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SOME APPLICATIONS OF GAUSSIAN QUADRATURE AND NEURAL 
NETWORK MODELING IN EARTH FLOWS AND OTHER 

SLOW-MOVING LANDSLIDES IN COHESIVE 
SLOPE MATERIALS 

Rennie Bwalya Kaunda, Ph.D. 

Western Michigan University, 2007 

Geometrical changes and progressive displacements in earth flows and other 

slow moving landslides triggered by climatic changes may be addressed by digital 

modeling. Gaussian quadrature, a numerical integration technique though fixed 

points, is employed to compute geometrical areas defined by stratigraphic (soil or 

rock layering) units, vertical pole projections and a slip surface, based on kinematic 

admissibility. An example from the Lake Michigan coast shows that the total internal 

geometrical area is found to be preserved during the course of the progressive 

deformation. Displacement monitoring of the slope shows that it became less stable 

over a period of eleven years due to progressive failure. The Gaussian quadrature 

technique allows representation and manipulation of geometrical models in a digital 

format amenable to the display of volumetric changes. Four different types of neural 

network models are also developed based on the back propagation algorithm for 

landslide problems in Michigan, England and the French Alps. The first Artificial 



Neural Network model predicts slip surface positions based on measured surface 

displacements and soil types. The second neural network model predicts slope 

displacement rates from temperature and groundwater level data. The third model 

predicts ground water levels based on temperature data. The fourth model predicts 

displacements from precipitation records. The predicted slip surface positions using 

artificial neural networks closely ma,tch the measured positions of slip surfaces at all 

three sites. Also, the neural network models are able to predict ground water levels 

and displacements from climate data. · The digital exactness of Gaussian quadrature 

and neural network modeling allows for applications that are in a usable, quantifiable 

format for engineers and other mitigation planners. This digital format can be applied 

to a wide variety of slope stability problems of concern. 
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CHAPTER I 

INTRODUCTION 

Organization of the Dissertation 

This dissertation is divided into three parts: General Introduction, Paper 1 and 

Paper 2. This General Introduction consists of the definition and context of the 

problem, and the study objectives. Paper 1 discusses the application of Gaussian 

quadrature in geometric modeling of active landslides. Paper 2 discusses three 

different categories of Artificial Neural Network modeling: predicting slip surface 

positions in an active landslide based on measured displacements, predicting 

groundwater potentiometric surface elevations in an active landslide based on climate 

data, and predicting displacements from climate data. 

Problem Statement 

The destruction from landslides remains a serious worldwide concern because 

it threatens houses, commercial buildings, roads and other infrastructure located along 

coastal cliffs or hill slopes (Hampton et al., 2004). Property losses may reduce local 

tax revenues, affect federal disaster relief and insurance, and cause financial losses to 

the tourism industry. Soil or rock displacement may also destroy lives, create 

conditions for point source pollution, and disrupt the beauty of the landscape. 

Landslides are becoming an increasing socio-economic concern as world population 

increases causing human development to expand into unstable hillslope areas 

(Schuster, 1996). Hampton et al. (2004) have highlighted some of the major 
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challenges affecting the problem of coastal landslides, which may also be extrapolated 

to non-coastal landslides. These include understanding the fundamental processes 

and factors involved, documenting and quantifying the spatial and temporal variations 

of retreat rates and providing data in usable format to coastal engineers, planners, 

managers, and the general public. 

Landslides can be triggered by mechanisms ·such as unusual precipitation, 

water table rises or drops, earthquakes, and volcanic eruptions, all of which affect the 

slope material properties. Although these triggering mechanisms are all important, 

the role of hydraulics is especially significant because it occurs in various forms. For 

example, shallow landslides in soils and weathered rock may be generated in steep 

slopes during the more intense parts of a storm, when the intensity and duration of 

precipitation are above a certain threshold (Wieczorek, 1996). The rapid infiltration 

of rain, may cause soil saturation and a temporary rise in pore pressure which 

decreases the effective strength of saturated slope materials and thus trigger landslides 

(Sidle, 1984, Wilson and Dietrich 1987, Reid et al., 1988 Wilson, 1989, Johnson and 

Sitar, 1990, Simon et al., 1990). The process of snow melting could also provide a 

continuous supply of moisture over a longer time period compared with the usual 

duration of infiltration from rain (Horton, 193 8). Snowmelt may recharge shallow 

fractured . bedrock and raise pore-water pressures beneath shallow soils, thus 

triggering landslides (Mathewson et al., 1990). Pore pressure increase can also occur 

during rising groundwater levels in hill slopes following periods of prolonged above

normal precipitation or during the raising of water levels in lakes and reservoirs 

adjacent to the slope (Wieczorek, 1996). Rapid drawdown can also trigger landslides 

when the water level in a reservoir or unstable slope is dropped suddenly (Lambe and 

Whitman, 1969). There is critical need, therefore, for good digital models capable of 
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evaluating potential for landslide displacements based on triggering mechanisms 

related to climate and/or hydraulics. 

Slope stability problems can build in a progressive manner (Chowdhury, 

1978; Suemine, 1983; Kamai, 1998; Cooper et al., 1998; Petley et al., 2005). 

Progressive failure refers to the idea first introduced by Terzaghi and others (1948) 

that a natural slope can fail or collapse at an average shear stress less than the actual 

peak shear strength of the slope material. As the slope is being loaded non-uniformly 

by incremental shear displacements, the shear strength of the slope material falls 

below the peak value. Progressive failure can occur in special types of landslides 

known as earthflows/slumps (Varnes, 1978). In slow moving landslides, movements 

can be reactivated along old slip surfaces. Therefore any method that can trace/assess 

the movements or predict new or old slip surface positions can be extremely useful 

for evaluating land sliding. The reason it is difficult to study and understand 

progressive ground failure is because testing stress-strain relations directly in the field 

may not produce accurate results. Also, laboratory tests on slope-material do not 

necessarily reflect field conditions. For example, studies have shown that a change in 

the rate at which a brittle soil is loaded can change its shear strength significantly and 

affect slope stability (Srbulov, 1999). There is a critical need for accurate geometric 

models capable of evaluating land sliding via progressive failure. It is imperative to 

have a thorough understanding of slip surface geometry and location or the internal 

geometry of the sliding blocks, key components to understanding slope displacement 

kinetics and the future of the slope (Nieuwenhuis, 1991, Chase et al., 2001 b ). 

Traditionally the search for a critical slip surface for slope displacements has 

been assessed by limit equilibrium analysis using methods of slices, such as Bishop's 

method, Spencer's method and Janbu's method depending on problem type (Duncan, 
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1996a). Because most of these methods rely on assumptions related to positioning of 

slice forces to work, researchers have applied alternatives in the pursuit of methods 

superior to limit equilibrium analysis. These alternatives include linear programming, 

Monte Carlo simulation techniques, and finite element modeling techniques (Kim and 

Lee, 1997, Griffiths and Lane, 1999, Chen, 2004, and Yang et al., 2004). Because 

these techniques require geotechnical input parameters such as an accurate 

understanding of the stress-strain behavior of the slope materials (Duncan, 1996b ), 

they are often limited by the available ground truth data. Additionally, in these 

techniques, a fundamental assumption is made that the field system being modeled 

obeys the stress-strain behavior observed in the laboratory. However this may not 

always be true, as in the case of progressively failing landslides discussed above. 

Study Objectives 

The foregoing discussion clearly demonstrates the significance of stress/strain 

and deformation history, layer geometry, ground water elevations, and climatic 

parameters such as precipitation and air temperature in analyzing slope stability 

problems. Therefore qualitative and quantitative inclusion of these parameters in 

modeling using real field data can increase understanding of their role in slope 

displacements. The objective of this research is to develop and apply field data-based 

modeling techniques useful in assessing progressive landslide behavior. The goals 

of this work are as follows: 

1. Develop digital models that are as free as possible of human interpretation for:

establishing the depth and shape of critical slip surfaces at the base of 

landslide blocks. 

4 



establishing the internal displacements that landslide blocks might 

experience when adjusting to their new geometries above the critical 

surfaces. 

establishing relationships among climate, hydraulics, and 

displacements. 

2. Demonstrate that the digital models thus developed compare favorably with

the field conditions where appropriate data are available.

3. Demonstrate that the models are useful for a variety of slope stability

problems and solutions, where field and/or laboratory data are incomplete

Methods of Developing Digital Models 

Using Gaussian Quadrature to Constrain Deformation Models 

For many years structural geolbgists have applied principles of cross section 

balancing to geologic-scale, regionally-deformed terrain to establish displaced 

geometry (e.g. Dahlstrom, 1969, Woodward et al., 1985, Suppe and Mededeff, 1990). 

These balancing methods are adaptable to multiple applications (e.g. Erslev, 1991; 

Hardy and Ford, 1997; Waltham, 1992; Allmendinger, 1998 and Finch et al, 2003). 

Chase and others (2001a, 2007a) have applied balancing concepts to slope stability 

problems for characterizing slope evolution during progressive failure. The goal is to 

determine internal deformation patterns and depths and geometries of slip surfaces in 
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unstable bluffs along the southeastern shoreline of Lake Michigan. The fundamental 

concept is that each cross section is defined by pin lines at both ends, and the total 

length of the stratigraphic geometry within each section is preserved. Therefore, after 

deformation has occurred, neither line lengths nor cross-sectional areas of 

stratigraphic units are allowed to change. Disturbed layers can be restored to their 

original positions without introducing or eliminating areas within stratigraphic 

profiles. To apply cross section balancing to unconsolidated materials, near-vertical 

grid lines initially divide the cross section area into a group of polygonal segments. 

There should be sufficient rigidity of the material such that volume changes during 

segment deformation are minimal. 

The cross-section balancing method is highly intuitive and extremely time 

consuming when conducted by freehand or when dealing with multiple sliding blocks 

(Chase et al., 2007a). There is, therefore, need for an efficient technique to digitally 

check the accuracy of the balancing, then identify and quantify any corrections 

required, hence the application of Gaussian quadrature discussed in Paper 1. 

Artificial Neural Networks (ANN) Modeling 

Artificial Neural Networks (ANN) are a system of interconnected, 

computational nodes or processing elements fashioned after biological neurons of the 

nervous system. All ANN have three things in common: nodes, connection weights 

and layers containing the nodes. A major advantage of ANN over other models, such 

as purely mathematical ones, is their ability to learn complex relationships among 

data sets. Once this knowledge is acquired, they may then be applied in instances of 

limited data. In other words, they can learn and generalize. Artificial Neural 

Networks are described by their architecture and their learning algorithm. In this 
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study, a feed-forward architecture was used, implying layers of computational nodes 

are connected to other layers in one direction, from the input to the output layer. The 

learning algorithm that was used is the back-propagation algorithm, because it is very 

robust and easy to implement. The back propagation algorithm was first invented by 

Werbos (1974). Back propagation was later inadvertently reinvented by Parker, 

(1985), and presented to wide readership by Rumelhart and McClellan(l 986). 

Artificial Neural Networks have found a wide application in the geosciences 

including geotechnical work. For example, Ellis et al. (1995) modeled the stress

strain behavior of sands using Artificial Neural Networks. Undrained triaxial 

compression tests were conducted on eight different sands to generate data for neural 

network training and testing. The neural network was developed sequentially with a 

feed back capability. The study demonstrated that a general Artificial Neural Network 

could be developed that accounted for particle size distribution and stress history 

effects. Ghaboussi and Sidarta (1998) applied adaptive neural network modeling to 

drained compression test results for Sacramento River sand. The neural net was 

trained directly with material test results, and used in the analysis of boundary value 

problems in constitutive modeling. The neural network was successfully applied in 

modeling drained and undrained sand stresses from triaxial tests. Zhu et aL (1998) 

applied ANN to the prediction of shear behavior in a fine-grained residual soil and 

dune sand. The neural network was trained using strain-controlled undrained tests 

and stress-controlled drained tests performed on a residual Hawaiian volcanic soil. 

The neural net had feedback connections from the hidden layer to the input layer. 

Agreements between the measured data and the modeling results were observed in 

both stress-strain behavior and volumetric-change characteristics of the soil. Juang et 

al. (2001) utilized ANN for subsurface site characterization using cone penetrometer 
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(CPT) data in sand. Cone tip resistances were predicted in 1 dimension (depth), 2-

dimensions (x, y-coordinates in space) and 3 -dimensions (x, y and z coordinates) at 

various spreads of the cone penetrometer. The approach was found to be effective in 

generalizing soil properties based on limited in-situ CPT tests. Habibagahi and 

Bamdad (2003) applied ANN to predict deviatoric stress, volume and suction change 

from triaxial test results. The input parameters consisted of water content, dry 

density, degree of saturation, soil suction, axial strain and deviatoric stress, with a 

feedback (loop) mechanism. When the neural network simulations were compared 

with triaxial test results, the comparisons indicated good predictions of the 

mechanical behavior (stress-strain, suction change, and volume change) of the 

unsaturated soil. 

Cao (2002) applied detailed neural network modeling to slope stability 

analysis to predict factors of safety. The network was a two-layer recurrent neural 

network with a sigmoid hidden layer and linear output layer. The input parameters 

included slope height, slope inclination, water level height, tension crack position 

height, soil unit weight, soil cohesion, soil friction angle, layer thickness, and pore 

water pressure to overburden pressure ratio per layer. The output layer had only one 

neuron, namely the factor of safety. The predictions made by the neural net were 

comparable to results obtained from finite element modeling. 

In this study four types of ANN models are developed based on the back 

propagation algorithm, with the goal of addressing some problems associated with 

slow moving landslides: 

• Prediction of the positions of slip surfaces in an active landslide in Michigan

based on measured surface displacements and soil types. In this model type

the number of input parameters is systematically varied in a sensitivity
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analysis to determine the significance of each input. This was conducted to 

compensate for the problem of data unavailability typical in practical 

applications. 

• Prediction of slope displacement rates from temperature and groundwater

level data.

• Prediction of ground water levels based on temperature data.

• Prediction of displacements from precipitation records.

Testing the Models 

The models developed in this study are tested usmg actual field data. 

Gaussian quadrature modeling was tested using drill and displacement records from 

Miami Park South, Michigan. The site is located along the southeastern shoreline 

bluffs of Lake Michigan in Allegan County, about five miles north of South Haven, 

Michigan. This site, which is known to be unstable, has well documented movement 

history and geology. The average rate of recession is 1.3 ft (0.39 m) per year. These 

bluffs have an average height of about 80 ft (24 m), and a slope angle of about 34 

degrees. At the beach level is a gray, massive, clay-rich diamicton that is over

consolidated and locally jointed. Above this unit are inter-layered sand and laminated 

clay. The sand is generally tan colored and layers range in thickness from 1 cm to 10 

m or more. It is fine-grained, well-sorted and rounded, and contains cross-beds and 

ripple marks. The laminated clay is brown to gray with alternating light and dark 

laminations about 1-3 mm thick. Layers range from 1 cm to 3 m thick. This clay is 

normally consolidated and highly plastic with low yield strength. Overlying these 

inter-layered units, is a sandy to silty diamicton. It is brown to gray in color, normally 
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consolidated and highly jointed. 

The Artificial Neural Network modeling was tested on field data from two 

other sites in addition to Miami Park South. The first site is a landslide problem in 

the French Alps. The site, located near Grenoble, was first investigated by Van 

Genuchten and Nieuenhuis ( 1990), and later in greater detail by Nieuwenhuis, (1991 ). 

The landslide, developed in varved clays, has movements known to be greater than 

one meter per year. The dimensions of the study area were about 500 m long and 125 

m high. Soils consist of mostly over-consolidated- silty clays with residual shear 

strengths. The displacements occur along existing slip surfaces and movements are 

seasonal driven by excessive precipitation or snow melt. The hydrology of the area is 

complex due to the presence of scarps and fissures. 

The second site is the Mam Tor landslide in Derbyshire England. The Mam 

Tor landslide has been studied by Skempton et al. (1989) and more recently by Rutter 

et al. (2003). The landslide has a well documented movement history and geol<?gy. 

The landslide exhibits episodic - and creep movements that led to the collapse of the 

eastern section and the formation of an 80 m high scarp. The dimensions of the 

slipped mass are about 750 m long and 500 m wide. The geology consists mostly of . 

mudstone overlying sandstone. The average.displacement rate is 10 cm per year, with 

the central region moving faster at 50 cm per year. Displacements have also been 

known to correlate with annual variations in rainfall above a critical threshold level. 

Stress/strain relationships are highly nonlinear with significant shearing strain 

occurring at very low levels of shearing stress. 

The Gaussian quadrature model tested usmg the Miami Park South site 

produced results similar to expected values. The prediction of slip surface positions 

using Artificial Neural Networks closely matched measured positions at all three 
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sites, in spite of some scatter. The neural networks were also able to predict ground 

water levels and displacements from climate data. 

Usefulness of the Modeling Methods 

These techniques, though developed with real field data, are not meant to be 

the basis of slope engineering decisions which could· potentially lead to the loss of 

life. They are meant to provide a foundation on which further detailed geotechnical 

investigations may be conducted. The manner in which the Gaussian quadrature and 

Artificial Neural Network models discussed here might be used for future 

geotechnical studies are listed below. 

1) By virtual of being digital, both methods provide a usable, quantifiable format

to engineers and other mitigation planners who can readily analyze or

manipulate them mathematically based on the specific slope stability problem

of concern.

2) The Gaussian quadrature approach can be used to check the consistency of the

internal geometry of a slope or landslide undergoing gradual structural

deformation in order to assess slope stability more reliably.

3) The Gaussian quadrature technique can be used to measure the degree of

erosion a particular slope or landslide has been subjected to based on computed

mass volumes.

4) The Gaussian quadrature technique can be used to compute the required

correction required for the cross section balancing.
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5) The Artificial Neural Network model may be useful when a factor of safety

needs to be calculated for a slope whose critical failure surface location or

geometry is not known. This neural network may also be used when planning

placement of instrumentation such as piezometers, dewatering wells or other

infrastructure.

6) All of the neural network models discussed could be used as a basis to develop

a warning system for predicting slope displacement, dependent on climate and

groundwater elevation observations.

7) The Artifical Neural Networks developed using the parameters discussed--soil

types ground translations, ground elevation change, precipitation, air

temperature--could be applied to other landslide problems and have these

parameters experimented with, using sensitivity analysis, to determine which

factors are significant for those specific sites.
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CHAPTER II 

USING GAUSSIAN QUADRATURE IN SLOPE 
ST ABILITY MODELING STUDIES 

Introduction 

The phenomenon of gradual movement in landslides creates a special 

challenge to the geology and engineering community because their geometric 

character can change over time (Chowdhury, 1978; Suemine, 1983; Kamai, 1997; 

Petley et al., 2005). Geometric and mathematical models can thus be critical tools to 

model their progressive failure. This is because they can help locate slip surfaces and 

give a realistic picture of the deformed internal geometry, which is especially valuable 

in slope stability modeling for multiple soil layers. It is imperative however, that such 

models are accurate and validated by field data. In the above types of hazards, 

geometric models showing the progression of the landslides over time can serve as 

important tools to determine or predict the evolution of a given slope. For example, 

Chase et al. (2001a, 2007a) describe a geometric model that has been successfully 

used to assess the internal deformation history of slowly moving slumps along the 

Lake Michigan coast using cross-section balancing techniques, described in the 

following sections. The model, based on slope displacement field data measured 

from the surface, is mostly intuitive. In this study Gaussian quadrature is used to 

evaluate the accuracy of this geometric construction model. The evaluation is done 

by computing and comparing internal geometrical areas determined by the model for 

the initial and final state of the slope after a period of progressive deformation. This 

procedure improves the accuracy of cross section constructions by producing a 
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mathematical-based model that is developed from field data and one that may be 

represented digitally. The validated geometric result can be put into a limit 

equilibrium program to assess the evolution and stability of the slope quantitatively. 

Geometric Modeling of the Subsurface 

Chase and others (2001a, 2007a) developed a geometric model useful for site 

characterization of the subsurface of a displaced slope. Surface displacements are 

measured by a pole-and-cable monitoring system. The system consists of eight-foot 

(2.5 m) fence poles vertically driyen about five feet (1.5 m) into the ground and 

placed down the slope face in parallel rows, as shown in Figure 1. A steel cable 

marked with colored plastic tape at 1.5 inch (3.8 cm) intervals runs from the crest of 

the slope to the toe and is strung through each pole. Tri-weekly surveys of each row 

of poles consist of the measurement of distance between poles, cable height above 

ground at each pole, cable sag angles between poles, and pole inclination angles in 

both the strike and dip directions of the slope. By projecting measured surface 

translations and rotations into the subsurface, positions of slip ( or shear) planes and 

displaced strata can be modeled with the aid of cross section balancing techniques. 

For example, Figure 2 shows the initial condition of a slope profile and progressive 

changes after deformation for a Lake Michigan coastal slump (Chase et al., 2007b ). 

As the section deforms, its profile can be re-balanced periodically to display its 

changing internal geometry. The production of balanced cross sections is not 

restricted to only the pole and cable system. Any survey method that expresses 
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geometries at depth, such as inclinometer profiles, drill hole stratigraphy and 

extensometer records can produce balanced cross sections. 

Figure 1. One of the pole-and-cable displacement monitoring lines installed on a Lake 
Michigan slump system. Each line is surveyed individually by measuring the distance 

between poles, cable height above ground at each pole, cable sag angles between 
poles, and pole inclination angles in both the strike and dip direction of the slope. 
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Figure 2. Stratigraphic displacement of a cross section in the Miami Park South 
slump zone showing the changing internal geometry. The profiles are constructed 
from repeated surveys and the geometric cross-section balancing. The displacements 

show: (A) initial conditions with horizontal strata and no slip surfaces; (B) one deep 
slip surface and two developing slip surfaces resulting in three fault blocks; and (C) 
final deformed state after seven years of progressive deformation (Chase et al., 
2007a). 

Source: Chase, R,B., Kehew, A.E., Glynn, M.E., and Selegean, J.P., 2007, Modeling 
debris slide geometry with balanced cross-sections: a rigorous field test: 
Environmental & Engineering Geoscience, 13(1), 193-203 
Used with permission of Ronald B. Chase, Author, 5-14-07 
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The Process of Cross-Section Balancing 

A cross section is said to be balanced if its geometry can be restored to its · 

undeformed ideal state without violating kinematic admissibility (Dahlstrom, 1969, 

Woodward et al., 1985). Details of the adaptation of cross section balancing 

techniques to landslide studies can be found in Chase et al. (2001B, 2007 A). 

Given an initially undeformed segment of slope profile as represented by 

Figure 3A, changing ground surface conditions due to slip at depth will be reflected 

by pole translations and rotations. To balance the cross section the underlying area in 

the subsurface is divided into a series of horizontal parallel lines. Such lines are based 

on either stratigraphic contacts or arbitrary references. Additionally, the poles serve 

as reference "pin" lines which may be projected downward into the profile to generate 

a series of polygonal cells with defined initial shapes and areas. During progressive 

stages of landslide evolution, the positions and shapes of these cells will change 

(Figures 3B-JD) as reflected by pole rotations and translations. However, cell areas, 

corner angles, and line lengths must be preserved at each stage of the deformation. 

This is achieved by introducing folds and/or slip surfaces though each cell that can 

collectively pass through all cells in the section without violating the length/angle 

rule. For example, a normal slip is introduced in Figure JB, fault propagation slip in 

Figure JC and reverse slip in Figure JD while preserving cell areas, corner angles and 

line lengths. Observed surface scarps or ground warps may be used to position slip 
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Figure 3. Cross section balancing illustration in which all original line lengths and 
angles are preserved. A) Originally there are two partial cells and two complete cells 

between poles. B) The poles diverge and differentially rotate resulting in a rotational 
normal fault plus two minor adjustment faults. C) The poles converge and 
differentially rotate resulting in a fault propagation fold structure. D) The same 
converging poles as in (C) result in an alternative rotational reverse fault 

interpretation. The choice between balancing methods (C) and (D) is dictated by the 
shape of the ground surface between poles and the best choice for the balancing of 
adjacent cells. (Chase et al., 2001a) 

Source: Chase, R.B., Chase, K.E., Kehew, A.E., and Montgomery, W. W., 2001, 
Determining the kinematics of slope movements using low-cost monitoring and cross
section balancing: Environmental & Engineering Geoscience, 7(2), 193-203. 
Used with permission of Ronald B. Chase, author, 5-14-07. 

surfaces or folds during the cross section balancing process. To maintain area balance, 
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the assumption is made that the soil volume remains constant, and that there is no 

mass movement oblique to the cross section. Although these assumptions are 

idealized given the inelastic nature of soils, they have little effect on model results 

(Chase et al., 2007a). The procedure described above for a slope segment is then 

applied repeatedly to an entire cross section. If the slump system is complex and 

develops many slip surfaces resulting in multiple fault blocks, the deepest block is 

balanced first. The section is then balanced progressively upward by balancing each 

block separately. If the blocks display the same magnitude and direction of 

displacement, it is reasonable to assume that only the deepest slip surface was active. 

For example, the cross section shown in Figure 2, was made along survey line 2 

(Figure 4) after repeated surveys and cross-section balancing (Chase et al., 2007b). 

This slump system is complex and developed multiple fault blocks as shown in Figure 

2B. Therefore, the deepest fault block was balanced first by using surface 

displacement data that were unique to it, and holding the other blocks fixed. Next the 

section was balanced progressively upward block-by-block, still maintaining the 

geometric rules discussed above. The end products were balanced cross sections 

where internal deformed geometries during progressive deformation were consistent 

with actual field observations (Figures 2B and 2C). 

Although the cross-section balancing method produces accurate results, it is 

highly intuitive and extremely time consuming especially when dealing with multiple 

blocks (Chase et al., 2007a). There is, therefore, need for an efficient technique to 

digitally check the accuracy of the balancing and quantify any corrections required, 
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hence the use of Gaussian quadrature. 
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Figure 4. Map of study area showing positions of five pole-and-cable monitoring 
systems. The survey data for this study were obtained from Line 2. 

The Use of Gaussian Quadrature 

Gaussian quadrature is a fonn of numerical integration where the value of a 

univariate integral may be computed at different pre-selected integration points. For 

example, Table 1 shows two, three, and four such integration points for a special type 

of Gaussian quadrature called Gauss-Legendre rule (see Appendix). Numerical 
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integration is often necessary when an exact analytical solution (e.g. antiderivative) of 

the integral of a function does not exist or when dealing with discrete experimental 

data. In the latter case, where the function is unknown and is only defined by the 

experimental data, it is possible to implement a numerical interpolation. The nature 

of such an interpolation will depend on underlying assumptions made and available 

knowledge about the behavior of the function between the data. The oldest and 

simplest approach is polynomial interpolation (Kincaid and Cheney, 2002). 

Table 1 

Pre-selected points of integration and their associated weights for the Gauss-Legendre 
rule. Two, three and four different points are shown. Values can be readily obtained 

from mathematical tables. 

N (Number of points) Point, X1 Weight, W1 

-0.57735 1.00000�

0.57735� 1.00000�

-0.77459 0.55555�

3� 0.00000� 0.88888 

0.77459� 0.55555�

-0.86113 0.34785 
4� -0.33998 0.65214 

0.33998 0.65214 

0.86113 0.34785 

A detailed description of Gaussian quadrature is in the Appendix. Gaussian 

quadratue has been applied in several computational geoscience studies such as 

estimation of erosion rate variables (Arndt, et al., 2001), terrain corrections in GIS 

(Hwang et al., 2003) and describing groundwater flow in confined aquifers (Yeh et 

al., 2003), among others. 

In this study Gaussian quadrature 1s used as a polynomial integration 
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technique to determine geometrical areas of stratigraphic segments in a structurally 

deformed profile. These areas are then compared with those in the original, non

displaced profile. The fundamental assumption is that for a two-dimensional slope, a 

stratigraphic boundary may be represented by an interpolating polynomial through 

fixed nodes in Cartesian coordinate space. This approach can be extremely useful 

especially if the resulting geometry of strata boundaries is too complex to confirm the 

line-length and angle measurements manually after the deformation has occurred. 

Such complexity is frequently observed in cases of displaced stratigraphy in 

lithologically heterogeneous terrain such as slopes composed of glacial deposits. 

Gaussian quadrature is a highly advantageous numerical integration technique 

because of the freedom in choosing pre-selected integration points leading to high 

accuracy. Additionally the Gaussian quadrature technique allows representation and 

manipulation of geometrical models in a digital format amenable to validation and 

analysis, as discussed below. 

Using Gaussian Quadrature to Balance a Cross Section 

To balance a cross section with Gaussian quadrature the initial and final 

profiles of the slope are required. A profile from the initial survey of the slope needs 

to be constructed showing original stratigraphic unit positions or cell boundaries. In 

this study these positions and boundaries were established with downward pole 

projections from the pole and cable system and horizontal reference lines as discussed 

above. After a period of structural deformation, the same slope is surveyed and its 

profile plotted from measured surface displacements. Stratigraphic layers are divided 

into segments whose areas are computed and compared for each profile. For 

example, the upper and lower boundaries of a stratigraphic-layer segment are shown 
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in Figure SA. Since the shape of each boundary is known, the segment can be 

discritized into two interpolating polynomial functions (Figure 5B). The discritization 

can be conducted rapidly using a digitizing program to capture X and Y coordinates 

�t\. Layer B 

Boundaries 

r--J7 . .... , 

' 
I 

� 

• 2. .... 

' I 

C 

Y-axis

l I X-axis

Figure 5. Layer boundaries. A) Discritization of a stratigraphic layer segment. B) The 
upper and lower boundaries of the segment are discritized into two interpolating 
polynomial functions. C) The difference between the integral of the upper polynomial 
and the lower polynomial is represented by the shaded region, which is equal to the 

area of the segment. 

of selected points along each boundary. Since the integration of any function between 
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two points represents the area under its graph, the area of the layer segment in this 

case is the difference between the integral of Polynomial One and the integral of 

Polynomial Two represented by the shaded region between points A and B in Figure 

SC. To integrate each function, the X and Y coordinates of the discritized points are 

put into the Gaussian quadrature equation (Appendix) with the aid of a spreadsheet 

program such as "Excel ®". The same spreadsheet program is used to subtract the 

integral of Polynomial Two from that of Polynomial One to calculate the actual area 

of the segment. The procedure illustrated in Figure 5 is repeated for the entire layer 

segments in a cross section. A sample of this spreadsheet is shown in Table 2 and is 

explained below. 
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Table 2 

Gaussian Quadrature Spreadsheet for the first stratigraphic layer of lacustrine clay 
before and after deformation. Column A shows the Partition Number. For example 

the deformed layer was divided into three partitions. Columns B and C show the 
limits of integration, a and b, from Equation (5) (see Appendix A). Column D shows 

the pre-selected integration points, p. In Columns E, F and G are the new x 
coordinates and associated function evaluations obtained from digitization and 
Equation (6). Columns I and J are computation results using Equation (6) and 

weights from Column H. The balanced area is determined by simply subtracting 
Column J from I. 
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Gaussian quadrature was applied to the cross section along survey line 2 (Figure 4). 

The initial profile was constructed on June 10th, 1996 and assumed to consist of 

undeformed stratigraphic layers (Figure 2A). As displacement progressed, the profile 

shape was constructed repeatedly using the cell balancing rules described above. 

After seven years of ground movement, the deformed profile in Figure 2B was hand 

constructed from a June 10, 2003 survey. The four layers in Figure 6A were selected 

based on completeness and consistency. The layer segments bounded by strata and 

slip surfaces constructed from this survey were digitized carefully, to acquire 
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Cartesian coordinates, usmg the computer program ROCKW ARE DIGIDATA 

(Figure 6) for both profiles. Results were then exported to an Excel® spreadsheet for 

area computations. The layer areas were determined using Gaussian quadrature rule 

by incorporating the mathematical formulation from Appendix A into the spread 

sheet. An example of this spreadsheet format is shown in Table 2. The spreadsheet 

shows digital information for layer 1 in Figure 6A before and after deformation. This 

spreadsheet also incorporates equations from the Appendix used to conduct 

computations. These equations require parameters that are obtained from 

mathematical tables such as Abramowitz and Stegun, (1964). Column A shows the 

segment number while Columns B and C contain X coordinates from the digitizing 

program. The integration points from the mathematical tables are shown in Column 

D. Column E contains mathematical equations discussed in the Appendix that are

used to perform the numerical integration. Columns F and G contain Y coordinates 

from the digitizing program. The weight parameters obtained from the mathematical 

tables have been put in H. Columns I and J also contain mathematical equations 

discussed in the Appendix. Segment areas are finally computed in Column K by 

subtracting results in Column J from those in Column I. 
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Figure 6. Digitization of the four stratigraphic layers. The coordinates are exported to 
an Excel ® spreadsheet where Gaussian quadrature is applied to compute the area of 
each entire layer: (A) before and (B) after deformation. 

Results of the Gaussian Quadrature Application to Line 2 

The initial and final areas of the four stratigraphic layers before and after 

deformation as computed using Gaussian quadrature are shown in Table 3. For a 

stratigraphic layer to be considered as balanced, the value of the initial area must be as 

close as possible to that of the final area. The area differences between the initial and 
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final profiles for three of the layers are zero. The fourth layer shows a difference of 

0.02 square units. Therefore all the layers balance, except for the fourth layer. This 

implies that the deformed segments of the fourth layer are missing 0.02 square units 

(approximately 13 percent) of the initial area. Because this deformed layer emerges at 

the toe of the slope (Figure 2C), we deduce that this missing section is due to erosion 

effects. However, if any of the other three layers had· shown a significant difference 

between the initial and final areas, adjustments would have had to be made by the 

amount of square units missing in the spreadsheet program. This is because those 

layers would not have been subjected to toe erosion (see Figure 6). In this case, no 

adjustments are required to improve this cross section because it is properly balanced. 

Table 3 

A comparison of initial and final layer areas obtained from Gaussian quadrature 
spreadsheets in units squared. Areas for Layers 1, 2 and 3 (numbered in Figure 6A) 

before arid after deformation are well balanced. The special case for Layer Number 4 
is discussed in the text. 

Layer No. 

One 

Two 

Three 

Four 

Initial Unit Area Final Unit Area Difference 

0.04 0.04 0 

0.03 0.03 0 

0.05 0.05 0 

0.15 0.13 0.02 

Application to the Process of Slope Stability Analysis 

The initial and deformed stratigraphic layer positions and cell shapes are 

dramatically diverse (Figure 6A and 6B). Therefore, a limit equilibrium analysis 

based only on initial conditions, without talcing into account the deformations, would 

28 



yield different results from an analysis that includes the geometry of deformation. 

Limit equilibrium analyses of this slope were conducted using field geometric 

conditions as represented initially on June 10, 1996 and geometric conditions 

precisely seven years later. Geotechnical parameters (Table 4) were obtained from 

consolidated-undrained tests on samples of onsite soils (Montgomery, 1998). Janbu's 

simplified method (Janbu, 1968) was implemented ·using the computer program, 

· SLIDE. This method was chosen because it is applicable to any shape of slip surface.

The results for an effective stress analysis are shown in Figure 7. Profile (A) yields a

safety factor of 1.4 while Profile (B) yields a safety factor of 1.2. These values agree

with actual field observations. Clearly a change in subsurface geometry and mass of

the slide block reduced the safety factor. From these results we can infer, with the aid

of geometric and mathematical modeling, that the landslide became less stable during

the seven year time frame.

Table 4 

Effective stress geotechnical parameters used for the slope stability analysis. Values 
shown for the defined stratigraphic layers: diamicton (glacial till), sand, Lclay 
(lacustrine clay), ILSAC (sand/clay) were obtained from Montgomery (1998). 

Soil Layer Unit weight Cohesion Phi Void ratio 
(kN/m3) (kN/m2) (degrees) 

Diamicton 19.3 0 28 

Lacustrine clay 15.7 0 20 

Sand 20.4 0 34 

Inter-layered 20.4 0 34 
sand & lacustrine 
clay 
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Figure 7. Limit equilibrium analysis results of slope using geometric field conditions: 
A) June 10, 1996; B) June 10, 2003. The analysis was conducted using the most
critical slip surface from Figure 6B

Conclusions 

Gaussian quadrature has been successfully used as a quality control tool for 

section-balancing the subsurface geometries of a slope undergoing progressive failure. 
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Geometric combinations of cell segments defined by stratigraphic units and estimated 

slip surfaces were cross-section balanced by conserving geometrical areas before and 

after deformation. The original profile and the final deformed profile were also 

subjected to a slope stability analysis using Janbu's method and effective stress to 

demonstrate the important role played by accurately defined geometry. The results 

show a significant difference in safety factors with the· deformed profile proving to be 

less stable. The Gaussian quadrature technique . allows representation and 

manipulation of geometrical models that allows digital validation. This provides a 

crucial bridge between a geometric investigation and the establishment of 

mitigation/engineering strategies for stabilization of a section-balanced slope. 
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CHAPTER III 

SOME APPLICATIONS OF NEURAL NETWORK MODELING 
IN ACTIVE SLOPE PROBLEMS 

Introduction 

Slope stability is important because slope failures or landslides can lead to· the 

loss of life and property. Current direct and indirect costs of slope failures exceed $1 

billion annually in the United States alone. Limited data and unclearly defined 

problems often complicate the study of landslides (Nieuwenhuis, 1991). A special 

type of active landslides known as earthflows/slumps have always posed a unique 

challenge to the geotechnical, engineering geology and geomorphology community 

because they are almost impossible to study using conventional slope stability 

analysis techniques such as limit equilibrium. For example, factors of safety 

exceeding one do not guarantee stability for these types of mass movements, and 

neither do values less than one always imply failure. In earthflows, slope movement 

is in the form of progressive ground failure (Chowdhury, 1978, Suemine, 1983, 

Kamai, 1997, Petley et al., 2005). Furthermore, displacement may occur along more 

than one "critical" slip surface. To compound the problem, failure along such a 

complex network of slip surfaces may occur gradually or catastrophically. 

Previous studies have introduced useful strategies capable of addressing these 

challenges including, but not limited to, finite elements (Griffiths and Lane, 1999), 

statistical or probabilistic techniques (Griffiths and Fenton, 2004), multiple and global 

(universal) safety factors (Baker and Leshchinsky, 2001), alternative, non-laboratory 

based geotechnical modeling parameters (Kamai, 1998, Stark et al., 2005), and others. 
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Finite element analysis can often be complex and time consuming, even though the 

results may be accurate and more meaningful than limit equilibrium analysis in some 

cases (Duncan, 1996a). Statistical methods often require physical or mathematical 

models showing clear functional dependence of outputs on model parameters 

(Neaupane and Achet, 2004). The common feature of the above methods is that they 

are physics-based, implying mathematical formulation of fundamental laws. The 

underlying disadvantages with this approach include a) failure to assess slope stability 

in the absence of geometry and soil properties pertaining to the formulation, and b) 

difficulty in representing actual ground truth conditions (Cao, 2002). Artificial 

Neural Networks on the other hand are solely based on laboratory and/or field data 

because-in perhaps one of the most powerful features of neural networks--of their 

ability to map complicated functional relationships between dependent and. 

independent variables without any a priori assumptions regarding dependency, unlike 

most curve fitting techniques (Liu et al., 2006). 

The behavior of creeping landslides is clearly highly non-linear and time

variant due to a complex combination of internal and external variables. Internal 

variables include those related to the material itself such as shear and cohesive 

strength, or strain and soil particle structure. External variables include factors such 

as precipitation, groundwater, and temperature conditions. The objective of this study 

is to apply a heuristic approach that inherently addresses such variables by using 

Artificial Neural Network modeling. The relatively new field of Artificial Neural 

Networks has been previously used in geotechnical engineering, such as site 

characterization of soil properties (Juang et al., 2001), prediction of unsaturated soil 

behavior based on triaxial tests (Habibagahi and Bamdad, 2003), and prediction of 

factors of safety from geotechnical parameters (Wang et al., 2005), among others. 
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Unlike most models, neural networks have the ability to learn and improve their 

performance. 

For this study three categories of Artificial Neural Network models are 

investigated: using displacement data to predict slip positions, using climate data to 

predict groundwater levels and using climate and ground water data to predict 

displacements. All neural network models are developed and assessed in the context 

of real field data. 

Artificial Neural Networks (ANN) 

An ANN is a mesh of computing nodes and connections, fashioned after the 

biological nervous system. The nodes are the basic processing elements which can be 

trained to map data non-linearly once they are activated ("turned on"). A popular 

choice for a widely applicable activation function is the sigmoid function, or logistic 

function: y = 11 (1 + e-x) . These nodes or artificial neurons are often organized in 

layers: input, hidden and output layers as portrayed in Figure 8. Each connection is 

assigned a numerical value, known as a weight, which can be changed during neural 

network training. An advantage of ANN over physics-based models is their ability to 

learn complex relationships among data sets. Once this knowledge is acquired, they 

may be applied in instances where new data do not completely define the system. An 

ANN does not rely upon the physical laws of the system it is modeling. This is an 

advantage over physical-based models because information about the physical 

parameters of the system is not required. The accuracy of an ANN can be assessed by 

the mean squared difference between actual and predicted or output values (Root 

mean squared en-or or RMSE): 
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RMSE= 

T 

I i=I 
(error) 2

where T is the sum of the individual i nodes. 

Input #4 

Input 
Layer 

Hidden Layer Output 
Layer 

Output 

(1) 

Figure 8. Artificial Neural Network layered arrangement of input, hidden and output 
nodes in a Multi Layer Perceptron (MLP) ot feed forward architecture. 

The objective in ANN modeling is to minimize this error with respect to the 

connection weights. This process is known as "learning" and several learning 

algorithms exist in the literature (Poulton, 2001). The learning algorithm used in this 

study is a combination of back propagation and adaptive gradient. Back propagation 

is a gradient descent method that searches for the global optimum of the network 

weights (Rumelhart et al., 1986). First, partial derivatives of the errors with respect to 

each weight in the network are computed as described in Appendix B. Then the 

weights are modified as follows: 
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where: 

m
u
(t) = weight of the unit ij at time t

7J = the learning rate 

8
1 

= the local error gradient 

a = the moment coefficient 

o; = the output of the ith unit 

(2) 

Details of how these parameters pertain to the back propagation algorithm are 

described in the Appendix. 

Predicting Slip Surface Locations from Displacements 
with Artificial Neural Networks 

The Problem of Slip Surface Location 

Investigations of active slopes frequently include determination of slip surface 

locations. This can be achieved by using either field methods or modeling techniques. 

Field methods include drilling, trenching, mapping, inclinometer profiling, and 

geophysical techniques such as ground penetrating radar and seismic surveys. 

Because field studies can often be expensive and time consuming, modeling 

techniques provide a viable alternative. Modeling techniques include geometric 

modeling (viz. subsurface extrapolation from surface markers), finite elements, limit 

equilibrium and optimization algorithms. Unfortunately, these modeling techniques 
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may also produce highly subjective results influenced by prior user assumptions. 

Because ANNs learn relationships of a system independently, they can be applied to 

the problem of slip surface detection with minimum human interference. 

Data Acquisition 

To develop a reliable ANN model that predicts slip surface positions, true 

field data must be used. The data must include displacements and some known slip 

surface depths. In this application, field data were acquired from drill logs and slope 

surface displacements at a site called Miami Park South (MPS) along the southeastern 

shoreline of Lake Michigan (Figure 9). 

Figure 9. Location of the Miami Park South site 

The drilling was conducted in the summer and fall of 2003 to install 17 dewatering 
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wells, 12, inclinometer wells and 14 vibrating wire piezometers as part of a 

dewatering experiment conducted jointly by Western Michigan University and the US 

Army Corps of Engineers. The vertical depths of the wells ranged from 25 feet (7 .6 

m) to 52 feet (15.85 m). Split spoon sampling was conducted every 5 feet (1.52 m),

with decreased sampling intervals where necessary.. Surface displacements were 

recorded by five survey lines consisting of eight-foot (2.5 m) fence poles vertically 

driven about five feet (1.5 m) into the ground and placed down the slope face in near

parallel rows (Figure 10). 

Figure 10. The pole-and-cable slope displacement monitoring system (described in · 
Chase et al., 2001a). Measurements from the system are used to compute neural 
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network training parameters. 

A steel cable marked with colored plastic tape at 1.5 inch (3.8 cm) intervals runs 

through each pole from the crest of the slope to the toe. Tri-weekly surveys of each 

row involve the measurement of distances between poles, cable height above ground 

at each pole, cable angles between poles, and pole inclination angles along the strike 

and down the dip of the slope. This information is used to calculate ground 

translations, rotation and ground elevations relative to a fixed benchmark at the top of 

the slope. These field measurements have been compiled into a ten-year data base that 

has been used for analysis of the movement history and geometric evolution of the 

slopes (Chase et al., 2001b, 2007a), (Figure llA). This data base was.used to 

construct the training file discussed in the next section. 

Artificial Neural Network Training and Testing 

The database described above was used to compose the training file 

illustrated in Table 5. The table consists of columns showing seven different variables 

--six inputs and one output parameter for a number of locations. Input variables 

include cumulative ground displacement, cumulative ground elevation change, 

cumulative ground rotation along the dip and strike of the slope, and soil type. Each 

of these parameters is defined and calculated as follows: 

a) Cumulative ground displacement = total distance moved by the ground (and

pole) at the base of each pole. 

b) Cumulative ground elevation change = change from initial ground

elevation. 
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c) Near-surface ground rotation (parallel to dip) = deviation from initial pole

inclination angle. Positive values indicate forward rotation, while negative 

values indicate back rotation. 

(A) 
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Figure 11. Slope geometric evolution. A) Slope profile cross section along the pole
and-cable line 2 (shown in Figure B), constructed from geometric modeling of surface 
displacements and validated by drill logs conducted in June 2003.The·vertical 
distances to the nearest slip surface are used to train and test the neural network. B) 
Map of the Miami Park South site (Figure 9) showing the location of pole-and-cable 
line 2. 
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d) Near-surface ground rotation (parallel to strike)= deviation from initial

pole inclination angle. 

e) Pole soil type = soil type pole installed in (sand, clay or till).

f) Slip surface soil type = soil type of anticipated slip surface location, if

known (sand, clay or till). 

Table 5 

Sample training file from MPS. A= Cumulative ground displacement, B=Cumulative 
ground elevation change, C=Ground rotation (parallel to dip) D= Ground rotation 

(parallel to strike), E=Pole location soil type, F=slip surface location soil type (1 =Till, 
2=Clay, J=Sand), and G= Closest slip surface vertical depth. 

C D 
A (ft) (m) B (ft) (m) (deal (deal E F (ft) (ml 

-1.35 -0.41 0.00 0.00 3 1 1 1 10 3.05 

-2.25 -0.68 -0.27 -0.08 0 2 1 1 15 4.57 

-0.77 -0.24 2.75 0.84 16 3 1 1 0 0.00 

7.58 2.31 -0.55 -0.17 65 30 1 1 8 2.44 

-1.34 -0.41 -0.91 -0.28 49 30 1 1 8 2.44 

1.96 0.60 -0.92 -0.28 -1 -1 1 3 40 12.19 

5.33 1.62 -0.09 -0.03 5 -2 1 3 40 12.19 

1.67 0.51 -1.29 -0.39 1 -3 2 3 36 10.97 

1.22 0.37 -0.74 -0.23 0 -2 2 3 20 6.10 

-3.94 -1.20 -1.10 -0.34 2 -2 2 3 14 4.27 

-10.80 -3.29 -1.47 -0.45 5 1 2 3 12 3.66 

-11.96 -3.64 -1.47 -0.45 12 10 2 3 16 4.88 

5.40 1.65 0.37 0.11 11 10 1 1 10 3.05 

15.10 4.60 1.37 0.42 3 6 1 1 4 1.22 

24.88 7.58 -1.84 -0.56 25 1 1 1 4 1.22 

17.19 5.24 -0.27 -0.08 8 1 1 2 8 2.44 

8.52 2.60 -0.18 -0.05 5 7 2 2 14 4.27 

37.50 11.43 -0.73 -0.22 3 5 2 2 2 0.61 

0.58 0.18 0.00 0.00 6 0 1 1 4 1.22 

-0.58 -0.18 0.19 0.06 2 -1 1 1 4 1.22 

0.83 0.25 0.19 0.06 5 2 1 1 4 1.22 

3.67 1.12 0.00 0.00 58 30 1 1 20 6.10 

0.81 0.25 0.00 0.00 0 2 1 1 14 4.27 

1.69 0.51 -0.10 -0.03 0 1 1 2 10 3.05 

1.56 0.48 0.00 0.00 1 2 1 2 12 3.66 

2.23 0.68 0.18 0.05 5 4 1 3 22 6.71 

9.06 2.76 -0.18 -0.05 72 30 1 2 16 4.88 
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The output parameter (G) is the vertical depth from the ground to the slip 

surface. In the case of multiple slip surfaces such as Figure 11, then the output is the 

vertical depth from the ground to the first slip surface encountered. Consequently, if 

the sampling of ground displacements/rotations is lim_ited in the case of multiple slip 

surfaces, the ANN prediction could result in ambiguity. This problem can be 

addressed by sampling the ground displacements/rotations at closer spaced intervals. 

A limit of the ANN method is therefore the availability of field data: the greater the 

amount of data the higher the chances of successful slip surface characterization. 

The ANN uses the training file in Table 5 to learn to associate the input 

variables with the expected output variable in Column G row by row. After each 

successive iteration, the model checks its performance by comparing its output with 

the expected one, and computing an error. The model then adjusts its internal 

connection weights using the learning rule in the Appendix until this error is 

minimized. Duration of this training phase depends on the size of the training file and 

computer processor speed. Once training is accomplished, the neural net is ready for 

testing or validation (Figure 12). New input parameters are provided to the model to 

predict outputs. The results are checked against actual known values to assess 

whether the model is acceptable or needs refining. If model predictions are 

acceptable then the neural network is ready for use. 

To train the neural network, the back propagation algorithm discussed above 

was implemented using the commercial software NEURAL WORKS PREDICT. A 

sigmoid output function was also used. The training file consisted of thirty three 

patterns (or data sets) derived from the slope displacement database discussed above. 

For validation, the model was first tested on fifteen new data sets it had not yet 
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"seen". The model was again tested using a total of forty-eight patterns consisting of 
A) B) 

Training data Only R=0.87 
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Predicted Depth (ft) 

C) 

Test Data Only 
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10 
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Combined training and test data R = 0.84 

50 ,--- -----------
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Predicted Depth (ft) 

R=0.81 

Figure 12. Neural network training and test results. The model predictions are 
compared with actual data for three cases. A) Only data used during neural network 
training; B) only data used to test the neural network model; and C) using both data 
from (A) and (B). 

both old and new data. Results are shown in Figure 12 and discussed in the next 

section. In summary the steps for supervised neural net learning and testing are: 
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1. Select and prepare input and output parameters from raw data and create a

training file (Table 5).

2. Create neural network model architecture (Figure 8).

3. Input training file into the model.

4. Initiate training by implementing the back propagation algorithm (see

Appendix).

5. Continue neural network training until errors are minimized.

6. Test model on new data for validation.

7. Refine model if necessary.

8. Model ready for use.

Results of the Artificial Neural Network Testing for Miami Park South 

The Miami Park South site has an average long term rate of recession of 1.3 

ft (0.39 m) per year. The bluffs at the site have an average height of about 80 ft (24 

m), and a slope angle of about 34 degrees. The geology consists of glacial diamicton 

(till), and layers of sand and clay, as shown in Figure 11. The displacement 

geometries are also shown. 

When tested, the ANN predicts slip surface depths closely matching observed 

ones (Figure 12). A common linear trend is observed for all three cases described. 

Pearson's correlation coefficient, R, is the linear correlation between target and 

predicted values. Perfect correlation gives an R value of 1.0. Anticorrelated outputs 
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have an R value of -1.0. Uncorrelated output gives an R value of 0.0. The 

acceptability of an R value may vary depending on problem domain. For example, 

for some noisy domains, R values of less than 0.5 may be considered good. The 

training data in Table 2 show a stronger correlation (R=0.87) than the test data 

(R=0.81) because of the supervised nature of the learning. This implies the model 

predicts familiar data better than it does new data. The predicted overall test results 

fitted to field data are shown in Figure 13. There is a close match between model 

output and actual depths, especially for depth values less than 30 ft (9 m). 
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Figure 13. Model fit showing predicted slip surface depths versus true depths for test 
data. The x-axis shows the pattern number (or data point): the y-axis shows the 
depth. Pearson's correlation coefficient R for all test data is 0.81. 

Error analysis provides a quantitative assessment of the ANN predictions. In 

Table 6 "Avg. Abs." represents the average absolute error between target output and 

predicted value. RMS is the root mean square error between the target output and the 
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predicted output. Confidence Interval represents an error bar around the output. For 

example if a 95% confidence level is used, then we can have 95% confidence that the 

predicted output will be within X of the target output value, where Xis the confidence 

interval. The assumption made is that the test set is representative of the data 

population. In this case there is an average absolute error of about 1.3 m and a root 

mean square error of 1.8 m, as shown in Table 6. Also there is 95% confidence that 

the predicted slip surface depths-magnitudes are within 3 m of the actual values. This 

error analysis explains the observed fits in Figures 12 and 13. 

Table 6 

Summary statistics for neural network training and testing for slip surface depth 
prediction. R = Pearson's correlation coefficient, Avg Abs = the average absolute 
error, Max Abs = maximum absolute error, RMS = the root mean square error, Conf. 
Interval = the confidence interval and Records is the number of data sets used. 

·statistic R Avg. Abs. Max. Abs. RMS ft Conf. Records 
ft (m) ft (m) (m) Interval 

(95%) ft (m) 

Train 0.87 4.09 (1.25) 14.5 (4.42) 5.46(1.66) 11.1 (3.38) 33 
Test 0.81 4.35 (1.33) 11.73(3.57) 5.8 (1.77) 11.1 (3.38) 15 

All 0.84 4.17 (1.27) 14.5 (4.42) 5.57(1.69) 10.7 (3.26) 48 

Sensitivity Analysis for the Slip Surface Prediction 

A sensitivity analysis was conducted to investigate the significance of each of 

the model input parameters. The ranking system was based on ratios which were 

computed as follows (Coppola, 2005): 
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Ratio = RMS error of ANN without input parameter during prediction 
RMS error of ANN with input parameter during prediction 

The input parameter with the highest ratio was given a rank of "one" implying 

highest significance. Conversely, the input parameter with the lowest ratio was given 

a rank of "six." Sensitivity analysis results, summarized in Table 7, show that the soil 

type which the slip surface penetrated was the most significant input parameter for the 

prediction. 
Table 7 

Sensitivity analysis for slip surface depth prediction. CD = cumulative ground 
displacement, CGE = cumulative ground elevation change, GRl = Ground rotation 
(parallel to dip of slope), GR2 = Ground rotation (parallel to strike of slope), PST =

pole position soil type, SST = slip surface position soil type, RMSE = model root 
mean square error when particular input parameter is omitted, Ratio = RMSE wheri 
particular input parameter is omitted to RMSE when all six input parameter are 
included 

Statistic CD CGE GR1 GR2 PST SST 

Rank 6 5 3 4 2 1 

RMSE 6.07 6.18 6.28 6.25 7.55 9.53 

Ratio 1.11 1.13 1.15 1.14 1.38 1.74 

Cumulative ground displacement was the least significant input parameter by 

rank. It can also be deduced from Table 7 that cumulative ground elevation change 

was a more important predictive parameter than cumulative ground translation, and 

that ground rotations were important as well, especially for down dip movements. The 

former observation is probably due to significant vertical activity relative to 

horizontal translation during most of the sliding, while the latter observation is 

probably due to rotational failure in a down-dip direction. Rotational failure is typical 

in clayey or cohesive slope materials (Chen, 1975). Generally speaking, all of the six 

input parameters have a unique contribution to predicting the precise location (i.e. 
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depth) of a shear plane as noted from the RMSE values during sensitivity analysis. 

Therefore if any of the inputs are missing, predictions can still be made by adjusting 

the model accordingly. This is demonstrated in the next two examples. 

Example 1: La Mure Landslide, French Alps 

Description 

The model developed above was applied to a landslide problem in the French 

Alps (Figure 14) near Grenoble investigated by Van Genuchten and Nieuenhuis 

(1990). The landslide, developed in varved clays, exhibits behavior not explainable 

using classical 2-D stability analysis. Its movements are known to be greater than one 

meter per year. The dimensions of the study area are about 500 m long and 125 m 

high. Soils consist of mostly over-consolidated silty clays with residual (weakened) 

shear strengths. The landslide is active, the geometry and soils are known, and 

displacements occur along existing slip planes and movements are detectable. Field 

instrumentation included a geodetical network of surface markers and flexible tubes 

for displacement measurements, piezometers for groundwater level detection, and 

meteorological equipment. This landslide has seasonal movements driven by 

excessive precipitation or snow melt. Its hydrology is complex due to the presence of 

scarps and fissures. 
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Site L1 

,.., Scarp 

• • • 2. Cross-cectlon line for 
➔ slip depth prediction 

Displacement vector for 
period 1980-1988 

Figure 14. The La Mure Landslide in the French Alps. The ANN prediction of slip 
surface positions was conducted along the four slope cross section lines shown. Sites 
Ll and L3 are discussed in text Example 3. (modified from Van Genuchten and 
Nieuenhuis, 1990) 
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Artificial Neural Network Model Set Up for the La Mure Landslide 

The neural network model discussed above was developed using six input 

parameters (Table 5). However the La Mure landslide case study only has four of 

these available: ground rotations in the strike and dip directions of the slope were 

missing. The goal was to test the ANN prediction using only four input variables. 

Cumulative ground displacements and cumulative ground elevation changes were 

obtained from horizontal and vertical displacement vectors. These values were 

normalized to fall between zero and one so that the model trained on data from a 

different site (MPS) could be applicable. Soil parameters were put into the model 

iteratively to determine which values corresponded to those from MPS. The back 

propagation algorithm discussed above was implemented using the commercial 

software NEURAL WORKS PREDICT. A sigmoid output function was also used. 

The results of the predicted slip surface positions for four profiles show a close match 

with measured positions (Figure 15A). There is still significant scatter (Figure 15B), 

however, probably due to the missing ground rotational input parameters. A limit 

equilibrium critical slip surface search using Bishop's method for the four slopes is 

shown for comparison in Figure 16. The safety factor values for the search lie 

between O and 1. 5. It can be seen that the ANN model provides less slip surface 

prediction ambiguity than does the limit equilibrium search. 
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Figure 15. Slip surface predictions for La Mure. A) Predicted versus true slip surface 
positions for the four slope profiles located in Figure 14. (modified from Van 
Genuchten and Nieuenhuis, 1990). B) The scatter of the predicted values around the 
true fit is also shown. 
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Figure 16. Critical search for slip surface using limit equilibrium analysis and 
Bishop's method for the four slope profiles shown in Figure 14. The dark lines show 
the lowest and highest factors of safety for the critical search. 

Example 2: Mam Tor Landslide, Derbyshire, England 

Description 

The Mam Tor landslide was studied by Skempton et al. (1989) and more 

recently by Rutter et al. (2003). The landslide exhibits episodic and creep movements 

leading to a collapse of the eastern section that has left an 80 m high scar. The 

dimensions of the slipped mass are about 750 m long and 500 m wide (Figure 17). 

The geology consists of mostly mudstone overlying sandstone. The average 

displacement rate is 10 cm per year, with the central region moving faster at 50 cm 

per year. Displacements have also been known to correlate with annual variations in 

rainfall above a critical threshold level. Displacement monitoring was conducted 

between 1996 and 2002 using a total of 38 stations (Rutter et al., 2003). The stations 

were measured using a Geodimeter 408 electromagnetic distance measurement 
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(EDM) instrument. The instrument measured horizontal and vertical movements 

relative to a bench mark. 

' - IN 
[] o. ___ 20cm 
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Figure 17. Location and aerial map of the Mam Tor Landslide in Derbyshire, 
England. The ANN prediction of slip surface depths was conducted along AA' 

Artificial Neural Network Model Set Up for the Mam Tor Landslide 

The neural network model discussed earlier was adapted. to the Mam Tor 

landslide by using the locally available data for neural net training and validation. 

The input parameters used were cumulative ground displacement and cumulative 

ground elevation change, while the output parameter was vertical depth to the slip 

surface. Ground rotations in the strike and dip direction of the slope, and soil types 

were left out because they were unavailable. The back propagation algorithm was 

again implemented using a sigmoid output function. After training, the ANN model 

was validated using an independent data set from Mam Tor. The results of the 

predicted compared to measured slip surface position are shown in Figure 18A. 

Although there is significant scatter (Figure 18B), the fit is still better than. a limit 

equilibrium search (Figure 18C). The scatter is probably because the ANN model 

utilizes only two input parameters instead of six. 
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Figure 18. Slip surface prediction results for Mam Tor. A) Predicted versus true slip 
surface positions for the Mam Tor Landslide. True slip surface positions were 
determined using boreholes described by Skempton et al., (1989). Predicted slip 
surfaces were determined using neural network modeling in this study. B) The 
statistical evaluation of the predicted slip surface location. C) Results of a limit 
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equilibrium critical surface search using factors of safety between 0.5 and 1.2, 
indicated by the dark lines. 

Predicting Displacements from Meteorological and Groundwater Data 
using Artificial Neural Networks 

Using Ground Water Potentiometric Surface Elevations and 
Air Temperatures to Predict Displacements 

A new ANN model was set up to predict displacement rates from temperature 

and groundwater elevation data. Ideally elevated ground water results in pore pressure 

build-up leading to reduced soil shear strength and ultimately displacement. 

Additionally, studies have documented the seasonal variation of groundwater levels 

based on freeze/thaw conditions (Chase et al., 2001b, 2007b) in the Lake Michigan 

coastal bluffs discussed earlier. The objective was to address the following questions: 

• Could groundwater and temperature data therefore be used to predict·

displacements?

• If the first question is answered affirmatively, how far in advance could

displacements be predicted when given air temperature and groundwater

potentiometric level changes?

Time series graphs of air temperature, potentiometric surface elevations and linear 

displacement data from a nest of in-place inclinometers at Miami Park South (Well 11 

in Figure 11) are displayed in Figure 19. The input parameters were systematically 

varied to introduce a time lag during neural network training and testing. This was 

conducted in order to address the second question listed above. 
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Figure 19. Time series curves showing displacement rates, air temperature and 
groundwater elevation from well number 11 at the Miami Park South site (Figure 9). 
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network training and prediction. 

• 
♦ 

0.6 

0.4 

0.2 

0 

-0.2

,
-0.4

-0.6

-0.8



Table 8 summarizes the statistics of the modeling results at various time lags 

expressed in days from one to ten. Pearson correlation coefficient (R) for the test sets 

range from 0.2 to 0.9. Root mean square (RMS) error values for the test sets range 

from 0.4 in. (0.01 m) to 5 in. (0.13 m). These values imply that the first objective was 

met. However these results also imply that the difference between various time lags is 

too insignificant to be meaningful from a predictive standpoint. In other words, if this 

ANN was incorporated into a warning system, it would be almost impossible to tell a 

four-day and a nine-day alarm apart. Therefore more than only two input parameters 

would be required for the neural network training. A sensitivity analysis, similar to 

the one conducted above, would have to be executed to determine the significance of 

each input parameter. Ground water elevations and air temperature input parameters 

thus provide a starting framework. 

Table 8 

Summary of statistical modeling results for the neural network displacement rates 
prediction at various time lags. 
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0.86 0.46 2.80 0.88 1.89 15 

fo111 <l .. 1ytiine l,l4J _ 

Train 
Test 

R Avg. Abs. Max. Abs. RMS Conf. lnlerval (95%) Records 
0.82 0.30 2.03 0.59 1.19

, 
34 

0.44 1.59 18.86 4.95 10.63 15 

Five •l•lY time l.11.J 

Test ...Q.;_33.I._ 0.24 

Nine-day time l,19 

X JR- ,Avg.Abs. 
Train 0.901 0.12 
Test 

+
-0.93 0.16 

T e11-day lau_ 
R Avg. Abs. Max. Abs. RMS Conf. lnlerval (95%)...jRecords X R �g.Abs. 

Train 0.86 0.38 2.83 0.75 1.52 34 Train 0.88 0.12 
Test 0.69 0.40 2.25 0.69 1.48 15 Test 0.861 0.15 
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2 01 

Max. Abs. 
1.17 
1.30 

Max.Abs. 

0.79 
1.35 

0.41 0.82 34 

0.49 1.04 15 

RMS Conf. Interval (95%) Records 
0.63 1.27 34 

0.63 1.36 15 

RMS Conf. Interval (95%1 Record! 
0.56 1.13 34 

0.53 1.15 15 

RMS Conf. Interval (95%) Record! 
0.26 0.54 34 

0.35 0.75 15 

RMS Conf. Interval (95%1 Record! 
0.22 0.44 34 

0.36 0.77 15 



Using Air Temperatures to Predict Groundwater Potentiometric Surface Elevations 

The same time series data set from Figure 19 was used to predict water levels 

from temperature data at different time lags. The objective was to investigate whether 

air temperatures could be used to predict groundwater elevations, and if so how far in 

advance. The statistics are summarized in Table 9. 

Table 9 

Summary of statistical modeling results for the neural network ground water elevation 
prediction at various time lags. 

011e-ll,1y ti111e l,l!J 
._,. 

FTH20 R Avg. Abs. Max. Abs. RMS Con!. Interval (95%)_,!3ecords 
Train 0.77 0.12 0.37. 0.16 0.33 31 
Test 0.29 0.14 0.46 0.20 0.43, 14 

FTH20 R Avg.Abs. Max.Abs. RMS Con!. Interval (95%)]Records 
two.t1.1y time loljJ 

I Train 0.50 0.17 0.53 0.23 0.47 31 
Test 0.33 0.11 0.30 0.15 0.331 14 
thl ee-1l,1y tirue l,l'J 

FT H20 R Avg. Abs. Max. Alls. RMS 
l
conf. Interval (95%) Records 

Train 0.45 0.18 0.53 0.23 0.46 31 
Test 0.44 0.13 0.33 0.15 0.33 14 
forn-1l,1yti111e 1.i1J 

FTH20 
Train 

R Avg. Abs. Max. Abs. RMS lconf. Interval (95%) Records 
0.74 0.11 0.53 0.17 0.34 31 

�ix-�y •�•e l�1c1 
FT H20 R !Avg. Abs. 

1 o.91I Train 0.07 
Test I 0.11 I 0.20 
seven-t1.1y time lag 

FTH20]R 
J
� 

Train I 0.81 0.1 O 
Test I 0.381 0.15 
ehjl1t-tlt.yti1ne l•l<J 

FT H20 R _ 
r

vg. Abs. 
Train 0.73 0.12 
Test 0.29 0.15 
1d1.e-d.1ytime lag 

FT H20 I13 IAvg. Abs. 

Test 0.50 0.17 0.47 0.21 0.46 
Train 0�%- 0.13 

14 Test 0.13 0.21 
five-il,1y ti111e l,ll_J 

FTH20 R Avg. Abs. Max. Abs. RMS 
Train 0.81 0.11 0.44 0.15 
Test -0.11 0.23 0.58 0.27 

Con!. Interval (95%) Records 
0.31 31 

te11-@ytilue 1.19 

FTH20 IR 
Train 0.68 

Avg. Abs. 
0.14 

0.59 14 Test 0 431 0.17 

Max. Abs. RMS Conf. Interval (95%' Records 
0.31 0.10 0.20 31 
0.51 0.24 0.53 14 

Max. Abs. RMS_ C� lrlterval (95%l B_ecords 
0.39 0.14 0.28 31 
0.72 0.22 0.48 14 

Max. Abs. RMS conf. Interval (95%) Records 
0.49 0.17 0.35 31 
0.55 0.20 0.43 14 

Max. Abs. RMS Conf. Interval C95%l Records 
0.52 0.18 0.37 31 
0.52 0.26 0.57 14 

Max. Abs. RMS Conf. Interval f95%l Records 
0.46 0.18 0.37 31 
0.37 0.21 0.46 14 

Pearson correlation coefficients range from 0.1 to 0.5. Root mean square 

(RMS) errors range from 0.27 ft (0.08 m) to 0.16 ft (0.05 m). In spite of the ability to 

predict ground water elevations with this level of accuracy, there is still no way of 

telling results from different time lags apart. Therefore additional input parameters 

would have to be introduced. A sensitivity analysis, similar to the one conducted 

above, would have to be executed to determine the significance of each input 

parameter. Air temperature as an input parameter thus provides only a starting point. 

Using one input parameter to conduct predictions does not necessarily always lead to 
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low correlation coefficients as the following example shows. 

Example 3: La Mure Landslide Displacements 

Description 

The Alpine landslide from Example 1 above was studied in greater detail by 

Nieuwenhuis ( 1991) who investigated soil moisture conditions in the slide area, shear 

strength at the slide planes, 3-D slope stability analysis and yearly displacements as 

related to precipitation, with the goal of simulating the landslide's displacements and 

stability as a function of time. Using eight years of data, a mathematical model based 

on plastic flow theory was calibrated to simulate the displacements. Input parameters 

to the model were the onset of movement, amount and duration of precipitation, and 

continuation and interruption of displacements. Shear strength reduction due to 

increased pore pressure conditions was found to be an important factor. However 

during the summer the landslide could sustain much larger pore pressure increases 

because of temporary shear strength increases along the slide plane, due to changes in 

the soil structure during periods without deformation. Factors of safety were found 

using Janbu's (1968) method to vary generally between 1.05 and 0.98, although their 

trends or patterns seemed to be more significant than the values themselves in 

determining displacement. Intermittent movements were also found to be a normal 

occurrence and down-slope blocks (near the toe) moved with greater velocity than the 

upslope ones (near the crest). Accumulated blocks and slices at the base of the 

landslide were believed to slow down the movements. The simulation developed by 

Nieuwenhuis ( 1991) could not handle dry spells, because of a reliance on actual "rain 

days", but was generally acceptable based on how it closely matched measured 
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displacements. 

Artificial Neural Network Model Set Up for La Mure Displacements 

An ANN model was developed using La Mure data and the back propagation 

algorithm. The goal was to predict field displacements from measured precipitation 

data. The basis was that precipitation in the region was determined to be a notorious 

triggering mechanism for slope displacements. Table 10 and Figures 20A - 20B 

summarize the model results for the training and testing. 

Table 10 

Summary of neural network displacement modeling results of La Mure Landslide 
compared with displacements measured by Recorder LI and L3 (Figure 7) 

Results for Site L 1 

Avg. Max. Cont. Interval 
Statistic R Abs. Abs. RMS (95%) Records 

Train 0.997073 1.744426 5.509697 2.315643 4.816315 22 

Test 0.996388 1.950707 6.121803 2.493152 5.357784 15 

Results for Site L3 

Avg. Max. Cont. Interval 
Statistic R Abs. Abs. RMS (95%) Records 

Train 0.997073 1.744426 5.509697 2.315643 4.816315 22 

Test 0.996388 1.950707 6.121803 2.493152 5.357784 15 
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Figure 20. Correlation between displacements predicted by the Artificial Neural 
Network modeling and displacements measured from the field by recorders: A) Ll 
and B) L3 in Figure 13 for the La Mure Landslide. Both graphs show a near-ideal 
straight line fit. 

Both survey sites Ll and L3 (Figure 14) show Pearson's correlation 
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coefficients of 0.99. Figure 21 shows the performance of neural network modeling in 

predicting displacements in comparison with those recorded at the two survey sites. 
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Figure 21. Cumulative displacements and precipitation over time for the La Mure 
Landslide. Ll and L3 represent displacements measured by two separate recorders 
(Figure 13), PR represents the cumulative precipitation at the site, s represents the 
cumulative displacement simulation conducted by Nieuwenhuis (1991) and ANN 
represents the cumulative displacements predicted by the neural network model 
discussed in this study 

A statistical prediction conducted by Nieuwenhuis (1991) is also shown for 

comparison. The neural network model fits the true data very well in both cases LI 

and L3 with root mean square errors of 2.5 mm and 4.8 mm respectively. In this 

particular case, using only one input parameter (i.e. precipitation) for the prediction 

did not result in significantly low correlation coefficients and/or scatter. 
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Summary and Conclusions 

Artificial Neural Network modeling in slope stability studies provides a 

compelling alternative to other non linear problem solving techniques such as finite 

elements. Un.like most types of models they require few assumptions pertaining to 

the data being modeled. Also, their added benefit of being able to adapt to or learn 

from their environment makes them an invaluable tool in time-variant problems such 

as creeping landslides or slumps. The first ANN model for this study was developed 

to predict slip surface positions from displacement data using back propagation and a 

sigmoid output function. For an active landslide near Lake Michigan, models fit test 

data well with a root mean square error of about 1.8 m. Sensitivity analysis results 

show that soil type and cumulative ground elevation change are the most important 

predictive parameters. The sensitivity results also suggest a stronger rotational 

component to failure than translation, for the data examined. When this ANN model 

is applied to two separate landslide studies with similar geology in the French Alps 

and England, it shows a close match of predicted and measured values, better than a 

limit equilibrium search with the most conservative criteria. A second ANN model 

was constructed to predict slope displacement rates from groundwater and air 

temperature data. This ANN model is able to make a general prediction of 

displacements. However when a lag time in days is introduced, the difference among 

the results of models at different time lags is insignificant. Pearson correlation 

coefficients (R) for the test sets range from 0.2 to 0.9. Root mean square error values 

for the test sets range from 0.4 in./hr (0.01 m/hr) to 5 in./hr (0.13 m/hr). A third ANN 

model was developed to predict potentiometric surface elevations from atmospheric 

temperature at various time lags. This model was also able to make generalized 

predictions. Pearson correlation coefficients for this model range from 0.1 to 0.5. 
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Root mean square errors range from 0.27 ft (0.08 m) to 0.16 ft (0.05 m). The input 

parameters used for training the second and third ANN models in this study provide a 

foundational framework for warning systems. The fourth ANN model, applied to the 

French Alps landslide, was developed to predict displacements from precipitation 

data. The model predicted displacements very well with correlation coefficients of 

0.99 and a maximum root mean square error of 4 mm.· 
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Appendix A 

Gaussian Quadrature 
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For nodes (or x values of data) x0, x1, . . .  , Xn in the interval space {a,b](See 

Figure Al for illustration), the Lagrangean form of the polynomial interpolating the 

data may be written as: 

p(x) = °If(x,)l;(x) 

where 

: 

f(x2) � 

i=O 

X = __1 

l ( ) IT 
x-x.

i x1 -x1

j=O 

j"f-i 

f(x1) -:------♦ 

f(xo) If-• 

i 
Xo 

♦ 

·� 

(O�i�n) 

(1) 

Xn 

Figure A 1. Illustration of discrete data points in a two dimensional [ a, b] interval 
space, where a and bare the endpoints. The values and respective function 
evaluations at each point, i.e. xo, x1, x2 .... Xn are known. 

Integrating the polynomial in (1) leads to: 
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h 
II b 

f p(x)dx = ICJ(x;) fi;(x)dx) 
a 1=0 a 

(2) 

This result in (2) is an approximation of the value of the integration of the 

actual function f(x) i.e.: 

h h 

f f(x)dx � f p(x)dx 
a a 

(3) 

A known weight function may be introduced on both sides of Equation (3) to 

yield the classical Newton-Cotes formulation as follows: 

h n b n 

f f(x)w(x)dx � L (f(x;) fl;(x)w(x)dx) � L(AJ(x;)) (4) 
a � a � 

If the values of x;, f(xJ and A; are known, a numerical value of the integration 

of f(x) may be obtained. Essentially one is approximating a series of rectangle areas 

in an interval and then summing them. If two points are used for the approximation, 

the result is the trapezoidal rule. If three points are used, the result is Simpson's rule. 

A more accurate rule to use is Gaussian quadrature. This approach seeks to 

obtain the best numerical estimate of an integral by picking optimal abscissas x; at 

which to evaluate f(x). By carefully choosing the location of x;'s and appropriate 

weighting coefficients, Gaussian quadrature formulas can be achieved whose orders 

are higher than those of the Newton-Cotes formula. If Equation (4) is expressed as: 
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h n 

fw(x)f(x)dx � IwJ(x;) 
a ,;I 

(5) 

then a set of weights, wi and points, f(xJ can be found to make the 

approximation exact. These may be obtained by computing the roots of the orthogonal 

polynomial to the function. A function is said to be orthogonal to another if their 

scalar product is zero. The roots of the orthogonal polynomial are the abscissas of the 

Gaussian quadrature formula for the same interval and weighting function. The 

weights can then be determined by solving a system of linear equations formulated 

from the orthogonal polynomials of different orders: i = 0,1,2 ... An alternative

approach is to obtain the abscissas and weights from available mathematical tables 

such as Abramowitz and Stegun (1964). 

If weight function W(x) =l, then Equation (5) becomes the Gauss-Legendre

rule for the integration interval [-1, 1]. Any other domain [ a, b J must be changed to

the interval [-1,1] before applying Gauss-Legendre rule:

" b-a " 
(
b-a a+b

)ff(t)dt=-IwJ-x;+-
a 2 ;;I 2 2 

(6) 

The rule may be applied for different orders such as n = 2,3,4,5 and so on. 

High order does not necessarily translate to higher accuracy unless the integrand is 

smooth. For the following Gaussian quadrature rule: 
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h II 

f f(x)dx = L wJ(x;) +Error _Term 
ll i=I 

(7) 

to make the integration exact the error term needs to be made zero. The error 

term can be made zero for: 

f( ) 1 
2 211-I 

. X = ,X,X , ... ,X (8) 

In other words, iff(x) is a polynomial of degree 2n-1, the Gaussian quadrature

of order n becomes exact. The number "n" represents the degree of the polynomial 

whose roots are the abscissas, xi. 

Advantages of Gaussian quadrature include elimination of round off error 

problems because no subtractions of large numbers occur (unless integrand changes 

signs in the middle of the domain), and ability to integrate functions with singularities 

at either bound because values at the limits are not used. For a large interval of 

integration, the domain can be subdivided into smaller bounds and Gaussian 

quadratue applied repeatedly using Equation (6) if necessary. 
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Appendix B 

Back Propagation Algorithm 
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A description of back propagation provided by Poulton (2001), serves as the 

basis for the discussion that follows. An activation function is one such as a 

hyperbolic tangent function, sigmoid function, identity function, that may be used to 

map out a given input. The activation is then multiplied by the connection weights 

going to the next layer (Figure B 1 ). 

Inputs 

X1 

� output 

X2 

Xn---

! 
� Connection weights 

Figure B 1. A neural network diagram showing a Multi Layer Perceptron (MLP) or 
feed forward architecture. X 1, X2 ... Xn represent input parameters. A represents the 
input layer nodes, B represents the hidden layer nodes and C represents the output 
node. Each node conducts a mathematical computation on the value it receives and 
passes it on to the next level via connection weights. 

This process is repeated beginning from the input layer all the way to the output 

layer: 

Sumk = L wk1actJ + wkh

.J=I 

(1) 
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o k = f(Sumk) (2) 

where Sumk = output of a neuron in the output layer (i.e. kth layer), w1g = connection 

weight between hidden and output layers, act1 = activation of the output of a neuron in 

the hidden (i.e jth layer), Wkb = the bias weight, Ok = activation of neuron in the output 

layer 

After the first iteration the calculated output will differ from the desired one in the 

training file. The mean squared error, e
p
, can be calculated as: 

(3) 

where dpk = desired output and Opk = calculated output 

The goal of neural network training is to minimize the error with respect to 

the connection weights, so there is need to minimize the partial derivative. 

ap ap ffiUmpk 

a.vkj illUn1pk a.vki 

(4) 

Equation ( 4) can be solved by looking at each component individually 
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iEumpk o 
& = .::i .. . L wk1act pJi = act Pi

kj uwk; k 

Ifwe let 

and it follows that 

Rewriting Equation 6 gives 

iEum pk dJ pk iEum pk 

Each component from (8) can be solved as: 

and 

dJpk 
= f\ (Sumpk) 

iEum
"

k
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(5) 

(6) 

(7) 

(8) 

(9)



(10) 

Substituting (9) and (10) into (8) gives us 

(11) 

Substituting (11) into (7) gives us the weight changes required for the connections 

between the hidden and output layer: 

(12) 

The next procedure is to find the weight changes required for the connections between 

the input and hidden layers. The relationship between the calculated values for each 

output nemon and the activation of the neurons in the hidden layer can be expressed 

as: 

(13) 

Expanding this gives 
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a p '\"' W 
pk mum 

pk {X[C( pf mum 
p
j 

;:i .... = L,k 
(dpk - opk) = ;:i,.. = ;:i .. uw1, u0umpk lMCt Pi u0umPJ uw1; 

Solving for each component in (14): 

& 
pk 

= 

f\ (Sum pk) um
pk 

mum
pk o(L wk/f(L Wji Xp;))) 

mct
p
j = o(f(LWjixp;)) =

Wk

}

mct
pj 

= 

f' (SiunP1 )mum
pj 

&,Ji 

Substituting these components back into (14) gives: 

Based on Equation ( 11 ), Equation ( 19) can be simplified as: 
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(14) 

(15) 

(16) 

(17) 

(18) 

(19). 



&p ' � 
& = (f k (Sump/) L, opk wk)x pi 

JI 

(20) 

The weight changes on the connections between the hidden and input layers can then 

be expressed as: 

where op/ = f'
1 

(Sum
p
}) L opk wk)

(21) 

A way is needed to change the weights in proportion ( 17) to the error. Using the delta 

rule the new weights between the input and hidden layers become: 

new old s: w1i = w.ii 
+ 17ul'1x pi (22) 

The new connection weights between the hidden and output layers become

new old s: wkJ = wk/ + 17upk act p.f (23) 
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After the weights are changed, the inputs are reapplied arid the whole process 

repeated. This is what is known as back propagation learning, which represents a 

gradient descent technique. 
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