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CHAPTER I 

1.INTRODUCTION

Brain tumors are the most common brain disease that affects the central nervous system 

(CNS), the brain and the spinal cord [1]. According to the American cancer society, in 2018 CNS 

tumors in both adults and children is estimated as “About 23,880 malignant tumors of the brain or 

spinal cord (13,720 in males and 10,160 in females) will be diagnosed. These numbers would be 

much higher if benign tumors were also included. About 16,830 people (9,490 males and 7,340 

females) will die from brain and spinal cord tumors” [2]. Consequently; scientists in the field of 

medicine, computer science, and engineering are working on developing new techniques to 

diagnose and treat brain tumors effectively [1]. During the last two decades, the computer-aided 

diagnosis system (CAD) has been employed to improve the accuracy of the diagnostic ability of 

radiologists in detecting, segmenting, and identifying the type of brain tumor [3]. 

A brief introduction about brain tumor classification is presented in this chapter. First, the 

problem of identifying the type and grade of tumor and why it is important is given in sections 1.1 

and 1.2. Then, the basic idea of brain tumors, magnetic resonance imaging, and CAD are described 

in section 1.3. 

1.1 Problem Statement 

To diagnose a patient with a brain tumor, radiologists use one of two techniques, invasive 

or noninvasive. Noninvasive techniques are the most widely used one for this purpose and can be 

implemented using medical imaging modalities like Computed Tomography (CT) scan, Magnetic
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 Resonance Imaging (MRI), etc. MRI scan is the most common modalities that are exploited to 

diagnose tumors in the brain. Usually, radiologists depend on manual diagnosis to detect, segment 

and identify brain tumors [4]. The manual diagnosis has some drawbacks that diminish its usage 

in clinical applications. These drawbacks include the fact that the amount of MRI images analyzed 

are large enough to make readings based on visual interpretation expensive, inaccurate, and 

intensive. In addition, the human eye is sensitive to any changes in the MRI image, this sensitivity 

may be decreased with the increase in the number of MRI slices [5]. Furthermore, manual 

diagnosis is time consuming [4], and it depends on the subjective decisions of the radiologists 

which is hard to quantify [6]. These subjective decisions may lead to misclassification [7]. 

The second option for radiologists is to use invasive techniques such as biopsy and spinal 

tap method. In a biopsy, the surgeon penetrates the skull with a needle and takes a sample of tissue 

from the affected area of the brain for examination. On the other hand, in spinal tap technique, the 

sample is taken from cerebrospinal fluid (CSF). Both of these techniques are painful, time 

consuming, risky, and expensive [8]. 

1.2 Significance  

Detecting and identifying a brain tumor in MRI images at the earliest stages is essential to 

prognoses the tumor effectively and prevent it from spreading to other tissues. Early diagnosis is 

considered as the most challenging task in the field of medical image analysis due to the difficulty 

in recognizing the normal tissue from the tumor tissue [9].  

Consequently, developing an accurate, robust, effective, and automatic diagnoses system 

for this purpose is significant and essential to overcome the drawbacks of manual diagnosis and 

invasive techniques. Automatic diagnoses have some advantages: 
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1. It can help radiologists by providing a second opinion based on the information interpreted 

from medical images [3]. 

2. Avoid human errors such as missing readings especially that is caused by fatigue, 

overlooked, and data overloaded when analyzing a large amount of MRI slices [10]. 

1.3 Background 

In this section, a brief background is presented focusing on brain tumors, magnetic 

resonance imaging (MRI), and CAD for brain tumor analysis. 

1.3.1 Brain Tumors 

A brain tumor is defined as any abnormal tissue that grows in the central nervous system 

(CNS) and prevents the brain from working properly. A brain tumor can be categorized according 

to its aggressiveness as benign and malignant tumors. A benign brain tumor has no cancer cells 

and grows slowly inside the brain with a clear border. Malignant brain tumors are more aggressive 

than benign tumors, it has cancer cells with no clear border. This type of tumor can spread rapidly 

and affect the surrounding brain tissues. In addition, a brain tumor can be divided into primary and 

secondary depending on where the tumor cells began. Primary brain tumors originate from brain 

cells and spread to other parts of the brain while secondary brain tumors originate from tissues 

outside the brain and spread to the brain. Secondary brain tumors are more common than primary 

and its treatment depends on the original tissue that the tumor starts from [11].  

Some types of tumors are given a grade [1], this grade shows the growth speed of tumor 

cells [11]. The grade ranges start from Grade I (the less malignant) to Grade IV (the most 

malignant) [12]. Brain tumors can be treated using “surgery, radiation therapy, or chemotherapy” 

depending on the type, grade, and size of the tumor [1]. According to the World Health 
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Organization (WHO), there are more than 120 types of brain and central nervous system tumors. 

The most common types are [11]: 

1.3.1.1 Glioma 

A glioma tumor is the most widely diagnosed primary tumors in adults. It starts from the 

glial cells in the brain and spread to the surrounding tissue [13]. This type of tumor appears as a 

region with a heterogeneous texture region, a decreased signal intensity and a bright tumor border 

[14]. It can be categorized according to its location and origin as: 

i. Astrocytoma 

This type of glioma tumor begins from cells called ‘astrocytes’. Typically, astrocytoma 

tumor found in the cerebrum and it is subdivided into low grade (Grade I and Grade II) or high 

grade (Grade III and Grade IV). Grade IV of astrocytoma is considered the most aggressive type 

as compared to other brain tumors kinds and it is called ‘Glioblastoma’. 

ii. Oligodendroglioma 

Oligodendroglioma tumors are found in the cerebral hemispheres and begin from brain 

cells with Grade I and Grade II distinction. The main side effects of this tumor are headaches, 

seizures, sleepiness, and weakness.  

1.3.1.2 Meningioma  

Meningioma is a benign tumor that originates from the shell cover the brain and it is located 

under the skull. In adults, this type of tumor is considered as one-third of brain tumors and typically 

it grows slowly inside the brain [11]. Meningioma tumor appears as extra-axial masses with the 

homogeneous region and increased signal intensity (brighter than the surrounding tissue) [15]. 
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1.3.1.3 Pituitary Tumor 

The pituitary gland is responsible for producing hormones that control other glands in the 

body like ovaries, adrenal glands, thyroids, etc. A pituitary tumor is a benign tumor that attacks 

the pituitary gland and thus disrupts the functionality of other glands. It can be treated with 

medication that helps to limit the growth of the tumor and prevents it from spreading to other brain 

tissues [11]. The pituitary tumor appears as a bulk of the gland on the side of the microadenoma 

and it exhibits a spot with a heterogeneous structure with pixels intensities ranging from low to 

high [16]. 

1.3.1.4 Schwannomas  

Schwannomas are considered benign tumors and it comes from vestibular schwannoma or 

acoustic neuromas cells that support the nerve cells. Since surgery is difficult for this type of tumor, 

the best way for treatment is radiation.  

1.3.1.5 Central Nervous System (CNS) Lymphoma  

This type of tumor is malignant, CNS Lymphoma, originates from the lymphocytes cells. 

It can be treated with radiation or chemotherapy.  

1.3.2 Magnetic Resonance Imaging  

The first step in diagnosing a brain tumor and locating its position is to create a 

computerized image of the brain and spinal cord, this process is called a scan or imaging modality. 

Commonly used imaging modalities include computed axial tomography (CT scan), magnetic 

resonance imaging (MRI), magnetic resonance spectroscopy (MRI SPECT or MRS), perfusion 

MRI, functional MRI (fMRI), and positron emission tomography (PET) [11].  
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MRI is the most widely used imaging modality for many reasons. First, it is highly sensitive 

to local changes in tissue water. Second, it has high resolution especially in the differentiating of 

soft tissues. Third, it can create multiple images with different contrast visualizations when 

examining the same tissue, in this way it will help physicians and radiologists study the scanned 

tissue more precisely [17]. Finally, it has the ability to create three visual planes, axial, sagittal, 

and coronal, to provide a detailed information about the anatomy of different organs like the brain 

and spinal cord [18]. 

The basic idea of MRI image is the application of the external magnetic field and radio 

frequency (RF) to the tissue or organ being examined. The magnetic field works on the alignment 

of the randomly oriented protons located within the water nuclei, while the RF energy is applied 

to disorganize this alignment. These nuclei will emit RF energy after several relaxation processes 

which help them to recover their resting alignment. To take advantage of the signal’s frequency 

information, Fourier Transform is used to convert this information into intensity levels resulting 

in a gray level arrangement of pixels. The period between successive pulse sequences when 

implemented on the same slice is called ‘Repetition Time’ (TR). The time between sending a RF 

signal and receiving an echo signal is called ‘Time to Echo’ (TE). The time used to describe the 

examined tissue is called ‘Relaxation time’ which has two forms, the first one called ‘Longitudinal 

Relaxation Time’ or (T1) which is a measure of the elapsed time for a spinning proton to return to 

the alignment state after applying an external magnetic field. The second type called ‘Transverse 

Relaxation Time’ or (T2) which is a measure of the time spent for the spinning proton to reach an 

equilibrium [18]. 
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An MRI sequence is a combination of radio frequency (RF) and gradient pulses used to 

form an image [17]. There are many kinds of MRI sequences that used to create an MRI image. 

The most commonly used sequences are [18]: 

1.3.2.1 T1-weighted sequence 

This type of MRI sequence is generated by using short TE and TR times. The T1 properties 

of tissue identify the brightness of the image such that the cerebrospinal fluid (CSF) appears dark 

in this type of MRI images. In the T1-weighted image, the contrast depends mainly on the 

differences in the T1 times between tissues like water or fat [17].  

1.3.2.2 T2-weighted sequence 

As compared with T1-weighted images, T2-weighted images are created by using long 

time TE and TR and the CSF region appears brighter. In the T2-weighted image, the contrast 

depends mainly on the differences in the T2 times between tissues like water or fat. The amount 

of T2 decay that can occur before the signal is received is adjusted by the TE time [17]. 

1.3.2.3 Fluid Attenuated Inversion Recovery  

Fluid Attenuated Inversion Recovery (FLAIR) is a pulse sequence magnetic resonance 

imaging technique, and it can be used as two-dimensional imaging (2D FLAIR) or as three-

dimensional imaging (3D FLAIR). FLAIR image can show a better detection of small hyperintense 

lesions [13]. In FLAIR sequence image, TE and TR are very long, and CSF appears darker as 

compared to the T1-weighted image. This type of MRI sequence can distinguish between abnormal 

tissues and CSF or other healthy tissues like gray matter (GM) or white matter (WM). This ability 

comes from its sensitivity to different kinds of pathological tissues. 
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1.3.2.4 T1-weighted with contrast-enhanced (T1-contrast enhanced) 

This MRI sequence is produced by injecting a non-toxic agent called ‘Gadolinium’ while 

scanning the T1-weighted image. Gadolinium is beneficial in recognizing the barrier between 

blood and brain (like tumors, multiple sclerose, etc.) due to its ability to make the T1 time shorter 

and then affect the intensity of the image. 

1.3.2.5 Proton Density (PD) 

In a proton density sequence image, the contrast of the image is formed by changing the 

density of the proton in the examined tissue. Here, the TR time is made long enough to minimize 

the effect of T1-weighted while the TE time is made short enough to minimize the effect of T2-

weighted. This is how the weighting of proton density is accomplished [17]. 

Generally, in an MRI sequence image, the brain image is either normal or abnormal. The 

normal brain is described by three types of tissues, gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). The abnormal brain tissues are a tumor, necrosis, and edema. As 

described in section 1.3.1, the tumor is an abnormal tissue that grows in the central nervous system 

(CNS). Necrosis is part of a tumor and it results from dead cells, while edema is found around a 

tumor region and it results from “local disruption of blood-brain barrier” [1]. 

1.3.3 Computer-aided Diagnosis System for Brain Tumor Analysis  

Computer-aided diagnosis system (CAD) is an application of pattern recognition that aims 

to help physicians and radiologists make a proper diagnosis decision, while taking into 

consideration that the final opinion about the examined case is made by the radiologists. The CAD 
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system is essential due to the difficulty of interpreting the medical data (signals or images) and the 

dependency on the physician’s skill [19].  

Medical image analysis and machine learning techniques are beneficial tools to build a 

CAD system capable of analyzing brain tumors. The most commonly used techniques for image 

processing in the CAD system are: image preprocessing, image segmentation, and feature 

extraction [3].  

Image preprocessing is the easiest step in CAD system and is used to diminish the effect 

of noise and enhance the quality and resolution of the image [3]. Noise is defined as unwanted 

pixel values in the image that affect its resolution and quality. It is difficult to predict the values of 

image’s noise precisely due to the randomness of the  noise generation process [20]. Acquisition 

systems that are utilized to acquire medical images are the main source of introducing noise into 

these types of images. In this case, it is essential to design a denoising technique that reduces the 

effect of noise without affecting the anatomical information that is significant to the clinical 

analysis [21], [22]. Denoising techniques can be categorized according to the processing domain 

into spatial domain and the transform domain [21]. Spatial domain denoising techniques are the 

traditional way to remove noise from images which implies the using of spatial filters. A low pass 

filter is a kind of spatial filter that has been implemented widely in image denoising because pixels 

that are affected by noise are in the higher frequency band of the image’s spectrum. Despite its 

ability to diminish the effect of noise, low pass filter blurs the edges of the denoised image. A high 

pass filter can be implanted to improve the resolution of the image by sharpening its edges but, it 

still increases the effect of noise [23]. The other kind of denoising techniques are used in the 

transform domain and first transforms the image from the spatial domain into another domain like 
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the frequency domain or the wavelet domain and then applies it to the denoising of the transform 

domain [21].   

Segmentation is applied in MRI image analysis to partition some specific cells and tissues 

from the rest of the image. Segmentation of a brain tumor is considered an important step to 

develop a CAD system for MRI brain image analysis since it helps physicians find the tumor 

region more accurately [17]. This type of process can be done manually, automatically, or semi-

automatically. In manual segmentation, the tumor regions are manually located and delineated by 

an expert or radiologist on the MRI image where the possible tumor appears. Manual segmentation 

is very expensive, time consuming, and suffers from the lack of permanent availability, reliability, 

and reproducibility [24]. It depends mainly on the subjective judgments of the expert or observer. 

In one case the expert will give different results regarding the presence or absence of the tumor, 

and in another case the same expert can express the delineation of the tumor differently [25]. In 

addition, manual segmentation is done based on a single image with intensity enhancement 

provided by an injected contrast agent. Semiautomatic segmentation of a brain tumor has the 

possibility of introducing human intervention to be introduced into the process to correct the result 

of the segmentation and increase the accuracy [26]. An effective automatic brain tumor 

segmentation algorithm would be desirable and clinically beneficial since it helps to analyze brain 

tumor scans, improve diagnosis, create treatment plans, and provide follow-up for individual 

patients [13]. In fully automatic segmentation, there is no need for a human interaction and the 

segmentation is done completely by the computer. Intelligent techniques like soft computing can 

be utilized to develop an algorithm for such a purpose [26]. 

Feature extraction is the transformation of an image into a set of significant descriptors 

called ‘features’ based on the intrinsic characteristics of this image [3], [27]. In medical image 
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analysis, the classification of a set of features into its related classes is a common problem. In brain 

tumor classification, extracting and selecting discriminative features is a significant step. The 

feature selection step is required to avoid the curse of dimensionality problem by reducing the 

redundant features. It is still challenging to extract features that are able to classify an image or 

object more accurately [3]. Usually, these features are extracted according to the local or global 

information. This is detected by textures, shapes, intensities, sizes, statistical properties, etc. [27]. 

“Pattern recognition is the scientific discipline whose goal is the classification of objects 

into a number of categories or classes”. The objects here may be in the form of images or signals 

or other types of data depending on the application of the system. There are three types of pattern 

recognition: supervised pattern recognition, or ‘supervised learning’ that is implemented using 

training data with training labels, unsupervised pattern recognition, or ‘clustering’ with no 

available training labels, and semi-supervised pattern recognition, which is part of the training data 

is labeled while the other part is unlabeled [19]. 

1.4 The Aim of the Research 

The main aims of this work are: 

• Proposing an algorithm for classification of a brain tumor in MRI slices.

• Combining the statistical features generated using the 2-D Discrete Wavelet Transform (DWT)

and the 2-D Gabor filter. 

• Designing and implementing a classifier model that comprises of Stacked Sparse Autoencoder

and Softmax classifier. 

• Comparing the performance of this algorithm with other works in this field.
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1.5 Organization of the Dissertation 

This dissertation is organized as follows: 

Chapter One: A brief introduction to the problem, the significance of research, background on a 

brain tumor, MRI images techniques, and CAD system. 

Chapter Two: A review of the most recent studies in the field of brain tumor classification. These 

studies are grouped according to the methodology used, and it includes, image preprocessing, 

feature extraction, and classification algorithm. 

Chapter Three: This chapter presents a detail on the proposed algorithm for brain tumor 

classification. This algorithm suggests the using of three techniques for feature extraction, Gabor 

filter and 2-D Discrete Wavelet Transform (DWT) followed by statistical calculation using first 

and second order statistics. Furthermore, the classification model that is proposed consists of two 

types of neural networks; the Stacked Sparse Autoencoder and the Softmax classifier. 

Chapter Four: It shows the experimental setup and preliminary results obtained from 

implementing the proposed methods on the dataset. The parameter setting of the feature extraction 

techniques and classification method is defined and the performance analysis of the algorithm is 

displayed to show the effectiveness of the methodology used. 

Chapter Five: The final chapter is dedicated to the conclusion and future works.   
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CHAPTER II 

2.RELATED WORKS

2.1 Introduction 

In chapter one, a brief introduction on brain tumor classification in MRI images was 

presented in terms of the problem statement, significance, and background information about brain 

tumors, MRI modality, and the CAD system. As stated in the previous chapter, automatic 

classification of a brain tumor according to its type and grade has a beneficial application in the 

practical design of a CAD system. It helps physicians or radiologists to avoid errors caused by 

manual diagnosis or risks of invasive diagnostic techniques. Consequently, many researchers have 

proposed different methods to develop a CAD system that is able to detect or classify abnormal 

tissues in brain MRI images. 

Figure 2.1: General CAD system for brain tumor analysis 

Image 

acquisition 

Image 

Preprocessin

g

Segmentation 
Feature 

Extraction 
Dimensionality 

Reduction  

Classification 
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This chapter presents a survey on the most recent methods and algorithms that have been 

designed for solving the aforementioned problem. A general CAD system is shown in fig. 2.1. It 

comprises of the following steps; image acquisition, image preprocessing, segmentation of MRI 

image to extract the region of interest (ROI), feature extraction, dimensionality reduction, and 

classification [3]. 

2.2 Classification Approach 

There are two kinds of brain tumor classification methods. The first method is classifying 

the brain image into normal and abnormal, and the second method is to classify the abnormal brain 

image into different types of brain tumors [28]. A few studies have proposed classification 

techniques to identify brain images according to normal and abnormal [5], [10], [29]. Other studies 

have focused on detecting the abnormality of the tumor and then classify the abnormal tissue into 

benign and malignant [4], [8], [30], [31]. Sometimes they may only classify the brain images into 

benign and malignant [32]–[34]. Some authors presented multiclass brain tumor classification 

methods to identify the type and/or the grade of the tumor [6], [7], [28], [35]–[44]. 

The type of tumor that has been discussed in these studies are Glioma, Glioblastoma, 

Carcinoma, Meningioma, Sarcoma, Astrocytoma, Metastasis, Medulloblastoma, and Pituitary 

tumors. In addition, the grade of the tumor is considered in the classification process. In [6] four 

grades of Astrocytoma have been considered: grade I, grade II, grade III, and grade IV. Zacharaki 

et al [39], [43] discriminate different types and grades of the tumors as: Meningioma tumors are 

grade I, Gliomas are grade II and grade III, and Glioblastomas are grade IV. 
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30 patients with Glioma tumor, 20 patients with high-grade Glioma and 10 patients with low-grade 

Glioma. A sample of these images along with its tumor mask is shown in fig. 4.2.  

4.2 Experimental Setup 

The first database images are sorted randomly and divided into two sets. The training set 

(70 % of the whole dataset) which has 493 slices of Meningioma tumors, 1019 slices of Gliomas 

tumors, and 633 slices of Pituitary tumors. The other set is the testing set (30 % of the whole 

dataset) that results in 215 slices of Meningioma tumor, 407 slices of Glioma tumors, and 297 

slices of Pituitary tumors. The second database images are divided into a training set with 120 

images (64 with high-grade and 56 with low-grade) and a testing set with 80 images (36 with high-

grade and 44 with low-grade). 

 

Figure 4.1: Sample images from the first database, (a) Meningioma, (b) Glioma, and (c) Pituitary 

and its tumor mask (d), (e), and (f) respectively 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.2: Sample images from the BRATS database, (a) high-grade Glioma, (b) low-grade 

Glioma, and its tumor mask (c), and (d) respectively 

The methods suggested in the proposed algorithm can be applied using different parameters 

and settings to acquire the best results. A few numbers of parameters and settings with different 

values were tested within a specific range. The best performance is acquired using the following 

settings: 

✓ The 2-D DWT is implemented with three levels of decomposition using the “Symlets4” filter. 

In addition, all the sub-bands (LL, LH, HL, and HH) were utilized to extract the features. As 

described in chapter three, the number of features generated using the 2-D DWT is (4*3*10 = 

120 features). In fig. 4.3, the twelve sub-band images that resulted from the three level 2-D 

DWT is presented.  

(a) (b) 

(c) (d) 
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Figure 4.3: Image decomposition using three levels of the 2-D DWT, the input image is an MRI 

with a Meningioma tumor.  

The input image is a slice of meningioma tumor. Its size is (512 x 512) pixels while the 

size of tumor is (115 x 106) pixels, after decomposition, the size of first level sub-bands (i.e. LL1, 

LH1, HL1, and HH1) will be (61 x 56) pixels (the first row in fig. 4.3), this change in size is the 

result of subsampling of 2 of the DWT. Similarly, the size of second level sub-bands will be (34 x 

31) pixels and the size of the third level sub-bands will be (20 x 19). 

(a) (b) 

(LL1) (LH1) (HL1) 

(LL2) (LH2) (HH2) 

(LL3) 

(HH1) 

(HH3) (HL3) 

(HL2) 

(LH3) 
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Figure 4.4: Visualization of images resulted from the 2-D Gabor filter with three values of 

wavelengths and five values of orientations, (a) the original image, (b) its tumor mask, numbers in 

brackets are (wavelength, orientation) 

✓ The 2-D Gabor filter is applied on each image with three wavelengths (2, 4, and 8) while the 

values of the orientations are (0°,45°, 90°, 135°, and 180°) to generate fifteen different images. 

For each image the ten statistical values were applied resulting in 150 features. As shown in 

(a) (b) 

(2, 0°) (2, 45°) (2, 90°) (2, 135°) (2, 180°) 

(4, 0°) (4, 45°) (4, 135°) (4, 180°) 

(8, 0°) (8, 45°) (8, 90°) (8, 135°) (8, 180°) 

(4, 90°) 
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fig. 4.4, fifteen different images represent the implementation of the 2-D Gabor filter on MRI 

slices with Meningioma tumors. 

✓ The classifier model consists of two types of neural network, the Stacked Sparse Autoencoder 

(SSAE) and the Softmax classifier (SM). The SSAE comprises of four layers, the input layer, 

two hidden layers, and an output layer. The number of features generated using a combination 

of wavelet and Gabor filter is (120 + 150 = 270 features). As a result, the size of the input 

and output layers is the same as the input features or equal to 270 neurons. The size of the first 

hidden layer is set to 150 neurons, while the size of the second hidden size is set to 75 neurons. 

The sparsity regularization coefficient is set to 1, and the L2-weight regularization coefficient 

is set to 0.001. the SM classifier has two layers; an input layer with the size of 75 neurons (the 

same as the second hidden layer) and an output layer with the size of 3 neurons (the number 

of classes). For both networks, SSAE and SM, the conjugate gradient method is used for 

optimization the cross-entropy cost function. 

4.3 Performance Analysis 

Measuring the performance of the proposed algorithm is based on the performance of the 

classifier model that is determined using the labels given in the database. This can be done by 

applying a set of examples to the classifier and measuring the number of errors the classifier has 

made. There are four fundamental outcomes that are used to test the classifier [96];  

1. True Positive: the classifier recognizes the positive example correctly. 

2. True Negative: the classifier recognizes the negative example correctly. 

3. False Negative: the classifier incorrectly recognizes the positive example as negative. 

4. False Positive: the classifier incorrectly recognizes the negative example as positive. 
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In the case of brain tumor classification with multiclass, these quantities should be 

calculated separately for each type of tumor. Furthermore, the positive case here is that the output 

of the classifier is the tumor while the negative case is the non-tumor output. 

If the classifier is applied to the whole dataset, with known real classes, these four outcomes 

will be counted according to the number of times of occurrence. Here NTP is the number of true 

positives, NTN is the number of true negatives, NFP is the number of false positives, and NFN is the 

number of false negatives. The calculation of the performance of the classifier is based on these 

numbers [96].  

The performance of the proposed algorithm is measured using three criteria [96]:  

1. Accuracy: is the frequency of correct classifications made by the classifier over a given set of 

examples, it is calculated as: 

Accuracy =
𝑁𝑇𝑃 + 𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝐹𝑁 + 𝑁𝑇𝑃 + 𝑁𝑇𝑁
                                                     (4.1) 

2. Sensitivity: is the probability that a positive example will be correctly recognized by the 

classifier, its formula is: 

Sensitivity =
𝑁𝑇𝑃

𝑁𝐹𝑁 + 𝑁𝑇𝑃
                                                                  (4.2) 

3. Specificity: is the probability that a negative example will be correctly recognized by the 

classifier, its formula is: 

Specificity =
𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝑇𝑁
                                                                  (4.3) 

Sensitivity and specificity are widely used measurements when applying machine learning to 

medical data. 
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Receiver operating characteristics (ROC) is defined as a trade-off visualization between a 

pair of criteria such, as sensitivity and specificity, in the plane spanned by the two measures [97]. 

In biomedical informatics research, ROC curves are frequently used to evaluate classification and 

prediction models for decision support, diagnosis, and prognosis. Furthermore, ROC curves are 

utilized to test the model accuracy and its ability to discriminate between positive and negative 

cases. The full area under the ROC curve is defined as the average sensitivity for all values of 

specificity or the average specificity for all values of sensitivity [98].   

4.4 Simulation Results 

This section describes some of the simulation results obtained from applying the proposed 

algorithm to the database. These results are measured in terms of accuracy, sensitivity, and 

specificity with different parameter settings. 

4.4.1 Statistical Features Obtained from Wavelet Transform and Gabor Filter 

Feature extraction is the most significant part of the proposed algorithm since it captures 

the salient information from the ROI image to be ready for classification. As stated in chapter 

three, these features are extracted using three techniques: 2-D DWT, Gabor filter, and statistical 

calculation. The decomposition of the image using the 2-D DWT generates 12 different images. 

Ten statistical features (mean, variance, skewness, kurtosis, contrast, correlation, energy, 

homogeneity, maximum probability, and entropy) are extracted from each image. Table 4.1 lists 

the statistical features extracted from three ROI images with different tumor types (Meningioma, 

Glioma, and Pituitary) for the third level of the 2-D DWT.  
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Table 4.1: Statistical features obtained from the third level of Wavelet Transform 

Features 

Meningioma Glioma Pituitary 

LL3 LH3 HL3 HH3 LL3 LH3 HL3 HH3 LL3 LH3 HL3 HH3 

Mean 2.381 -0.01 0 0 1.83 0.002 0 0 2.238 -0.04 0.019 0 

Variance 0.661 0.023 0.018 0.007 0.399 0.021 0.014 0.008 1.042 0.125 0.074 0.01 

Skewness 0.467 -0.42 0.264 -0.48 1 0.103 -0.18 0.212 0.601 -0.38 0.168 -0.40 

Kurtosis 2.472 9.898 7.678 13.38 4.753 10.61 10.00 12.21 3.074 6.259 3.372 7.09 

Contrast 0.059 0.591 0.702 0.152 0.732 0.650 0.594 0.326 0.497 1.719 3.183 0.45 

Correlation 0.334 0.241 -0.05 0.135 0.283 0.311 -0.09 0.034 0.574 0.468 -0.07 0 

Energy 0.953 0.708 0.651 0.847 0.855 0.677 0.664 0.804 0.816 0.450 0.249 0.64 

Homogeneity 0.988 0.916 0.887 0.958 0.949 0.903 0.887 0.942 0.947 0.823 0.680 0.89 

Maximum 

probability 

0.976 0.839 0.802 0.92 0.924 0.820 0.810 0.895 0.903 0.663 0.464 0.79 

Entropy 0.157 0.817 0.865 0.411 0.441 0.880 0.802 0.522 0.554 1.613 2.067 0.82 

In table 4.1, the three types of tumor exhibit different values for each feature quantity. For 

example, the mean of the LL3 sub-band in a Meningioma tumor is the highest value (2.381), while 

a Glioma tumor’s mean is the lowest one (1.83), and Pituitary tumor gets a medium value of mean 

(2.238) and this is the result of the high intensity of a MRI image with a Meningioma tumor. 

Taking homogeneity as another example, the values (from high to low) are 0.988 for Meningioma 
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tumors, 0.949 for Glioma tumors, and 0.947 for Pituitary tumors, the reason for this difference is 

that the Meningioma tumor is more homogenous than Glioma and Pituitary tumors. 

Similarly, applying the Gabor filter with three wavelengths and five orientations results in 

fifteen different images, and the same ten statistical features are extracted for each image. Table 

4.2 tabulates the ten statistical features extracted from the same images in table 4.1 with the 

orientation of 90°.  

Table 4.2: Statistical features obtained from Gabor filter with wavelength λ orientation 90° 

Features 

Meningioma Glioma Pituitary 

𝛌 = 𝟐 𝛌 = 𝟒 𝛌 = 𝟖 𝛌 = 𝟐 𝛌 = 𝟒 𝛌 = 𝟖 𝛌 = 𝟐 𝛌 = 𝟒 𝛌 = 𝟖 

Mean 0.0168 0.2095 1.0075 0.0163 0.2251 1.186 0.0228 0.3376 2.5973 

Variance 0.0001 0.0432 0.9315 0.0002 0.0457 1.1271 0.0003 0.0514 3.3804 

Skewness 1.9436 2.2488 1.9585 1.666 1.9699 1.675 1.7622 1.2429 1.0678 

Kurtosis 8.6106 9.4203 7.4357 6.3296 7.3428 6.2709 7.3914 4.8548 3.6675 

Contrast 0 0.1446 0.2159 0 0.1622 0.2041 0.0004 0.2688 0.1723 

Correlation 1 0.9709 0.9808 1 0.9704 0.9816 0.6665 0.9562 0.9486 

Energy 1 0.2464 0.171 1 0.2199 0.2532 0.9985 0.1148 0.6726 

Homogeneity 1 0.9278 0.9028 1 0.919 0.9127 0.9998 0.8694 0.9448 

Maximum probability 
1 0.4181 0.3704 1 0.3889 0.4813 0.9993 0.2277 0.819 

Entropy 0 1.9344 2.3964 0 2.0365 2.1592 0.0067 2.5615 1.0443 
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The distinction between these features among the selected images is clear in table 4.2. For 

example, Pituitary tumors have the highest variance, skewness, and kurtosis compared to other 

tumors, while Pituitary tumors have the lowest correlation compared to other tumors. 

4.4.2 Confusion Matrix 

A confusion matrix is defined as a table that describes the performance of a classification 

model based on a set of test data for which the true values are known [99]. In the case of three 

class tumor classifications, the confusion matrix comprises of three rows and three columns to 

identify the actual and the predicted responses. Tables 4.3 and 4.4 show the confusion matrix for 

brain tumor classification using the proposed algorithm for both datasets. 

Table 4.3: Confusion matrix for the first database 

To explain the above confusion matrix, the sum of all the numbers in the confusion matrix 

equal the total number of test samples (215 + 407 + 297 = 919 samples). The diagonal numbers 

show the number of samples that are correctly classified while the other numbers are the 

misclassified samples. 

Let’s explain the meaning of each number in the two confusion matrices: 

• 188: the number of meningioma samples that are correctly classified. 

 
Predicted classes 

Meningioma Glioma Pituitary 

Actual 

classes 

Meningioma 188 11 16 

Glioma 7 396 4 

Pituitary 7 10 280 



 

76 

• 11: the number of Meningioma tumor samples that are classified as Glioma tumors.  

• 16: the number of Meningioma tumor samples that are classified as a Pituitary tumor. 

• 7 (2nd row): the number of Glioma tumor samples that are classified as meningioma.  

• 396: the number of Gliomas samples that are classified correctly. 

• 4: the number of Gliomas samples that are classified as Pituitary tumors. 

• 7 (third row): the number of Pituitary tumor samples that are classified as Meningioma tumors.  

• 10: the number of Pituitary tumor samples that are classified as Gliomas. 

• 280: the number of Pituitary tumor samples that are classified correctly 

Table 4.4: Confusion matrix for the BRATS database 

 

 

Predicted classes 

High-grade Low-grade 

Actual 

classes 

High-grade 36 0 

Low-grade 1 43 

In table 4.4, 36 slices with high-grade Glioma and 43 slices with low-grade Glioma are correctly 

classified, while one slice with low-grade is incorrectly classified as high-grade. 

Based on the information in the confusion matrices the accuracy, sensitivity, and specificity 

can be determined for each type of tumor. First, it is better to determine the four outcomes 

represented by true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 

Table 4.5 explains the values of these outcomes, while table 4.6 shows results for performance 

evaluation for each tumor type. 
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Table 4.5: True positive, true negative, false positive, and false negative rates 

Tumor Type/Grade TP TN FP FN 

 

First Dataset 

Meningioma 188 690 14 27 

Glioma 396 491 21 11 

Pituitary 280 602 20 17 

BRATS 

Dataset 
High-grade Glioma 36 43 1 0 

 

Table 4.6: Accuracy, sensitivity, and specificity for the three types of tumors 

Tumor 

Type/Grade 

 

First Dataset BRATS Dataset 

Meningioma Glioma Pituitary 
High-grade 

Glioma 

Accuracy 95.54 96.52 95.97 98.75 

Sensitivity 87.44 97.29 94.27 100 

Specificity 98 95.89 96.78 97.73 

The total accuracy of all classes for the first dataset is: 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑜. 𝑜𝑓 𝑎𝑙𝑙 𝑇𝑃 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

864

919
= 94 % 

In fig. 4.5, the ROC curve is showing the performance of the proposed algorithm and the 

relation between the true positive rate and the false positive rate for both datasets. The area under 

the ROC curve for each class in the first dataset is, 0.927, 0.966, and 0.955 for Meningioma tumors, 

Gliomas tumors, and Pituitary tumors respectively, while the area under the ROC curve for the 

BRATS dataset is 0.9886. 
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(a)                                                                           (b) 

Figure 4.5: ROC Curve for the classification model, (a) first dataset, (b) BRATS dataset 

4.4.3 Wavelet Features 

The 2-D DWT is used for extracting features with the Gabor filter. The number of 

transformation levels and the type of filter determine the characteristics of the wavelet coefficients 

that result from this transformation. To examine the effect of the wavelet filter type on the 

performance of the proposed algorithm, different kinds of wavelet filters have been utilized in this 

algorithm. These filters are: Haar, Daubechies 2, Coiflets1, Coiflets2, Coiflets3, Symlets2, 

Symlets4, Symlets8, and Discrete Meyer. Fig. 4.6 summarizes the accuracy of the proposed 

algorithm for each type of wavelet filters. In this figure, ‘Symlets4’ exhibits the highest accuracy 

while ‘Symlets2’ shows the lowest accuracy. Selection of the filter for feature extraction is 

determined by the type of problem or the input data. 
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Figure 4.6: Classification accuracies for different types of wavelet filters 

In the literature, some authors extract statistical features from the LL sub-band image [40], 

[59], [60]. Other works suggested using the LH and HL sub-band images for statistical feature 

calculation [8], [61], [62]. As stated by Lahmiri et al [61], combining the approximation and detail 

coefficients can improve the discrimination ability of the classification algorithm. In this section, 

the proposed method is implemented using the features obtained from three levels of the 2- DWT 

with the LL, LH, and HL sub-bands, and all the wavelet sub-bands as shown in tables 4.7 and 4.8. 

The intensity and texture of the image are contained in the LL sub-band while the LH and HL sub-

bands capture the edges or the high frequency components of the image. Since the intensity and 

texture are the main concerns in classifying the tumor types/grades in MRI images, the features 

extracted from the LL sub-bands are better than the LH and HL sub-bands for classification. 

Combining all the wavelet sub-bands improves the performance of the classifier compared to other 
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sub-bands since it benefits from all the information contained in the MRI image as explained in 

tables 4.7 and 4.8. 

Table 4.7: Performance analysis of the proposed method for the first dataset using the wavelet 

features 

Classifier Performance LL sub-band 
LH and HL 

sub-bands 
HH sub-band 

All sub-

bands 

Accuracy 

Meningioma 89.55 75.95 64.31 92.38 

Glioma 94.23 81.06 70.95 96.08 

Pituitary 89.66 85.53 88.13 91.73 

Sensitivity 

Meningioma 80.00 50.23 58.37 83.72 

Glioma 94.10 83.05 74.20 96.56 

Pituitary 81.48 70.37 73.12 85.86 

Specificity 

Meningioma 92.47 83.81 75.28 95.03 

Glioma 94.34 79.49 68.36 95.70 

Pituitary 93.57 92.76 90.03 94.53 

 

Table 4.8: Performance analysis of the proposed method for the BRATS dataset using the wavelet 

features 

Classifier 

Performance 
LL sub-band 

LH and HL sub-

bands 
HH sub-band 

All sub-

bands 

Accuracy 

 
92.5 92.5 90.00 95 

Sensitivity 

 
97.22 96.15 96.15 98.75 

Specificity 

 
88.64 86.364 81.81 90.9 
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4.4.4 Gabor Features 

In section 3.3.2, two approaches were presented to describe Gabor features. The first 

approach is the Gabor filter that is implemented by a convolution between the input image and the 

2-D Gabor function (equation 3.19). The second one is the Gabor energy approach, which is 

applied by combining a symmetric and an antisymmetric kernel filter in each image (equation 

3.20). In this section, a comparison is carried out to study the effect of Gabor filter features for 

both approaches and the results are described in tables 4.9 and 4.10.  

Table 4.9: Performance analysis of the proposed algorithm for the first dataset with Gabor and 

Gabor energy features 

Classifier Performance Gabor Filter Features Gabor Energy Features 

Accuracy 

Meningioma 93.03 90.86 

Glioma 93.14 91.84 

Pituitary 94.23 92.49 

Sensitivity 

Meningioma 85.12 80.46 

Glioma 93.36 92.38 

Pituitary 89.56 86.19 

Specificity 

Meningioma 95.45 94.03 

Glioma 92.97 91.41 

Pituitary 96.46 95.5 
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Table 4.10: Performance analysis of the proposed algorithm for the BRATS dataset with Gabor 

and Gabor energy features 

Classifier Performance Gabor Filter Features Gabor Energy Features 

Accuracy 96.3 96.3 

Sensitivity 100 100 

Specificity 93.18 93.18 

For the first dataset, the features generated using the Gabor filter are more suitable in 

representing the brain tumor than those generated using the Gabor energy. This can be seen by the 

performance evaluation measured by the algorithm as shown in table 4.9. For the second dataset, 

shown in table 4.10, both techniques (Gabor filter and Gabor filter energy) exhibit the same 

performance.   

4.4.5 Gabor Filter vs Wavelet Transform 

Selection of the appropriate features in the design of a classification algorithm help to 

improve the performance of the CAD system. For brain tumor classification in MRI images, the 

2-D DWT and Gabor filter have been proved to be beneficial in extracting the salient features from 

the tumor image. Furthermore, statistical calculations (both first order and second order) showed 

an improvement in feature generation for brain tumor classification. These statistical quantities 

can be applied to the tumor image directly or after applying a previous transformation like the 2-

D DWT. In the previous chapter, a combination of the Gabor filter and the 2-D DWT followed by 

first and second order statistical calculation was proposed for feature extraction.  In this section 

the proposed algorithm is implemented using Gabor features only, Wavelet features only, and a 
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combination of both features. Then, the performance of the proposed algorithm is shown in tables 

4.11 and 4.12. 

Table 4.11: Comparison the performance of the proposed algorithm for the First dataset with 

wavelet features, Gabor features, and combined features  

Classifier Performance 
Wavelet 

Features 
Gabor Features 

Wavelet and 

Gabor Features 

Accuracy 

Meningioma 92.38 93.03 95.54 

Glioma 96.08 93.14 96.52 

Pituitary 91.73 94.23 95.97 

Sensitivity 

Meningioma 83.72 85.12 87.44 

Glioma 96.56 93.36 97.29 

Pituitary 85.86 89.56 94.27 

Specificity 

Meningioma 95.03 95.45 98 

Glioma 95.7 92.97 95.89 

Pituitary 94.53 96.46 96.78 

Table 4.12: Comparison of the performance of the proposed algorithm for the BRATS dataset 

with wavelet features, Gabor features, and combined features  

Classifier 

Performance 
Wavelet Features Gabor Features 

Wavelet and Gabor 

Features 

Accuracy 95 96.3 98.8 

Sensitivity 98.75 100 100 

Specificity 90.9 93.18 97.73 
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Wavelet features are generated using three levels of the 2-D DWT with the ‘symlet4’ filter, 

while the Gabor features are generated using the 2-D Gabor filter with three wavelengths (2, 4, 

and 8) and five orientations (0°,45°, 90°, 135°, and 180°). For each type of feature, the ten 

statistical quantities (mean, variance, skewness, kurtosis, contrast, correlation, energy, 

homogeneity, maximum probability, and entropy) are calculated for each image resulted from the 

transformation. As stated in chapter three, combining both Wavelet Transform and Gabor filter 

improve the performance of the classification since it utilized from all the directional information 

of the MRI image. As shown in tables 4.11 and 4.12, the combined features outperform the 

Wavelet features and Gabor features separately in terms of the total accuracy, sensitivity, and 

specificity of the algorithm.  

4.4.6 The Effect of Sparsity Regularization and L2-weight Regularization Coefficients on 

the Performance of the Algorithm 

As stated in section 3.4.4, regularization constraints increase the performance of the 

autoencoder network by controlling the firing of neurons in the hidden layer. This regularization 

was introduced in the design of the autoencoder network using two regularization term, sparsity 

regularization and L2-weight Regularization. For each term, there is a coefficient that controls the 

functionality of its regularization inside the cost function, which is shown in equation 3.67. To 

study the effect of each coefficient, the accuracy of the algorithm was determined for different 

values of sparsity regularization and the L2-weight regularization coefficients. This is shown in 

figures 4.7 and 4.8 respectively. In fig. 4.7, the accuracy of the algorithm was calculated for the 

values of sparsity regularization coefficient ranging from 0 to 10 in step of 0.5. The range of 

accuracy for the first dataset is between 91.4% for a coefficient of 3 and 94.0% for a coefficient of 
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(a) 

(b) 

Figure 4.12: Autoencoder training performance for the second dataset, (a) first autoencoder, (b) 

second autoencoder 
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Figure 4.13: Performance of the classifier network for the second dataset after stacking the sparse 

autoencoder with the Softmax classifier 

4.4.7 Classification Using Neural Network  

The previous sections discussed the performance of the proposed classifier model with 

different parameters to see its effect on the classification process. In this section, the back 

propagation neural network classifier is employed to investigate its performance relative to the 

proposed classifier. The neural network classifier is implemented using the multilayer perceptron 

neural network. This is comprised of three layers: an input layer size of 270 neurons, one hidden 

layer size of 90 neurons, and an output layer size of 3 neurons. In addition, the neural classifier is 

trained with the backpropagation algorithm as shown in fig. 4.14.  
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Figure 4.14: Architecture of neural network classifier 

Tables 4.13 and 4.14 show the confusion matrix for brain tumor classification using the 

neural network classifier for the first and second dataset respectively. 

Table 4.13: Confusion matrix for the first database (Neural Network Classifier) 

Table 4.14: Confusion matrix for the BRATS database (Neural Network Classifier) 

 

 

Predicted classes 

High-grade Low-grade 

Actual 

classes 

High-grade 36 0 

Low-grade 3 41 

 

 
Predicted classes 

Meningioma Glioma Pituitary 

Actual 

classes 

Meningioma 187 7 21 

Glioma 14 387 6 

Pituitary 14 12 271 



 

92 

      

                                (a)                                                                               (b) 

Figure 4.15: ROC Curve for the Neural Network Classifier, (a) first dataset, (b) BRATS dataset 

The plots of receiver operating Characteristics (ROC) curve for both datasets are shown in 

Fig. 4.15. For the first dataset, the area under ROC curve for each class is 0.913, 0.9591, and 

0.9211 for Meningioma tumors, Glioma tumors, and Pituitary tumors respectively. For the second 

dataset, the area under ROC curve is 0.9659. Fig. 4.16 shows the implementation view of the 

neural network classifier. The performance of the neural network classifier is shown in fig. 4.17 

where the error calculated using the cross-entropy function reaches to 0.061712 at 1,000 epochs 

for the first dataset. For the second dataset, the error at 252 epochs is  4.1275 ∗ 10−6.  

 

Figure 4.16: View of the neural network classifier 
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(a) 

 

(b) 

Figure 4.17: Performance of the neural network classifier (a) for the first dataset, (b) for the second 

dataset 
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Table 4.15: Comparison of the performance of the proposed algorithm with neural network 

classifier for the first dataset 

Classifier Performance 
Wavelet 

Features 

Gabor 

Features 

Wavelet and 

Gabor 

Features 

The 

Proposed 

Algorithm 

Accuracy 

Meningioma 92.38 93.03 95.54 

Glioma 96.08 93.14 96.52 

Pituitary 91.73 94.23 95.97 

Sensitivity 

Meningioma 83.72 85.12 87.44 

Glioma 96.56 93.36 97.29 

Pituitary 85.86 89.56 94.27 

Specificity 

Meningioma 95.03 95.45 98 

Glioma 95.7 92.97 95.89 

Pituitary 94.53 96.46 96.78 

Neural 

Network 

Classifier 

Accuracy 

Meningioma 90.1 91.62 93.91 

Glioma 94.89 91.73 95.75 

Pituitary 90.21 92.27 94.23 

Sensitivity 

Meningioma 82.33 83.72 86.97 

Glioma 94.1 91.65 95.1 

Pituitary 82.5 85.52 91.24 

Specificity 

Meningioma 92.47 94.03 96 

Glioma 95.51 91.8 96.29 

Pituitary 93.89 95.5 95.66 

 



 

95 

The performance of the proposed classifier represented by the Stacked Sparse Autoencoder 

and the Softmax classifier is compared with the back-propagation neural network classifier for 

both datasets and the results are summarized in tables 4.15 and 4.16. For the first dataset, the 

backpropagation neural network achieves a total accuracy of 91.9% for all classes which is less 

than that of the proposed classifier that achieves a total accuracy of 94.0%. For the BRATS dataset, 

the backpropagation neural network achieves a total accuracy of 96.3% for all classes which is less 

than that of the proposed classifier that achieves a total accuracy of 98.8%. The main reason for 

this improvement in the proposed classifier is that the Softmax function is used for the multiclass 

logistic regression while the sigmoid function is used for the two-class logistic regression. 

Table 4.16: Comparison the performance of the proposed algorithm with neural network classifier 

for the BRATS dataset 

Classifier Performance 
Wavelet 

Features 

Gabor 

Features 

Wavelet and 

Gabor 

Features 

The 

Proposed 

Algorithm 

Accuracy 95 96.3 98.8 

Sensitivity 100 100 100 

Specificity 90.9 93.18 97.73 

Neural 

Network 

Classifier 

Accuracy 93.8 95 96.3 

Sensitivity 100 100 100 

Specificity 88.64 90.9 93.18 

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Logistic_function
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4.4.8 Comparison with Related Works 

To compare the performance of the proposed algorithm with other works, it is required to 

compare the performance with methods that used the same datasets that have been used in this 

algorithm. For the first dataset, Cheng et al [28] used the first dataset by implementing an algorithm 

based on three feature extraction methods, intensity histogram, gray level co-occurrence matrix 

(GLCM), and Bag of Words model. They used the SVM model for classification. For the BRATS 

dataset, three different algorithms have used this dataset: 

➢ Vani and Geetha [47] proposed a classification algorithm for brain tumor classification using 

three types of classifiers: SVM, KNN, and Decision Tree. In this algorithm, a median filter 

was used for denoising and the DWT was for feature extraction. 

➢ Wasule and Sonar [48] suggest an algorithm based on the SVM and KNN classifiers for brain 

tumor classification using the GLCM matrix. 

➢ Farhi and Yusuf [49] presents a survey on MRI image classification using machine learning 

techniques. They used five different classifiers: ANN, Decision Tree, KNN, Nave Bayes, and 

SVM. For feature extraction they used the GLCM and the PCA was used for dimensionality 

reduction. 

Table 4.17: Comparison with related work (first dataset) 

Classifier Performance The Proposed Algorithm Related Work Algorithm [28] 

Accuracy 94 91.28 

Specificity-Meningioma 98 95.5 

Specificity-Glioma 95.89 96.3 

Specificity-Pituitary 96.78 95.3 
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Table 4.18: Comparison with related work (BRATS dataset) 

Classifier 

Performance 

The Proposed 

Algorithm 
Method [47] Method [48] Method [49] 

Accuracy 98.80 85.45 85 97.6 

Precision 97.29 84.31 100 100 

Recall 100 88.89 76 95.6 

F-Measure 98.63 83.08 86.36 97.75 

Table 4.17 explains the performance evaluation of the proposed algorithm and the related 

work algorithm for the first dataset in terms of total accuracy, specifically for Meningioma, 

Glioma, and Pituitary tumors. Table 4.18 explains the performance evaluation of the proposed 

algorithm and the related works algorithms for the BRATS dataset in terms of accuracy, precision, 

sensitivity, and F-Measure.  

Where, 

Precision =
NTP

NFP + NTP
                                                               (4.4) 

F-Measure =2*
Precision ∗ Sensitivity

Precision + Sensitivity
                                              (4.5) 

It can be seen from table 4.17 that the total accuracy of the proposed algorithm is 94.0%, 

it is greater than that of the related work method that achieved an accuracy of 91.3%. In table 4.18, 

the proposed method outperforms the related work method with an accuracy of 98.8 %. 
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4.5 Implementation and Time Processing  

Algorithms and techniques developed in chapter three are utilized and organized to be 

implemented in a computer program written in MATLAB R2017a student license (9.2.0.538062) 

and it is developed on a computer with a 2.6 GHz core i7 processor and a 16 Gigabyte RAM. As 

discussed previously, the proposed algorithm is implemented in two phases; training phase and 

testing phase. Table 4.19 summarizes the processing time for each method used in this algorithm. 

The time measured for training is determined for all the slices used for training, while in the testing 

phase the time is calculated for each slice to show how much time is taken to process each image 

or ROI separately. The time measured for each slice is the time required for processing the 

maximum tumor segment in the testing part of the database that has a size of 228 x 346. It is clear 

from this table that this algorithm can recognize the type of tumor within 1.5 seconds. 

Table 4.19: Processing time for training and testing phase 

Phase Process Time in second 

Training Classification 161 

Testing 

Wavelet Features/slice 0.125 

Gabor Features/slice 1.1719 

Total Features/slice 1.2968 

Classification/slice 1.02e-04 

4.6 Discussion of Results 

To sum up, the proposed algorithm was applied to classify three types of tumors: 

Meningioma, Glioma (high-grade and low-grade), and Pituitary, and used two datasets. For the 



 

99 

first dataset, 864 out of 919 MRI slices were correctly classified as its actual classes. The second 

dataset classified 79 out of 80 MRI slices correctly. The combination of the Wavelet features and 

the Gabor features improved the accuracy by 3.9% compared with the wavelet features only, and 

it improved by 3.8% compared with the Gabor features only. Extracted features using the Gabor 

filter are better than using the Gabor energy alone. The proposed classifier performance is sensitive 

to any change in the sparsity regularization and the L2-weight regularization coefficients, but it 

still achieves a high accuracy. 

 

 

 

 



 

100 

CHAPTER V 

5.CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

A brain tumor is a disease that affects the central nervous system (CNS) in both adults and 

children. A brain tumor is typically diagnosed by radiologists using either invasive or noninvasive 

techniques or a combination of both. Noninvasive diagnosis relies primarily on using Magnetic 

Resonance Imaging (MRI). The radiologist diagnosis can be improved with a second opinion to 

allow for better diagnoses and health care for patients. This motivated several researchers to 

propose a wide range of methods to detect and classify tumors in MRI brain images. 

In this dissertation, a new framework for a hybrid system is proposed to classify three types 

of brain tumor, Meningioma, Glioma, and Pituitary, from the acquired MRI images, in addition to 

two grades of Glioma tumor. The two-dimensional Discrete Wavelet transform (DWT), the two-

dimensional Gabor filter, and the first and second order statistics of both transform domains were 

computed to generate a features pool that represented all possible individual tumors attributes, 

using two different datasets. A classifier model has been developed by combining two models of 

neural networks, the Stacked Sparse Autoencoder and the Softmax classifier. 

The available characteristics of the type and grades of brain tumors are the intensity and 

texture of the tumor region, which is not enough to generate a robust classifier. In this work, the 

statistical features represented by first and second order statistics obtained within the ROI 

transform domain are being proposed to serve as the distinguishable features of tumors for a better 
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discriminatory process against the types/grades of brain tumors. The Gabor filter has the 

significant property of orientation selectivity, while the 2-D DWT results in three directional 

information, Therefore, the 2-D Gabor filter and the 2-D DWT are combined as directional 

transformation feature set and their combination improves the classification accuracy when 

compared to using each method separately. The classifier model comprised of two types of neural 

network, the stacked sparse autoencoder, and the Softmax classifier. The main goal of the 

autoencoder is to convert a high dimensional input vector to a low dimension vector obtained from 

the hidden layer by minimizing the error between the input and the output.  

In addition, the hybrid system composed of the Wavelet-Gabor statistical features improves 

the accuracy of the classification as compared to using each feature set separately. This allowed 

for the development of richer tumor type specific features and a better discriminative process 

among the tumors. Despite its sensitivity to any change in the sparsity regularization and L2-

weight regularization coefficients, the Stacked Sparse Autoencoder still achieves an excellent 

accuracy and exhibits a high-performance classification when combined with the Softmax 

classifier. 

Two datasets were used to train and test the proposed algorithm. The first one consists of 

3,064 slices of T1-weighted MRI images with three kinds of tumors: Meningioma, Glioma, and 

Pituitary. The second dataset has 200 MRI images with high and low grades of Glioma tumors. 

The proposed system performance was measured using accuracy, sensitivity, and specificity. 

Results show the effectiveness of the classification implemented by the stacked Softmax classifier 

with the stacked sparse autoencoder. There was an accuracy of 94.0% for the first dataset and 

98.8% for the BRATS dataset. 
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5.2 Contribution  

The main contribution of this dissertation is the development of the integrated Stacked 

Sparse Autoencoder and the Softmax classifier as a complete classification system suitable for the 

delicacy of type and grade of MRI brain tumor identification. Unlike the backpropagation neural 

network classifier, the proposed classification system trains each layer separately, controls the 

firing of each neuron in the hidden layer, and reduces the overfitting. This is achievable because 

the Softmax function (within the Softmax classifier) is designed for the multiclass logistic 

regression compared to the sigmoid function (used by the backpropagation neural network 

classifier) that is restricted to two-class logistic regression. This proposed system can be a useful 

tool for the radiologist as a second opinion for tumor diagnoses 

5.3 Future Works 

Improvements can be always made by adding features that stem from the specific dataset 

or the MRI equipment. For example, separating patients’ images between male and female 

patients, or separating images between children and adult patients. In addition, it will be 

informative to develop a large dataset at national level and compare the results for subsets. 
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