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HIGH-PERFORMANCE QUASI-MONTE CARLO INTEGRATION
AND APPLICATIONS

Ahmed Hassan H. Almulihi, Ph.D.

Western Michigan University, 2019

While adaptive integration by region partitioning is generally effective in low dimensions,

quasi-Monte Carlo methods can be used for integral approximations in moderate to high di-

mensions. Important application areas include high-energy physics, statistics, computational

finance and stochastic geometry with applications in robotics, tessellations and imaging from

medical data using tetrahedral meshes.

Lattice rule integration is a class of quasi-Monte Carlo methods, implemented by an

equal-weight cubature formula and suited for fairly smooth functions. Successful methods

to construct these rules are the component-by-component (CBC) algorithm by Sloan and

Restsov (2001) and the fast algorithm for CBC by Nuyens and Cools (2006). As the ability

to invoke a large number of function evaluations is an important factor in high-dimensional

integration, we investigate the acceleration of the CBC construction for large rank-1 lattice

rules using the CUDA (cuFFT) Fast Fourier Transform procedure.

A major part of this study is the development of high-performance lattice rule algorithms

for approximating moderate- to high-dimensional integrals on GPUs. Lattice rules are in-

corporated with a periodizing transformation. We show that rank-1 lattice rules on GPUs

(possibly with an integral transformation to alleviate the effects of boundary singularities)

yield better accuracy and efficiency for various classes of integrals compared to classic Monte

Carlo and adaptive methods. The computational power of GPU accelerators also leads to



significant improvements in efficiency and accuracy for integration based on embedded (com-

posite) lattices.

These methods have been motivated as possible contributions to high-performance com-

puting software such as the ParInt multivariate integration package developed at WMU.

We further show an application in Bayesian analysis, leading to a class of problems where

the integrand has a dominant peak in the integration domain. We demonstrate a black-box

approach provided by the adaptive strategies in the ParInt package.
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CHAPTER 1

INTRODUCTION

1.1. Overview

The curse of dimensionality is a concept first introduced by Richard Bellman in 1957

to describe the increasing difficulty of a problem as the number of variables (dimension) in-

creases [1]. Integration is one of the problems that are affected by the curse of dimensionality

and may become intractable for higher integral dimensions. Computing high-dimensional in-

tegrals is still a major issue in the area of scientific computation [2], and is mostly unsolved

without a priori information on the integrand behavior.

Multivariate integration problems arise in many scientific fields. Typical applications

include the computation of the multivariate normal [3], stochastic geometry integrals arising

in tesselations [4], Bayesian inference [5], and financial derivatives where, e.g., the Mort-

gage Backed Security (MBS) problem [6]–[8] leads to high-dimensional integrals. When the

number of dimensions increases, the integral becomes harder to approximate and consumes

more computation time. However, advances in computational power have allowed for more

efficient approximations of higher-dimensional integrals using stochastic techniques [9].

1.2. Multivariate Integration

Our aim is to approximate multivariate integrals over the d-dimensional unit hypercube

of the form

I(f) =
∫

[0,1]d
f(x) dx =

∫ 1

0
. . .
∫ 1

0
f(x1, . . . , xd) dx1 . . . dxd (1.1)

1



Finding an exact integral value or a closed form for such an integral may be hard or impos-

sible. The dimension d is often large in practical applications.

Approximating a multivariate integral using a product of classical (1D) quadrature rules:

Q(f) =
m∑

n1=0
...

m∑
nd=0

qn1 ...qnd f(xn1 , ..., xnd)

with quadrature points x0, ..., xm in [0, 1] and with weights q0, ..., qm ∈ R, is impractical in

moderate dimensions even with the most powerful computers existing today.

1.3. Approximation Methods

1.3.1. Monte Carlo

The Monte Carlo integration method is similar to performing a number of random experi-

ments to answer some “What if” questions. Physics researchers Ulam, Fermi, von Neumann,

and Metropolis promoted the name “Monte Carlo” as a reference to a famous casino in

Monaco where Ulam’s uncle would borrow money to gamble [10]. Monte Carlo integration

is one of the most popular tools to deal with higher dimensional integrals and with erratic

integrand functions or regions. It uses random sampling to calculate an approximation to

Eq (1.1), yielding:

Qn(f) = 1
n

n−1∑
j=0

f (xj) (1.2)

where the xj are uniform random in [0, 1]d. Based on the Strong Law of Large Numbers [11],

the probability of this approximation to converge is 1,

lim
n→∞

Qn(f)→ I(f) (1.3)

2



under general conditions. The integration error is defined as

en(f) = I(f)−Qn(f) (1.4)

The basic idea of Monte Carlo integration is to use a large number of random samples

(points) and to evaluate the integrand at each point in order to calculate an average result.

Monte Carlo may be the only feasible method if the integrand is badly behaved, or if the

integration region is irregular, or if the problem dimension is high. However, Monte Carlo

integration has a very slow convergence rate (O(1/
√
n) as n grows large), and thus requires

a large number of points in order to reduce the error margin [12]. Each integrand evaluation

may take a long time, leading to an extensive overall computation time.

Monte Carlo methods depend heavily on using random numbers, thus it is an issue that

the numbers generated by computers are not quite random. They are generated as pseudo-

random sequences because they are obtained using a deterministic approach, which can lead

to repeatable and predictable sequences. Pseudo-random number generators are initialized

by a single value called the seed. The seed is set by default in some systems, or it can be

generated generated based on some factors such as the computer clock, but in most tools

the user can set it [13]. It is important to use a reliable pseudo-random number generator

in order to achieve a good approximation, especially if n is very large [12]. Another issue is

the accumulation of roundoff error in large summations (see, e.g., [14]).

Monte Carlo integration is a powerful method and it is easy to implement. With d = 300

or more in Eq (1.2), applying Monte Carlo sampling can still give consistent results in

some cases [15]. On the downside, Monte Carlo can be extremely slow and computationally

intensive. The integration with this method has an error of O(1/
√
n) independent of the

dimension of the integral, so that we need a vary large number of points in order to achieve

3



satisfactory results. Furthermore, the standard error bound in Monte Carlo integration is

proportional to σ/
√
n [16]. Reducing σ can help the computational performance, as is the

goal of variance reduction techniques such as: Antithetic Variates, Stratification, Importance

Sampling and Common Random Numbers [17].

1.3.2. Quasi-Monte Carlo

Instead of random points in Monte Carlo, quasi-Monte Carlo techniques use deterministic

point sequences that are evenly spread over the integration region. Quasi-random sequences

are designed to provide better uniformity than a random sequence, and hence faster conver-

gence for the associated integration formulas [18].

Lattice rule integration is a class of quasi-Monte Carlo methods suited for fairly smooth

functions in higher dimensions [19] [20]. An integration lattice in Rd is a discrete subset of

Rd that is closed under addition and subtraction and which contains the integer vectors of Zd

as a subset [21]. An integration lattice can be constructed from a generator vector that must

be carefully chosen based on the number of dimensions and the number of points. Not unlike

Monte Carlo, integration with lattice rules may need a large number of points in order to

reach a target accuracy; however the rate of convergence is faster under certain conditions.

Fig. 1.1 shows a set of random points used by Monte Carlo (where the coordinates are

drawn from a uniform random distribution) and the deterministic points of a 2-dimensional

integration lattice.

A lattice rule is defined on the unit hypercube. A rank-1 lattice rule is generated using

a generator vector z [22] [21], which allows for an approximation of the integral in Eq. (1.1)

of the form,

Qn(f) = 1
n

n−1∑
j=0

f
({

jz
n

})
(1.5)

4



Figure 1.1: 300 random points (left) and 300 points of a 2-dimensional lattice
constructed from generator vector zt = (1, 129) (right).

Here n is the number of points, z is an integer generator vector, and {x} denotes the fractional

part of x, so that, {jz/n} = jz
n

(mod 1), component-wise (see [23]).

The vector z = (z1, z2, ...., zd)t is of length d (the dimension of the integral), and its

components have no factor in common with n [21]. A popular type of lattice rule integration

has been the Korobov method (1959) [20], where z is obtained as

z = (1, a, a2modn, a3modn, ....., ad−1modn)t (1.6)

and a is an integer satisfying 1 ≤ a ≤ n− 1 and gcd (a, n) = 1.

The theory of good lattice points relies on properties of periodic functions, and supplies

error bounds for functions that are periodic (with period 1) in all variables. The method is

extended to sufficiently smooth non-periodic functions by periodizing transformations.

On the downside, integration by rank-1 lattice rules does not provide a direct way of error

estimation [21]. Cranley and Patterson [24] proposed a method of error estimation based on

5



the randomly shifted lattice rules of the form

Q(z, n, c)f = 1
n

n−1∑
j=0

f
({

jz
n

+ c
})

, (1.7)

where c is a uniform random vector. Shifting the lattice rule points is also useful for making

the integration region boundaries clear from any integration points [21]. To obtain an error

estimate, one can apply multiple randomly shifted lattice rules using different values of c,

and compute the mean of the results, with a mean squared error estimate.

1.3.3. Adaptive Integration

In the adaptive integration method for multivariate integrals, the integration domain is

subdivided repeatedly into smaller subregions until the process reaches a target accuracy.

This procedure can only be used in fairly low dimensions (say, less than 10 or 12), as the

effort to partition a multivariate region around hot spots increases exponentially with the

dimension [25].

Generally, an adaptive method has four main components [21]: quadrature/cubature

rules for approximating the integral over subregions of the integration domain; an error

estimation method; an error acceptance standard; and a subdivision method. There are a

number of adaptive integration packages that apply different subdivision strategies. We will

describe the ParInt package, which uses parallel adaptive integration, in Chapter 2.

1.4. Related Work

The development of computational power over the past century has led to numerous

research efforts to address the curse of dimensionality. Many efforts have been made to im-

prove the slow converge rate of the Monte Carlo method [18]. The use of parallel computing

6



to improve Monte Carlo performance received a lot of attention and achieved noticeable

results. For example, Kanzaki [26] used a graphics processing unit (GPU) to accelerate the

performance of VEGAS and BASES, which are Monte Carlo integration programs. The

experiment achieved a speedup of 50 compared to the sequential programs. Another im-

plementation of Monte Carlo on GPU was done by de Doncker and Assaf in [4] and by

de Doncker, Kapenga and Assaf in [27] with more significant speedups. Szałkowski and

Stpiczyǹski [28] implemented Monte Carlo integration using distributed memory computers

and clusters. The authors showed results of various parallel methods including MPI (Mes-

sage Passing Interface), OpenMP and CUDA. They concluded that Monte Carlo integration

can be implemented efficiently on distributed memory computers. An implementation of

parallel Monte Carlo using an Intel Xeon Phi accelerator was presented by Shareef and

de Doncker [29].

There have been many tools and software packages to perform numerical integration.

One such package is CUBPACK by Cools et al. [30] [31], which is an adaptive integration

package that is written in FORTRAN 90 for multivariate integration over hyper-rectangles

and simplex regions. Another software is CUBA by Hahn [32] [33], which includes four algo-

rithms based on Monte Carlo/quasi-Monte Carlo integration (Vegas, Suave and Divonne),

and Cuhre based on cubature rules for adaptive integration. The package is written in C

and offer interfaces for Fortran, C/C++ and Mathematica.

Iterated or repeated integration with (one-dimensional) adaptive QuadPack programs

has been proven effective for applications to Feynman loop integrals with severe singularities

in high-energy physics [34]. However, a drawback of iterated integration is the expense of

the method for problems of dimensions, say, ≥ 6.

In a sequential setting, multivariate adaptive integration is considered suitable for moder-

ate dimensions (say, up to 10) while possibly dealing with mildly irregular integrand behavior,
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and higher dimensions for well-behaved functions. These limits can be increased somewhat

in a parallel environment, for allowing finer subdivisions with higher numbers of integrand

evaluations.

Quasi-Monte Carlo rules can be applied for higher dimensions and smooth integrands.

Solved by a parallel quasi-Monte Carlo method in ParInt [6], excellent speedups are reported

for a 360-dimensional mortgage backed security problem from [8], [35]).

There are a number of algorithms to construct lattice rules. A recent algorithm is the

component-by-component construction of good lattice rules (CBC) introduced by Sloan and

Reztsov in (2002). The algorithm minimizes the worst-case error with respect to a repro-

ducing kernel Hilbert space [36]. The CBC algorithm was a breakthrough in constructing

lattice rules efficiently even for large numbers of points and dimensions [22]. Nuyens and

Cools [23] used Fast Fourier Transform (FFT) operations to improve the CBC algorithm

time from O(dn2) to O(dn log(n)) where d is the dimension and n is the number of points.

This allows the algorithm to deal with much larger n in far less time than the original al-

gorithm. Whereas the space (memory) complexity of the CBC algorithm is O(n) (linear in

n), the fast CBC algorithm space complexity is still O(n) but in fact doubles the memory

requirement. The construction of good lattice rules will be discussed further in Chapter 3.

There are a limited number of software tools available to construct lattice rules. These

include:

• Fast component-by-component construction: The Matlab code by Nuyens [37],

which generates rank-1 lattice rules and embedded sequence rules with product and

order-dependent weights.

• Stochastic Simulation in Java (SSJ): A Java-based framework for Stochastic Sim-

ulation [38]. Although this library is not intended for integration, it is capable of
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producing deterministic, low-discrepancy sequences that can be used for quasi-Monte

Carlo integration [39].

• RandQMC: A package written in C that contains various quasi-Monte Carlo methods

for multidimensional integration [40].

• Lattice Builder: a software library written in C++ by L’Ecuyer and Munger [41],

which includes various construction algorithms for good rank-1 lattice rules. It supports

exhaustive and random searches, as well as CBC and random CBC constructions, for

various measures of uniformity of the points.

1.5. Motivation

Many Monte Carlo and quasi-Monte Carlo algorithms were developed before the age

of parallel processing and high performance computing. There has been a considerable

amount of work done in parallelizing the existing algorithms, which was intuitive especially

since most of these algorithms are embarrassingly parallel [42]. However, there are some

stochastic techniques that cannot be easily adapted to parallel computing [43]. In the course

of this research, we found that the component-by-component (CBC) construction for rank-1

lattice rules received little to no attention with respect to parallelization. The fast CBC

algorithm is implemented in the Matlab code by Nuyens [37]. However, even the fast CBC

algorithm, with a time complexity of O(dn log(n)), can be slow if n is very large. The use of

high performance computing in constructing and applying lattice rules for high-dimensional

integration can yield more accurate and efficient approximations. This can be beneficial

in many scientific fields such high-energy physics, statistics, and modeling in behavioral

psychology.
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1.6. Thesis Statement

Quasi-Monte Carlo methods can be a better alternative to Monte Carlo methods in

dealing with the curse of dimensionality under certain conditions. Furthermore, the ability to

use a large number of points can be an important factor in obtaining accurate approximations

to high-dimensional integrals. Therefore, the aim of this work is to design and optimize

parallel scalable algorithms based on CBC methods to construct and apply good lattice

rules.

1.7. Contributions

• A parallel implementation of lattice rule integration on Graphics Processing Units

(GPUs).

• Quality and cost comparisons between GPU lattice rule integration and other parallel

multivariate integration methods.

• The design and implementation of a parallel fast CBC construction algorithm.

• Implementations of this algorithm on multi- and many-core systems.

• Demonstrations that the algorithm can be incorporated efficiently for a direct ("on the

fly") generation of rules in integration software and for real-world applications.

• A parallel construction and application of embedded lattice rules.

• A parallel adaptive integration of high-dimensional integrals in Bayesian statistics.
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CHAPTER 2

ParInt: ADAPTIVE TASK PARTITIONING

2.1. Overview

In this chapter, we show our application and analysis of a parallel adaptive integration

method for the computation of Bayesian integrals [44]. Approximating multivariate integrals

is an important problem in Bayesian inference and statistics in general. Especially in higher

dimensions, these problems can be very hard to solve in a timely manner [45] [9] [5].

Using the notations of Evans and Swartz [45], a number of integrals need to be calculated

where the integrand is written as a product of a common part f(θ) and a function w(θ).

The integral is then of the form

I(w) =
∫
Rd
w(θ)f(θ) dθ (2.1)

where w : Rd → R, f : Rd → R+ represents the product of the likelihood and the prior

distribution, and w is a function (such as w(θ) = θ1 or w(θ) = θ2
1) of which the posterior

expectation R(w) = I(w)
I(1) is needed. The function fw is assumed integrable over Rd.

We consider two Bayesian applications from, the Linear Model and Contingency Table

problems of Example 1 and 2, respectively, for which various methods are compared in [45]:

asymptotic techniques, importance sampling and variance reduction, adaptive importance

sampling, and multivariate adaptive integration. Adaptive integration was explored by Genz

et al. [46]–[49] for problems emerging in Bayesian analysis, and was found successful in com-

bination with transformations that result in smoothing the integrand behavior so that the

transformed integrand behavior is similar to that of a low-degree polynomial. Apart from
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the dimensionality and the infinite domain, problems arise from the peaked modal behavior

of the posterior density function; a nonnormal tail behavior is also treated in [49]. Approxi-

mations to the mode are given in the file postpack.f of the Fortran BAYESPACK package,

which provides the integrands corresponding to 21 example log-posteriors.

it is our goal to show the performance of the parint software in a black-box approach,

by truncating the infinite domain of (2.1) to a finite region. In this implimentation from [44],

we discuss and test the adaptive strategy in ParInt. The performance of the algorithm is

verified by detailed test results for Bayesian integrals arising as posterior expectations for

cross-classifications in medical data.

2.2. ParInt

An effective tool that uses high performance computing for automatic integration is

ParInt. This is a software package developed at Western Michigan University by de Doncker

et al. [6] [50] [51] [52]. The system is designed to solve integration problems numerically via

high performance computing. ParInt uses various methods including adaptive integration,

quasi-Monte Carlo, and Monte Carlo methods for integration over hyper-rectangular and

simplex regions. ParInt has had various experimental versions implemented on a variety

of platforms. The package is written in C and runs on a UNIX platform using the Message

Passing Interface (MPI). Desired integrand functions can be written as C or FORTRAN

functions..

The use of parallel processing in ParInt increased the performance of solving high

dimensional integrals considerably. This has had a direct effect on many applications. The

user defines the integrand function and the domain, and specifies a relative and absolute

error tolerance for the computation, and the system will work as a black-box (or automatic)

model to integrate the function [53]. The structure of the package is depicted in Fig. 2.1.
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Figure 2.1: ParInt architecture

In [54] the black-box approach is described by a functional that associates the user-

defined integrand function f : Rd → R, integration domain D ⊂ Rd, absolute and relative

error tolerances, ta and tr, respectively, with an integral approximation Qf and an absolute

error estimate or bound Eaf that are intended to satisfy

Qf ≈
∫
D
f(x) dx, and |Qf − If | ≤ Eaf ≤ τ, (2.2)

where the tolerated error τ = max{ta, |If | tr} corresponds to the maximum or less strict of

the specified absolute and relative tolerances. If an absolute error (only) needs to be achieved,

we set tr = 0 (and vice-versa). If ta = tr = 0, then the program will reach an abnormal

termination, typically when the maximum number of function evaluations is reached.

In the black-box approach it is important that no specific problem characteristics are

taken into account. Other methods might, for example, absorb certain integrand behavior

into a weight function (similar to importance sampling), which should lead to more efficient

solutions for the problem class at hand. These techniques would not be viable in applications

such as the computation of Feynman loop integrals, where integrand functions may be derived
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Algorithm 1: Adaptive partitioning meta-algorithm
1 Evaluate initial domain (task) and assign results
2 Initialize priority queue with initial task
3 while task evaluation limit not reached and termination conditions not reached do
4 Retrieve task from priority queue
5 Split task
6 Evaluate new subtasks and update results
7 Insert new subtasks into priority queue
8 end

Figure 2.2: Adaptive partitioning meta-algorithm

by an automatic generator.

2.3. ParInt Parallel Adaptive Integration

The algorithms and tools in the parallel integration engine include: (i) an adaptive

region subdivision algorithm, equipped with a load balancing strategy to handle localized

integrand difficulties such as peaks and singularities; (ii) a non-adaptive Quasi-Monte Carlo

(QMC) method based on Korobov lattice rules; (iii) Monte Carlo (MC) methods for high

dimensions and/or erratic integrands; (iv) a user interface based on the ParInt plugin

compiler which pre-processes the user problem specification and integrand function to be

linked with the ParInt executable; (v) 1D rules corresponding to those in QuadPack [55],

which can be used for repeated integration in successive coordinate directions. The adaptive

algorithm applies task partitioning to the division of the domain D into subregions, so that

the integration points are concentrated in areas where the integrand behavior is difficult.

Each subregion constitutes a task, and the task granularity (amount of work per task) is

determined by the number of points used by the integration rules locally over the subregion,

and the time required per function evaluation. Fig. 2.2 outlines an adaptive partitioning

meta-algorithm.
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In the context of numerical integration, the termination conditions can be interpreted in

the context of an accuracy requirement of the form (2.2). Initially the integration rules are

applied over the entire domain; the results initialize a priority queue keyed by the estimated

error of the regions. The available multivariate integration (cubature) rules in ParInt

include a set of rules of polynomial degrees 7 and 9 for the d-dimensional cube [25], [56],

[57] and of degrees 3, 5, 7 and 9 for the d-dimensional simplex [58]–[60]. The latter are the

simplex rules by Grundmann and Möller [60] (which were also found by de Doncker [61] via

extrapolation). 1D rules corresponding to those of Dqage and Dqagse in QuadPack [55]

include the 7-15, 10-21, 15-31, 20-41, 25-51 and 30-61 point Gauss-Kronrod pairs. Note that

an integration rule is said to be of polynomial degree k if it is exact for polynomials up to

degree k (and not for all polynomials of degree k + 1).

The while loop iteration in the algorithm consists of: deleting the region with the highest

estimated error from the priority queue, bisecting this region, integrating over the two new

subregions, updating the overall result and error estimate, and inserting the new subregions

into the queue. This process continues until it is estimated that the user’s error tolerance

(τ in (1)) is achieved, or a user-specified bound on the number of function evaluations is

reached. Here τ is estimated by τe as τ = max{ta, |If |tr} ≈ τe = max{ta, |Qf |tr} where Qf

is the current global integral estimate.

As depicted in Fig. 2.1 of the distributed, asynchronous adaptive algorithm, all processes

act as integration worker processes; one process additionally assumes the role of integration

controller. The initial region is divided among the workers. Each executes the adaptive

integration algorithm of Fig. 2.2 on its portion of the domain, while maintaining its local

priority queue of regions. The latter is implemented as a max-heap, keyed with the estimated

integration errors over the subregions, so that the subregion with the largest estimated error

is stored in the root of the heap. If the user specifies a maximum size for the heap structure
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on the worker, the task pool is stored as a heap or double-ended heap, which allows deleting

of the maximum as well as the minimum element efficiently (in order to maintain the size of

the data structure once it reaches its maximum).

The local region processing is independent of the other workers. All workers periodically

send updates of their results to the controller; the worker update contains the differences in

the integral and error estimates incurred since the previous update. In turn, the controller

provides the workers with updated values of the global estimated tolerated error τe. The

workers use this value to determine if they have satisfactorily calculated the integral over

their portion of the domain. If they have, they become idle.

A worker becomes idle if the ratio RE of its total local error to the total tolerated error

τe drops below its fraction RV of the total volume (of the original domain D), i.e.,

RE = (total local error)/τe < RV = (local volume)/volume(D).

The error ratio is defined in [52] as the ratio RE/RV . Thus a worker becomes idle when

its error ratio falls below 1. In order to keep the load distributed over all the workers and

maintain parallel efficiency, work needs to be moved from busy to idle workers.

ParInt employs a receiver initiated, scheduler based technique where the controller acts

as the scheduler and keeps an IDLE-STATUS list of the workers. The controller is informed

of the idle status of the workers via the workers’ update messages. When a worker i informs

the controller via a regular update message of its non-idle status, the controller selects (in a

round-robin fashion) an idle worker j and sends i a message containing the ID of j. Worker

i will then send a work message to j containing either new work or an indication that it has

no work available. Worker j receives this message and either resumes working or informs the

controller that it is still idle.

The load balancing strategy can be tailored to increase the amount of load balancing,

e.g., by sending larger amounts of work in individual load balancing steps. The controller
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can furthermore select multiple idle workers to be matched up with busy workers within a

single load balancing step. The load balancing strategy scales well in many applications,

notwithstanding an apparent possible bottleneck at the controller.

2.4. ParInt Applications to Bayesian Statistics

2.4.1. Test 1: Linear model

We consider this application from [45]. The observed response is modeled as

y = Xβ + σz, with y ∈ R45, X ∈ R45×9, β ∈ R9, σ ∈ (0,∞), z ∈ R45, for simulated

data given in [45].

The function f(θ) in the integral (2.1) is specified in d = 10 dimensions as a function of

the integration variables θi = βi, 1 ≤ i ≤ 9, and θ10 = log σ,

f(θ) = e−9n θ10
9∏
i=1

n∏
i=1

gλ(
yij − θi
eθ10

) (2.3)

with

gλ(v) =
Γ(λ+2

2 )
Γ(1

2)Γ(λ2 )

(
1 + v2

λ− 2

)−λ+1
2 1√

λ− 2

for λ = 3, n = 5.

Table 2.1 gives results obtained with the ParInt adaptive algorithm for the integral (2.1)

of fw with f = f(θ) in (2.3) and w = w(θ) = θ1, θ2, θ4, θ10, θ
2
1, θ

2
2, θ

2
4, θ

2
10 (in successive rows

of the table).

For the integration with the adaptive ParInt algorithm, the integration domain R10 is

truncated to the 10D rectangular region with half-width = 5 and centered at the mode, θ̂.

The program is run for a relative error tolerance of 10−12, with the absolute error tolerance

set to 0 (in view of the small values of the results, of orders ranging between 10−24 and
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Table 2.1: ParInt adaptive integration results for Example 1 over 10D truncated
domain, centered at mode with half-width = 5, using 16 (Time only), 64 or 128 MPI
processes, compared to results from Evans and Swartz (E&S) [45]. Our results list:
integral approximation (Res.), absolute error estimate (Ea) and execution time in
seconds for parallel runs, allowing 2B using 64 procs., 5B and 25B evaluations using

128 procs.

2B, 16 procs. 2B, 64 procs. 5B, 128 procs. 25B, 128 procs. E&S E&S
R̂ R

w Time Res. Ea Time Res. Ea Time Res. Ea Time Subr. Exact
(s) (s) (s) (s) Ad.

1 373.0 1.317 0.036 95.7 1.310 0.016 120.4 1.3065 0.0027 592.3 1.31
×10−22 ×10−22 ×10−22 ×10−22 ×10−22 ×10−22 ×10−22

θ1 372.4 2.043 0.055 95.7 2.043 0.025 120.3 2.0428 0.0042 591.9 2.040 2.043
θ2 371.0 0.0957 0.0038 95.2 0.0953 0.0017 120.3 0.09473 0.00034 591.5 0.094 0.095
θ4 373.5 0.0170 0.0039 95.4 0.0179 0.0020 120.5 0.01801 0.00033 592.0 0.017 0.018
θ10 373.0 -0.0738 0.0084 95.8 -0.0732 0.0043 120.6 -0.07290 0.00065 593.7 -0.102 -0.073
θ2

1 372.5 4.261 0.112 95.7 4.264 0.052 120.6 4.2636 0.0088 593.4 4.237 4.263
θ2

2 372.6 0.0788 0.0013 95.8 0.0795 0.0007 120.6 0.08074 0.00016 593.3 0.068 0.081
θ2

4 372.5 0.0677 0.0010 95.7 0.0683 0.0005 120.2 0.06906 0.00011 592.5 0.055 0.069
θ2

10 374.8 0.0320 0.0016 96.1 0.0325 0.0006 120.5 0.03269 0.00012 593.5 0.032 0.033

10−22). This error tolerance is set so that the program would terminate when the allowed

number of function evaluations is reached. For the integration, the rule of polynomial degree

9 is used for the basic rule integration over the subregions.

The integral approximation, absolute error estimate and execution time are given in

Table 2.1 for runs with function evaluation bounds of 2B (Billion) using 64 MPI processes,

and with 5B and 25B evaluations using 128 processes a cluster. We used 16 processes

per 16-core cluster node with Intel Xeon E5-2670, 2.6GHz dual processors and 128GB of

memory, and the cluster’s Infiniband interconnect for message passing via MPI. The integral

approximation and absolute error estimate for the integral I(w) of (2.1) are scaled by the

value for I(1) (in the rows for w 6= 1 of Table 2.1).

The integral approximations can be compared to the values (R(θi) and R(θ2
i ), i =

1, 2, 4, 10) from Evans and Swartz [45] (cf., their Tables 2, 3, 4, 5 and 6), listed as Exact

in the last column of Table 2.1. The preceding column of Table 2.1 gives the estimates R̂(θi)
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and R̂(θ2
i ), i = 1, 2, 4, 10 from Evans and Swartz (their Table 5 p. 265), obtained with a sub-

region adaptive procedure. According to [46], [49] they perform a transformation θ = θ̂+Cu,

where C is the lower-triangular Cholesky factor of the inverse Hessian matrix H of a function

h which satisfies f(θ) = e−τh(θ) in (2.1). This is followed by the transformation v = Φ(u)

where Φ denotes the N(0, 1) distribution function applied componentswise to u.

2.4.2. Test 2: Contingency table

This application from [45] analyzes a cross-classification of 132 long-term schizophrenic

patients into a table with three rows and three columns, with respect to the frequency of

hospital visits and length of stay, respectively. The cell probabilities are of the form

pij = θ αi(1)βj(1) + (1− θ)αi(2)βj(2)

and the likelihood function is ∏3
i=1

∏3
j=1 p

fij
ij , where fij is the (i, j) cell count in the table.

For the prior distribution,

θ ∼ U(0, 1
2), (α1(k), α2(k), α3(k)) ∼ Dirichlet(1,1,1), (β1(k), β2(k), β3(k)) ∼ Dirichlet(1,1,1),

k = 1, 2, assuming independence of the rows and columns.

We further use the transformation specified in the BayesPack [48] implementation of

the integrand function,

θ = ex1/(2 + 2ex1)

α11 = ex2/(1 + ex2 + ex3), α21 = ex3/(1 + ex2 + ex3)

α12 = ex4/(1 + ex4 + ex5), α22 = ex5/(1 + ex4 + ex5)

β11 = ex6/(1 + ex6 + ex8), β21 = ex7/(1 + ex6 + ex8)

β12 = ex8/(1 + ex8 + ex9), β22 = ex9/(1 + ex8 + ex9)
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Table 2.2: ParInt adaptive integration results for Example 2 over 9D truncated
domain, centered at mode with half-width = 8; results include: integral approximation
(Res.), absolute error estimate (Ea) and execution time in seconds for parallel runs,
allowing 10B using 16 procs. (Time only), 10B using 32 procs., and 25B evaluations

using 64 procs.

10B, 16 procs. 10B, 32 procs. 25B, 64 procs.
w Time Res. Ea Time Res. Ea Time

(s) (s) (s)

1 1138.5 4.862 0.018 545.3 4.864 0.012 680.6
×10−121 ×10−121 ×10−121 ×10−121

θ 1138.2 0.4218 0.0016 544.7 0.4217 0.0009 680.5
θ2 1138.2 0.1807 0.0007 544.5 0.1808 0.0004 679.8

Table 2.2 gives ParInt results for these problems (integral approximation and absolute

error estimate scaled with the value for I(1), and time in seconds).

In this example, the posterior expectationsR(θ) = 0.422 andR(θ2) = 0.181 were obtained

as Exact values in [45] using importance sampling and variance reduction techniques with a

run of 41 hours CPU time (in 1995). They use this as a basis for comparison of their results

obtained with various methods. Their subregion adaptive estimates requiring the inverse

Hessian matrix and normal probability transforms yield R̂(θ) ≈ 0.419 and R̂(θ2) ≈ 0.178

with relative error estimates 0.007 and 0.017, respectively, in 3.6 hours of CPU time.

In Table 2.2 the Exact value is reached (within the given error estimate) using 10B eval-

uations and 32 MPI processes in less than 10 minutes, and with 25B evaluations and 64

processes in around 11 minutes. By comparing the times for 10B evaluations with 16 and 32

processes, the speedup Sp is slightly larger than 2 (superlinear). Superlinear speedups can

sometimes be obtained if the base time is somewhat large e.g., due to system loads, or as

a result of memory or caching effects in the executions. In conclusion, the parallel ParInt

computations allow for accurate and efficient solutions for this proplem, while offering the
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convenience of a black-box numerical computation for the multivariate integration. Results

of this and another Baysian application are reported in [44].

2.4.3. Parallel Performance

For Examples 1, Evans and Swartz stated in [45] that their computation of R̂ allowing

2 × 107 evaluations did not achieve the relative error requirement of 0.001 and took 2.75

hours (sequentially). Repeating with a 108 evaluation limit improved their results slightly

but ran for 24 hours.

In comparison, Table 2.1 shows that our results are good with respect to accuracy and

time. With 2B evaluations the errors are over-estimated, but this improves considerably

for larger numbers of evaluations. Using 25B function evaluation on 128 processes, we have

achieved the Exact value for every w (with rounding up) in less than 10 minutes for each

calculation.

Fig. 2.3 gives timing results for calculating θ1 from Examples 1 using 10B evaluations.

Fig. 2.3 (a) plots the parallel time Tp for the evaluations in seconds, and Fig. 2.3 (b) gives

the speedup as a function of the number of MPI processes p, for 8 ≤ p ≤ 64.

In Examples 2, the posterior expectations R(θ) = 0.422 and R(θ2) = 0.181 were obtained

as Exact values in [45] using importance sampling and variance reduction techniques with

a run of 41 hours CPU time. Their subregion adaptive estimates requiring the inverse

Hessian matrix and normal probability transforms as for Example 1 yield R̂(θ) ≈ 0.419 and

R̂(θ2) ≈ 0.178 with relative error estimates 0.007 and 0.017, respectively, in 3.6 hours of

CPU time.
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Figure 2.3: Parallel performance of integral computations for θ1 from Exam-
ples 1 using 10B evaluations: (a) Computation times (in seconds), (b) Speedup

Our results in Table 2.2 was good as well, and we reached the Exact value (with rounding

up) using 25B evaluations on 64 MPI processes in around 11 minutes. The speedup Sp can

be noticed in the 10B function evaluations, where doubling the number of processes yield

Sp ≈ 2

Thus the parallel ParInt computations allow for accurate and efficient solutions for

Examples 1 and 2, while offering the convenience of a black-box numerical computation for

multivariate integration.
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CHAPTER 3

LATTICE RULE CONSTRUCTION

3.1. Overview

Lattice rules are quasi-Monte Carlo rules that can be used for the integration of periodic

functions over the d-dimensional unit cube [62]. A "good" lattice rule generator vector is

used with the goal of reducing the integration error. This concept has been around since

the 1960s (e.g. [63]). However, finding a good lattice rule was typically done with a very

extensive search, where the search time grows exponentially with increasing dimension [62].

Sloan and Reztsov changed that by introducing the component-by-component construction

algorithm in 2002. The goal of the component-by-component construction algorithm is to

search for good lattice rules that minimize the worst-case error in a reproducing kernel

Hilbert space [36].

A reproducing kernel Hilbert space is a Korobov space where the evaluation of a func-

tion may be written as an inner product with the reproducing kernel K. The utilization of

reproducing kernel Hilbert spaces has provided a remarkably rich principle, where all sorts

of discrepancies can be recognized in terms of the worst-case error in a particular space.

Furthermore, it allows the analysis of the error in nonperiodic spaces [22].

3.2. Good Lattice Rules

A good lattice rule construction requires a good generating vector. Fig. 3.1 shows a lattice

rules constructed using a bad generating vector and a good lattice rule using a generating

vector that produces a more evenly spread point set.
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(a) (b)

Figure 3.1: Two 2d lattice points with n = 23. (a) A bad lattice rule con-
structed from generating vector z = (1, 1)t. (b) A good lattice rule constructed

from generating vector z = (1, 10)t.

The role of any lattice rule construction algorithm is to find a good generator z ∈ Zd that

can be used to construct a good integration lattice. According to Korobov [64], for N prime,

the vector z has optimal coefficients if

|Q(z, N)f − If | 6 c d(s, α) (logN)β(s,α)

Nα
(3.1)

where f ∈ Eα(c), and d(s, α) and β(s, α) are independent of N. Korobov [64] also proved

that good lattice points are exist if N is a prime.

The integration error is an important factor in determining if one lattice rule is better

than another. The worst-case error for a cubature rule Q to approximate integral I of

functions in the unit ball of a Banach space F is defined as [65]

e(Q,F) = sup |I(f)−Q(f)| (3.2)
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where the supremum is taken over the unit ball, f ∈ F and ||f ||F ≤ 1. To apply this

definition to the construction of lattice rules, it is assumed that F is a reproducing kernel

Hilbert space (H) with kernel K(,̇)̇, so that f(x) = 〈f,K(,̇x)〉H(K). This reproducing kernel

is usually a function of two variables, but when the function space is periodic, the kernel can

actually be written as a function of one variable. Such a kernel is called shift-invariant [22].

In this case, for all x,y ∈ [0, 1)d,

K(x,y) = K({x− y}, 0) =: K({x− y})

Finally, we take Q to be a lattice rule such that ∀x,y ∈ Pn : {x − y} ∈ Pn where Pn is a

point set of size n over [0, 1]d.

The squared worst-case error for a shift-invariant kernel K and a rank-1 lattice is given

by [66]

e2(Q,K) = −
∫

[0,1)d
K(x, 0) dx+ 1

n

n∑
j=1

K
({

jz
n

}
, 0
)

(3.3)

Thus, an exact formula for the worst-case error in the desired space is given via the repro-

ducing kernel.

Sloan and Woźniakowski introduced the weighted classes functions [67], a significant

addition to the theory of reproducing kernel Hilbert spaces. The weights γk ≥ 0 are used to

indicate the significance of particular sets of variables. The kernel for a shift-invariant and

tensor-product weighted reproducing kernel Hilbert space can be written as [22]

K(x,y) =
d∏

k=1
(1 + γk ω(xk − yk)) (3.4)

In this case, the weights γk are used to express the importance of each dimension. For a
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rank-1 lattice rule using the weighted space, the squared worst-case error can be expressed

as [22]

e2
d(z) = −1 + 1

n

n∑
j=1

d∏
k=1

(
1 + γk ω

({
jzk
n

}))
(3.5)

assuming that ∫ 1

0
ω(x) dx = 0

3.3. Component-by-Component Construction

The CBC algorithm searches and then fixes each component of the generating vector z,

one component at a time. Given that the first component is 1, the second component can

be calculated by: z1 fixed, choose z2 ∈ {1 ≤ z ≤ n − 1 | gcd (z, n) = 1} to minimize the

worst-case error in 2 dimensions. This step is iterated through determining zd.

Algorithm2 outlines the CBC algorithm. The γk and βk are components of parameter

vectors for weighting per dimension, and Un is the multiplicative group modulo n defined as:

Un = {r ∈ Zn : gcd(r, n) = 1}. Since it is assumed that n is prime, Un = {1, 2, . . . , n− 1}.

Algorithm 2: Component-by-component construction of good lattice rules algorithm
1 for d← 1 to dmax do
2 for all zd ∈ Un do

3 e2
d(zd) = −∏d

k=1 βk + 1
n

∑n
j=1

∏d
k=1

(
βk + γk ω

({
jzk
n

}))
4 end
5 zd =z ∈Un e2

d(z)
6 end

Figure 3.2: CBC algorithm

The cost of constructing a lattice rule using the CBC algorithm is O(dn2) where d is the

dimension and n is the number of points. The CBC method allows for larger values of d and
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n than the older search methods. However, given that it has a quadratic time complexity in

n, using very large values is still not feasible [22].

3.4. Fast Component-by-Component Construction

The main step in the CBC algorithm involves calculating the squared worst-case error,

which is done in [65] based on

e2
d(z) = −

d∏
k=1

βk + 1
n

n−1∑
j=0

d∏
k=1

(
βk + γk ω

({
jzk
n

}))
(3.6)

This step is performed in an iterative process over the dimension.In iteration d, the product

defined in the first d− 1 iterations is fixed. Therefore, Eq. (3.6) can be rewritten as

e2
d(z) = −

d∏
k=1

βk + 1
n

n−1∑
j=0

pd−1(j)
(
βd + γd ω

({
jzd
n

}))
(3.7)

where pd−1(j) is a product of d − 1 factors, and function w is evaluated in n points. The

O(n2) part of the CBC complexity is the result of a matrix-vector multiplication, as can be

seen in [65] (Eq. 3.6-7) using the matrix

Ωn :=
[
ω

(
j.z mod n

n

)]
z=1,...,n−1. j=0,...,n−1

(3.8)

and the product vector pd−1(j). The worst-case vector can be written in the form:

e2
d = −

d∏
k=1

βk + 1
n

(βd1n−1×n + γd Ωn) pd−1 (3.9)

Nuyens and Cools [23] proved that the CBC algorithm using the matrix-vector multi-

plication with the structure in Eq. (3.9) can be performed in O(dn log(n)) time using the
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Fast Fourier Transform (FFT). In order to apply FFT, the matrix Ωn must be in a circulant

form.

A circulant matrix C of order n× n is a Toeplitz matrix of the form

C =



c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0 . . . c3

... ... ... . . . ...

cn−1 cn−2 cn−3 . . . c0


where each row is derived from the previous row by a circular shift. Note that, by applying

FFT, a circulant matrix system can be solved in O(n log(n)) operations [68].

3.4.1. Fast Fourier Transform

Given a vector x and a circulant matrix Cm, a matrix vector multiplication can be done

using FFT by

Cmx = F−1
m diag(Fm c) Fm x (3.10)

where Fm is the Fourier matrix and c is the first column of Cm. The multiplication is

performed by calculating the inverse FFT (F−1
m ) of the discrete Fourier transform of c.

Therefore, eq. 3.10 can be rewritten as [69]

Cm x = IFFT (diag(FFT (c))FFT (x)) (3.11)

For the fast CBC algorithm, the number of points has to be prime. Therefore, the rows

of Ωn can be permuted by the positive powers of some generator g (where g is the primitive

root of n) and the columns by the negative powers of g [69]. That will make Ωn a circulant
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matrix with diagonals of constant powers of g. The structure of Ωn will be of the form

Ωn =



1 g−1 g−2 . . . g

g 1 g−1 . . . g2

g2 g 1 . . . g3

... ... ... . . . ...

g−1 g−2 g−3 . . . 1


Applying the transforms in Eq. (3.10) will result in the fast CBC algorithm. Each FFT and

IFFT is performed in time of order O(n log(n)).
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CHAPTER 4

MONTE CARLO AND LATTICE RULES INTEGRATION ON GPUs

4.1. Overview

Our main interest in this chapter is the accuracy and efficiency of multivariate integration

using lattice rules. For comparison purposes, we also show results obtained with Monte Carlo

integration, implemented using two different random number generators, NVIDIA cuRAND

and Random123. The accuracy is assessed for different categories of integrand functions such

as: continuous with discontinuous partial derivatives in the interior or at the boundaries of

the integration domain, or with a boundary singularity.

In the following sections we describe our implementation of the lattice rule integration on

Graphics Processing Units (GPUs) using CUDA C. We further compare its performance to

results we obtained using Monte Carlo on GPU. Section 4.2 below describes our computation

environment and implementation of the lattice rule integration in CUDA C; Section 4.3

presents numerical and performance results [70]; and Section 4.4 presents our high-speed

evaluation of Feynman loop integrals using lattice rules on GPUs with transformations to

alleviate the effects of integrand boundary singularities [71] [72] [73].

4.2. Computing Environment

For our experiments we used the thor high performance parallel compute cluster in the

Center for High Performance Computational Science and Big Data in the College of En-

gineering and Applied Sciences at Western Michigan University. The thor cluster has 22

compute nodes, 11 of which each have one Nvidia Kepler series K20m GPU accelerator card,
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and one node (n7) has four K20m GPUs. Nodes 2-21 have dual 8-core Sandy-Bridge Xeon

processors for a total of 16 cores per node, 128GB of RAM, and a 1 Terabyte local hard

drive. Nodes 0 and 1 have four 8-core Sandy-Bridge Xeon processors, for a total of 32 cores

per node. Node 1 has 256GB of RAM, and node 0 has 512GB of RAM.

Binding the entire cluster together is an ethernet management network and a low-latency

Infiniband communication network. All nodes have access to network mounted directories

on a high performance, high redundancy RAID file server. For user tasks, the thor head

node is used to manage the entire cluster and share programs and data.

For our CUDA programs, we used an NVIDIA Tesla K20m [74] GPU with 2496 CUDA

cores, 706MHz GPU clock cycle and 4800MB of global memory. The device is part of a

cluster node with dual Intel Xeon E5-2670, 2.6GHz CPUs and 128GB of memory. For

the results described in Section 4.3, the number of parallel blocks, and threads per block

launched in the GPU runs were set to 64 and 1024, respectively,

In the present work we use the fast CBC construction Matlab code [37] by Nuyens to

obtain the generator vectors z for the lattice rules to be used in our experiments. Table 4.1

shows generator vectors z for 10 dimensions and various numbers of points n. Approximate

values of n are listed; the actual values used are (primes): 1009, 100003, 1000003, 100000007,

350000041. More obtained rules can be found in Appendix A.

4.3. Monte Carlo and Lattice Rule Integration on GPUs

To compare accuracy and performance on the GPU, we evaluated a set of integrals

using various methods in [70]. We used four test integrals of which the results can be

found in the literature or calculated analytically. Apart from the lattice rules on GPU, we
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Table 4.1: Generator vectors z for 10 dimensions and various
numbers of points n.

Number of Points (n)
103 105 106 108 35× 108

1 1 1 1 1
282 42240 292962 41883906 146940205
381 34871 229698 22682973 127904721
428 12695 326198 44229424 108579162
79 19528 246988 29466837 30890237
320 13709 447010 8176047 166719091
171 48806 170157 49462874 28591254
356 1721 104406 1162485 114681466
130 38753 145823 46871525 54322685
266 46060 425870 36107330 136274288

also implemented the lattice rule integration sequentially to measure the speedup. We pre-

generated the lattice rules for the parallel and sequential integration. In order to compare

the accuracy, we computed the same integrals using lattice rules and Monte Carlo methods.

Since the pseudo-random number generator is a major part of the Monte Carlo integration,

we considered both cuRAND (in single and double precision) and Random123 (using single

precision random number generation and double precision accumulation). To enhance the

performance and accuracy of Monte Carlo with cuRAND in single precision we applied

Kahan Summation [75].

We use CUDA C v.6.5 for our test programs, whereas the sequential lattice rule program

is written in C and compiled with gcc. The integrand function is implemented as a device

function that is invoked by the CUDA kernel, which calculates the lattice points. Fig. 4.1

shows a section of the CUDA kernel for computing the lattice points and calling the integrand

function. This code implements the formula of Eq. (1.5). Here tid is the ID of the thread

executing the code on the GPU. The temp variable in this code section accumulates the

thread’s function values. The temp values will be accumulated over the threads further
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int tid = threadIdx .x + blockIdx .x * blockDim .x;
double temp = 0;
double temp1 , temp2 , intpart ;
double x[dim ];
int i;
while (tid < n) {

for(i = 0; i < dim; i++) {
temp1 = ( double ) tid * z[i];
temp2 = temp1 / ( double ) n;
x[i] = modf(temp2 , & intpart );

}
temp += fcn(x);
tid += blockDim .x * gridDim .x;
}

Figure 4.1: Section of CUDA kernel code for calculating the sample points
and invoking the integrand function fcn(x).

in the kernel (not shown in Fig 4.1) using a synchronization of the threads similar to the

reduction for a dot product [76].

For our comparisons with Monte Carlo we used two different pseudo-random number

generators, cuRAND (of the CUDA toolkit) and Random123 [77].

The cuRAND library for generating pseudo-random numbers belongs to the CUDA

Toolkit [78]. cuRand is able to generate streams of pseudo-random numbers from the host

on the device. Yhis eliminates the overhead of moving the sequence from the host memory

to the GPU memory. On the other hand, the limited memory space on the GPU may pre-

vent generating a large enough sequence of pseudo-random numbers that may be needed to

achieve good accuracy with Monte Carlo. In our tests with cuRAND in double precision we

made consecutive kernel calls while adding sequence points in the case of n = 108.

Random123 is a library of counter-based random number generators (CBRNGs), which

can be invoked on CPU and GPU. Random123 consumes much less memory than cuRAND

and generates the numbers as needed on the GPU without requiring any processing on the

CPU [77]. The use of Random123 instead of cuRAND will make the application faster due
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to the dynamic nature of Random123 [14].

The next subsections will highlight the results we obtained for a set of multivariate

integrals by applying the aforementioned methods. The problems involve various types of

non-smooth integrand functions, which makes them challenging for lattice methods.

4.3.1. Test 1: Continuous integrand with discontinuous partial derivatives

The first test integral (from [19]) is

1
d

∫ 1

0
. . .
∫ 1

0

d∑
i=1
|4xi − 2| dx1 . . . dxd = 1 (4.1)

where the integrand function has partial derivative discontinuities, and we choose the number

of dimensions d = 20. We do not apply a periodization as |4xi − 2| = 2 for xi = 0 and for

xi = 1, 1 ≤ i ≤ d. Numerical and performance results using lattice rules and Monte Carlo

methods are given in Fig. 4.2, Table 4.2, Fig. 4.3 and Fig. 4.4.

For each n, Fig. 4.2 compares the accuracy of the four (GPU) methods based on the

absolute error

Ea = |I(f)−Qn(f)| (4.2)

(which in this case is also the relative error as I(f) = 1). The results show that the lattice

rules yield better accuracy by far compared to the other methods for this integration. The

lattice rules have the best accuracy at n = 108 (with Ea ≈ 4.4e-16). Monte Carlo using

Random123 is least accurate with error around 1.4e-05 at n = 108.

Table 4.2 shows the absolute error and time in milliseconds of the lattice rule integration in

parallel (LR GPU) and sequentially (LR Seq) for each value of n. The speedup S = Tseq/Tpar

is the ratio of sequential to parallel time, and the highest speedup (S = 239) is obtained at

n = 107.
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1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
Lattice	Rule	(GPU) 9.82E-07 9.99E-09 1.00E-10 1.01E-12 1.04E-14 4.44E-16 
MC	(curand)	Double 6.95E-04 1.11E-03 7.61E-05 2.85E-05 4.05E-05 1.03E-06 
MC	(Random123) 2.02E-04 4.24E-04 2.89E-04 4.77E-05 7.07E-05 1.42E-05 
MC	(curand)	Single,	KS 6.33E-04 7.84E-04 1.24E-04 8.99E-05 8.82E-06 1.91E-06 
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Figure 4.2: Absolute error Ea at each value of n for Test 1.

Further regarding the parallel performance, as shown in Fig. 4.3, Monte Carlo with Ran-

dom123 generates its 108 single precision points and processes them in around 92.5ms, which

is the best time among the methods tested. For the same value of n, lattice rules achieve the

approximation in 259ms, while Monte Carlo with (cuRAND single) and (cuRAND double)

take around 610ms and 899ms, respectively. Fig. 4.4 depicts the obtained speedup S vs.

the number of points n.

4.3.2. Test 2: Increasing dimensions

We use the same integral as in Eq. (4.1) but set d = 25. The absolute errors of these

results do not change much. Fig. 4.5 shows the absolute error for the GPU methods at each

value of n. The figure illustrates the difference in accuracy between lattice rules and Mont

Carlo for this type of function. We note that the lattice rules achieve the best accuracy at
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Table 4.2: Numerical results for Test 1, Integral (4.1) with d = 20 using lattice rules
in parallel (LR(GPU)), and sequentially LR(seq)). The results list: the number of
points (n), the absolute error (Ea), the time in milliseconds for both methods, and

the speedup.

LR (GPU) LR (Seq.)
n Ea Time Ea Time Speedup

(ms) (ms)

103 9.82e-07 2.9e-01 9.82e-07 5.9e-01 2.0e+00
104 9.98e-09 3.0e-01 9.98e-09 5.8e+00 1.9e+01
105 9.99e-11 6.0e-01 1.00e-10 5.8e+01 9.6e+01
106 1.01e-12 2.9e+00 1.03e-12 6.1e+02 2.07e+02
107 1.04e-14 2.5e+01 2.50e-14 6.1e+03 2.39e+02
108 4.44e-16 2.5e+02 5.01e-13 5.8e+04 2.26e+02

n = 107; the error value increases at n = 108 (which did not happen for Test 1 with d = 20).

This may be due to roundoff error. On the other hand, the figure clearly shows the slow

convergence of the Monte Carlo methods.

The increase in dimension also changes the time of the integration methods. Fig. 4.6

plots the computation time vs. n. It is expected for the execution time to increase with

increasing dimension. Specifically, apart from the increased function evaluation time, the

length of the random sequence generated for Monte Carlo is dn. The lattice rule method on

GPU achieves computation time (345ms) similar to Monte Carlo with Random123 (311ms).

4.3.3. Test 3: Singularity of second order partial derivatives

We use a 10-dimensional integral from [19] of the form

∫ 1

0
. . .
∫ 1

0

( 10∑
i=1

xi

)1.5

dx1 . . . dx10 = 11.32097423155 (4.3)

The theory of good lattice points relies on properties of periodic functions and supplies error

bounds for functions that are periodic (with period 1) in all variables; but can be extended for
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1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
Lattice	Rule	(GPU) 2.95E-01 3.02E-01 6.09E-01 2.94E+00 2.58E+01 2.59E+02 
MC	(curand)	Double 2.27E+01 2.28E+01 2.36E+01 3.20E+01 1.10E+02 8.99E+02 
MC	(Random123) 2.45E-01 2.49E-01 3.60E-01 1.27E+00 9.85E+00 9.25E+01 
Lattice	Rule	(Sequential) 5.91E-01 5.85E+00 5.86E+01 6.10E+02 6.15E+03 5.87E+04
MC	(curand)	Single,	KS 2.30E+01 2.31E+01 2.35E+01 2.92E+01 8.07E+01 6.10E+02 
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Figure 4.3: Computation times for Test 1.

sufficiently smooth non-periodic functions by periodizing transformations. In this example,

we give test results using a simple periodization [19] where the integrand function of Eq. (1.1)

is replaced by

h(x1, . . . , xd) = f(1− 2|x1 −
1
2 |, . . . , 1− 2|xd −

1
2 |) (4.4)

Also note that the transformations by Sidi [21][79][80] could be applied, such as the sinm-

transformation with m = 2 given by

xi = ti −
1

2π sin(2πti), i = 1, . . . , d (4.5)

The integrand (4.3) has second order partial derivatives at the origin and is harder to

integrate compared to the previous function. For this integral we show results with the

periodization of Eq (4.4) for the lattice rules. We further used the same methods as for the

37



0.00E+00 

5.00E+01 

1.00E+02 

1.50E+02 

2.00E+02 

2.50E+02 

3.00E+02 

1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 

Sp
ee

du
p	
S	=

	T
se
q
/	
T p

ar

Number	of	points	n

Figure 4.4: Parallel performance (Speedup vs. n) for Test 1 lattice rule inte-
gration.

1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
Lattice	Rule	(GPU) 9.82E-07 9.99E-09 1.00E-10 1.00E-12 9.77E-15 5.38E-10 
MC	(cuRAND)	Double 5.73E-04 4.90E-04 1.08E-05 7.22E-05 2.15E-05 6.80E-07 
MC	(Random123) 1.08E-03 7.67E-04 1.01E-05 1.35E-05 6.90E-05 1.09E-06 
MC	(curand)	Single,	KS 6.33E-04 7.84E-04 1.24E-04 8.99E-05 8.82E-06 1.91E-06 
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Figure 4.5: Absolute error Ea at each value of n for Test 2.
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1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
Lattice	Rule	(GPU) 3.11E-01 3.07E-01 6.78E-01 3.79E+00 3.47E+01 3.45E+02 
MC	(curand)	Double 2.27E+01 2.29E+01 2.44E+01 3.45E+01 1.32E+02 1.12E+03 
MC	(Random123) 2.56E-01 3.13E-01 5.93E-01 3.37E+00 3.13E+01 3.11E+02 
Lattice	Rule	(Sequential) 7.55E-01 7.36E+00 7.36E+01 7.58E+02 7.59E+03 7.34E+04 
MC	(curand)	Single,	KS 2.27E+01 2.31E+01 2.32E+01 2.88E+01 8.09E+01 6.10E+02 
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Figure 4.6: Computation times for Test 2.

previous integrals. The absolute error results are shown in Fig 4.7.

After the transformation, lattice rules (LR (GPU) Transformed) achieve the best accuracy

at n = 108 with Ea = 7.71e-10. We note that the transformation by Sidi in Eq. (5.8)

gives similar accuracy (8.63e-10 at n = 108) but takes more time (301ms). Even without

transformation, lattice rules yield better accuracy than to the Monte Carlo methods, with

an absolute error of 3.98e-06 at n = 108.

Fig. 4.8 shows the computation times for each method. The times for lattice rules with

and without the transformation are very similar and hardly distinguishable on the chart; thus

the periodization is effective and does not affect the parallel performance. Lattice rules with

the transformation perform the evaluation with 108 points in 116ms, vs. 118ms without

the transformation. Monte Carlo sampling using Random123 achieves the best time (around

67ms) at n = 108.
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1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
LR(GPU)	Transformed 7.59E-04 4.35E-05 2.63E-06 1.60E-07 1.08E-08 7.71E-10 
LR	(GPU) 1.11E-02 1.38E-03 1.15E-04 1.22E-05 5.18E-06 3.98E-06 
MC	(curand)	Double 1.04E-01 5.61E-03 1.01E-02 6.11E-03 3.22E-04 2.79E-05
MC	(Random123) 3.44E-02 4.07E-02 2.72E-03 4.59E-03 8.20E-04 1.75E-05 
MC	(curand)	Single,	KS 1.72E-01 3.81E-05 1.63E-02 4.79E-03 1.60E-03 6.87E-05 
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Figure 4.7: Absolute error Ea vs. n for Test 3, comparing Monte Carlo meth-
ods, lattice rules on GPU with periodization (LR (GPU) Transformed), and

lattice rules without transformation (LR (GPU)).

4.3.4. Test 4: Integrand singularity

This integral from [19] is 10-dimensional and of the form

∫ 1

0
. . .
∫ 1

0

1(∑10
i=1 xi

)2dx1 . . . dx10 = 0.04483234483 (4.6)

The integrand has a singularity at the origin. Fig. 4.9 plots the absolute errors resulting from

the integration by each approach. We also show results of applying the Sidi transformation

of Eq. (5.8).

The transformed lattice rules show significant improvements for n = 107 and higher.

Overall, lattice rules are more accurate than Monte Carlo for this problem although, at

n = 3.5 × 108, Monte Carlo using cuRAND in single precision achieves the best accuracy
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1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 
LR(GPU)	Transformed 2.81E-01 2.72E-01 4.11E-01 1.51E+00 1.19E+01 1.16E+02 
Lattice	Rule	(GPU) 2.76E-01 2.84E-01 4.22E-01 1.51E+00 1.21E+01 1.18E+02 
MC	(curand)	double 2.32E+01 2.28E+01 2.30E+01 2.61E+01 5.61E+01 3.59E+02 
MC	(Random123) 2.35E-01 2.44E-01 3.06E-01 9.66E-01 6.98E+00 6.72E+01 
Lattice	Rule	(Sequential) 4.28E-01 3.72E+00 3.70E+01 3.65E+02 3.63E+03 3.61E+04 
MC	(curand)	Single,	KS 2.31E+01 2.27E+01 2.29E+01 2.48E+01 4.48E+01 2.46E+02 
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Figure 4.8: Computation times for Test 3.
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Lattice Rule (GPU) 5.09E-05 8.03E-06 4.71E-06 6.73E-07 3.40E-07 4.28E-07 3.17E-07 3.59E-07
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Figure 4.9: Absolute error Ea for Test 4.
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with Ea = 7.8e-08.

The computation time of the methods on GPU are shown in Fig. 4.10. As for the
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Figure 4.10: Computation times for Test 4.

previous integrals, lattice rules and Monte Carlo using Random123 are much faster than

cuRAND when n is relatively small. By increasing the number of points, the computing

time of these methods increases significantly, especially between n = 106 and n = 108. For

n = 2× 108, n = 3.5× 108, the time increases at a steady rate similar to the other methods.

4.4. Feynman Loop Integrals

Feynman diagrams are used extensively in high energy physics to describe particle inter-

actions. In perturbation theory, these Feynman diagrams are translated into formulas that

may contain integrals called “loop integrals” [81]. For a particle interaction, higher-order
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contributions to the perturbation series of the amplitude in quantum field theory are ex-

pressed in terms of Feynman loop integrals. These correspond to Feynman diagrams, each

of which represents a possible configuration. The square sum of the amplitudes gives the

probability or cross section of the process. A Feynman loop integral with L loops and N

propagators can be represented in Feynman parameter space by

IN =
Γ(N − νL

2 )
(4π)νL/2 (−1)N

∫ 1

0

N∏
r=1

dxrδ(1−
∑

xr)
CN−ν(L+1)/2

(D − i%C)N−νL/2 (4.7)

where C and D are polynomials determined by the topology of the corresponding diagram

and physical parameters, and ν is the space-time dimension. For 1-loop diagrams, well-

known analytic solutions are available. However, analytic integration is generally impossible

for multi-loop diagrams with multiple external lines.

We applied lattice rule integration to classes of 2-loop box, as well as 3- and 4-loop

self-energy Feynman diagrams, after a sinm-transformation (Sidi [79] [80]), which was per-

formed not only as a periodizing transformation but also to deal with integrand boundary

singularities. We examined the effects of higher order transformations. The implementation

in CUDA C was executed utilizing one Kepler 20m GPU for the integrand evaluations and

summations over the blocks. The results, which are reported in [71], were found far more

accurate and efficient than parallel adaptive integration layered over MPI and using 64 CPU

cores in four cluster nodes.

In [72] we applied rank-1 lattice rules with tanh and sinm type transformations for the

integration of functions which may have singularities on the boundaries of the integration

domain. Sidi’s sinm-transformation (with m = 6) overall attained better accuracy than the

tanh-transformation, and the combined lattice rule and transformation techniques achieved

excellent accuracy and parallel efficiency.
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Furthermore, in [73] we computed Feynman loop integrals for diagrams with massless

internal lines, using lattice rule approximations accelerated on a GPU. Results are given for

finite and UV-divergent diagrams having between 4 and 11 propagators, and showing promise

for higher-dimensional applications. The method is fully numerical and thus does not require

symbolic manipulations tailored to specific problems. The GPU results are accurate and

efficient in execution time compared to other numerical methods and architectures.
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CHAPTER 5

EMBEDDED LATTICE RULES

5.1. Overview

This chapter discusses the benefits of using a sequence of embedded lattice rules to

improve the integration accuracy. This is a high-cost practical method that also provides an

error estimation technique for the integration. Starting with a rank-1 rule Q0, the embedded

sequence grows to include every following rank up to d, which is the maximal rank. We

will go over the algorithm by Sloan and Joe, who gave a Fortran code to implement the

embedded sequence [21]. Then we will show some results from our code ported to CUDA C

for accelerating the computations.

5.2. Embedded Lattice Sequence

As established in the previous chapter, good lattice rules with n points can be constructed

using the CBC algorithm. An embedded sequence of lattice rules is defined over the unit

cube as an md copy of a lattice rule that is scaled to size 1/m in each coordinate direction

and m ≥ 1 is the maximum level. The embedded sequence is given in [21] as

Qrf = 1
mrn

m−1∑
kr=0

...
m−1∑
k1=0

n−1∑
j=0

f

({
j

n
z + k1, ...., kr, 0, ...., 0

m

})
(5.1)

for 1 ≤ r ≤ d, and where m and n are relatively prime. In the embedded sequence, the

points of Qr are included in the points of Qr+1. For r = d, the Qd lattice rule can be written
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Figure 5.1: a 2-dimensional embedded sequence with 7 points

as

Qdf = 1
mdn

m−1∑
kd=0

...
m−1∑
k1=0

n−1∑
j=0

f

({
j

mn
z + k1, ...., kd

m

})
(5.2)

and corresponds to the md copy rule.

As an illustration, we use the following example with 7 points (similar to the 5-point

example of [21]). Given

d = 2, n = 7,m = 2, z = (1, 3)

the quadrature points of the embedded sequence are shown in Fig 5.1. The figure shows

the rank-1 basic lattice Q0 with 7 points. Q1 has all the points of Q0 and incorporates two

scaled copies of Q0 by halving the unit square across the vertical coordinate direction and

and applying the scaled copy to both halves. Then, Q2 include all the points of Q1 and

further halves the square across the horizontal coordinate direction, to obtain four scaled

copies, so that Q2 is the 22 copy of Q0.

Joe and Sloan [82] proposed an error estimation method based on the embedded sequence

as:

Et = c

(
d∑
i=1

(Qdf −Q(i)f)2/d

) 1
2

(5.3)
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where c is a heuristic constant factor, Q(i) is a lattice rule of order md−1n and Q(d) = Qd−1.

Furthermore, Q(i) is embedded in Qd for 1 ≤ i ≤ d. The embedded sequence algorithm with

its error estimation is implemented in the C code of Appendix B.

5.3. Numerical Results

To show the accuracy and performance of the embedded rules on the GPU, we revisit

Test 3 and Test 4 from Chapter 4 [70]. We focus on the accuracy and running time achieved

for the 2d copy rule. For the results given in this section, our CUDA programs are executed

using an NVIDIA Tesla K20m [74] GPU with 2496 CUDA cores, 706MHz GPU clock cycle

and 4800MB of global memory. The device is part of a cluster node with dual Intel Xeon

E5-2670, 2.6GHz CPUs and 128GB of memory. The number of parallel blocks and threads

per block launched in the GPU runs were set to 64 and 1024, respectively.

5.3.1. Test 1: Singularity of second order partial derivatives

This is a 10-dimensional integral from [19] of the form

∫ 1

0
. . .
∫ 1

0

( 10∑
i=1

xi

)1.5

dx1 . . . dx10 = 11.32097423155 (5.4)

The integrand has second order partial derivative singularities at the origin, which makes it

relatively hard to integrate. In this example, we give test results using a simple periodiza-

tion [19] where the integrand function of Eq. (1.1) is replaced by

h(x1, . . . , xd) = f(1− 2|x1 −
1
2 |, . . . , 1− 2|xd −

1
2 |) (5.5)

Numerical and performance results with the embedded rules are given in Fig. 5.2.
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For each n, Fig. 5.2 compares the accuracy of the 2d copy rule against the rank-1 lattice

rule, based on the absolute error

Ea = |I(f)−Qn(f)| (5.6)

The figure also shows the estimated error (Et) of the embedded sequence, which is calculated

using Eq (5.3). In this case, the embedded sequence shows more accuracy than the rank-1
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Figure 5.2: Absolute error Ea for rank-1 lattice rule and 2d copy rule, and
estimated error Et for 2d copy rule based on embedded sequence, on GPU at

each value of m for Test 1

lattice rule. However, the error rate does not decrease beyond one Million points. The error

estimate Et is under-estimated for larger numbers of points.

Fig. 5.3 shows the computation times for each method in addition to the embedded

sequence implemented sequentially. The execution time for the rank-1 lattice rules on the

GPU is clearly much smaller than that of the embedded sequence. At 200 Million points,

the rank-1 lattice rule took less than 3 seconds to return the results, while the embedded
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sequence time on the GPU is around 3 minutes. However, it remains much faster than the

sequential embedded sequence, which took around 26 hours to perform the integration.
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Figure 5.3: Computation times for Test 1.

Fig. 5.4 depicts the obtained speedup S vs. the number of points m for Test 1. The

speedup S = Tseq/Tpar is the ratio of sequential to parallel time, and the highest speedup

(S = 538) is obtained at n = 107.

5.3.2. Test 2: Integrand singularity

This integral from [19] is 10-dimensional and of the form

∫ 1

0
. . .
∫ 1

0

1(∑10
i=1 xi

)2dx1 . . . dx10 = 0.04483234483 (5.7)
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Figure 5.4: Parallel performance (Speedup vs. n) for Test 1 lattice rule inte-
gration.

The integrand has a singularity at the origin. We show results after applying a transformation

by Sidi [21][79][80], the sinm-transformatiwith m = 2 given by

xi = ti −
1

2π sin(2πti), i = 1, . . . , d (5.8)

Fig. 5.5 plots the absolute error of the rank-1 lattice rule and the 2d copy rule, and the

estimated error resulting from the embedded sequence. The figure clearly shows that the

embedded sequence (2d copy rule) gives more accurate results especially for a lower number

of points. At n = 106 the embedded sequence achieved Ea = 4.56 e-12 compared to the

rank-1 lattice rule Ea = 1.51 e-6.

Regarding performance, Fig. 5.6 plots the the parallel and sequential computing times of

the rank-1 lattice rules and the embedded sequence. Similar to Test1, the rank-1 lattice rule

50



1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 2.00E+08 3.50E+08
rank-1 Ea 9.43E-03 6.14E-04 4.06E-04 1.51E-06 4.06E-08 1.08E-10 3.99E-12 2.00E-11
Emb. Ea 8.98E-08 3.48E-09 6.48E-10 4.56E-12 2.31E-12 2.33E-12 2.33E-12 2.33E-12
Emb. Et 1.46E-06 1.00E-06 2.14E-09 2.21E-10 3.37E-13 8.70E-14 3.85E-15 1.62E-14

1.00E-15

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

Er
ro

r 

Figure 5.5: Absolute error Ea for rank-1 lattice rule and 2d copy rule, and
estimated error Et for 2d copy rule based on embedded sequence, on GPU at

each value of n for Test 2.

performs far better with 2.7 seconds at n = 200 Million points compared to the embedded

sequence that took around 3 minutes for the same number of points. On the other hand,

the sequential embedded sequence was far slower, consuming around 26 hours to return the

results.

With respect to speedup, Table 5.1 shows the ratio of the sequential to parallel time,

which scores the best at n = 107 points with a speedup of 423.77.

Table 5.1: Parallel performance (Speedup vs. n) for Test 1.

n Speedup

103 8.21
104 74.33
105 268.41
106 377.24
107 423.77
108 309.96

2× 108 413.21
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Figure 5.6: Computation times for Test 2.

52



CHAPTER 6

ACCELERATING LATTICE RULES CONSTRUCTION

6.1. Overview

The fast CBC construction of rank-1 lattice rules indeed improves the CBC algorithm

performance considerably. However, as we have shown in Chapter 4, increasing the number

of lattice points may increase the integration accuracy. In order to generate a lattice rule

for a large number of points, even the fast CBC construction will take time to calculate the

rule. This chapter will address the fast CBC implementation using Matlab and C, and a

parallelization for GPU accelerators using CUDA.

6.2. Fast CBC Implementation

There are a limited number of tools that implement the fast CBC algorithm. This section

we will give a brief overview of some of these implementations.

6.2.1. Fast Rank-1

Nuyens has provided a Matlab implementation of the fast CBC construction of rank-1

lattice rules in [65]. The script uses the Matlab built-in FFT library that can be easily invoked

to perform the matrix vector multiplication. A pseudo-code adapted from the Matlab script

for the fast rank-1 construction is given in Fig 6.1. The inputs for this code are [37]:

• n: A prime number that represents the number of points in the lattice.

• dim: The dimension of the generator vector.
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• omega: A symmetric function handle for the shift-invariant kernel function. In our

experiments we used 2π2(x2 − x+ 1
6).

• gamma, beta: Parameters for weighting per dimension.

In this implementation, w is the variable kernel function and it is symmetric around

1/2. Therefore the FFT transforms need only half the size n. Matlab only has complex to

complex FFT transforms. Since w is real-valued, this can be solved by using the FFTW real

to complex transform in C (and complex to real inverse transform) [65], thereby decreasing

the memory consumption.

6.2.2. Lattice Builder

The Lattice Builder library is written in C++ and it can be used as a standalone appli-

cation or invoked by other programs. The package supports the following methods [41]:

1. Exhaustive search

This method considers all possible generating vectors z ∈ Ud
n, where

Un = {z ∈ Zn | gcd(z, n) = 1} for n > 1 (set of units modulo n, identified with the

multiplicative group of integers modulo n). The resulting vector will have the smallest

error margin.

2. Random search

Instead of searching all possible z, this method selects x random values of z uniformly

distributed in Ud
n and returns the best generating vector. The goal is to reduce the

search time.

3. Korobov method

This classic method for constructing lattice rules is similar to the exhaustive search
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Algorithm 3: Fast rank-1 lattice rules construction
1 Is n a prime? Continue
2 m = (n− 1)/2
3 cumbeta = cumulative_products_of (beta)
4 g = all_primitive_roots_of (n)
5 for i=1 to m do
6 perm[i] = mod(perm[i] ∗ g, n)
7 end
8 for i=1 to m do
9 perm[i] = minimum (n – perm[i], perm[i])

10 psi[i] = omega(perm/n)
11 end
12 fft_psi = fft(psi)
13 q[m] = {1,1,...,1}
14 for i=1 to dim do
15 E2 = ifft(fft_psi * fft(q))
16 min_E2 = minimum of (E2)
17 w = index_of_minimum_of (E2)
18 if i=1 and w=1 then
19 noise = abs(E2[1] - min_E2)
20 end
21 z[i] = perm[w]
22 e2[i] = -cumbeta[i] + (beta[i] * (q[1] + 2 * sum_q) + gamma[i] * (psi[1] * q[1] + 2

* min)) /n
23 wcount = w
24 mcount = m-1
25 for k=1 to w do
26 psiord[k] = psi[wcount]
27 wcount = wcount - 1
28 end
29 for k=w+1 to m do
30 psiord[k] = psi[mcount]
31 mcount = mcount - 1
32 end
33 for k=1 to m do
34 q[k] = q[k] * (beta[i] + gamma[i] * psiord[k])
35 end
36 print z[i], e2[i]
37 end

Figure 6.1: Pseudo-code adapted from Nuyens Matlab code [65].
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method. However, it only considers generating vectors of the form

z = (1, a, a2 mod n, ...., ad mod n)t with a ∈ Un.

4. Random Korobov method

As in the random search, this method selects x random values of a uniformly dis-

tributed in Un and giving rise to the Korobov vector z.

5. CBC method

This is the component by component construction of rank-1 lattice rules algorithm [36] [83].

In this method, the generating vector z is obtained one component at a time, starting

with the first component z1 = 1.With z1, . . . , zj−1 fixed at step j, the algorithm chooses

zj ∈ Un to minimize the worst-case error in a shift-invariant reproducing kernel Hilbert

space.

6. Random CBC

As a randomized CBC this algorithm chooses x random values z uniformly distributed

in Un to be considered as zj for j = 2, ...., d.

7. Fast CBC

Fast CBC is a faster version of the CBC algorithm where FFT operations are used to

reduce the algorithm complexity from O(dn2) to O(dn log(n)). This implementation

requires the number of points n to be a power of a prime number. Lattice Builder uses

the FFTW library [84] for the implementation.

8. Range of points

Lattice rules built with the CBC method are extensible in dimension d but not ex-

tensible in the number of points n. Consequently, when n needs to be modified, the

generating vector has to be constructed again [85]. Cools et al. proposed a method
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for constructing lattice rules for a range of n based on the fast CBC algorithm, with

complexity of O(dn(log(n))2) in [85]. Lattice Builder applies this method to augment

the maximum number of points nm = bm, for embedded lattice rules in base b and

maximum level m, to nm+1 = bm+1 [41].

6.2.3. Accuracy Issues

Through our experiments, we noticed that running the code on different machines may

produce different rules. Table 6.1 shows two rules that are constructed for 1009 points

and 10 dimension. Rule 1 was constructed on a computer that has a 3.06GHz Core 2 Duo

processor and 8 GB 1067MHz DDR3 RAM. Rule 2 was obtained using a machine with a 2.9

GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 RAM.

Table 6.1: Two Rules generated with the same number of points (n = 1009) and the
same dimension (d = 10) using two different computers

Rule 1 1, 282, 381, 428, 79, 320, 171, 356, 130, 266
Rule 2 1, 390, 267, 435, 469, 316, 96, 402, 250, 187

Applying both rules to an integration gives similar results. For example, for the integral

∫ 1

0
. . .
∫ 1

0

( 10∑
i=1

xi

)1.5

dx1 . . . dx10 = 11.32097423155 (6.1)

Rule 1 yields the integration result 11.309868 while Rule 2 gives the result 11.306319. Thus

the results are quite similar for both rules.

Further examination of the code reveals that the differences in the rules are directly

associated with the FFT operations, which vary on different machines. According to [86]

there are four possible causes of error in FFT computations:

1. Unstable factorization in computing FFT.

57



2. Unstable DFT blocks.

3. Inaccuracy of computing trigonometric constants.

4. Computation roundoff errors.

The last two error sources are far more common when using the FFTW library [86]. FFTW

implements the Cooley-Tukey algorithm, which has a floating-point error of O(logN) for a

size N transform [87]. The error bound can be increased by an inaccurate calculation of the

trigonometric (twiddle) factors. A poor calculation of the twiddle factors can increase the

FFT floating-point error up to O(N2) [88].

6.3. Numerical Results

In order to test and enhance the performance of the fast CBC, we developed a C code

for the algorithm. The cornerstone of implementing the fast CBC is a good FFT library.

We have chosen the FFTW library to perform the FFT and IFFT operations. We also use

the cuFFT library by NVIDIA to accelerate the construction of lattice rules.

6.3.1. FFTW

The Fastest Fourier Transform in the West (FFTW) is a well optimized open source

software library written in C. It was developed at the Massachusetts Institute of Technology

(MIT) by Matteo Frigo and Steven Johnson [84] [89]. FFTW is an implementation of

the Cooley-Tukey FFT algorithm [90] that uses a technique that adapts to the computer

architecture, and specialized compiler optimization for better performance [84]. The FFTW

performance is usually better than other publicly accessible FFT programs. That was shown

by a number of benchmarks done on a variety of platforms [84].
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6.3.2. CuFFT

The NVIDIA CUDA Fast Fourier Transform library (cuFFT) provides GPU accelerated

FFT implementations that, in theory, perform much faster than on CPU only. The library

uses simple APIs, which enable the user to accelerate CPU based FFT implementations

in some applications with little code changes. cuFFT is a foundational library based on

the popular Bluestein [91] and Cooley-Tukey [90] algorithms. It supports academic and

commercial use across disciplines like computational physics, quantum chemistry, molecular

dynamics, medical and seismic imaging [92].

6.3.3. Results

To test the C code, using both the FFTW and cuFFT libraries, we generated a number

of lattice rules for various numbers of points and dimensions. The main focus in these

experiments was on the large number of points in order to test the performance sequentially

and in parallel. Therefore, we chose the range of points to be between one million and 80

million, which is the largest number of points our GPU memory can contain.

For the tests described in this section, we used an NVIDIA Tesla M2090 Fermi GPU

with 650 MHz GPU clock cycle and 6 GB of global memory. The device is part of a cluster

node with dual Intel Xeon E5-2670, 2.6GHz CPUs and 128GB of memory. The number of

parallel blocks and threads per block launched in the GPU runs were set automatically by

the cuFFT calls.

For our first test, we generated 10-dimensional lattice rules for the target range of points.

Fig. 6.2 shows the computation times for constructing these lattice rules sequentially and in

parallel. The graph shows that at one million points, FFTW and the cuFFT are performing

similarly. As the number of points increases, their performance starts to differ. At 80 million

59



1.00E+06 5.00E+06 1.00E+07 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07 7.00E+07 8.00E+07
Fastrank-1 (FFTW) 3.36 13.65 19.3 76.12 34.88 144.86 111.05 160.68 233.58 197.03
Fastrank-1  (cuFFT) 1.49 3.57 6.14 11.57 14.76 21.48 26.79 32.77 38.03 40.8

0

50

100

150

200

250

Ti
m

e 
(s

ec
)

Figure 6.2: Computation times for constructing a 10-dimensional rule for var-
ious number of points n.

points, the code using FFTW generated the rule in around 3.3 minutes. The code using

cuFFT constructed the rules in 40.8 seconds. The speedup for this test ranged between 2.2

at one million points and 6.74 at 40 million points.

For our second test, we increased the number of dimensions in the lattice rules to 50.

Fig. 6.3 shows the computation times for constructing these rules using FFTW and cuFFT.

The charted times look similar to the first test graph except for the increase in time for each

n for FFTW and cuFFT. The speedup remains similar to the previous test, ranging between

3.9 for one million and 7.4 for 40 million. Constructing the rule for 80 million points using

FFTW took around 16.75 minutes as opposed to cuFFT, which took around 3 minutes.

In the third test, we constructed lattice rules of dimension 100 for the aforementioned

rang of n. Fig. 6.4 shows the computation times for constructing these rules using FFTW

and cuFFT. The graph shows that the performance difference is similar to the previous tests.

Constructing the 100-dimensional rules with 80 million points took around 32 minutes while

cuFFT took around 7 minutes. The speedup for this test ranges between 5.13 for 5 million
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Figure 6.3: Computation times for constructing a 50-dimensional rule for var-
ious numbers of points n.

points and 7.77 for 20 million. Table 6.2 shows the times and the speedup for the given

range of n.

The results we obtained with cuFFT to accelerate the construction of rank-1 lattice rules

for large numbers of points, appear to be promising. As mentioned before, the limitation

of the Tesla M2090 memory size prevented us from constructing lattice rules larger than

80 million points. It would be interesting to construct the lattice rules using a state of the

art GPU with larger memory or even multiple GPUs to increase the efficiency.
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Figure 6.4: Computation times for constructing a 100-dimensional rule for
various numbers of points n.

Table 6.2: Computation times and speedup for Test 3.

n FFTW Time (s) cuFFT Time (s) Speedup

1M 31.49 5.73 5.49
5M 127.76 24.87 5.13
10M 182.06 45.92 3.96
20M 718.36 92.42 7.77
30M 324.59 123.00 2.63
40M 1375.72 190.62 7.21
50M 1042.20 242.49 4.29
60M 1504.78 309.03 4.8
70M 2322.54 340.16 6.8
80M 1919.17 421.96 4.5
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation we explored the potentials of high performance computing for multi-

variate integration. Our main focus was the use of a large number of function evaluations in

order to increase the integration accuracy while achieving good parallel efficiency.

In a study of adaptive integration and task partitioning we presented applications from

Bayesian statistics, including an application to health care data that led to the computation

of difficult multivariate integrals. The ParInt package supplies tools for automatic multi-

variate integration in a black-box approach, to alleviate the need for a detailed specialized

analysis of the integral by the user. We demonstrated the versatility of the package for use

in different settings and found that it can be applied to these problems easily and effectively.

We note that similar adaptive partitioning and load balancing techniques can support various

other divide-and-conquer methods beyond numerical integration.

With regard to the adaptive techniques in ParInt, future work includes the development

and testing of new subdivision and load balancing strategies, as well as a careful analysis of

the need to deal with roundoff as the number of subdivisions increases significantly, especially

near singularities.

Our work on GPU computations of lattice rules was motivated in part as an extension of

the number-theoretic (quasi-Monte Carlo and Monte-Carlo) methods in the ParInt integra-

tion package. We derived an efficient GPU implementation in CUDA C for multidimensional

integration using lattice rules. Compared to the Monte Carlo method, the lattice rules yield

better accuracy for the various functions considered. We observed good convergence even

for non-smooth integrand behavior, especially singularities on the boundaries of the domain,
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which were treated with general transformations to smoothen the singular behavior. Unlike

Monte Carlo, our lattice rule integration scheme does not rely on a pseudo-random num-

ber generator; the latter affects the computation time. Thus our test results for the lattice

rule integration show improvements over Monte Carlo with respect to efficiency as well as

accuracy. The lattice rule procedure further achieves excellent speedups on GPU compared

to the sequential implementation. This benefits the approximation of integrals in higher

dimensions using a large number of points.

Regarding embedded lattice sequences, we achieved significant improvements in efficiency

and accuracy by utilizing the computational power of GPUs. This approach further provides

an efficient method for estimating the integration error. The parallel tests we carried out

show remarkable speedups against the sequential method.

Constructing good lattice rules for a large number of points can be a computationally

intensive process. For constructing good lattice rules in a timely manner, the fast CBC

algorithm relies on performing multiple FFT and IFFT operations as a major part of the

algorithm. We used the NVIDIA cuFFT library to accelerate the FFT operations, with

consistent and promising results.

The parallel algorithms coded in CUDA C have allowed significant contributions to the

calculation of Feynman loop integrals where the integrand has boundary singularities han-

dled with transformations. The integration algorithm has delivered a powerful black-box

procedure to tackle these difficult problems.
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A. Generator vectors

Table A.1: Generator vectors z for various d and n.

d n Z
3 106 1, 419868, 1094386
3 107 1, 3675449, 4456704
3 108 1, 38278307, 43388112
3 2× 108 1, 76384079, 90104983
3 35× 108 1, 146940205, 127904721
4 106 1, 292962, 79173, 403401
4 107 1, 2928962, 1859617, 3250721
4 108 1, 38278307, 43388112, 5988368
4 2× 108 1, 76384079, 90104983, 20251157
4 35× 108 1, 146940205, 127904721, 59228284
5 106 1, 419868, 109438, 337057, 135243
5 107 1, 3675449, 4456704, 3864450, 4934306
5 108 1, 38278307, 43388112, 48206750, 45950883
5 2× 108 1, 76384079, 93229505, 12830863, 56635299
5 35× 108 1, 133694234, 154078417, 9896546, 125929561
6 106 1, 292962, 79173, 403401, 59097, 255500
6 107 1, 2928962, 1859617, 4304839, 2689131, 2592686
6 108 1, 38278307, 43388112, 48206750, 45950883, 6360155
6 2× 108 1, 53716462, 63701826, 51044020, 15378683, 37953591
6 35× 108 1, 146940205, 127904721, 27682752, 91275310, 62729638
7 106 1, 419868, 109438, 337057, 135243, 47828, 145504
7 107 1, 2928962, 1859617, 4304839, 4474033, 273363, 1426318
7 108 1, 41883906, 22682973, 44229424, 29466837, 15518263, 42112409
7 2× 108 1, 76384079, 93229505, 12830863, 56635299, 54395013, 90891159
7 35× 108 1, 146940205, 127904721, 27682752, 91275310, 62729638, 70372598
8 106 1, 292962, 79173, 403401, 59097, 255500, 14967, 191964
8 107 1, 3675449, 4456704, 3864450, 1127878, 144000, 893683, 1090872
8 108 1, 38278307, 43388112, 48206750, 45950883, 6360155, 7372151,

19169705
8 2× 108 1, 53716462, 63701826, 51044020, 28591915, 54939628, 40142478,

52782023
8 35× 108 1, 146940205, 127904721, 27682752, 91275310, 162555981,

69228497, 128037316
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(Table 1 cont.) Generator vectors z for various d and n.

d n Z
9 106 1, 292962, 229698, 326198, 246988, 447010, 170157, 104406, 499703
9 107 1, 3675449, 2181023, 834814, 4235339, 3173487, 171907, 735463,

2446815
9 108 1, 38278307, 43388112, 48206750, 45950883, 6360155, 7372151,

19169705, 1149527
9 2× 108 1, 76384079, 93229505, 12830863, 66233237, 7041901, 10846592,

88109201, 68680388
9 35× 108 1, 146940205, 127904721, 27682752, 91275310, 162555981,

69228497, 128037316, 123676276
10 106 1, 292962, 229698, 326198, 246988, 447010, 170157, 104406, 145823,

425870
10 107 1, 3675449, 2181023, 834814, 4235339, 3173487, 171907, 735463,

2446815, 1818771
10 108 1, 41883906, 22682973, 44229424, 29466837, 8176047, 49462874,

1162485, 46871525, 36107330
10 2× 108 1, 53716462, 63701826, 51044020, 67272988, 11162620, 9925795,

63388095, 54986324, 19264518
10 35× 108 1, 146940205, 127904721, 108579162, 30890237, 166719091,

28591254, 114681466, 54322685, 136274288
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B. Embedded sequence code

int main( void ) {

double q1 [51] , q2 [51] , * partial_q ;

double * dev_partial_q ;

double exact;

int i,j,l,w,k[51];

double val = 0.0, dd , pp , E = 0.0;

int *dev_k;

// Allocate memory on GPU and CPU

cudaMalloc ( (void **)&dev_k , dim * sizeof (int) );

partial_q = ( double *) malloc ( blocksPerGrid * sizeof ( double ));

cudaMalloc ( (void **)& dev_partial_q , blocksPerGrid * sizeof ( double ));

q1 [1] = 0.0;

for(i=1; i<= dim; i++){ // Initialize k, q1 and q2 arrays

k[i -1] = 0;

q1[i+1] = 0.0;

q2[i] = 0.0;

}

k[0] = -1;

l = 1;

w = 0;

val = 0.0;

while (l <= dim){

if(k[l -1] < n -1){

k[l -1] = k[l -1] + 1;

l = 1;
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val = 0.0;

// Transfer k to GPU

cudaMemcpy ( dev_k , k, dim * sizeof (int),

cudaMemcpyHostToDevice );

// Call kernel

lat1 <<< blocksPerGrid , threadsPerBlock >>>( dev_partial_q , dev_k )

;

// Transfer partial_q from GPU

cudaMemcpy ( partial_q , dev_partial_q , blocksPerGrid * sizeof (

double ), cudaMemcpyDeviceToHost );

// Finalize accumulations

for (j=0; j< blocksPerGrid ; j++) {

val += partial_q [j];

}

for (i=w; i<= dim; i++){

q1[i+1] = q1[i+1] + val;

}

for (i=1; i<= dim; i++){

if (k[i -1]==0)

q2[i] = q2[i] + val;

}

if (w == 0)

w = 1;

}

else{

k[l -1] = 0;
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l++;

if (w<l)

w = l;

}

}

dd = ( double ) n;

for (i=0; i<= dim; i++){

pp = ( double ) m * pow (dd , ( double ) i);

q1[i+1] = q1[i+1]/ pp;

}

// Compute error estimate

E = 0.0;

pp = ( double ) m * pow (dd , ( double ) dim -1);

for (i=1; i<= dim; i++){

q2[i] = ( double ) q2[i] / pp;

E = E + (q1[dim +1] - q2[i]) * (q1[dim +1] - q2[i]);

}

E = sqrt(E/( double ) dim);

exact = 1; // exact value of the function ( example )

printf ( " threadsPerBlock = %d",threadsPerBlock );

printf ( " blocksPerGrid = %d\n",blocksPerGrid );

printf ( "For m = %d , n = %d\n", m,n );

for (i=1; i<= dim; i++){
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printf ( " Qcopy%d = %23.16 le Qsup%d = %23.16 le\n", i, q1[i+1],i

, q2[i] );

}

printf ( " Estimated Error = %23.16 le\n ", E );

printf ( "Error = %23.16 le Result = %23.16 le Exact = %23.16 le\n",

fabs(exact -q1[dim +1]) ,q1[dim +1], exact );

printf ( " Elapsed time par. : %le ms\n", 1000*e);

// free memory on GPU

HANDLE_ERROR ( cudaFree ( dev_partial_q ) );

// free memory on CPU

HANDLE_ERROR ( cudaFree ( dev_k) );

free( partial_q );

}
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