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This	study	focused	on	developing	early	warning	systems	for	two	types	of	

geohazards	using	methods	that	heavily	rely	on	remote	sensing	data.	The	first	investigation	

attempted	to	develop	a	prototype	version	of	an	early	warning	system	for	landslide	

development,	whereas	the	second	focused	on	harmful	algal	bloom	prediction.	

Construction	of	intensity-duration	(ID)	thresholds,	and	early	warning	and	

nowcasting	systems	for	landslides	(EWNSL)	are	hampered	by	the	paucity	of	temporal	and	

spatial	archival	data.	This	work	represents	significant	steps	towards	the	development	of	

prototype	EWNSL	to	forecast	and	nowcast	landslides	over	Faifa	Mountains	in	the	Red	Sea	

Hills.	The	developed	methodologies	rely	on	temporal,	readily	available,	archival	Google	

Earth	and	Sentinel-1A	imagery,	precipitation	measurements,	and	limited	field	data	to	

construct	an	ID	threshold	for	Faifa.		Adopted	procedures	entailed	the	generation	of	an	ID	

threshold	to	identify	the	intensity	and	duration	of	precipitation	events	that	cause	

landslides	in	the	Faifa	Mountains,	and	the	generation	of	pixel-based	ID	curves	to	identify	

locations	where	movement	is	likely	to	occur.	Spectral	and	morphologic	variations	in	

temporal	Google	Earth	imagery	following	precipitation	events	were	used	to	identify	

landslide-producing	storms	and	to	generate	the	Faifa	ID	threshold	(I	=	4.89*D−0.65).	

Backscatter	coefficient	variations	in	radar	imagery	were	used	to	generate	pixel-based	ID	

curves	and	to	identify	locations	where	mass	movements	are	likely	to	occur	following	



landslide-producing	storms.	These	methodologies	accurately	distinguished	landslide-

producing	storms	from	non–landslide	producing	ones	and	identified	the	locations	of	these	

landslides	with	an	accuracy	of	60%.	

Over	the	past	two	decades,	persistent	occurrences	of	harmful	algal	blooms	(HAB;	

Karenia	brevis)	have	been	reported	in	Charlotte	County,	southwestern	Florida.	I	developed	

data-driven	models	that	rely	on	spatiotemporal	remote	sensing	and	field	data	to	identify	

factors	controlling	HAB	propagation,	provide	a	same-day	distribution	(nowcasting),	and	

forecast	their	occurrences	up	to	three	days	in	advance.	I	constructed	multivariate	

regression	models	using	historical	HAB	occurrences	(213	events	reported	from	January	

2010	to	October	2017)	compiled	by	the	Florida	Fish	and	Wildlife	Conservation	

Commission	and	validated	the	models	against	a	subset	(20%)	of	the	historical	events.	The	

models	were	designed	to	capture	the	onset	of	the	HABs	instead	of	those	that	developed	

days	earlier	and	continued	thereafter.	A	prototype	of	an	early	warning	system	was	

developed	through	a	threefold	exercise.	The	first	step	involved	the	automatic	

downloading	and	processing	of	daily	Moderate	Resolution	Imaging	Spectroradiometer	

(MODIS)	Aqua	products	using	SeaDAS	ocean	color	processing	software	to	extract	

temporal	and	spatial	variations	of	remote	sensing-based	variables	over	the	study	area.	

The	second	step	involved	the	development	of	a	multivariate	regression	model	for	same-

day	mapping	of	HABs	and	similar	subsequent	models	for	forecasting	HAB	occurrences	

one,	two,	and	three	days	in	advance.	Eleven	remote	sensing	variables	and	two	non-remote	

sensing	variables	were	used	as	inputs	for	the	generated	models.	In	the	third	and	final	step,	

model	outputs	(same-day	and	forecasted	distribution	of	HABs)	were	posted	automatically	

on	a	web	map.	Our	findings	include:	(1)	the	variables	most	indicative	of	the	timing	of	



bloom	propagation	are	bathymetry,	euphotic	depth,	wind	direction,	sea	surface	

temperature	(SST),	ocean	chlorophyll	three-band	algorithm	for	MODIS	[chlorophyll-a	

OC3M]	and	distance	from	the	river	mouth,	and	(2)	the	model	predictions	were	90%	

successful	for	same-day	mapping	and	65%,	72%	and	71%	for	the	one-,	two-	and	three-day	

advance	predictions,	respectively.	The	adopted	methodologies	are	reliable	at	a	local	scale,	

dependent	on	readily	available	remote	sensing	data,	and	cost-effective	and	thus	could	

potentially	be	used	to	map	and	forecast	algal	bloom	occurrences	in	data-scarce	regions.	
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CHAPTER	1	

INTRODUCTION	

Natural	disasters	are	common	in	many	parts	of	the	world	and	it	causes	loss	of	

property	and	life.	In	this	study,	I	attempted	to	address	two	types	of	natural	hazards,	

landslides	and	algal	blooms.	Specifically,	I	wanted	to	develop	methodologies	by	which	

the	negative	impacts	of	such	events	could	be	reduced.		I	accomplished	that	by	first	

studying	the	historical	events	and	then	used	that	understanding	to	predict	the	future	

occurrences	(temporarily	and	spatially)	of	these	geohazards.	I	selected	two	such	

geohazards	for	which	the	knowledge	from	the	past	can	be	used	to	develop	the	

predictive	framework.	The	two	geohazards	chosen	for	this	study	were	landslides	in	the	

Faifa	Mountains	in	Jazan	province	of	Saudi	Arabia	and	the	harmful	algal	blooms	in	the	

coastal	waters	of	Charlotte	County	in	Florida.		

The	development	of	predictive	models	demands	the	use	of	extensive	historical	

field	data.	Unfortunately,	in	both	of	our	study	areas,	the	wealth	of	relevant	field	

datasets	that	is	needed	to	develop	such	forecasting	systems	does	not	exist.	To	

compensate	for	the	lack	of	relevant	datasets,	I	used	a	wide	range	of	remote	sensing	

data	sets.	There	are	many	benefits	of	using	remote	sensing	data.	These	include:	

acquisition	of	data	with	the	same	observational	parameters	(data	consistency),	wide	

geographic	coverage,	and	cost-effectiveness	(compared	to	field	data	collection).		

Throughout	my	studies,	I	demonstrate	that	although	field	data	is	an	integral	part	of	

research	for	validation	and	testing	purpose,	remote	sensing	data	can	be	used	to	

compensate	for	the	lack	of	field	data	to	develop	predictive	models.			
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I	studied	landslides	in	Faifa	Mountains	to	develop	the	prototype	version	of	early	

warning	system	in	Saudi	Arabia.	For	this	study,	I	used	the	combination	of	Google	Earth	

imagery	and	radar	data	(Sentinel-1A)	to	acquire	information	pertaining	to	historical	

landslides	data.	Similarly,	I	used	rainfall	data	from	satellite	to	compensate	for	the	lack	

of	consistent	rain	gauge	rainfall	data.	For	the	study	on	harmful	algal	blooms,	I	used	the	

daily	acquisition	of	satellite	data	collected	by	Moderate	Resolution	Imaging	

Spectroradiometer	(MODIS)	to	extract	temporal	variables	(factors)	that	cause	the	onset	

of	algal	blooms	in	the	Charlotte	bay.		In	this	research	work	I	develop	two	semi-

automated	modules	for	two	early	warning	systems	that	heavily	rely	of	readily	available	

remote	sensing	data	and	limited	field	data;	the	two	techniques	provide	replicable	

models	to	be	applied	in	similar	settings	elsewhere	with	minimal	customization.		
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CHAPTER	2	

PROJECT	I	

2.1 Introduction	
	

Mountainous	areas	worldwide	with	steep	slopes,	high	precipitation,	and	limited	

vegetative	cover	often	experience	landslides.	Two	main	types	of	landslides	are	often	

reported	from	Faifa	Mountains	in	Saudi	Arabia.	The	first	are	debris	flows	that	occur	

when	water-saturated	soils	(largely	from	weathered	bedrock	and	fragmented	rock)	

move	down	mountainsides,	get	channelled	into	streams,	pick	up	objects	along	their	

paths,	and	deposit	their	thick	load	down	the	valley	slopes	(Iverson,	1997).	The	second	

type	results	from	failure	along	preexisting	fracture	planes	(Lowell,	1990)	that	occurs	

when	the	following	conditions	are	met	(Norrish	and	Wyllie,	1996):	(1)	the	strike	of	the	

planer	discontinuity	is	similar	(within	20°)		to	the	strike	of	the	slope	face,	(2)	the	dip	of	

the	planer	discontinuity	is	less	than	that	of	the	slope	face	and	oriented	in	the	same	

general	direction,	(3)	the	dip	of	the	planer	discontinuity	is	greater	than	the	angle	of	the	

friction	of	the	surface,	and	(4)	the	friction	angle	of	the	rock	material	is	partially	

controlled	by	the	size	and	shape	of	the	grains	exposed	on	the	fracture	surface	and	by	

the	mass	of	the	block	above	the	planer	discontinuity	(Alharbi	et	al.,	2014).	These	two	

types	of	landslides	pose	a	substantial	threat	to	human	life	and	property	in	mountainous	

areas,	especially	in	populated	regions	that	are	witnessing	unplanned	urbanization.		

One	such	area	is	the	Faifa	Mountains	(area:	119	km2)	in	the	Jazan	Province	of	

Saudi	Arabia	(Fig.	1a).	The	population	density	in	Faifa	is	high	(~35,000	inhabitants	in	

137	km2;	MMRA,	2017),	receives	relatively	high	precipitation	(mean	annual	
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precipitation	[MAP]:	252	mm/year;	Fig.	1b)	compared	to	the	remaining	parts	of	Saudi	

Arabia	(83	mm),	has	steep	slopes	(up	to	65°,	Fig.	2b),	and	witnesses	frequent	landslide	

occurrences	(1–4	events/year	during	the	study	period	[2007	to	2017]).	Unfortunately,	

monitoring	programs	for	landslide	occurrences	(date	and	time)	and	conditions	

(intensity	and	duration	of	precipitation)	are	very	limited	in	Faifa.	If	such	programs	

existed,	they	would	have	generated	the	archival	landslide	data	needed	for	the	

construction	of	intensity-duration	(ID)	relationships	and	for	the	development	of	an	early	

warning	and	nowcasting	system	for	landslides	(EWNSL).	The	paucity	of	such	data	in	

Faifa	is	largely	caused	by	its	rugged	nature	and	its	limited	road	network	coverage;	both	

factors	rendered	many	areas	inaccessible	and	hindered	the	development	of	monitoring	

systems.	Despite	the	absence	of	organized	monitoring	programs	for	landslides	in	the	

study	area,	a	few	were	recorded	by	the	Saudi	Geological	Survey	(SGS)	in	the	past	few	

years.	Our	field	observations,	and	those	collected	by	the	SGS	in	the	study	area	and	in	its	

surroundings	(Youssef	et	al.,	2014)	revealed	that	debris	flows	are	by	far	the	most	

prominent	landslide	type	in	the	study	area.	To	compensate	for	the	deficiencies	in	field	

data	in	Faifa,	I	complemented	the	available	field	data	with	observations	extracted	from	

readily	available	temporal	remote	sensing	data.	These	include	high-resolution	Google	

Earth	images	(spatial	resolution:	15	m	to	15	cm),	Sentinel-1A	Ground	Range	Detected	

(GRD	level-1	Synthetic	Aperture	Radar	(SAR)	data;	spatial	resolution:	10	m),	satellite-

based	precipitation	data	including	Tropical	Rainfall	Measuring	Mission	(TRMM,	3-

hourly_3B42	v7,	spatial	resolution:	0.25°x	0.25°,	~	30	km	in	Faifa	)	and	Global	

Precipitation	Measurement	(GPM)	IMERG	Final	Precipitation	L3	Half	Hourly	(V05,	

spatial	resolution:	0.1°	x	0.1°,	~	12	km	in	Faifa),	and	a	high-resolution	digital	elevation	
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model	(TanDEM-X	DEM;	spatial	resolution:	12	m).	Although	GPM	provided	higher	

temporal	resolution	(half-hourly)	data	compared	to	TRMM	(3-hourly)	data,	both	

sensors	provided	rainfall	intensity	data	in	mm/h	allowing	continuous	measurements	of	

rainfall	with	consistent	observational	parameters	and	acceptable	(~67%)	to	high	(87%)	

correlation	at	pixel	and	basin	scale	respectively	(Tang	et	al.,	2016).	Field	observations	

were	collected	(period:	2014	to	2016)	from	the	areas	that	witnessed	landslides	

following	precipitation	events.	In	this	manuscript,	I	develop	procedures	that	take	

advantage	of	readily	available	remotely	acquired	data,	and	limited	field	data,	to	develop	

ID	thresholds	for	the	study	area,	procedures	that	could	potentially	be	applied	to	similar	

areas	with	limited	field	data.		

A	recent	review	by	Segoni	et	al.	(2018)	shows	that	the	majority	of	the	ID-

threshold	development	studies	were	conducted	over	well-monitored	areas	where	

landslide-related	archival	data	are	available	from	reports,	surveys,	field	works	sets	

(e.g.,	Burtin	et	al.	2009;	Erener	and	Düzgün,	2013;	Staley	et	al.,	2013;	Lagomarsino	et	

al.,	2015;	Vallet	et	al.,	2016;	Piciullo	et	al.,	2017),	or	even	from	automatic	systems	

(Battistini	et	al.,	2017).	In	these	areas,	several	advanced	thresholding	techniques	(e.g.,	

geotechnical	process-based,	empirical,	and	rainfall	measurement-based)	are	common	

(Guzzetti	et	al.,	2007).		Unfortunately,	Faifa	lacks	the	historical	landslides	archives	and	

rain	gauge	measurements	to	implement	any	of	these	thresholding	techniques.	Using	

observation	from	limited	field	data	and	satellite-based	data	sets	(e.g.,	intensity	and	

duration	of	precipitation,	location	of	landslides),	I	developed	rainfall-based	ID	

thresholds.	In	this	respect,	our	approach	does	not	require	extensive	archival	field	data	

sets	to	generate	ID	thresholds	and	thus,	the	approach	could	potentially	be	applied	in	
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many	of	the	world’s	mountainous	locations	lacking	adequate	archival	field	data.			

	 The	majority	of	the	ID	thresholds	that	were	constructed	for	various	landslide	

types	(e.g.,	shallow	landslides	and	debris	flow	[Caine,	1980;	Innes,	1983,	Crosta	and	

Frattini,	2001;	Aleotti,	2004;	Jakob	et	al.,	2012];	soil	slips	[Clarizia	et	el.,	1996],	and	

postfire	debris	flow	[Cannon	and	Gartner,	2005;	Cannon	et	al.,	2011])	provide	the	

magnitude	and	intensity	of	rainfall	that	triggers	landslides,	but	not	the	locations	where	

they	are	likely	to	occur.	I	generated	a	unified	ID	threshold	for	the	Faifa	Mountains	to	

identify	the	landslide	triggering	precipitation	events	and	pixel-based	thresholds	to	

identify	locations	where	landslides	are	likely	to	occur.	The	pixel-based	threshold	is	

adjusted	to	the	response	of	the	individual	pixels	to	historical	rainfall	events.		

Several	advances	in	rainfall	thresholding	techniques	were	developed	to	account	

for	the	role	of	antecedent	rainfall	conditions	preceding	landslide	development	(e.g.,	Kim	

et	al.,	2014,	Hong	et	al.,	2017).	Others	consider	software	applications	that	rely	on	rain	

gauge	records,	extensive	historical	data	catalogue	or	advance	statistical	analyses	(e.g.,	

Lagomarsino	et	al.,	2015;	Peruccacci	et	al.,	2017;	Rossi	et	al.,	2017b).		Such	techniques	

cannot	be	applied	in	the	Faifa	area	due	to	the	absence	of	such	measurements,	instead	I	

adopt	the	minimum	thresholding	technique	that	was	successfully	applied	in	several	

studies	(e.g.,	Caine,	1980;	Larsen	and	Simon,	1993;	Cannon	et	al.,	2008;	Brunetti	et	al,	

2010;	Berti	et	al.,	2012).	I	acknowledge	that	if	and	once	such	data	sets	become	available	

for	Faifa,	the	ID	thresholds	need	to	be	updated	to	enhance	their	performance	(Rosi	et	al.,	

2015).		
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Figure	1.	Location	of	the	study	area.	(a)	Faifa	Mountains	within	the	Jazan	province.	(b)	

Mean	annual	precipitation	(MAP;	1998–2016)	extracted	from	TRMM	(1998–2014,	

3B43	level-3,	monthly,	spatial	resolution:	0.25°x	0.25°)	and	GPM	(2014–2016,	IMERG	

level-3,	monthly,	spatial	resolution:	0.1°	x	0.1°0)	showing	the	higher	regional	rainfall	

around	Faifa	Mountains	(MAP	in	Faifa:	252	mm/year)	in	the	southeast	part	of	the	Jazan	

Province.		(c)	Distribution	map	of	the	meteorological	stations	in	the	Arabian	Peninsula	

(Mashat	and	Basset,	2011)	in	Saudi	Arabia.	

	

2.1.1 Study	area	
	

The	study	area	(119	km2)	lies	within	the	Red	Sea	Hills,	and	covers	an	area	

(17.20°	N	to	17.29°	N	and	from	43.05°	E	to	43.16°	E)	proximal	to	the	Saudi-Yemeni	

border	(Figs.	1a	and	1c).	The	elevation	is	high	(range:	259	to	1817	meters	above	mean	

sea	level	[m.a.m.s.l])	compared	to	the	surrounding	lowlands,	the	topography	is	steep	

(slope	as	high	as	67º;	Figs.	2a	and	2b),	and	vegetation	is	extensive	over	the	mountains	

but	sparse	in	the	surrounding	lowlands,	as	shown	in	the	normalized	difference	

vegetation	index	(NDVI)	map	(Fig.	2c).	The	Faifa	region	is	located	within	the	north	to	
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northeast	trending	Tayyah	tectonic	belt	that	consists	of	a	complex	of	metamorphosed	

volcanic	and	pyroclastic	rocks	of	basaltic,	andesitic,	and	clastic	metasedimentary	rocks	

(Greenwood	et	al.,	1983)	that	were	generated	and	accreted	in	an	island	arc	setting	

some	800	to	900	Ma	(Stoeser	and	Camp,	1985).	The	Faifa	Mountains	are	predominantly	

composed	of	highly	foliated,	deformed,	and	weathered	rocks	of	variable	compositions	

including	granite	gneiss,	amphibolite	schist,	phyllite,	quartzite,	biotite	and	sericitic	

schist	that	are	intruded	by	a	massive	intergranular	syenite	(Schmidt	et	al.,	1973;	

Greenwood,	1979;	Greenwood	et	al.,	1983;	Alharbi	et	al.,	2014).	The	area	is	highly	

dissected	by	north-south,	northwest-southeast,	and	east-west	trending	fault	and	

fracture	systems	(Fairer,	1985;	Alharbi	et	al.,	2014;	Fig.	2d).	The	presence	of	highly	

weathered,	foliated,	and	deformed	rocks,	together	with	the	high	elevations,	steep	

slopes	and	sparse	vegetation	makes	this	area	prone	to	landslides	even	under	modest	

precipitation	intensities.				
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Figure	2.	Maps	showing	the	study	area.	(a)	Elevation	map	showing	locations	where	

field	observations	were	collected	for	the	period	extending	from	February	26th	to	

March	7th,	2016.	(b)	Slope	map	generated	from	TanDEM-X	DEM.	(c)	NDVI	map	

generated	from	Sentinel-2	data	(date	of	acquisition:	2017-06-05).	(d)	Geologic	map	for	

the	Faifa	Mountains	(after	Fairer,	1985	and	Alharbi	et	al.,	2014).	
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Analysis	of	TRMM	(1998-	2014)	and	GPM	(2014-2016)	measurements	for	the	

period	1998	to	2016	revealed	sparse	precipitation	over	the	Saudi	Arabian	landscape	

(MAP:	83	mm/year),	relatively	higher	precipitation	over	the	Red	Sea	Hills	in	western	

Saudi	Arabia,	which	receive	relatively	higher	MAP	of	108	mm/year.	These	analyses	

involved	spectral	resampling	of	GPM	data	to	match	the	TRMM	resolution	followed	by	

the	zonal	and	pixelwise	averaging	over	the	indicated	time	span.	Comparison	of	TRMM	

to	the	resampled	and	averaged	GPM	measurements	over	the	study	area	revealed	highly	

correlated	(>85%)	values	during	the	period	of	overlap	(March	to	September	of	2014).		

A	progressive	increase	in	overall	rainfall	over	Faifa	was	noted	over	the	past	six	years	

(MAP:	2010–2016:	315	mm/year;	1998–2009:	227	mm/year)	with	the	wettest	year	on	

record	in	2016	(total	annual	rainfall:	450	mm).	Two	systems	of	wind	regimes	are	

responsible	for	the	rainfall	over	Faifa:	(1)	northerly	and	northwesterly	winter	cyclonic	

regimes	from	the	Mediterranean,	and	(2)	summer	monsoons	from	the	Arabian	Gulf	and	

the	Indian	Ocean	(Alsharhan	et	al.,	2001).	

	

2.2	Methods	

	 The	methodology	I	developed	entailed	two	main	steps.	The	ID	curve	for	the	Faifa	

Mountains	was	first	generated	to	identify	storms	that	caused	landslides	(temporal	

analysis;	Sect.	2.1),	and	then	pixel-based	ID	curves	were	constructed	to	identify	the	

locations	where	movement	is	likely	to	occur	(spatial	analysis,	Sect.	2.2–2.4).	The	latter	

step	involved:	(1)	selection,	calibration,	and	pre-processing	of	radar	images;	(2)	

generation	of	backscatter	coefficient	difference	images	as	a	measure	of	surface	

roughness	change	due	to	precipitation-induced	landslides;	and	(3)	development,	
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refinement,	and	validation	of	the	model	to	identify	pixels	susceptible	to	movement	

under	user-defined	precipitation	conditions.		

Data	used	for	the	study	include:	(1)	Temporal	Google	Earth	imagery,	(2)	Sentinel-

1A	radar	imagery;	(3)	TRMM	and	GPM;	(4)	field	observation	of	landslide	(debris	flow	

and	failure	along	fracture	plane)	locations;	and	(5)	the	TanDEM-X	DEM.	A	detailed	flow	

chart	is	presented	in	Fig.	3.	
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Figure	3.	Flow	chart	summarizing	the	developed	methodology	that	could	serve	as	

important	steps	towards	the	construction	of	an	EWNSL.	The	developed	procedures	
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involved	the	analysis	of	temporal	Google	Earth	images,	Sentinel-1A	radar	scenes,	and	

TRMM	and	GPM	rainfall	data.	Analysis	involved	two	main	steps:	generation	of	an	ID	

curve	for	the	Faifa	Mountains	to	identify	storms	that	are	likely	to	produce	landslides	

(landslide-producing	storms),	and	generation	of	pixel-based	ID	curves	to	identify	the	

locations	where	movement	is	likely	to	occur	during	landslide-producing	storms.	Step	II	

involved:	(1)	selection,	calibration,	and	pre-processing	of	radar	images,	(2)	generation	

of	backscatter	coefficient	difference	images	as	a	measure	of	surface	roughness	change	

due	to	precipitation-induced	landslides	and,	(3)	development,	refinement,	and	

validation	of	the	model	to	identify	pixels	susceptible	to	movement	under	user-defined	

precipitation	conditions.	The	downloaded	scenes	were	processed	using	the	ESA’s	

Sentinel	Toolbox	software,	ENVI,	ArcMap,	and	Python.	

	

2.2.1	Generation	of	the	ID	threshold	for	the	Faifa	Mountains		

Unfortunately,	the	distribution	of	rain	gauges	is	inadequate	in	the	study	area	(Fig.	

1c).	There	is	only	one	station	within	Jazan	province,	and	three	more	stations	in	its	

surroundings	(Fig.	1c).	I	utilized	the	GPM	half-hourly	(spatial	resolution:	0.1°	x	0.1°)	

and	TRMM	3-hourly	(spatial	resolution:	0.25°x	0.25°)	data	to	extract	the	intensity	and	

duration	of	rainfall	that	caused	landslides	throughout	the	period	2007	to	2016	(Table	1	

and	Fig.	4).		In	generating	the	ID	threshold	for	Faifa,	I	used	the	peak	intensity	values,	in	

other	words	the	shorter	sections	of	the	precipitation	event	with	the	higher	intensity	

were	selected.			Landslides	triggered	by	the	same	storm	at	different	locations	were	

assigned	the	same	intensity	and	duration	values.	Although	semiautomated	procedures	

have	been	successfully	used	to	extract	intensity	and	duration	of	landslide-producing	
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precipitation	events	(e.g.,	Segoni	et	al.,	2014;	Rosi	et	al.,	2016)	I	adopted	a	manual	

approach	given	the	coarse	spatial	and	temporal	resolution	of	satellite	data	and	the	

limited	inventory	of	historical	landslide	data	over	Faifa	Mountains.	Rainfall	events	of	

less	than	1	mm/h	were	omitted	given	that	no	landslides	were	reported	from	the	area	at	

these	low	rainfall	rates	and	TRMM	could	mistakenly	identify	fog	for	low	rainfall	events	

(<1	mm/h;	Milewski	et	al.,	2009).	Altogether,	131	precipitation	events	were	extracted	

from	TRMM	and	GPM	data	throughout	this	period,	of	which	19	events	were	identified	

as	landslide-producing	storms	(Table	1).	These	storms	were	identified	using	spectral	

and	morphologic	variations	associated	with	landslide	development,	variations	detected	

in	the	field	and/or	extracted	visually	from	pairs	of	Google	Earth	images	bracketing	

large	precipitation	events.	Google	Earth	images	were	favoured	over	other	readily	

available	visible	near-infrared	(VNIR)	satellite	data	sets	given	their	high	spatial	

resolution	(15	m	to	15	cm)	and	long	temporal	coverage	for	the	study	area	(2007	to	

present).	An	area	that	witnessed	landslides	will	be	covered	by	spectrally	dark	

vegetation	on	the	Google	Earth	image	preceding	the	landslide	and	by	spectrally	bright	

rocks	and	sediments	on	the	image	acquired	after	the	landslide	development.	In	many	

cases	the	latter	image,	not	the	former	image,	shows	a	major	scar	in	the	source	area	

(onset	of	landslide)	that	gives	way	to	more	linear	scars	in	vegetation	along	the	

landslide	path.	It	is	worth	noting	that	different	parts	of	the	Faifa	Mountains	have	

differing	numbers	of	Google	Earth	image	acquisitions,	amount	of	coverages,	and	

resolutions.	

Starting	in	October	2014,	the	SGS	initiated	a	program	to	field-verify	reports	of	

landslide	occurrences.	Field	observations	were	conducted	by	our	research	team	
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following	the	December	25th,	2015	landslide-producing	storm	and	by	the	SGS	

researchers	throughout	the	period	from	October	2014	to	October	2016.	Our	collective	

field	investigations	revealed	extensive	landslides	following	the	events	on	December	25,	

2015,	April	13,	2016,	April	29,	2016,	August	1,	2016,	and	August	25,	2016	events.	

During	a	number	of	these	storms,	landslides	were	reported	from	the	mountainous	areas	

proximal	to,	but	outside	of,	the	study	area	(e.g.,	Youssef	et	al.,	2014).		

Using	detected	storm-induced	spectral	and	morphologic	variations	in	pairs	of	

archival	temporal	Google	Earth	imagery,	two	additional	landslide-producing	events	

(November	18	and	December	1,	2014)	were	extracted;	these	were	apparently	not	

reported	to,	or	verified	by,	the	SGS	researchers	during	their	field	campaign	due	to	their	

location	in	inaccessible	areas.	Using	the	same	techniques	(storm-induced	spectral	and	

morphologic	variations)	16	storms	were	detected	in	the	period	(2007	through	2014)	

preceding	the	SGS	field	campaign	(2014–2016).		Given	the	paucity	of	Google	Earth	

images	(18	images	in	10	years),	a	number	of	precipitation	events	are	likely	to	have	

occurred	between	consecutive	Google	Earth	images.	If	landslides	were	detected	within	

the	period	covered	by	the	consecutive	Google	Earth	image	acquisitions,	it	was	assumed	

that	the	largest	of	these	storms	caused	the	observed	landslides.	In	the	case	of	some	of	

the	identified	precipitation	events,	the	rainfall	intensity	and	duration	varied	from	one	

part	of	Faifa	to	another	which	resulted	into	the	inclusion	of	more	than	one	landslide-

producing	storm	events	between	the	same	set	of	Google	Earth	images.	In	doing	so,	a	few	

landslide-producing	storms	and	those	that	did	not	cause	landslides	were	not	identified.	

The	latter	type	of	storms	were	identified	during	the	field	campaign	period	(Table	1).		
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Table	1.	Intensity	and	duration	of	the	precipitation	events	used	for	the	construction	of	

the	Faifa	ID	curve.	Landslide-producing	storms	were	verified	through	field	

observations	and	by	examining	spectral	and	morphologic	variations	in	pairs	of	Google	

Earth	archival	images	bracketing	significant	storm	events.	

	 Intensity	

(mm/h)	

Duration	

(h)	

Storm	

Date	

Land-

slides	

Google	Earth		

Imagery	Dates	

1	

3.17	 3.00	

2007-

06-02	 Yes	

Google	Earth	

(2007-12-30	and	

2007-03-01)	

2	

4.83	 3.00	

2008-

10-11	 Yes	

Google	Earth	

(2010-04-19	and	

2007-12-30)	

3	

5.34	 3.00	

2008-

10-24	 Yes	

Google	Earth	

(2010-04-19	and	

2007-12-30)	

4	

2.58	 3.00	

2010-

07-29	 Yes	

Google	Earth	

(2010-10-28	and	

2010-05-10)	

5	

2.69	 6.00	

2010-

07-11	 Yes	

Google	Earth	

(2010-10-28	and	

2010-05-10)	

6	 3.62	 3.00	 2010-	 Yes	 Google	Earth		
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Table	1	–	continued	

	

	 	 08-25	 	

	(2010-10-28	and	

2010-05-10)	

7	

1.85	 6.00	

2011-

07-31	 Yes	

Google	Earth	

(2012-03-05	and	

2010-10-28)			

8	

1.86	 9.00	

2011-

08-27	 Yes	

Google	Earth	

(2010-10-28	and	

2012-03-05)			

9	

3.29	 3.00	

2011-

08-28	 Yes	

Google	Earth	

(2012-03-05	and	

2010-10-28)	

10	

2.91	 3.00	

2012-

06-21	 Yes	

Google	Earth	

(2013-04-14	and	

2012-03-05)	

11	

1.63	 6.00	

2013-

07-22	 Yes	

Google	Earth	

(2013-10-11	and	

2013-04-14)	

12	

1.04	 12.00	

2014-

05-18	 Yes	

Google	Earth	

(2014-12-24	and	

2014-01-06)	

13	 3.70	 2.00	 2014-	 Yes	 Google	Earth		
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Table	1	–	continued	

	

	 	 11-18	 	

	(2014-12-24	and	

2014-05-23)		

14	

5.77	 4.00	

2014-

12-01	 Yes	

Google	Earth	

(2014-12-24	and	

2014-10-21)	

15	

2.42	 1.00	

2015-

03-22	 No	 Field	Visit	

16	

4.67	 0.50	

2015-

06-02	 No	 Field	Visit	

17	

1.77	 0.50	

2015-

06-20	 No	 Field	Visit	

18	

1.37	 0.50	

2015-

07-31	 No	 Field	Visit	

19	

2.39	 1.00	

2015-

08-25	 No	 Field	Visit	

20	

3.07	 1.50	

2015-

09-14	 No	 Field	Visit	

21	

2.62	 2.00	

2015-

11-05	 No	 Field	Visit	

22	

7.91	 2.00	

2015-

12-25	 Yes	 Field	visit	
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Table	1	-	continued	

23	

2.85	 0.50	

2016-

03-25	 No	 Field	Visit	

24	

5.02	 6.50	

2016-

04-13	 Yes	 Field	Visit	

25	

4.76	 1.50	

2016-

04-29	 Yes	 Field	Visit	

26	

2.82	 2.00	

2016-

06-02	 No	 Field	Visit	

27	

1.64	 1.00	

2016-

06-15	 No	 Field	Visit	

28	

8.85	 12.00	

2016-

08-01	 Yes	 Field	Visit	

29	

6.40	 3.00	

2016-

08-25	 Yes	 Field	Visit	

30	

2.93	 2.50	

2016-

09-30	 No	 Field	Visit	

	

	The	data	presented	in	Table	1	were	plotted	to	extract	the	ID	threshold	for	the	Faifa	

Mountains.	Landslide-producing	storms	were	represented	in	Fig.	4	by	solid	circles	(red	

and	black),	and	the	non–landslide	producing	storms	by	open	circles.	The	solid	black	

circles	are	for	field-verified	landslide-producing	storms,	and	the	red	circles	are	for	

landslide-producing	events	extracted	from	Google	Earth	images.	The	figure	shows	the	
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extracted	ID	curve	(red	line;	equation:	I	=	4.89*D−0.65)	that	provides	the	best	visual	

separation	between	the	landslide-producing	(solid	circles	above	red	line)	and	non-

producing	(open	circles	below	red	line)	precipitation	events.	Given	the	limited	number	

of	storms	that	were	identified	throughout	the	investigated	period	I	believe	that	the	

adopted	approach	for	defining	the	ID	threshold	is	adequate	at	this	stage.			

	

Figure	4.	ID	scatter	plot	generated	from	landslide-producing	storm	events	(solid	

circles)	and	non-producing	precipitation	events	(open	circles)	during	the	period	2007	

to	2016.	Faifa	ID	curve	(equation:	I	=	4.89*D−0.65;	duration	threshold	[x]:	0.5	to	12	h)	

separates	the	landslide-producing	events	from	non-producing	events.		

	

2.2.2	Selection,	calibration,	and	pre-processing	of	radar	images	

The	radar	backscatter	differences	were	used	to	determine	the	location	of	the	

landslide	for	the	storm	that	caused	the	landslides.	Sentinel-1A	radar	scenes	were	

downloaded	for	ascending	and	descending	acquisition	modes	from	the	Sentinel	Data	
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Hub	(https://scihub.copernicus.eu/dhus/#/home),	a	download	platform	for	the	

European	Space	Agency	(ESA),	for	the	period	between	October	2014	and	October	2016.	

The	scenes	can	also	be	downloaded	from	Alaska	Satellite	Facility’s	(ASF)	website	

(https://vertex.daac.asf.alaska.edu/).	The	scenes	acquired	immediately	after	(1	day	or	

less)	the	rainfall	were	not	used	in	the	generation	of	backscatter	coefficient	difference	

images	to	avoid	differences	in	backscatter	due	to	precipitation-related	change	in	

moisture	content.	The	pre-processing	steps	that	were	applied	to	the	downloaded	

scenes	included	radiometric	calibration	and	calculation	of	beta	naught	(b0,	the	radar	

brightness	coefficient),	speckle	filtering,	terrain	flattening	and	correction,	and	image	

co-registration.	Ascending	and	descending	scenes	for	the	same	area	provide	different	

degrees	of	visibility,	and	depending	on	the	orientation	and	complexity	of	the	

topography	(van	Zyl	et	al.,	1993),	one	acquisition	mode	may	provide	better	visibility	

than	the	other.		

Standard	processing	procedures	for	SAR	scenes	were	applied	together	with	

additional	filtrations	to	remove	backscatter	anomalies	that	could	be	confused	with	our	

target.	Ground	range	detected	(GRD)	level	1	images	were	downloaded	and	

radiometrically	calibrated	using	ESA’s	Sentinel	Toolbox	following	the	basic	processing	

steps	established	by	Veci	(2016).	The	level-1	GRD	products	are	focused	SAR	data	that	

has	been	detected,	multi-looked	and	projected	to	ground	range	using	an	Earth	ellipsoid	

model	(Small	and	Schubert,	2008).	The	GRD	images	were	used	to	calculate	the	b0	

(Small,	2011),	a	measure	of	radar	backscatter	energy	in	decibels	(dB;	Raney	et	al.,	

1994),	for	both	ascending	and	descending	modes.	The	existing	granular	noise	that	

degrades	the	quality	of	SAR	data,	known	as	speckle,	was	minimized	in	the	extracted	
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radar	backscatter	coefficient	images	using	the	Lee	Filter	(window	size:	3	×	3;	Lee,	1983;	

Lee	et	al.,	2009)	and	high-resolution	DEM	(TanDEM-X	DEM;	resolution:	12.5	m).	The	

Terrain	Flattening	and	the	Range	Doppler	Terrain	Correction	(Small,	2011)	was	

applied	to	the	speckle	filtered	scenes	to	correct	for	radiometric	biases	introduced	by	

the	rugged	topography	of	the	study	area.	Each	of	the	processed	scenes	was	co-

registered	(sub-pixel	co-registration)	to	the	previously	acquired	one	in	Sentinel	

Toolbox	(Press	et	al.,	1992).	Following	the	generation	of	the	backscatter	images,	the	

scenes	were	cropped	to	the	extent	Faifa	area	to	facilitate	the	execution	of	the	steps	that	

follow.	The	details	of	the	processes	have	been	provided	in	Fig.	3	(step	II).		

	

2.2.3	Generation	of	backscatter	difference	images	

Following	the	identification	of	precipitation	events	over	Faifa,	backscatter	

difference	images	were	generated	between	scenes	bracketing	the	identified	

precipitation	events.	The	initial	analysis	of	these	difference	images	revealed	that	corner	

reflectors	and	areas	of	low	visibility	can	produce	a	response	similar	to	that	of	

landslides	and	hence	procedures	were	developed	to	identify	and	mask	out	these	areas.	

The	generation	of	the	backscatter	difference	images	involved	a	number	of	steps:	(1)	

calculation	of	radar	visibility	and	removal	of	low	visibility	areas,	(2)	identification	and	

removal	of	corner	reflectors,	and	(3)	generation	of	backscatter	difference	images.	

Ascending	and	descending	scenes	for	the	same	area	provide	different	degrees	of	

visibility	depending	on	the	topography	and	satellite	orientation.	(Notti	et	al.,	2014).		A	

radar	visibility	index	(R;	Notti	et	al.,	2014)	image	was	used	to	identify	and	mask	out	

areas	of	low	visibility	in	both	the	ascending	and	descending	backscatter	images.	The	R	
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index	is	a	function	of	local	variables	(slope,	aspect,	incidence	angle,	layover,	and	

shadow),	and	satellite	geometry	(line	of	sight	azimuth).	Using	high-resolution	DEMs,	

digital	images	were	computed	for	each	of	those	variables	which	were	then	used	to	

generate	R	index	images	for	ascending	and	descending	geometries.	These	R	index	

products	were	applicable	for	all	backscatter	scenes	of	same	geometry	and	its	values	

range	from	0	(low	visibility)	to	1	(high	visibility).	Pixels	with	R	values	below	a	

threshold	of	0.6	were	found	to	be	spatially	correlated	with	areas	affected	by	overlays	

and	by	shadowing,	and	were	masked	out.	The	distribution	of	pixels	with	backscatter	

coefficients	exceeding	0.5	dB	were	found	to	correlate	with	that	of	buildings,	

construction	areas,	vehicles,	and	parking	spaces.	Such	features	can	act	as	corner	

reflectors	and	produce	high	radar	returns	by	reflecting	waves	towards	the	source.	

Pixels	with	backscatter	coefficients	exceeding	0.5	dB	(corner	reflectors)	were	masked	

out.		The	filtered	backscatter	images	were	used	to	generate	backscatter	difference	

images	between	pairs	of	consecutive	backscatter	scenes,	and	only	those	pairs	

bracketing	storm	events	were	considered	for	further	analysis.		

	

2.2.4	Refinement	and	validation	of	the	model	

The	refinement	and	validation	of	the	model	involved:	(1)	spatial	refinement	and	

standard	deviation	(SD)	image	generation,	(2)	field	verification,	and	(3)	batch	

processing	of	scenes.	The	population	density	in	and	around	the	road	networks	is	high,	

and	so	are	the	risks	for	human	and	property	losses	if	landslides	occur	in	their	vicinity.	

The	construction	of	roads	can	trigger	debris	flows,	especially	in	cases	when	roads	

intersect	steep	slopes	(Fig.	5a)	or	terraces	constructed	on	these	steep	slopes	(Fig.	5b),	
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ephemeral	valleys,	and	fracture	planes	dipping	towards	the	road	(Fig.	5c;	Alharbi	et	al.,	

2014).		

	

	

Figure	5.	Landslides	proximal	to,	possibly	triggered	by,	road	construction	and	

intensified	by	rainfall.	(a)	Debris	flow	caused	by	failure	on	steep	slopes	intersected	by	

roads.	(b)	Debris	flow	caused	by	failure	of	terraces	constructed	on	steep	slopes.	(c)	

Landslide	caused	by	failure	on	fracture	planes	dipping	towards	the	road.		

	

The	distribution	of	historical	debris	flows	in	the	study	area	was	investigated	to	

identify	areas	susceptible	to	debris	flow.	As	described	earlier,	areas	that	witnessed	

recent	debris	flows	are	characterized	by	spectrally	bright	rocks	and	sediments,	a	major	

scar	in	the	vegetation	within	the	source	area	(onset	of	landslide)	that	gives	way	to	

more	linear	scars	in	the	vegetation	along	the	landslide	path.	As	years	go	by,	spectral	

and	morphologic	features	indicative	of	debris	flows	can	get	obscured	by	encroaching	

vegetation	making	it	more	difficult	to	identify	the	older	debris	flows.	Many	of	the	

historical	debris	flows	were	found	on	steep	slopes,	along	first	order	streams,	above	and	

proximal	to	the	main	roads	as	shown	in	Fig.	6.	Using	these	three	criteria,	areas	

susceptible	to	debris	flows	were	identified	by:	(1)	extracting	stream	networks	using	a	



	

25		

stream	delineation	algorithm	(Tarboton	et	al.,	1991)	in	ArcGIS	10.5	over	the	steep	

slopes	(>30º)	and	capturing	first	order	streams,	using	a	small	flow	accumulation	value	

(10	pixels),	(2)	assigning	a	buffer	zone	(width:	20	m)	around	the	extracted	streams	to	

delineate	the	areas	that	are	likely	to	be	triggered	by	runoff	during	and	following	rainfall	

events,	and	(3)	assigning	a	buffer	zone	(width:	100	m)	around	the	roads.	The	use	of	the	

latter	criterion	allows	the	identification	of	areas	susceptible	to	failure	along	pre-

existing	fractures	as	well	since	our	field	observations	showed	that	the	majority	of	such	

failures	were	triggered	by	road	construction.	The	selected	width	of	the	buffer	zones	

was	determined	by	examining	the	proximity	of	the	historical	landslides	to	roads	and	

extracted	streams.	

The	selection	of	the	buffered	zones	for	further	investigation	served	two	

purposes:	(1)	targeting	areas	of	high	risk,	and	(2)	capturing	the	backscatter	variations	

that	are	related	to	landslides,	variations	that	could	have	been	confused	with	those	

caused	by	factors	other	than	landslides	(e.g.,	change	in	vegetation	intensity	or	

vegetative	cover)	if	the	entire	area	was	considered.	Figure	6	shows	several	landslides	

within	areas	identified	as	being	susceptible	to	landslides	using	the	three	above-

mentioned	criteria.	



	

26		

	

Figure	6.	Google	Earth	Imagery	showing	the	spatial	refinement	procedures.	(a)	Areas	

showing	debris	flows	within	areas	characterized	by	steep	slopes	(>30º),	and	proximity	

to	roads	(<100	m)	and	to	the	first	order	streams	(<20	m).	(b)	The	areas	that	satisfy	

these	three	conditions	are	outlined	by	the	shaded	polygon.	

	

The	spatial	refinement	was	followed	by	filtration	to	detect	spectral	anomalies	in	

the	resultant	image.	A	standard	deviation–classified	image	was	generated	for	a	

backscatter	difference	image	that	bracketed	the	December	event	(images	acquired	on	

December	24,	2015	and	February	12,	2016).	The	differences	in	backscatter	were	

classified	into	four	groups:	area	of	≤1SD	(no	change),	>1SD	to	≤	2SD	(lowest	change),	

>2SD	to	≤3SD	(medium	change),	and	>3SD	(highest	change).	Within	the	buffered	areas	
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on	any	of	the	backscatter	difference	images,	the	largest	variations	are	expected	to	

correspond	to	areas	that	witnessed	landslide-related	changes	in	roughness.	Field	

observations	following	the	December	25,	2015	precipitation	event	(15	mm)	were	

conducted	(February	26	to	March	7,	2016)	to	test	this	assumption.	The	investigation	

proved	the	examination	of	the	variations	in	spatially	refined	and	spectrally	filtered	

backscatter	difference	images,	and	the	effectiveness	of	the	applied	filtering	techniques	

in	omitting	the	false	positives.		

Altogether	I	visited	27	sites	in	Faifa	during	our	field	investigation	(Fig.	2a).	It	was	

found	that	the	distribution	of	areas	with	≤1SD	variations	on	the	extracted	difference	

images	did	not	correspond	to	any	of	the	observed	landslides	and	are	here	attributed	to	

temporal	variations	in	vegetation,	minor	roughness	changes,	and	possibly	sub-pixel	

errors	in	co-registration.	Areas	exceeding	1SD	on	the	difference	images	(Fig.	7;	clusters	

of	red,	yellow,	and	green	pixels	representing	highest,	medium,	lowest	changes,	

respectively)	in	the	backscatter	difference	image	corresponded	to	landslide	locations	

and	showed	evidence	for	recent	redistribution	of	boulders	and	sediments	in	the	field.	If	

these	conditions	were	met,	a	landslide	was	considered	as	being	verified.	Altogether,	

90%,	60%	and,	86%	of	the	pixels	exceeding	3σ,	2σ,	and	1σ	were	located	within	

contiguous	areas	identified	as	being	locations	of	landslides.	The	remaining	areas	were	

mostly	random	distribution	of	individual	pixels	resulting	from	corner	reflectors	or	

artefacts	due	to	inadequate	speckle	filtering.	Out	of	the	15	landslides	that	were	

identified	with	the	proposed	method,	14	were	verified	in	the	field.	There	was	a	false	

positive	where	the	pixels	exceeding	1SD	corresponded	to	road	construction–related	

changes	(Table	2:	site	26).	Field	investigations	of	12	sites	verified	that	spatial	
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refinement	and	filtration	techniques	was	successful	in	filtering	out	9	of	the	12	false	

positives	resulting	from	corner	reflectors	(e.g.,	building,	constructions),	but	mistakenly	

removed	an	active	debris	(Table	2:	site	1)	and	structurally	stabilized	fracture	plane	

(Table	2:	site	19	and	20).	
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Figure	7.	(a)	Google	Earth	imagery	showing	the	distribution	of	debris	flows	(identified	

by	white	arrows).	(b)	Backscatter	difference	image	for	two	descending	scenes	

bracketing	(acquisition	dates:	December	24,	2015	and	February	10,	2016)	a	

precipitation	event	on	December	25,	2015	showing	correspondence	of	areas	of	low	to	

negligible	variations	(≤1SD)	with	vegetation	and	areas	exceeding	1SD	(clusters	of	red,	

yellow,	and	green	pixels)	to	debris	flow	locations	that	showed	evidence	for	recent	

redistribution	of	boulders	and	cobbles	in	the	field.		
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Table	2.	Field	observations	collected	(February	26	to	March	7,	2016)	for	the	

assessment	of	radar-based	distribution	of	active	landslides,	the	areas	exceeding	1	

standard	deviation	(1SD)	on	difference	images.	Locations	shown	in	Fig.	2a.	

	 Difference	

image	 Remarks	

Long.	

(°E)	

Lat.	

(°N)	

1	

		

Filtered	out	active	

debris	flow;	false	

positive	 43.054	 17.234	

2	

3SD,	2SD	

Verified	active	debris	

flow	 43.065	 17.237	

3	

3SD,	2SD	

Verified	active	debris	

flow	 43.070	 17.233	

4	

	

Filtered	out	road	

construction	 43.080	 17.236	

5	

	

Filtered	out	terraces,	

bare	soil,	no	vegetation	 43.081	 17.237	

6	

3SD,	2SD	

Verified	active	debris	

flow,	recently	mitigated	

at	intersection	with	

road	 43.083	 17.241	

7	 2SD	 Verified	active	debris		 43.086	 17.244	
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Table	2	–	continued	

	 	 flow	 	 	

8	
	

Filtered	out	terraces	 43.091	 17.243	

9	

2SD	

Verified	active	debris	

flow;	locals	reported	

activity	during	rainfall		 43.092	 17.244	

10	

2SD	

Verified	active	debris	

flow	used	to	dispose	

construction	material	 43.106	 17.255	

11	

3SD,	2SD	

Verified	active	debris	

flow,	recently	mitigated	

at	intersection	with	

road	 43.105	 17.262	

12	
	

Filtered	out	buildings	 43.118	 17.271	

13	

2SD	

Verified	active	debris	

flow	 43.118	 17.273	

14	

	

Filtered	out	road	

construction	 43.070	 17.271	

15	

	

Filtered	out	road	

construction	 43.075	 17.266	

16	

2SD	

Debris	flow	related	to	

terraces	 43.081	 17.261	
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Table	2	–	continued	

17	

2SD	

Verified	debris	flow	

recently	mitigated	

proximal	to	road	 43.081	 17.262	

18	

3SD,	2SD	

Verified	active	debris	

flow	 43.081	 17.260	

19	

	

Filtered	out	shotcrete	to	

stabilize	the	fracture	

planes;	false	positive	 43.087	 17.255	

20	

	

Filtered	out	shotcrete	to	

stabilize	the	fracture	

planes;	false	positive	 43.086	 17.258	

21	

3SD,	2SD	

Verified	active	debris	

flow	 43.082	 17.258	

22	

2SD	

Verified	failure	along	

fracture	plane	dipping	

towards	the	road	 43.091	 17.254	

23	
	

Filtered	out	buildings	 43.104	 17.262	

24	
	

Filtered	out	terraces	 43.101	 17.267	

25	

3SD,	2SD	

Verified	active	debris	

flow	bordering	a	

terrace	 43.099	 17.269	
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Table	2	–	continued	

26	

3SD,	2SD	

Construction	related	

debris	flows	downhill	

from	the	road;	false	

negative		 43.095	 17.273	

27	

	

Filtered	out	

construction	along	the	

road	 43.083	 17.274	

	

2.2.5	Pixel-based	adaptation	of	Faifa	ID	threshold	as	a	predictive	tool	

The	ID	curve	for	any	pixel	should	separate	landslide-producing	events	

(backscatter	difference	>	1SD)	from	non–landslide	producing	(backscatter	difference	≤	

1SD)	precipitation	events.	On	these	graphs,	landslide-producing	events	plot	above	the	

curve,	and	the	non-producing	events	plot	below	it.		

A	pixel-based	debris	detection	system	was	developed	by	adopting	the	slope	of	

the	extracted	Faifa	ID	curve.	The	assignment	of	the	ID	curves	to	the	individual	pixels	

will	depend	on	the	relative	stability	of	the	individual	pixel.	The	less	stable	pixels,	such	

as	those	on	steep	slopes,	are	expected	to	experience	movement	in	response	to	weak,	

moderate,	and	extreme	storm	events,	whereas	the	more	stable	pixels	will	move	during	

the	extreme	events	only.	Figure	8	demonstrates	the	ID	curve	for	a	more	stable	pixel.	

Curve	A	represents	the	ID	curve	for	more	stable	location	as	it	showed	evidence	for	

landslide-related	movement	(>1SD	on	the	radar	backscatter	difference	image)	in	

response	to	five	bigger	events	(December	1,	2014,	December	25,	2015,	April	13,	2016,	
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August	1,	2016,	and	August	25,	2016)	but	no	movement	(<1SD	on	the	backscatter	

difference	image)	following	the	April	29,	2016	and	November	18,	2014	storms.	Curve	A	

has	the	slope	of	the	Faifa	ID	threshold,	but	a	different	intercept.	Thus,	knowing	the	

historical	response	of	each	individual	pixel	to	these	storms,	each	pixel	was	assigned	an	

ID	curve	whose	slope	is	similar	to	that	of	the	Faifa	curve.	In	other	words,	the	pixel-

based	ID	curve	uses	the	historical	landslide	response	of	a	pixel	to	estimate	the	intensity	

and	duration	of	the	precipitation	that	would	cause	landslide	in	the	future.	Any	event	

that	plots	above	the	pixel	ID	curve	would	produce	landslides	at	that	location,	whereas	

the	one	that	plots	below	would	not	produce	a	landslide.	The	pixel-based	ID	curve	helps	

to	predict	the	location	that	will	witness	landslides	under	any	future	storm	event.	With	

the	current	limitation	of	data	sets,	only	few	upward	translations	of	Faifa	ID	curve	is	

possible.	As	the	inventory	of	landslide	grows,	I	expect	that	the	placements	of	pixel-

based	ID	thresholds	will	get	progressively	refined	hence	representing	more	realistic	

view	of	the	stability	of	individual	pixels.	The	expanded	inventory	will	also	enable	the	

application	of	advanced	thresholding	techniques.		
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Figure	8.	Demonstration	of	pixel-based	ID	curves.	Curve	“A”	is	a	curve	for	a	more	stable	

pixel	that	witnessed	landslides	in	response	to	five	storms	(December	1,	2014,	

December	25,	2015,	April	13,	2016,	August	1,	2016,	and	August	25,	2016).	The	ID	curve	

for	more	stable	location	is	parallel	to	the	Faifa	ID	curve	that	separates	landslide-

producing	storm	events	from	landslide	non-producing	storm	events	from	Fig.	4.		

	

2.2.6	Validation	of	ID	threshold	

Three	precipitation	events	larger	than	the	threshold	(1	mm/h	for	1	h)	were	

recorded	during	the	period	from	November	2016	to	April	2017.	These	occurred	on	

February	14	(intensity:	2.28	mm/h;	duration:	3.5	h),	February	17	(intensity:	1.07	

mm/h;	duration:	9.5	h),	and	April	28	(intensity:	1.75	mm/h;	duration:	4.5	h)	of	2017.	

The	event	on	February	14	plotted	above	the	Faifa	ID	curve,	whereas	those	on	February	

17	and	April	28	plotted	below	the	curve.	Landslides	were	reported	following	the	

February	14	event,	but	not	for	the	two	other	storm	events,	an	observation	that	
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supports	the	validity	of	the	extracted	ID	curve	for	Faifa.	

Using	the	precipitation	intensity	and	duration	for	the	February	14	storm,	and	the	

extracted	pixel	ID	curves,	I	generated	a	map	showing	the	areas	(three	or	more	pixels)	

that	are	likely	to	witness	movement	under	the	specified	precipitation	conditions.	I	

visually	inspected	these	areas	on	the	Google	Earth	images	that	were	acquired	before	

(October	2,	2016)	and	after	(March	29,	2017)	the	February	14	storm	as	shown	in	Fig.	9.	

Spectral	and	morphological	variations	indicative	of	landslides	were	detected	on	the	

March	29	Google	Earth	image.	Specifically,	13	landslides	were	predicted,	out	of	which	6	

were	verified	by	inspecting	the	March	29	image,	an	accuracy	of	60%.	Similarly,	out	of	7	

locations	where	no	landslides	were	predicted,	one	location	witnessed	a	landslide.	I	

suspect	that	the	high	number	of	false	positives	(7	locations)	is	largely	an	artifact	of	the	

adopted	method	of	landslide	verification.	The	morphological	variations	observed	on	

Google	Earth	images	and	indicative	of	landslides	are	effective	in	detecting	the	large,	but	

not	the	small,	landslides.	The	higher	number	of	false	positives	(7	locations)	than	the	

false	negative	(one	location)	suggests	that	pixel-based	ID	curve	is	significantly	reducing	

the	number	of	false	negatives.	With	limited	number	of	post	study	storm	events,	the	

entire	Faifa	area	currently	can	accommodate	only	few	adjustments	to	the	ID	curve.	

With	inclusion	of	more	storms	and	accumulation	of	archival	data,	pixel-based	ID	curve	

is	expected	to	represent	unique	historical	signature	of	the	landslide	records.	Thus,	over	

time,	the	number	of	false	positive	is	expected	to	decrease	as	more	and	more	areas	

would	have	their	thresholds	based	on	its	relative	stability	instead	of	minimum	

threshold	established	for	the	Faifa	region.	At	this	stage,	the	reported	accuracy	is	

reasonable	for	developing	a	prototype	EWNSL	given:	(1)	the	uncertainties	associated	
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with	extracting	the	Faifa	and	pixel-based	ID	curves,	and	(2)	the	fact	that	landslides	in	a	

particular	area	tend,	in	some	cases,	to	stabilize	the	location	and	reduce	the	chances	of	

landslide	recurrence	in	the	same	area.	

	

Figure	9:	Demonstration	of	the	prediction	result	for	storm	that	occurred	on	February	

14,	2017.	(a)	Area	that	witnessed	landslide	and	was	predicted	(true	positive).	(b)	Area	

that	did	not	witness	landslide	but	was	predicted	(false	positive).	(e)	Area	predicted	as	

stable	but	witnessed	landslide	(false	negative).		

	

2.3	Results	and	Discussion	

Our	ability	to	predict	the	landslide-producing	storms	and	the	locations	of	these	

landslides	will	depend	largely	on	the	accuracy	of	the	extracted/adopted	ID	curves.	The	

production	of	the	Faifa	ID	curve	was	based	on	precipitation	data	for	30	storms,	

approximately	63%	of	which	produced	landslides.	Precipitation	was	extracted	from	the	

earlier	coarse	TRMM	(3	h;	0.25°	×	0.25°)	and	later	from	the	finer	resolution	GPM	(1	h;	
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0.1°	×	0.1°)	data;	field	observations	and	temporal	Google	Earth	images	were	used	to	

identify	which	of	these	storms	produced	landslides.	The	temporal	coarseness	of	the	

precipitation	data,	especially	3-hourly	TRMM	data,	provides	the	uncertainty	in	the	

precise	placement	of	the	ID	curve.	In	upcoming	years,	additional	data	points	(landslide	

producing	and	non-producing	storms),	especially	those	extracted	from	GPM	or	rain	

gauge	data	with	higher	spatial	and	temporal	resolution	will	be	used	to	refine	the	initial	

Faifa	ID	curve.		

Refining	the	Faifa	ID	curve	will	enhance	the	accuracy	of	the	pixel-based	ID	

curves	as	well,	given	that	they	are	assumed	to	be	parallel	to	the	Faifa	ID	curve.	In	the	

construction	of	these	curves,	I	was	constrained	by	the	following	limitations	in	data	

availability	and	processing	technique:	(1)	the	limited	number	of	storms	(18)	that	

occurred	throughout	the	time	period	(October	30,	2014	to	October	31,	2016)	during	

which	radar	images	were	available;	(2)	coarse	spatial	resolution	of	the	DEM	(12.5	m	

TanDEM-X)	and	radar	data	(multi-looked	using	DEM,	12.5	m)	that	made	it	difficult	to	

identify	landslides	of	limited	size	(<25	m	or	the	size	of	two	pixels);	(3)	the	

discontinuous	acquisition	of	Sentinel-1A	data	(ascending	and	descending	modes)	that	

interrupted	the	monitoring	of	landslides	in	response	to	storm	events;	(4)	sub-pixel	

errors	in	co-registration	of	radar	data	and	anomalous	backscatter	spikes	originating	

from	buildings	and	construction	activities	that	produced	radar	responses	similar	to	

landslide-related	radar	response	and	were	not	filtered;	(5)	drastic	changes	in	the	slope	

and/or	vegetation	in	a	particular	pixel	that	impaired	the	functionality	of	several	pixel-

based	ID	curves;	(6)	frequent	rainfall	with	short	duration	could	have	gone	undetected	

given	the	coarse	temporal	resolution	of	the	satellite-based	precipitation	data;	and	(7)	
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limited	field	investigations	and	reliance	on	Google	Earth	imagery	did	not	provide	

enough	information	to	develop	robust	thresholding	technique.		

In	coming	years,	the	pixel-based	ID	curves	I	developed	will	be	refined	by:	(1)	

acquiring	high	spatial	and	temporal	resolution	precipitation	data,	(2)	identifying	

additional	landslide-producing	storms	to	augment	the	existing	database	and	update	the	

existing	pixel-based	ID	curves,	(3)	applying	additional	filtration	techniques	(e.g.,	

coherence	threshold	filters	to	reduce	false	positives),	and	(4)	developing	an	urban	

mask	to	exclude	radar	responses	from	corner	reflectors	that	could	be	confused	with	

those	from	landslides.	I	will	also	explore	refining	our	methodologies	to	account	for	the	

impact	of	antecedent	precipitation	on	landslide	development	(e.g.,	Chen	et	al.,	2015).	

To	date,	the	application	of	ID	thresholds	for	landslide	hazard	assessment	is	widespread	

in	early	warning	systems	at	local	and	regional	scales	(e.g.,	Peruccacci	et	al.,	2017;	Rossi	

et	al.,	2017a),	yet	over	the	past	few	years	there	has	been	increasing	recognition	of	the	

role	of	hydrology	in	landslide	initiation,	a	factor	that	is	not	fully	incorporated	in	the	ID	

threshold	analysis.	The	intensity	and	duration	of	rainfall	during	which	a	landslide	

occurs	are	not	the	only	triggers	for	landslides;	the	rainfall	events	(antecedent	rainfall)	

that	preceded	the	landslide-causing	precipitation	are	triggers,	as	well	(Kim	et	al.,	2014,	

Hong	et	al.,	2017).	It	has	been	shown	that	the	antecedent	and	peak	rainfall	play	

important	role	in	triggering	landslides	in	general,	but	debris	flow	development	is	more	

related	to	rainfall	peak	than	antecedent	rainfall	(Chen	et	al.,	2015).	The	proposed	

procedures	could	be	used	in	the	absence	of	extensive	field-based	data	sets	although	it	

does	not	account	for	the	role	of	antecedent	rainfall	preceding	such	landslide-causing	

storm	events.	Given	that	the	overwhelming	majority	of	our	landslides	are	debris	flows,	
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I	do	not	anticipate	that	such	refinement	will	largely	affect	our	findings.		

The	adopted	methodologies	and	suggested	refinements	represent	significant	

steps	towards	the	development	of	a	prototype	EWNSL.	To	better	achieve	this	goal,	the	

following	additional	automated	steps	have	to	be	accomplished.	Near	real-time	

measurements	of	precipitation	should	be	collected	from	the	rain	gauge	network	over	

the	study	area	to	avoid	the	delays	associated	with	posting	satellite-based	precipitation	

(GPM:	3	to	6	hours).	Temporal	precipitation	distributions	can	be	derived	from	the	

acquired	rain	gauge	measurements	and	used	as	inputs	to	our	developed	modules.	

Currently,	our	methodology	identifies	vulnerable	areas	based	on	user-defined	

precipitation	intensity	and	duration.	Once	the	nowcasting	system	is	established,	as	

rainfall	data	is	collected,	it	will	be	fed	automatically	into	the	EWNSL	to	identify	the	

areas	likely	to	witness	landslides	at	any	time.	The	precipitation	at	any	location	could	be	

assumed	to	continue	for	a	pre-determined	time	period	(e.g.,	1	hour)	and	the	model	

outputs	under	such	assumptions	could	be	used	to	predict	the	areas	that	are	likely	to	

witness	landslides	in	that	pre-determined	time	period.	The	predictive	model	outputs	

could	be	posted	in	near–real	time	on	a	web-based	GIS,	giving	the	authorities	and	

citizens	in	threated	areas	enough	time	to	vacate	these	locations.		

	

2.4	Conclusion	

I	developed	a	predictive	system	that	shows	whether	a	storm	with	a	particular	

intensity	and	duration	can	cause	landslides	in	the	Faifa	Mountains.	For	the	identified	

landslide-producing	storms,	the	developed	methodologies	will	also	select	areas	that	are	

likely	to	witness	landslide	development.	The	extracted	ID	curve	for	the	Faifa	is	used	for	
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the	former	and	the	extracted	pixel-based	ID	curves	for	the	latter.	

The	current	usage	of	satellite-derived	rainfall	data	limits	the	accurate	

determination	of	intensity	as	it	is	acquired	periodically	(3-hourly	for	TRMM	and	half-

hourly	for	GPM).	This	is	also	reflected	in	the	ID	threshold	plot	with	the	placement	of	

rainfall	events	in	regular	intervals.		The	proposed	methodology	can	be	refined	and	

recalibrated	to	include	data	from	rain	gauge	stations	which	will	decrease	the	

uncertainties	associates	with	the	duration	and	time	used	to	compute	the	intensity	of	

the	rainfall.	There	are	uncertainties	associated	with	manual	delineation	of	the	

threshold	which	will	be	gradually	reduced	with	the	addition	of	more	rainfall	

observations.	During	the	identification	of	the	landslide-causing	storms	through	Google	

Earth	observation,	the	assumption	about	the	biggest	rainfall	being	responsible	for	the	

landslide	was	made.	This	assumption	might	have	excluded	some	rainfall	events	from	

our	observation	causing	the	upward	shift	of	the	ID	curve	for	many	locations.		

The	methodologies	advanced	here	are	robust	and	cost-effective	procedures	that	

could	be	readily	applied	to	many	data-deficient	locations	worldwide.	The	proposed	

methodology	relies	heavily	on	readily	available	satellite	data	and	thus	could	be	

applicable	to	many	of	the	world’s	mountainous	locations.	The	developed	

methodologies	and	rigorous	refinements	represent	significant	steps	towards	the	

development	an	EWNSL	if	precipitation	forecasts	become	available.	The	proposed	

procedures	for	the	development	of	ID	curves	should	not	be	considered	as	alternatives	

to	the	well-developed	field-based	ID	relationships	and	to	recently	introduced	advances	

in	such	applications,	but	could	be	used	in	absence	of	such	field-based	datasets.		
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CHAPTER	3	

PROJECT	II	

3.1	Introduction	

An	increase	in	agricultural	activities	introduces	nutrients	into	water	bodies	and	

may	adversely	affect	the	biodiversity	and	habitats	of	aquatic	ecosystems.	One	of	the	

major	sources	of	such	nutrients	are	nitrogen-based	fertilizers	(Glibert	et	al.,	2006)	that	

are	widely	used	to	increase	agricultural	productivity.	These	nonpoint	sources	of	

nitrogen	through	fertilization	were	found	to	be	the	predominant	sources	of	overall	

nitrogen	quantities	in	the	Gulf	of	Mexico	(Howarth	et	al.,	1996),	where	the	study	area	

(Charlotte	County)	is	located.	The	introduction	of	nutrients	increases	the	productivity	

of	aquatic	systems	and	enhances	the	growth	of	harmful	algal	blooms	(HABs)	which,	in	

turn,	produce	toxins	causing	detrimental	health	effects	(Landsberg,	2002)	to	humans	

and	ecosystems	(Fleming	et	al.,	2011).	Karenia	brevis	(K.	brevis),	formerly	known	as	

Gymnodinium	breve	and	Ptychodiscus	brevis,	is	the	most	predominant	HAB	species	in	

the	Gulf	of	Mexico	(Steidinger	et	al.,	1998;	Amin	et	al.,	2009;	Thyng	et	al.,	2013),	and	its	

adverse	socioeconomic	impacts	on	the	region	have	been	investigated	in	previous	

studies	(Evans	and	Jones,	2001).	These	impacts	include	but	are	not	limited	to	adverse	

effects	to	human	health,	marine	life,	tourism,	and	recreational	activities	(Evans	and	

Jones,	2001;	Landsberg,	2002;	Fleming	et	al.,	2011).	

Earlier	efforts	to	map	or	forecast	HAB	occurrences	examined	the	distribution	of	

HABs	in	relation	to	a	wide	range	of	causal	parameters,	such	as	wind-driven	water	

exchanges	(Raine	et	al.,	2010),	temperature	(Cha	et	al.,	2014),	relative	abundance	of	
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protozoans	that	feed	on	algae	(e.g.,	Mesodinium	species)	(Harred	et	al.,	2014),	cell	

distribution	through	oceanic	currents	(McGillicuddy	et	al,	2005),	and	hydrodynamic	

variables	(e.g.,	current	pathways,	rate	and	volume	of	flow,	upwelling	and	downwelling	

pulses)	(Cusack	et	al.,	2016)	.	Such	parameters	were	subsequently	used	to	conduct	

same-day	mappings	of	bloom	occurrences,	to	model	onsets	of	blooms	(Stumpf	et	al.,	

2008;	Aleynik	et	al.,	2016;	Gillibrand	et	al.,	2016)	and	to	forecast	seasonal	algal	bloom	

occurrences	(McGillicuddy	et	al,	2005).	These	investigations	and	mapping	efforts	

provided	the	basis	for	the	development	of	early	warning	systems	based	on	(i)	solid-

phase	adsorption	toxin	tracking	(Turrell	et	al.,	2007),	(ii)	real-time	field	monitoring	of	

chlorophyll	and	dissolved	oxygen	(Lee	et	al.,	2005),	and	(iii)	Moderate	Resolution	

Imaging	Spectroradiometer	(MODIS)-derived	fluorescence	data	to	detect	and	monitor	

algal	blooms	(Hu	et	al.,	2005;	Carvalho	et	al.,	2010;	Al	Shehhi	et	al.,	2013).	The	latter	

(fluorescence)	was	found	to	be	sensitive	to	chlorophyll-a	concentrations	(Neville	and	

Gower,	1977;	Pan	et	al.,	1989;	Fischer	and	Kronfeld,	1990;	Hoge	et	al.,	2003).	The	

development	and	operation	of	the	overwhelming	majority	of	these	monitoring	and	

forecasting	systems	require	continuous	current	and	archival	field	data	(e.g.,	nutrient	

concentration	in	surface	water).	Unfortunately,	such	datasets	are	not	present	for	many	

of	the	coastal	areas	where	HAB	monitoring	and/or	forecasting	systems	are	needed.	

This	study	addresses	this	potential	problem.	Although	our	methodology	does	require	

continuous	records	of	present	and	archival	data,	it	instead	utilizes	readily	available,	

global	remote	sensing	datasets	in	the	public	domain.	Additionally,	limited	field	data,	

where	available,	are	utilized.	

Earlier	studies	that	utilized	remote	sensing	datasets	in	identifying	and	mapping	
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the	distribution	of	HABs	focused	on	a	limited	number	of	ecological	variables.	Examples	

include	utilization	of	a	single	ecological	variable	(e.g.,	chlorophyll-a	concentration)	(Hu	

et	al.,	2005;	Balch	et	al.,	1989;	Stumpf	et	al.,	2003;	Gower	et	al.,	2004;	Tomlinson	et	al.,	

2009;	Zhao	et	al.,	2010),	two	variables	such	as	chlorophyll-a	concentration	and	sea	

surface	temperature	(SST)	(Tang	et	al.,	1999;	Raine	et	al.,	2001;	Chang	et	al.,	2003;	

Stumpf	and	Tomlinson,	2005;	Ahn	et	al.,	2006;	Tang	et	al.,	2006;	Sarangi	and	

Mohammed	et	al.,	2011)	or	chlorophyll	and	primary	productivity	(Vargo	et	al.,	1987),	

and	three	variables	(chlorophyll,	SST	and	wind)	(Tang	et	al.,	2002;	Tang	et	al.,	2004).	A	

review	article	by	Shen	et	al.	(2012)	indicated	that	most	of	the	remote	sensing-based	

detection	techniques	of	HABs	were	restricted	to	three	parameters	or	less	and	these	

limited	number	of	parameters	do	not	fully	constrain	ecosystem	model	parameters	

(Shen	et	al.,	2012;	Blondeau-Patissier	et	al.,	2014).	Although	more	robust	field-based	

HAB	detection	and	early	warning	systems	are	in	place	in	some	areas	(Cusack	et	al.,	

2016),	those	systems	are	absent	in	many	other	locations	where	there	is	a	need	to	

monitor	and	predict	HAB	occurrences.	Their	absence	could	be	related	to	the	extensive	

resources	needed	to	construct	and	maintain	monitoring	networks,	to	support	the	

continuous	sampling	and	analysis	(geochemical,	biological,	and	physical)	of	the	

investigated	water	bodies.	In	this	study,	I	develop	methodologies	that	utilize	a	large	

number	of	remote	sensing-based	water	quality	parameters	together	with	optical	

properties	that	are	extracted	from	readily	available	remote	sensing	datasets	to	map	

HAB	occurrences	and	predict	their	distribution.	

The	study	area	is	in	the	Charlotte	County,	Florida;	it	incorporates	the	county’s	

coastal	areas	(width:	15	to	30	km)	and	nearby	estuaries	(Fig.	10).	Like	many	other	
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coastal	areas	within	the	Gulf	of	Mexico,	the	study	area	has	been	subjected	to	persistent	

HAB	outbreaks	that	pose	serious	environmental	challenges	to	the	county’s	tourism	and	

fishery	industries	(Evans	and	Jones,	2001).	Unfortunately,	the	study	area	lacks	

continuous	field-based	monitoring	of	water	quality	as	it	is	challenging	to	cover	large	

geographic	areas	with	limited	resources	(Clark	et	al.,	2017).	The	primary	goals	of	this	

study	involved	identifying	the	factor(s)	controlling	HAB	occurrences	in	the	study	area,	

developing	same-day	mapping	and	predictive	models	for	HAB	occurrences	by	utilizing	

daily	remote	sensing	data,	disseminating	our	findings,	and	automating	the	process.	

 
Figure	10.	Figure	showing	the	study	area,	which	covers	coastal	waters	(width:	15–30	

km)	surrounding	Charlotte	County	in	Florida.	The	study	area	also	covers	the	brackish	

water	within	the	estuarine	systems	where	freshwater	and	seawater	mix.	
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3.2	Methods	

I	accomplished	the	goals	described	above	by	developing	multivariate	linear	

regression	statistical	models,	distributing	our	findings	via	a	web-based	interface	and	

utilizing	a	geographic	information	system	(GIS)	framework	for	automation	purposes.	

Data-driven	models	that	rely	on	historical	remote	sensing	and	corresponding	field	data	

were	developed	to	identify	factors	controlling	the	algal	blooms	and	to	forecast	their	

occurrences.	An	inventory	was	compiled	for	the	reported	(dates	and	locations)	HABs	in	

the	coastal	waters	surrounding	Charlotte	County	by	the	Florida	Fish	and	Wildlife	

Conservation	Commission’s	Fish	and	Wildlife	Research	Institute	(FWRI:	

http://myfwc.com/research/redtide/monitoring/database/),	and	a	database	was	

generated	for	remote	sensing	datasets	that	were	acquired	during	the	reported	HAB	

occurrences.	The	compiled	satellite	and	field	data	covered	the	period	between	January	

2010	and	October	2017	in	which	213	HAB	events	were	reported.	The	workflow	

involved	three	major	steps:	(1)	downloading	and	processing	of	daily	MODIS	data;	(2)	

developing	multivariate	regression	models	based	on	historical	HAB	occurrences;	and	

(3)	using	the	model	for	same-day	mapping	and	forecasting	HAB,	automating	the	

process,	and	publishing	the	findings	(Fig.	11).	

There	were	some	basic	assumptions	I	made	during	our	study	to	facilitate	the	use	

of	remote	sensing	to	study	harmful	algal	bloom.	I	assumed	that	algal	colonies	are	

stationary	and	are	not	moving	across	the	pixels	or	along	the	water	column.		
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Figure	11.	Three-step	workflow	established	for	harmful	algal	blooms	mapping	and	

forecasting.	

	

3.2.1	Step	1:	Data	collection	and	processing	

The	first	step	involved	the	identification	of	temporal	ocean	color	products	and	

spatial	variables	that	could	control,	or	correlate	with,	the	distribution	of	algal	blooms	in	

general	and/or	the	HAB	in	the	study	area	(in	our	case	K.	brevis).	The	selection	of	these	

variables	was	largely	based	on	reported	findings	from	similar	settings	elsewhere	and,	

to	a	lesser	extent,	on	our	observations.	

This	step	involved	automatic	downloading	and	processing	of	daily	ocean	color	
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data	products	acquired	by	the	National	Aeronautics	and	Space	Administration	(NASA)	

MODIS	Aqua	satellite.	NASA’s	ocean	color	processing	website	

(https://oceancolor.gsfc.nasa.gov/)	provides	an	option	for	periodical	data	download	

for	specified	regions	via	a	free	data	subscription	service.	I	specified	southwestern	

Florida	as	a	region	of	interest,	Aqua	MODIS	as	a	source	of	data	and	daily	data	as	a	

download	option.	The	automatic	data	download	was	scheduled	using	the	task	

scheduling	programs	available	within	the	Linux	environment.	The	downloaded	Level	0	

data	was	processed	to	Level	1	and	later	to	Level	2	using	SeaDAS	(NASA,	Greenbelt,	

Maryland,	USA,	version	7.4)	Ocean	Color	Science	Software	(OCSSW).	Level	1	data	has	

the	radiometric	and	geometric	calibrations	applied	and	the	ocean	data	products	were	

extracted	during	the	Level	2	processing.	The	applications	of	these	calibrations	correct	

for	differences	in	acquisition	geometry	for	the	scenes	although	minor	variation	in	

ocean	color	products	is	unavoidable	(Barnes	and	Hu,	2016).	The	OCSSW	software	was	

used	to	extract	relevant	temporal	variables	as	shown	in	Table	3.	The	table	shows	the	

input,	output,	processor	and	parameters	specified	in	the	command	line	operator	in	

Linux	environment	to	enable	unattended	data	extraction.	A	total	of	13	ocean	color	

products	were	extracted	from	the	downloaded	MODIS	products.	These	products	

include:	euphotic	depth,	ocean	chlorophyll	three-band	algorithm	for	MODIS	

(chlorophyll-a	OC3M),	chlorophyll-a	Generalized	Inherent	Optical	Property	(GIOP),	

chlorophyll-a	Garver-Siegel-	Maritorena	(GSM),	fluorescence	line	height	(FLH),	a	

diffuse	attenuation	coefficient	for	downwelling	irradiance	at	490	nm	(Kd_490),	

particulate	backscattering	coefficient	at	547	nm	(bbp_547_giop),	turbidity	index,	sea	

surface	temperature	(SST),	wind	direction,	wind	speed,	chromophoric	dissolved	
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organic	matter	(CDOM)	index	(Morel	and	Gentili,	2009)	and	Secchi	disk	depth	(Zsd	

morel,	based	on	Morel	version)	(Tyler,	1968;	Morel	et	al.,	2007).	Additional	spatially	

relevant	variables	were	considered,	as	well.	Our	preliminary	inspection	of	these	

products	revealed	large	and	rapid	variations	in	chlorophyll-a	content,	SST,	the	

attenuation	coefficient,	and	euphotic	depth	in	proximity	to	the	shoreline	and	to	the	

freshwater	outlets	(river	mouth;	Fig.	12),	thus	suggesting	that	bathymetry	and	distance	

from	the	river	mouth	should	be	incorporated	in	the	model’s	development.	Uniformly	

spaced	grid	points	were	used	to	extract	the	values	from	products	of	different	

resolutions	and	subsequent	processing	was	done	on	the	same	grid	to	achieve	

computational	efficiency.	

Table	3.	Overview	of	the	inputs,	outputs,	processor	and	relevant	parameters	applied	in	

SeaDAS	OCSSW	to	extract	level	2	products.	

Data	
Input	

Data	
Output	 Processor	 Relevant	Parameters		 Task	

Level	0	 Level	
1A	 modis_L1A.py	 Default	 Sensor	

calibration	

Level	0	 Level	
1B	 modis_L1B.py	 Default	

File	
conversio

n	

Level	1A	 GEO	file	 modis_GEO.py	 Default	
File	

conversio
n	

Level	1A	
and	1B	 Level	2	 l2gen	

Product	Selector:	
Radiances/Reflectances	(Rrs);	
Calibration	option:	Standard	

processing;	
mode:	forward	processing;	

resolution:	1k	resolution	including	
aggregated	250	and	500	land	

bands;	
Gas	option:	1-Ozone,	2-Co2,	4:	No2,	

8-H20;	

Reflectanc
e	

calculation	
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Table	3	-	continued	

	 	 	 Glint	option:	1-standard	glint	
correction	 	

Level	2	 	 l2mapgen	

Products:	Zeu_morel	(euphotic	
depth),	Zsd_morel	(Secchi	disk	
depth),	cdom_index,	chlor_a,	
chl_gsm,	Kd_490	(diffuse	

attenuation	coefficient),	SST,	
chl_giop,	FLH,	wind	speed,	wind	
angle,	bbp_547_giop	(particulate	
backscattering	coefficient),	
tindx_morel	(turbidity	index);	
Flag	use:	flags	to	be	masked;	

mask:	default	mask	to	land,	cloud	
and	glint;	

Atmospheric	Correction:	1	(on)	

Level	2	
product	
generation	

	

The	collected	ocean	color	products	were	later	checked	for	consistency	and	

significance.	Discontinuous	data	were	not	considered.	For	example,	the	data	for	CDOM	

index	was	found	to	be	discontinuous	and	patchy	over	the	investigated	period	(2010	to	

2017)	and	was	thus	omitted	from	the	list	of	potential	variables	considered	for	model	

development.	

An	exploratory	stepwise	linear	regression	was	conducted	to	identify	the	

determinant	and	significant	variables,	as	well	as	the	optimum	combination	of	the	

variables.	Spatial	Statistics	extension	in	ArcGIS	together	with	Minitab	software	were	

used	for	these	analyses.	The	significance	(0.05	or	95%	of	confidence	level)	of	the	

variables	was	investigated	using	the	p-value	and	R-square	value	and	the	combination	

of	variables	with	the	lowest	Akaike	information	criterion	(AIC)	value	(Akaike,	1974)	

was	considered	to	represent	the	best	model	fit	or	performance.	Variables	that	were	

found	to	be	highly	correlated	(redundant)	and	insignificant	were	omitted.	The	
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variables	that	contributed	to	the	multicollinearity	(redundant	variables)	were	

identified	using	the	extracted	Variance	Inflation	Factor	(VIF)	(O’Brien,	2007)	values.	A	

variable	with	a	VIF	value	exceeding	7.5	was	considered	redundant	with	the	second	

highest	VIF	value.	In	cases	where	multiple	variables	were	identified	as	being	

redundant,	the	significant	variables	were	retained	and	the	insignificant	ones	were	

omitted.	Using	water	clarity	measurements	as	an	example,	Secchi	disk	depth	was	found	

to	be	redundant	with	euphotic	depth,	and	the	former	was	found	to	be	less	significant	

and	was	dropped.	Following	the	omission	of	redundant	variables,	the	multivariate	

regression	was	run	again	to	make	sure	the	R-square	value	and	model’s	significance	did	

not	decrease.	The	overall	target	of	this	iterative	exercise	was	to	obtain	the	highest	R-

square	value	with	a	minimal	number	of	significant	variables.	Only	13	of	the	initial	15	

variables	were	considered	for	model	construction.	The	spatial	and	temporal	variables	

included	in	the	model	are	explained	below.	

	

(a) Euphotic	Depth	(m)	

The	euphotic	depth	represents	the	depth	at	which	1%	of	the	light	incident	on	

the	ocean’s	surface	can	reach	(Ryther,	1956;	Kirk,	1994;	Morel	et	al.,	2007).	This	depth	

provides	a	measure	of	the	depth	where	light	penetrates,	nutrients	and	algae	diminish,	

and	productivity	decreases	(Behrenfeld	and	Falkowski,	1997).	Water	bodies	with	low	

euphotic	depths	generally	have	a	high	nutrient	content,	are	more	productive	and	

eutrophic	(Behrenfeld	et	al.,	2005),	and	provide	favorable	conditions	for	HAB	

development	(Anderson	et	al.,	2002).	The	euphotic	depth	was	calculated	using	the	

technique	documented	in	a	previous	study	(Morel	et	al.,	2007).	
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(b) Wind	Direction	(Degrees)	and	Wind	Speed	(m/s)	

The	wind	direction	and	speed	can	affect	the	distribution	of	algal	blooms	in	three	

major	ways:	(1)	prevailing	wind	directions	create	ocean	currents	and	water	exchanges	

that	transport	HAB	cells	(Edwards	et	al.,	1996;	Raine	et	al.,	2010)	and	biotoxins	(Raine	

et	al.,	2010);	(2)	wind	and	bathymetry	guide	the	location	of	nutrient	upwelling	

facilitating	the	concentration	of	the	algae	(Cusack	et	al.,	2016);	and	(3)	winds	can	

transfer	the	aerosols	(Al	Shehhi	et	al.,	2013)	promoting	the	growth	of	toxic	

phytoplankton	(Al	Shehhi	et	al.,	2012).	The	wind	direction	and	wind	speed	were	

calculated	using	a	reflectance	model	based	on	the	Cox-Munk	wave-slope	distribution	

(Cox	and	Munk,	1954).	

	

(c) Chlorophyll-a	(mg/m3)	

The	concentration	of	chlorophyll-a	provides	direct	measurements	of	the	growth	

of	the	algae	in	aquatic	environments	(Baban,	1996).	Three	different	types	of	algorithms	

were	used	to	compute	the	chlorophyll-a	content:	chlorophyll-a	OC3M	[ocean	

chlorophyll	three-band	algorithm	for	MODIS,	(O’Reilly	et	al.,	2000)],	chlorophyll-a	GSM	

[Garver-Siegel-Maritorena,	(Maritorena	et	al.,	2002)]	and	chlorophyll-a	GIOP	

[Generalized	Inherent	Optical	Property,	(Franz	and	Werdell,	2010)].	These	algorithms	

use	different	sets	of	reflectance	bands	to	estimate	phytoplankton	biomass	(Tilstone	et	

al.,	2013)	and	these	have	been	validated	with	field	observations	in	different	parts	of	the	

world	(Campbell	and	Feng,	2005;	Komick	et	al.,	2009;	Hattab	et	al.,	2013;	Lah	et	al.,	

2013).	An	increased	chlorophyll-a	concentration	has	been	taken	as	a	strong	indicator	of	
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HAB	distribution	(Tang	et	al.,	2006;	Wei	et	al.,	2008),	and	chlorophyll-a	OC3M	data	has	

been	used	for	detecting	HAB	along	the	west	coast	of	Florida	(Carvalho	et	al.,	2010).	

Three	types	of	chlorophyll-a	measurements	were	considered	in	this	study	as	they	were	

found	to	be	correlated	with	algal	cell	count	during	the	exploratory	multivariate	

regression.	These	products	were	not	redundant	to	each	other	suggesting	that	the	

algorithms	were	either	picking	up	unique	spectral	signatures	exhibited	by	chlorophyll-

a	in	the	optically	complex	estuarine	environment,	or	it	may	be	the	results	of	

uncertainties	in	the	algorithms	(Shang	et	al.,	2014).	

	

(d) Diffuse	Attenuation	Coefficient	

The	Diffuse	Attenuation	Coefficient	for	downwelling	irradiance	at	490	nm	

(Kd_490;	m-1)	measures	the	attenuation	of	the	light	(blue	to	green)	for	turbid	water	

(Austin	and	Petzold,	1981;	Lee	et	al.,	2005).	A	study	in	the	Bohai	Sea	(Chen	et	al.,	2014)	

showed	that	the	attenuation	coefficient	can	be	used	as	a	proxy	for	the	growth	of	

phytoplankton	in	turbid	coastal	waters	given	that	the	blue	to	green	light	attenuation	

positively	correlates	with	scattering	particles	(e.g.,	HABs).	A	high	correlation	between	

chlorophyll-a	concentration	and	diffuse	attenuation	coefficient	was	observed	under	

harmful	red	tide	conditions	in	the	Persian	Gulf	using	MODIS	data	(Ghanea	et	al.,	2016).	

In	another	study	done	in	the	coastal	waters	of	India,	HABs	were	detected	using	satellite	

derived	chlorophyll-a	and	diffuse	attenuation	coefficient	images	and	were	also	

validated	through	in	situ	measurement	(sarangi	and	Mohammed,	2011).	The	diffuse	

attenuation	coefficient	was	calculated	using	the	technique	described	in	a	previous	

study	(Lee	et	al.,	2005).	
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(e)	Turbidity	Index	

The	turbidity	index	provides	a	measure	for	the	clarity	of	the	water	through	the	

scattering	of	light	caused	by	suspended	particles	(Austin,	1973;	Davies-Colley	and	

Smith,	2007).	Spatial	and	temporal	variations	of	turbidity	in	water	bodies	has	been	

successfully	used	to	identify	phytoplankton	blooms	(May	et	al,	2003;	Cloern,	1987).	

Although	a	turbidity	index	is	not	a	direct	indicator	of	HAB	occurrences,	it	has	been	

successfully	used	to	estimate	the	severity	of	a	HAB	once	it	was	independently	detected	

(Kahru	et	al.,	2004).	The	turbidity	index	was	calculated	using	procedures	described	in	a	

previous	study	(Morel	and	Belanger,	2006).	

	

(f) Particulate	Backscattering	Coefficient	at	547	nm	

This	is	the	backscattering	coefficient	of	particles	at	547	nm.	The	backscattering	

coefficient	as	determined	by	satellite	sensors	and	in	situ	measurements	has	been	used	

in	the	past	to	identify	the	distribution	of	HABs.	A	research	study	(Zhao	et	al.,	2013)	

employed	satellite-based	and	underwater	glider	measurements	of	the	backscattering	

coefficient	at	547	nm	to	detect	K.	brevis	blooms	in	the	Gulf	of	Mexico	and	verified	their	

findings	by	in	situ	observations.	A	backscattering	coefficient	at	551	nm	extracted	from	

a	Visible	Infrared	Imaging	Radiometer	Suite	(VIIRS)	sensor,	which	is	analogous	to	the	

MODIS	backscattering	coefficient	at	547	nm,	was	used	in	conjunction	with	fluorescence	

data	to	detect	the	K.	brevis	bloom	at	the	West	Florida	shelf	(El-habashi	et	al.,	2016).	In	

the	same	area,	in	situ	measurements	of	the	backscattering	coefficient	at	551	nm	and	

chlorophyll-a	data	were	successfully	used	to	detect	a	K.	brevis	bloom	(Cannizzaro	et	al.,	
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2009).	The	backscatter	coefficient	of	particles	at	547	nm	was	calculated	using	an	

algorithm	available	in	the	literature	(Lee	et	al.,	2002;	Gordon,	1998).		

	

(g) 	Sea	Surface	Temperature	(°C)	

SST	influences	phytoplankton	productivity	in	multiple	ways:	(i)	individual	

biological	species	including	algal	blooms	thrive	under	different	and	specific	

temperature	regimes,	and	(ii)	the	availability	and	solubility	of	many	biochemical	

materials	needed	for	their	growth	and	development	is	temperature	dependent	

(Edwards	et	al.,	1996;	Goldman	and	Carpenter,	1974).	Many	studies	have	shown	a	

correlation	between	SST	and	algal	bloom	distributions	in	the	Mediterranean	Basin	

(Bricaud	et	al.,	2002),	Kuwait	Bay	(Elkadiri	et	al.,	2016;	Glibert	et	al.,	2002)	and	on	a	

global	scale	(Hallegraeff,	2010).	The	productivity	of	K.	brevis	increases	in	the	fall	and	

early	spring	at	the	west	Florida	shelf	primarily	because	of	the	ideal	temperature	

conditions	during	these	times	(Hu	et	al.,	2005).	Increased	SST	was	found	to	be	

conducive	to	HAB	development	in	the	coastal	waters	of	Oman	(Sarma	et	al.,	2013)	and	

in	Gulf	of	Mexico	(Errera	et	al.,	2014).	

	

(h) Fluorescence	Line	Height	(FLH)	

Fluorescence	line	height	(FLH)	provides	the	relative	measure	of	radiance	

leaving	the	sea	surface	in	the	chlorophyll	fluorescence	emission	band	(Xing	et	al.,	

2007).	It	has	been	successfully	used	in	the	detection	of	chlorophyll-a	in	several	studies	

(Neville	and	Gower,	1977;	Pan	et	al,	1989;	Hoge	et	al.,	2003)	including	the	one	in	

southwestern	Florida	((Hu	et	al.,	2005).	A	review	of	previous	studies	shows	a	positive	
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correlation	between	the	MODIS-derived	fluorescence	and	chlorophyll-a	concentration	

in	ocean	waters	with	algal	blooms	(Xing	et	al.,	2007;	Behrenfeld	et	al,	2009).	More	

recently,	an	in	situ	FLH	measurement	was	done	in	conjunction	with	the	backscattering	

coefficient	to	map	the	distribution	of	K.	brevis	in	the	Gulf	of	Mexico	(Zhao	et	al.,	2013).	

Similarly,	FLH	derived	from	VIIRS	was	used	to	detect	K.	brevis	blooms	at	the	West	

Florida	Shelf	(El-habashi	et	al.,	2016).	

Although	other	pigments	(chlorophyll-b,	chlorophyll-c,	phycoerythrin	and	

carotenoids)	are	common	in	HAB,	chlorophyll-a	estimate	is	the	first	choice	in	

oceanography	because	of	the	practical	reasons	(Wang	et	al.,	2017;	Hoepffner	and	

Sathyendranath,	1991).	It	has	been	difficult	to	attain	the	detection	limit	of	

phycoerythrin	using	MODIS,	instead	there	has	been	more	efforts	on	the	absorption	

bands	at	495	nm	and	545	nm	(Hoge	et	al.,	1999).	MODIS	provides	fluorescence	band	

(676	nm)	to	derive	FLH	primarily	for	HAB	detection	(Shen	et	al.,	2012;	Bernard	et	al.,	

2014).	FLH	has	been	successfully	used	to	detect	K.	brevis	bloom	in	the	Gulf	of	Mexico	

(Hu	et	al.,	2005;	Tomlinson	et	al.,	2009).	The	concentration	of	K.	brevis	was	found	to	

have	direct	correlation	with	FLH	in	the	Charlotte	harbor	in	Florida	(Hu	et	al.,	2005).	

	

(i) Bathymetry	(m)	

Shelf	properties,	including	bottom	topography,	influence	the	distribution	of	HAB	

in	many	ways	(Figueiras	et	al.,	2006).	For	example,	water	stratification,	which	is	

controlled	in	part	by	bottom	topography,	inhibits	productivity	(Lozier	et	al.,	2011),	

whereas	the	vertical	mixing	and	added	nutrient	supply	in	shallow	waters	can	enhance	

the	primary	productivity	in	coastal	ecosystems	(Lozier	et	al.,	2011).	Our	study	site,	and	
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the	continental	shelf	systems	and	coastal	areas	in	general,	are	considered	to	be	

vulnerable	to	HAB	occurrences	due	to	the	accumulation	of	biomass	(Seegers	et	al.,	

2015).	Bathymetric	data	acquired	from	United	States	Geological	Survey	

(https://coastal.er.usgs.gov/flash/bathy-entireFLSH.html)	were	used	as	one	of	the	

spatial	variables.		

	

(j) Distance	from	the	River	Mouth	(m)	

Riverine	organics	are	major	sources	of	nutrients	for	the	West	Florida	Shelf	of	

the	Gulf	of	Mexico	(Del	Castillo	et	al.,	2001).	The	riverine	discharge	provides	high	

nutrient	loads	(Del	Castillo	et	al.,	2000)	that	largely	control	the	phytoplankton	

population	and	eutrophication	around	the	river	discharge	locations	and	adjoining	

estuarine	systems	(Heil	et	al.,	2007;	Pinckney	et	al.,	2001).	The	distance	from	the	

mouth	of	the	river	was	computed	using	the	Euclidean	Distance	function	in	ArcGIS	

(Environmental	Systems	Research	Institute,	Redlands,	California,	USA,	version	10.5).	
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Figure	12.	Mean	values	for	the	significant	variables	including	chlorophyll-a	(OC3M),	SST,	

diffuse	attenuation	coefficient,	and	euphotic	depth	calculated	from	MODIS	products	

acquired	throughout	the	period	2010	to	2017	over	the	study	area.	The	distance	from	

river	mouth	and	bathymetry	data	are	also	shown.	

	

3.2.2	Step	2:	Development	of	prediction	model	

The	logarithm	of	K.	brevis	cell	counts	(base	10)	in	samples	as	analyzed	by	FWRI	

was	used	as	the	response	variable	because	the	growth	of	the	algae	takes	place	

exponentially.	Measurements	were	largely	performed	in	response	to	reported	K.	brevis	
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blooms	around	Charlotte	County,	Lee	County	to	the	south,	and	Sarasota	County	to	the	

north.	The	cell	count	responses	were	lumped	into	three	groups:	(i)	no	bloom	(cell	count	

≤	300	per/L),	(ii)	low	concentration	(cell	count	>	300	and	<10,000	per	L)	and	(iii)	high	

concentration	(cell	count	≥	10,000	per	L).	I	adopted	the	threshold	values	used	by	the	

Harmful	Algal	Bloom	Observation	System	(https://habsos.noaa.gov/)	in	categorizing	

cell	count	to	facilitate	comparisons	with	NOAA’s	observations.	During	the	investigated	

period	(2010	to	2017),	128	blooms	were	reported	with	cell	counts	higher	than	300	per	

L.	Each	of	the	input	variables	was	normalized	to	the	−1	to	+1	range	because	the	inputs	

displayed	large	variations	in	range	and	magnitude.	Such	variations,	if	not	accounted	for,	

could	affect	model	outputs.	For	each	inventoried	location,	I	extracted	the	values	of	the	

normalized	input	variables.	

Four	linear	regression	models	were	constructed:	(i)	same-day;	(ii)	one	day	in	

advance;	(iii)	two	days	in	advance;	and	(iv)	three	days	in	advance.	For	each	of	the	

models,	data	were	divided	into	training	(80%)	and	testing	(20%)	datasets.	The	training	

data	were	used	to	develop	the	regression,	and	the	accuracy	assessment	was	done	on	

the	testing	datasets.	For	the	same-day	model,	the	regression	was	conducted	on	80%	of	

the	reported	HABs	occurrences	(102	unique-day	bloom	events)	against	the	variables	

on	bloom	days	(days	when	blooms	were	reported).	For	the	one	day	in	advance	model,	

the	regression	was	conducted	for	the	response	versus	the	variables	acquired	one	day	in	

advance	of	the	bloom	day.	Similarly,	for	the	two-day	and	three-day	in	advance	models,	

the	response	was	regressed	against	the	variables	acquired	two	and	three	days	in	

advance,	respectively.	Each	of	the	four	models	had	its	individual	datasets	(response	

and	variables)	for	regression	and	validation.	Predictive	models	(ii,	iii,	and	iv)	were	
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designed	to	capture	the	onset	of	the	HABs	in	contrast	to	those	that	developed	days	

earlier	and	continued	in	the	following	days.	To	this	end,	a	bloom	reported	on	dayn	was	

excluded	from	the	one-day	advance	dataset	if	another	was	reported	in	the	same	

location	in	dayn−1.	Similarly,	a	bloom	reported	on	dayn	was	excluded	from	the	two-day	

dataset	if	another	was	reported	in	the	same	location	in	dayn−1	or	dayn−2	and	from	the	

three-day	dataset	if	a	bloom	was	reported	on	dayn−1,	dayn−2	or	daysn−3.	The	multivariate	

regression	model	was	developed	for	each	group	of	the	data.	For	any	new	satellite	data	

for	any	specific	day,	a	respective	regression	was	used	to	predict	the	HAB	on	the	same-

day	and	one,	two	and	three	days	in	advance	of	the	potential	HAB	occurrence.	

	

3.2.3	Step	3:	Prediction	

The	generated	regression	equations	were	utilized	for	same-day	mapping	and	

one-,	two-	and	three-day	advance	predictions	of	HAB.	The	regression	models	were	

developed	for	three	bloom	lag	periods	and	applied	to	the	collective	set	of	variables.	The	

results	(same-day	mapping	and	one-,	two-	and	three-day	advance	prediction	of	HAB)	

are	published	on	our	website	(http://www.esrs.wmich.edu/webmap/bloom/)	using	

the	ArcGIS	server	and	ArcGIS	API	for	JavaScript.	The	MODIS	data	for	every	day	is	

acquired	at	~4	pm,	is	made	available	for	download	on	NASA’s	website	at	~5	pm,	and	is	

processed	for	HAB	occurrences	and	published	on	our	website	at	~10	pm.	This	process	

was	coded	in	Python	2.7	to	allow	the	program	to	run	automatically	at	the	same	time	

every	day.		
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3.3	Results	and	Discussion	

The	prediction	was	done	in	two	phases:	(a)	nowcasting	and	(b)	one,	two	and	

three	days	in	advance	forecasting.	The	model	outputs	are	provided	in	Tables	4	and	5.	

Table	4	lists	the	selected	variables	together	with	their	respective	contributions	to	the	

response	variable	for	the	same-day	and	the	one-,	two-	and	three-day	predictions.	Table	

5	provides	the	multivariate	regression	coefficients	for	each	of	the	selected	variables	for	

the	same-day	and	the	one-,	two-	and	three-day	predictions.	The	sign	(+/−)	in	front	of	

the	coefficient	for	each	variable	indicates	the	nature	(positive/negative)	of	the	

relationship	between	the	variable	in	question	and	the	response.	The	assessment	of	the	

performance	of	the	four	models	is	presented	in	Fig.	13.	The	accuracy	of	the	same	day	

was	the	highest	(90.5%),	and	the	accuracies	of	the	one-day,	two-day,	and	three-day	

prediction	models	were	assessed	at	65.6%,	72.1%,	and	71.9%,	respectively.	The	

prediction	accuracies	were	calculated	based	on	the	three	categories	of	the	cell	count	

that	were	pre-established	instead	of	using	binary	value	(presence	and	absence	of	the	

bloom)	as	an	indicator	of	the	success.	In	order	to	obtain	stringent	prediction	criteria,	I	

integrated	locational	accuracy	as	a	part	of	verification	process	as	I	was	using	cell	count	

data	with	spatial	information	provided	by	FWRI.	
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Table	4.	Selected	variables	and	their	respective	contributions	to	the	response	variable	

for	same-day	nowcasting,	and	one-,	two-	and	three-day	predictions.	

	

Same-Day	
Nowcasting	 Forecasting	

	 One	Day	in	
Advance	

Two	Days	in	
Advance	

Three	Days	in	
Advance	

1	 Bathymetry	
(35.9%)	

Bathymetry	
(16.1%)	

Euphotic	Depth	
(25%)	

Euphotic	Depth	
(16.6%)	

2	
Euphotic	
depth	
(22.1%)	

SST	(15.5%)	 Chlorophyll-a	
(OC3M)	(14.2%)	

Distance	to	river	
mouth	(16.1%)	

3	
Wind	

direction	
(7.1%)	

Wind	direction	
(13.4%)	

Distance	to	river	
mouth	(14%)	

Chlorophyll-a	
(OC3M)	(15.1%)	

4	
Chlorophyll-a	
(OC3M)	
(6.7%)	

Chlorophyll-a	
(OC3M)	(10.3%)	

Diffuse	
attenuation	
coefficient	

(Kd_490)	(8.9%)	

Wind	direction	
(10%)	

5	 Wind	speed	
(5.8%)	

Diffuse	
attenuation	
coefficient	

(Kd_490)	(9.9%)	

SST	(7.7%)		 SST	(9.3%)	

6	
Distance	to	
river	mouth	
(5.5%)	

Distance	to	river	
mouth	(9.1%)	

Wind	direction	
(6.4%)	

Chlorophyll-a	
(GSM)	(7.9%)	

7	 Chlorophyll-a	
(GIOP)	(3.4%)	

Wind	speed	
(7.6%)	

Fluorescence	line	
height	(5.4%)	

Turbidity	Index	
(7%)	

8	
Fluorescence	
line	height	
(3.2%)	

Turbidity	index	
(7.1%)	

Turbidity	Index	
(5.4%)	

Particulate	
backscattering	
coefficient	

(bbp_547_giop)	
(4.6%)	

9	

Diffuse	
attenuation	
coefficient	
(Kd_490)	
(3.1%)	

Particulate	
backscattering	
coefficient	

(bbp_547_giop)	
(5.2%)	

Bathymetry	
(4.8%)	

Fluorescence	line	
height	(4.5%)	

10	 Chlorophyll-a	
(GSM)	(2.4%)	

Chlorophyll-a	
(GSM)	(3.2)	

Chlorophyll-a	
(GSM)	(3.3%)	 Wind	speed	(3%)	

11	 Turbidity	
index	(2.4%)	

Euphotic	depth	
(1.9%)	

Chlorophyll-a	
(GIOP)	
(2.4%)	

Bathymetry	
(2.8%)	
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Table	4	-	continued	

12	

Particulate	
backscatterin
g	coefficient	
(bbp_547_gio
p)	(1.4%)	

Chlorophyll-a	
(GIOP)	
(0.5%)		

Wind	speed	
(1.5%)	

Chlorophyll-a	
(GIOP)	(1.9%)	

13	 SST	(0.8%)	 Fluorescence	line	
height	(0.2%)	

Particulate	
backscattering	
coefficient	

(bbp_547_giop)	
(0.7%)	

Diffuse	
attenuation	
coefficient	
(Kd_490)	
(1.3%)	

	

Table	5.	Multivariate	regression	coefficients	for	each	variable	in	predicting	HABs	for	

same-day	mapping,	and	one-,	two-	and	three-day	advanced	predictions.	

Variables	 Coefficients	

	 Same-
Day	

One	Day	
in	

Advance	

Two	Days	
in	

Advance	

Three	
Days	in	
Advance	

Bathymetry	(m)	 −0.2662	 0.0609	 0.0874	 0.1326	
Euphotic	Depth	(m)	 0.0296	 0.0022	 0.0231	 0.0189	
Wind	Direction	(degrees)	 216.5790	 270.1179	 162.3239	 287.9521	
Chlorophyll-a	(OC3M)	(mg/m3)	 0.5120	 0.5418	 0.9005	 1.0869	

Wind	Speed	(m/s)	 −250.595
7	 214.0178	 53.2687	 119.2459	

Distance	to	Mouth	of	River	(m)	 −0.1593	 0.0001	 0.0001	 0.0001	
Chlorophyll-a	GIOP	(mg/m3)	 0.2617	 0.0044	 0.1549	 −0.1380	
Normalized	Fluorescence	Line	
Height	(mWcm−2	um−1	sr−1)	

−395.236
7	 0.0001	 −551.1232	 −514.3536	

Diffuse	Attenuation	Coefficient	
(m−1)	 2.6613	 5.2936	 6.2945	 1.0121	

Chlorophyll-a	GSM	(mg/m3)	 0.1845	 0.1417	 0.2116	 0.5693	
Turbidity	Index		 73.0929	 143.0333	 135.8686	 202.1670	
Particulate	Backscattering	
Coefficient	(m−1)		

4287.982
7	

−12,551.1
376	

−1854.951
2	

−3779.340
0	

SST	(°C)	 −0.0188	 −0.2164	 −0.1514	 −0.2002	
Intercept		 2.6629	 1.1849	 −0.1563	 −0.5590	
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Figure	13.	Assessment	of	the	accuracy	of	the	generated	multivariate	models	(same-day	

mapping	and	one-,	two-	and	three-day	advanced	predictions).	The	points	on	the	

diagonal	line	represent	the	bloom	events	that	were	observed	and	also	predicted.	The	

points	on	the	vertical	axis	represents	the	algal	bloom	events	that	were	observed	but	not	

predicted	by	the	model.	The	points	on	the	horizontal	axis	are	the	algal	bloom	events	that	

were	predicted	but	not	observed.	The	accuracy	of	each	prediction	models	are	given	in	

parenthesis.	

	

The	information	provided	in	Tables	4	and	5	can	be	used	to	interpret	the	nature	

of	the	relationship	between	HAB	occurrences	and	the	individual	variables.	The	

information	can	also	be	used	to	determine	the	directionality	(negative	or	positive)	of	

the	relationship	and	to	evaluate	the	comparative	contributions	of	the	individual	

variables	to	to	the	response	variable.	For	same-day	mapping	(or	nowcasting),	the	
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bathymetry,	euphotic	depth,	wind	direction,	chlorophyll-a	(OC3M,	and	wind	speed	

were	found	to	have	a	78%	contribution	to	the	response	variable	as	presented	in	Table	

4.	For	the	one-day	forecasting,	bathymetry,	SST,	wind	direction,	chlorophyll-a	(OC3M),	

and	diffuse	attenuation	coefficient	(KD_490)	were	found	to	have	a	65%	contribution	to	

the	response	variable.	For	the	two-day	forecasting,	euphotic	depth,	chlorophyll-a	

(OC3M),	distance	to	river	mouth,	diffuse	attenuation	coefficient	(KD_490)	and	SST	were	

found	to	have	69%	contribution	to	the	response	variables.	The	euphotic	depth,	distance	

to	river	mouth,	chlorophyll-a	(OC3M),	wind	direction	and	SST	had	a	67%	contribution	

to	the	response	variable	for	the	three-day	forecasting.		

A	1:1	correspondence	in	the	ranking	and	contributions	to	the	response	variable	

in	the	four	models	should	not	be	expected	given	that	the	variables	could	have	varying	

lag	time	effects	on	HAB	development.	For	example,	a	study	(Egerton	et	al.,	2014)	found	

a	positive	correlation	between	algal	bloom	events	and	nitrate	and	ammonium	

concentrations	as	early	as	five	days	prior	to	the	bloom.	Similarly,	a	study	(Tian	et	al.,	

2018)	found	a	positive	correlation	between	HAB	occurrences	and	temperature	and	

aerosols	particle	distribution,	which	are	the	air-borne	sources	of	phosphate,	iron	and	

trace	elements	in	the	East	China	Sea.	Higher	concentrations	of	phosphorous	and	iron	

above	the	threshold	did	not	correlate	with	the	HAB	events	because	these	are	limiting	

nutrients	for	HAB	growth.	The	increase	in	concentration	of	nitrogen,	however,	

correlated	with	the	HAB	concentration.	The	lag	time	between	the	spike	in	the	nitrogen	

concentration	in	the	aerosols	and	HAB	event	was	two	days.	Similarly,	in	the	coastal	

waters	of	Charlotte	County,	one	can	attribute	the	high	ranking	of	some	variables	

(distance	to	river	mouth,	and	chlorophyll-a)	and	their	relatively	high	contributions	to	
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the	response	variable	in	our	two-	and	three-day	predictive	models	to	the	presence	of	a	

two	day	lag	time	for	nutrients	in	rivers	to	reach	the	coastal	waters	and	induce	HABs.		

Inspection	of	Tables	4	and	5	reveals	differences	in	the	rankings	and	

contributions	to	the	variabilities	in	the	response	variable	among	four	solutions.	

However,	there	are	multiple	variables	that	appear	to	be	important	(≥5%)	for	three	or	

more	of	the	four	solutions.	These	include	chlorophyll-a,	Euphotic	depth,	SST,	wind	

direction,	Chlorophyll-a	OC3M,	distance	to	river	mouth	and	turbidity	index.	Other	

variables	appear	to	be	consistently	less	important	(<	5%)	in	3	or	more	of	the	model	

outputs.	These	include	bathymetry,	wind	speed,	chlorophyll-a	GIOP,	fluorescence	line	

height,	diffuse	attenuation	coefficient	(Kd_490),	chlorophyll-a	GSM	and	particulate	

backscattering	coefficient	(bbp_547_giop).	

Additional	spatial	and	temporal	relations	are	inferred	from	Tables	3	and	4.	

Shallow	bathymetry	seems	to	be	an	important	factor	for	same-day	predictions.	The	

association	of	HABs	with	shallow	bathymetry	was	inferred	from	the	−ve	sign	of	the	

coefficient	for	the	bathymetry	variable	for	the	same-day	prediction.	Similarly,	the	

association	of	HABs	with	increasing	euphotic	depth	and	turbidity	is	inferred	from	the	

+ve	sign	for	the	coefficient	for	these	two	variables	(euphotic	depth	and	turbidity	index)	

in	each	of	the	four	models.	The	chlorophyll-a	(OC3M)	content	and	wind	direction	show	

a	positive	correlation	with	bloom	occurrences	for	all	lag	times,	but	the	contribution	of	

the	individual	variables	to	the	response	variable	and	their	ranking	varies	for	the	

investigated	models.	SST	seems	to	be	less	important	on	the	day	of	the	bloom	compared	

to	the	one-day,	two-days	and	three-days	advanced	predictions.	Blooms	occur	at	cooler	

SST	as	indicated	by	the	−ve	coefficients.	For	same-day	predictions,	the	shorter	the	
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distance	from	the	river	mouth,	the	more	likely	HABs	will	develop	as	evidenced	by	the	

−ve	coefficient	value	(Table	5).	I	suspect	that	the	above-mentioned	observations	

(rankings,	contribution	to	the	response	variable,	and	the	spatial	and	temporal	

relations)	are	largely	of	local	nature,	and	thus	comparisons	with	findings	from	

published	works	are	not	straightforward.	Moreover,	such	comparisons	are	also	

hampered	by	the	paucity	of	similar	applications	that	involve	a	large	number	of	

variables.	

Despite	the	local	and	empirical	nature	of	regression	models,	I	favored	this	

method	over	the	analytical	and	semi-analytical	solutions	given	the	lack	of	continuous	

field-based	datasets	that	are	required	for	the	application	of	these	analytical	

approaches.	The	multivariate	regression	method	was	also	favored	over	other	statistical	

approaches	(e.g.,	artificial	neural	networks,	principal	component	analysis)	that	do	not	

provide	insights	into	the	nature	and	the	contributions	of	the	factors	controlling	HAB	

occurrences.	Although	other	techniques	may	provide	better	one	time	prediction	than	

multivariate	regression,	this	is	the	only	technique	supported	in	ArcGIS	server	

environment	that	allows	publication	of	results	in	the	present	form	via	web-based	GIS.	

This	is	the	reason	why	an	operational	algal	bloom	early	warning	system	are	

nonexistent	that	utilize	other	prediction	techniques	(e.g.,	machine	learning,	

hydrogeological	modeling,	principal	component	analysis)	and	are	based	on	satellite-

derived	variables	on	a	daily	basis.	

There	are	several	limitations	with	the	applied	methodology.	There	can	be	

differences	between	the	time	a	bloom	was	reported	and	the	time	it	was	captured	by	the	

satellite	imagery.	The	vertical	and	lateral	movement	of	the	algae	can	also	occur	in	the	
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water	column	due	to	changes	in	temperature,	stratification	and	other	factors.	In	field	

controlled	and	natural	environments,	a	previous	study	(Evens	et	al.,	2001)	showed	a	

decrease	in	fluorescence	before	reaching	the	maximum	value	under	natural	

photosynthetically	available	radiation,	while	another	study	(Kamykowski	et	al.,	1998)	

reported	diurnal	variations	in	algae	populations	in	the	surface	and	in	the	mid-column.	

Similar	diurnal	variations	were	reported	for	K.	brevis	in	the	West	Florida	Shelf	(Vargo,	

2009).	Our	approach	does	not	consider	this,	but	it	assumes	that	the	algae	lie	on	the	

surface	and	are	stationary.	With	the	current	temporal	and	spatial	resolution	of	MODIS,	

diurnal	physiological	and	ecological	variations	are	not	captured	in	the	analysis.	This	

could	also	be	the	reason	why	the	contributions	of	the	independent	variables	to	the	

response	variable	fluctuates	in	different	lag	days	(Table	4)	in	our	model	leading	to	low	

prediction	accuracy	one	day	prior	to	the	bloom	compared	to	other	days	as	shown	in	

Fig.	13.	Because	of	these	practical	limitations,	physiological	responses	of	the	algae	

cannot	be	understood	using	the	satellite	data	alone.	

The	developed	models	apply	constant	lag	times	of	one,	two	or	three	days	for	all	

of	the	variables.	Ideal	models	should	instead	apply	lag	times	that	produce	an	optimum	

target	response.	These	lag	times	will	undoubtedly	differ	from	one	variable	to	another,	

and	such	an	application	will	enhance	the	predictability	of	the	model.	Unfortunately,	this	

enhancement	is	difficult	to	achieve	as	that	it	requires	a	continuous	acquisition	of	

satellite	imagery	over	an	extended	period,	and	such	daily	acquisitions	are	halted	on	

cloudy	days.	Due	to	the	weather	dependency	of	the	temporal	variables,	it	is	difficult	to	

develop	models	that	include	multiple	variables	with	varying	time	lags.	With	the	archive	

of	MODIS	data	processed	from	2010	to	2017,	I	was	only	able	to	extract	110	samples	
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with	continuous	data	for	three	consecutive	days.	This	number	dropped	to	57,	29	and	

21	for	four,	five	and	six	consecutive	days	respectively.	Thus,	although	it	would	be	

extremely	helpful	to	study	the	onset	of	bloom	using	the	data	acquired	on	different	lag	

days,	with	the	current	use	of	MODIS	data,	it	is	extremely	difficult	to	implement	that	

technique.	The	acquisition	of	data	regardless	of	whether	it	was	a	cloudy	or	non-cloudy	

day	with	alternative	platforms	such	as	Unmanned	Aerial	Vehicles	(UAV)	could	enable	

the	continuous	acquisition	of	remote	sensing	data.	If	this	happens,	the	onset	of	blooms	

in	the	Charlotte	bay	could	be	studied	more	rigorously	and	that	would	offer	increased	

predictability.			

The	daily	acquisition	of	MODIS	imagery	has	offered	tremendous	benefits	to	this	

research,	but	the	coarse	temporal	resolution	has	limited	our	capacity	to	adequately	and	

optimally	investigate	the	spatial	trends	and	the	factors	that	contribute	to	the	onset	of	

HABs.	With	the	coarse	spatial	resolution	of	MODIS	derived	variables	(e.g.,	SST:	1000	m;	

turbidity	index:	500),	the	predictability	of	HAB	detection	is	limited.	The	option	to	

downscale	satellite	derived	data	is	also	impractical	due	to	the	lack	of	real	time	

measurements	at	a	finer	scale.	In	this	context,	I	am	utilizing	proxies	(e.g.,	euphotic	

depth	and	turbidity	indices)	that	can	account	for	the	nutrient	content	in	the	aquatic	

system	despite	its	resolution.	The	predictability	of	the	developed	models	could	be	

improved	with	the	inclusion	of	daily	measurements	of	nitrate	and	phosphate	in	the	

water	that	can	be	used	in	the	model.	Together	with	the	nutrient	data,	precipitation	and	

stream	flow	data	from	nearby	streams	can	be	included	as	additional	variables	in	the	

model,	which	could	assist	in	understanding	of,	and	accounting	for,	the	seasonality	of	

bloom	occurrences.	The	inclusion	of	these	variables	in	our	model	will	not	only	enhance	
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our	abilities	to	HABs	in	Charlotte	bay,	but	also	assist	in	understanding	the	factors	

causing	bloom	propagation	in	the	study	area.		The	current	problem	of	discontinuous	

and	coarse	resolution	of	the	MODIS	data	could	be	addressed	locally	if	it	was	replaced	

by	UAVs	datasets.	If	I	was	to	use	UAV-generated	datasets,	the	investigated	area	will	

have	to	be	narrowed	down	to	the	immediate	coastal	waters	to	reduce	the	operational	

costs	and	to	simplify	the	logistics	involved	in	permitting	flights.	UAVs	acquire	high-

resolution	images	devoid	of	atmospheric	influences.	These	new	data	acquisition	

systems	could	increase	the	accuracy,	predictability	and	replicability	of	our	model	in	

Charlotte	County	and	elsewhere	in	the	world.	These	methods	would	enable	the	

construction	of	robust	models	that	account	for	varying	lag	times	and	produce	high-

resolution	(spatial	and	temporal)	prediction.	Although,	the	current	MODIS	spectral	

resolution	is	not	perfect	for	HAB	detection,	it	allows	daily	prediction	until	other	option	

such	as	UAV	is	pursued	in	this	area.	The	adopted	empirical	methodology	could	be	

applicable	to	many	other	coastal	areas	worldwide,	yet	it	is	to	be	expected	that	different	

sets	of	regression	relationships	should	be	developed	for	the	individual	areas	to	

represent	the	local	conditions	that	affect	HAB	occurrences.	

	

3.4	Conclusion	

The	study	focused	on	developing	an	early	warning	system	for	K.	brevis-related	

HABs	off	the	coast	of	South	Florida.	I	used	historical	field	HAB	data	from	2010	to	2017	

to	develop	a	multivariate	regression	and	determine	the	contributions	of	the	significant	

variables	to	the	response	variable	under	different	prediction	scenarios.	The	prediction	

system	involved	the	same-day	nowcasting	method	and	forecasting	for	one,	two	and	
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three	days	in	advance	of	the	onset	of	the	bloom.	The	same-day	nowcasting	provided	

90%	accuracy,	whereas	the	one,	two	and	three	days	in	advance	forecasting	provided	

65%,	72%	and	71%	accuracies,	respectively.	The	investigation	took	advantage	of	ocean	

color	data	to	develop	methodologies	and	procedures	that	may	enhance	decision-

making	processes,	improve	citizens’	quality	of	life,	and	strengthen	the	local	economy.	

Even	though	this	project	focuses	on	the	K.	brevis	related	HAB	in	Charlotte	County	and	

its	surrounding	neighbours,	the	model	can	be	replicated	for	other	species	and	can	be	

applied	in	other	areas.	The	prediction	system	can	be	utilized	to	plan	uses	of	coastal	

waters	for	recreational	purposes	and	other	environmental	services.	Monitoring	the	

extent	and	intensity	of	HABs	could	be	used	to	improve	the	environmental	and	

socioeconomic	status	of	this	area	and	develop	long-term	environmental	programs	and	

policies.	This	monitoring	and	early	warning	system	for	HABs	could	provide	benefits,	in	

Charlotte	County	to	the	public,	policy	makers,	and	the	scientific	community	and	could	

assist	local	agencies	in	developing	solutions	and	plans	to	mitigate	HABs.	
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CHAPTER	4	

CONCLUSION	

In	this	study,	I	demonstrated	the	potential	of	using	readily	available	remote	

sensing	data	and	limited	field	data	to	develop	semi-automated	predictive	systems	

geohazards	(landslides	and	algal	blooms).		The	accuracy	of	both	systems	was	tested	

and	was	proven	to	be	satisfactory	although	the	potential	for	improvement	still	exist	

with	the	inclusion	of	additional	relevant	variables	and/or	extending	the	temporal	

window	of	the	applied	data	sets	(variables).		I	developed	a	prototype	version	of	an	

early	warning	system	for	landslides	over	the	Faifa	Mountains	using	a	wide	range	of	

remote	sensing	products.		Likewise,	I	developed	an	operational	early	warning	system	

for	harmful	algal	blooms	in	the	coastal	waters	of	Charlotte	county	in	Florida.		In	both	

studies,	I	successfully	demonstrated	that	remote	sensing	data	can	be	leveraged	to	

generate	early	warning	systems,	even	if	only	limited	field	data	is	available.		Having	said	

that,	the	availability	of	field	data	was	an	integral	part	of	the	research	as	it	was	used	to	

validate	our	findings.	In	both	the	studies,	it	became	evident	that	with	the	inclusion	of	

additional	relevant	variables	and	expanding	the	temporal	window	of	the	variables	the	

generated	model	can	become	more	robust.		

Currently	the	early	warning	system	for	landslides	is	only	a	prototype	version	

and	once	the	real-time	rainfall	data	becomes	available,	the	system	can	be	implemented.	

With	the	inclusion	of	more	data,	the	current	version	of	ID	curve	will	get	more	refined.	

Once	this	happens,	the	predictability	of	the	ID	curve	is	expected	to	increase	with	the	

reduction	of	false	positive	incidents.	In	the	case	of	harmful	algal	blooms,	once	the	field	

data	for	nutrients	becomes	available,	the	model	can	be	retrained	to	include	those	
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variables.	With	the	inclusion	of	nutrients	and	other	potential	variables	such	as	

precipitation	and	stream	flow,	the	predictability	of	the	model	is	expected	to	improve.		

In	conclusion,	this	research	demonstrates	the	utility	of	remote	sensing	

resources	in	in	developing	predictive	models	and	for	compensating	for	the	lack	of	

extensive	field	data	that	has	been	previously	required	for	developing	such	models.		In	

the	end,	the	importance	of	field	data	cannot	be	ignored	as	it	is	essential	for	the	

validation	of	model	outputs.		Both	of	these	early	warning	systems	are	replicable	and	

can	be	easily	implemented	in	the	areas	witnessing	similar	geohazards	elsewhere.			
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