. Bit 6 will remain
unchanged, however, it will always be 0
because of the way the addresses are

designed in the FT812's memory map. Transmit the middle byte of the

address

Transmit the least significant byte of
the address

Transmit the LSB of the data. This will
be written to the specified memory
location.

Transmit the next byte of the data.
This will be written to the specified
memory location + 1.

Transmit the next byte of the data.
This will be written to the specified
memory location + 2.

Transmit the MSB of the data. This will
be written to the specified memory
location + 3.

Sets chip select HIGH for EVE’s SPI
interface, ending a transaction

Figure C3: Memory Write 32 Bits Function Flowchart
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char EVE_memRead8(uint32_t address)
Reads 8 bits (1 byte) from the memory
location specified by ‘address’. Returns
the contents of ‘address’ in a char
variable.

NOTE: All addresses are identified by
only 24 bits, not 32, however, the C
language does not have a uint24_t
datatype. Bits 31 .. 24 can be ignored in
any address.

NOTE: MEM_READ is Ox3F (8'b0011 1111).
When ANDed with another byte, the most
significant 2 bits will always be 0 and the
lower 6 bits will remain unchanged.

Sets chip select LOW for EVE’s SPI
interface, starting a transaction

AND the MSB of the address with
MEM_READ to set bits 22 and 23 to 0.
This identifies the transaction as a
memory read command. Transmit this
byte

Transmit the middle byte of the
address

Transmit the least significant byte of
the address

Transmit a dummy byte, the FT812
expects a dummy byte after the entire
address has been transmitted

Transmits 0x00 to FT812. Once this
byte has been sent, the MSP430
samples the return byte. This byte is
the contents of the specified memory
location.

Sets chip select HIGH for EVE’s SPI
interface, ending a transaction

Return the received variable to the
caller function

Figure C4: Memory Read 8 Bits Function Flowchart
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uint16_t EVE_memRead16(uint32_t address) 4—‘

Reads 16 bits (2 bytes) from the memory
location specified by ‘address’. Returns the
contents of ‘address’ in a uint16_t variable.

NOTE: All addresses are identified by
only 24 bits, not 32, however, the C
language does not have a uint24_t
datatype. Bits 31 .. 24 can be ignored in
any address.

NOTE: MEM_READ is Ox3F (8'b0011 1111).
When ANDed with another byte, the most
significant 2 bits will always be 0 and the
lower 6 bits will remain unchanged.

Sets chip select LOW for EVE’s SPI
interface, starting a transaction

AND the MSB of the address with
MEM_READ to set bits 22 and 23 to 0.
This identifies the transaction as a
memory read command. Transmit this
byte

Transmit the middle byte of the
address

Transmit the least significant byte of
the address

Transmit a dummy byte, the FT812
expects a dummy byte after the entire
address has been transmitted

Transmits 0x00 to FT812. Once this
byte has been sent, the MSP430
samples the return byte. This byte is
the LSB of the expected 2 bytes.

Transmits 0x00 to FT812. Once this
byte has been sent, the MSP430
samples the return byte. This byte is
the MSB of the expected 2 bytes.

for EVE's SPY

interface, ending a transaction

Return the 16 bits to the caller
function

Figure C5: Memory Read 16 Bits Function Flowchart
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Appendix D

Power Cycle

Activate Clock

Activate FT812

Read Chip ID

Check CPU Status

Initialize FT812
Registers

Set Backlight
Brightness

Wait for Display to
Refresh

Build Frame

Figure D1: Display Initialization Flowchart
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Set EVE_PDN LOW PDN (power-down) is active low

Wait >5 ms

Set EVE_PDN HIGH

Wait > 20 ms

Figure D2: FT812 Power Down Sequence Flowchart
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Set EVE_CSN LOW EVE_CSN (chip-select) for SPI is active low

Transmit 0x48

Transmit 0x00

Transmit 0x00

Set EVE_CSN HIGH

Figure D3: Selecting FT812 Internal Clock Host Command
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Set EVE_CSN LOW EVE_CSN (chip-select) for SPI is active low

Transmit 0x00

Transmit 0x00

Transmit 0x00

Set EVE_CSN HIGH

Figure D4: FT812 ACTIVE Command Flowchart
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timeout =0
chipid =0

Yes

Does chipid = 0x7C?

Wait 1 ms

Read contents of register REG_ID
from FT812, save contents into
chipid

chipid =
memoryReadFT812(REG_ID)

timeout = timeout + 1

Is timeout > 2000?

Figure D5: Reading the FT812 Chip ID Flowchart
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timeout =0
cpuStatus = OxFF

Does cpuStatus & 0x03 =
0x00?

Wait 1 ms

Read contents of register
REG_CPURESET from FT812,
save contents into cpuStatus

cpuStatus =
memoryReadFT812(REG_CPURESET)

timeout = timeout + 1

Is timeout > 2000? >

Figure D6: Reading the FT812 CPU Status Flowchart
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Write 1-byte value of ‘brightness’ to
memoryWriteFT812_8Bits(REG_PWM_DUTY, <brightness>) REG_PWM_DUTY. Valid values are 0
to 127

Figure D7: Setting the Display’s Backlight Brightness Flowchart
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timeout =0
cmdBufferRd = 0x0000
cmdBufferWr = OXFFFF

Does cmdBufferrRd =

A 4

cmdBufferwr?

cmdBufferRd = memoryReadFT812_16Bits(REG_CMD_READ)
cmdBufferWr = memoryReadFT812_16Bits(REG_CMD_WRITE)

timeout = timeout + 1

Is timeout > 2000?

h 4

Figure D8: Waiting for a Display Refresh Flowchart

D8



Appendix E

DC_CAN_BASE
ID: 0x500
Interval: 1 second

Variable Bits Type Description

Serial Number |63..32 |Uint32 |Device serial number, allocated at manufacture (0x00000001)

Tritium ID 31..0 (char[4] ["TRIb" stored as a string. msg[4] = 'TRIb'

msg[0] ='b', msg[1] ='l', msg[2] ='R', msg[3] ='T'

High word is sent first, within each word, the least significant byte is sent first. Within each byte, the
most significant bit is sent first.

Figure E1: DC_CAN_BASE Message
The above layout shows what the actual message looks like on the CAN bus



DC_DRIVE

ID: 0x501

Interval: 100 ms

Variable Bits Units |Description

Motor Velocity |63..32 |m/s Desired motor velocity set point in meters/second

Motor Current (31..0 [% Desired motor current set point as a percentage of maximum current setting

High word is sent first, within each word, the least significant byte is sent first. Within each byte, the
most significant bit is sent first.

3130 2322 0
Exponent Mantissa
Sign bit
IEEE 754 Single Precision Format

Figure E2: DC_DRIVE Message
The above layout shows what the actual message looks like on the CAN bus
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DC_POWER

ID: 0x502

Interval: 100 ms

Variable Bits Units |Description

Reserved 63..32 |- -

Bus Current 31..0 (% Desired set point of current drawn from the bus by the controller as a percentage of

absolute bus current limit
High word is sent first, within each word, the least significant byte is sent first. Within each byte, the
most significant bit is sent first.

Bus current is always 1.0 in IEEE 754,
which means 100% to the driver
controller and other nodes

Figure E3: DC_POWER Message
The above layout shows what the actual message looks like on the CAN bus
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DC_SWITCH

ID: 0x504
Interval: 100 ms
Variable Bits Type Description

Switch Position |63..32 |Uint32 |Current position of the switch inputs on the driver controls module DB37 connector

Switch Activity [31..0 |Uint32 |Shows if the switch has changed state since the last time the CAN frame was sent
1 =Switch has changed

0=No change
Bit positions are identical to the Switch Position bitfield shown above

High word is sent first, within each word, the least significant byte is sent first. Within each byte, the
most significant bit is sent first.

Figure E4: DC_SWITCH Command
The above layout shows what the actual message looks like on the CAN bus
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Appendix F

Figure F1: PCB Enclosure Top View
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Figure F2: PCB Enclosure Left View of Connectors
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Figure F3: PCB Enclosure Front View of Switches
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Figure F4: PCB Enclosure Right View of DB37 Connector
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Figure F5: PCB Enclosure with Removed Top Piece
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Figure F6: Display Enclosure Top View
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Figure F7.

: Display Enclosure Rear View of Connector
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Figure F8: Fully Assembled and Functional DDC Unit
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