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DESIGN PARAMETERS FOR PLANNING CLUSTER RANDOMIZED TRIALS OF  

COGNITIVE SKILL INTERVENTIONS: AN EMPIRICAL ANALYSIS  

USING THE COLLEGIATE LEARNING ASSESSMENT 

Yu Du, Ph.D. 

Western Michigan University, 2019 

Recently, higher education has started to place a premium on rigorous research that uses 

randomized controlled trials (RCTs) to test the impact of educational interventions. This may be 

due in part to concerns about a deficiency of high-quality evidence of the effectiveness of 

programs, policies, and practices to improve undergraduate students’ outcomes. Given the 

naturally nested structure in higher education, e.g., students nested in colleges/universities, 

researchers in higher education start considering a specific type of RCT called a cluster 

randomized trial (CRT), which have been frequently used in K-12 impact research. In a CRT, 

whole clusters, such as colleges/universities, are assigned to treatment or control conditions. Just 

like in RCTs, it is critical that CRTs are designed with adequate power to detect a meaningful 

treatment effect. However, the multilevel nature of CRTs makes the power analyses more 

complex than in a RCT. Two key design parameters that are necessary in order to calculate the 

power for a CRT are the intraclass correlation coefficient (ICCs), or the percent of variance in 

the outcome that is between clusters, and the variance in the outcome that is explained by 

covariates (R2). So far, a rich body of evidence of empirical estimates of these design parameters 

is available in K-12 settings. However, these design parameters are context-specific and there is 

a lack of empirical evidence of estimates of these design parameters in high education settings.  



The purpose of this study is to empirically estimate ICCs and R2 values for planning 

CRTs aimed at evaluating the efficacy of collegiate cognitive skills interventions in higher 

education. This study uses data from the Collegiate Learning Assessment (CLA), which is a 

standardized test measuring students’ cognitive ability in higher education. A series of two-level 

hierarchical linear models were employed to calculate the design parameters. The unconditional 

model, or model with no covariates, was used to calculate the ICCs. Models with student level 

and school level covariates were then used in order to calculate the R2 values. The influence of 

these design parameters on statistical power was examined by calculating the minimum 

detectable effect size under various sample sizes using the estimated design parameters.   

Across all samples and outcomes, the ICC estimates ranged from 0.194 to 0.353. That is, 

between 19 and 35 percent of the variance in test scores was between colleges/universities. The 

proxy variables for the student level pretest and school level pretest had the greatest explanatory 

power of the covariates considered and in most cases explained between 60 and 86 percent of the 

between school variance in the outcomes. This suggests that including a proxy for pretest, either 

at the student or school level, is critical in designing a CRT as it will greatly increase the 

statistical power of the study to detect a meaningful effect. The empirical estimates of design 

parameters in this study represent the beginning of a collection of design parameters relevant for 

those planning CRTs to test interventions in higher education and extending this work to other 

outcome domains in higher education would be useful. 
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CHAPTER I 

INTRODUCTION 

 

A randomized controlled trial (RCT), also known as experimental design, is considered a 

rigorous design in social science and social policy research (Boruch, 1997; Orr, 1999; Bloom, 

2005), seeking to draw a causal inference about treatment effect (Mosteller & Boruch, 2002). In 

the late 1980s and mid-1990s, RCTs were utilized in several educational interventions to 

evaluate program effectiveness, helping policymakers to concentrate on important research and 

distribute funding appropriately (Grissmer, Subotnik, & Orland, 2009). Beginning in 1998, 

Congress passed several acts advocating rigorous evaluations of educational programs, using 

either experimental or high-quality quasi-experimental designs (QED). Among these acts, the No 

Child Left Behind (NCLB) Act, a reauthorization of the Elementary and Secondary Education 

Act (ESEA) of 1965 that passed in 2001, was the most influential. Further, the movement calling 

for rigorous evaluation of the impact of educational interventions was pushed forward due to 

substantial funding provided by the Institute of Education Sciences (IES) (Konstantopoulos, 

2008), the research division of the U.S. Department of Education established by the Education 

Sciences Reform Act of 2002 (ESRA) (Education Sciences Reform Act, 2002). 

In 2011, the IES and National Science Foundation (NSF) formed a committee through 

joint effort aimed at enhancing the quality and knowledge development in science, technology, 

engineering, and mathematics (STEM) education (IES & NSF, 2013). Two years later, a Common 

Guidelines for Education Research and Development, simply as the “Common Guidelines” were 

released by the committee. In the Common Guideline, impact research was highlighted and 
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called for researchers to identify “what works” or what interventions improve student academic 

outcomes. For impact research, it must “generate reliable estimates of the ability of a fully 

developed intervention or strategy to achieve its intended outcomes” (IES & NSF, 2013, p14). 

For an impact study to be warranted, the. This encompasses three types of research: Efficacy, 

Effectiveness, and Scale-up Research (IES & NSF, 2013). The three types of research are similar 

in design methods, specified outcome measures, level of statistical power, valid information 

from intervention for analysis, and counterfactual conditions but they differ in their research 

purposes, circumstances of interventions delivered, generalizability to populations, and settings 

(IES & NSF, 2013; Flay, et al., 2005). To begin with, Efficacy Research evaluates whether an 

intervention has a positive change on student academic outcomes when delivered under ideal 

conditions, i.e., a homogenous sample of students and schools, with support provided to the 

teachers or material resources to the classrooms. Next, based on positive evidence from Efficacy 

research, Effectiveness Research tests whether an intervention has a positive effect on student 

academic outcomes under routine practice. Similar to Effectiveness Research, Scale-up Research 

tests whether an intervention has an effect on student academic outcomes, but in such a manner 

that it can be generalized across populations and settings (IES & NSF, 2013; Flay et al., 2005).  

Most recently, experimental design was again given priority in high-quality impact 

evaluations by the National Center for Education Evaluation and Regional Assistance (NCEE). 

In its guidelines for evaluation projects (Evaluation Principles and Practices, 2017), NCEE 

emphasized that an intervention program must demonstrate sound and clear evidence of causal 

effect inferences in a trial, which also complies with the highest standards of quality for 

conducting scientifically valid education evaluations, as required by the Education Sciences 
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Reform Act (ESRA) (Sec.173). Arguably, concern about “what works” has continuously drawn 

attention in the educational community. 

In practice, researchers frequently utilize another type of RCT, called cluster-RCTs in 

impact research (Borman, Slavin, Cheung, Chamberlain, & Chambers, 2007; Cook, Hunt, & 

Murphy, 2000). Unlike simple RCTs, where individuals are randomly assigned to treatment and 

control groups whereas in a cluster-RCT, an intact group (“cluster”) are randomly assigned to 

different conditions due to the naturally nested structure in school systems, i.e., students nested 

in classrooms, classrooms nested in schools (Bloom, 2005; Boruch & Foley 2000; Cook, 2005; 

Hedges, & Hedberg, 2007; Spybrook & Raudenbush, 2009). For example, the National Center 

for Education Research (NCER) and NCEE within IES have funded 175 RCTs, among which 

more than 100 studies have adopted cluster-RCT designs in K-12 impact research since 2002 

(Spybrook, 2008; Spybrook, 2013). The research areas adopting cluster-RCT designs cover 

various educational interventions, such as school reforms, curriculum redesigning, or student 

healthcare programs, in a variety of settings, including pre-K, elementary schools, middle 

schools, and high schools (“Grantsearch,” 2017). Meanwhile, the demand for rigorous evaluation 

of the impact of interventions has led to an increased use of RCTs in post-secondary education, 

especially for community colleges. However, the use of CRT designs for impact research in 

higher education is a relatively recent phenomenon in review of the IES funded project 

(“Grantsearch,” 2017).  

Whether in educational setting or other contexts, to be a cluster-RCT study, a design must 

meet two key criteria: (1) the unit of assignment in the study is a cluster, and (2) the data for the 

analysis is based on individuals within those clusters (WWC, 2013). Historically, cluster-RCTs 

have been called “cluster randomized trials”, “group-randomized trials” (Murray, 1998) and 
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“place-based randomized trials” (Donner, Brown, & Brasher, 1990; Donner & Klar, 2000). In the 

early 2000s, the Consolidated Standards of Reporting Trials (CONSORT) statement provided 

reporting guidelines for RCTs, and the term “cluster randomized trial (CRT)” became the most 

commonly used for this type of design. Throughout this dissertation, CRTs were used throughout 

the dissertation in which the “cluster” refer to schools as the randomization takes place at the 

school level. Although implementation and analysis are equally important in a CRT trial, 

throughout, the attention is restricted to CRT design by improving power analysis.  

Background 

Whether in K-12 or higher education, CRTs must be designed with adequate statistical 

power to produce high quality and rigorous evidence (Hedges & Hedberg, 2007; Spybrook, 

2014). An a priori power analysis enables researchers to determine the sample size necessary to 

detect a meaningful effect (Bloom, 1995).  

The Importance of Power Analysis 

Previous literature has consistently emphasized the importance of conducting a power 

analysis for CRT studies (Bloom, 2005; Donner & Klar, 2000; Konstantopolous, 2008; Murray, 

1998; Raudenbush, 1997; Raudenbush & Liu, 2000; Raudenbush, Spybrook, & Martinez, 2007; 

Schochet, 2008). One reason is that an underpowered design may result in inconclusive conclu-

sions which can stunt the progress of a field. That is, it will be unclear whether the intervention is 

not effective or whether the study simply is not powered to detect the treatment effect. Indeed, 

Song and Herman (2009) addressed the issue that most CRTs in education lack statistical power 

due to the small number of clusters in the study. However, when more schools or students are 

recruited than necessary for a study, resources are wasted, which should be avoided because of 
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resource constraints educational communities encountered today (Hedges & Rhoad, 2010; 

Westine, Spybrook, & Taylor, 2013). 

The Importance of Design Parameters 

A challenge that researcher faces when planning a CRT is that they must estimate two 

critical elements in conducting a power analysis: (1) the intra-class correlation coefficient (ICC), 

and (2) the percent of the variance in the outcome explained by the covariate(s) (R2) at each level 

(Hedges & Hedberg, 2007). The ICC and R2 are also referred to as “design parameters” because 

of their importance in CRT design stages (Brandon, Harrison, & Lawton, 2013; Jacob, Zhu, & 

Bloom, 2010). In the context of this dissertation, the ICC is the percent of the total variance in 

achievement outcomes that is between schools. Take math outcomes, for example. If the ICC for 

a two-level (students nested in schools) is 0.20, then 20% of the variance in math outcome is 

between schools and 80% of the variance in math outcome is within schools. The R2 here is the 

percent of the variance in the student achievement outcomes that is adjusted by a covariate or set 

of covariates. Suppose we include a pretest as a predictor, then, if the Level 1(student level) R2 is 

0.178, we can say that 17.8% of variability in math outcomes within schools is explained by 

pretests. If the Level 2 (school level) R2 is 0.70, meaning that 70% of the variability in math 

outcomes between schools is adjusted by pretest scores. For a specified sample sizes, reducing 

the variance in the outcome will result in the capacity to detect a smaller effect size or the 

difference between two groups, holding the power constant at 0.80. 

Strategies for Estimating Design Parameters 

As design parameters are sensitive to different contexts, outcomes, samples, grades, and 

designs (Bloom, Bos, & Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007; Brandon, Harrison, 

& Lawton 2013; Hedges & Hedberg, 2014; Jacob, Zhu, & Bloom, 2009; Westine, Spybrook, & 
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Taylor, 2014; Xu & Nichols, 2010), researchers face uncertainty when estimates are not 

available for a particular context, which is often the case in higher education. Researchers 

(Hedges, & Hedberg, 2007; Westine, Spybrook, & Taylor, 2014) recommend three strategies of 

estimating ICC and R2: (1) consult the literature for similar studies with reported design 

parameters, (2) conduct a pilot test with a similar sample to obtain estimates of design 

parameters, and (3) use large databases to estimate the design parameters. The third method was 

utilized in this study.  

Up to now, scholars have accumulated empirical work around estimating design 

parameters for impact research in K-12 settings including student achievement outcomes such as 

reading, math and science. For example, Hedges and Hedberg (2007) produced estimates of 

ICCs and R2 using several national datasets that covered name the outcomes and the grades here. 

Several other scholars estimated ICCs and R2 based on state-level datasets for K-12 reading, 

math, and science outcomes (Brandon, Harrison, & Lawton, 2013; Hedges & Hedberg, 2013, 

2014; Westine, Spybrook, & Taylor, 2013; Xu & Nichols, 2010; Zhu, Jacob, Bloom, & Xu, 

2012). Furthermore, other scholars have provided ICCs and R2 based on school-district-level 

datasets (Bloom, Bos, & Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007), while still others 

have compiled estimated empirical design parameters from past empirical studies or large 

evaluation studies in K-12 educational interventions (Jacob, Zhu, & Bloom, 2010; Schochet, 

2008; Zhu et al., 2012). With those accessible design parameters, researchers can enhance their 

capacity to plan a CRT design.  
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Statement of the Problem 

While the tremendous progress K-12 has made in documenting design parameters using 

standardized test outcomes, estimating design parameters for student-learning outcomes in 

higher education has fallen substantially behind. One potential reason for this delay a lack of 

agreement on which student learning outcomes are the most important and how to measure 

these outcomes in higher education (Callen & Finney, 2002; Klein et al., 2005; Shavelson, & 

Huang, 2003).  

Participation in national standardized tests of higher-order cognitive skills, such as 

critical thinking and writing skills in higher education has increased drastically as accreditation 

agencies have started to require them in the past decade (Association of American Colleges and 

Universities and Council for Higher Education Accreditation 2008; Liu, 2010; Steedle, 2012). 

In addition, universities were called upon to hold themselves accountable by providing evidence 

of the effectiveness of a college education and student learning outcomes (U.S. Department of 

Education, 2006). In response to these requirements, two prominent organizations in higher 

education, the American Association of State Colleges and Universities (AASCU) and 

Association of Public and Land-Grant Universities (APLU), formerly known as the National 

Association of State Universities and Lang Grant Colleges (NASULGC), created the Voluntary 

System of Accountability (VSA) program to measure students' critical thinking, analytical 

reasoning, and analytical writing abilities using standardized tests (VSA, 2008). Three 

standardized tests were approved based on their established reliability and validity to measure 

the VSA-defined core educational outcomes (Liu, 2011). The three standardized tests are: (1) 

the Collegiate Assessment of Academic Proficiency (CAAP) by American College Testing 
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(ACT), (2) Collegiate Learning Assessment (CLA) by the Council for Aid to Education (CAE), 

and (3) Proficiency Profile, formerly known as Measure of Academic Proficiency and Progress 

(MAPP) by the Educational Testing Service (ETS) (VSA, 2008).  

The availability of these standardized tests has led to an increased ability to examine 

undergraduate students’ critical thinking skills and communication skills and to test the 

effectiveness of interventions designed to improve these outcomes in the past decade. Although 

intervention for improving cognitive skills maintain momentum, recent studies indicate that a 

high quality and true experiment designs are few. For example, Behar-Horenstein and Liu (2011) 

examined forty-one empirical studies in a systematic review of critical thinking skills in higher 

education. Only three (7%) implemented a true experimental design, fourteen (33%) pre-

experimental design, and twenty-five studies (60%) quasi-experimental design. In another 

systematic review on critical thinking skill instruction interventions in higher education, Tiruneh, 

Verburgh and Elan (2013) examined thirty-three studies. Four (13%) employed experiment 

design, and twenty-two (67%) quasi-experiment design, and seven (21%) pre-post design 

without comparison groups. The drawbacks for such designs are that the studies can be 

undermined by threats to internal validity such as maturation, dropping out, familiarity with the 

pre-test, underpowered studies, and so on (Cook & Campbell, 2002; Behar-Horenstein &Liu, 

2010; Ennis, 2016). Thus, this study will extend the knowledge of design parameters in K-12 

impact studies to higher education in assisting researchers with designing a CRT study in higher 

education. Although implementation and analysis are equally important in a CRT design (U.S. 

Education Department, 2003), the scope of this study focuses on improving the power analysis 

during the design stage. 
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Purpose of the Study  

The purpose of this study is to empirically estimate ICCs and R2 values for two-level (i.e., 

students nested in schools) CRTs aimed at evaluating the efficacy of collegiate cognitive skills 

interventions in higher education. More specifically, the primary outcomes are from a 

standardized test, the Collegiate Learning Assessment (CLA) test administered between 2005 to 

2010 provided by Council Aid to Education (CAE). The CLA test is a holistic and complex 

standardized test which assesses students’ four higher order cognitive skill: critical thinking, 

analytic reasoning, written communication, and problem solving skills (Arum & Roksa, 2011; 

Klein, Benjamin, Shavelson, & Bolus, 2007). Particularly, the CLA measures higher order skills 

that almost all institutions attribute to improving. The primary outcome measures in this study 

include: Performance Task outcome, Analytical Writing outcome, and total CLA outcome 

(average of Performance Task outcome and Analytical Writing outcome). The findings from the 

study are intended to inform the design of two-level trials, in which students are nested within 

colleges/universities and the unit of randomization occurs at school level.  

Research Questions 

This current study employed a series of two-level Hierarchical Linear Model (HLM) to 

calculate design parameters for an important student learning outcome, cognitive skills in higher 

education. Specifically, the analyses address four central questions as followed:  

1. To what extent do the following outcomes vary across schools?: 

a. Performance Task outcome. 

b. Analytical Writing outcome. 

c. The total CLA outcome. 
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2. To what extent do student-level covariates (i.e., entering academic ability [EAA] score, 

student demographics, and so on) explain the variance in the three outcomes? 

3. To what extent do school-level covariates (i.e., Median SAT) explain the variance in 

the three outcomes? 

4. Given the design parameters estimates in questions 1-3 and effect sizes from the 

literature, what is the sample size necessary for CRTs that aim to test interventions 

seeking to improve at colleges/universities? 

Contribution to EMR 

Previous empirical research on improving the design of CRTs in education is limited to 

K-12 education within the domain of student academic outcomes in reading, math, and science. 

Although some scholars published ICCs using CLA tests, there lacks a systematic compilation of 

empirical design parameters for designing CRTs in higher education. Though we have not seen 

many CRTs yet to assess the impact of cognitive skill interventions in higher education, we 

anticipate there will be more as more calls are made for improving these skills for the upcoming 

workforce. This work is getting out ahead of these calls by starting to build a resource of design 

parameters in higher education and provide researchers reference values of design parameters 

when planning a two-level CRT.  

Overview of the Dissertation Structure 

The overall structure of the study takes the form of five chapters, including this 

introductory chapter. Chapter II is divided into five sections. The author begins by laying out 

how the RCT and CRT evolved in K-12 and higher education over the past decades. Then, the 

author introduces statistical power analysis for 2-level CRTs, which covers MDES approach and 

empirical design parameters for student academic outcomes in K-12 and higher education. Next, 
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the author talks about the how the covariates were selected based on higher education literature. 

It ends with a discussion reasonable magnitude of the effect sizes in K-12 and higher education 

used as empirical benchmark in educational interventions. Chapter III is concerned with the 

methodology used for this study, which mainly focuses on description about data source and 

samples, data screening process, outcome measures, covariates, and analytical models. Chapter 

IV presents the findings of the ICCs, R2, and MDES aligning with each research question and 

focus on a discussion of the patterns of ICC and R2 that might be applied to a prior power 

analysis for the design of a two-level CRT at colleges/universities. Finally, the conclusion in 

Chapter V gives a summary of the study, as well as areas for further research identified and 

discussed.
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CHAPTER II 

LITERATURE REVIEW 

 

To help identify the best practices to improve student academic outcomes in U.S. class-

rooms and schools, over the past decade, researchers have implemented randomized controlled 

trials (RCTs) to evaluate educational interventions such as programs, policies, and practices 

(hereafter referred to as “interventions”). The use of RCTs have grown rapidly since the Institute 

of Education Sciences (IES) began funding studies with RCT designs in 2002. The movement 

advocating rigorous research designs such as RCTs was further advanced by the release of the 

Common Guidelines for Education Research and Development (IES & NSF, 2013), simply 

referred to as “the Common Guidelines”. In particular, the Common Guidelines underscored one 

type of impact research through rigorous research designs such as RCT approaches.  

In K-12 impact research, cluster randomized trials (CRTs)—a special type of RCTs—are 

becoming more common as a way to test educational interventions that are intended to improve 

student achievement outcomes. In recent years, higher education has begun favoring CRT 

designs to test the efficacy of educational interventions such as mathematics interventions, meta-

cognitive outcome interventions, among others (“IESgrants”, 2017). A key consideration for 

such a trial is the statistical power to assess an effect of a particular magnitude. However, 

conducting a power analysis for a CRT is complex. A priori estimates of design parameters are 

required during the planning phase including estimates of the intraclass correlation coefficient 

(ICCs) and covariate-outcome correlation (R2). Many scholars (Bloom, Bos, & Lee, 1999; 

Hedges & Hedberg, 2007; Xu & Nichols, 2010) have documented empirically-estimated design 
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parameters for K-12 reading, math, and science outcomes; many of which are now available in 

an online compendium to help researchers designing CRTs in K-12 (“variance-almanac-

academic-achievement”, 2017). However, higher education lacks such a design parameter 

compilation to guide researchers with interest of CRT studies. Thus, the purpose of this research 

is to establish a design parameter repository for two-level CRT in the higher education context. 

Specifically, the outcome measure of this study was Collegiate Learning Assessment (CLA), one 

of the most comprehensive standardized tests measuring students’ cognitive growth in higher 

education (U.S. Department of Education, 2006).  

To clarify the role of CRTs in higher education and the importance of relevant and 

accurate design parameters, seven key aspects from the relevant literature are reviewed here: (1) 

basic description of RCTs; (2) the evolution of RCTs in K-12 and higher education; (3) CRTs in 

K-12 and higher education; (4) details related to conducting a statistical power analysis for a 

CRT, including a discussion of empirical research of ICCs and R2 in K-12 and higher education; 

(5) strategies for selecting covariates in higher education; (6) the magnitude of minimum 

detectable effect size (MDES); and (7) the summary of this chapter.  

Description of RCTs 

RCTs or experimental designs have been used to evaluate the impact of educational 

interventions for over 15 years (Spybrook & Raudenbush, 2014). When carefully designed and 

successfully implemented, RCTs are the most credible research design for establishing causal 

links between interventions and outcomes (Boruch, 1997; Mosteller & Boruch, 2002; Murnane 

& Willett, 2010). One important feature of a RCT is the unit of random assignment. The simplest 

design is one in which individuals are randomly assigned to the treatment or control condition. 

However, units may also be clusters of people such as classrooms, schools, or districts. A second 
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feature of a RCT design is whether the blocking technique is utilized the study design. Figure 1 

presents a person RCT design without blocking. For example, suppose 1,200 low-income fresh-

men will participate in a RCT to test the efficacy of a first-year experience (FYE) with a mentoring 

component to improve their GPA and second-year retention rate. Using a person RCT design, the 

research team randomly assign 600 individuals to treatment (FYE with mentoring components) 

and another 600 individuals to control group (without mentoring component) (see Figure 1).  

 
 

Figure 1. Person RCTs without Blocking   

 

 

Figure 2 displays a person RCT design with the presence of blocking, also known as a 

multi-site (or blocked) RCT. The blocking is advantageous in two ways. First, blocking improves 

the face validity of the experimental study (Spybrook, Bloom, Congdon, Hill, Martinez, & 

Raudenbush, 2011). Second, blocking is likely to reduce the variability between students within 

“blocks” and increase the precision of the estimate of the treatment effect. Thus, blocking 

increases the power of the test for the main effect of treatment (Raudenbush, Martinez, & 

Spybrook, 2007; Andres & Spybrook, 2009). Use the same example as Figure 1 demonstrates, 

suppose that 1,200 low-income freshman will participate in the same FYE program. As Figure 2 
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shows that the research team will arrange students in “blocks” based on orientation sessions to 

ensure balanced groups of low-income freshmen in both treatment and control groups. The 

blocking factor, i.e. orientation session in this case, should be one that is strongly associated with 

outcome variables (Raudenbush, Martinez, & Spybrook, 2007; Andres & Spybrook, 2009). 

Because of these advantages, multi-site RCTs have also been one of the dominant design for 

researchers to consider in educational interventions (Spybrook, 2008). 

 

Figure 2. Person RCTs with Blocking 

 

Evolution of RCTs in K-12 Education 

In the late 1980-2000 time span, three social and educational interventions with RCT 

designs were launched to test the effectiveness of intervention programs (Grissmer, 2016; 

Schultz & Mueller, 2006). One of the initiatives—Tennessee’s Project Student/Teacher 

Achievement Ratio (STAR)—was the first large, multi-site person RCT in K-12 education, 

conducted from 1985 to 1989 (Finn & Archilles, 1990). Funded with approximately $12 million 

from the state legislature and conducted by Tennessee’s State Department of Education, Project 

Randomization      Randomization

Students 
(1,200)

Students in 
Orientation

Sessions("blocks")
(600)

Students not in 
Orientation Session

(600)

Treatment Group

Individual 1
Individual 2
Individual 3

...
Individual 300

Individual 1
Individual 2
Individual 3

...
Individual 300

Control Group Treatment Group Control Group

Individual 1
Individual 2
Individual 3

...
Individual 300

Individual 1
Individual 2
Individual 3

...
Individual 300



16 

 

 

 

STAR evaluated the effects of class size reduction (CSR) on student achievement. More than 

6,000 students in 329 classrooms were involved in the project during its first year, reaching 

almost 12,000 students over its 4-year duration (Finn & Archilles, 1990; Word, 1990). The key 

findings indicated STAR’s positive impact on student achievement outcomes. Furthermore, the 

study reduced an achievement gap between minority students and White students. In most cases, 

minority students gained twice to three times benefits than White students did (Finn & Archilles, 

1990; Mosteller, 1995). These positive results provided justification for state and federal CSR 

programs throughout the nation to improve quality of education (Schanzenbach, 2006). As a 

pilot study, STAR project was not without flaws. For example, Hanushek (1999) pointed it out 

that the randomization process was not strictly performed. However, STAR project was an 

important milestone in education field, demonstrating the usefulness of experimental designs in 

helping educational community understand the CSR effect on relevant research and policy 

decision-making (Finn & Archilles, 1990; Mosteller, Light, & Saches, 1996; Sohn, 2016). 

Mosteller et al. (1996) also recognized the project as one of the great experimental studies in 

U.S. education history. 

In the late 1990s, RCTs were placed on the national education agenda due to several 

pieces of federal legislation. The first major initiative, the 1998 Obey-Porter legislation, created 

the Comprehensive School Reform Demonstration (CSRD) program and invested $150 million, 

calling for scientific evidence in education, which could be provided through the approach high-

quality quasi-experiment design (QED) (Borman, Hewes, Rachuba, & Brown, 2002; Borman, 

2002; Doherty, 2000). Congress clarified that schools could receive CRSD funding only if they 

proposed to implement evidence-based educational practices and programs (Borman, Hewes, 

Rachuba, & Brown, 2002). Because Congress wished to prevent potential harmful effects on 
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children as target subjects due to interventions that had not been proven to be scientifically 

effective, they passed a second initiative, the Scientifically Based Education Research, 

Evaluation, and Statistics and Information Act of 2000. Although the Act encountered setbacks, 

it started establishing standards for both quantitative and qualitative research in education 

(Boruch & Mosteller, 2002). Consequently, the National Research Council (NRC) formed the 

committee on Scientific Principles in Education Research, which promoted the use of rigorous 

methodology in education (Borman, 2002; Mosteller & Boruch, 2002; Lagemann, 1997; 

Shavelson & Towne, 2002). The continuous demand for high-quality research in education 

inspired the passing of the 2001 No Child Left behind Act (NCLB), a reauthorization of the 

Elementary and Secondary Education Act (ESEA) of 1965. Of these three initiatives, NCLB has 

been the most influential as it stressed evidence-based methods and procedures to enhance the 

quality of education. Specifically, it recognized experimental designs and QED as acceptable 

designs for establishing reliable evidence on educational interventions (Borman, 2002).  

The movement toward experimental designs was propelled by the passing of the 

Education Sciences Reform Act of 2002 (ESRA), and by the establishment of the IES, the 

research division of the U.S. Department of Education (USDOE) (Education Sciences Reform 

Act, 2002). Particularly, Grover Whitehurst, the first director of IES, was a strong advocate for 

evidence-based decision-making for improvement of education (Whitehurst, 2002). Beyond that, 

IES launched a reliable reviewing center, the What Works Clearinghouse (WWC), which 

evaluated and synthesized research evidence for the effectiveness of educational interventions. 

Moreover, the WWC set the rating standards for studies under review in the Procedures and 

Standards Handbook (WWC, Version 4.0). For instance, well-designed and well-implemented 

RCTs with low attrition are rated as “meets WWC design standards without reservations”. QEDs 
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with equating and no severe design or implementation problems and RCTs with severe design or 

implementation problems are both rated as “meets WWC design standards with reservations”. 

Studies that fail to provide sufficient causal evidence for an intervention’s effects are rated as 

“does not meet WWC design standards”. 

In 2003, the USDOE mandated that a “rigorous” study must utilize RCTs or high-quality 

QEDs (IES, 2003). To reach the goal of improving education quality with strong designs, two 

IES research centers have invested substantial funding to increase the use of RCT designs: 

National Center for Education Research (NCER) and National Center for Special Education 

Research (NCSER). Starting 2002, NCER began supporting rigorous research that identified 

imperative issues and improved quality of education from preschool (age 3) to adult education 

(IES Program Overview, 2017). For example, the first NCER funded project is titled A 

longitudinal study of the effects of a pre-kindergarten mathematics curriculum on low-income 

children's mathematical knowledge, which sought to evaluate the effects of the pre-K 

mathematics curriculum on low-income children in California and New York in 2002. NCSER 

began sponsoring rigorous research in 2006 in an effort to build a knowledge base related to 

infants, toddlers, and students with or at risk for disabilities, from birth through high school (IES 

Program Overview, 2017). The slight difference between the two centers lies in the target age 

range for educational interventions. Regarding student academic outcomes, NCER and NCSER 

both support research on traditional academic outcomes (i.e., reading, writing, math, and science) 

and social and behavioral competencies that support student success in schools (IES Program 

Overview, 2017). Additionally, a contract-awarding center, NCEE, is responsible for conducting 

impact studies, mostly through RCTs to improve student achievement in collaboration with 

Regional Educational Laboratory Program, WWC, Education Resources Information Center 
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(ERIC), and National Library of Education (“IESNCEE”, 2017). Together, the NCLB, the 

ESRA, and WWC have transformed education in the U.S. into an evidence-based research field 

(Karlet, 2012). 

Evolution of RCTs in Higher Education 

In higher education, one prominent example of applying RCT is an impact evaluation of 

the Upward Bound, a federal program designed to increase access to higher education for 

economically disadvantaged students. Given the fact that higher education was devoid of 

scientific evidence from previous Upward Bound projects, USDOE commissioned Mathematica 

Policy Research, Inc. (MPR) to conduct a largest longitudinal impact evaluation of Upward 

Bound project across nation in 1991, involving 52,000 students participating in 727 these 

projects (Myers, Olsen, Seftor, Young, & Tuttle, 2004). The study provides empirical evidence 

on that the Upward Bound project could increase enrollment at four-year colleges and 

universities as well as had positive impact on high school math credits earned by participants but 

not on other outcomes (Myers, Olsen, Seftor, Young, & Tuttle, 2004). In the same year, the 

USDOE started the Experimental Sites Initiative (ESI) and Congress authorized the ESI under 

section 487A (b) of the Higher Education Act (HEA) of 1965 as amended (“experimentalsites”, 

2017). The Initiative allows institutions to test and evaluate policy changes on a small scale to 

advise future higher education legislation (“experimentalsite”, 2017).  

However, in a recent report Putting the experimental back in the Experimental Sites 

Initiative (2018), authors Mccann, Laitinen and Feldman asserted that USDOE launched 30 

“experiments” through the Initiative but only two programs were designed with credible 

evaluations. On the other hand, because evidence-based educational practices and programs were 

not prioritized by the administration or mandated by Congress, the higher education community 
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lacked clear guidance and standards on how to conduct RCT studies to inform broader decision-

making for relevant policies (Mccann, Laitinen, & Feldman, 2018). Indeed, Ross, Morrison, and 

Lowther (2005) had earlier raised concern about methodological issues in experimental studies in 

higher education such as low internal and external validities of experiment designs, lacking 

theoretical framework and analytical techniques to strengthen experimental designs. Conse-

quently, relatively few experimental studies have been published in peer-reviewed journals 

compared with that in K-12 body of relevant literature, which might stunt the progress of RCTs 

in higher education. 

The rise of RCTs to test the impact of educational interventions in higher education 

mainly stemmed from community colleges in the early 2000s. Historically, community colleges 

have been viewed as the best way for low-income individuals to achieve a higher education and 

improve their prospects for the labor market (Goldberg & Finkelstein, 2002; Gordon, Young, & 

Kalianov, 2001). Although considerable interventions to increase completion rate have been tried 

over the decades (Goldberg & Finkelstein, 2002; Gordon, Young, & Kalianov, 2001; Tinto, 

1997, 1998; Zhao & Kuh, 2004), few studies were well-designed to support causal inferences on 

those interventions (Bettinger & Baker, 2011; Evans, Kearney, Perry, & Sullivan, 2017; Schultz 

& Mueller, 2006). In response to these issues, MDRC (formally known as "Manpower Demon-

stration Research Corporation"), a pioneer in advancing rigorous evaluation to measure the 

effects of social and educational policy initiatives, introduced the “Open Door Demonstrations” 

project in 2003 (Scrivener & Coghlan, 2011). One of the large-scale experiment studies was to 

evaluate the effectiveness of the Kingsborough Community College’s (KCC) learning 

community program conducted in 2003-2005 (Visher, Weiss, Weissman, Rudd, & Wathington, 

2012; Weiss, Mayer, Cullinan, Ratledge, Sommo, & Diamond, 2014). Because of the solid 
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evidence the KCC learning community program produced, learning community interventions 

were later scaled up to other community colleges (Weiss, Mayer, Cullinan, Ratledge, Sommo, & 

Diamond, 2014). Furthermore, funded by a consortium of foundations, the U.S. Department of 

Labor, and the USDOE, MDRC implemented several impact evaluation programs with RCT 

designs striving for improving student academic success such as various forms of student 

services programs (Hock, 2010; Scrivener &Weiss, 2009) and financial incentives intervention 

programs (Brock & Richburg-Hayes, 2006; Richburg-Hayes et al., 2009).  

Among all impact evaluation programs performed by MDRC, the City University of New 

York’s (CUNY) Accelerated Study in Associates Program (ASAP) was the exemplar of how 

application of RCTs could be used to test the efficacy of community college completion 

interventions. Findings of the project revealed that the ASAP study almost doubled graduation 

rates from 22 percent to 40 percent after three years (Scrivener, Weiss, Ratledge, Rudd, Sommo, 

& Fresques, 2015). Because of its success, ASAP also received great attention in the higher 

education field. Further, to help understand whether ASAP could be implemented to other 

settings and populations to boost completion rates, Great Lakes Higher Education Guaranty 

Corporation funded a replication demonstration of the ASAP model (2014-2019) in three 

community colleges in Ohio, which was led by MDRC and CUNY (“mdrcproject”, 2017).  

With growing concern over college enrollment and completion rates has heightened 

interest, Congress passed the Higher Education Opportunities Act (HEOA), which required 

USDOE implemented best “promising practices” in research to increase high school students’ 

access to higher education and increase completion rate (Higher Education Opportunity Act, 

2008). In response to the call, higher education saw an increase of impact researcher, which 

mostly were funded by the Postsecondary and Adult Education (PSAE) grants under NCER 
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research center. To date, NCER has invested over $95 million to support 59 research projects., 

Twenty-nine out of 59 (49%) are impact research. Especially, 15 out of 29 projects adopted RCT 

designs including the ASAP project mentioned above (“IESprograms”, 2017). Because of all the 

above-mentioned efforts, a fair amount of literature on experimental studies started to emerge in 

higher education.  

As the on-going requirement for evidence-based studies, RCTs did not only serve as a 

robust design to establish causal inference of educational interventions in community colleges 

but also in four-year colleges/universities. Some recent empirical studies include performance-

based studies (Binder, Krause, Miller& Cerna, 2015), developmental summer bridge programs 

(Barnett, Bork, Mayer, Pretlow, Wathington, Weissman, & Teres, 2015), and mentoring 

programs (Bettinger & Baker, 2011; Steeg, Elk, & Webbink, 2014), just to name a few. In 

particular, an experimental evaluation of student mentor program conducted by Bettinger and 

Baker (2011) demonstrated the positive effect of intensive student mentoring on increasing two-

and four-year persistence and degree completion rates, this study was later frequently cited by 

applicants to the Strengthening Institutions Program (SIP) and the First in the World (FITW) 

grants offered by the USDOE. Collectively, the RCT studies for community colleges and four-

year colleges/universities have added to the growing body of literature on experimental studies 

and provided methodological guidance to educational interventions in higher education.  

Today, recognition of the importance of RCTs in higher education research continues to 

gain momentum. In 2017, the Center for Research on Undergraduate Education (CRUE) 

Symposium invited scholars from across the nation to share their innovative rigorous evaluations 

of interventions in higher education; topics included but not limited to college access, 

admissions, STEM achievement, and student success initiatives. Subsequently, in a Higher 



23 

 

 

 

Education Act reauthorization bill introduced in December 2017 by the chairwoman of the 

House Education and the Workforce Committee, emphasis on reviving the mission of ESI by 

mandating rigorously designing and evaluating experiments to inform decision-making in higher 

education were address clearly (Fredman, 2018). Hopefully, with ongoing input from all aspects 

in higher education, the revitalization of RCTs in rigorous evaluation will be pushed forward. 

Description of CRTs 

In addition to the person RCT, the two most widely used experimental designs in 

education research are variation of RCTs: CRT and multi-site (blocked) CRT designs. When 

cluster of individuals (e.g, students nested in classrooms) are the unit of random assignment in an 

experimental design, it is referred to as a CRT design. If a CRT design includes blocking, it is a 

multi-site (blocked) CRT design. Both designs assume a clustered sampling design but differing 

in terms of how random assignment is made to treatment or control conditions (Hedge & 

Rohads, 2010). For this dissertation, the author focused on a two-level CRT. 

A CRT design, also known as a “hierarchical design” (HD), is when “clusters” at Level 2 

(e.g., classrooms or schools) are randomly assigned to the treatment or control conditions. Figure 

3 presents a 2-level CRT design (e.g, 200 individuals nested in each school). As can be seen that 

the randomization occurs at Level-2 (school level). Six schools as “clusters” are randomly 

assigned to treatment and control conditions as the arrow directed. Hence, all individuals within 

a given cluster (school) receive the same treatment. CRT designs have won favor of researchers 

in educational interventions for several reasons. First, a CRT design can potentially reduce 

contamination by physically separating individuals receiving different treatments (Raudenbush, 

Martinez, & Spybrook, 2007). Contamination occurs when interaction between individuals in 

different treatment conditions causes some individuals to receive features of a treatment to which 
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they were not assigned. For instance, if an experimental study is designed to increase gateway 

science courses retention rates by introducing a redesigned curriculum intervention delivered to 

some students but not others within a given university, it is possible that the students receiving 

the intervention will also have their learning experience shared with peers not receiving the 

interventions.  

 

Figure 3. Two-level CRT Design with Students Nested in Schools 

Second, because many educational interventions such as whole-school initiatives are 

deployed at the entire school environment or classroom level, a 2-level CRT often makes the 

most sense to test these types of interventions (Bloom 2005; Boruch & Foley, 2000; Cook, 

2005). For example, in a Connected Chemistry Curriculum (CCC) intervention program for high 

school chemistry, a CRT is well-suited because the interventions are delivered at the classroom 

context to investigate how students engaged in chemistry and the measure the effects of student 

learning outcomes (Mike, Superfine, &Yin, 2017). In addition to the scientific value provided by 

CRTs, implementation of this design poses few logistical, ethical, and administrative challenges 

while maintaining the integrity of the study in practice (Bloom, 2005; Raudenbush, 1997). As 
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Cook and Payne (2002) addressed that administrators and district officials tend to participate in 

an experiment when entire schools or districts receive the treatment.  

In summary, researchers can choose appropriate designs based on the pros and cons of 

CRT designs into consideration. With careful attention to the issues addressed, researchers can 

avoid methodological pitfalls and use these approaches successfully. As the need for high-quality 

education evaluations was expressed by the NCEE (Evaluation Principles and Practices, 2017), it 

is anticipated that CRT designs will continue to thrive in impact research.  

CRTs in K-12 Education 

Since 2002, IES has funded a new generation of intervention studies that adopted CRTs, 

beginning with K-12 intervention programs. In 2003, five CRTs were funded by IES 

(“IESgrant”, 2017). Today, 111 out of 266 impact research studies are through the approach of 

CRT designs (both simple CRT and blocked CRT), thanks to funding provided by the NCER and 

NCSER centers (“IESgrant”, 2017). The research covers a variety of topics including education 

programs, practices, and policies in reading and writing, mathematics, and science education; 

teacher quality; cognition and student learning; and high school reform, among others 

(“NCERGrant”, 2017). While NCEE has initiated approximately 34 impact studies, with 16 

studies implementing CRTs covering a variety of research topics such as early literacy, 

mathematics, teacher quality, special education, and English language learning, among others 

(“NCEEGrant”, 2017). 

CRTs in Higher Education 

In contrast, the progress of CRT applied in higher education has fallen behind compared 

to K-12 research. The first CRT that evaluated the impact of student achievement outcomes in 

post-secondary education was probably the Beacon Mentoring Program at South Texas Colleges, 
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performed by MDRC in spring 2008 to evaluate the impact of student academic outcomes in 

mentored classes. In the Mentoring Program, the unit of randomization took place at 83 sections 

of developmental (remedial) math or college algebra either to receive a mentor to be part of the 

control group (Quint, 2011). It was not until 2016, there appeared the first CRT design in 

academic domain funded by NCER titled Supporting strategic writers: effects of an innovative 

developmental writing program on writing and reading outcomes, a multisite CRT with random 

assignment of instructors within college to treatment and control groups. So far, 5 out of 22 

experimental studies were employed CRT designs and all were supported by both NCER and 

NCEE centers. The research topics include but were not limited to: student access to, persistence 

in, progress through, and completion of postsecondary education (“NCER programs”, 2017).  

As the momentum for promoting innovative solutions and evidence in post-secondary 

education persists, one important effort to foster innovative ideas that help keep college increase 

quality and improve educational outcomes is the previously mentioned FITW program funded by 

the USDOE since 2014. The first FITW grant project using a CRT design was awarded to 

Spelman College’s metacognitive training program, which incorporated new teaching and 

learning strategies to test the effectiveness of student metacognitive training in both classroom 

and peer-tutoring settings (“FITWgrant”, 2017). Also, in her recent testimony submitted to the 

Senate Committee on Health, Education, Labor, and Pensions, Dr. Lashawn Richburg-Hayes 

(2015) suggested that much like in K-12, higher education needed to increase the use of CRTs to 

test the impact of interventions and build a base of knowledge in a topic area, i.e., in financial aid 

reforms to help low-income students achieve academic success. This innovative idea was also 

amended by Congress under Section 487A (b) of the Higher Education Act of 1965, to recruit 

colleges and evaluate the interventions through randomized trials. Furthermore, to help researchers 
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in planning CRTs, IES has made CRT design tools and technical assistance publicly available for 

evaluations of interventions funded by the Investing in Innovation and FITW programs (“IES 

Evaluation TA”, 2017). Given the recent call for rigorous evidence stemming from higher 

education initiatives, it is hoped that more CRT designs will be welcome in higher education. 

Statistical Power Analysis for Two-level CRTs  

The power of statistical test is the probability that it will yield a statistically significant 

result, which is set at .80 in social sciences by convention (Cohen, 1988). A statistical power 

analysis is a method of determining the probability that a proposed research design will detect an 

expected effect of a treatment (Hedge & Rhoads, 2010). The importance of conducting a power 

analysis for CRT studies cannot be emphasized enough. As the large-scale impact studies involves 

million-dollar investment, a power analysis before a study can reduce a potential waste of 

resources by collecting and analyzing data from a sample larger than necessary (Konstantopoulos, 

2009; Westin, Spybrook, &Taylor, 2013). Whereas a study with insufficient power may result in 

a wrong conclusion that the intervention does not have a significant impact when it actually does 

(Shadish, Cook, & Campbell 2002). In addition, it is common to include a power analysis in 

grant proposals to justify the sufficient sample sizes in the proposed study that can generate 

expected effect (IES, 2009; NSF, 2009; Scheier & Dewey, 2007).  

There are two primary approaches to conducting a power analysis: power determination 

approach and effect size approach. The first one aims to calculate the power for a given sample 

size and determined effect size. Whereas the second one aims to calculate the minimum 

detectable effect size (MDES) for a given sample size and determined power depending on 

specific contexts (Spybrook et al., 2011). In this study, MDES approach was utilized for the 

power analysis.  
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MDES Approach for Power Analysis 

Originally, the impact estimate of a CRT design is measured in its original unit called 

minimum detectable effect (MDE)—the smallest true effect that is likely being found to be 

statistically significant (Bloom, 1995). In order to compare impacts across different outcome 

variables, the MDE is usually reported in units of standard deviations, known as the MDES 

(Bloom, 1995). In a two-level CRT, the MDES is a function of five components: (1) the 

statistical power(1-β), (2) the alpha level (a), (3) the number of students per school (n) and the 

number of schools (J), (4) effect size (δ), and (5) ICCs and R2 (Spybrook, et al., 2011). By con-

vention, the statistical power is set at 0.80 for a two-tail test; and the alpha level (a) at 0.05 in 

education. However, ICC and R2 as two key design parameters play consequential roles in a 

prior power analysis for a CRT study as they have to be estimated before a study.  

To help CRT researchers acquire essential skills for power analysis, many scholars have 

made invaluable contributions to in this area for different types of CRTs (Bloom, Bos, & Lee, 

1999; Donner & Klar, 2000; Murray, 1998; Hedges & Hedberg, 2007; Raudenbush & Liu, 2000, 

2001; Raudenbush, Spybrook, Liu, & Congdon, 2006; Snijder & Bosker, 1993, 1999; Spybrook 

et al., 2011; Spybrook, 2014). For example, Raudenbush (1997) identified two important 

findings for two-level CRT power analysis: (1) the number of clusters has more influence on the 

power than the number of individuals per cluster, and (2) the higher the ICCs, the lower the 

power for a given number of clusters. Findings from other studies also were consistent with 

Raudenbush’s (Bloom, Bos, Lee, 1995; Bloom, 2005; Hedges & Hedberg, 2007; Hill, Bloom, 

Black, & Lipsey, 2007). In essence, the smaller of MDES a CRT study can detect, the more 

precise of the study is, holding statistical power constant at .80. Thus, MDES is also regarded as 

a gauge to assess the precision of a CRT study (Spybrook & Raudenbush, 2009). 
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Empirical Design Parameters for Student Academic Outcomes 

In practice, the biggest challenge a power analysis of a two-level CRT is to obtain ICCs 

and R2 values, which are unknown and must be estimated before a study because these values are 

specific to grades, subjects, and school settings (Bloom, Bos, & Lee, 1999; Bloom et al., 2007; 

Bloom et al., 2008; Brandon, Harrison, & Lawton 2013; Hedges & Hedberg, 2014; Jacob, Zhu, 

& Bloom, 2009; Westine, Spybrook, & Taylor, 2014; Xu & Nichols, 2010). Previous empirical 

literature discussed design parameters for student academic domains in K-12 educational 

research. In the following section, the author briefly summarizes work relevant to two-level 

design parameters.  

Design Parameters in K-12. Scholars have extensively investigated ICCs for math, 

reading, and science outcomes across different grades and school districts (Bloom, Bos, & Lee, 

1999; Bloom, Richburg-Hayes & Black, 2007; Hedges & Hedberg, 2007; Konstantopoulos, 

2009; Schochet, 2008; Westine, Spybrook, &Taylor, 2013). In addition, scholars discussed the 

important function of covariates. Especially, covariates with strong predicative power can reduce 

the sample sizes needed to achieve adequate power, holding all other parameters constant. In 

turn, the covariate can reduce the cost of a study under consideration (Bloom, Richburg-Hayes, 

& Black 2007; Hedges & Hedberg 2007; Raudenbush, Martinez, & Spybrook, 2007).  

Table 1 presents empirically estimated magnitude of ICCs and R2. As can been seen that 

Bloom, Bos, and Lee (1999) were pioneers in documenting ICCs for math and reading in Grades 

3 to 6. They also found that student and school level covariates had strong explanatory power for 

improving the precision of the study. Since then, many efforts have been made in investigating 

how different design parameters can have effect on different types of CRT designs and it has
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Table 1 
Magnitude of Empirical ICCs and R2 for Two-Level CRT in K-12 
 

Note. aSchochet (2008) used assumed group level variance 0.0-0.50(R2
L2). “..” indicates that R2 values 

are not specified. 

 

concluded that design parameters vary across samples, outcomes, or grades (Bloom, Richburg-

Hayes & Black, 2007; Hedges & Hedberg, 2007; Konstantopoulos, 2009; Schochet, 2008; 

Westine, Spybrook, &Taylor, 2013). Particularly, Hedges and Hedberg (2007) implied that 

choosing covariates from variables that were correlated with the outcomes without being 

influenced by the treatment including: student/school level pretests, demographic variables (i.e., 

age, gender, race/ethnicity, socio-economic status [SES]), and indicators of school challenges 

such as English language learner’s status. Of these covariates, the most effective covariates are 

one-year lagged student/school level pretest (Bloom et al., 2007). Moreover, the authors claimed 

Source 
Student academic 
outcome 

Grade 
Range of 

ICCs 
Range of 

R2 

Bloom, Bos, and Lee 

(1999) 

Math and Reading 3-6 0.14 -0.21 .. 

Bloom, Richburg-Hayes, 

and Black (2007) 
Math and Reading 3,5, 8,10 0.13-0.29 0.07-0.52 (R2

L1) 

0.18-0.89 (R2
L2) 

Hedge and Hedberg 

(2007) 
Math and Reading K-12 0.15-0.25 0.22-0.52(R2

L1) 

0.30-0.73(R2
L2) 

 

Schochet (2008) 

 

Math and Reading 

 

1-6 

 

0.10-0.20 

 

0-0.50 a 

Konstantopoulos (2009) Math and Reading K-5 0.10-0.25         .. 

Westine, Spybrook 

and Taylor (2013) 
Science 4,5,8,10,11 0.17-0.31 0.07-0.13(R2

L1) 

0.53-0.87(R2
L2) 

Hedge and Hedberg 

(2014) 
Math and Reading 1 to 11 0.02- 0.43 0.57-0.64(R2

L1) 

0.80-0.87(R2
L2) 
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that depending on the context, student level and school level covariate can explain about 50% to 

80% or more variance at each level. Beyond that, a website called the Variance Almanac of 

Academic Achievement (“Web VA”) provides access to a comprehensive compendium of design 

parameters for reading and math by the Center for Advancing Research and Communication 

(Hedge & Hedberg, 2007). These design parameters were gleaned from various datasets ranging 

from kindergarten to12th grade across the nation (Hedge & Hedberg, 2007). 

In summary, the recommended ICC magnitude ranges between 0.15 and 0.25 based on 

U.S. datasets on school achievement to help researchers justify the design of CRTs (Bloom, Bos, 

& Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007; Schochet, 

2008). Regarding the magnitude of outcome-covariate variance (R2) at each level, it can take the 

value as much as 0.50 to 0.80 (Hedges & Hedberg, 2007; Bloom, Richburg-Hayes, 2007). 

Design Parameters in Higher Education. In contrast, few empirical estimates of ICCs 

and R2 exist in the body of higher education. This is likely a result of several challenges facing 

the higher education community. First, there is a lack of guidelines for reporting and interpreting 

ICCs in higher education, which makes them less practically meaningful (Niehaus, Campbell, & 

Innkeals, 2013; Dedrick et al., 2009). Second, higher education often relies on graduation rates, 

retention, endowment level, student/faculty ratio, etc. to measure institutional effectiveness 

(Klein, Kuh, Chun, Hamilton, & Shavelson, 2008; Gates et al., 2001). There lacks a universal 

definition or measurement (operationalization) of graduation and retention across universities 

(Van Stolk et al., 2007). Further, these outcomes are often not continuous in nature and hence 

traditional ICC calculations may not be relevant. Of the empirical work that exist in higher 

education, Niehaus, Campbell and Innkeals (2013) investigated the magnitude of ICCs which 

varied from 0.001 and 0.33 including both two-, and three-level HLM models. Still, quite a few 
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scholars reported ICC but didn’t calculate how much the proportion variance explained by 

including Level 1 covariates (R2
L1) or Level 2 covariates (R2

L2) for two-level HLM in higher 

education. Table 2 presents the empirical ICCs and R2 for two-level CRT in higher education. 

Note that some of the R2
L1 and R2

L2 were not directly reported in the articles cited but manually 

Table 2 

Magnitude of Empirical ICCs and R2 for Two-Level CRT in Higher Education 

 

Note. College Student Survey=CSS; College Student Experience Questionnaire=CSEQ; National 

Student Survey of Engagement=NSSE; Proficiency Profile=PP. 

Source 
Student  

Outcomes 

Outcome 

Measures 

Range of 

ICCs 

Range of 

R2 

Kim (2001) Students’ social desire 

To influence social 

condition 

CSS 0.23 .. 

 

Hu and Kuh 

(2003) 

 

Student learning 

productivity 

 

CSEQ  

 

0.085 

.. 

 

Kinzie, Thomas, 

Palmer, Umbach, 

and Kuh (2007) 

 

Satisfaction of education 

experience  

 

NSSE 

 

0.02-0.12 

.. 

 

McCormick, Kuh, 

Pike, and Chen 

(2009) 

 

Cognitive skills outcome 

Non-cognitive gains 

Academic challenges 

Active and collaborative 

learning 

Student-faculty 

interaction enriching 

education experience 

Supportive campus 

environment 

 

NSSE 

 

 

0.045-0.177 

 

0.004-0.428(R2
L1) 

0.006-0.660(R2
L2) 

 

Liu (2011) Cognitive skills outcome 

 

PP 

 

0.14-0.17 

 

0.16-0.47 (R2
L1) 

0.44-0.68 (R2
L2) 

Steedle (2012) Cognitive skills outcome CLA 0.19-0.26  0.03-0.06 (R2
L) 

 0.87-0.95(R2
L2) 
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calculated by the author based on  within school and between school variances without or without 

covariates using Formula 16 and 17. Overall, the magnitude of ICCs for two-level HLM gathered 

in this study ranges from 0.02 to 0.26, which is somehow close to that in K-12; R2
L1 from 0.004 to 

0.47; and R2
L2 from 0.006 to 0.95, respectively (Kim, 2001; Hu & Kuh, 2003; Kinzie, Thomas, 

Palmer, Umbach, & Kuh, 2007; Liu, 2011; McCormick, Kuh, Pike, & Chen, 2009; Steedle, 2012). 

Even though all these design parameters reported made great contribution to the literature 

in higher education, there still needs a comprehensive and compilation of design parameters for 

researchers to justify the sample sizes needed for a CRT study, especially for one of the most 

important student learning outcomes, cognitive skill outcomes in higher education. Thus, this 

study will fill the void by starting to build one for cognitive skill outcomes in higher education.  

Selecting Covariates in Higher Education 

Unlike in K-12 CRT studies, selecting covariates is more challenging due to various 

definitions, measures, interventions to improve those higher-order skills in higher education. For 

example, Pascarella and Terenzini (1991, 2005) conducted extensive research on factors 

associated with critical thinking gains in higher education. While Arum and Roksa’s (2011) 

study used the CLA test to investigate factors related to cognitive skill gains, a test measures not 

only critical thinking skill but also written communication and complex reasoning skills. Despite 

the difference, three aspects related to cognitive skill outcomes in higher education were 

considered: students’ pre-college characteristics, students’ experience at colleges/universities, 

and institutional characteristics (Arum & Roksa, 2011; Astin, 1993; Berger & Milem, 2000; 

Pascarella &Terenzini, 1991; 2005). The Conceptual Framework (see Figure 4) shows 

relationships between factors and the cognitive skill outcomes. It also guides the flow of 

selecting covariates related to the cognitive skill outcome in this study. 
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Figure 4. Conceptual Framework for Covariates Related to Cognitive Skill Outcome in Higher 

Education 

 

Student Pre-existing Characteristics 

Pre-existing characteristics appearing in the literature include gender, race/ethnicity, 

ability, motivation, parental support, high school GPA (HS GPA) (Astin, 1993; Atkinson & 

Geiser, 2009; Berger & Milem, 2000; Kuh, 2009; Weidman, 1989; Pascarella, 1985), and 

Society Economic SES (Cunha & Miller, 2014), among others. For example, HS GPA and 

SAT/ACT scores can serve as proxies for pretests because they are usually not available in 

higher education literature (ACT, 2009; Kobrin et al., 2008; Rothstein, 2004; WWC, 2014). 

Especially, HS GPA has been recognized strong predictor for first-year college GPA, which 

accounts for 30% of the variance in first-year college GPA (Atkinson, 2001; Kobrin, et al., 

2008). Moreover, proxies for SES in higher education can include indicators such as free lunch, 

parents’ education, Free Application for Federal Student Aid (FAFSA), expected family 

 

         Figure 4. Conceptual Framework for Cognitive Skill Outcomes in Higher Education 
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contribution, family income, Pell grant eligibility, and first-generation college student status 

(WWC, 2014).  

Students’ Experience at Colleges/Universities 

Higher education saw an emergence of various models that examined students’ experi-

ence associated with cognitive growth at schools. For instance, Pascarella (1985) developed a 

college impact model that established a direct relationship between institutional characteristics to 

the college environment. Weidman (1989) suggested accounting for academic characteristics 

(e.g., mission, selectivity, and major) and social characteristics such as family SES to test the 

effect of schools on students’ cognitive growth. Astin (1993) focused on factors associated with 

individual, structural, organization related to students’ cognitive skills improvement.  

Previous studies have indicated that academic effort and engagement such as time spent 

studying and reading can improve students’ cognitive skills (Carini & Kuh 2003; Kuh et al., 

1991; Terenzini et al., 1995). Astin (1993) found that the number of hours spent studying was 

positively related to all self-reported increases in cognitive ability. In terms of social integration, 

student interactions with peers and faculty enhance students’ capacity for solving complex 

cognitive tasks (Astin, 1993; Chickering, 1969; Kuh, 1995; Terenzini & Pascarella, 1980; Pace, 

1990; Volkwein, King, & Terenzini,1986). Arum, Roksa, and Velez (2008) identified factors 

associated with improvement in critical thinking skills using CLA Performance Task. In general, 

students' perception of faculty expectations is positively related to critical thinking skills. In 

addition, the authors found that academic preparation such as HS GPA attributed to better 

cognitive skills improvement whereas involvement in fraternities or sororities had negatively 

related to cognitive skill gains. Aside from it, the author found that students’ majoring in math, 
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science, social science, and the humanities were advantageous in critical thinking skills than 

students in other fields of study.  

School Characteristics 

Scholars had studies on institutional characteristics (e.g., selectivity, mission, and sector, 

etc.) have effect on students’ cognitive skills development with inconsistent results. Weidman 

(1989) suggests considering academic characteristics (e.g., mission, selectivity, and major) and 

social characteristics such as family SES to evaluate the effect of college on students’ cognitive 

growth. Drawn on CLA data, Klein et al. (2008) examined the effect of institutional character-

istics on student critical thinking skills improvement. Their findings suggested that institutional 

characteristics accounted for 10% of the variance in the senior mean CLA score. However, 

Steedle (2011) pointed it out that when controlling for entering academic ability (EAA) scores at 

student level using a two-level HLM, most institutional factors (e.g., sector, selectivity, full-time 

retention rate, etc.) were inconsequential on CLA outcome. In addition, they found students’ 

motivation only accounted for about 3% to 7% of the variance in school-level outcomes (Klein, 

et al., 2007). Moreover, critical thinking skills measured by the Performance Task was correlated 

with National Survey of Student Engagement (NSSE) but not with strong magnitude (Carini, 

Kuh, & Klein, 2006). Different from these scholars’ findings, Pascarella and Terenzini (2005) 

found that college selectivity had a negligible effect on cognitive skills development based on 

ACT’s Collegiate Assessment of Academic Proficiency (CAAP) test.  

Given that various factors attributed to students’ outcomes in higher education, 

O’Connell and Reed (2011) suggested that choosing covariates should depend on research 

questions, theory, consultations with relevant stakeholders rather than solely on the results of a 

statistical test (O’Connell & Reed, 2011). Thus, the covariates chosen were built on previously 



37 

 

 

 

cited literature and availability of covariates in the dataset. More detailed illustration about the 

rationale for each covariate can be found in the “Methodology” section. 

The Magnitude of the Effect Size 

As noted above, the goal of power analysis in this study is to determine MDES—the 

smallest true effect a treatment can detect in standard deviation units that is likely being found to 

be statistically significant (Bloom, 1995). This section discusses the well-established MDES for 

student academic outcomes in K-12 education and prior empirical effect size for cognitive skill 

in higher education. 

Empirical Effect Sizes in K-12 Education 

Empirical effect size for student achievement outcomes has been well-established in  

K-12 educational interventions. For instance, an effect size of 0.20 implies an impact or 

treatment effect equal to one fifth of student level standard deviation of the outcome across all 

students from all schools in a CRT study (Bloom et al., 2005). One accepted magnitude of effect 

size in social science is Cohen’s d (1969), which defines 0.20, 0.50, and 0.80 be considered 

small, medium, and large, respectively. Whereas in educational field, scholars provided more 

empirical guidelines for specific domains and target population accordingly. For example, 

scholars in NCES (1977) recommended that the empirical benchmark of mean effect sizes for 

high school students’ annual growth were: 0.17 for reading and 0.26 for math nationwide. 

Moreover, Lipsey (1990) examined 186 meta-analyses of 6,700 studies and revealed that the 

distribution of effect sizes was almost identical between non-educational and education research. 

That is, the small effects ranged from 0.00 to 0.32; medium effects ranged from 0.33 to 0.55; and 

large effects ranged from 0.56 to 1.20.  
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In the following years, scholars continuously investigated the magnitude of effect size in 

educational interventions based on robust experimental designs. For instance, Kane (2004) 

provided reference for nationwide reading and math improvement and suggested an average of 

0.25 standard deviation (SDs) was appropriate. Moreover, Hill, Bloom, Rebeck-Black, and 

Lipsey (2007) specified a range of effect sizes from 0.20 to 0.30 which was regarded as plausible 

in educational interventions. For policy-decision making, Bloom, Richburg-Hayes, and Black 

(2005) argued that effect sizes between 0.10 and 0.20 for student achievement might be 

considered. Most importantly, the authors insisted on that effect sizes should refer to empirical 

benchmarks that are relevant to the intervention, target population, and outcome measure. Most 

importantly, they recommended three types of effect size benchmarks: (1) expectations for 

growth or change in the absence of an intervention, (2) policy-relevant gaps compared to existing 

differences among subgroups of students or schools, and (3) impact findings from previous 

research on similar grade levels, interventions, and outcomes.  

Empirical Effect Size for Cognitive Skills in Higher Education 

Empirical studies on cognitive skills have been studied intensively in higher education 

(Astin, 1993; Carini & Kuh, 2003; Ishiyama, 2002; Kim & Sax, 2009, 2011; Kitchener, Wood, & 

Jensen, 2000; Pascarella & Terenzini, 2005; Twale & Sanders, 1999; Volkwein, Valle, Parmely, 

Blose, & Zhou, 2000; Whitmire, 1998). The common practice in higher education is to report the 

expected effect size for growth without an intervention. For example, Pascarella and Terenzini 

(2005)’s study mainly focused on one component of cognitive skills, critical thinking skill gains 

using ACT’s CAAP test. The scholars found students’ critical thinking skill gains varied by their 

stay in universities. On average, the effect size was from .55 and .65 SDs in four-year but less 

than 1SD in synthesis of several studies. In the Wabash National Study, the mean effect size on 
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CAAP critical thinking skill was .11 SDs during the first year and .44 SDs over four years 

(Pascarella, Blaich, Martin, & Hanson, 2011). For CLA expected change in effect size, Arum, 

Roksa, and Velez’s longitudinal study (2008) found an average increase of .18 SDs on the CLA 

Performance Task during the first two years and a four-year of .47 SD. However, they claimed 

that the effect sizes were not sufficient for measuring students’ growth in critical thinking skills.  

Another effect size benchmarking is to compare with similar cognitive skill interventions 

using similar definitions, measures, intervention, treatment intensity, samples, and designs. For 

example, Ortiz’s (2007) reported gains of .12 SDs per semester for nonphilosophy students. Niu, 

Behar-Horenstein, and Garven (2013) reported an effect size of .195 SD for 12 weeks based on 

31 empirical studies focusing on instruction interventions on college students’ critical thinking 

gains. In a most recent study, Huber et al. (2016) examined 71 studies and estimate the overall 

effect of college students’ critical thinking skills is at 0.59 SD when compared nursing with non-

nursing students. Different from Arum and Roksa’s viewpoint, Huber et al. (2016) regarded 0.59 

SDs sufficient improvement of critical thinking skills during colleges. Collectively, the effect 

size for critical thinking skill interventions falls into a range from 0.11 to 0.59 SDs in the body of 

literature in higher education.  

However, cautioned about the use and interpretation of these effect sizes should be taken 

seriously since they were context specific (Bloom, et al., 2005; Pascarella, et al., 2011). First, 

when using empirical cognitive skill effect size as benchmarking, one should note that the 

cognitive skills often interchangeably with “critical thinking” in literature but can be assessed 

with different measures. Second, because most of the effect size yielded from observational 

studies rather than robust experimental designs, one should be careful of the meaningful 

magnitude of the effect size. Finally, the effect sizes were calculated based on different samples 
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of students and institutions, measures of critical thinking skills, and statistical analysis methods 

(Pascarella, et al., 2011). Thus, the effect sizes on cognitive skills outcome should refer to 

empirical benchmarks that are relevant to specific definitions, interventions, target population or 

subpopulations, and outcome measures (Bloom, at el., 2005). 

Summary 

As CRTs continue to be driving force behind K-12 impact research, they have also come 

to influence higher education research. Although some scholars report empirically estimated 

values of ICCs for Performance Task outcomes, there still needs a systematic collection of ICCs 

and R2 for CRT design purposes in higher education. To test the efficacy of programs intended 

for increasing cognitive skills in higher education, it is necessary to begin to develop empirical 

estimates of design parameters so that CRTs can be planned with adequate statistical power. 

Building on the valuable experience of designing CRTs trials accumulated in K-12 impact 

research, this study is a first step towards developing this repository of design parameters for a 

two-level CRT trial in higher education.  
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CHAPTER III 

METHODOLOGY 

 

This chapter begins by reviewing the purpose and research questions of the study. This is 

followed by describing data source and analytical sample, data screening, outcome measures, 

and covariates considered in the models. Also, a series of two-level HLM models with students 

nested within schools are presented. The formula of calculating ICCs, R2, and MDES (with and 

without covariates) are also presented. This section ends with a summary of the chapter. 

Review of Purpose and Research Questions 

The purpose of this study is to empirically estimate values of ICCs and R2 using two-

level HLM models which aims at evaluating the efficacy of cognitive skill interventions in 

higher education. More specifically, the primary outcomes are the total CLA outcome, the 

Performance Task outcome, and the Analytical Writing Task outcome as measured by the CLA 

test. First, the variance for each outcome was decomposed across students and colleges/uni-

versities for each outcome. Second, the percent of the variance was estimated for each outcome 

explained by covariates at each level under the same two-level data structure. Third, power 

calculations were demonstrated based on the results of the findings from Questions 1-3, which 

are documented to be used for planning two-level trials on improving cognitive skill 

interventions in higher education. The research addresses the following four questions: 

1. To what extent are the following outcomes clustered in colleges/universities: 

A. The total CLA outcome? 

B. Performance Task outcome? 
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C. Analytical Writing outcome? 

2. To what extent do student-level covariates (i.e., EAA demographic variables) explain 

variance in the three outcomes? 

3. To what extent do school- level covariates (i.e., Carnegie classification, median SAT, 

sector, etc.) explain the variance in the three outcomes? 

4. Given the design parameters estimates in Questions 1-3 and effect sizes from the 

literature, what are the sample sizes necessary for a two-level CRT trials which aims to 

test the efficacy of cognitive skill interventions in colleges/universities? 

Data Sources and Samples 

The data consists of two sources for student-level and school-level variables. The 

students’ CLA test scores and other administrative data were provided by CAE, which included 

seven variables in this study: the total CLA outcome, the Performance Task outcome, the 

Analytical Writing outcome, EAA, English as primary languages, gender, race/ethnicity, and 

age. The data collection included three phases as presented in Table 3. In Phase1, data were 

collected when freshman took the test in the fall of 2005 or the fall of 2006. This data was 

denoted as Sample A, which included 37 schools and 9,827 students. In Phase 2, data were 

collected in the spring of 2007 or the spring of 2008. Students in Phase 2 were those who were 

completed sophomore courses. Not all students in Phase 1 participated in Phase 2. Students who 

had outcome scores in both Phase 1 and Phase 2 were tracked, which were denoted as Sample B, 

consisting of 27 schools and 2,422 students. In the same manner, in Phase 3, data were collected 

from senior students in the spring of 2009 or the spring of 2010. Students who had outcomes 

scores in all phases were denoted as Sample C, which included 22 schools and 1,064 students. 
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By tracking the same students over time in Sample B and C, it is expected to look at the changes 

in design parameters across years for a stable sample.  

There were 9, 827 students at the onset of the CLA longitudinal study, then shrunk 

drastically to 2,422 and 1,064 in the follow-up years (see Table 3). Since the CLA dataset in this 

study was a secondary data source, it was hard to surmise any possible reasons for such a drastic 

change in sample sizes. One way to understand this phenomenon is to consult the similar studies 

conducted by other researchers. For example, in the CLA Lumina Longitudinal Study, Klein, 

Steedle, and Kugelmas (2010) stated that the problem of high drop-out rate of participating 

schools rose due to difficulties in recruiting and retaining schools, which was usually the case 

most of the longitudinal studies encountered in higher education. 

Table 3 

Student and School Sample Sizes by Phase in this Study 

 

  

Phase 1   Phase 2 Phase 3 

(fall 2005 or  

fall 2006) 

(spring 2007 or  

spring 2008) 

(spring 2009 or  

spring 2010) 

Sample n J n J n J 

Sample A 9,827 37 .. .. .. .. 

Sample B 2,422 27 2,422 27 .. .. 

Sample C 1,064 22 1,064 22 1,064 22 

Note. n=number of students; J=number of schools; “..”=no participants in specific 

time. Sample A were freshmen; Sample B were students who completed sophomore 

courses; Sample C were seniors. 

The second data source for institutional characteristics comes from the Integrated 

Postsecondary Education Data System (IPEDS), which was organized by the National Center for 

Education Statistics (NCES). The CLA datasets in this study had already linked student level 
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data to school level data from IPDES with identifiers being masked. Generally, the institutional 

samples in IPEDS are representative of four-year, not-for-profit colleges and universities in the 

United States. Six school-level variables were considered in this study: median SAT, Carnegie 

Classification, sector, mean student-related expenditures per full time equivalent (FTE) student, 

the percent of freshmen receiving Pell grants, and enrollment size of an institution.  

Data Screening 

Prior to the final analysis, SPSS 25 software was utilized to clean data and prepare 

datasets to ensure the data quality. Taken student-level and school-level together, there were 13 

variables were included for data screening.  

Accuracy, Normality, Outlier, Linearity, and Multiclonality 

Descriptive and inferential statistics were first performed to portray and analyze the data 

on the thirteen variables in a flat table format. Then the accuracy of data entry, tests for 

normality, outliers, and linearity focused on the three outcomes were performed referring to 

Tabachnick and Fidell’s (2001) data cleaning checklist. All outliers were removed from the 

dataset once identified. Aside from it, a bivariate correlation analysis indicated that the percent of 

Pell grant recipients and the median SAT were strongly correlated (r=0.835). Collinearity 

diagnostics also indicated one of the condition indices among multiples variables was 44.113 

(greater than the threshold 30), suggesting presence of collinearity. Moreover, multicollinearity 

diagnostic test was performed by examining the indicator variance inflation factor (VIF) among 

the variables. The results show that there exists multicollinearity among variables because value 

of VIF for the percent of freshmen receiving Pell grant variable and median SAT variables both 

exceeded 4, which can be problematic as it increases the variance of the regression coefficients, 

making them unstable (Montgomery, 2001; O’Brien, 2007). According to the extant literature in 
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CLA studies, median SAT variable was the most effective covariate in explaining variance in 

students’ CLA outcomes compared with percent of freshmen receiving Pell grants. Especially, 

when considering median SAT in two-level HLM models, many institutional variables (e.g., 

sector, enrollment size, Carnegie Classification, etc.) were not significant factor in explaining the 

variance in the outcomes. Thus, the percent of freshmen receiving Pell grants was removed from 

the analytical models. 

Dealing with Missing Values 

The missing values in each variable cannot be underestimated as they pose threats to the 

internal validity (e.g., statistical power) and external validity (McKnight et al., 2007; Robert & 

Karen, 2005). Particularly, variables with missing values above 5% can affect parameter 

estimates and lead to errors in inference and interpretation of the analysis results (Tabachnick & 

Fidell, 2001). Table 4 indicates missing values in for student level variables in Sample A, B, and 

C across Phase 1-3. Overall, missing values for student level variables ranged as low as 0.65% in 

the Performance Task outcome to as high as 20.30 % in the total CLA outcomes. And no missing 

values in school level variables were identified.  

Rather than ignoring them, the first step is to detect the missingness pattern, be it Missing 

Completely at Random (MCAR), Missing at Random (MAR), or Missing not at random 

(MNAR) (Little & Rubin, 1988). The Little’s MCAR test was conducted and the results showed 

that the missing pattern were not MCAR (χ2 (1, 9827) =2144.702, ρ= .000). This is not surprising 

since MCAR is rare in reality (Little & Rubin, 2002; Schafer & Graham, 2002). Since MCAR 

test is out, MAR can be inferred, but missingness is predictable from the variables (Tabahnick & 

Fidell, 2012). The next step was to see whether the data met the assumption of the MAR pattern. 



46 

 

 

 

Table 4 

Percent of Missing Values for Each Variable 

 

  

Variable N 
Number of       

missing values 

    Percent of 

missing values 

Sample A (Phase 1)    

      Entering Academic Ability 9,711 116 1.19% 

      Gender 9,356 471  5.03% 

      Race/Ethnicity 9,356 471 5.03% 

      Age 9,165 662 7.22% 

      Total CLA outcome 8,169             1,658         20.30% 

      Performance Task outcome 9,764  63           0.65% 

      Analytical Writing outcome 8,212             1,615         19.67% 

Sample B (Phase 1)    

      Entering Academic Ability 2,409 13 0.54% 

      Gender 2,422  0 0.00% 

      Race/Ethnicity 2,422  0 0.00% 

      Age 2,325 97 4.00% 

      Total CLA outcome 2,133               298 11.93% 

      Performance Task outcome 2,412                 10 0.41% 

      Analytical Writing outcome 2,412               580 11.56% 

Sample B (Phase 2)    

      Entering Academic Ability 2,409 13 0.54% 

      Gender 2,422  0 0.00% 

      Race/Ethnicity 2,422  0 0.00% 

      Age 2,421 1 0.04% 

      Total CLA outcome 2,293              129 5.33% 

      Performance Task outcome 2,410                12 0.50% 

      Analytical Writing outcome 2,302              120 4.95% 
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Table 4—Continued 

Note. N=sample size of participants; 

Variable N 
Number of       

missing values 

    Percent of 

missing values 

Sample C (Phase 1)    

      Entering Academic Ability    

      Gender 1,064 0 0.00% 

      Race/Ethnicity 1,064 0 0.00% 

      Age 1,028                36 3.38% 

      Total CLA outcome    986                78 7.33% 

      Performance Task outcome 1,060                  4 0.38% 

      Analytical Writing outcome    990                74 6.95% 

Sample C (Phase 2)    

      Entering Academic Ability 1,059 5 0.24% 

      Gender 1,064 0 0.00% 

      Race/Ethnicity 1,064 0 0.00% 

      Age 1,063 1 0.05% 

      Total CLA outcome 1,059                  5 0.24% 

      Performance Task outcome 1,061                  3 0.15% 

      Analytical Writing outcome 1,026                38 1.84% 

Sample C (Phase 3)    

      Entering Academic Ability 1,059 5 0.47% 

      Gender 1,064 0 0.00% 

      Race/Ethnicity 1,064 0 0.00% 

      Age 1064 4 0.38% 

      Total CLA outcome 1,043                21 1.97% 

      Performance Task outcome 1,061                  3 0.28% 

      Analytical Writing outcome 1,046                18 1.69% 
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As Tabahnick and Fidell (2012) addressed since MAR is an untestable assumption, the validity 

of the analysis results depends on the strength of this assumption over the observed variables. To 

detect the missing value pattern, a t tests was conducted to check whether there existed associa-

tions between missingness for outcome variables and the values of other variables in the datasets. 

For instance, the missingness for Performance Task outcome was significantly associated with 

other variables and the variables used for imputation. This finding further supports the assumption 

prevalent in higher education that MAR pattern is most feasible because researchers usually have 

information about individual participates’ mobility, perceptions about school processes, and 

student academic outcomes from previous studies (Schafer & Graham, 2002; Cox, McIntosh, 

Reason, & Terenzini, 2014). Based on the assumption of MAR pattern for missing values, a 

sensitivity analysis was conducted to test the robustness of ICCs based on primary analysis 

utilizing two different technique: listwise deletion and multilevel multiple imputation (MI). HLM 

7.02 software was utilized to handle missing data using listwise deletion function built in the 

software. That is, all data for a case that had one or more missing values were removed (Peugh & 

Enders, 2004). For incomplete multilevel data, some scholars suggested that the imputation 

model take the multilevel structure into account to ensure valid statistical inferences in the final 

multilevel analyses (Black, Harel, & McCoach, 2011; Graham, 2012; Van Buuren, 2011). The R 

pan package (Schafer & Yucel, 2002; Schafer & Zhao, 2014) and the R package jomo 

(Quartagno & Carpenter, 2016) can be used for multilevel multiple imputation. The R jomo 

software package was considered categorical variables existed in the datasets (Grund, Lüdtke, & 

Robitzsch, 2016). Table 5 presents the ICCs generated on ANOVA model data structure after 

taking missing values into consideration. There was little variation in ICCs for all three outcomes 
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regardless of which technique was utilized. Therefore, the decision was made to adopt the 

listwise deletion method for all models as it is a widely used method.  

Table 5 

Sensitivity Analysis for ICCs Based on the ANOVA Model  

 

Note.  𝜎2 =student level variance; τ=school-level variance; J (school sample size)=8,061, 

n(student sample size)=37 after removing missing values by technique of listwise deletion. 

 

 

To summarize, the data screening procedure improved data quality and the cleaned-up 

data were ready for final statistical analysis. Collectively, a total of thirteen variables were 

retained in the final analysis: total CLA outcome, Performance Task outcome, Analytical 

Writing outcome, EAA, race/ethnicity, gender, English as primary language, age, Carnegie 

Classification, sector, median SAT, mean student-related expenditure per FTE student, and 

enrollment size of the institution. 

Outcome Measures 

Differing from the traditional format of standardized tests utilized in K-12, most of the 

tests given at colleges/universities use a multiple choice or true/false format to test student 

learning outcomes. The CLA test assesses four higher-order skills in college students: critical 

thinking, analytic reasoning, written communication, and problem-solving. Specifically, three 

outcome measures (scaled measures treated as continuous variables) were examined in each 

phase for a given sample: (1) a Performance Task (PT) measures students’ analytical reasoning 

 
  Multilevel 

 Multiple Imputation  

 
Listwise Deletion 

Outcomes                    τ ICCs  
 

        τ ICCs 

CLA  19802.04  7584.67 0.277  19797.24 7590.38 0.277 

Performance Task  15345.61  7033.97 0.314  15326.11 6924.57 
0.311 

 

Analytical Writing  27164.51  7274.13 0.211  26437.55 6748.36 0.203 

𝜎2 𝜎2 
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and evaluation, problem solving, writing effectiveness and writing mechanics by asking 

students’ to draft a letter, memo, or similar document; (2) an Analytic Writing Task (AW) 

measures students’ skills in articulating complex ideas, examining claims and evidence, and 

supporting ideas with relevant reasons and examples, cohesive discussion, and using standard 

English by Make-an-Argument and Critique-an-Argument questions, (3) the total CLA (on a 

scale of 400 to 1600), which is the average of Performance Task and Analytical Writing scores 

(Assessment, C. L., 2008; CAE, 2009).  

Scaling Process 

Given that PTs and AWTs scores are of different difficulty levels, raw total scores from 

the different tasks are converted to a common scale of measurement using a linear transformation 

to make comparisons across tasks possible (Assessment, C. L., 2008; CAE, 2009). 

Reliability 

Because the CLA protocol relies upon a matrix sampling approach, the CAE provides 

each school with guidance on strategies for achieving a representative sample. Specifically, CAE 

recommends that schools test at least 100 students, or 25-50% of the population size for each 

class level to ensure reliability of the test results (CAE, 2009). Further, Klein et al. (2008) 

identified that the reliabilities for the analytic writing tasks reached 0.82 at student level and 0.91 

at school level means, respectively. The reliability for performance task were 0.84 at student 

level and 0.92 at school level means, respectively. However, Klein et al. addressed that one 

caveat was that these scores were highly reliable when the unit of analysis is the institution and 

data are aggregated at the institutional level due to the matrix sampling approach applied in the 

CLA test (Assessment, C. L., 2008). 
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Validity 

In 2008, CAE conducted the Test Validity Study in concerted efforts with ACT and ETS 

to investigate the construct validity of these three assessments (Klein, Liu, et al., 2009). Overall, 

the results from the study indicated that critical thinking measured by Performance Task (CLA) 

was correlated with critical thinking skills measured by equivalent tests conducted by ACT and 

ETS range from .73 to .83 (Klein, Liu, et al., 2009). 

Covariates 

Covariates selected into the analytical models were following the conceptual framework 

as displayed in Figure 4. However, it is important to note that due to the availability of data in 

the dataset, some variables would like to be considered, such as HS GPA, motivation and 

academic activities (e.g., number of hour spending on study, interaction with faculty, etc.) were 

unavailable. Table 6 shows original variables and coding as well as recoded indicator variables 

considering in the analytical models.  

Level-1 Covariates 

Level 1 covariates includes five variables in the analytical models: EAA, gender, English 

as a primary language, race, and age. EAA scores were converted SAT scores (Math + Verbal) 

or ACT Composite scores on a common scale produced by CAE. Thus, EAA scores were used as 

proxies for pretests controlling for pre-existing differences in academic abilities. The models 

accounted for English as primary language by maintaining original coding (1=yes, 0=no). 

Gender was recoded into indicator variable (1=male, 0=female). Similarly, race/ethnicity was 

dummy-coded with White (non-Hispanic) as the reference group takes the value of “0”; each 

non-reference group was recoded from original numeric variables to take the value of “1”, 

indicating the presence of the effect. 
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Table 6 

Original Variable and Recoded Categorical Variables in This Study 

 

                        Original Variable  Recoded Variable 

Level 1   

      English as primary language: 1=yes, 0=no 1=yes, 0=no  

    

      Gender: 1=male, 2=female 1=male, 0=female 

    

      Race/Ethnicity: 

      1=Black, non-Hispanic, 2=American Indian/Alaska           

      Native, 3=Asian /Pacific Islander, 4=Hispanic,  

      5=White, non-Hispanic, 6=Other 

1=Minority (Black, non-Hispanic, 

American Indian, Alaska Native, 

Asian, Pacific Islander, Hispanic, 

Other),  

0=White, non-Hispanic, reference 

group 

 

Level 2 
  

      Carnegie Classification:    

       1=Baccalaureate Colleges,  

       2=Master's Colleges/Universities,  

       3=Doctorate-Granting Institution    

 

1=Baccalaureate Colleges or Master's 

Colleges/Universities, 

0=Doctorate-Granting Institution, 

reference group 

      Sector: 1=Public, 2=Private 1= Public, 0=Private 

         

      Mean student-related expenditures  1=$5,000 or less 

      per FTE student 2=between $5,001 and $10,000 

  3=between $10,001 and $15,000 

  4=between $15,001 and $20,000 

  5=between $20,001 and $25,000 

  6=between $25,001 and $30,000 

  7=between $30,001 and $35,000 

  8=more than $35,000 

    

      Enrollment size of institution  

       1=Small [up to 3,000],  

1=Small (up to 3,000) or Midsize 

0=Large as reference group 

       2= Midsized [3,001-10,000],   

       3=Large [10,001 or more]) 

 Note. CAE provided the original codes for each variable in the CLA dataset; FTE=Full-time 

equivalent. 
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Level-2 Covariates 

Level-2 covariates included five variables in the analytical models: Carnegie 

Classification, median SAT score, sector, mean student-related expenditures per FTE student, 

and enrollment size of institution. Mean student-related expenditures per FTE student was 

treated as continuous variables. In terms of the median SAT score (i.e., school-level pretest), it 

was approximately estimated by averaging the 25th and 75th percentile scores (Kugelmass & 

Ready, 2010). For schools which only reported ACT scores, these scores can be converted to 

SAT scores by referring to the concordance table on the College Board website. Other 

categorical variables were recoded into indicator variables such as Carnegie Classification, sector 

well as enrollment size of institution. 

Analytical Models 

Seven two-level HLMs were employed to estimate the design parameters empirically. For 

illustrative purposes, Table 7 displays the descriptors for each model aligning with the research 

question, student- school-level covariates as well as ICCs, R2
L1 and R

2
L2. Note that due to 

restricted space, Table 7 presents the original variable labels for demonstration purpose. Actual 

design parameter calculation was based on recoded indicator variables displayed in Table 6.  

Research Question 1: Unconditional Model 1 

Question 1 investigated to what extent the outcomes varied across schools in each 

outcome. To address a fully unconditional model (without covariates), an ANOVA model with 

random effect at Level 2 generated restricted maximum likelihood (RML) estimates of variance 

components, which provided information about the variation in the student academic outcomes 

within and between universities. ICCs were calculated based on the within and between 

variances generated by the unconditional model. In the same manner, ICCs were calculated for 



54 

 

 

 

Table 7 

Covariate Description in the Models 

 

Note. In the statistical models, the covariates at the student-level will be aggregated to the 

school-level. “..” indicates no covariates. 

 

written communication outcomes and the total CLA outcomes. Referring to Raudenbush and 

Bryk’s (2002) notation, the model is presented as below: 

  

Questions Models 
Student-level 

Covariates 

School-level 

Covariates 

Design 

Parameters 

Question 1 Model 1     ..        ..    ICCs 

Question 2 

 (student-level  

  covariate) 

Model 2 EAA  Mean EAA R2
L1;  R

2
L2 

 

Model 3 

 

Gender 

Race 

English spoken as 

primary language 

 

Mean gender 

Mean race 

Mean English 

as primary language 

 

 

R2
L1; R

2
L2 

Model 4 EAA   

Gender 

Race 

English as primary 

language 

Mean EAA 

Mean gender 

Mean race 

Mean English 

as primary language 

 

 

R2
L1;  R

2
L2 

Question 3 

(school-level  

Model 5       .. Median SAT     ..;  R
2

L2 

 covariates) 

 

Model 6       .. Carnegie classification  

Sector 

Enrollment Size  

Mean student-related 

expenditure 

     ..;  R
2

L2 

 

  

Model 7                     
       .. 

 

 

 

Median SAT 

Carnegie classification  

Sector 

Enrollment Size 

Mean student-related 

expenditure 

. 

.; R
2

L2 
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Model  1   Level 1: 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑟𝑖𝑗                𝑟𝑖𝑗 ~ N (0, σ2)                                              (1) 

 

Where: 

 𝑌𝑖𝑗  is the student academic outcome for student i at university j 

 𝛽0𝑗 is the mean student academic outcome for university j 

 𝑟𝑖𝑗 is the random error associated with student i at university j, var (𝑟𝑖𝑗) = σ2.           

              

                  Level 2: 𝛽0𝑗 = 𝛾00 + u0𝑗          u0𝑗 ~ N (0, 𝜏00 )                                             (2) 

 

Where: 

             𝛾00  is the grand mean achievement outcomes across universities 

            u0𝑗 is the random error associated with universities means, var (u0𝑗) = 𝜏00.     

Model 1 is based on three assumptions. First, it is assumed that the outcomes follow a 

normal distribution with school-specific means (𝛽0𝑗) and a common variance (σ 2) within all 

schools. The existence of this common variance constitutes the homogeneity of variance 

assumption. Second, it is assumed that the school means differ based on a normal distribution 

with an overall mean 𝛾00  and variance 𝜏00. The third assumption is based on that there is no 

correlation between the residuals at Level 1 and those at Level 2. All else being equal, the larger 

σ 2 is, the greater the individual variability in student academic outcomes within universities. 

Similarly, all else being equal, a larger 𝜏00 would indicate a large amount of variability between 

universities in terms of an average student academic outcome.  

ICC Calculation Formula. For each sample and outcome domain, analyses were based 

on Model 1(ANOVA model) to calculated ICC by utilizing HLM 7.02 software. The ICC 

assesses how strongly the clusters (schools) contribute to the dependency in the data with a range 

of between 0 and 1. If the ICC takes the value of “1”, the observations within each cluster are the 

same; and if ICC takes the value of “0”, all the observations are statistically independent, 

indicating that Level 2 has no influence on Level 1. To set the variance on standardized scale, the 
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ICC formula for Sample A at Phase 1, Sample B at Phase 1-2, and Sample at Phase 1-3 are as 

followed:  

              ρ(ICC)= 
τ00unconditional

τ00unconditional+σ2
unconditional

                                                      (3) 

                         = 
between school variance

between school variance+within school variance
      

                         = 
between school variance

total school variance
 

             Where τ00 is between school variance, σ2 is within school variance, and ρ (ICC) is the 

percent of the total school variance in student achievement outcomes that is between schools.   

To measure the uncertainty associated with these estimates, the standard error can be 

calculated using the approximation presented in Donner and Koval (1983): 

                     SE (ρ) = √
2(1−ρ)2[1+(n−1])ρ]2

n(n−1)J
                                                                (4) 

Where n is the total number of participants per school, J is the total number of schools, and ρ is 

the ICC. 

Research Question 2: Conditional Models 2-4 

Question 2 was set up to investigate the extent to which the student-level covariates (i.e., 

EAA and demographic variables) explained the variability in each of the three outcomes. As 

such, the author calculated the proportion of variance explained at Level 1(R2
L1) and Level 2 

(R2
L2). R

2
L1 was calculated as a function of the percentage of the variance by accounting for 

covariate(s) at Level 1 over unconditional models. In the same manner, R2
L2 was calculated as a 

function of the percentage of the variance by accounting for covariate (s) at Level 2 over 

unconditional models.  
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In this study, the author explored three scenarios accounting to examine the explanatory 

power of covariates: (1) pretests (EAA), (2) a composite of demographics, and (3) both pretests 

(EAA) and demographics. Note that in all cases the individual level covariates are included at 

level 1 and aggregated up to Level 2. Aside from it, the covariates in all models were not cen-

tered as the analytical results showed no difference on the estimates of the variance components 

in the models, which further supported the viewpoint maintained by Spybrook, Westine, and 

Taylor (2013). In the following section, the author started with the pretest (EAA) covariate 

model. 

Model 2: The Pretest (EAA) Model. This model includes EAA at Level 1 and it was 

aggregated at Level 2.  

Model 2   Level 1:   Yij = β0j + β1jEAAij + rij                                                             (5) 

Where 

 Yij  is the student academic outcome for student i at university j 

 EAAij is the pretest covariate for student i at university j 

 β0j is the mean outcome for university j 

 β1j is the effect of EAAij for university j 

 rij is the random error associated with student i at university j, controlling for EAAij 

 var (rij)= 𝜎|𝑋
2  ,but this is now a conditional or residual variance.  

 

Level 2:   β0j = γ00 + γ01(Mean EAA)j + u0j                                                               (6) 

                 β1j = γ10  

 

Where:  

   γ00 is the adjusted grand mean student achievement outcomes across all universities 

γ01 is the effect of Mean EAA across all universities 

γ10 is the average Mean EAA-achievement outcome regression slope across all the  

universities 

u0j is the random error associated with university means var (u0j )= τ00, controlling for 

Mean EAA, but this is now a conditional or residual variance τ00|W.        
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Model 3: Demographics Model. This model considers the case in which no pretests are 

available but the demographic variables available can serve as covariates. 

Model 3  Level 1:  Yij = β0j + β1jGenderij + β2jRaceij + β3jEnglish + rij                 (7) 

Where:  

Yij  is the student achievement outcome for student i at university j 

Genderij is the indicator for the sex of student i at university j (1=male, 0=female) 

Raceij  is the indicator for the race of student i at university j (1=Minority, 0=White as 

reference group) 

Englishij is the indicator for English as primary language or not for student i at university 

(1=yes, 0=no) 

β0j is the mean achievement at university j 

β1jis the “gender” gap at university j, i.e., the mean difference between the achievement 

of male and female students 

β2j is the “minority” gap at university j, i.e., the mean difference between the  

achievement of white and minority students 

β3j is the differentiating effect of English as primary language students vs.  

English language learners at university j 

rij is the random error associated with student i at university j, controlling for gender,  

race, and English as primary language students, var (rij)= 𝜎|𝑋
2 , but this is now a 

conditional or residual variance.  

 

Level 2: β0j = γ00 + γ01(Mean Gender)j + γ02(Mean Race)j +γ03(Mean English)j + u0j  (8)                                                    

        β1j = γ10  

   β2j = γ20 

   β3j = γ30  

 

Where:  

γ00 is the adjusted grand mean student achievement outcomes across all    

universities 

γ01 is the effect of Mean Gender (1=male, 0=female) for all universities 

γ02 is the effect of Mean Race (1=Minority, 0=White, non-Hispanic, reference group) for 

all universities 

            γ03 is the effect of Mean English as primary language for all universities 

      γ10 is the Mean Gender-achievement outcome slope for all universities 

      γ20 is the Mean Race-achievement outcome slope for all universities 

      γ30 is the Mean English as primary language (1=yes, 0=no) students-achievement   

      outcome slope for all universities 

      u0j is the random error associated with the university means, controlling for the Mean       
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      Gender, Mean Race, and Mean English variables, var (u0j)=τ00, but this is now a     

      conditional or residual variance τ00|w. 

     

Model 4: The Pretest (EAA) and Demographics Model. In this model, both pretests 

and demographic covariates are considered.  

Model 4 Level 1: Yij = β0j + β1jEAAij + β2jGenderij + β3jRaceij + β4jEnglishij + rij  (9)                                                              

                                                                                                         

Where:  

Yij  is the student academic outcome for student i at university j 

EAAij is the continuous covariate for student i at university j 

Genderij is the indicator for the sex of student i at university j   

Raceij is the indicator for the race of student i at university j  

Englishij is the indicator for English as primary or not for student i at university j  

β0j is the mean achievement at university j 

β1j is the average change in achievement outcome for a -unit increase in EAAij  for 

university j 

β2jis the “gender” gap at university j, i.e., the mean difference between the 

achievement of male and female students 

β2jis the “gender” gap at university j, i.e., the mean difference between the 

achievement of male and female students 

β3j is the “minority” gap at university j, i.e., the mean difference between the 

achievement of white and minority students 

β4j is the differentiating effect of English as primary language students vs. English 

language learners at university j 

rij is the random error associated with student i at university j, controlling for EAA, 

Gender, Race, and English as primary language students, var (rij)= 𝜎|𝑋
2 , but this is now 

a conditional or residual variance.  

 

Level 2:  β0j = γ00 + γ01(MeanEAA)j  + γ02(Mean Gender)j + γ03(Mean Race)j +        

                           γ04(Mean English)j + u0j                                                                         (10) 

       β1j = γ10                                                                                          

        β2j = γ20 

        β3j = γ30 

        β4j = γ40 

Where:  

γ00 is the adjusted grand mean student achievement outcomes across all universities 

γ01 is the effect of Mean EAA, i.e., the average increase or decrease in mean outcomes, 

β0j, for students 
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γ02 is the effect of Mean Gender, i.e., the difference in mean outcomes, β0j,for male 

students compared with female students 

γ03 is the effect of Mean Race, average difference in mean outcomes β0j for white 

students compared with minority students 

γ04 is the effect of Mean English as primary language, i.e., the average difference in the 

mean outcomes for English as primary students compared with English leaner students  

γ10 is the effect of Mean Gender-achievement outcome slope for all universities 

γ20 is the effect of Mean Race-achievement outcome slope for all universities 

γ30 is the effect of Mean English (as primary students)-achievement outcome     

slope for all universities 

γ40 is the effect of Mean English as primary students-achievement outcome slope for 

all universities 

u0j is the random error associated with the university means, controlling for Mean 

EAA, Mean Race, Mean Gender, and Mean English as primary language, var (u0j)=τ00, 

but this is now a conditional or residual variance τ00|W. 

  

Research Question 3: Conditional Models 5-7 

Question 3 was used to investigate to what extent the school-level covariates explain the 

variability in each of the three outcomes. Models 5-7 were used to address the question. 

Model 5: The Median SAT Model. Model 5 takes the scenario of no administrative data 

into account. In other cases, researchers have no access to this type of information or it is 

expensive to obtain. Including institutional characteristic variables is a feasible way to overcome 

this issue as those data are publicly accessible on the IPEDS website. The author started by 

including median SAT in the school level, which is a covariate that is likely to have strong 

explanatory power. As the equation demonstrates below, no Level 1 covariates are included in 

the models with the Level 2 covariate, i.e., median SAT scores.   

Model 5  Level 1:   Yij = β0j + rij                                                                                    (11)                                                                      

Where:  

Yij  is the student academic outcome for student i at university j 

β0j is the mean achievement at university j 

rij is the random error associated with student i at university j, var (rij)= σ2  
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              Level 2:  β0j = γ00 + γ01(Median SAT)j +u0j                                                (12) 

Where:  

γ00 is the adjusted grand mean student achievement outcomes across all universities 

                 γ01 is the effect of Median SAT for all universities 

u0j is the random error associated with the university mean, controlling for Median  

SAT, var (u0j)=τ00, but this is now a conditional or residual variance τ00|W. 

     

Model 6: Institutional Characteristics Model. In this scenario, school-level pretests 

(median SAT scores) was considered in the model.  

Model 6     Level 1:   Yij = β0j + rij                                                                                   (13) 

Where:  

Yij  is the student academic outcome for student i at university j 

β0j is the mean achievement at university j 

rij is the random error associated with student i at university j, var (𝑟ij)= σ2. 

 

                Level 2:  β0j = γ00 + γ01(Carnegie)j  + γ02(Sector)j + γ03(Expenditure)j +

                                    γ04(Size)j + u0j                                                      
Where: 

γ00 is the adjusted grand mean student achievement outcomes across all universities  

γ01 is the effect of Carnegie Classification (1=Baccalaureate Colleges or Master's 

Colleges/Universities, 0=Doctorate-Granting Institution as reference group for all 

universities)  

γ02 is the effect of Sector(1= Public, 0=Private) universities 

γ03 is the effect of mean student related expenditure per FTE student for all universities 

γ04 is the effect of enrollment size for universities (1=Small (up to 3,000) or Midsize 

0=Large as reference group) 

u0j is the random error associated with the university means, controlling for Carnegie, 

Sector, Expenditure, and Size, var (u0j )=τ00, but this is now a conditional or residual 

variance τ00|w.  

 

Model 7: Median SAT and Institutional Characteristics Model. The last scenario 

considered both the median SAT and institutional characteristic covariates at Level 2. 

Model 7  Level 1:   Yij = β0j + rij                                                                                       (14) 
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Where:                                                                                                             

Yij  is the student academic outcome for student i at university j 

β0j is the mean achievement at university j 

rij is the random error associated with student i at university j, var (rij)= σ2. 

 

Level 2:  β0j = γ00 + γ01(Median SAT)j + γ02(Carnegie)j + γ03(Sector)j +      

                          γ04(Expenditure)j + γ05(Size)j + u0j                                               (15)                                    

                                                                                                                        

Where: 

γ00 is the adjusted grand mean student achievement outcomes across all universities  

γ01 is the effect of Median SAT for all universities 

γ02 is the effect of Carnegie Classification for all universities 

γ03 is the effect of Sector, i.e., private and non-profit universities vs. public universities 

γ04 is the effect of mean student-related expenditure per FTE student for all universities 

               γ05 is the effect of enrollment size for all universities 

u0j is the random error associated with the university means, controlling for Median 

SAT, Carnegie, Sector, Expenditure, and Size, var (u0j)=τ00. but this is now a 

conditional or residual variance τ00|w. 

 

R2 Calculation Formula. The R2 values were estimated for Level 1 and Level 2 by using 

Raudenbush and Bryk’s (2002) notation:    

             Level 1:               R2
L1=

σunconditional
2 −σconditional

2

σunconditional
2                                                (16) 

             Level 2:               R2
L2=

τunconditional
2 −τconditional

2

τunconditional
2                                                  (17)                

Where σunconditional
2  represents the Level 1 unconditional variance; σconditional

2   

represents the Level 1 conditional variance; and R2
L1 is the proportion of Level 1 variance that is 

explained by covariate(s). Likewise, τunconditional
2  represents the Level 2 unconditional variance; 

τconditional
2  represents the Level 2 conditional variance; and R2

L2 is the proportion of Level 2 

variance that is explained by covariate(s) (Hedges & Hedberg, 2007). 
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Research Question 4: MDES Calculation 

To answer Question 4, the author calculated the minimum detectable effect size (MDES) 

using the empirical estimated design parameters for various sample size combinations. 

MDES without Covariates. The formula for computing the MDES without covariates is 

presented below:  

                            MDES2LCRT=
MJ−2

√J
√ ρ +

1−ρ

n
√

1

P(1−P)
                                                     (18) 

Where n is the number of individuals per cluster (school); J is the total number of 

clusters; and M is the group effect multiplier, which corresponds to the value of the t-distribution 

for a two-tailed test with α = 0.05, power = 0.80, equal variances for groups, and J-2 degrees of 

freedom. If the degrees of freedom are greater than 20, M is approximately 2.8 (Bloom, 1995).  p 

is the ICC and P is the proportion of clusters assigned to treatment which we assume to be 0.50. 

MDES with Covariates. The formula for computing the MDES with covariates is 

presented below: 

                      MDES2LCRT=
MJ−3

√J
√(1 − RL2

2 )ρ +
(1−RL1

2)(1−ρ)

n
√

1

P(1−P)
                    (19)                                            

All parameters in Equation 19 are defined as they were in Equation 18 with the addition 

of R2
L1, the proportion of variance explained by Level 1covariate(s); and R2

L2, the proportion of 

variance explained by Level 2 covariate(s). 

Specified Sample Sizes for Calculating MDES. In the K-12 literature, it is common to 

have approximately 40 schools in a two-level CRT. For illustrative purposes, the author calcu-

lated the MDES assuming 20, 40, 60 and 80 total universities/colleges in a study. The author 

assumed a within university/college sample size of approximately 100 students per school as 
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CAE required that CLA participating schools recruit at least 100 students to ensure higher 

internal reliability of the test results (CAE, 2009). All MDES calculations will be conducted 

using PowerUp! (Dong & Maynard, 2013). 

Summary 

This study expands on previous work done on K-12 design parameters to students’ 

outcomes in higher education. In this study, the author used a set of two-level HLMs (students 

nested within universities) to estimate ICCs and R2 for the total CLA outcome, Performance 

Task outcome, and Analytical Writing outcome. Then the author demonstrated the importance of 

these design parameters in calculating the MDES for a study using typical sample sizes. In the 

following chapter, Chapter IV, the author reported the statistical findings based on the 

methodology section. 
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CHAPTER IV 

RESULTS 

 

This study sought to empirically estimate ICC and R2 values to help researchers planning 

large scale cluster randomized trials to test the efficacy of cognitive skills interventions in higher 

education. In this chapter, the author begins by reviewing the research questions. Then the author 

presents the descriptive statistics followed by the empirically estimated ICCs and R2 values. 

Specifically, the author reports unconditional ICCs and standard error estimates and the 

proportion of variance explained by student-level covariates (R2
L1) and school-level covariates 

(R2
L2) for each outcome and sample combination. Finally, the author reports estimates of the 

MDES with and without covariates for the three outcomes based on the estimated design 

parameters and reasonable sample sizes. The section ends with a summary of this chapter. 

Review of Research Questions 

The research questions that were posed for this study were as follows: 

 

1. To what extent do the following outcomes vary across schools: 

 

A. Task Performance outcome? 

B. Analytical Writing outcome? 

C. The total CLA outcome? 

2. To what extent do student-level covariates (i.e., EAA, student demographic variables) 

explain the variance in the three outcomes?  

3. To what extent do institution-level covariate (i.e., Median SAT, sector, Carnegie 

classification, etc.) explain the variance in the three outcomes? 
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4. Given the design parameters estimates in questions 1-3 and effect sizes from the 

literature, what is the sample size necessary for CRTs which aim to test interventions 

seeking to improve critical thinking and communication skills at colleges/uni-

versities? 

Descriptive Statistics of Data 

The present empirical analysis uses data from the CLA test which was administered to 

four-year, not-for-profit colleges and universities in the United States (CAE, 2005). The sample 

seeks to generalize to four-year, not-for-profit colleges and universities in the United States. 

Table 8 is an adaption of Klein, Benjamine, Shalverson, and Bolus’ Four-Year Institutions in the 

CLA and Nation by Key Characteristics (2007), which shows a close correspondence between 

the characteristics of the approximately 1,400 institutions in the IPEDs database and the 

characteristics of the over 100 schools participating in the CLA (Klein, Benjamine, Shalverson, 

& Bolus, 2007). As can be seen that only 37 universities in this study since it was drawn from a 

longitudinal CLA study provided by CAE. However, participating schools in this study appear to 

be more selective than full set of schools that participate in the CLA. Universities in this study 

data set tended to have higher Median SAT than the full CLA sample (1,150 vs. 1,079) higher 

mean four-year graduation (50% vs 38%), first-year retention rates (85% vs 77%), mean number 

of FTE students (10,000 vs. 6,160), and mean student related expenditure per FTE ($15,001 vs. 

11,820).  
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Table 8  

Characteristics of Four-Year Colleges/Universities Samples in This Study 

School Level Characteristics 
Nation-wide 

Universities 

All CLA 

Participating 

Universities  

CLA  

Participating 

in This Study 

Percent of public schools 36% 42%  51% 

Percent of HBCU 6% 10%  11% 

Mean percentage of Pell Grant receivers 33% 32%  30% 

Mean four-year graduation rate 36% 38%  50% 

First-year retention rate 75% 77%  85% 

Mean six-year graduation rate 52% 55%  51% 

Mean median SAT  1,061 1,079         1,150 

Mean number of FTE Student 4,500 6,160 10,000 

Mean student related expenditure per FTE    $12,230      $11,820  $15,001  

Note. HBCU= Historically Black College or University. The table was an adaption of Klein, 

Benjamine, Shalverson, and Bolus’ Four-Year Institutions in the CLA and Nation by Key 

Characteristics (2007) with a fourth column being added to the original table.  

 

Table 9 displays the demographic data for the sample used for this study. The total 

number of participants in the sample was 9,827. 3,388 (34.5%) of those were male and 5,968 

(60.7%) were female. Table 9 also shows that more than half of participants (5,635) were White 

students, which accounted for 57.3%, followed by 1,565 (15.9%) Black, 804 (8.2 %) Hispanic, 

680 (6.9%) of Asian/Pacific Islander, together with 1.6% (160) American Indian/Alaska Native. 

In terms of proportion of English as primary Language at home or not, 81.3% (7,992) 

participants reported “Yes” whereas 13.9% (1,363) counterparts reported “no response”. 

Table 10 reviews the sample sizes. Recall that sample A represents freshmen who were 

tested during Phase 1, which occurred in fall 2005 or fall 2006. Sample B is a subset of these 

students who were also tested in Phase 2, which occurred in spring 2007 or spring 2008. As such, 

Sample B has two time points of data. Sample C is again a subset of the full sample who were   
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Table 9 

Demographics Statistic Descriptive 

 

 

Table 10 

Analytical Student and School Sample Sizes by Phase in This Study 

 

Sample 

Phase 1 

(fall 2005 or fall 2006) 

Phase 2 

(spring 2007 or spring 2008) 

Phase 3 

(spring 2009 or spring 2010) 

    n      J   n       J     n      J 

Sample A 8,061 37 .. .. ..  .. 

Sample B 2,037 27 2,037 27 ..            .. 

Sample C   930 22   930 22 930           22 

Note. n=number of students; J=number of schools; “..”=no participants in specific time. Analytical sample 

sizes are slightly smaller due to missing data which was handled through listwise deletion. Sample A had 
8,061 participants in Phase 1.  

 

tested in Phase 2 (occurred in spring 2008 spring 2007 or spring 2008) and Phase 3 (spring 2009 

or spring 2010). Hence Sample C has three time points of data.  

Variable Category Frequency  Percent 

  Gender Female 5,968 60.73 

 Male 3,388 34.48 

 Missing 471 4.79 

  Total 9,827 100.00 

 

  Race Black 1,565 15.93 

 American Indian/Alaska 160 1.63 

 Asian/Pacific 680 6.92 

 Hispanic 804 8.18 

 White 5,635 57.34 

 Other 512 5.21 

 Missing 471 4.79 

 Total 9,827 95.21 

    

 English as primary language No 1,363 13.87 

 Yes 7,992 81.33 

 Total 9,355 95.20 

 Missing 472 4.80 

  Total 9,827 100.00 
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Tables 11 and 12 display descriptive statistics organized by Level 1 and Level 2 variables. 

Level 1 variables included EAA, age, the total CLA, Performance Task, and Analytical Writing  

Table 11                
Level 1 Variable Descriptive by Samples and Phases 

 

    Phase 1    Phase 2  Phase 3 

Sample        Variables Mean        SD      Mean SD    Mean SD 

Level 1               

Sample A  Sex 1.60 0.50 .. .. .. .. 

(n=9,827) Race 4.10 1.60 .. .. .. .. 

  Age 18.30 0.90 .. .. .. .. 

  EPL 0.90 0.40 .. .. .. .. 

  EAA 1105.70 189.40 .. .. .. .. 

  CLA Outcome 1100.70 146.80 .. .. .. .. 

  PT Outcome 1099.50 184.50 .. .. .. .. 

  AW Outcome 1087.60 163.30 .. .. .. .. 
               

Sample B Sex 1.64 0.48 * * .. .. 

(n=2,422) Race 4.09 1.53 * * .. .. 

  EPL 0.84 0.37 * *     

  Age 18.28 0.62 19.43 0.72 .. .. 

  EAA 1117.01 188.85 1117.01 188.85 .. .. 

  CLA Outcome 1118.82 147.26 1150.38 160.01 .. .. 

  PT Outcome 1120.10 184.41 1162.89 207.75 .. .. 

  AW Outcome 1106.14 165.15 1132.95 160.76 .. .. 

                

Sample C Sex 1.64 0.48 * * * * 

(n=1,064) Race 4.31 1.35 * * * * 

  EPL 0.85 0.36 * * * * 

  Age 1147.06 185.75 19.44 0.60 21.98 0.51 

  EAA 18.29 0.55 1147.06 185.75 1147.06 185.75 

  CLA Outcome 1141.55 147.38 1183.36 157.98 1231.06 159.11 

  PT Outcome 1144.79 179.10 1197.52 209.53 1229.77 187.95 

  AW Outcome 1132.64 167.01 1165.01 158.06 1227.06 184.48 
        

Note. EPL=English as Primary Language; EAA=Entering Academic Ability; 

PT=Performance Task outcome; AW=Analytical Writing outcome; "*" indicates the same 

values as in the later phases given that the characteristics do not change over time. 
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outcomes arranged by phase. Table 11 also presents descriptive statistics for the institutional 

characteristics for the colleges/universities in the samples at the different phases. 

Results of Empirical Estimates of Design Parameters 

The results of empirical estimates of design parameters are divided into three sections 

that align with the research questions and methods. The author first presents the unconditional 

ICCs for the two-level HLMs for Samples A, B, and C in Phase 1, B and C in Phase 2, and C in 

Phase 3 for each outcome (total CLA, critical thinking, and written communication). Next, the 

Table 12  

Level 2 Variable Descriptive by Samples and Phases 

 
      

    Phase 1 Phase 2 Phase 3 

Sample        Variables Mean     SD      Mean SD    Mean SD 

Level 2               

Sample A  CC 2.14 0.86 .. .. .. .. 

(J=37) Sector 1.51 0.51 .. .. .. .. 

  Median SAT 4.62 1.38 .. .. .. .. 

  Mean expenditures  3.32 1.03 .. .. .. .. 

  Size of Enrollment 2.05 0.82 .. .. .. .. 

              

Sample B  CC 2.33 0.73 * * .. .. 

(J=27) Sector 1.44 0.51 * * .. .. 

  Median SAT 4.48 1.28 * * .. .. 

  Mean expenditures  3.19 1.00 * * .. .. 

  Size of Enrollment 2.19 0.74 * * .. .. 

                

Sample C CC 2.36 0.73 * * * * 

(J=22) Sector 1.41 0.50 * * * * 

  Median SAT 4.41 1.40 * * * * 

  Mean expenditures  3.23 1.02 * * * * 

  Size of Enrollment 2.27 0.70 * * * * 

Note. CC=Carnegie Classification; Mean expenditures=Mean student-related expenditure; 

"*" indicates the same values as in the later phases given that the characteristics do not 

change over time.  
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author presents the percent of variance in each outcome explained with the different covariate 

sets for each sample at the different time phases. 

Research Question 1: Unconditional Model 1 

This section presents the ICCs and standard error (SE) generated from the unconditional 

model without covariates in total CLA, Performance Task, and Analytical Writing outcomes.  

Unconditional Model 1. Table 13 is divided into three panels and four columns each. 

From left to right, the first column displays samples by each phase. ICCs and SE are shown in 

column 2 for the total CLA outcome, in column 3 for Performance Task outcome, and in column 4 

Table 13 

ICCs for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 1 

 

    Total CLA   PT   AW 

Sample   ICC SE   ICC SE   ICC SE 

Phase 1                   

Sample A   0.311 0.050   0.203 0.038   0.277 0.047 

Sample B   0.305 0.058   0.197 0.043   0.271 0.054 

Sample C   0.322 0.066   0.194 0.047   0.293 0.063 

Phase 2   
        

Sample A   .. .. 
 

.. .. 
 

.. .. 

Sample B   0.330 0.060   0.228 0.048   0.293 0.056 

Sample C   0.352 0.069   0.222 0.052   0.320 0.066 

Phase 3                   

Sample A   .. .. 
 

.. .. 
 

.. .. 

Sample B   .. .. 
 

.. .. 
 

.. .. 

Sample C   0.353 0.069   0.260 0.058   0.274 0.060 

Mean ICCs   0.329     0.217     0.288   

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..” 

indicates that ICCs are not in specific time; ICC= intraclass correlation; 

SE=standard error; Sample A combined fall 2005 and fall 2006 (Phase 1) 

freshmen's achievement outcome data; Sample B combined spring 2007 and spring 

2008 (Phase 2) rising juniors' achievement outcome data. 
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for Analytical Writing outcome. The bottom row produces the mean ICCs for each outcome 

given all samples across all phases. 

Total CLA outcome. The ICC for the total CLA outcome ranges from 0.305 to 0.353 for 

with the mean ICC of 0.329.  

Performance Task outcome. The ICC for Performance Task outcome ranges from 0.194 

to 0.260 with the mean ICC of 0.217.  

Analytical Writing outcome. The ICC for Analytical Writing outcome ranges from 0.271 

to 0.320 with the mean of 0.288. 

Research Question 2: Conditional Model 2-4 

To determine the explanatory power of covariates in improving design efficiency, the 

author examined the strength of the following sets of covariates in reducing variance for each of 

the outcomes (Model 2-4): student-level pretests (EAA), student-level demographics, and 

school-level covariates.  

Model 2 with the Pretest (EAA) Model. EAA was included at student level and 

aggregated up to school level (Mean EAA) using Model 2. Table 14 shows the variance 

explained by EAA at each level was reported as well as the mean across all samples and 

outcomes.  

Total CLA outcome. The R2
L1 including EAA for total CLA outcome ranges from 0.168 

to 0.181 with the mean of 0.175. Whereas R2
L2 for total CLA outcome ranges from 0.697 to 

0.781 with the mean of 0.726.  

Performance task outcome. The R2
L1 including EAA for Performance Task outcome 

ranges from 0.104 to 0.151 at the student level with the mean of 0.141. Whereas R2
L2 ranges 

from 0.774 to 0.874 with the mean of 0.838. 
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Analytical writing outcome. The R2
L1 including EAA ranges from 0.070 to 0.122 with 

the mean of 0.090. Whereas the R2
L2 ranges from 0.517 to 0.647 with the mean of 0.591.  

Model 3 with Demographics Model. Table 15 presents the proportion of variance 

explained by demographic composite at student- and school-level. In general, demographic 

variables explain less variation than EAA at both levels.  

Total CLA outcome. The R2
L1 ranges from 0.024 to 0.049 with a mean of 0.039. Whereas 

the R2
L2 ranges from 0.268 to 0.550 with a mean of 0.367 for the total CLA outcome. 

Performance task outcome. The R2
L1 ranges from 0.019 to 0.038 at the student level with 

a mean of 0.028. Whereas the R2
L2 ranges from 0.301 to 0.492 with a mean of 0.383 for 

Performance Task outcome. 

Table 14 

R2 Values Including EAA for Total CLA, Performance Task, and Analytical Writing 

Outcomes: Model 2 

  Total CLA   PT   AW 

Sample R2
L1  R2

L2   R2
L1  R2

L2   R2
L1  R2

L2 

Phase 1                 

Sample A 0.178 0.781   0.149 0.874   0.088 0.647 

Sample B 0.178 0.729   0.146 0.827   0.088 0.588 

Sample C 0.168 0.721   0.143 0.883   0.082 0.580 

Phase 2                 

Sample A .. ..   .. ..   .. .. 

Sample B 0.181 0.727   0.151 0.834   0.091 0.573 

Sample C 0.174 0.697   0.151 0.835   0.070 0.517 

Phase 3                 

Sample A .. ..   .. ..   .. .. 

Sample B .. ..   .. ..   .. .. 

Sample C 0.171 0.704   0.104 0.774   0.122 0.639 

Mean R2 0.175 0.726   0.141 0.838   0.090 0.591 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..” indicates 

that R2 are not in specific time. 
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Analytical writing outcome. The R2
L1 for analytical writing outcome ranges from 0.016 

to 0. 030 with the mean of 0.025. Whereas the R2
L2 ranges from 0.186 to 0.597 with the mean 

0.357 for Analytical Writing outcome.  

Model 4 with the Pretest (EAA) and Demographics Model. Model 4 included both 

pretest (EAA) and demographic composite as student level covariates to investigate the pre-

dictive power of the covariates together. Table 16 displays the results for each outcome. As 

expected, the combined set of covariates has the greatest explanatory power.  

Total CLA Outcome. The R2
L1 for the total CLA outcome ranges from 0.182 to 0.194 

with a mean of 0.188. Whereas R2
L2 ranges from 0.718 to 0.832 with a mean of 0.757.  

Table 15 

R2 Values Including Demographics for Total CLA, Performance Task, and Analytical 

Writing Outcomes: Model 3 

  Total CLA   PT   AW 

Sample R2
L1  R2

L2   R2
L1  R2

L2   R2
L1  R2

L2 

Phase 1                 

Sample A 0.038 0.365   0.027 0.410   0.026 0.342 

Sample B 0.047 0.376   0.038 0.301   0.022 0.463 

Sample C 0.049 0.550   0.036 0.492   0.028 0.597 

Phase 2                 

Sample A .. ..   .. ..   .. .. 

Sample B 0.044 0.366   0.036 0.384   0.030 0.332 

Sample C 0.032 0.276   0.019 0.321   0.028 0.221 

Phase 3                 

Sample A .. ..   .. ..   .. .. 

Sample B .. ..   .. ..   .. .. 

Sample C 0.024 0.268   0.013 0.392   0.016 0.186 

Mean R2 0.039 0.367   0.028 0.383   0.025 0.357 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..” indicates 

that R2 are not in specific time. 
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Table 16 

R2 Values Including EAA and Demographics for Total CLA, Performance Task, and 

Analytical Writing Outcomes: Model 4 

  Total CLA   PT   AW 

Sample R2
L1  R2

L2   R2
L1  R2

L2   R2
L1  R2

L2 

Phase 1                 

Sample A 0.189 0.815   0.153 0.871   0.100 0.758 

Sample B 0.191 0.735   0.156 0.802   0.093 0.682 

Sample C 0.188 0.916   0.155 0.929   0.098 0.914 

Phase 2                 

Sample A .. ..   .. ..   .. .. 

Sample B 0.193 0.703   0.158 0.818   0.102 0.548 

Sample C 0.186 0.665   0.157 0.823   0.085 0.470 

Phase 3                 

Sample A .. ..   .. ..   .. .. 

Sample B .. ..   .. ..   .. .. 

Sample C 0.179 0.706   0.107 0.833   0.128 0.599 

Mean R2 0.188 0.757   0.148 0.846   0.101 0.662 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..” indicates 

that R2 are not in specific time. 

Performance Task outcome. The R2
L1 ranges from 0.107 to 0.158, with the mean of 

0.148. Whereas the R2
L2 ranges from 0.665 to 0.916 with the mean of 0.757.  

Analytical Writing outcome. The R2
L1 ranges from 0.093 to 0.128 with the mean of 

0.101. Whereas the R2
L2 ranges from 0.470 to 0.914 with the mean of 0.662. 

Research Question 3: Conditional Model 5-7 

Question 3 sought to investigate to what extent the school-level covariates explain the 

variability in each of the three outcomes (Model 5-7). In some cases, when administrative data 

are not available or may be expensive, the use of school characteristics as covariates are another 

option as that information are publicly accessible on IPEDS website. Model 5, 6 and 7 
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investigated the effect of school-level covariate on reducing both between-school variances in all 

samples. Note that within school variance is not explained in these cases since school 

characteristics only have effect on reducing variance at Level 2.  

Model 5 with the Median SAT Model. Model 5 included Median SAT as a proxy of 

school-level pretest to investigate the effect of the school-level covariate on reducing variance in 

each outcome. Table 17 displays the Level 2 variance (R2
L2) for each outcome. 

Table 17 

R2 Values Including Median SAT Covariate for Total CLA, Performance Task, and 

Analytical Writing Outcomes: Model 5 

  Total CLA   PT   AW 

Sample R2
L2   R2

L2   R2
L2 

Phase 1           

Sample A 0.742   0.829   0.617 

Sample B 0.729   0.827   0.594 

Sample C 0.760   0.925   0.614 

Phase 2           

Sample A ..   ..   .. 

Sample B 0.713   0.816   0.572 

Sample C 0.727   0.854   0.563 

Phase 3           

Sample A ..   ..   .. 

Sample B ..   ..   .. 

Sample C 0.834   0.893   0.762 

Mean R2 0.751   0.857   0.620 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..” indicates 

that R2 are not in specific time. 

The total CLA outcome. The R2
L2 for median SAT in the total CLA outcome ranges from 

0.713 to 0.834 with the mean of 0.751.  
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Performance Task outcome. The R2 
L2 for median SAT in the Performance Task out-

come ranges from 0.816 to 0.925 with the mean of 0.857. 

Analytical Writing outcome. The R2 
L2 for median SAT in Analytical Writing outcomes 

ranges from 0.563 to 0.762 with the mean of 0.620.  

Model 6 with Institutional Characteristics Model. In Model 6, the author investigated 

how much school characteristics (e.g., Carnegie classification, sector, size, and mean student-

related expenditure) contributed to reducing the school-level variance. Table 18 displays the 

Level-2 variance (R2
L2) of each outcome. 

Table 18 

R2 Values Including Institutional Characteristics for Total CLA, Performance Task, 

and Analytical Writing Outcomes: Model 6 

  Total CLA   PT   AW 

Sample R2
L2   R2

L2   R2
L2 

Phase 1           

Sample A 0.514   0.503   0.499 

Sample B 0.487   0.430   0.504 

Sample C 0.510   0.643   0.407 

Phase 2           

Sample A ..   ..   .. 

Sample B 0.391   0.451   0.325 

Sample C 0.572   0.724   0.405 

Phase 3           

Sample A ..   ..   .. 

Sample B ..   ..   .. 

Sample C 0.679   0.648   0.708 

Mean R2 0.525   0.567   0.475 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..”Indicates 

that data is unavailable for specific period. 
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The total CLA outcome. The R2 
L2 for institutional characteristics for the total CLA 

outcome ranges from 0.391 to 0.679 with the mean of 0.525.  

Performance Task outcome. The R2 
L2 for institutional characteristics in Performance 

Task outcome ranges from 0.430 to 0.724 with the mean of 0.567. 

Analytical Writing outcome. The R2
L2 for institutional characteristics for Analytical 

Writing outcome ranges from 0.325 to 0.708 with the mean of 0.475. 

Model 7 with Median SAT and Institutional Characteristics Model. Model 7 

incorporates Median SAT and the institutional characteristics. Table 19 displays the R2 
L2 for 

each outcome.  

Table 19 

R2 Values Including Institutional Characteristics and Median SAT for Total CLA, 

Performance Task, and Analytical Writing Outcomes: Model 7 

 

  Total CLA   PT   AW 

Sample R2
L2   R2

L2   R2
L2 

Phase 1           

Sample A 0.819   0.877   0.727 

Sample B 0.796   0.852   0.703 

Sample C 0.796   0.989   0.626 

Phase 2 
 

        

Sample A ..   ..   .. 

Sample B 0.699   0.844   0.527 

Sample C 0.755   0.939   0.546 

Phase 3 
 

        

Sample A ..   ..   .. 

Sample B ..   ..   .. 

Sample C 0.871   0.933   0.835 

Mean R2 0.789   0.906   0.661 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; “..”Indicates that 

data is unavailable for specific period. 
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Total CLA Outcome. The R2
L2 associated with median SAT and institutional character-

istics for the CLA outcome ranges from 0.699 to 0.871 with a mean of 0.789.  

Performance Task outcome. The R2
L2 associated with median SAT and institutional 

characteristics for the Performance Task outcome ranges from 0.844 to 0.987 with the mean of 

0.906.  

Analytical Writing outcome. The R2
L2 associated with median SAT and institutional 

characteristics for Analytical Writing outcome ranges from 0.527 to 0.835 with the mean of 

0.661.  

Research Question 4: MDES with and without Covariates 

Tables 20 to 25 present estimates of the MDES obtained from equation 18 and 19 given 

the estimated values of the ICC, R2
L1, and R2

L2 across outcome and grades for samples of 20, 40, 

60, and 80 schools with assuming 100 students per school.  

MDES without Covariates: Unconditional Model 1. Table 20 shows the MDES 

without considering covariates based on the ICCs generated from Table 13. As expected, as the 

school sample size (J) increases, the MDES decreases for each outcome. Stated differently, the 

more schools in a 2-level CRT, the greater the precision of the study. For example, for total CLA 

outcome, the mean MDES is 0.738, 0.522, 0.462, and 0.369 for 20, 40, 60, and 80 schools. 

MDES with Covariate Model 2. Table 21 shows the MDES results if EAA is included 

as a covariate. Note that the estimates of ICCs are those from Table 13; R2
L1 and R2

L2 are from 

Table 14. The findings suggest that the magnitude of MDES including student-level pretest was 

reduced to almost half of MDES without covariate. For example, the mean MDES for the total 

CLA outcome were 0.394 for 20 schools, 0.279 for 40 schools, 0.227 for 60 schools, and 0.197 

for 80 schools, respectively. 
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Table 20 

  

  
Mean MDES for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 1 (n=100) 

  

  Total CLA(J)   PT(J)   AW(J)   

Sample 20 40 60 80   20 40 60 80     40 60 80   

Phase 1                               

Sample A 0.719 0.508 0.415 0.359   0.585 0.414 0.338 0.293   0.680 0.480 0.392 0.340   

Sample B 0.712 0.503 0.411 0.356   0.577 0.408 0.333 0.289   0.672 0.475 0.388 0.336   

Sample C 0.731 0.517 0.422 0.365   0.573 0.405 0.331 0.286   0.698 0.494 0.403 0.349   

Phase 2                               

Sample A .. .. .. ..   .. .. .. ..   .. .. .. ..   

Sample B 0.740 0.523 0.427 0.370   0.619 0.438 0.357 0.309   0.698 0.494 0.403 0.349   

Sample C 0.763 0.539 0.440 0.381   0.611 0.432 0.353 0.305   0.729 0.515 0.421 0.364   

Phase 3                               

Sample A .. .. .. ..   .. .. .. ..   .. .. .. ..   

Sample B .. .. .. ..   .. .. .. ..   .. .. .. ..   

Sample C 0.764 0.540 0.441 0.382   0.659 0.466 0.381 0.330   0.68 0.48 0.390 0.34   

Mean MDES 0.738 0.522 0.426 0.369   0.604 0.427 0.349 0.302   0.692 0.489 0.400 0.346 
  

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size;  

n=student sample sizes; “..” indicates no values for MDES. 
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Table 21   

MDES Including EAA for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 2 (n=100) 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

Sample A   0.346 0.245 0.200 0.173   0.229 0.162 0.132 0.115   0.412 0.291 0.238 0.206 

Sample B   0.379 0.268 0.219 0.189   0.258 0.182 0.149 0.129   0.438 0.310 0.253 0.219 

Sample C   0.394 0.278 0.227 0.197   0.219 0.155 0.127 0.110   0.459 0.324 0.265 0.229 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.394 0.279 0.227 0.197   0.269 0.190 0.155 0.134   0.462 0.327 0.267 0.231 

Sample C   0.427 0.302 0.246 0.213   0.265 0.187 0.153 0.133   0.511 0.361 0.295 0.256 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.422 0.299 0.244 0.211   0.326 0.230 0.188 0.163   0.414 0.292 0.239 0.207 

Mean MDES   0.394 0.279 0.227 0.197   0.261 0.184 0.151 0.131   0.449 0.318 0.260 0.225 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 
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MDES with Covariate Model 3. Now consider another scenario when demographic 

characteristics are used alone as covariates. Table 22 presents the estimates of MDES for the 

three outcomes based on estimates of ICCs from Table 13; R2
L1 and R2

L2 are from Table 15. In 

this case, the mean MDES for the total CLA outcome were 0.590, 0.417, 0.340, and 0.295 for 20, 

40, 60, and 80 schools, respectively. 

MDES with Covariate Model 4. Table 23 presents MDES based on estimated ICC in 

Table 13, R2
L1 and R2

L2 yielded in Table 16 when student-level pretest EAA and demographic 

variables were considered. The mean MDES for the total CLA outcome were 0.367, 0.260, 

0.212, and 0.184 for 20, 40, 60, and 80 schools, respectively.  

MDES with Covariate Model 5. Table 24 presents estimates of MDES when including 

Median SAT as a proxy for school-level pretest. Note that ICC produced in Table 13 and R2
L2 

produced in Table 17 was included in calculating MDES. For the total CLA outcome, the mean 

MDES with school-level pretest were: 0.378 for 20 school, 0.267 for 40 schools, 0.218 for 60 

schools, and 0.189 for 80 schools, respectively. 

MDES with Covariate Model 6. Table 25 displays the MDES based on the estimate of 

ICC in Table 13 and R2
L2 produced in Table 18, which included institutional characteristics as 

covariates at Level 2. In general, institutional characteristics have less improvement in precision 

of study design compared with MDES with Median SAT as covariate included at Level 2. For 

instance, the mean MDES for the total CLA outcome are: 0.511, 0.361, 0.295, and 0.256 for 20, 

40, 60, and 80 schools, respectively.  

MDES with Covariate Model 7. The last scenario come into consideration is to include 

median SAT in conjunction with institutional variables. Table 26 displays the MDES based on  
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Table 22   

MDES Including Demographics for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 3 (n=100) 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

Sample A   0.576 0.407 0.332 0.288   0.455 0.322 0.263 0.228   0.555 0.392 0.320 0.277 

Sample B   0.566 0.400 0.327 0.283   0.486 0.344 0.281 0.243   0.498 0.352 0.288 0.249 

Sample C   0.496 0.351 0.286 0.248   0.416 0.294 0.240 0.208   0.451 0.319 0.260 0.225 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.592 0.418 0.342 0.296   0.504 0.356 0.291 0.252   0.574 0.406 0.331 0.287 

Sample C   0.651 0.461 0.376 0.326   0.507 0.359 0.293 0.254   0.645 0.456 0.372 0.322 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.656 0.464 0.379 0.328   0.518 0.367 0.299 0.259   0.611 0.432 0.353 0.306 

Mean MDES   0.590 0.417 0.340 0.295   0.481 0.340 0.278 0.241   0.556 0.393 0.321 0.278 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 

 



 

 

 

8
4

 

Table 23   

MDES Including EAA and Demographics for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 4 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

   Sample A   0.320 0.226 0.185 0.160   0.231 0.164 0.134 0.116   0.346 0.244 0.200 0.173 

Sample B   0.375 0.265 0.216 0.187   0.273 0.193 0.157 0.136   0.388 0.275 0.224 0.194 

Sample C   0.230 0.163 0.133 0.115   0.183 0.129 0.106 0.091   0.226 0.160 0.131 0.113 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.410 0.290 0.237 0.205   0.279 0.197 0.161 0.140   0.475 0.336 0.274 0.237 

Sample C   0.447 0.316 0.258 0.224   0.273 0.193 0.158 0.136   0.534 0.378 0.309 0.267 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.421 0.298 0.243 0.210   0.285 0.202 0.165 0.143   0.434 0.307 0.251 0.217 

Mean MDES   0.367 0.260 0.212 0.184   0.254 0.180 0.147 0.127   0.401 0.283 0.232 0.200 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 
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Table 24    

MDES Including Median SAT for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 5 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

    Sample A   0.376 0.266 0.217 0.188   0.263 0.186 0.152 0.132   0.429 0.303 0.248 0.215 

Sample B   0.382 0.270 0.220 0.191   0.262 0.185 0.151 0.131   0.437 0.309 0.252 0.218 

Sample C   0.370 0.261 0.213 0.185   0.192 0.136 0.111 0.096   0.442 0.312 0.255 0.221 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.406 0.287 0.234 0.203   0.284 0.201 0.164 0.142   0.464 0.328 0.268 0.232 

Sample C   0.408 0.289 0.236 0.204   0.256 0.181 0.148 0.128   0.488 0.345 0.282 0.244 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.325 0.230 0.188 0.163   0.239 0.169 0.138 0.120   0.343 0.243 0.198 0.172 

Mean MDES   0.378 0.267 0.218 0.189   0.249 0.176 0.144 0.125   0.434 0.307 0.251 0.217 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 

 

 



 

 

 

8
6

 

Table 25   

MDES Including Institutional Characteristics for Total CLA, Performance Task, and Analytical Writing Outcomes: Model 6 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

    Sample A   0.507 0.358 0.293 0.253   0.421 0.297 0.243 0.210   0.487 0.344 0.281 0.244 

Sample B   0.515 0.364 0.297 0.258   0.442 0.313 0.255 0.221   0.480 0.339 0.277 0.240 

Sample C   0.517 0.366 0.299 0.259   0.354 0.251 0.205 0.177   0.542 0.383 0.313 0.271 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.581 0.411 0.335 0.290   0.465 0.329 0.268 0.232   0.577 0.408 0.333 0.288 

Sample C   0.505 0.357 0.292 0.253   0.335 0.237 0.193 0.167   0.557 0.394 0.321 0.278 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.441 0.312 0.255 0.221   0.401 0.283 0.231 0.200   0.377 0.266 0.217 0.188 

Mean MDES   0.511 0.361 0.295 0.256   0.403 0.285 0.233 0.201   0.503 0.356 0.290 0.252 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 
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Table 26   

MDES Including Institutional Characteristics and Median SAT for Total CLA, Performance Task, and Analytical Writing 

Outcomes: Model 7 

    Total CLA(J)   PT(J)   AW(J) 

Sample   20 40 60 80   20 40 60 80   20 40 60 80 

Phase 1                               

     Sample A 0.320 0.227 0.185 0.160   0.231 0.164 0.134 0.116   0.367 0.259 0.212 0.183 

Sample B   0.335 0.273 0.194 0.168   0.246 0.174 0.142 0.123   0.378 0.267 0.218 0.189 

Sample C   0.363 0.257 0.210 0.182   0.129 0.091 0.074 0.064   0.435 0.308 0.251 0.218 

Phase 2                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   0.415 0.293 0.240 0.208   0.265 0.188 0.153 0.133   0.486 0.344 0.281 0.243 

Sample C   0.388 0.274 0.224 0.194   0.186 0.132 0.107 0.093   0.497 0.351 0.287 0.249 

Phase 3                               

Sample A   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample B   .. .. .. ..   .. .. .. ..   .. .. .. .. 

Sample C   0.291 0.206 0.168 0.145   0.201 0.142 0.116 0.100   0.292 0.206 0.169 0.146 

Mean MDES   0.352 0.255 0.204 0.176   0.210 0.149 0.121 0.105   0.409 0.289 0.236 0.205 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; n=student sample sizes; “..” 

indicates no values for MDES. 
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the estimate of ICC in Table 13 and R2L2 produced in Table 19. For example, MDES for the 

total CLA outcome are: 0.352, 0.255, 0.204, and 0.176 for 20, 40, 60, and 80 schools, 

respectively. 

Summary 

This chapter presented the descriptive statistics for all the sample sizes. To answer 

Question 1, the author presents the empirically estimated values of ICCs for the total CLA, 

Performance Task, and Analytical Writing outcomes. To answer Question 2-3, the author 

presented the R2 for the different covariate sets for each outcome. Finally, to answer Question 4, 

the author displayed estimates the MDES for each outcome under different sample size scenarios 

using the estimated design parameters from questions 1 and 2. In Chapter V, a summary of 

findings was presented along with the implications for the field.  
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CHAPTER V 

DISCUSSION 

 

Remarkable progress has been made in building a repository of empirical estimates of 

ICCs and R2 for student achievement outcomes in K-12 settings. However, there is still limited 

information available on these design parameters for studies focused on higher education. 

Without these design parameters, it is challenging to conduct accurate a priori power analyses. 

To that end, the main goal of the current study was two-fold: (1) to provide empirical estimates 

of ICCs and R2 to improve the planning and power analyses for researchers planning intervention 

studies focused on improving cognitive skills, (2) to demonstrate the application of these design 

parameters by assessing the MDES of a CRT design under various sample size assumptions. 

Data from longitudinal CLA tests between 2005 to 2010 were used to calculate the design 

parameters. The results from this study can directly inform researchers planning trials to identify 

the effect of cognitive skill interventions in higher education.  

Summary of Major Findings 

In this section, the author discusses the findings of design parameters and MDES from 

this study and contrast the results with existing work.  

Major Findings of ICCs 

The first ICC major finding is that the trend suggests that the ICC is largest for total 

CLA, then Performance Task, and then Analytical Writing (see Table 27). Specifically, the ICCs 

for the total CLA outcomes ranged between 0.305 and 0.353 with the mean of 0.329. This suggests 

that approximately 30.5% to 35.3% of the variance in the total CLA outcome is between schools.  
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Table 27 

ICC Range and Mean ICC for Total CLA, Performance Task 

Outcome, and Analytical Writing Outcome 

      

     Outcomes ICC Range Mean ICC 

     Total CLA 0.305-0.353 0.329 

     PT 0.194-0.228 0.271 

     AW 0.271-0.320 0.288 

Note. Performance Tasks Outcome=PT; Analytic Writing Task 

Outcome=AWT. 

 

The next largest ICCs were found in the Analytical Writing outcome, which ranged from 0.271 

to 0.320 with the mean of 0.288. This implies that between 27.1% and 32.0% of variance in the 

Analytical Writing outcome is between schools. The smallest ICCs were found in Performance 

Task outcome which ranged from 0.194 to 0.228 with the mean of 0.217. This implies that 

between 19.4 % and 22.8% of the variance in the Performance Task outcome is between schools. 

These findings related to the ICCs were consistent with the current literature on the variability 

between institutions in higher education students’ cognitive skills (Hu & Kuh, 2003; Kim, 2001; 

Kinzie, Thomas, Palmer, Umbach, & Kuh, 2007; McCormick, Kuh, Pike, & Chen, 2009; Liu, 

2009; Steedle, 2012). 

The second major finding related to ICCs is that within an outcome and sample, the ICCs 

are quite consistent across phase 1 and phase 2, though in some cases there appears to be some 

potential differences at phase 3. Note that Sample A was not applicable for this discussion as it 

was only measured during Phase 1. The author begins with Sample B. Figure 5 shows the ICCs 

for Sample B for each outcome across the two phases. Note that ICCs for Sample C in Phase 1 is 

denoted by solid blue bars and ICCs in Phase 2 is denoted by blank bars. The ICC for the total 
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CLA in Phase 1 (e.g., 0.305) is similar to the ICCs in Phase 2 (e.g., 0.330). A similar pattern was 

found in across phases for the Performance Task outcome and the Analytical Writing outcome.   

 

Figure 5. ICCs for Sample B by Phase  

Next, the author considers Sample C. In Figure 6, the ICCs for Sample C in Phase 1 is 

denoted by solid blue bars, the ICCs in Phase 2 is denoted by blank bars, and the ICCs in Phase 3 

is denoted by stripe bars. As evident in Figure 6, the ICC trend for the total CLA in Phase 1 is 

pretty stable across all three phases. That is, the ICC is 0.322 in Phase 1, 0.352 in Phase 2, and 

0.353 in Phase 3. However, the ICC trend for the Performance Task outcome trended upwards. 

That is, the ICC is 0.194 in Phase 1, 0.226 in Phase 2, and then to 0.260 in Phase 3. Further, the 

ICC trend in Analytical Writing outcome was somewhat inconsistent. That is, the ICC is 0.293 in  

 

Figure 6. ICCs for Sample C by Phase 
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Phase 1, then increase slightly to 0.320, and drops to 0.274. Some of these differences across 

phases may be a result of changes in the makeup of students over four years within a university. 

However, further qualitative analyses would be helpful to try to uncover why some of these 

differences may exist. 

Major Findings of R2 

In this section, the author summarizes the findings of the estimated values of R2
L1 (the 

proportion of the student-level variance that is predicted by a covariate) and R2
L2 (the proportion 

of the school-level variance that is predicted by a covariate) from six different covariate models.  

Student-level covariates. Table 28 compares the mean R2
L1 and mean R2

L2 from the 

models with student level covariates including Model 2 (EAA), Model 3 (Demographics only), 

and Model 4 (EAA and demographics). Overall, the EAA and demographic covariates together 

have most explanatory power. For this set of covariates, the mean R2
L1 was 0.188 and mean R2

L2 

was 0.757 in total CLA outcome; the mean R2
L1 was 0.148 and mean R2

L2 was 0.846 in Per-

formance Task outcome; and the mean R2
L1 was 0.101 and mean R2

L2 was 0.662 in Analytical 

Writing outcome. However, it is important to note that the explanatory power associated with 

EAA only was very similar. The mean R2
L1 was 0.175 and mean R2

L2 was 0.726 in total CLA 

outcome; the mean R2
L1 was 0.141 and mean R2

L2 was 0.838 in Performance Task outcome; and 

the mean R2
L1 was 0.090 and mean R2

L2 was 0.591 in Analytical Writing outcome. This suggests 

that the inclusion of EAA is the key driver in reducing variation, not the inclusion of the demo-

graphics. This is further confirmed by the fact that the explanatory power of the demographics 

alone was much smaller. Specifically, the mean R2
L1 was 0.039 and mean R2

L2 was 0.367 in total 

CLA outcome; the mean R2
L1 was 0.028 and mean R2

L2 was 0.383 in Performance Task 

outcome; and the mean R2
L1 was 0.025 and mean R2

L2 was 0.357 in Analytical Writing outcome. 
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Collectively, R2 range is closely to published variance Steedle (2012); 0.03-0.06 (R2
L1). 0.87-

0.95(R2
L2). 

Table 28       

Mean R2 Based on Student-Level Covariates   

                  

  Total CLA   PT   AW 

Models 
Mean 

R2
L1  

Mean 

R2
L2    

  
Mean 

R2
L1  

Mean 

R2
L2  

  
Mean 

R2
L1  

Mean 

R2
L2  

Model 2(EAA) 0.175 0.726   0.141 0.838   0.090   0.591 

Model 3(Demographic) 0.039 0.367   0.028 0.383   0.025 
  0.357 

 

Model 4(EAA and demographic) 0.188 0.757   0.148 0.846   0.101   0.662 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome. 

 

This finding is very similar to the K-12 literature which reveals similar trends which 

suggest that the pretest explains much more variance in the outcome than demographic 

characteristics. 

School-level covariates. Table 29 summarizes the findings from the models that only 

include school level variables. Note that the values of R2 L1 are zero given the fact that these are 

school level covariates and hence they cannot reduce variation at the student level (Bloom et al., 

2005).  

The most effective covariates for explaining variation in the outcome were from Model 7 

(median SAT and institutional covariate model). When considering median SAT and institutional 

characteristics, the mean R2
L2 was 0.789 for the total CLA outcome, 0.906 for the Performance 

Task, and 0.661 for the Analytical Writing, respectively.  However, similar to the findings for the 

student level covariates, Model 5 (median SAT) which is a proxy for a pretest, yielded similar 

R2
L2 values. The mean R2

L2 was 0.751 for the total CLA outcome, 0.857 for the Performance 



94 

 

 

Task, and 0.620 for the Analytical Writing. Model 3 (institutional covariates only) explained the 

least amount of variance with a mean R2
L2 was 0.525 for the total CLA outcome, 0.567 for the 

Performance Task, and 0.475 for the Analytical Writing. These findings suggest that the inclusion 

of median SAT is more important in explaining variance in these outcomes than institutional 

characteristics, which is similar to the findings from the student level covariates in K-12 

literature.   

Table 29 

Mean R2 Based on School-Level Covariates 

   
  Total CLA   PT   AW 

Models  
Mean 

R2
L2    

   Mean 

R2
L2  

   
Mean 

R2
L2  

Model 5(Median SAT)   0.751    0.857    0.620 

Model 6(Institutional)  0.525    0.567    0.475 

Model 7 (Median SAT and 

Institutional) 
 0.789    0.906    0.661 

Note. PT=Performance Task outcome; AW=Analytical Writing outcome.  

 

In conclusion, covariates at both the student and/or school levels have advantages in 

reducing the within and between school variance of students’ outcomes. The findings from this 

study are consistent with past research in K-12 that using a pre-test at either the student or school 

level can explain a larger proportion of the outcome variance and hence dramatically increase the 

precision of a study (Bloom, et al., 1999; Bloom et al., 2005; Hedges & Hedberg, 2007). A 

school level covariate, such as median SAT is often readily available from the IPEDS website 

which will make it much easier and cost-effective to obtain than a student level pretest. Given 

that the explanatory power of median SAT is similar at the school level to the explanatory power 

of a student level pretest and the fact that reducing the variance at the school level is critical in 
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increasing the precision of a study, the median SAT is likely a good choice to include in a model. 

Student level demographics and school-level institutional characteristics can also help explain 

variance in the outcomes, though they do not tend to be as powerful as the pretests.     

Major Findings of MDES 

This section discusses the findings of MDES based on corresponding design parameters 

reported above for each outcome. Table 30 compares the summary of mean MDESs for the 

seven models arranged in a low-to-high order. Recall that the smaller the MDES, the more 

precise of an estimate of the treatment effect of a CRT study is. As can be seen in Table 29, the 

precision of a CRT study is improved substantially by including median SAT and institutional 

variables, EAA and demographic composite or median SAT alone, which can reduce variance in 

all the three outcomes.   

To summarize, the MDES calculations in this study revealed the following. In the case 

that no covariates are available and assuming 100 individuals per university, 80 total schools 

were necessary to yield a MDES in the range of 0.302 to 0.369 across the three outcomes. The 

inclusion of covariates, in particular either the student or school level pretest, greatly reduced the 

variance in the outcomes and thus increase the power of the study to detect a treatment effect. 

For example, the MDES ranged from 0.105 to 0.295 across the three outcomes for a total of 80 

clusters. This represents great gains in precision from the case without covariates which further 

strengthens arguments for the importance of including covariates in planning CRTs to test the 

impact of higher education interventions. 
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Table 30             

Mean MDES (low-high order) By Models  

  Total CLA  PT   AW  

  J     J    J  

Model 20 40 60 80 20 40 60 80 20 40 60 80 

Model 7 (median SAT and 

institutional characteristics) 

0.352 0.255 0.204 0.176 0.210 0.149 0.121 0.105 0.409 0.289 0.236 0.205 

Model 4 (EAA and 
Demographics) 

0.367 0.260 0.212 0.184 0.254 0.180 0.147 0.127 0.401 0.283 0.232 0.200 

Model 5 (median SAT) 0.378 0.267 0.218 0.189 0.249 0.176 0.144 0.125 0.434 0.307 0.251 0.217 

Model 2 (EAA) 0.394 0.279 0.227 0.197 0.261 0.184 0.151 0.131 0.449 0.318 0.260 0.225 

Model 6 (Institutional 
characteristics) 

 0.511 0.361 0.295 0.256  0.403  0.285  0.233  0.201  0.503  0.356  0.290  0.252 

Model 3(Demographics) 0.590 0.417 0.340 0.295 0.481 0.340 0.278 0.241 0.556 0.393 0.321 0.278 

Model 1(ANOVA) 0.738 0.522 0.426 0.369 0.604 0.427 0.349 0.302 0.692 0.489 0.400 0.346 

Note . PT=Performance Task outcome; AW=Analytical Writing outcome; J=school sample size; “..” indicates no values for 

MDES. 
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Implications of the Study Findings 

Recently, higher education has placed a premium on rigorous research to test the impact 

of educational interventions. This may be due in part to concerns about a deficiency of high-

quality evidence of the effectiveness of pedagogical approaches and curriculum redesign to 

improve undergraduate students’ cognitive skills (Dehar-Horenstein & Liu, 2011; Tiruneh, 

Verburgh & Elen, 2013). In response to the call, the author anticipates that there will be an 

increase in the design of CRTs to test interventions designed to improve undergraduates’ 

cognitive skills and it is critical that these CRTs are designed with adequate power to detect a 

meaningful treatment effect.  

To design such an impact research of cognitive skill interventions, one must use estimates 

of design parameters to calculate the MDES. The goal of this study is to provide relevant esti-

mates of these design parameters. For example, suppose a team of researchers are planning a 

CRT to test the impact of an intervention cognitive skill using the total CLA outcome, the 

researchers need an estimate of the ICC and relevant R2 of the total CLA to conduct the power 

analysis. Further, imagine that they plan to use median SAT as a covariate to increase the 

precision of the estimate. If they have 100 students per university and either 20, 40, 60, or 80 

total universities in their study, they could go directly to the Table 29 in this dissertation to 

determine the MDES: 0.378, 0.267, 0.218, and 0.189, respectively. However, it is often the case 

that they will have a different number of total universities. In that case, they could use the design 

parameters in Table 13-19 in this dissertation to estimate the ICC and R2. Then they could go to 

PowerUp! or any other statistical power software to compute the MDES. It is also important to 

note that the computed MDES must then be examined to determine if it is reasonable. In K-12, 

the literature suggests that it is often reasonable to design a CRT to test an intervention aimed at 
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improving academic outcomes to detect an effect size of 0.20. Whereas in higher education 

literature, it is plausible to design a CRT to test an intervention aimed at improving cognitive 

skills to detect an effect size depending on measures and treatment intensity (Arum, Roksa, & 

Cho, 2011; Huber et al., 2016; Niu, Behar-Horenstein, & Garven, 2013; Ortiz, 2007; Pascarella 

&Terenzini, 2005; Pascarella, Blaich, Martin, & Hanson, 2011).  

Limitations and Delimitations 

To my knowledge, this is the first compilation of empirically estimated values of ICCs 

and R2 for cognitive skill outcomes for students in higher education. Although the findings from 

the study are useful for specific contexts, it is important to consider the limitations of the findings.  

First, ICCs are sensitive to specific samples hence researchers should think carefully 

about whether the samples in the studies they are planning are similar (Kelcey & Phelps, 2013). 

In this study, the sample are four-year, not-for-profit colleges and universities. Therefore, it is 

upon researchers to consider carefully to what extent the samples involved in the CRT they are 

planning are similar to those in this study.  

The second limitation is that the outcomes in this study are limited to the cognitive skills 

domain. As we know from the K-12 literature, the empirical estimates of design parameters may 

not transfer to other outcome domains for several reasons. First, ICCs for Performance Task, 

Analytical Writing, and the total CLA outcomes vary by samples, domain, and phases. For 

example, the reported Performance Task ICC is 0.197 (see Table 13) for Sample B in Phase 1, and 

0.228 for Sample B in Phase 3. The slight difference could have an influence on sample sizes.  

A third limitation is that due to high attrition in the longitudinal study dataset, many 

student records in Phase 2 and 3 were not available for analysis, which potentially introduces a 

certain amount of bias in the design parameters results. Sensitivity analyses were performed to 
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assess the robustness of the ICCs results based on primary analyses of data. The results suggest 

that the missing data did not bias the results, but it should be noted that there were large amounts 

of missing data in Phase 2 and 3.  

The last limitation lies in the choice of covariates. The choice of covariates was limited to 

those that were included in the CLA dataset or the IPEDS dataset hence other covariates that 

may have explained variation in the outcome, such as HSGPA, one-year lagged CLA tests as 

pretests, interaction with faculty, and motivations, just name a few.  

The study also has delimitation bounds. The focus of this study was on the use of the 

estimated design parameters to plan two-level CRTs but results also can apply to two-level 

quasi-experimental designs (Spybrook, Westin, &Taylor, 2013). Although for the MDES 

calculations also focused on balanced designs, or an equal number of clusters per conditions, the 

calculations could also be extended to unbalanced designs. The design parameters could also be 

used to help plan another type of CRT design, a two-level blocked CRT design (Level 2 is the 

unit of random assignment) (Konstantopolous, 2012; Dong, et al., 2016).  

Recommendations for Future Research 

This study serves as the beginning of a compendium of design parameters for planning 

impact studies focusing on cognitive skill intervention in higher education. But it is important to 

recognize that several steps are necessary to help advance the progress of experimental studies in 

this area for future research. 

First, as suggested by Niehaus et al. (2013), researchers in higher education should also 

report ICCs and percentage of variance explained from covariate sets at each level as part of 

routine practice. Specifically, researchers are advised to report from three dimensions as the 

CONSORT guideline developed by Campell et al. (2004): (1) description of the datasets and 
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outcomes; (2) information on the calculation of ICCs; and (3) information on the precision of 

ICCs. This will help the design parameter database in higher education to continue to expand. 

Beyond that, publishing effect sizes to help researchers assess whether an MDES is reasonable or 

not is also important.  

Second, researchers are encouraged to continuously add to the design parameters 

database in higher education by expanding to other outcomes and populations. For example, 

other outcome measures may include the Watson–Glaser Critical Thinking Appraisal (WGCTA, 

Watson & Glaser, 1980) and Cornell Critical Thinking Tests (CCTT, Ennis & Millman, 1985), 

and California Critical Thinking Skills Test (CCTST, Facione, 1990a). The WGCTA, CCTT, 

and CCTST also target other types of populations including psychology and nursing students. 

Expanding to other outcomes and populations would help expand the use of the database as it 

would make it more relevant for other types of interventions that are often tested in higher 

education including various forms of discussion (Daud & Husin, 2004; Elliot et al., 2001; 

Garside, 1996; Stark, 2012; Szabo & Schwartz, 2011; Yang & Chou, 2008), concept maps and 

argument diagrams (Bonk & Smith, 1998; Lee, et al.,  2011; Wheeler & Collins, 2003;Van 

Gelder, 2005), and Problem Based Learning (Bonk & Smith, 1998; Norman & Schmidt, 2000; 

Schmidt, 1983), among others.  

Third, future studies can extend ICCs and R2 for studies with more than two levels of 

nesting. For example, previous studies have found that fields of study in college differ in degree 

to which they contribute to growth in reasoning and communication skills as measured by the 

CLA test (Arum & Roksa, 2008; Klein et al, 2008; Shavelson, 2009; Steedle & Bradley, 2012). 

Thus, the design parameters in cognitive skill domain can extend to a three-level models (students 

nested in fields of study, fields of study nested in institutions). In addition, undergraduate students 
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may be nested within sub-clusters within universities. These sub-clusters may be first-year 

seminars and experience, writing intensive courses, learning communities, etc., which are 

designed to improve student academic outcomes through “high impact practices or programs” 

(Austin, 1993; Kuh, 2008). Hence, it also extends this work to estimate design parameters for 

three level studies with students nested within seminars or courses that are nested within 

universities would be useful. 

As the increased interests in documenting design parameters for planning CRTs 

expanded to international level dataset such as Asian countries (Zopluoglu, 2012), Sub-Saharan 

Africa (Kelcey, Shen, & Spybrook, 2016), and Program for International Student Assessment 

(PISA) dataset covering as extensive as 81 countries (Brunner, Keller, Wenger, Fischbach & 

Lüdtke , 2017), further studies may consider generating design parameters from the datasets of 

multi-national Assessment of Higher Education Learning Outcomes (AHELO) Feasibility Study 

undertaken by the Organization for Economic Co-operation and Development (OECD). More 

efforts are encouraged to continuously add to the CLA design parameters database by expanding 

to other populations and settings to benefit researchers in other countries when coming to 

conduct impact study relevant to cognitive skills interventions. 

Summary 

This study was motivated by the call to use RCTs to conduct rigorous evaluations of 

interventions and programs in higher education. The study empirically estimates ICCs and the 

percent of variance explained by student and school-level covariates on the total CLA, 

Performance Task, and Analytical Writing outcomes using the CLA data. Researchers planning 

CRTs to test the efficacy of interventions aimed at increasing these types of outcomes can use 

the empirical estimates provided in this study to conduct a priori power analyses. This study 
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represents a beginning of a collection of design parameters relevant to higher education and 

extending this work to other outcome domains relevant to higher education would be useful.  
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