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DEVELOPMENT OF HEAT TRANSFER CORRELATIONS FOR LOW-REYNOLDS NUMBERS,
TRANSITIONAL FLOWS IN HORIZONTAL CIRCULAR PIPES
Latif Eyada Ibraheem, Ph.D.

Western Michigan University

Turbulent flows are intrinsic to most fluid-based engineering systems, including internal
combustion engines. In these devices, mixing, scalar transport and heat transfer are both critical
for proper operation and challenging to model. In previous work, Kreun et al. [1] modeled a pre-
heated intake manifold of a Diesel engine for cold-start simulations. Accurately predicting the
heat transfer at the intake port proved to be a challenging task. Existing heat transfer correlations
yielded predictions which were (at best) within 20% of the measured values. The discrepancy
was attributed to a mismatch between the range of applicability of existing heat transfer models
and cold-cranking conditions. This is because the intake runners are typically not long enough for
the flow to fully develop and cranking speeds are not high enough to induce a wholly turbulent
gas flow. Accurately predicting heat transfer in non-fully developed, transitional flows remains a
difficult task. While several empirical correlations have been developed for turbulent, fully-
developed flow at Re > 10%, many applications rely on flows in transition, spanning a range of
2300 < Re < 10%, as well as low Reynolds number turbulent flows. In this regime, most of the
correlations are based on interpolated values with very limited direct measurements. Hence,
there is a need for accurate heat transfer correlations based on direct velocity and temperature

measurements for transitional and low Reynolds numbers turbulent flows.



To address this need, simultaneous flow-field/heat transfer measurements were
conducted to develop correlations for calculating the Nusselt number (hence the convective heat
transfer coefficient) for low-Reynolds number flows, and under steady-state constant heat flux
conditions. Measurements of temperature and velocity were conducted for combined entry,
which refers to a simultaneously (thermally and hydrodynamically) developing flow. Three
experimental configurations were investigated: uniform, tripped flow, and ninety-degree
entrance. These conditions were explored both to test the range of applicability of the developed
correlations and to replicate conditions that might be found in reciprocating internal combustion
engine runners. Experimental results were correlated in terms of the governing dimensionless
numbers to develop an accurate model for heat transfer for the targeted regime and pipe

lengths.
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CHAPTER |

BACKGROUND

1.1 Introduction

Quantifying heat transfer phenomena near the entrance of horizontal circular pipes for air flows
at low-Reynolds numbers is a complex problem. In this regime, flows are highly sensitive to
secondary flows induced, for example, by separation and buoyancy effects [3] [4]. Generally, a
hydrodynamically fully-developed laminar flow is an ideal laboratory condition. Laminar flows
are disrupted once the Reynolds number exceeds approximately 2300 and start the transition to
turbulence. In practice, the presence of sharp edges, bends, fans, valves, and abrupt boundary
changes induce secondary flows at relatively low Reynolds numbers. In addition, surrounding
noise, and vibration can, in practice, shift the Reynolds number at which transition occurs,
triggering the onset of turbulence [3]. In this case, significantly higher heat transfer rates have
been observed and attributed to flow separation and vorticity effects [3] [4]. In addition, the
secondary flows generated by free convection enhance the heat transfer coefficients in
horizontal circular tubes and increase the critical Reynolds number for the laminar-to-turbulent
transition.

1.2 Fluid Flow and Heat Transfer Parameters

In order to characterize the air flow in horizontal circular pipes and study the associated heat

transfer phenomena, it is convenient to use specific parameters and dimensionless groups. All



the parameters needed are introduced in this section. Dimensionless groups are summarized in

table 1.1.

The dimensionless axial distance x* for the hydrodynamically developing flow is defined as

~ Re
Where,
x = axial distance
D = pipe diameter
And Re is Reynolds number, defined as
Re = Uy D (1.2)
Y

U, = Flow mean velocity defined in equation 1.3

v = The fluid kinematic viscosity.

2 (To 1.3
> j u(r, x)rdr (13)
o Jo

Uy =—
™oy

In the mean velocity equation 1.3, 7, is the pipe radius.

The fanning friction factor f is defined as the ratio of the wall shear stress t,, to the flow kinetic

2
energy per unit volume, pum/z ,

Tw (1.4)
puz
m/2

f=

Meanwhile, the apparent fanning friction factor is:

o= (222) 0

(1.5)




Where p, is the air static pressure at the entrance of the pipe (x = 0) and p in the air static

pressure at the point of interest.

The bulk mean temperature is defined as:

2 (Mo 1.6
T = Z_I- uTrdr (1.6)
UmTo Jo
The local axial heat transfer coefficient h, is defined as
q",'V (1.7)

h,=————
* (Tw_Tm)

T,, is the pipe wall temperature (circumferentially averaged) and g,, is the heat flux.

The integrated average heat transfer coefficient from the pipe entrance (x = 0) to any axial

distance x is given as

1. (" 1.8
h, = (—)f h, dx (18)
X Jo
The local Nusselt number is shown in equation 1.9, where k is the fluid’s thermal conductivity.

hxD (1.9)
k

Nu, =

The average Nusselt number is

1 (* 11
0

The dimensionless axial distance for a thermally developing flow is shown in equation 1.11,

where Pr is the Prandtl number equation 1.12.

X (1.11)




(1.12)

o

p

1l
RIl=<

a = thermal diffusivity
p = fluid density
T, = wall shear stress

Throughout this document, the acronyms UWT and UHF will be used to refer to the uniform wall
temperature and uniform heat flux boundary conditions, respectively. Table 1.1 lists the non-
dimensional parameters relevant to this work, along with their physical significance. Several

terms used throughout the document are defined as follows:

e Combined entry length: distance over which both the thermal and hydrodynamic
boundary layers develop simultaneously.

e Thermal entry length: length over which the flow is thermally developing in an already
hydrodynamically fully-developed flow.

e Transitional flows: those for which the Reynolds number approximately lies between

2300 and 10,000 (i.e., 2300 < Re < 10%).



Table 1.1: The non-dimensional groups relevant to heat transfer correlations

Dimensionless Definition Physical Description
Group
Reynolds number Re = ub Ratio of inertia to viscous effects
v
Local Nusselt h,D Ratio of convective conductance to pure
Nu, =
number k molecular thermal conductance
Prandtl number Pr = v Ratio of momentum diffusivity to thermal
a diffusivity of the fluid
Grashof number gBATD3 Ratio of buoyancy to viscous force acting
rETr on the fluid
Rayleigh number Ra = GrPr Ratio of natural convective to diffusive

heat transfer

Graetz Number

GZD = (D/x)ReD Pr

Ratio of thermal capacity to convective
heat transfer

u

Richardson Ri = Gr Ratio of buoyancy to inertial force

~ Re?
Turbulence 1oy o Ratio of the Root-Mean-Square (RMS), of
intensity N 2i= (W) the turbulent velocity to the mean

velocity, where u' = u —1u




CHAPTER 2

LITERATURE REVIEW: HEAT TRANSFER BY CONVECTION

2.1 Heat Transfer in Fully Developed Flow

2.1.1 Fully Developed Laminar Flow
Fully developed laminar flow in pipes occurs when the particles of the fluid move in uniform paths
parallel to the pipe axis. The velocity profile is parabolic, it reaches a maximum at the pipe
centerline and decreases in the radial direction, reaching zero at the walls [3]. Theoretical
solutions for fully-developed laminar flows inside circular pipes can be obtained assuming
incompressible flow, constant fluid properties and only axial advection of thermal energy. The
convection heat transfer for constant surface heat flux is determined from the temperature
distribution resulting from the solution of the governing differential equation 2.1 [5]. The

convection heat transfer for UHF is given by equation 2.2 and for UWT by equation 2.3.

oT a0 ( 6T> (2.1)
”ax r or rar

hD
Nu=—=4.36 (2.2)
k
hD (2.3)
Nu = T = 3.66

2.1.2 Fully Developed Turbulent Flow

Turbulent flow results from random fluid motion [3]. Unfortunately, there is no analytical

deterministic solution available for turbulence problems. Hence, empirical models, statistical



analysis, and direct numerical simulations are the available methods to predict turbulence
guantities and their evolution [6]. The Colburn equation 2.4 provides an estimate of the heat
transfer coefficients in fully hydrodynamically and thermally developed flows. This correlation is

applicable for small to moderate temperature differences (Ts — T;;,), Prandtl numbers in the
range of 0.6 < Pr < 160, % = 10 and Reynolds numbers ( Re) above 10,000. Within this range,

the heat transfer depends on Reynolds and Prandtl numbers [5].

4
Nup = 0.023Re,/5Pr /s (2.4)

Nup = average Nusselt number
Rep = Reynolds number

Pr = Prandtl number

T, = pipe surface temperature

T,, = mean fluid temperature

The Dittus and Boelter correlation, also applicable in this regime, is shown in equation 2.5 [7],
where n=0.4 for heating and 0.3 for cooling. Dittus’ and Boelter’ correlation was developed using

three oils with a wide viscosity range.

4
Nup = 0.023ReD/ Sprn (2.5)

When the fluid properties change significantly near the wall, the correlation developed by Sieder

and Tate, shown in equation 2.6, is recommended [8].

4 0.14
Nup = 0.023Re,/5Pr'/s (’;—m) (2.6)
S

In this equation,



Wm = viscosity of the fluid evaluated at T,

Us = viscosity of the fluid evaluated at T

Hence, the correlations for the fully-developed turbulent flow depend on Reynolds and Prandtl
numbers.

2.1.3 Fully Developed, Laminar-to-Turbulent Transition Flow

The Reynolds number is used as a metric to quantify the laminar to turbulent flow transition.
Typically, for internal (pipe) flow the upper and lower bounds for laminar and turbulent flows are
given as 2300, and 10%, respectively, such that when 2300 < Re < 10%, the flow might still be in
transition. It is significant to point out, however, that these bounds depend on the pipe entrance
geometry, wall roughness, flow type (e.g., pulsating as in an IC engine manifold) and surrounding
noise, vibrations, and buoyancy effects. However, the lower Reynolds number limit of 2300 is
widely accepted for the beginning of the transition and the highest limit is typically defined as
10% [3] [2]. Correlations for heat transfer coefficients in both fully developed laminar and
turbulent regimes are fully established in the literature. Meanwhile, the transition region is still

a field of ongoing development. A few examples follow.

Churchill [9] and Gnielinski [10], separately introduced general heat transfer correlations
equations 2.7 through 2.11, based on interpolation between the available theoretical
correlations for laminar flow and empirically-developed correlations for turbulent flow.

Churchill’s correlation is given in equation 2.7.

(2200—Re)/365 1

Nu? Tt 2 27)

(VW) = (Nuy)™® +




0.079(%)1/2R9Pr

Nu, = Nu, + (2.8)

4
(1 + Pr5)5/6

Nu, = 4.8 for UWT and 6.3 for UHF

Nu; = 3.657 for UWT and 4.364 for UHF

This general correlation covers the entire range of transition from laminar to turbulent flows in
smooth pipes for 10 < Re < 10° and Pr > 100. For Re < 2300, Churchill’s correlation gives
the laminar flow values of Nu. For 2100 < Re < 10* it gives Nu values for transitional flow. For
the range 10* < Re < 10° and 0.5 < Pr < 2000 Churchill correlation agrees with Gnielinski’s
(discussed next) within +17.1% and — 11.9% for the constant wall temperature boundary
condition and within +13.7% and -10.5% for the constant heat flux boundary condition [3].
Gnielinski’s correlations (2.9-2.11) which are applicable for 2300 < Re < 5x10°and 0.5 < Pr <
2000, are mostly accepted in practice for the transition regime. However, it has been suggested
[11] [3] that its use is restricted to Re > 4000, due to lack of the friction factors for Re < 4000
required for Gnielinski correlation.
(f/z) (Re — 1000)Pr

Nu = T (2.9)
\2 2
14127 (7) (Pr3 —1)

2300 < Re < 5x10°, 0.5 < Pr < 2000

Nu = 0.0214(Re®8 — 100)Pro4 (2.10)

10* < Re < 5x10%,0.5 < Pr<1.5



2.11
Nu = 0.012(Re®87 — 280)Pro4 2.11)

3x103 < Re < 10°, 1.5 < Pr <500

Ghajar and Tam [12] experimentally investigated the heat transfer in the entrance of a 1.48 cm-
diameter circular pipe using different mixtures of ethylene glycol and water. Three inlet
configurations were considered: reentrant, square-edged and bell-mouth. The heat transfer
correlations developed from their work, shown in equations 2.12-2.16, are valid for 280 <
Re < 49,000and 4 < Pr < 158. The temperature distribution inside the pipe in this study was
predicted using a finite difference computer program from a separate study relying on wall

temperature measurements [13].

RePr
Nu; =124 [——+ 0.024(GrPr)0'7sl (Z—m> (2.12)
w

X
/D
Equation 2.12 is applicable to combined entrance and fully developed laminar flow for forced

and mixed convection, with 280 < Re < 3800, 40 < Pr < 160, 1000 < Gr < 2.8x10% 3 <

x/D <192 and 1.2 < Em < 3.8. For the transition regime, Ghajar suggested the correlation

Hw

shown in equation 2.13,

b

e
Nuy = Nu; + [exp( ) + Nug 1€ (2.13)
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where Nu; and Nu, are obtained from equations 2.12 and 2.14 respectively. The parameters a, b
and c are constants dependent on the inlet configuration and given for reentrant (disturbed flow)

as

a=1766,b = 276, ¢ = —0.955
1,700 < Re < 9,100, 5< Pr <51, 4000 < Gr < 2.1x105,

12 < ‘;—m <22, 3<x/D<192
and for a square-edged inlet as
a=2617,b =207, ¢ = —0.950

1,600 < Re < 10,700, 5 < Pr <55, 4000 < Gr < 2.5x10°,

1.2sﬁ—’"s 2.6,3<x/D <192

For a bell-mouth inlet the constants are:

a =6628,b =237, ¢ = —0.980
3,300 < Re < 11,100, 13 < Pr <77, 6000 < Gr < 1.1x10°5,

1.23’;—’"3 3.1, 3<x/D <192

The turbulent correlation is

X\ —00054 /1y 014 (2.14)
N = 0.023R O.8P 0.385 (. ( m) .
u; = 0.023Re®8Pr (D) ™
7000 < Re < 49,000, 4 < Pr < 34,

1.zsﬁ—ms 3.1, 3<x/D <192

2.2 Convection Heat Transfer in Thermal Entry
The thermal entry problem refers to the condition of a thermally developing profile under a

hydrodynamically fully developed velocity profile. Practically, the thermal entry condition can be

11



established using a long calming section upstream of the heated area. In laminar flow, this is so
called the Graetz problem. Hausen [14] suggested the correlation given in equation 2.15 for the
mean Nusselt number, where x* is the dimensionless axial distance for a thermally developing
flow. The predicted values of Nu from equation 2.15 are 14% higher than the theoretically

calculated values for x* < 0.0001 and fit smoothly with theoretical values for x* — co [3]

0.0668 (2.15)
x*1/3(0.04 + x*2/3)

Nu,, = 3.66 +

For turbulent flows, heat transfer in the thermal entry region has been investigated quite
extensively. Al-Arabi [15] provided correlation to calculate the mean Nu for thermally developing

flows under UWT and UHF. Al-Arabi’s correlation is discussed in more detail in section (2.4).

2.3 Convection Heat Transfer in Combined Entry

2.3.1 Laminar Flow in Combined Entry
Both velocity and thermal profiles may develop simultaneously in the pipe entrance region if they
are uniform at the pipe inlet. This phenomenon is referred to as the combined entry length.
Higher heat transfer coefficients have been quantified for this condition relative to the fully
developed flow. The increase has been attributed to the high-velocity gradients near the walls,
which convect more heat in the axial direction. The thermal boundary layer grows faster for
higher Prandtl numbers in this regime [2]. The theoretical solution for simultaneously
hydrodynamically- and thermally- developing laminar flows is very complicated. The velocity and
temperature profiles depend on the radial and axial directions [5]. Equation 2.16 was suggested
for the condition of combined thermal and velocity entry lengths and constant wall temperature

[16]. Secondary flows in the entrance region, which may be induced by flow separation or

12



buoyancy are not considered in theoretical relations. Theoretically predicted Nusselt numbers,

in this case, are lower than the experimentally measured values [2].

3_'?/6 =7 + 0.0499 Gz, tanhGz;"
i tanh[2.264 Gz, '3 + 1.7 Gz, '] (2.16)
Up = —1
tanh(2.432 Pr'/s Gz, /6
Where,

Gzp = (D/x)ReD Pr (Graetz Number).

An experimental correlation that is applicable to combined entry laminar flow has been proposed
by Ghajar [12], as shown in section 2.1.3, equation 2.12. We note that, in the entrance region,

the Nusselt number depends on the Graetz number because of the axial distance parameter
(x/D).

2.3.2 Turbulent Flow in Combined Entry
The problem of thermally- and hydrodynamically-developing fully turbulent flow in smooth pipes
has been solved theoretically by Deissler [17] for Pr = 0.73 for both isothermal and uniform heat
flux boundary conditions. He used the integral heat transfer and momentum equations to
calculate the thickness of the thermal and hydrodynamic boundary layers. Deissler equations
cover Re > 10*and L/D < 8. Figure 2.1 shows local Nusselt numbers for various Reynolds

numbers and both isothermal and uniform heat flux boundary conditions.

An empirical correlation for the prediction of the average Nusselt number in turbulent flows was

experimentally developed by Molki and Sparrow [18]. This correlation, shown in equations 2.17

13



and (2.18), is applicable to circular tubes as short as two diameters with sharp entrance edges

and simultaneously developing (thermal and hydrodynamic) boundary layers at Re = 10,000.

Um

Nufd

=1+ a/(X/D)® (2.17)

a = 23.99Re™ %23, b = —2.08 x 10°Re + 0.815 (2.18)

Where, Nu,, is the average Nusselt number, over the length x of the pipe. Nuy, refers to fully-
developed Nusselt number and D is the pipe diameter. The constants a and b, which are
functions of the Reynolds number, were obtained by a least-square fit to the experimental data.

2.4 Inlet Geometry Effects

The shape and configuration of the pipe inlet have substantial effects on the simultaneously
developing flow. Heat transfer coefficients are significantly higher due to secondary flows
generated from boundary layer separation [3] [2]. Boelter [19] comprehensively investigated the
influence of the entrance geometry on heat transfer coefficients. Sixteen different configurations
were considered, with air entering circular smooth pipes for Re = 5 x 10*. Figure 2.2 shows

results from Boelter’s study.

14
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Figure 2.1 Local Nusselt numbers for simultaneously developing turbulent flow obtained by Deissler [17]
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Figure 2.2 Local Nusselt numbers for turbulent flow in the entrance of
smooth circular pipes with different entrance configurations for Rex~ 5 x 10*, Pr = 0.7 [19]

Mills [20] experimentally investigated turbulent air flow in the entrance region of a circular pipe
covering Reynold numbers from 10,000 to 110,000 and entrance lengths of 14 < % < 320. Local

heat transfer coefficients were obtained for uniform wall heat flux considering many entrance

configurations such as a long calming section, bell-mouth, orifice plate elbow, and T-piece. Al-

15



Arabi [15], suggested different correlations to calculate the shape factor S to correlate the
available experimental data using a Boelter’s equation 2.19. Various flow conditions and inlet
geometries (sharp edge, ninety-degree angle bend) and tube sheet thickness were considered in
that study. Al-Arabi’s correlation is valid for fully developed, uniform, thermal and combined

entry turbulent flows for circular pipes.

:_; 145 (%)" (2.19)

h; = local heat transfer coefficient.
h, = heat transfer coefficient for fully developed flow.

S = correlation factor

Al-Arabi found that the S factor varies with Re, x/D and Pr in the fully developed condition. The
suggested correlation in equation 2.20 is valid for fully developed flow in the entrance region for
air, water, and oil for 5,000 < Re < 110°, 0.7 < Pr <75, x/D > 3, with up to 30% error at

the lower Reynolds number end.

Spri/e 3000

———=0.68+ ——— (13.20)
(x/D)O-l Re0-81

In contrast, S will depend on x/D only for non fully-developed turbulent flows at the tube
entrance. For a sharp-edge entrance, the S factor and the local heat transfer correlations are

given in equations 2.21 and 2.22

0.423

S =1683 (%) (2.21)
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by _ ., 1683 (2.22)

hoo (x>0.577

D

These equations are valid for air and water with Re > 7,000 and % > 3; and for ninety- degree

entrance, with Re > 8,000 and % >5

This literature review revealed that the available heat transfer correlations for the combined
velocity and thermal entrance region in circular pipes in the transition and low Reynolds number
turbulent regimes are scarce and estimated mostly based on interpolation. There is lack of direct
experimental measurements of mean velocity, turbulence intensity, and temperature, from
which direct heat transfer correlations may be empirically derived. The various correlations
examined as part of this literature review and previously discussed are listed in table 2.1.
Applicability conditions and restrictions for these correlations are summarized in table 2.2. From
table 2.2, four correlations are applicable for transitional and low Reynolds number turbulent
flows: Churchill’s, Hausen’s, Gnielinski’s and Ghajar. However, only Gnielinski’s and Ghajar’s
correlations are applicable for combined entry. Gnielinski’s correlation spans Reynolds numbers
above 4,000 and, as previously mentioned, was developed by interpolating experimental data
for both transition and fully- developed flow. Ghajar’s correlation is only applicable only Pr > 5,
as shown in table 2.1.

2.5 Goal and Objectives

The goal of this research is to develop accurate heat transfer correlations based on direct velocity

and temperature measurements. Specifically, these correlations will yield heat transfer

17



coefficients that can be used in practice to quantify the heat transfer in the entrance region of
horizontal, short circular pipes (x/D ~ 6) under uniform heat flux, for air at Reynolds numbers

ranging from 2,900 to 50,000 for combined entry conditions.

Three inlet configurations have been investigated: uniform flow, tripped flow, and ninety-degree

elbow entry.

The main motivation is to fill a knowledge gap in this area, as identified through the literature
review. A secondary motivation is to target regimes of interest for internal combustion engine

(and other practical) applications.
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Table 2.1: The heat transfer correlations

Investigators Correlations Flow condition based on Applicability Type Proposed Applicability | Prrange
Range (column 3) and Condition for Best Range Re, Ra, x*, Gz or
Accuracy (if available) Rirange
Classic [5] hD Laminar, fully developed, uniform heat Theoretical | Re< 2300 Pr>0
Nu=—=4.36
k flux, L/D> 0.05RePr
Classic [5] Nu = h_D — 366 Laminar, fully developed, uniform wall Theoretical | Re< 2300 Pr>0
k ) temperature, L/D> 0.05Re
Baher [16] 3_-?/6 7+ 00499 Gz tanhGzy’ Laminar and turbulent, combined entry, Empirical 10*< Re<11x10*
Vi = tanh[2.264 Gz, * + 1.7 Gz, "] _ uniform surface temperature, 0.25< 0.7
tanh(2.432 Pr'/s Gz, ° L/D<320
Colburn [5] Nup = 0.023Re;/5Pr1/3 Turbulent, fully developed Empirical 10%<Re<10° 0.6-160
Dittus and Nu = 0.023Re8pr™ Transition, turbulent fully developed (= > | Empirical 2500<Re< 1.24x10° 0.7-120
Boelter [7] n= 0.4 for heating and 0.3 for cooling 10) b
Deissler [17] Nu = 0.0789 Re\/fPrl/“ Turbulent, developing velocity and Empirical 5x10%<Re <3x10° Pr>200
thermal profiles
Sieder and Nu = 0.027Re*/5pri/3 (H_m)o'“ Turbulent, fully developed Empirical 800<Re< 22,000 4-158
Tate [8] K,
Mills [20] Nu = 0.0397Re®73pr033 Turbulent flow, entry region, uniform heat | Empirical 10%<Re< 11x10* 0.7
flux, 0.25<L/D<320
Churchill [9] (2200—1?6)/365 1 Laminar fully developed, transition Empirical 10<Re<10°
10 _ 10
(Nu)*® = (Nup) " + (Nu)? + (N2
f 1/2
0.079 RePr
Nu, = Nu, + (2) 8 Turbulent, fully developed Pr>100
(1 4 Pr5)5/6
Nu, = 4.8 for UWT and 6.3 for UHF
Nu; = 3.657 UWT and 4.364 for UHF
Molki and Nu b Turbulent, combined entry, L/D> 2 Empirical 5000<Re<88,000
Sparrow [18] | Nu. — Lt a/(X/D)
fd 2.5
a = 23.99Re 023
b= —2.08 x 10°Re + 0.815
Al-Arabi [15] hy, x\" General form for combined entry Empirical
E =145 (5)
sprt/e 3000
0.68 + Re081 Fully developed flow in the entrance 5x10%<Re<1x10° 0.7-75

(x/D)O.l =

x/D >3

Sharp edge entrance with x/D > 3




0c¢

Table 2.1—Continued

S = 1683 (£)°'423 Ninety- degree entrance w x/D > 3 Re > 7,000
D
h; 1.683
PN
he x\%
&)
0.2 Re > 8,000
x4 0-
S=28 (E)
h, 14 2.8
hoo - (ﬁ)O.S
D
Gnielinski Cr 2 Transition, turbulent, combined entry Empirical 2,300<Re<5x10° 0.5-2,000
ZL)(Re — 1000)Pr 2
[10] Nu=— 2 +(2) (Hmyo.14 Most accurate at Re> 4000
Cf 0.5 2 X Uy
1+12.7 (7> (Pr§ - 1)
Nu = 0.0214(Re® — 100)Pro4 Transition, turbulent fully developed 10*<Re<5x10° 0.5-1.5
' Transition, turbulent fully developed
Nu = 0.021(R60'87 _ 280)PT0'4 3X103<Re<106 1.5-500
Hausen [14] | v _apc 0.0668 Thermal entry, fully developed laminar Empirical 0<x* <o
"o x*1/3(0.04 + x*2/3) flow, transitional flow
D\ 2/3 U\ 014 . 4 5
= 75 _ : - om ransition, thermal entry and fully .6-
Nu = 0.037(Re®7S — 180)Pr-042 [1 n ( ) ]( m) Transition, thermal entry and full 10°<Re<10 0.6-1000
x Hw developed turbulent flow
Ghajar and _ RePr 075 | (Hm Laminar flow, combined entry and fully Empirical 280 < Re < 3800 40-160
Tam [12] Nu, =124 I +0.024(GrPr) (E) developed, 3 < x/D < 192
a— Re Laminar fully developed, transition, 5-51
Nuy = Nu; + [exp( b ) + Nug |° combined entry, and fully developed 5-55
turbulent flow, forced and mixed 13-77
convection
4-34

a=1766,b =276, c = —0.955
a=2617,b = 207, ¢ = —0.950
a=6628,b =237, c = —0.980

—0.0054
Hm

(_) 0.14

X
Nu, = 0.023Re®®Pro3% () .
W

D

( Re-entrant enlet) , 3 <x/D < 192
( Square-edged enlet), 3 < x/D < 192
( Bell-mouth enlet), 3 < x/D < 192

Turbulent combined entry and fully
developed turbulent flow, forced
convection, 3 < x/D <192

1,700<Re<9,100
1,600<Re<10,700
3,300<Re<11,100

7,000<Re<49,000
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Table 2.2: Applicability conditions of the available correlations for heat transfer coefficients

Author Forced Laminar | Turbulent | Fully Thermal | Combined | Transition | Mixed Inlet
convection | flow flow developed | Entry Entry flow convection | geometry

effect

Deissler [10] v v v

Sieder and Tate [35] v v v v v

Churchill-1 [9] v v v v v

Churchill-2 [9] v v v

Hausen [20] v v v v v v

Gnielinski-1 [17] v v v v

Gnielinski-2 [17] 4 v v v

Gnielinski-3 [17] v v v v

Mills [29] v v v v v

Molki and Sparrow [30] v 4 v v

Al-Arabi [2] v v

Ghajar and Tam-1 [14] v v v v v v v

Ghajar and Tam-2 [14] v v v v v v v v

Ghajar and Tam-3 [14] v v v v v v v




CHAPTER 3

EXPERIMENTAL SETUP AND METHODOLOGY

3.1 Overview

As stated in section 2.7, the objective of this research is to develop correlations to calculate heat
transfer in pipes of sizes 0 < L/D < 6 and Reynolds numbers between 2,900 and 50,000. The
research is motivated by the need to accurately predict heat transfer in systems where the flow
is in the transitional and low Reynolds number turbulent flow regimes, and non-fully developed

due to relatively short pipe lengths. The objectives of this chapter are to:

1) Quantify the uncertainty in the experimental measurements,

2) Provide detailed descriptions of the setup and experimental methodology,

3) Demonstrate how the experimental conditions (e.g., target Reynolds numbers, non-fully
developed flow) were achieved, and

4) Describe the experimental matrix.

3.2 Experimental Error Analysis

Experimental errors may be introduced during calibration, data acquisition, and data reduction.
During measurements both precision and bias errors might be present. The bias error is defined
as the average error in a series of repeated calibration measurements. Hence, the bias error is
the difference between the average and true value of the measured variable. Instruments were

zeroed prior to each measurement to minimize the probability of introducing bias errors.
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Meanwhile, the precision error is the magnitude of the random variation of the repeated

measurement, as shown in Figure 3.1 [28]. Each measurement was repeated at least three times

to quantify the precision error.

Measured value, x

Rl

b e Measured data
True value

~ L W L ) ‘

error

Precision
. error in x;

Measurement number

Bias
&

Figure 3.1: Distribution of errors of repeated measurements [28]

These were propagated according to equation 3.1. Results are shown in table 3.1 for each test

parameter of interest.

R - fl{xl, xZ, e

,XL}

Up = uncertainty propagation

0; = sensitivity index

U,; = contribution to the uncertainty

X = experimental variable
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Table 3.1: Experimental uncertainty

Variable . .
measured Symbol Equipment Accuracy Total error Units
Voltage \Y, MPJA 9903 0.5 0.5 mV
DM-
M 65 0.8% * FR+.5mV
Current I Multimeter 0.6 mA
Isotek CS-10 0.60
A/D co.nve.rter 0.1526 y
guantization
Air Velocity u A/D converter 0.0195 0.03 m/s
quantization
TSI Alnor
RVA801 0.02 m/s
Temperature T NITB 9214 0.01 0.01 C
Length Vernier 0.01 0.01 Mm
Convection heat Qc i 0.01 W
transfer rate
Nusselt Nu - 1.83 -

3.3 Experimental Setup and Measurements

3.3.1 Experimental Setup
A schematic of the experimental setup is shown in Figure 3.2-a. From right-to-left, a wind tunnel,
specifically designed and built for this research and described in more detail in section 3.2.2,
generates the air flow. The air velocity can be varied by adjusting the input power to the blower.
The heat tape was powered with a variable-voltage source, with voltage and current input ranges
of 0-30 volts and 0-5 amperes, respectively and monitored to within 1 mV using digital multi-
meters. Since the goal is for the supplied energy to transfer radially through the pipe and be
carried out by convection, a five-millimeter layer of foam insulation was wrapped around the
outer pipe wall to reduce heat transfer to the surroundings, as shown in Figure 3.3. For reference,

the optimum insulation thickness was calculated from equation 3.2 [5] as 5.2 mm.
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Figure 3.2-a: Schematic of the experimental setup for heat transfer and velocity measurements
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Figure 3.2-b: Experimental setup for heat transfer and velocity measurements,
shown for the 90-degree entrance configuration
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Figure 3.3: 3” diameter, 18” length foam insulated (acrylic pipe) test section

The air velocity was measured with a hot-film probe (TSI model 1750) mounted on a three-axis,
motorized and computer-controlled translation stage. The computer program was developed in-

house, as part of this research project.

Anemometer signals were collected through a data acquisition system (NI USB 6212), whereas
thermocouple signals were gathered using an internally-compensated temperature module (NI
9214). A LabVIEW graphical user interface (GUI) was developed for system control and signal

visualization. The experimental system is shown in Figure 3.2-b for one of the test configurations.

3.3.2 Wind Tunnel Development and Validation

A low-velocity wind tunnel Figure 3.4 was designed and built to generate uniform flow for
Reynolds numbers between 2,900 and 50,000. Figures (3.4-a) and (3.4-b) show the wind-tunnel
design and final product, respectively. The wind tunnel consists of a DC-powered air blower
capable of generating a volume flow rate of up to 130 cubic feet per minute (221 m3/h), a diffuser,

a calming section incorporating a honeycomb structure, and a contraction.
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Figure 3.4-a: CAD wind tunnel design showing, from left Figure 3.4-b:Final wind tunnel product
to right: blower, diffuser, calming section and contraction

‘1 Air blower Diffuser Calming section Contraction

Figure 3.4-c: Wind tunnel components

After reviewing the design methods available in the literature ([43]-[46]), the two cubical method
was adopted based on the need to develop flow uniformity at the wind-tunnel exit and prevent
flow separation. Practical design considerations included the need to fit the wind tunnel and
adjacent test sections in the available laboratory space (approximately 60 square feet), as well as

material and machining costs.

Starting the design from the contraction component and using a three-inch intake diameter as a

design constraint, a 4:1 contraction ratio was selected. Referring to Figure 3.5-a, for this
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contraction ratio, the contraction length-to-inlet diameter ratio (L/D) was selected as one and
(xm/L) was set to 0.75 (see Figure 3.5-b for terminology). The wall pressure coefficient (Cpe) at the
contraction exit, defined in equation 3.3, was less than 0.4 to avoid boundary layer separation

[43].

)? (3.3)

Where:

U, = air velocity downstream the contraction exit.

V., = velocity at the contraction exit

Then, the contraction profile was calculated using the two cubical equations 3.4, 3.5 [46]. Results
were imported to SolidWorks to create the 3-D design.

3 2

=@ =R (7) /(F2) )+ Roy x < xm (3.4)
3.5
1-7? =
.= (R —R;) % + Ry, x>xpy
1-2my2

— i . . § ——

Figure 3.5-a: Contraction profile with two matched cubic arcs [43]
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Figure 3.5-b: Design chart for a 4:1 contraction ratio (CR=4) [43]

To reduce the turbulence generated by the blower, a calming section consisting of a honeycomb
structure in Figure 3.6 was implemented with two screens upstream the contraction. A bundle
of five-millimeter diameter straws was cut in to 85 mm length and fitted inside an eleven-inch
diameter acrylic cylinder between two 18x16 size screens. The diffuser was designed to smoothly
adapt the flow between the four-inch blower exit and the eleven-inch acrylic cylinder. Technical
drawings for all parts were generated using SolidWorks and exported for 3D printing at WMU'’s

Machine Shop.

Once the wind tunnel was assembled, the flow velocity was measured at the exit to validate the
flow uniformity and axisymmetry. The hot film anemometer probe was swept from left to right
and back along the exit plane centerline in increments of 3 mm. Measurements were then
repeated from top to bottom and back. At each location, 10,000 velocity measurements were

taken and averaged.
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Figure 3.6: Honeycomb structure

Results are shown in Figure 3.7-a for Re=50,000. The air exits at a uniform velocity of 9.00 m/s
with standard deviation of 0.03 m/s for the four tests mentioned above. The variation in velocity
was consistent with the probe error calculation (i.e., 0.03 m/s) discussed earlier in section 3.2
and presented in table 3.1. The overlap in the top-to-bottom and left-to-right profiles verify flow

axisymmetry.
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Figure 3.7-a: Velocity profiles at the wind tunnel exit, Reynolds 50,000. Left to right (L-R), right to left (R-L), top to
bottom (T-B), and bottom to top (B-T)
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Figure 3.7-b: Turbulent intensity at the exit of the wind tunnel for Re=50,000

The corresponding turbulence intensity was calculated via equation 3.6 from the instantaneous
velocity measurements at each location. As shown in Figure 3.7-b, turbulence intensities range

between 2% and 4%.

1 '
Jw i @)? (3.6)

u

Where:

u’ = instantaneous (turbulent) velocity

il = mean velocity

Next, velocity profiles were measured to verify the presence of non-fully developed flows.
Velocities were measured at locations (x/D) = 0, 6 and 48 at Re=50,000 without heating the pipe.
Results, presented in Figure 3.8, show that at the wind tunnel exit (X/D=0) the velocity profile is

uniform. Evidence of boundary layer development is seen farther downstream at X/D=6, which
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is the target location for many of the measurements. Since the velocity profile is still changing

between X/D=6 and X/D=48, it can be inferred that the flow is not fully developed at X/D=6.

12
11
— 10
<
£ /e
- 9 Uav: X/D=0
>
©
S 3 Uav: X/D=6
Uav: X/D=48

r/R

Figure 3.8: Velocity profile at x/D= 0,6 and 48

For reference, a wholly turbulent flow would be expected to achieve full development at
10<X/D<60 (i.e., between 2.5 ft and 15 ft for the current pipe diameter), whereas a laminar

flow at Re~2000 and Pr = 0.7 would require approximately 18 ft to become fully developed.

3.4 Heat Transfer Measurements

The energy balance equation 3.7, schematically shown in Figure 3.9-a was used to quantify the
convection heat transfer inside a circular tube. This method was replicated experimentally, as
shown in Figure 3.9-b. The input electrical power to the heating tape (IV) is converted to a
uniform radial heat flux that dissipates in three directions: convection heat transfer carried out
by the air flow inside the tube, conduction through the insulation to the surrounding air, and

radiation from external surfaces to the room walls. The thermocouple layout is shown in Figure
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3.10. Equation 3.8 [5] was used to calculate heat losses from the ends of the pipe through the

insulation by conduction in the axial direction.

Qrad.

/' Flow Direction

Figure 3.9-a: Energy balance method Figure 3.9-b: Actual test section
Qconv. = IV — (Qcona + Uraa.) (3.7)

I= electric heating current, V= voltage across the heat pipe.

I
A LT, Lx=10mm l— Re1
Heat tape ! T
} 2 Ty
\ I \ /
| ./ i R
r 7 P2

Acrylic

Pipe

Cross section A-A

Insulation foam layer

Figure 3.10: Thermocouple layout
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_ kinsA(Txl - sz)

x L (3.8)

Where,
k = thermal conductivity of the insulation
A = insulation cross sectional area normal to the axial direction
T¢1, T, = inner and outer surface temperatures of the insulation, respectively

L = insulation length in the axial direction

The radial heat loss by conduction through the insulation was quantified using equation 3.9 [21]

using the values shown in table 3.2,

2mLk,(Tsy — Ts3)
Qr = 1
h:2nryL

Tt (3.9)
+ In(=—
(Tp2
Tp1 = inner pipe diameter
Tp2 = outer pipe diameter
Although radiation heat transfer was expected to be negligible, it was calculated from equation
3.10 [5].
o(Tf —T3)

1—g 1
+
&4, A1Fi;

Qradi-2. = 1—¢, (3.10)

&4,

+
Where,

Qrqa1—2 = net radiation exchange between the test section outer surface (the insulation)
and the room walls

A, = surface area of the outer surface of the test section (the insulation)
A, = internal surrounding surface area (room walls surface area)

o = Stefan-Boltzmann constant: 5.6 X 1078 W/m?2. K*

&, = emissivity of the outer surface of the test section

&, = emissivity of the surrounding surface area (room walls surface area)
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F;, = view factor: fraction of the radiation leaving surface 1 intercepted by surface 2.

The average convection heat transfer coefficient h, was calculated from equation 3.9 and the

average Nusselt number was calculated from equation 3.11

thin (3-11)

Nu = T

Where:

D;, = the inner pipe diameter

k = thermal conductivity of air

Constants and parameters used in the heat transfer calculations are listed in table 3.2. These,
and the equations previously described, were incorporated into a MATLAB routine to automate
the calculations.

Table 3.2: Experimental parameters and constants

Constant Unit Value Description

r mm 45.00 | insulation outer diameter

r mm 50.00 | insulation inner diameter

rp1 mm 38.00 | pipeinlet diameter

rp2 mm 44.00 | pipe outlet diameter

L mm 450.00 | length of the test section 18"

Lx mm 10.00 | distance between Tx1and Ty, (figure 3.10)
K W/m.K | 0.030 | air thermal conductivity

Kins. W/m.K | 0.026 | thermal conductivity of insulation

ko W/m.K |0.2 thermal conductivity of the acrylic pipe
£ - 0.9 test section surface emissivity

o W/m?. K* | 5.6 e-8 | Stefan-Boltzmann constant

F12 - 1 radiation shape factor
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3.4.1 Temperature Measurement

The temperature gradient through the insulation, as well as the inlet and outlet flow
temperatures are necessary to estimate the heat dissipated by conduction, convection and
radiation, as illustrated in Figure 3.9-a. To measure temperatures, the test section was
instrumented with 16 K-type thermocouples, purchased with standard calibration, which were
positioned around the length and circumference of the pipe. The thermocouples were attached
to the inner and outer surface of the insulation along the pipe in the radial direction, and at the
ends of the pipe in the axial direction (see Figure 3.10). The air temperature at the inlet and outlet
of the test section were also measured. The maximum power input was determined by
equipment limitations. Due to the relative low input power, significant axial gradients in the
mean-flow temperature were not measured. A direct consequence of this (and perhaps a
significant limitation of this work) is the absence of Prandtl number dependence in the Nusselt
number correlations. Figure 3.11 shows the variation of Prandtl number with temperature for air
[5].

0.75
0.74

0.73

Pr

0.72
0.71
0.7

-20 -15 -10 -5 0 5 10 15 20 25
Temperature (°C)

Figure 3.11: Variation of Pr for air with temperature
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Between -20 °C and 25 °C, the Prandtl number changes within 1.4 percent. Since the axial
temperature variation was less than 5°C, Prandtl number effects could not be taken into account
in the development of the Nusselt number correlations. Heat transfer rates were calculated from

the measured temperatures using the energy balance.

3.4.2 Velocity Measurement

Precise and accurate velocity and temperature measurements are required to develop heat
transfer correlations. Since this investigation focuses on low Reynolds-number flows, traditional
pitot tubes and pressure transducers are not accurate enough for velocity measurements.
Instead, hot-wire (or film) anemometry was selected. This technique is well-suited for the present
experiments because there are small concentrations of impurities in the flow, moderate
turbulence intensities are expected, and the fluid and room temperatures are comparable,

precluding the need for thermal compensation of the hot-film probe [25].

The constant temperature hot-film probe is an electric resistance connected to a Wheatstone
bridge. When the probe is inserted into the flowing fluid, it cools down (mostly by convection),
decreasing its resistance. The feedback circuit increases the heating current to maintain a
constant probe temperature and rebalance the bridge. The voltage difference across the bridge

is proportional to the flow velocity [25].

A hot-film anemometer mounted on computer- controlled, linear translation and rotary stages
was used for experiments. Computer control was implemented to enable accurate angular
adjustment and probe positioning in three-directions. The probe support width limited spatial

resolution to one millimeter. The instantaneous velocity was recorded at 1 kHz over 10 seconds,
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10 mm upstream the test section exit. These 10,000 samples were averaged to obtain a point-

by-point average velocity and turbulence intensity.

3.4.3 Hot Wire Anemometer Setup

The following steps were followed to prepare the anemometer for first use once the physical

connections were established:

1) The operating resistance was calculated using equation 3.12, based on the probe
recommended operating temperature provided by the manufacturer, to maintain the
desired temperature difference between the probe and the fluid around 250°C. Based on

these calculations, a 47-ohm, 3-Watt operating resistance was integrated into the system.

Ry = R,[1+ a(ty — t,)] (3.12)

Where
Ry = resistance at operating temperature
R, = resistance at ice point temperature
a = temperature coefficient of resistance
2) The system response was optimized using the square-wave test. A LabVIEW function was
developed to generate a 1 kHz input square-wave signal to the anemometer circuit. The

output signal wave amplitude and time period were compared to the reference wave
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3)

Figure 3.12-a: Standard output signal for Figure 3.12-b: Experimental output signal captures
TSI-10 hot film [25] with oscilloscope

provided with the anemometer for the hot film probe. Figure 3.12-a shows the standard
output wave from the probe manufacturer [25], whereas Figure 3.12-b shows the output
signal experimentally obtained. The captured wave shape in Figure 3.12-b was consistent
with the reference signal.

Next, probe calibration methods were considered. Based on the target Reynolds numbers
(2,900-50,000) and pipe geometry, velocities were anticipated between 0.25 m/s and 10
m/s. Since probe calibration at low velocities is challenging, various methods were
explored, and multiple calibration experiments were conducted to obtain a reliable
calibration curve:

a) Pressure transducers. A Kiel probe was located at the exit of the wind tunnel to

measure the difference between the dynamic and static pressure generated by the
flow. The pressure difference was converted to velocity using Bernoulli’s Equation
3.13. These velocity values were correlated voltage signal from the hot film probe.
The Kiel probe’s accuracy decreased below 10 m/s. This can be seen in Figure 3.13,

which shows calibration curves obtained with the Kiel probe and the tank discharge

39



method (discussed next). Due to the need to measure velocities below 10 m/s to

target the required Reynolds numbers, the Kiel probe was not further considered.

S
I
S

(3.13)

= |5

3.5
3.0
2.5
2.0

1.5

1.0 ..
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0.0
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Anemometer Voltage (V)

Kiel probe discharge method

Figure 3.13: Calibration curve obtained with Kiel probe and tank discharged method

b) Tank discharge method. This method is schematically illustrated in Figure 3.14. When

water drains from large tank, air flows at the same volume flowrate to occupy the
tank vacancy. Since the water volume flowrate is directly proportional to the rate of
change of the water level (dh/dt), the method can be used to estimate the intake air
velocity [32]. That is, the water volume flowrate is calculated from dh/dt and the inlet

velocity at D1 is calculated using equation 3.14, assuming incompressible flow.

40



D:
Hot-film probe )

I <«—— Air flow

==\

e o,

Water flow l

Figure 3.14: Tank discharged method for low velocity calibration

dh
U,D} = D % (3.14)

c) Rotating vane anemometer. A rotating vane anemometer (TSI Alnor RVA801), shown

in Figure 3.15, was used to measure the air velocity directly for hot film probe
calibration. The vane anemometer specifications are provided in Appendix (B-5). The
most desirable features were its improved detectability: 0.2 m/s, which was favorable
at low Reynolds numbers, and accuracy: 0.02 m/s. Velocity values obtained with the
vane anemometer between 0.2 m/s and 10 m/s were correlated to hot film probe

voltages captured at the same location.

Calibration data are shown in Figure 3.16-a for the vane-meter method. Both the
discharge and vane meter methods proved to be repeatable for required velocity range
(0.2 m/s -10 m/s). However, the vane-meter method was selected because it was more

convenient, and easier to use. Figure 3.16-b shows the vane-meter calibration, the x-axis
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represents the wind tunnel voltage (used to regulate the velocity) and the y-axis shows
the vane-meter velocity measurements. The velocity data from the vane-meter was

correlated with hot-film probe voltage at the same location and same wind tunnel voltage

increments.

Figure 3.15: Vane meter used for hot film probe calibration
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Figure 3.16-a: TSI vane meter calibration curve
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Figure 3.16-b: TSI vane meter calibration versus wind tunnel voltage

3.5 Experimental Matrix and Non-Dimensional Groups

As shown in Figure 3.17, the experimental work was divided in three phases based on the
entrance geometric configuration: uniform, tripped flow and 90-degree. For all, combined entry
conditions (i.e., where both hydrodynamic and thermal boundary layers are developing
simultaneously) with uniform heat flux were imposed.

e Phase |: Uniform Flow. For this phase, the test section was connected horizontally and

directly to the exit of the wind tunnel. Flow uniformity was discussed in section 3.2.2, Figure
3.7. The heat transfer was quantified for four Reynolds numbers: 2,900, 10,000, 30,000, and
50,000, as shown in table 3.3. During each test, the surface temperatures were monitored
until no change with time was detected. At this point the system was considered at steady
state. Then, ten temperature readings were recorded for each thermocouple. The
temperature data were then averaged, and the heat transfer was calculated using the

MATLAB routine developed for this project.
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Figure 3.18: Turbulence generator plate

Phase lll: Ninety-Degree Entrance. A three-inch diameter, PVC, 90° elbow Figure 3.19 was

attached to two designed and 3D-printed flanges and connected between the exit of the
wind tunnel and the test section to divert the flow perpendicular to the wind tunnel exit.
Experiments were conducted as described in Phases 1 and 2. Table 3.3 summarizes

measured variables, targeted outputs and dimensionless parameters.

Figure 3.19: Three-inch diameter, PVC, 90° elbow
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Table 3.3: Experimental matrix

Experiment Type | Exp Re X/D | U mean Probe Mean flow Voltage I (A) Objective
M (m/s) direction Temp. (°C) (\) +0.5mA
+0.03 +0.01 +0.5mV
Wind tunnel 1 | 50000 | 0 | 9.60 Left-right 24.00 0.0000 | 0.0000
validation and 2 | 50000 | 0 | 9.60 Right-left 24.00 0.0000 0.0000 Flow
flow 3 | 50,000 | 0 | 9.60 | Top-bottom 24.00 0.0000 | 0.0000 aiz;:mz,ry
characterization | 4 | 50000 | 0 | 9.60 | Bottom-top 24.00 0.0000 0.0000
1 | 2800 | 6 | 027 Left-right 24.84 16.6500 | 0.4000
Phase | uniform 2 | 10,000 | 6 | 2.50 Left-right 24.16 16.6500 | 0.4000
flow entry 3 30,000 6 | 7.60 | Leftright 24.72 16.6500 | 0.4000 r':'u“:f;;tr
4 |[50000| 6 | 9.70 Left-right 25.09 16.6500 | 0.4000
1 | 2800 | 6 | 0.27 Left-right 26.45 16.6500 | 0.4000
Phase Il tripped 2 | 10,000 | 6 | 2.50 Left-right 25.71 16.6500 | 0.4000 Nusselt
flow entry 3 [ 30000 6 | 7.60 Left-right 26.29 16.6500 | 0.4000 i
4 50000 | 6 | 9.70 Left-right 26.85 16.6500 | 0.4000
1 | 2,800 | 6 | 0.27 Left-right 27.64 16.6500 | 0.4000
Phase 11 90- 2 | 10,000 | 6 | 2.50 Left-right 25.73 16.6500 | 0.4000
degree entry 3 30,000 6 | 7.60 | Leftright 25.39 16.6500 | 0.4000 r']\'u“;s;:r
4 |[50000| 6 | 9.70 Left-right 26.40 16.6500 | 0.4000
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

In this chapter, non-dimensional heat transfer results are presented and discussed for the three
experimental configurations: uniform, tripped, and 90-degree entrance. All results correspond
to combined entry and uniform heat flux conditions for Reynolds numbers between 2,900 and

50,000. Current results are also compared to available data in the technical literature.

4.2 Velocity Profile and Turbulence Intensity

Figures 4.1, 4.3, and 4.5 shows mean velocity profiles for uniform, tripped, and 90-degree entry
conditions at four Reynolds numbers: 2,800, 10,000, 30,000, and 50,000, ten millimeters
upstream the heated test section exit at X/D=6. As expected, Reynolds numbers increase with
increasing velocities. The decrease in the velocity values near the walls is also expected due to
viscosity effects. Mean velocity profiles for the uniform entry condition remain fairly consistent
at all Reynolds numbers, while clearly the tripping orifice and 90-degree elbow introduce
disturbances into the mean flow that carry over to X/D=6. Figure 4.2 shows the turbulence
intensity for the same Reynolds number range normalized by the mean centerline velocity.
Results reveal higher normalized turbulence intensity at the Reynolds numbers. Figure 4.3 shows
the mean velocity profile for the tripped-flow entry. Since the flow was tripped and the boundary

layer was regenerated, the velocity profile is no longer uniform. The turbulence intensity for the
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tripped-flow, shown in Figure 4.4, is consistently higher and less spatially uniform than for the

uniform entry condition (shown in Figure 4.2).

The mean velocity profile for the 90-degree entry condition, shown in Figure 4.5, is higher in
magnitude and no longer axisymmetric, as the flow accelerates on the left side of the bend (see
Figure 4.5). The corresponding turbulence intensity is shown in Figure 4.6. It can be noticed that
the turbulence intensity is affected by the velocity change around the bend, resulting in a

normalized lower value at the higher mean-velocity side.

12 _ 06
10 305
= g 0.4 o ®
Z 8 [9000000000000000000000, £o. (R
E 6 ° 0.3 { ] ®
= ° (]
> 4 202 |gge ®0 © 00e° 0e” oo,
) | 0000000000000000000000, 01 (e ___
0 L0000000000000000000000¢ 5 o &=
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
r/R r/R
®Re=2872 ®Re=10000 ®Re=30000 ® Re=48468 ®Re=2872 ®Re=10000 ®Re=30000 ® Re=48463

Figure 4.2: Velocity profile for uniform flow entry (x/D=6) Figure 4.3: Turbulence intensity, uniform flow entry(x/D=6)
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Figure 4.3: Velocity profile for tripped flow entry (x/D=6) Figure 4.4: Turbulent intensity, tripped flow entry(x/D=6)

48



12 0.6

10 £ 05
c
z 8 £ 04
£ <03
S 4 ge0ee S0, °
> .
2 ) 000000.00000000.. <01 Aog og.a.“:‘“.’ag":'mﬁ.
1 0 . $e000000000000e00000000 2 o T gos
P -0.5 0 05 1 1 s . o )
r/R R

¢ Re=2872  ©Re=10000 @ Re=30000  © Re=48468 ®Re=2872 ®Re=10000 ®Re=30000 ® Re=48468

Figure 4.5: Velocity profile for 90-degree entry (x/D=6) Figure 4.6: Turbulence intensity, 90-degree entry (x/D=6)
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Figure 4.7 shows mean velocity profiles for the three different entry conditions at Re=50,000.
The turbulence intensity is compared in Figure 4.8 for the same Reynolds number. The tripped
flow exhibits higher turbulence intensity, which is expected due to secondary flows created by
the tripping orifice.

4.3 Heat Transfer Results

Equations 3.7 through 3.9, presented in section 3.4, were used to quantify heat transfer rates
from conduction (axial and radial), radiation, and convection for input power values of 6.7 W,
10.4 W, and 15 W.

A schematic of the test section is reproduced in Figure 4.9 for convenience. Notice that four

thermocouples were located around the pipe circumference with 90 degree spacing. As shown
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in Figure 4.10, at steady state, all values were within 1° C of each other; therefore location 1 was
used to calculate the heat transfer rate.

Heat transfer rate results are shown in table 4.1. Values in parentheses represented percentages
of the input power. It is apparent that heat transfer by axial conduction and radiation are
negligible, whereas convection is the dominant heat transfer mechanism and is also relatively

insensitive to the input power over the range considered.
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Figure 4.9: Thermocouple layout
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Figure 4.10: Circumferential temperature distribution
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Table 4.1: Heat losses by convection, conduction and radiation. Values in parenthesis represent
the percentage of power input

Power Convection heat Radial Conduction Axial conduction Radiation heat
(W) loss (W) heat loss (W) heat loss (W) loss (W)
6.71 5.26 (78%) 1.45 (22%) 4.22x10°® 0.0018
10.41 8.41 (81%) 1.99 (19%) 3.52x10° 0.0017
15.38 12.57 (82%) 2.81 (18%) 3.80 X10® 0.0024

Best-fit curves were applied to the experimental data for the uniform, tripped, and 90-degree
entry conditions. Results are given by equations 4.4 through 4.6. These correlations are

presented in Figures 4.11 through 4.14. Best-fit curves are also shown on the graphs.

Nu = 0.099Re?-582 (4.4)
Nu = 0.174Re%576 (4.5)
Nu = 0.0617Re?-652 (4.6)

While the overall trend of increasing Nusselt numbers as the Reynolds number increases is
consistent for all entrance configurations, Nusselt number (and hence convection heat transfer
magnitudes) differ for each case. This is more clearly displayed in Figure 4.14, where all entrance
conditions are simultaneously shown. Clearly, Nusselt numbers are highest for tripped flow entry
and lowest for uniform flow entry. This follows from turbulence effects: the honeycomb screens
within the wind tunnel reduce the turbulence by damping large eddies, forcing the flow to
become uniform prior to the wind tunnel exit. However, adding the tripping orifice regenerates
the turbulence by creating secondary flows, which increase the Nusselt number. To further

illustrate this point, Figure 4.15 shows the Nusselt number dependence on turbulence intensity
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for uniform, tripped and 90-degree entry conditions at 10,000, 30,000, and 50,000 Reynolds
numbers. As the turbulence intensity increases from uniform to tripped flow, the Nusselt number
increases significantly. It is consistently shown in the technical literature that modifying the
uniformity of the velocity profile using orifices, sharp edges, etc. increases the Nusselt number
[19],[20],[15]. While the increase has been attributed to a turbulence enhancement, this work
presents (to the author’s knowledge) first evidence correlating the turbulence intensity to the
Nusselt numbers for low-Reynolds number flows. The present trends were verified to apply
under uniform heat flux and combined-entry conditions, noting that Prandtl number effects

could not be quantified with the current experimental setup.

100 100
Nu = 0.099Re?->8 Nu = 0.174Re0576 »
80 80 Bt et R e .
R? = 0.9995 R?=0.9962
5 60 T 60 | e *
= PRI z e
40 e 40 ,.,..-‘"
o
20 | 2 |y
° 0
0 1 2 3 4 5
0 1 2 3 4 5
Re x 10,000 Re x 10,000

Figure 4.11: Heat transfer coefficient for uniform flow entry, Figure 4.12: Heat transfer coefficient for tripped flow entry,
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Figure 4.15: Heat transfer coefficient dependence on turbulence intensity for uniform, tripped and 90-degree
entry, Re=50,000, Q=6.5 W
Next, Nusselt number data are compared to previous work of Colburn [5], Gnielinski [17], and
Mills [49]. Table 4.2 lists the restrictions and range of applicability of the correlations used for
comparison. Although Colburn’s correlation applies to fully developed, turbulent flows, which
clearly differs from the non-fully developed flow condition investigated in this work, it was
selected as a reference correlation because it is widely known and often a default heat transfer
correlation in simulation software. Based on the range of applicability shown in table 4.2, the
present empirical correlation is expected to come closest to Gnielinski’s, as both target low
Reynolds number flows in combined entry. Notice however, that Gnielinski’s correlation covers
a broader Reynolds number range, reaching the wholly turbulent flow regime. Also, as previously
discussed, Gnielinski’s correlation was developed based on interpolation between available
laminar and turbulent flow experimental data. The present correlation covers transitional flows
between 2,900 < Re < 50,000 and was developed via direct measurements. Mills’ and Colburn’s

correlation apply to fully-developed flows.
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Table 4.2: Turbulent and transitional flow correlations

heat flux

Author Correlation Conditions Re Pr
Turbulent fully
Colburn [5] Nup = 0.023Reg/5Pr1/3 (4.1) developed 10%<Re<10° 0.6-160
Gnielinski [17] | Nu = 0.0214(Re®8 — 100)Pr04 (4.2) | ransition, turbulent 10°Re<sx108 | 0>
combined entry
Turbulent flow, fully
. B 4 5
Mills [29] Nu = 0.0397Re073 033 (4.3) developed, uniform 10°<Re< 10 0.7

Results are shown in Figures 4.16 through 4.18. From Figure 4.16, the present correlation

consistently predicts lower Nusselt numbers, although the discrepancy with the reference

correlations decreases as the Reynolds number decreases.

As shown in Figure 4.17, the tripped flow, which exhibits the highest turbulence intensity of all

entry conditions investigated, shows closer agreement with the reference correlations (e.g.,

Colburn’s, Mills’, and Gnielinski’s). However, as discussed earlier, turbulence intensity variations

between entry conditions have not been directly quantified and correlated to Nusselt numbers

in the reference studies used here for comparison. It is possible that, if plotted as a function of

turbulence intensity, the Nusselt numbers from previous studies would be in closer agreement

to the current values.

54




140

120 . ® Current Work Ny = 0.099Re0-5824
100
e ® Mills Nu = 0.0355Re®73
80 e
> "'. ..... :
= RERS
60 Lo
e et ® ©Colburn Nu = 0.0205Re08
a0 L e L et
20 Gnielinski Nu = 0.0098Re0-85%
0
0 1 2 3 4 5

Re x10,000

Figure 4.16: Heat transfer coefficient for current work (uniform flow entry) compared to reference correlations

140
120 @ Current work
.9
100
® Mills
80
=}
2
60
® Colburn
40
20 Gnielinski
0
0 1 2 3 4 5

Re x 10,000

Nu = 0.174Re%5764

Nu = 0.0355Re%”3

Nu = 0.0205Re®®

Nu = 0.0098Re?-85%

Figure 4.17: Heat transfer coefficient for current work (tripped flow entry) compared to reference correlations
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Figure 4.18: Heat transfer coefficient for current work 90-degree entry) compared to previous correlations
4.4 Practical Considerations
As described in Chapter 2, the main motivation for this research project was to develop
correlations to quantify the heat transfer in the entrance region of horizontal, short circular pipes
(x/D ~ 6) under uniform heat flux, for air, at Reynolds numbers ranging from 2,900 to 50,000 for
combined entry. These conditions are found, for example in internal combustion engine intake

runners.

Previous research in this area demonstrated that existing correlations consistently under-predict
the temperatures at the intake ports. This is shown in Figure 4.19, where intake port temperature
predictions from three heat transfer correlations are compared to experimental temperature
data for a Diesel engine [1]. Referring to Figure 4.19, the “default” heat transfer model is
Colburn’s correlation, whereas the “improved” heat transfer model is Al-Arabi’s correlation (both

presented in Chapter 2 as part of the literature review). That the measured temperatures are
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higher than the predicted values suggest that the heat transfer from the gas in the intake runners

to the cold surroundings is being over-predicted by Colburn’s and Al-Arabi’s correlations.
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Figure 4.19: Comparison between experimentally measured and model-predicted air
temperatures at the intake runners [1].

Depending on the runner, up to 25% percent discrepancy between model predictions and
experimental measurements was found. The newly developed correlations, which specifically
target a regime relevant to internal combustion engine intake systems, predict lower Nusselt
numbers (refer to Figure 4.16) and therefore lower heat transfer coefficients. This suggests that
the newly developed correlations may yield higher temperature predictions at the intake port,

which is in closer alignment with the experimental results. This is yet to be validated.

4.5 Conclusions and Recommendations for Future Work

In this research, heat transfer correlations were experimentally developed for low Reynolds
number lows (2,900 < Re < 50,000) in short, circular pipes (0 < x/D < 6) for air, combined entry
and uniform heat flux conditions. Three entrance geometries were considered: uniform, tripped,
and 90-degree entries. An energy balance was applied to quantify the average convective heat

transfer, from which Nusselt numbers were calculated and correlated both with Reynolds
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numbers and turbulence intensity. Axial temperature gradients were not significant due to the

relatively low heat input values (see table 3.3). Prandtl number effects were, therefore, not

qguantified. The correlations for uniform, tripped, and 90-degree entrance, respectively, are as

follows:

Nu= 0.099Re%>82

Nu = 0.174Re0%576

Nu = 0.0617Re%652

Overall, these correlations reveal a power-dependence of the Nusselt number on the
Reynolds number, although coefficients and exponents are specific to the entrance
condition.

At a given Reynolds number, Nusselt numbers (and hence average heat transfer
coefficients) is approximately 40% higher for tripped flow entry relative to uniform
flow). These results may be explained by the 20% increase in turbulence intensity which,
to the author's knowledge, has been directly measured and correlated to the Nusselt
number for the first time.

The empirically developed correlations were compared to existing correlations under
similar conditions. For uniform flow entry, the developed correlations are within 27%-
47% from Gnielinski’s [31] and Mills’ [20] over the range of Reynolds numbers investigated

(i.e., 10,000<Re<50,000). Entrance conditions promoting higher turbulence (tripped flow
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and 90-degree) predict Nusselt numbers in closer agreement to the aforementioned

reference correlations.

Next steps will include (1) experimentally considering higher heat input values and axial
temperature gradients to extend the applicability of the correlations by including Prandtl number
effects, (2) conducting additional experiments focused on 2,300 < Re < 10,000 and (3)
incorporating the heat transfer correlations developed into an engine intake system model and

verifying their performance in terms of temperature prediction capability.
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Appendix A: MATLAB Codes

A-1: Turbulent Intensity and Velocity Profile Calculations

clear all
clc
close all
Setting the test section dimensions and probe motion step
pipediameter=76.2; % mm
probestep=3; % mm
Data Import Settings
%set first test number and number of tests
numTest=24;
firstTest=1;
Measurmentdirection= -1; % 1 if L-R or B-T, -1 if R-L or T-B
%Readingzero voltage
% kk=dir('C:\Users\User\OneDrive\LAB DESKTOP2\012219"')
% k=0;
% sl1="'C:\Users\User\OneDrive\LAB DESKTOP2\020819\E"';
% s2=num2str (k)
% s3=".csv';
% DataPath=strcat(sl,s2,s3)
% E@ = importdata(DataPath);
€0=0;
Folder root path (Ending with \)

filePathBase="C:\Users\User\Desktop\TestError\';
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File name (convention: point number after name, no space)

(Oh)
fileName="RUN';
fileType="'.csv';

Import function (for Excel sets (.xls, .csv, uses xlsread)
ii=ones(6,1);
for n=firstTest:1l:numTest
[test(n).meanVoltage,test(n).velocity,test(n).meanvelocity,test(n).std]=Probel(filePath
Base,fileName,n,fileType,e0);

test(n).RadiallLocation=((-
Measurmentdirection*(pipediameter/2))+(Measurmentdirection*n*(probestep)))/pipediameter

;% Assumes initial position is equal to step size
end
Calculating the turbulence intensity
for n=1:1:numTest
stdev(n)=test(n).std;
meanvelocity(n)=test(n).meanvelocity;
TurbIntensity(n)=stdev(n);
end
int=[TurbIntensity]’;
mv=[meanvelocity]';
Ploting the turbulent intensity and velocity profile
Importing the probe increament
r = importdata('C:\Users\User\OneDrive\LAB DESKTOP2\r.xlsx');
rd=r/38.1;
figure

subplot(2,1,1) % add first plot in 2 x 1 grid
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plot(rd,TurbIntensity, 'o")
grid on

x1lim([-0.5 ©.5])

ylim([@ 20])

title('Turbulent Intensity 15mm Upstream The Wind Tunnel Exit')
xlabel('r/R")

ylabel('Turbulent Intensity')

set(gca, "XMinorTick', 'on', "YMinorTick', 'on")

figure
subplot(2,1,2) % add second plot in 2 x 1 grid
plot(rd,meanvelocity, 'o0") % plot using + markers
grid on

x1lim([-0.5 0.5])
ylim([0 20])

title('Velocity Profile 15mm Upstream The Wind Tunnel Exit')
xlabel('r/R")

ylabel('Mean Velocity in m/s')

figure

errorbar(rd,meanvelocity, stdev)

grid on

title('Velocity Profile 15mm Upstream The Wind Tunnel Exit')
xlabel('r/R")

ylabel('Mean Velocity in m/s')

xlim([-0.5 0.5])

ylim([@ 20])
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%% Hot Wire Anemometry import function
function [meanVoltage,velocity,meanvelocity,stdev,numPoint] =
Probel (filePathBase, fileName, nData, fileType, e0)
% variables for conversion assuming -ax”4+bx"3-cx"2+dx-e
a=0;
b=0;
c=6.5921;
d=-2.077;
e=0.0198;
%creation of filepath and import using xlsread (works for Excel files .csv,
$.xls, etc)
filepath=strcat (filePathBase, fileName, num2str (nData), fileType) ;
Skeyboard
velocityVoltStruct=importdata (filepath) ;
% keyboard
voltage=velocityVoltStruct.data;
numPoint=size (voltage,l);
for n=1:1:numPoint
velocityVoltDif (n)=voltage (n)-e0;

velocity(n)=((a*velocityVoltDif (n)."4)+ (b*velocityVoltDif (n) ."3)+ (c*velocityV
0ltDif (n)."2)+(d*velocityVoltDif (n)) +e);
end

meanvelocity=mean (velocity);
meanVoltage=mean (voltage) ;
for n=1:1:numPoint
velocityfluct (n)=velocity(n)-meanvelocity;
end
stdev=std(velocityfluct);
end

A-2 Temperature Calculations
clear all
clc

close all

Input test parameters ( constants)

Lx=.5; % length of the test section 18"
Lx2=.01

Dout=0.1099; % out diameter of insulation
Din=0.0929; % inner diameter of insulation

Dpout=0.0889; % pipe out diameter
Dpin=0.0762; % pipe in diameter

k=.03; % air thermal conductivity
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kins=.026; % thermal conductivity of insulation
kp=.2; % thermal conductivity of the acrylic pipe
emissivity=0.9; % test section surface emissivety

segma=5.6e-8; % Stefan-Boltzmann constant

Test Variables
Voltage=16.65;% heater voltage
Current=0.4; % heater current

troom=23.82; % room air temperature

ts=27.49; % mean sest section surface temperature

tm=24.84; % mean of test section inlet and outlet temperature
tw=23.05; % room walls temperature

tx2=27.36;

ts2=33.66; % temperature of inside surface of insulation

Calculating the input power
Qinput=Voltage*Current % input heat through the electric heater
Calculating conduction heat losses thrugh the insulation

Qlossr=(2*pi*Lx*kins*(ts-ts2))/log(Dout/Din) % heat loss through insulation in the
radial direction

Qlossx= (kins/Lx2)*(pi*(Dout”2-Din”2)/4)*(tx2-ts)
Calculating radiation heat losses
Calculating the surface area
Area=pi*Dout*Lx;
Rrad=((1-emissivity)/(emissivity*Area))+(1/Area);
Qrad=segma*((ts”4)-(tw™4))/Rrad
Calculating the convection heat transfer

Qconv=Qinput+Qlossr+Qlossx-Qrad % net heat convected by the flow
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Rp=(log(Dpout/Dpin))/ (2*pi*kp*Lx);
hc=1/((pi*Dpin*Lx)*(((ts2-tm)/Qconv)-Rp))

Nu=hc*Dpin/k
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Appendix B: Measurement Devices Specifications

B-1: DM-65 Digital Multimeter

AC Voltage DC Voltage
Range Range Accuracy
(40 Hz to 400 Ha) Accuracy
6.000V + (0.8% + 0.005 ) 600.0 mV + (0.8% + 0.5 mV)
60.00V + (1.2% + 0.05 V) 6.000V +(0.8% + 0.005 V)
+ 0
600.0V + (1.2%]+ 0.5V) 280083 - (S:j + 825; v
1000 V* + (1.2% +5V) - +(0.8% +05V)
1000 V* +(1.0% +5V)

Input lmpedance: 10 ME), < 100 pF Input Impedance: 10 MQ, < 100 pF

* 1000 V range is specified from 20% to 100% * 1000V range is specified from 20% to 100%
of range. of range.
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B-2: Auto-Range MPJA 9903

Function Range Resollion Accuracy
6v 1mv +(0.3% rdg + 3 dgis)
OC Volisge | 6OV 10mv
(v DC) 600V 100mVv
1000V v £(0.8% rdg + 3 dgls)
ACVoltage | @ :?n\m,v
{VAC) enov 100mV (1% rdg + 8 dgls)
750V 1V :
800 1 A 0uA +(0.8% rdg + 5 dgts)
g G000 A TeA
DC Cumrent | G0mA, 10pA
(A DC) 600mA 100 A
6A 1maA +(2% rdo +6 dats)
20A 10mA
6001 A 01uA +(1.2% rdg +8dgts)
AC Currert gm“ A : g AA
(A AC) .
B00OmA 100u A
8A 1mA +(2% rdg + 8 dgts)
204 10mA
8000 0.1Q =(0.5% rdg +5 dats)
8k in
< 60K 1002
Resistance | eooke 1000
SN0 1kQ +(2% rdg + 10 ugts)
BOMQ 10k
0.1Hz
Froquency A CO0KEHE 1?&212 +1(0.1% rdg + 3 dgte)
(Auto Range) 100H2 -
kM2
& {1 2% rdg + 2 dgte)
Outy Cycle 0.1%00.9% a1 pulse width: 100 » s—~100ms
TEMP T -20'C—~2007C 1C =4C
TEMP ¥ 4 F—~572° F 1F +=6° F
80nF 0.01nF +{10% rdg + 25dgls)
; F 0.1nF
Capacitance gggn AnF £(2.5% rdg + 10dgts)
(Auto Range) | goy,F 10nF
100uF
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B-3: NI USB-6212

Analog Output

Number of channels 2
DAC resolution 16 bits
DNL +1 LSB
Monotonicity 16 bit guaranteed
Maximum update rate
1 channel 250kS/s
2 channels 250 kS/s per channel
Timing accuracy 50 ppm of sample rate
Timing resolution 50 ns
Output range =10V
Output coupling DC
Output impedance 020
Output current drive +2 mA
Overdrive protection +30V
Overdrive current 24 mA
Power-on state =20 mV

Power-on glitch

+1 V for 200 ms

Output FIFO size 8,191 samples shared among channels used

Data transfers USB Signal Stream, programmed I/O

AO waveform modes Non-periodic waveform, periodic waveform
regeneration mode from onboard FIFO,
periodic waveform regeneration from host

buffer including dynamic update

73



B-4: N1 9214 and TB-9214

Temperature Measurement Accuracy

Measurement sensitivity’

High-resolution mode
Types ] K. TEN 0.01°C
TypesR, S 0.03°C
Type B 0.04°C
High-speed mode
Types K, TE 0.10°C
TypeN 0.11°C
TypesR, S 0.36°C
Type B 048°C
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B-5 Rotating Vane Anemometers Models Rva501

Velocity

Range S0 to 6,000 ft/min {025 10 30 mv/s)
Accuracy =1.0% of reading =4 ft/min (£0.02 nv/s)
Area Size Input

Range

RVAS01 010 500 f1°(0 to 4645 m%)

RVABO1 Q.043 to 900 f1* (000392 to 90 ')
Volumetric Flow Rate

Range Actual range Is a function of velocity and area
Temperature

Range 40 10 113°F (5 10 45°C)

Accuracy +2 0°F (£1.0°C)

Resolution RVASOL  Q1°F (0.1°C)

Resplution RVABO1  1°F(0.1°C)

Instrument Temperature Range

Operating

(Edectronics) 40 to 113°F (5 10 45°C)

Storage -4 to 140°F (-20 to 60°C)

Data Storage Capabilities (RVAS01 only)

Range 12,700+ samples and 100 test Ds

Logging Interval (RVAS01 only)

From 1 second to 1 hour

Time Constant (RVAS01 only)

User selectable

External Meter Dimensions

RVAS01 33INx70In.x18In
(B4domx178anx 44 an)

RVABO1 45in.x11in.x256 In.
(lZcmx28 cmx 65 am)

Meter Weight with Batteries

RVABO1 11602 (329R)

RVASO01 Q6 Ibs (027 kg)

Power Requirements

RVABO1 S-vaolt battery

RVAS01 Four AA-size battenes or AC adapter
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