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Figure	2.	Maps	showing	the	study	area.	(a)	Elevation	map	showing	locations	where	

field	observations	were	collected	for	the	period	extending	from	February	26th	to	

March	7th,	2016.	(b)	Slope	map	generated	from	TanDEM-X	DEM.	(c)	NDVI	map	

generated	from	Sentinel-2	data	(date	of	acquisition:	2017-06-05).	(d)	Geologic	map	for	

the	Faifa	Mountains	(after	Fairer,	1985	and	Alharbi	et	al.,	2014).	
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Analysis	of	TRMM	(1998-	2014)	and	GPM	(2014-2016)	measurements	for	the	

period	1998	to	2016	revealed	sparse	precipitation	over	the	Saudi	Arabian	landscape	

(MAP:	83	mm/year),	relatively	higher	precipitation	over	the	Red	Sea	Hills	in	western	

Saudi	Arabia,	which	receive	relatively	higher	MAP	of	108	mm/year.	These	analyses	

involved	spectral	resampling	of	GPM	data	to	match	the	TRMM	resolution	followed	by	

the	zonal	and	pixelwise	averaging	over	the	indicated	time	span.	Comparison	of	TRMM	

to	the	resampled	and	averaged	GPM	measurements	over	the	study	area	revealed	highly	

correlated	(>85%)	values	during	the	period	of	overlap	(March	to	September	of	2014).		

A	progressive	increase	in	overall	rainfall	over	Faifa	was	noted	over	the	past	six	years	

(MAP:	2010–2016:	315	mm/year;	1998–2009:	227	mm/year)	with	the	wettest	year	on	

record	in	2016	(total	annual	rainfall:	450	mm).	Two	systems	of	wind	regimes	are	

responsible	for	the	rainfall	over	Faifa:	(1)	northerly	and	northwesterly	winter	cyclonic	

regimes	from	the	Mediterranean,	and	(2)	summer	monsoons	from	the	Arabian	Gulf	and	

the	Indian	Ocean	(Alsharhan	et	al.,	2001).	

	

2.2	Methods	

	 The	methodology	I	developed	entailed	two	main	steps.	The	ID	curve	for	the	Faifa	

Mountains	was	first	generated	to	identify	storms	that	caused	landslides	(temporal	

analysis;	Sect.	2.1),	and	then	pixel-based	ID	curves	were	constructed	to	identify	the	

locations	where	movement	is	likely	to	occur	(spatial	analysis,	Sect.	2.2–2.4).	The	latter	

step	involved:	(1)	selection,	calibration,	and	pre-processing	of	radar	images;	(2)	

generation	of	backscatter	coefficient	difference	images	as	a	measure	of	surface	

roughness	change	due	to	precipitation-induced	landslides;	and	(3)	development,	



	

11		

refinement,	and	validation	of	the	model	to	identify	pixels	susceptible	to	movement	

under	user-defined	precipitation	conditions.		

Data	used	for	the	study	include:	(1)	Temporal	Google	Earth	imagery,	(2)	Sentinel-

1A	radar	imagery;	(3)	TRMM	and	GPM;	(4)	field	observation	of	landslide	(debris	flow	

and	failure	along	fracture	plane)	locations;	and	(5)	the	TanDEM-X	DEM.	A	detailed	flow	

chart	is	presented	in	Fig.	3.	
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Figure	3.	Flow	chart	summarizing	the	developed	methodology	that	could	serve	as	

important	steps	towards	the	construction	of	an	EWNSL.	The	developed	procedures	
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involved	the	analysis	of	temporal	Google	Earth	images,	Sentinel-1A	radar	scenes,	and	

TRMM	and	GPM	rainfall	data.	Analysis	involved	two	main	steps:	generation	of	an	ID	

curve	for	the	Faifa	Mountains	to	identify	storms	that	are	likely	to	produce	landslides	

(landslide-producing	storms),	and	generation	of	pixel-based	ID	curves	to	identify	the	

locations	where	movement	is	likely	to	occur	during	landslide-producing	storms.	Step	II	

involved:	(1)	selection,	calibration,	and	pre-processing	of	radar	images,	(2)	generation	

of	backscatter	coefficient	difference	images	as	a	measure	of	surface	roughness	change	

due	to	precipitation-induced	landslides	and,	(3)	development,	refinement,	and	

validation	of	the	model	to	identify	pixels	susceptible	to	movement	under	user-defined	

precipitation	conditions.	The	downloaded	scenes	were	processed	using	the	ESA’s	

Sentinel	Toolbox	software,	ENVI,	ArcMap,	and	Python.	

	

2.2.1	Generation	of	the	ID	threshold	for	the	Faifa	Mountains		

Unfortunately,	the	distribution	of	rain	gauges	is	inadequate	in	the	study	area	(Fig.	

1c).	There	is	only	one	station	within	Jazan	province,	and	three	more	stations	in	its	

surroundings	(Fig.	1c).	I	utilized	the	GPM	half-hourly	(spatial	resolution:	0.1°	x	0.1°)	

and	TRMM	3-hourly	(spatial	resolution:	0.25°x	0.25°)	data	to	extract	the	intensity	and	

duration	of	rainfall	that	caused	landslides	throughout	the	period	2007	to	2016	(Table	1	

and	Fig.	4).		In	generating	the	ID	threshold	for	Faifa,	I	used	the	peak	intensity	values,	in	

other	words	the	shorter	sections	of	the	precipitation	event	with	the	higher	intensity	

were	selected.			Landslides	triggered	by	the	same	storm	at	different	locations	were	

assigned	the	same	intensity	and	duration	values.	Although	semiautomated	procedures	

have	been	successfully	used	to	extract	intensity	and	duration	of	landslide-producing	
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precipitation	events	(e.g.,	Segoni	et	al.,	2014;	Rosi	et	al.,	2016)	I	adopted	a	manual	

approach	given	the	coarse	spatial	and	temporal	resolution	of	satellite	data	and	the	

limited	inventory	of	historical	landslide	data	over	Faifa	Mountains.	Rainfall	events	of	

less	than	1	mm/h	were	omitted	given	that	no	landslides	were	reported	from	the	area	at	

these	low	rainfall	rates	and	TRMM	could	mistakenly	identify	fog	for	low	rainfall	events	

(<1	mm/h;	Milewski	et	al.,	2009).	Altogether,	131	precipitation	events	were	extracted	

from	TRMM	and	GPM	data	throughout	this	period,	of	which	19	events	were	identified	

as	landslide-producing	storms	(Table	1).	These	storms	were	identified	using	spectral	

and	morphologic	variations	associated	with	landslide	development,	variations	detected	

in	the	field	and/or	extracted	visually	from	pairs	of	Google	Earth	images	bracketing	

large	precipitation	events.	Google	Earth	images	were	favoured	over	other	readily	

available	visible	near-infrared	(VNIR)	satellite	data	sets	given	their	high	spatial	

resolution	(15	m	to	15	cm)	and	long	temporal	coverage	for	the	study	area	(2007	to	

present).	An	area	that	witnessed	landslides	will	be	covered	by	spectrally	dark	

vegetation	on	the	Google	Earth	image	preceding	the	landslide	and	by	spectrally	bright	

rocks	and	sediments	on	the	image	acquired	after	the	landslide	development.	In	many	

cases	the	latter	image,	not	the	former	image,	shows	a	major	scar	in	the	source	area	

(onset	of	landslide)	that	gives	way	to	more	linear	scars	in	vegetation	along	the	

landslide	path.	It	is	worth	noting	that	different	parts	of	the	Faifa	Mountains	have	

differing	numbers	of	Google	Earth	image	acquisitions,	amount	of	coverages,	and	

resolutions.	

Starting	in	October	2014,	the	SGS	initiated	a	program	to	field-verify	reports	of	

landslide	occurrences.	Field	observations	were	conducted	by	our	research	team	
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following	the	December	25th,	2015	landslide-producing	storm	and	by	the	SGS	

researchers	throughout	the	period	from	October	2014	to	October	2016.	Our	collective	

field	investigations	revealed	extensive	landslides	following	the	events	on	December	25,	

2015,	April	13,	2016,	April	29,	2016,	August	1,	2016,	and	August	25,	2016	events.	

During	a	number	of	these	storms,	landslides	were	reported	from	the	mountainous	areas	

proximal	to,	but	outside	of,	the	study	area	(e.g.,	Youssef	et	al.,	2014).		

Using	detected	storm-induced	spectral	and	morphologic	variations	in	pairs	of	

archival	temporal	Google	Earth	imagery,	two	additional	landslide-producing	events	

(November	18	and	December	1,	2014)	were	extracted;	these	were	apparently	not	

reported	to,	or	verified	by,	the	SGS	researchers	during	their	field	campaign	due	to	their	

location	in	inaccessible	areas.	Using	the	same	techniques	(storm-induced	spectral	and	

morphologic	variations)	16	storms	were	detected	in	the	period	(2007	through	2014)	

preceding	the	SGS	field	campaign	(2014–2016).		Given	the	paucity	of	Google	Earth	

images	(18	images	in	10	years),	a	number	of	precipitation	events	are	likely	to	have	

occurred	between	consecutive	Google	Earth	images.	If	landslides	were	detected	within	

the	period	covered	by	the	consecutive	Google	Earth	image	acquisitions,	it	was	assumed	

that	the	largest	of	these	storms	caused	the	observed	landslides.	In	the	case	of	some	of	

the	identified	precipitation	events,	the	rainfall	intensity	and	duration	varied	from	one	

part	of	Faifa	to	another	which	resulted	into	the	inclusion	of	more	than	one	landslide-

producing	storm	events	between	the	same	set	of	Google	Earth	images.	In	doing	so,	a	few	

landslide-producing	storms	and	those	that	did	not	cause	landslides	were	not	identified.	

The	latter	type	of	storms	were	identified	during	the	field	campaign	period	(Table	1).		
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Table	1.	Intensity	and	duration	of	the	precipitation	events	used	for	the	construction	of	

the	Faifa	ID	curve.	Landslide-producing	storms	were	verified	through	field	

observations	and	by	examining	spectral	and	morphologic	variations	in	pairs	of	Google	

Earth	archival	images	bracketing	significant	storm	events.	

	 Intensity	

(mm/h)	

Duration	

(h)	

Storm	

Date	

Land-

slides	

Google	Earth		

Imagery	Dates	

1	

3.17	 3.00	

2007-

06-02	 Yes	

Google	Earth	

(2007-12-30	and	

2007-03-01)	

2	

4.83	 3.00	

2008-

10-11	 Yes	

Google	Earth	

(2010-04-19	and	

2007-12-30)	

3	

5.34	 3.00	

2008-

10-24	 Yes	

Google	Earth	

(2010-04-19	and	

2007-12-30)	

4	

2.58	 3.00	

2010-

07-29	 Yes	

Google	Earth	

(2010-10-28	and	

2010-05-10)	

5	

2.69	 6.00	

2010-

07-11	 Yes	

Google	Earth	

(2010-10-28	and	

2010-05-10)	

6	 3.62	 3.00	 2010-	 Yes	 Google	Earth		
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Table	1	–	continued	

	

	 	 08-25	 	

	(2010-10-28	and	

2010-05-10)	

7	

1.85	 6.00	

2011-

07-31	 Yes	

Google	Earth	

(2012-03-05	and	

2010-10-28)			

8	

1.86	 9.00	

2011-

08-27	 Yes	

Google	Earth	

(2010-10-28	and	

2012-03-05)			

9	

3.29	 3.00	

2011-

08-28	 Yes	

Google	Earth	

(2012-03-05	and	

2010-10-28)	

10	

2.91	 3.00	

2012-

06-21	 Yes	

Google	Earth	

(2013-04-14	and	

2012-03-05)	

11	

1.63	 6.00	

2013-

07-22	 Yes	

Google	Earth	

(2013-10-11	and	

2013-04-14)	

12	

1.04	 12.00	

2014-

05-18	 Yes	

Google	Earth	

(2014-12-24	and	

2014-01-06)	

13	 3.70	 2.00	 2014-	 Yes	 Google	Earth		
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Table	1	–	continued	

	

	 	 11-18	 	

	(2014-12-24	and	

2014-05-23)		

14	

5.77	 4.00	

2014-

12-01	 Yes	

Google	Earth	

(2014-12-24	and	

2014-10-21)	

15	

2.42	 1.00	

2015-

03-22	 No	 Field	Visit	

16	

4.67	 0.50	

2015-

06-02	 No	 Field	Visit	

17	

1.77	 0.50	

2015-

06-20	 No	 Field	Visit	

18	

1.37	 0.50	

2015-

07-31	 No	 Field	Visit	

19	

2.39	 1.00	

2015-

08-25	 No	 Field	Visit	

20	

3.07	 1.50	

2015-

09-14	 No	 Field	Visit	

21	

2.62	 2.00	

2015-

11-05	 No	 Field	Visit	

22	

7.91	 2.00	

2015-

12-25	 Yes	 Field	visit	
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Table	1	-	continued	

23	

2.85	 0.50	

2016-

03-25	 No	 Field	Visit	

24	

5.02	 6.50	

2016-

04-13	 Yes	 Field	Visit	

25	

4.76	 1.50	

2016-

04-29	 Yes	 Field	Visit	

26	

2.82	 2.00	

2016-

06-02	 No	 Field	Visit	

27	

1.64	 1.00	

2016-

06-15	 No	 Field	Visit	

28	

8.85	 12.00	

2016-

08-01	 Yes	 Field	Visit	

29	

6.40	 3.00	

2016-

08-25	 Yes	 Field	Visit	

30	

2.93	 2.50	

2016-

09-30	 No	 Field	Visit	

	

	The	data	presented	in	Table	1	were	plotted	to	extract	the	ID	threshold	for	the	Faifa	

Mountains.	Landslide-producing	storms	were	represented	in	Fig.	4	by	solid	circles	(red	

and	black),	and	the	non–landslide	producing	storms	by	open	circles.	The	solid	black	

circles	are	for	field-verified	landslide-producing	storms,	and	the	red	circles	are	for	

landslide-producing	events	extracted	from	Google	Earth	images.	The	figure	shows	the	
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extracted	ID	curve	(red	line;	equation:	I	=	4.89*D−0.65)	that	provides	the	best	visual	

separation	between	the	landslide-producing	(solid	circles	above	red	line)	and	non-

producing	(open	circles	below	red	line)	precipitation	events.	Given	the	limited	number	

of	storms	that	were	identified	throughout	the	investigated	period	I	believe	that	the	

adopted	approach	for	defining	the	ID	threshold	is	adequate	at	this	stage.			

	

Figure	4.	ID	scatter	plot	generated	from	landslide-producing	storm	events	(solid	

circles)	and	non-producing	precipitation	events	(open	circles)	during	the	period	2007	

to	2016.	Faifa	ID	curve	(equation:	I	=	4.89*D−0.65;	duration	threshold	[x]:	0.5	to	12	h)	

separates	the	landslide-producing	events	from	non-producing	events.		

	

2.2.2	Selection,	calibration,	and	pre-processing	of	radar	images	

The	radar	backscatter	differences	were	used	to	determine	the	location	of	the	

landslide	for	the	storm	that	caused	the	landslides.	Sentinel-1A	radar	scenes	were	

downloaded	for	ascending	and	descending	acquisition	modes	from	the	Sentinel	Data	
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Hub	(https://scihub.copernicus.eu/dhus/#/home),	a	download	platform	for	the	

European	Space	Agency	(ESA),	for	the	period	between	October	2014	and	October	2016.	

The	scenes	can	also	be	downloaded	from	Alaska	Satellite	Facility’s	(ASF)	website	

(https://vertex.daac.asf.alaska.edu/).	The	scenes	acquired	immediately	after	(1	day	or	

less)	the	rainfall	were	not	used	in	the	generation	of	backscatter	coefficient	difference	

images	to	avoid	differences	in	backscatter	due	to	precipitation-related	change	in	

moisture	content.	The	pre-processing	steps	that	were	applied	to	the	downloaded	

scenes	included	radiometric	calibration	and	calculation	of	beta	naught	(b0,	the	radar	

brightness	coefficient),	speckle	filtering,	terrain	flattening	and	correction,	and	image	

co-registration.	Ascending	and	descending	scenes	for	the	same	area	provide	different	

degrees	of	visibility,	and	depending	on	the	orientation	and	complexity	of	the	

topography	(van	Zyl	et	al.,	1993),	one	acquisition	mode	may	provide	better	visibility	

than	the	other.		

Standard	processing	procedures	for	SAR	scenes	were	applied	together	with	

additional	filtrations	to	remove	backscatter	anomalies	that	could	be	confused	with	our	

target.	Ground	range	detected	(GRD)	level	1	images	were	downloaded	and	

radiometrically	calibrated	using	ESA’s	Sentinel	Toolbox	following	the	basic	processing	

steps	established	by	Veci	(2016).	The	level-1	GRD	products	are	focused	SAR	data	that	

has	been	detected,	multi-looked	and	projected	to	ground	range	using	an	Earth	ellipsoid	

model	(Small	and	Schubert,	2008).	The	GRD	images	were	used	to	calculate	the	b0	

(Small,	2011),	a	measure	of	radar	backscatter	energy	in	decibels	(dB;	Raney	et	al.,	

1994),	for	both	ascending	and	descending	modes.	The	existing	granular	noise	that	

degrades	the	quality	of	SAR	data,	known	as	speckle,	was	minimized	in	the	extracted	
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radar	backscatter	coefficient	images	using	the	Lee	Filter	(window	size:	3	×	3;	Lee,	1983;	

Lee	et	al.,	2009)	and	high-resolution	DEM	(TanDEM-X	DEM;	resolution:	12.5	m).	The	

Terrain	Flattening	and	the	Range	Doppler	Terrain	Correction	(Small,	2011)	was	

applied	to	the	speckle	filtered	scenes	to	correct	for	radiometric	biases	introduced	by	

the	rugged	topography	of	the	study	area.	Each	of	the	processed	scenes	was	co-

registered	(sub-pixel	co-registration)	to	the	previously	acquired	one	in	Sentinel	

Toolbox	(Press	et	al.,	1992).	Following	the	generation	of	the	backscatter	images,	the	

scenes	were	cropped	to	the	extent	Faifa	area	to	facilitate	the	execution	of	the	steps	that	

follow.	The	details	of	the	processes	have	been	provided	in	Fig.	3	(step	II).		

	

2.2.3	Generation	of	backscatter	difference	images	

Following	the	identification	of	precipitation	events	over	Faifa,	backscatter	

difference	images	were	generated	between	scenes	bracketing	the	identified	

precipitation	events.	The	initial	analysis	of	these	difference	images	revealed	that	corner	

reflectors	and	areas	of	low	visibility	can	produce	a	response	similar	to	that	of	

landslides	and	hence	procedures	were	developed	to	identify	and	mask	out	these	areas.	

The	generation	of	the	backscatter	difference	images	involved	a	number	of	steps:	(1)	

calculation	of	radar	visibility	and	removal	of	low	visibility	areas,	(2)	identification	and	

removal	of	corner	reflectors,	and	(3)	generation	of	backscatter	difference	images.	

Ascending	and	descending	scenes	for	the	same	area	provide	different	degrees	of	

visibility	depending	on	the	topography	and	satellite	orientation.	(Notti	et	al.,	2014).		A	

radar	visibility	index	(R;	Notti	et	al.,	2014)	image	was	used	to	identify	and	mask	out	

areas	of	low	visibility	in	both	the	ascending	and	descending	backscatter	images.	The	R	
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index	is	a	function	of	local	variables	(slope,	aspect,	incidence	angle,	layover,	and	

shadow),	and	satellite	geometry	(line	of	sight	azimuth).	Using	high-resolution	DEMs,	

digital	images	were	computed	for	each	of	those	variables	which	were	then	used	to	

generate	R	index	images	for	ascending	and	descending	geometries.	These	R	index	

products	were	applicable	for	all	backscatter	scenes	of	same	geometry	and	its	values	

range	from	0	(low	visibility)	to	1	(high	visibility).	Pixels	with	R	values	below	a	

threshold	of	0.6	were	found	to	be	spatially	correlated	with	areas	affected	by	overlays	

and	by	shadowing,	and	were	masked	out.	The	distribution	of	pixels	with	backscatter	

coefficients	exceeding	0.5	dB	were	found	to	correlate	with	that	of	buildings,	

construction	areas,	vehicles,	and	parking	spaces.	Such	features	can	act	as	corner	

reflectors	and	produce	high	radar	returns	by	reflecting	waves	towards	the	source.	

Pixels	with	backscatter	coefficients	exceeding	0.5	dB	(corner	reflectors)	were	masked	

out.		The	filtered	backscatter	images	were	used	to	generate	backscatter	difference	

images	between	pairs	of	consecutive	backscatter	scenes,	and	only	those	pairs	

bracketing	storm	events	were	considered	for	further	analysis.		

	

2.2.4	Refinement	and	validation	of	the	model	

The	refinement	and	validation	of	the	model	involved:	(1)	spatial	refinement	and	

standard	deviation	(SD)	image	generation,	(2)	field	verification,	and	(3)	batch	

processing	of	scenes.	The	population	density	in	and	around	the	road	networks	is	high,	

and	so	are	the	risks	for	human	and	property	losses	if	landslides	occur	in	their	vicinity.	

The	construction	of	roads	can	trigger	debris	flows,	especially	in	cases	when	roads	

intersect	steep	slopes	(Fig.	5a)	or	terraces	constructed	on	these	steep	slopes	(Fig.	5b),	


