

+1

1.000 A

0.0000010 T !
® LANL (SR)
i 0.998
0.0000005 I ® LANL (FR)
0.0000000 - 0.996 1
—0.0000005 4 0.994 +
—0.0000010 4 0.992 -
—0.0000015 4
0.990 1
—0.0000020 -
0.988 4 ® g
—0.0000025 T T T T T
parent-parent daughter-daughter (3s) daughter-daughter (3p) parent-daughter (3s) parent-daughter (3p)

Figure A.6.10: K-values for Pt and Ir overlaps. In the left panel, K-values for self-overlaps of the
neutral, ground state parent atom Pt, the 1H daughter configuration Ir with a vacancy at 3s, and the
1H daughter configuration Ir with a vacancy at 3p. In the right panel, K-values for overlaps with the
neutral, ground state parent atom Pt and each of the 1H daughter configurations with a vacancy in 3s
and 3p.

LANL (SR) LANL (FR)
1 2 3 4 2 3 3 1 2 3 4 2 3 2 3 3 3
1 1 1 10 1 1 1 1 1 1 10
1
2
8 8
~ 3
$4
2 673, 6
< 0 T
g 2 5]
o 4 4
> 21
=
0’33_
2 2
3_
3 - 34
T T T 0 T T T O

T T T T T T T T T
3d6 4s2 3d3/23 3d5/23 482

Figure A.6.11: Self-overlap matrix of neutral, ground state Fe is shown for the LANL atomic codes.
The colours represent the log of the difference of the overlap from the ideal orthonormal situation, i.e.
matched quantum number overlaps are 1 and unmatched quantum number overlaps are 0.

344

LANL (SR) LANL (FR)

1 2 3 4 2 3 3 1 2 3 4 2 3 2 3 3 3
, L 10
1 1
2
4 8
2 a3
<f
4 — 4
3° : 6
— c?\]Q-
B 4 5
= 3 37 4
3 g] mqZ-
Z
31 > 39 2
3_
31 3
T 0 — T 0

3d6 3s1 4s2 3dg)23 3ds/23 351 452

Figure A.6.12: Self-overlap matrix of Mn with a vacancy at 3s. This is shown for the LANL atomic
codes. The colours represent the log of the difference of the overlap from the ideal orthonormal sit-
uation, i.e. matched quantum number overlaps are 1 and unmatched quantum number overlaps are
0.

LANL (SR) LANL (FR)
1 2 3 4 2 3 3 12 3 4 2 3 2 3 3 3
1 1 1 1 1 1 1 1 1 1 10
1 1
2
2 8
33
i — 4
3° % 0
v—14 C’gl2-
22} - S~
™
R 9 T;\Q_
3 7 =37 D)
3_
31 3
T T T 0 T T T 0

T T T T T T T T T
3d6 3s1 4s2 3ds/23 3ds/23 3s1 4s2

Figure A.6.13: Self-overlap matrix of Mn with a vacancy at 3p. This is shown for the LANL atomic
codes. The colours represent the log of the difference of the overlap from the ideal orthonormal sit-
uation, i.e. matched quantum number overlaps are 1 and unmatched quantum number overlaps are
0.

345

LANL (SR) LANL (SR)

1 2 3 4 2 3 3 1 2 3 4 2 3 3
1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10
1 1
2 - 8 2 - 8
3°] 6 5] 6
<t <t
o 4 T4
3 4 = 4
2 2
37 2 37 2
3 1 3
T T T T T T T 0 T T T T T T T 0
3d6 3s1 4s2 3d6 3p5 4s
LANL (FR) LANL (FR)
1234232333 1234232333
1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 10
1 1
2 2
8 8
2 47 6 24T 6
= 2 = 2
= . 3 5
ng 4 "%3 4
=27 =27
= 3 2 3
2 2
3 1 3
3 1 3 1
T T 0 T T 0

3(13/23 3(15/23 3s1 4s2 3(13/23 3(15/23 3p1/21 4s2

Figure A.6.14: Overlap matrix of Fe with 1H Mn. Fe wave functions are from the neutral, ground
state configuration and Mn wave functions are from a 1-hole configuration. Both a vacancy in 3s and
3p are shown. Both LANL atomic codes are used to generate the overlap matrices. The colours repre-
sent the log of the difference of the overlap from the ideal orthonormal situation, i.e. matched quan-
tum number overlaps are 1 and unmatched quantum number overlaps are 0.

346

x1077 +1

0 1 1.00 1 1
® LANL (SR)
o 0.99 1 ® LANL (FR)
0.98 1
—2 4
0.97 A
—3
0.96 1 [
[) L4 °
parent-parent daughter-daughter (3s) daughter-daughter (3p) parent-daughter (3s) parent-daughter (3p)

Figure A.6.15: K-values for Fe and Mn overlaps. In the left panel, K-values for self-overlaps of the
neutral, ground state parent atom Fe, the 1H daughter configuration Mn with a vacancy at 3s, and the
1H daughter configuration Mn with a vacancy at 3p. In the right panel, K-values for overlaps with the
neutral, ground state parent atom Fe and each of the 1H daughter configurations with a vacancy in 3s
and 3p.

L
@ L]
I 2000 ® 2-hole configurations o ° L *
£ ® 1-hole configurations . ®
'g 1000 ®
> > L
g »w»
LI=J 0 I T T T T T
g 100
=
g
£
(=} 0 oM e - ofne Pt oo
1=
]
|-
g —100 T T T T T T
20
v o o
0 ° ® oo WO g0
@ o @™o e
_20 T T T T T T
0 500 1000 1500 2000 2500 3000

Configuration Energy [eV]

Figure A.7.1: Binding energies versus semi-relativistic configuration energies for 1°3Ho. The energies
are calculated using the LANL (SR) atomic structure code.

347

L
M
2-hole configurations
ng 20000 1-hole ccnfigurations .0
g o o®®e
=
= 'Y LA
@ 0 (X W®
L I T T T T T T T T
[1F)
[}
c
p
£ 50
a
1=
5 0 oQP® o3e* om "Wee *e*
E I T T T T T T T T
20
0 S 0o™ °,* e ege
» %o o 0e°
=20+

T T T T T T T T
0 2000 4000 000 8000 10000 12000 14000 16000 18000
Configuration Energy [eV]

Figure A.7.2: Binding energies versus semi-relativistic configuration energies for 193Pt. The energies
are calculated using the LANL (SR) atomic structure code.

Ll
@ 1]
® 2-hole configurations
N 2000 'gurati ,‘-.
= ® 1-hole configurations ’
2 1000 -
=
'I
>
2 -
|_|=J 0 T T T T T T
@
o
o
o 0 I e ¢ SOt . e
=
a
= —200
Q
=
g I T T T T T
20
0 Pt - apoapsee
_20 T T T T T
0 500 1000 1500 2000 2500 3000

Configuration Energy [eV]

Figure A.7.3: Binding energies versus fully-relativistic configuration energies for 1%3Ho. The energies
are calculated using the LANL (FR) atomic structure code.

348

w
m
N 20000 ® 2-hole configurations
£ 1-hole configurations
oo
< o s © 4
8 ERD®
g 0 P
IEI I I ' ' T T T T T
a
w
=
e
£
= 100
o
o
E ’ . x - 1. |
« I I ' ' T T T T T
20
’ o OIENe &SN
=20

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Configuration Energy [eV]

Figure A.7.4: Binding energies versus fully-relativistic configuration energies for °3Pt. The energies
are calculated using the LANL (FR) atomic structure code.

349

Wick’s Theorem

B.3 Background

Wick’s theorem is a method of reducing a product of creation and annihilation operators into a
normal-ordered product. What follows is an explanation of Wick’s Theorem and application to
Eq. 2.6.3.
To understand Wick’s Theorem, it is instructive to begin with the anticommutation re-
lations { , } for creation and annihilation operators in the fermion system:
{ai, a;} = aia} + a}ai = 0; (B.3.1)

{ai,a;} = {aj,a;} =0. (B3.2)

The second component needed is normal ordering. A normal-ordered productis a prod-
uct of creation and annihilation operators, where all creation operators are on the left and all anni-
hilation operators are on the right. This is a convenient order because (0| a' = 0 and a |0) = 0.
The normal-ordered product is denoted by : :. The trivial case is where the operators are already

normally ordered:

ala;: = ala; = 0 — azal. (B.3.3)

Likewise,
;a5 = a;a; (B3.4)
:aj»a}: = a;ra}. (B3.5)

350

The normal ordering of the antinormal case introduces a negative sign in the fermion

system due to the anticommutation relation:
aal = —ata = —5. af Bs.6
a;a) = —aja; = —0i; + a;a; (B.3.6)
Finally, we must define a contraction between two operators:
—
AB = AB — :AB-:. (B.3.7)

The four most basic products are then

c'c?zj = a;a; — :0;a5: = a;a; — a;a; =0 (B.3.8)
C,Li_cll,; = aj»a} - :aZa}: = aja} - aja} =0 (B.3.9)
clzl-_gzj = ala; —:ala;: = ala; —ala; =0 (B.3.10)
clzi_c;} = aia; — :aia;: = aia; — (a,-a; — 0ij) = 04 (B.3.11)

With these definitions, we can define Wick’s theorem. Where P is a product of creation
and annihilation operators, it can be written as the sum of the ordered product : P: and the sums

of all possible single, double, etc. contractions within P:
pP=:P:.+:Ipl. (B.3.12)
This becomes more clear with an example. Suppose P = ajaiala;. Then,

PR I SRR R e AT AT e AT T
@;0;0,0; = :0;0;a,0): + [aja;a,0;: + [aja;a,0,: (B.3.13)
1 2M
For a contraction when fermionic operators are involved, a negative sign must be introduced
whenever two fermionic operators are swapped. This is Rule C of Wick’s Theorem and a direct

result of the anticommutator definitions. The first sum has the following non-zero terms:

:aj('zi_cltla;: = :ajalT:(Sik = —a;ajéik (B.3.14)
:ajclzia_,iclle: = —a;al 0y = ala;o; (B.3.15)
im;ta?i = _3az’a;f35jk = a;raiéjk (B.3.16)
:ajazl»—a,tcltlfs = :aialﬁjl = —azaiéﬂ. (B.3.17)

(B.3.18)

351

For the second sum in a fermion-system, we have the following non-zero terms:

—
:ajaiaza;: = (5ik(5jl (B.3.19)
:ajaiaza;: = —0i0jk. (B.3.20)

Using Wick’s theorem, these terms are added and the product P is simplified to

a;a;alal = :a;a.alal: + (—a;aj(sik +ala;0y + ala;d, — alai5j1> + (6051 — 6a01)
(B.3.21)
= 0051 — Oudjk (B.3.22)

for the fermion system.

B.4 Application of Wick’s Theorem in a Single-Hole Calculation

For the simplification of the multitude of annihilation and creation operators from a sudden
approximation, we can use Wick’s theorem. The parent is in the ground state and represented as
|G). In the first approximation, the excited daughter has a hole at &’ and is represented as (A’j|.

Using annihilation and creation operators, the states are represented in second quantization as:

Q) = alal.. . al|0) (B.4.1)
A =dta'l . a’};_la/;rlﬂ ...d',|0) (B.4.2)

The matrix element,
(A'h|a;|GY = (0ld' zd’ 71 ... d' p1d' py ... d'9d'y - a; - aiag . .aTZ\O) , (B.4.3)

which is the probability amplitude of a capture in orbital 7 of the parent with a hole in orbital h
of the daughter, can be simplified using Wick’s Theorem.

Since the operator product is operating on a vacuum, we can eliminate any term with
(0] a' or @]0) because these are 0. The value of Wick’s theorem immediately becomes obvious,
since every term is zero except the final sum in which every operator is contracted with another
operator. In this final sum, we note that {a;} is not orthonormal to {a;}. For this reason, in-
stead of factors like d;/;, we will have factors like (i'|7). When i # j, this is a non-diagonal
overlap. For example, in 163Ho in an overlap with the neutral parent and the daughter with a
hole at 3s, (3s'|4s) = 0.023 is the largest non-diagonal overlap. A term with one non-diagonal
factor from a contraction of two operators with different indices must have at least one other

non-diagonal factor to account for the operators that are now missing their index-partner. For

352

this reason, like Faessler, we omit these terms because they are O(2) in non-diagonal terms or
terms with unmatched quantum numbers. Using Wick’s theorem and recalling that these oper-

ators are fermionic operators, Eq. B.4.3 simplifies to

(A'h]ai|G) ~ (=)' (0|djasafall0) TT (K'|K) - (B.4.4)
k£h,i

This assumes @ > f and the (—)"! factor comes from moving a; to the position aj, would
be. Assuming i < f yields (—)f <O\a;aia;ra2]0>, which simplifies to the same final result. The

matrix element (0|a}a;a} a!|0) from Eq. B.4.4 can be simplified using contractions once more:

(0ld}a;al al|0) = (0] - agc,LZ-—CIL}LLCLI: + :ala;al al:|0) (B.4.5)
(i'1) 6ps — (&' |) . (B.4.6)

Substituting this result into Eq. B.4.4 results in

(A'nlai|G) ~ ()" on [(W1K) + ()" (@m) T (k1K) - (B.4.7)

kh k£h,i

This is the expression for an electron capture in the parent at 7 resulting in a hole in the
daughter at h. The electron capture index, 7 must run over all states in the parent, to yield the

probability amplitude of a hole in the daughter at h:
Fy =) Wi(R) (A}a;|G) (B.4.8)

~ S W) e [T 1) + ()) TT w1k (B.49)

kh k£h,i
Since the weighting function is a square of the probability amplitude (W), = |F; h|2), the
phase doesn’t matter and we can write

2

Wy & pri(R)((shiHmm — (@) T *1k))| - (B.4.10)

kh k£h,i

353

B.5 Application of Wick’s Theorem in a 2-Hole Calculation

When we consider 2-hole shake up or shake off, there are two holes in the daughter atom (h}, h%)

and one extra occupied bound or continuum state, p. Assuming ¢ < hy < ha,
/ o ror ! ! ! / i Tt T
(A'hinelailG)y = (0ld'pya' za 721 ... 1@ py—1 . a 1@ p -1 .. d'2d'y - a; - aja) . .. ay|0)

(B.s.1)

~ (=) (=) Olapaaialal al 10) [T (K1k), (Bs2)
k#h1,ha,i

where (—)" comes from the contractions from a! to aLl_l (a negative sign comes from each

fermionic operator swap with the annihilation operator and a;), (—)#~" comes from contract-
ing the operators between a}; and a! (a negative sign comes from the fact there are three
2+1 Z
fermionic operator swaps with a;, to get the contracted operators contiguous to each other), and
the contractions involving the operators al to al _, do not contribute a negative sign be-
h1+1 ho—1

cause these involve two swaps of fermionic operators (swapping the annihilation operator with
a; and swapping the creation operator with a};, which did not have a corresponding annihilation
operator).

The matrix element can be simplified further with a series of contractions:

<0|a;a;aia2a21a22|0> = (0] : apa; azaTa,: aIl + :a;a;aiagazlaz + :aya; azaTaL aIl :

(B.5:3)

+ :a;agalaTaI“am + a a azaTaILIa,12 + a a a@aTaILla22: |0)
(B.s.4)

= (Plha) (@') (i) — (p|h2) (']7) (il ha) — (') (7| 2) (i)
(B.s.5)
+ (Plha) (@'13) (il h2) + (p'1) (@'l h2) (ilha) — (P13} (@'[) (ilhe)
(B.s.6)
= (P'h2) ('[hn) = (p'lh2) (']0) Oiny — (P'|ha) (7’| P2) (Bs7)

+ (Plha) @'V} Ging + (P'13) (i'[h2) Giny — (P']E) (3|1} Giha

(B.s.8)
= ((p'h2) ('1h1) = (P'1ha) (0'|h2)) Gy hy (Bs.9)
+ ((W]4) (@'l ha) — (plha2) (i']3)) Bin, (B.s.10)
+ ((p'[h) (@'[) = (P'1i) ('1h1)) Ging (B.s.x)

354

The latter two sets of terms do not make sense because there is no (#'| in the daughterifi = hy or
i = hy. We note however, that these terms give what one would calculate if you assumed i = A4
ori¢ = hg

First, where 7 = h;:

(Alpinylan, |G) = (0ld'ya' za 71 .. d' pyi10 g1 .. a'py 10 py 1 .. d'2d’y - ap, - aiag .. .aTZ|O)

(B.s.r2)
~ (=) =) Olagan,aj,a,0) [T (KK (Bs.13)
k#h b
= (=7 ey T 1K) (B.s.14)
k#h o
(B.s.15)
With these two terms, we note that the first term is O(1) and the second is O(2).
Similarly, for ¢ = hg, the matrix element simplifies to

(Apnslan,|G) = (=)7 7"t =l h) [T (WK (B.5.16)

k#h1,ho

With some careful placement of delta function, we can simplify all these cases as follows:

(Aninalal G) & (=)7 0 (<) (<)
x (Bans (9ha) (0 110)" " = G, () (010") T (1)

k£h1,ha,i
(B.s.17)

The 2-hole probability amplitude is O(2) in non-diagonal terms if i # hy, ho, otherwise it is
O(1).
Once again, since probability amplitude gets squared, we can drop the phase that is not

dependent on i:

Whihaop & Uy(R)(—)% (—)%na (B.5.18)
1=1...Z
2
'<5iséh2 (P o) (i'[h)" "0 = Bz, <p/\h1><i/|h2>6#h2> [I *k
khy ,ha,i
(B.s.19)

355

B.6 Conclusion

Wick’s Theorem is helpful in reducing a product of annihilation and creation operators to the
non-zero or largest terms. With states that are not all eigenstates, we must make the assumption
that terms with a lot of non-zero, but small factors like (i'|j) are vanishingly small and can be
ignored. The calculation of the overlap with 1 hole in the daughter atom ignored terms that
had two or more “unmatched” factors and the calculation of the overlap with two holes in the

daughter atom ignored terms with at least three “unmatched” factors.

356

Code

C.1 A Python Framework

With all the categories of decisions to be made in constructing a calorimetric electron capture
spectrum (see Chapter 3), it became evident that a robust, flexible framework needed to be cre-
ated. Python was chosen for ease of use and aesthetic plotting capabilities. The current package
stands at 4600 lines (see Section C.5 for documentation details).

The base of electron-capture spectra are the orbital wave functions, which are essentially
arrays indexed by radius. Each of these wave functions is different depending on the atomic code
creating the wave function (more details on this given in Appendix A), the nuclear potential, and
the atomic potential. As such, the atomic code ID (code), number of protons (Z), and electronic
configuration (Configuration) became the unique identifier for each wave function (Wfn).
All the wave functions corresponding for a given configuration are compiled into a pythonic
atom (Pytom). An atomic overlap of two Pytoms creates an Overlap object. With the nuclear-
electron overlap properties saved in the NuclearOverlapParams object, the weighting factor
W (or rather its square root) can be stored in an object called LorentzianParams along with
the Lorentzian width and centroid. A sum of these Lorentzians is a spectral Component corre-
sponding to an excitation type (e.g. 1-hole, 2-hole shake up, etc.). The sum of all the Components
isa Spectrum.

The details of each of these classes making up the ecap and pytom packages are given in
the following sections. Section C.4 gives the algorithmic details of how a 2-hole shake up spec-
trum is calculated along with some simple cases to follow along. Itis expected the reader is already
familiar with the mathematical spectral descriptions laid out in Chapter 2 and an understanding

of the categories of decisions laid out in Chapter 3 will give the reader better insight into why

357

the code is flexible in the ways it is! Finally, this appendix includes the Sphinx auto-generated

documentation for the code in Section C.s.

C.2 Class Structure of pytom Package

C.2.1 Wfn Class

Each orbital wave function corresponds to a specific set of quantum numbers. For nonrelativistic
codes, a combination of 7 and [give a unique integer identification (element) (corresponding
to the indexing in TableA.r). For relativistic codes, a combination of 7 and k give a unique inte-
ger identification (element) (see Table A.2). A relativistic boolean flag RELFLAG keeps track of
whether the code used to generate the wave function is relativistic (True) versus nonrelativistic or
semi-relativistic (False). The code string is the unique atomic code identifier. This class stores
the wave function in a few numpy arrays: r for the radial index, p for the upper spinor, and q
for the lower spinor, which is empty if the wave function is not relativistic. Finally, the nuclear
potential and atomic potential both change the wave function’s values, so this information is rep-
resented by the number of protons in the nucleus (Z) and the electron configuration (config,

an instance of the Configuration class).

C.2.2 Configuration Class

This class contains the RELFLAG boolean, the proton number Z, and an array occ with the occu-
pation number of each element (indexed in the same way Wfn is). For example, the occupation

for Pt with a single vacancy at 3s in a relativistic code would look like this:

2,2,2,4,1,2,4,4,6,2,2,4,4,6,6,8,2,2,4,4,5,0,0,1,0,0,0,0,0,0,0,0,0,0, ..],
(C.2.1)

where the sth element has an occupation of 1 electron, rather than 2 electrons which would rep-
resent a filled 3s shell. The ordering represents the orbital ordering in Table A.2 for relativistic
descriptions and Table A.1 for non- or semi-relativistic descriptions. The last element of the array
is reserved to keeping track of free or continuum wave functions. If the last element is —1, this

indicates that a free wave function is part of the electronic description.

C.2.3 Pytom Class

The Pytom class contains a dictionary of Wfn objects in wfns with the key being the orbital index
of element. The Pytomkeeps track of the nuclear and atomic potential with a Configuration
object config and Z, as well as the relativistic flag RELFLAG and the code used to generate the

wave functions (code). A pandas dataframe (HEW_df) is used to store the binding energies and

358

widths for each orbital. All Pytoms within a spectrum currently save the dataframe correspond-

ing to the neutral daughter atom binding energies and widths, but this is subject to change.

C.2.4 Pytom Class

The Pytom class contains a dictionary of Wfn objects in wfns with the key being the orbital index
of element. The Pytomkeeps track of the nuclear and atomic potential with a Configuration
object config and Z, as well as the relativistic flag RELFLAG and the code used to generate the
wave functions (code). A pandas dataframe (HEW_df) is used to store the binding energies and
widths for each orbital. All Pytoms within a spectrum currently save the dataframe correspond-

ing to the neutral daughter atom binding energies and widths, but this is subject to change.

C.3 Class Structure of ecap Package

C.3.1 NuclearOverlapParams Class

The NuclearOverlapParams class represents the electron-nucleus overlap. It contains a float
R for the nuclear radius in au and an integer nuclearoverlap_type corresponding to an index
of the calculational method used to describe the electron-nucleus overlap. The default is 1, but

the following are the possibilities:

0— @ (C3.0)
1o/ A, @R, (©32)

2 — \/%/\IJT(T)\IJ(T)CZT (C3.3)

J Wi (r)(r)p(r)dr
3— \/ T p(r)dr (C3.4)
4 — P(R) (C3s)
J Pi(r)P(r)p(r)dr
5 T plr)redr (C.3.6)

C.3.2 0Overlap Class

The Overlap class represents the atomic overlap. It saves the parent Pyt om and daughter Pytom
and calculates a float K, which corresponds to the atomic overlap given all orbital overlaps have

matching quantum numbers. A 2-dimensional array overlapmatrix is used to store the or-

359

bital overlaps. It is important to remember that each daughter configuration creates a different

Overlap class and overlapmatrix.

(C.3.3 LorentzianParams Class

TheLorentzianParams class represents the Wy, I't, and £/ needed to calculate the Lorentzian
for a given daughter configuration. The square root of W, F'y, and the other two variables are
saved as floats along with a Configuration object config to keep track of which configura-
tion corresponds to this Lorentzian. Fy is the most complicated value here and is calculated dif-
ferently depending on the excitation type (1-hole, 2-hole shake-up, etc.) and atomic order. It
depends on the electron-nucleus overlap and the atomic overlap, so uses values from both the

NuclearOverlapParams class and Overlap class.

C.3.4 Component Class

The Component class represents the spectral component due to an excitation type represented
by the string excitation, such as “2Hu” which corresponds to 2-hole shake-up. The order of
the calculation is saved as well as an array of all the LorentzianParams (1paramss) for each
included daughter configuration an array of all the Overlap objects (overlaps) used in the cal-
culation. Finally, a numpy array component is calculated with the energy-dependent spectrum.
A “1H” component is actually a simple spectrum. A “2Hu” component can be added to a “tH”

component to make a more complex spectrum.

C.3.5 Spectrum Class

The Spectrum class is the desired final product. Because Spectrum objects are often pickled
(a pythonic way of saving a Python object with all class variables in binary form), we want it to
include as much information as is reasonable. To that end, this class has a number of variables!
A boolean RELFLAG and code string work as in other classes. The isotope string describes
the isotope undergoing electron capture (e.g. “Ho163”) and the float mnu saves the mass of the
neutrino used in the calculation. The spectrum has to be recalculated for every mass under con-
sideration because this is part of the phase space prefactor and affects the entire spectrum. A set
of floats and integers Q, Z, A, and R represent the total energy of the reaction, number of pro-
tons in the parent atom, number of nucleons in the parent atom, and nuclear radius used in the
nuclear overlap calculations respectively. An instance of the NuclearOverlapParams class,
nucoverlap_params, is used to save the type of nucleus-electron interaction description. A
dictionary excitation_order isused to keep track of which excitations are calculated to which
order. Thekeysare excitationstrings(e.g. “iH” or “2Hu”) and the values are the order for that

particular excitation type (e.g. -1 or 2). A dictionary of the Component objects (components)

360

save the Components as values with excitation strings as keys. A numpy array saves the energy
bins (x) with default 0.1 eV bins from o to) and another numpy array saves the spectrum (a sum
of all the calculated components). Finally, two instances of the Pytom class are saved: parent
and daughter, both of which default to the ground state configuration with the parent having
Z protons and the daughter having Z — 1 protons. The daughter is not used in atomic over-
lap calculations, except for determining selection rules for which configurations are energetically
allowed. The parent Pytom can be set to have different properties (code and RELFLAG) from

the Spectrum, allowing for a %-relativistic calculation of the spectrum.

C.4 Creating a 2-hole Spectrum

To initialize the spectrum, one must provide the code (which will automatically populate the
RELFLAG), the isotope, and the mass of the neutrino (mnu). For example, to calculate the spec-
trum of '*3Pt with a 0 €V mass neutrino and wave functions solved in the LANL (SR) code, the

Spectrum is initialized as follows:

Code C.1: Initializing a Spectrum calculation.

1 S = Spectrum("SRFontes","Pt193",0)

Based on an internal dictionary defined below, Q, Z, A, and R are initialized to some default

values.

1 a0 = 5.2917721092e4 #how many fm in an a0

. QZAR = {"Pt193" : (56800, 78, 193, 5.4191/a0),

; "Ho163" : (2833, 67, 163, 5.1907/a0),

4 "I125" : (185770,53,125,4.75/a0),
"Fe55" : (231210,26,55,3.7/a0)}

Thenucoverlap_params instance of NuclearOverlapParams isinitialized with the
default nuclear radius R and evaluation type of 1. The default excitation_order dictionary is set

to order o for all excitation types:

;. excitation_order={"1H":0, "2Hu":0, "2Ho":0, "3Hu":0, "3Ho":0}

The order for each excitation type can be set later on. The components dictionary begins
as an empty dictionary. The numpy array for x defaults to an array from o to) with 0.1 eV spac-
ing. The spectrum array is made the same length and populated with o’s. Finally, the parent
and daughter Pytoms are initialized. In the above example, they are assigned neutral ground

state configurations with differing proton number:

1 parent = Pytom("SRFontes",78) # ground state is default
> daughter = Pytom("SRFontes",77) # ground state is default

After initializing the spectrum as shown in Code C.1, we set the order of the 1-hole and

2-hole shake up components:

3061

Code C.2: Calculating Components.

1 S.set_excitation_order("1H",1)
, S.set_excitation_order("2Hu",1)

This modifies the excitation_order dictionary:

1 excitation_order={"1H":1, "2Hu":1, "2Ho":0, "3Hu":0, "3Ho":0}

When we call set_1H_Spectrum, a lot happens under the hood. A stripped down and

slightly modified version is given below:

Code C.3: Primary method used for calculating the 1-hole component.

1 def set_1H_Spectrum(order):

2 configs= get_1H_configs() #sum over f is really a sum over configurations
for config in configs:

4 #daughter changes with each configuration

5 #code and Z are passed by variable. Explicit here for instruction.

6 daughter = Pytom("SRFontes",77, config)

8 #0verlap is where K and matrix are calculated

9 overlap = Overlap(parent,daughter)

u #F depends on excitation order and uses Overlap

2 F=get_F(excitation, overlap)

5 if F!=0:

14 #ALL daughters have the same width for a given orbital (from literature)
15 width=daughter.get_width() #Width is saved in a CSV file

16 #Energy is a sum of ’daughters binding energies.

7 #For 1-hole E=BE_{1hole}

8 energy = daughter.get_energy()

20 lparams= LorentzianParams(config, F, width, energy)

a1 #N accounts for multiplicity of electrons in a given orbital.

#i.e. capture of any of the existing electrons in that orbital is possible.
N = self.parent.get_partial_occupation(config.get_holes() [0])

24 lorentzian= calc_Lorentzian(N, lparams)

25 component .add_configuration(lparams, overlap, lorentzian)

26 set_component (excitation, component)

The first method called in set_1H_Spectrum is actually a call to get_1H_configs,
which in turn calls get _capture_set, turning a list of elements where the holes can be into a
list of configuration objects. get_capture_set determines this list of elements where the holes
can be by requiring the element to correspond to x equals 1 or -1 if relativistic or [equals o or 1 if
nonrelativistic. The second requirement is that the parent must have an electron in that orbital
(one cannot cature from an orbital from which there is no electron). The third requirement is
that the binding energy of that element in the daughter atom must be less than the Q-value.

Line 6 in Code C.3 creates an Overlap object. When the object is created, K and the

overlapmatrix are calculated. The default K value is 1, otherwise it is equal to the following:
K =T11{K'|k)’, (C.4.1)

362

where (k| is an orbital where both the parent and the daughter are occupied and the power o is
determined by the parent occupation. The overlap matrix fields correspond to an orbital overlap
between a parent orbital and daughter orbital. The orbital overlap is zero if either the parent
or daughter orbital is unoccupied. The orbital overlap is also zero if the quantum number { (or
% in the relativistic case) does not match between the parent and daughter orbitals. Consider a

parent with the following configuration: 1522522p6

2

. The daughter has a vacancy at 2s and has

the following configuration: 1s zslzp6. In such a case, we have the following non-relativistic

overlapmatrix:

1s" 2¢ 2p

09 01 0\ ls

012 098 0 |2s (C.4.2)
0 0 099/ 2p

The associated K would be the diagonal elements to the power of the parent occupation:

K = (15']1s)% - (2¢/|25)* - (2p']2p)° (C.4.3)
= (0.9)? - (0.98)% - (0.99)°. (C.4.4)

The overlap matrix might look like the following with relativistic wave functions:

1s" 24 2]0’1/2 2pg/2

09 0.1 0 0 1s

012 098 0 0 | 2s (Cots)
0 0 0.99 0 | 2pi)2
0 0 0 097/ 2psp

The associated K would be the diagonal elements to the power of the parent occupation:

K = (15'|1s)* - (2¢'|25) - <2p’1/2’2p1/2>2 : <2pg/2‘2p3/g>4 (C.4.6)
= (0.9)?-(0.98)%- (0.99)2 - (0.97)*. (C.4.7)

On line 7 of Code C.3, this pseudocode calculated Fy. If both the parent and daughter

are occupied in the location of the vacancy: we define (f’|f) = overlaps|f, f], otherwise
(f'|f) = 1. Then, if the order of the 1-hole component is -1, F' = W(R). If the order is o,
then [’ = %. For order 1, a series of adjustments is subtracted from the zeroth order F'

where each adjustment comes from the capture_set (this is equivalent to the sum over ¢). The

363

adjustment is

(' f) K¥;(R)

(W10 (1) (€49

adjustment =

2

Suppose we have the simple case of the parent configuration is 1s22s% and the daughter
pPp p p g g

configuration is 1s'2s2. Then, we have the following different orders of F:

F(—1) =¥,(R) (C.4.9)
B (15'|15)* (25]2s)?
F(0) = ¥,(R) (257]25) (C.4.10)
_ (15'|1s)” (25'|25)" J116)? (2510502 18128)
F(1) = U,(R) (2/|2s) Uas(R) (15[15)" (257|2s) (1s'|1s) (25'|25)’

(C.4.11)

where K = (15'|15)” (25'|2s)*.

The last several lines of Code C.3 deal with creating a LorentzianParams object to
store the /', width, and energy associated with the daughter in a particular configuration. The
lorentzian is evaluated for each bin (same binning as the Spectrum) and the sum of all of these
lorentzian arrays is the 1-hole component.

The next call in Code C.2 is to set_2Hu_Spectrum. Once again, a lot happens under

the hood:

Code C.4: Primary method used for calculating the 2-hole shake-up component.

: def set_2Hu_Spectrum(order):
configs= get_2H_configs()
for config in configs:
4 daughter = Pytom("SRFontes",77, config)
5 overlap = Overlap(parent,daughter)
6 F=get_F(excitation, overlap)
if F !=0:
8 width=daughter.get_width()
9 energy = daughter.get_energy()
10 lparams= LorentzianParams(config, F, width, energy)
u N1 = self.parent.get_occupation(config.get_holes() [0])
N2 = self.parent.get_occupation(config.get_holes() [1])
B lorentzian= calc_Lorentzian(N1*N2, lparams)
14 component .add_configuration(lparams, overlap, lorentzian)

15 self.set_component (excitation, component)
In the second line of Code C.4, a call is made to get_2H_configs, which returns an
array of configurations with the following logic. The first hole (f;) must be in the capture set.
The second hole (f2) must be occupied in the parent atom. If the second hole is the same as the

first hole, the occupation for that element must be at least 2. The pole or shake up orbital (c)

cannot be the same as either the first or second hole and must be in the set of unfilled orbitals in

364

the parent. We require that (¢| f1) or (¢/| f2) be non-zero. If (¢/| f1) is nonzero, f, must be in
the capture set because (7’| f2) must be nonzero. Likewise, if (/| f) is nonzero, f; must be in
the capture set because (¢'| f1) must be nonzero. The final requirement satisfies conservation of

energy:
BEy, + BE;, — BE, < Q. (C.4.12)

The ecap package limits the shake up bound states considered (limits shown in Table C.1).

Table C.1: Limits of shake-up. No g-states are included in calculations.

Orbitals Limits

n<9
n <8
n<7
n<6

%]

- QT

In line 6 of Code C.4, we calculate the 2-hole shake up F'. Because @ can be f; or f, there is an

order 1 option. In this case, if ¢ = fi,

KWy, (] f1) (f5lf2)
k= ’ 4.1
(sl o) (T) (C413)
If the orderis1and i = fo,
KWy, (d]f2) (fil fu)
F=- : C.4.1
(AL (ol o) (Cag14)
If the order is 2, then looping ¢ through the capture set we calculate F:
KU (] f1) (0| f2) — (| f) <¢/|f1>)>
=i : C.4a
((filfr) (fal f2) (C.4.15)

C.5 Code

Below follows the documentation for the ecap and pytom packages.

365

Electron Capture Documentation
Release 0.7

Katrina E. Koehler

Apr 17,2019

366

367

CONTENTS:

1 pytom package 1
1.1 Submodules 1

1.2 pytom.configurationmodule Lo e 1

1.3 pytom.configurations module Lo o L 2

1.4 pytom.freewfnmodule L e 3

1.5 pytom.freewfn_helpermodule L Lo L 5

1.6 pytom.pytommodule e e e e e e e 5

1.7 pytom.pytomhelper module 7

1.8 pytomwfnmodule e e e 8

1.9 pytom.wfnhelpermodule e 11
110 Module contentso e 12

2 ecap package 13
2.1 Submodules 13

2.2 ecap.componentmodule L 13

2.3 ecap.ecalhelper module 14

24 ecap.lorentzianparams moduleo Lo e e 15

2.5 ecap.nuclearoverlapparams module Lo L 16

2.6 ecap.overlapmodule L e 17

2.7 ecap.spechelpermodule L. L e e e 18

2.8 ecap.spectrummodule Lo Lo e 19

29 ecap.xspectrummodule Lo 24
2.10 Module contentsl e e e e e e e e e 25
Python Module Index 27
Index 29
1

368

369

CHAPTER
ONE

PYTOM PACKAGE

1.1 Submodules

1.2 pytom.configuration module

class pytom.configuration.Configuration (Z, RELFLAG)
Configuration class keeps track of interesting configuration information. Default is ground state occupation for
that atom.

Example

>>> import pytom

>>> Y = pytom.Configuration(78)
>>> Y.set_occupation_from _gs ([5,6]1,[25])
>>> Y.get_noble_gas_core_format ()

Variables
* RELFLAG (bool) — relativistic flag
* Z (int)—number of protons in the nucleus
* occ (11ist)— value atindex (unique orbital identifier minus 1) indicates occupation of that
orbital
add_electron (element)
Update occupation to increase the number of electrons at orbital specified by element.
get_Z ()
get_elements_by J (/)
get_freed()
get_holes ()

get_hparray ()
Return tuple of holes and poles.

get_hparray_format (LaTeX_style=True)
Return configuration in terms of holes and poles.

get_noble_gas_core_format (LaTeX_style=True)
Return noble gas core format.

For example, if Z=78 and the configuration is the ground state of platinum, this will return ‘4f14 5d9 6s1°.

370

Electron Capture Documentation, Release 0.7

get_occupation ()
Return occupation array.

get_occupation_of_ element (element)

get_occupied_elements ()
Return array of orbitals that have at least one electron in them.

get_partial_occupation_of_element (element)
Return partial occupation of orbital.

e.g. If full subshell, return 1. If half-filled, return 0.5.
get_poles ()

get_unfilled_shells ()
Return array of orbitals that have no electrons in them.

is_occ_same (config)
Return True is occupation matrix is the same.

is_occupied (element)
Return True if orbital specified by element is occupied.

is_relativistic()
set_Z (Z)
set_freed (J)

set_gs_occupation ()
Set occupation to the ground state of the atom with Z.

set_noble_occupation ()
Set occupation to the ground state of the nearest noble gas with lower Z.

set_occupation (occ)
Set occupation array to occ.

set_occupation_from_gs (h_arr, p_arr)

set_occupation_from_noblegascoreformat (formatstring)
Given a noble gas core format string, return self with occupation array appropriately assigned.

Example

>>> from pytom import Configuration
>>>c = Configuration(78,1)
>>>c = c.set_occupation_from noblegascoreformat ('4f14 5d9"')

set_relativistic (RELFLAG)

to_relativistic()
Return Configuration instance with relativistic occupation. Assume lowest sub-shells fill first.

1.3 pytom.configurations module

pytom.configurations.get_full_ occnum_by_element (element, RELFLAG)

pytom.configurations.get_full_occupation (RELFLAG)
Return a full occupation list if every orbital were filled up to orbital 57 (9s) for relativistic and 25 (9s) for
nonrelativistic

2 Chapter 1. pytom package

371

Electron Capture Documentation, Release 0.7

pytom.configurations.get_gs_occupation (Z, RELFLAG)
Return ground state occupation as a list.

Currently, ground state of daughter atoms is defined as the same as that of the parent.
pytom.configurations.get_hparray configurationformat (occ, holes, poles, RELFLAG)
pytom.configurations.get_hparray from_occ (occ, Z, RELFLAG)
pytom.configurations.get_hparray_ labels (occ, holes, poles, RELFLAG)

pytom.configurations.get_noble_occupation (Z, RELFLAG)
Return noble gas occupation of the closest noble gas with Z less than given Z.

pytom.configurations.get_noblegascoreformat (occ, Z, RELFLAG)
pytom.configurations.get_occ_from_noblegascoreformat (formatstring, Z, RELFLAG)

pytom.configurations.get_occupation_from_gs (Z, RELFLAG, h_arr, p_arr)
Return occupation list assuming holes and poles are with respect to the ground state configuration.

pytom.configurations.is_overfull (element, occnum, RELFLAG)

1.4 pytom.freewfn module

Created on 17 October 2018 @author: Katrina Koehler

class pytom. freewfn.FreeWEn (filename, code=None, Z=None, J=None, E=None, config=None)
FreeWfn class includes identifying information like Z, J, E (energy), and configuration information (for under-
standing the atomic potential)

Variables

RELFLAG (boo 1) — relativistic flag

code (st ring) — the code used to generate the win

filename (st ring)— used to read out the win from disk

Z (int)—number of protons in nucleus

J (int) — integer referring to total spin (kappa if relativistic, 1 if non-relativistic). e.g. s
waves are kappa=-1 and 1=0, p waves are kappa=1 and 1=1, etc.

config — configuration used to generate wfn. Key difference is occ[-1]=-1 to indicate
there is a free electronw wfn (see Configuration)

r — numpy array of radial mesh (may not be linear)

* p —numpy array of upper component, P(r)

g — numpy array of lower component, Q(r) (empty if nonrelativistic)

>>> import pytom
>>> X = pytom.FreeWfn (filename)
>>> X.get_J()

description ()

evaluate_P (R)
Return p(R) (interpolated)

evaluate_Q(R)
Return q(R) (interpolated) if relativistic, otherwise 0.

1.4. pytom.freewfn module 3

372

Electron Capture Documentation, Release 0.7

evaluate_wfn_at_nucleus (nucoverlap_params)
Return wfn evaluated at the nucleus using NuclearOverlapParams.

nucoverlap_params has two attributes: R and the index of descriptions. We evaluate now depending on the
description!

P(R
0.1

P(R R
el - (())2+(Q())2

2-\5 [V
[p(r)dr

get_E()
get_J()
get_z()
get_code ()
get_config()
get_filename ()

get_holes ()
Return array of holes referenced from ground state configuration

get_1()
Return quantum number 1 associated with J

get_label ()
Return accepted orbital label (e.g. ‘Free s-wave’)

get_p()

get_poles ()
Return array of poles referenced from ground state configuration

get_qg()
get_xr()

get_rpq ()
Return r, p, and q as a tuple

integrate (x, y, start=0, end=inf)
Return integral from start to end of y(x).

If start and end are not in the range, interpolate y(start) and y(end) and add to y-array.
is_relativistic()

overlap_wfn (wfn2)
Return integral over all space of wfn2 multiplied by self

eInterpolate second wfn onto mesh of self (Stage 1 mesh)
*Find product on Stage 1 mesh.
eInterpolate product onto linear mesh with 251000 divisions and integrate.

populate_wfn ()
Populate r, p, and q from file

4 Chapter 1. pytom package

373

Electron Capture Documentation, Release 0.7

print_description ()

reread_wfn (filename="")

set_2Z (Z)

set_code (code)

set_config (config)

set_filename (filename)
Set filename if default is not where wfn is stored

set_p (p)

set_q(q)

set_r (r)

setup ()

square ()
Return ¥ - ¥ = P? 4 Q2

1.5 pytom.freewfn_helper module

pytom.
pytom.
pytom.
pytom.

pytom.

freewfn_helper.get_shakeoff_ energies (wfus)

freewfn_helper.get_shakeoff_ files (code, Z, holes, kappa)

freewfn_helper.get_shakeoff wfns (filelist)

freewfn_helper.get_shakeoff wfns_and_energies (code, Z, holes, kappa)

freewfn_helper.get_sorted wfns_by_ E (energies, wfns)

1.6 pytom.pytom module

class pytom.pytom.Pytom (code, Z, config=None, freeJ=None)
Wihn class includes identifying information like Z, element (or orbital index), configuration information default
pytom as a ground state configuration if not specified

Variables

wfns — a dictionary of WEn objects with key of the orbital index

Z (int)—number of protons in the nucleus

code (st ring)—description of code used to generate wins (e.g. “SRFontes”)
RELFLAG (boo1) —relativistic if True

config—aConfiguration object describing the electronic configuration

HEW_df - a dataframe storingg the binding energies and widths for each orbital, calculated
for a relativistic atom

>>>

>>>

>>> import pytom

config = pytom.Configuration (78, False)
>>> 7 = pytom.Pytom("SRFontes",78,config)
r,p,q9 = Z.get_wfn(3) .get_rpqg()

1.5. pytom.freewfn_helper module 5

374

Electron Capture Documentation, Release 0.7

add_w£En (element, wfn)
describe ()

get_BE (element)
Return binding energy.

Note: Because HEW_df is relativistic, must access by relativistic element

oIf relativistic element is not given, calculate the relativistic element given nonrelativistic element

oIf element is O, return O for binding energy (element is not O-indexed, so 0 corresponds to no orbital)

get_L (element)
Return width.

Note: Because HEW_df is relativistic, must access by relativistic element

oIf relativistic element is not given, calculate the relativistic element given nonrelativistic element

oIf element is O, return O for binding energy (element is not 0-indexed, so 0 corresponds to no orbital)

get_config()

get_elements_by J (/)
Return array of indices for occupied orbitals with J.

get_energy ()
Return sum of binding energies from holes and minus poles.

get_freed()

get_freeenergies ()
get_freeenergy by index (index)
get_freewfn_ by energy (energy)
get_freewfn_by_index (index)
get_freewfns ()
get_hole_energy ()
get_occupation (element)

get_occupied_elements (bound=False)
Return array of indices for occupied orbitals

get_occupied_wfns (bound=False)
Return array of WEn objects for occupied orbitals

get_partial_occupation (element)

get_w£En (element)
Return wfn given by element, a unique index.

get_wfns_by_J(J)

get_width ()
Return sum of widths from holes.

6 Chapter 1. pytom package

375

Electron Capture Documentation, Release 0.7

is_filled()

is_occupied (element)
Return true if an electron occupies the orbital indicated by index element.

is_relativistic()

populate_wfns ()
Add wfns depending on configuration.

repopulate_weEns (fname_stub)
Add wfns depending on configuration.

set_code (code)
Set code and RELFLAG.

set_config (config)
Set configuration variable.

set_freewfns (freewfus, freeenergies)

setup ()
Set the HEW_df variable by reading in the E-Gamma file.

1.7 pytom.pytomhelper module

pytom.pytomhelper.codealias (code)
Return string with publishable description of code.

pytom.pytomhelper.get_J (element, RELFLAG)
If relativistic, return kappa, else return 1.

pytom.pytomhelper.get_J_ label (J, RELFLAG)

pytom.pytomhelper.get_RELFLAG_from_code (code)
Return True if code is ‘FRFontes’ or ‘Faessler’. Otherwise False.

pytom.pytomhelper.get_XNlabel (element, RELFLAG)
Return label such as ‘M2’

pytom.pytomhelper.get_element_by label (label, RELFLAG)
Return unique orbital index given label.

Example
>>>get_element_by_label(‘2s’,1) 2 >>>get_element_by_label(‘3s’,0) 4 >>>get_element_by_label(‘3s’,1) 5

pytom.pytomhelper.get_element_by label with_subshells (label)
If there are subshells, such as 4f5/2 and 4f7/2, then this is denoted as 4f* and 4f respectively.

pytom.pytomhelper.get_element_with_alternate_subshell (relelement)
pytom.pytomhelper.get_free_label (J, RELFLAG)
pytom.pytomhelper.get_Jj_from_kappa (kappa)

pytom.pytomhelper.get_jstring from_ kappa (kappa)
Return associated j-value. e.g. ‘1/2’

pytom.pytomhelper.get_kappa_ from_1 (I, lowJ=True)
Given l, return associated kappa quantum number. Assume lower of the two J, unless lowJ = False.

For example, if 1=1, return p1/2 (kappa =1) not p3/2 (kappa=-2)

1.7. pytom.pytomhelper module 7

376

Electron Capture Documentation, Release 0.7

pytom.pytomhelper.get_1 (element, RELFLAG)
pytom.pytomhelper.get_1_ from J(J, RELFLAG)

pytom.pytomhelper.get_1_from kappa (kappa)
Given kappa, return associated 1 quantum number.

pytom.pytomhelper.get_1_from_ label (label)
Given spdf, return integer quantum number 1.

pytom.pytomhelper.get_1_label (/)

pytom.pytomhelper.get_label (element, RELFLAG)
Return orbital label.

For example, “1s” or “2p1/2”.

pytom.pytomhelper.get_label_ formatted (element, RELFLAG)
Return math-formatted orbital label.

For example, “1s” or “2p${}_{1/2}$”.
pytom.pytomhelper.get_n (element, RELFLAG)
pytom.pytomhelper.get_nonrel_element (n,/)
pytom.pytomhelper.get_nonrel_element_from rel_element (rel_element)

pytom.pytomhelper.get_nonrel info_df ()
Return dataframe that matches unique element ID to n and 1.

pytom.pytomhelper.get_rel_element (n, kappa)
pytom.pytomhelper.get_rel_ element_from nonrel_element (nonrel_element)

pytom.pytomhelper.get_rel info_df ()
Return dataframe that matches unique element ID to n and kappa.

pytom.pytomhelper.isP (J, RELFLAG)
pytom.pytomhelper.isS (J, RELFLAG)
pytom.pytomhelper.is_orb_P (element, RELFLAG)
pytom.pytomhelper.is_orb_S (element, RELFLAG)

pytom.pytomhelper.setup ()
Read in the info files for relativistic wfns and nonrelativistic wfns

The CSV files that map element to ‘level’, ‘n’, ‘kappa’ or ‘I’

1.8 pytom.wfn module

Created on 12 December 2017 @author: Katrina Koehler

class pytom.wfn.WEn (code, Z, element, config)
Wihn class includes identifying information like Z, element (or orbital index), configuration information

Variables
* RELFLAG (bool) — relativistic flag
* code (string)—the code used to generate the win

e filename (string)—used to read out the wfn from disk

8 Chapter 1. pytom package

377

Electron Capture Documentation, Release 0.7

* Z (int) - number of protons in nucleus

* element (int)— orbital index (indexing is different for relativistic and nonrelativistic)
* config — configuration used to generate wfn (see Configuration)

* r —numpy array of radial mesh (may not be linear)

* p —numpy array of upper component, P(r)

e g - numpy array of lower component, Q(r) (empty if nonrelativistic)

>>> import pytom

>>> config = pytom.Configuration(78,0)

>>> config.set_gs_configuration()

>>> wfn = pytom.Wfn ("SRFontes", 78,1, config)

>>> config2 = pytom.Configuration(77,0)

>>> config2.set_configuration_from_gs (holes=[5],poles=[])
>>> wfn = pytom.Wfn ("SRFontes",77,1,config2)

>>> wfn.overlap_wfn(wfn2)

>>> r,p,q = wfn.get_rpg()

description ()

evaluate_P (R)
Return p(R) (interpolated)

evaluate_Q(R)
Return q(R) (interpolated) if relativistic, otherwise 0.

evaluate_wfn_at_nucleus (nucoverlap_params)
Return wfn evaluated at the nucleus using NuclearOverlapParams.

nucoverlap_params has two attributes: R and the index of descriptions. We evaluate now depending on the
description!

.. PR
0- R

ol - (M)z + (M)z

2- /% [UH(r)U(r)dr
3 JOi(r)V(r)p(r)r2dr
h [p(r)r2dr

*4 - P(R)
o5 J Pi(r)P(r)p(r)dr
V S p(ryr2dr
get_J()
Return quantum number 1 or kappa depending on whether the win is relativistic

get_z()
get_code ()
get_config()

get_element ()
get_filename ()

get_holes ()
Return array of holes referenced from ground state configuration

1.8. pytom.wfn module 9

378

Electron Capture Documentation, Release 0.7

get_1()
Return quantum number 1 associated with win

get_label ()
Return accepted orbital label (e.g. ‘1s”)

get_n ()
Return quantum number n associated with wfn

get_p()

get_poles ()
Return array of poles referenced from ground state configuration

get_qg()
get_r()

get_rpq()
Return r, p, and q as a tuple

integrate (x, y, start=0, end=inf)
Return integral from start to end of y(x).

If start and end are not in the range, interpolate y(start) and y(end) and add to y-array. If integration
range includes fewer than 50 points, interpolate onto linear mesh and integrate (useful for nucleus-electron
integrations)

is_relativistic()

overlap_wEn (wfn2)
Return integral over all space of wfn2 multiplied by self

eInterpolate second wfn onto union mesh (Stage 1 mesh)
*Find product on Stage 1 mesh.
eIntegrate product using non-uniform Simpson’s method.

populate_wfn ()
Populate r, p, and q from file

print_description ()
reread_wEn (filename="")
set_2Z (Z)

set_code (code)
set_config (config)

set_filename (filename)
Set filename if default is not where wfn is stored

set_p (p)
set_q(q)
set_r (r)
setup ()

square ()
Return ¥ - ¥ = P? 4 Q2

10

Chapter 1. pytom package

379

Electron Capture Documentation, Release 0.7

1.9 pytom.wfnhelper module

pytom.wfnhelper. flmesh_interp (x/,yl, x2,y2)
Return y2 interpolated on the x1 mesh.

pytom.wfnhelper. f2mesh_interp (xI, yl, x2, y2)
Return y1 interpolated on the x2 mesh.

pytom.wfnhelper.get_E_from_f£ilename (filename)
Get energy from filename for free wfns.

pytom.wfnhelper.get_Z_from_filename (filename)
Get Z from filename.

pytom.wfnhelper.get_code_from_filename (filename)
Get code from filename extension.

pytom.wfnhelper.get_£ilename (code, Z, holes, poles, element)
Create identifying wfn filename.

pytom.wfnhelper.get_holes_from filename (filename)
Get hole element list from filename

pytom.wfnhelper.get_hpstring (holes, poles)
Turn holes and poles into a readable string with sorted holes and poles arrays.

Example

>>> from pytom import wfnhelper
>>> wfnhelper.get_hpstring([5,3]1,[22])
'h_3_5_p_22'

pytom.wfnhelper.get_kappa_ from filename (filename)
Get kappa from filename for free wfns.

pytom.wfnhelper.hpstring_to_hparray (self, hpstring)
Return tuple of holes and poles given hpstring.

Example

>>> from pytom import wfnhelper
>>> wfnhelper.hpstring_to_array('h_3_5 p 22")
[3,51,122]

pytom.wfnhelper.integrate (x,y)
Integrate using the non-uniform Simpson’s method

pytom.wfnhelper.interpolate_linmesh (x_lin, x,y)
Use CubicSpline to interpolate y onto x_lin mesh.

pytom.wfnhelper.interpolate_wEn (x_interp, x,y)
Return y interpolated on the x_interp mesh.

Use a CubicSpline to interpolate the X,y pair onto the x_interp mesh.

pytom.wfnhelper.simpson_nonuniform(x,f)

From Wikipedia article on Simpson’s Rule Simpson rule for irregularly spaced data.

x [list or np.array of floats] Sampling points for the function values
f [list or np.array of floats] Function values at the sampling points

float : approximation for the integral

1.9. pytom.wfnhelper module

1

380

Electron Capture Documentation, Release 0.7

pytom.wfnhelper.unionmesh_interp (x/,yl, x2, y2)
Return y1 and y2 interpolated on a mesh formed by the union of x1 and x2.

1.10 Module contents

12 Chapter 1. pytom package

381

CHAPTER
TWO

ECAP PACKAGE

2.1 Submodules

2.2 ecap.component module

class ecap.component . Component (excitation, order)
Component class is a spectrum component.

A component is associated with a particular excitation, such as 2Hu-O(2). This is an order-2 calculation of the
2-hole shake up component of a given spectrum.

Variables

excitation (string) - excitation type, such as 2Ho (2-hole shake off)

order (int) — order of the calculation, indicating the number of orbital overlap factors
with unmatched quantum numbers in a given term for the atomic overlap.

lparamss — array of LorentzianParams objects describing the Lorentzians, which
make up the Component

overlaps — array of Overlap objects describing the atomic overlaps

component — array representing the spectral component. This is a sum of the Lorentzians
and is added to other components to form the spectrum.

add_configuration (lparams, overlap, lorentzian)
Add a configuration (which produces a peak) to the object by appending to the LorentzianParams array,
Overlap array, and component array.

Variables
* lparams —a LorentzianParams object with properties (config, F, width, energy).
* overlap—an Overlap object

* lorentzian — array to add to component created with F, width, energy.

Note: lorentzian array must be the same length as component array.

add_to_component (addition)
Add addition to component array.

get_Fs ()

get_component ()

13

382

Electron Capture Documentation, Release 0.7

get_configs ()

get_energies ()

get_excitation ()
get_lparams_by_ configuration (config)
get_lparamss ()

get_order ()

get_overlaps ()

get_widths ()

classmethod load (filename)
Return Component object from a pickled Component file.

save (filename)
Save Component object as a pickle.

save_text (filename)
Save component array as text.

set_component (component)

set_lparamss (Iparamss)

2.3 ecap.ecalhelper module

ecap.ecalhelper.G (x, amplitude, center, sigma)
Return Gaussian line shape at x with HWHM alpha=2In(2)sigma

ecap.ecalhelper.L (x, amplitude, center, gamma)
Return Lorentzian line shape at x with HWHM gamma

ecap.ecalhelper.V (x, amplitude, sigma, gamma, center)
Return the Voigt line shape at x with Lorentzian component HWHM gamma and Gaussian component HWHM
alpha.

ecap.ecalhelper.VoigtExpConv (x, amplitude, center, sigma, gamma, tau)
Computes the convolution of Voigt with an Exponential.

ecap.ecalhelper.bortels (x, amplitude, center, sigma, tau)
Bortels function: a convolution of a Guassian and an exponential

ecap.ecalhelper.calibrate_optmax (optmax, ecalpts=2, bins=100000, verbose=True, model-
type="Voigt’)
Do a calibration on optmax. Hardcoded for 1 or 2 peaks (Pt-193 L1 and M1).
ecap.ecalhelper.evaluate_peak_area (xslice, yslice=[], binwidth=1, model=None, sum-
Data=False)

ecap.ecalhelper.evaluate_peak_area_uncertainty (xslice, yslice=[], binwidth=1,
model=None, sumData=False, use-
ModelUncertainty=False)

ecap.ecalhelper.exponential_ fit (x,a,b,c)

ecap.ecalhelper.find_peak_indices (x, y, peaknum=2, thresh=0.02, min_dist=20, ver-

bose=True)
Take in a spectrum with x and y and find the tallest peaks using the peakutils peak finder. Return the indices of

the tallest peaknum peaks.

14 Chapter 2. ecap package

383

Electron Capture Documentation, Release 0.7

ecap.ecalhelper. find_peaks (x, y, peaknum=2, thresh=0.02, min_dist=5)
Take in a spectrum with x and y and find the tallest peaks using the peakutils peak finder. Return the x-values of
the tallest peaknum peaks.

ecap.ecalhelper.fit_and_evaluate_exponential_on_new_mesh (x, y, mesh)

ecap.ecalhelper. fit_ehist (bin_centers, ehist, peaknum=2, verbose=True, modeltype="Voigt’, with-
bkg=False, fixedGamma=None)

ecap.ecalhelper. fit_npeaks (bin_centers, ehist, npks, xlow=None, xhigh=None, model-
type="Voigt’, withbkg=False, bkgtype='Linear’, verbose=True,
fixedGamma=None, fixedSigma=True, fixedSigma_value=None,

thresh=0.005, min_dist=10, extracentroids=[])
Fit a spectral region with npks.

ecap.ecalhelper. £it_peak (bin_centers, ehist, xlow, xhigh, modeltype="Voigt’, withbkg=False, ver-
bose=True, fixedGamma=None)

ecap.ecalhelper.integrate_peak_minus_background (xslice, model)

ecap.ecalhelper.integrate_peak_minus_background with_new_x (xslice, binwidth,
model)

ecap.ecalhelper.isotope_to_TeX (isotopestr)
Take in a string like Pt-193 and return a TeX-ified string

ecap.ecalhelper.make_ehist (energy, binwidth=6, maxE=15000)

ecap.ecalhelper.make_npeak_model (num, centroids, amplitudes, modeltype="Voigt’, fixed-

Sigma=True, fixedSigma_value=None)
Make a model with num peaks with initial guesses for centroids and amplitudes. Modeltype is used for every

peak. Possibilities are ‘Voigt’, ‘Gaussian’, ‘Bortels’, and ‘Bortels2’. Only tested with Voigt. If fixedSigma, all
sigma values for the peaks are fixed to each other.

ecap.ecalhelper.optmax2energy (runnumber, chan, ecalpts=2, binwidth=6, verbose=False)
ecap.ecalhelper.read_ehist (filename)
ecap.ecalhelper.read_optmax (filename)

ecap.ecalhelper.two_tailed_bortels (x, amplitude, center, sigma, taul, tau2, eta)
Two-tailed Bortels function: a convolution of a Gaussian and two exponentials. eta is the fraction between the
two exponentials.

ecap.ecalhelper.write_ehist (ehist, bin_centers, filename)

ecap.ecalhelper.write_energy (energy, filename)

2.4 ecap.lorentzianparams module

class ecap.lorentzianparams.LorentzianParams (config=None, F=None, width=None, en-

ergy=None)
LorentzianParams keeps track of configuration, F, width, and energy.

Variables

* config-aConfiguration object to keep track of the configuration used to create the
Lorentzian

» F (float)— F?is the weighting of the Lorentzian

e width (f1oat)— width of the Lorentzian

2.4. ecap.lorentzianparams module 15

384

Electron Capture Documentation, Release 0.7

* energy (float) - centroid of the Lorentzian
get_F ()
get_config()
get_energy ()
get_width ()
set_F (F)
set_config (config)
set_energy (energy)

set_width (width)

2.5 ecap.nuclearoverlapparams module

class ecap.nuclearoverlapparams.NuclearOverlapParams (nuclearoverlap_type, R)
NuclearOverlapParams keeps track of R and nuclearoverlap_type

Variables
e R (float) - nuclear radius in au

* nuclearoverlap_type (int)—index of descriptions

Index of descriptions:

P(R
Lo

P(R R
.]- (())2+(Q())2

© 2-4/% [WI(r)U(r)dr
.3 Jwi(r)V(r)p(r)r2dr
- [p(r)r2dr

- 4-P(R)

o 5./ LPI)PE)p(r)dr
J p(ryr2dr
description ()
Print string with description and nuclear radius.
get_R()

get_label ()
Return math-string description of nuclear overlap.

get_nuclearoverlap_type ()
Return index of nuclear overlap type.

set_R(R)

set_nuclearoverlap_type (nuclearoverlap_type)

16 Chapter 2. ecap package

385

Electron Capture Documentation, Release 0.7

2.6 ecap.overlap module

class ecap.overlap.Overlap (parent, daughter)

Atomic overlap details stored in Overlap.

Variables

parent — a pytom with the parent configuration (see Pyt om)

daughter — a pytom with the daughter configuration (see Pyt om)

K (f1oat)—the atomic overlap given all orbital overlaps have matching quantum numbers.
If orbital is unpaired (i.e. there is a hole in the daughter), it is omitted.

axisl (int)— the number of orbitals in the parent with at least one electron

axis2 (int) - the number of orbitals in the daughter with at least one electron

overlapmatrix — 2-d array with size (axis1, axis2) used to store orbital overlaps

overlapmatrix_ free — 2-d array used to store overlaps of wins (both free and bound)
corresponding with the value of free]

Cvar int freel: integer referring to total spin (kappa if relativistic, 1 if non-relativistic) of free wfns
if both parent and daughter have the same J for their free wins

f£fill blockmatrix ()
Reconfigure overlap matrix into 1 or j blocks.

fill overlapmatrix()
Calculate orbital overlap matrix.

*Orbital overlap is zero if either parent or daughter is unoccupied.
*Orbital overlap is zero if quantum number | (or kappa in relativistic wfns) do not match

fill overlapmatrix_free ()
Calculate orbital overlap matrix for free wfns and matching J wfns.

get_K()
get_blockmatrix (log=False)
get_freed()

get_matrix_antidiagonal (log=Faulse)
Return matrix with O’s on the diagonal.

get_matrix_as_log (matrix)

get_matrix diagonal (log=False)
Return matrix with O’s everywhere except the diagonal.

get_matrix_extremum (diagonal=True, minimum=True, log=False)
Return the minimum or maximum of the matrix along the diagonal or off_diagonal.

get_matrix_ extremum bytype (most=True, diagonal=True, log=True)

get_matrix value_position (value, log=False)
Return position in matrix of element equal to the value. If more than one position correspond, return first
position.

get_overlapmatrix ()

get_overlapmatrix_free (log=Fulse)

2.6. ecap.overlap module 17

386

Electron Capture Documentation, Release 0.7

plot (ax=None, fig=None, log=True, colorbar=True, blocklabels=True, mostlFlag=False,

least] Flag=False, mostOFlag=False, leastOFlag=Fualse)
Plot the log of the overlap matrix.

plot_free (ax=None, fig=None, log=True, colorbar=True, mostlFlag=False, leastlFlag=False,

mostOFlag=Fualse, leastOFlag=False)
Plot the log of the overlap matrix.

set_K()
Calculate K.

eDefault is K=1
*Otherwise K = II < k’|k >°, where k is the orbital where both parent and the daughter are occupied
*The power is determined by the parent occupation

set_blockmatrix (matrix)
Use cautiously! This overwrites the existing matrix with the given matrix. NO checks on provided matrix.

set_overlapmatrix (matrix)
Use cautiously! This overwrites the existing matrix with the given matrix. NO checks on provided matrix.

setup ()
Call set_K() and fill_overlapmatrix().

2.7 ecap.spechelper module

class ecap.spechelper.PeakRatioID (code, order, nuctype)
Bases: tuple

code
Alias for field number 0

nuctype
Alias for field number 2

order
Alias for field number 1

ecap.spechelper. find _max (x, y, xmin, xmax)
Return local maximum in y, given an x-range specified by xmin and xmax.

ecap.spechelper.get_nonexistent_path (fname_path)
Get the path to a filename which does not exist by incrementing path. Taken from Stack Overflow

Example

>>> get_nonexistent_path('/etc/issue')
'/etc/issue-1"

>>> get_nonexistent_path('whatever/1337bla.py")
'whatever/1337bla.py’

ecap.spechelper.get_nuclearoverlap_label (nuctype)
Return math-string description of nuclear overlap.

ecap.spechelper.get_order_label (order)
Return math-string description of nuclear overlap.

ecap.spechelper.get_peak_ratios (x,y, energies, index=0)
Return ratios of the peaks found near the energies given.

18 Chapter 2. ecap package

387

Electron Capture Documentation, Release 0.7

The ratio is with respect to the peak found at the energies[index].
Example
>>>get_peak_ratios(x,y,[100,200,300],1) [Peak(100)/Peak(200), Peak(300)/Peak(200)]
ecap.spechelper.get_peakratios_1H_as_function_of_R (isotope, code, order, nuctype)

ecap.spechelper.get_peaks (x, y, energies, width=20)
Return an array of peak-values from the supplied energies array.

Given some centroid energies, find the local maximum within width (default = 20 eV) of that centroid.

ecap.spechelper.get_subplot_from_index (index)
In a 2-by-X subplot array, given an index, return the X,y tuple of the subplot position.

2.8 ecap.spectrum module

Created on 12 December 2017 @author: Katrina E. Koehler

class ecap. spectrum. Spectrum (code, isotope, mnu, nuclearparent=None)
Spectrum class includes identifying information like decaying isotope, order of calculations, etc.

Example

>>> from ecap import Spectrum

>>> X = Spectrum("SRFontes","Pt193",0)
.get_capture_set ()
.set_1H_spectrum/()
.set_excitation_order ("2Hu",2)
.set_2H_spectrum/()

XXX X

Variables

RELFLAG (bool) — relativity of atomic code used in wfns

code (string) - code used to create the wins

isotope (string)— decaying isotope

mnu (] oat)— mass of neutrino

Q (float) —total energy of reaction

Z (int)—number of protons in parent atom

A (int)—number of nucleons in parent atom

R (float)— nuclear radius used in nuclear overlap calculations

nucoverlap_params — nuclear overlap parameters (see NuclearOverlapParams)

excitation_order — dictionary with excitation strings as keys (e.g. “1H” or “2Hu”)
and orders as values (e.g. -1 or 2)

components — dictionary with excitation strings as keys (e.g. “1H” or “2Hu”) and com-
ponents as values (see Component)

spectrum — summed spectrum of components

x —numpy array from 0 to Q with default 0.1 eV bins

parent — a pytom with default ground state configuration (see Pyt om)

2.8. ecap.spectrum module 19

388

Electron Capture Documentation, Release 0.7

* daughter — a pytom with default ground state configuration and Z-1 protons (see Pyt om)
add_components ()
Set spectrum to the sum of the populated components.

calc_Lorentzian (w, [params)
Return a Lorentzian array using Spectrum’s Q, x, and mnu and using passed values for the width, energy,
and scaling from Iparams and overall weighting w.

calc_shakeoff_ integral (w, [params)
Return a Lorentzian array using Spectrum’s Q, x, and mnu and using passed values for the width, energy,
and scaling from Iparams and overall weighting w.

classmethod combine_spectra (code, isotope, mass, excitation_order_dict, nuctype=1)
Load saved Spectrum pickles and combine depending on orders given in dictionary.

convolve_gaus (sigma)
Set spectrum to spectrum convolved with with gaussian described by sigma.

get_1H_F (overlap, partial=False)
Return F for 1H excitation given overlap.

F calculated up to order 1

get_1H configs ()
Return list of configurations with Z-1 and a hole in the capture set.

see Configuration

get_1H labels ()
Return list of strings of format ‘M2/M1°.

Default denominator is the Oth orbital in the capture set.

get_1H ratio_labels ()
Return list of strings of format ‘M2/M1°.

Default denominator is the Oth orbital in the capture set.

get_1H_ ratios (method='Fs’)
Return series with index of ratio labels (e.g. M2/M1) and values of ratios from capture set.

get_2H configs ()
Return array of 2-hole configurations.

Criteria: - First hole is in the capture set. - Second hole is occupied in parent and if second hole is the same
as first hole, the occupation must be at least 2. - Pole (shake up orbital) cannot be the same as either first
or second hole. - ensure a non-zero overlap

e<clf1> or <clf2> must be non-zero.
oIf <clf1> is nonzero, f2 must be in captureset because <ilf2> must be nonzero.
oIf <clf2> is nonzero, f1 must be in captureset because <ilf1> must be nonzero.
*Binding Energy of first hole + second hole - pole must be less than the Q-value
get_2Ho_F (overlap, partial=False)
Return F for 2-hole shake off excitation given overlap.
F calculated up to order 2

get_2Ho_configs ()
Return array of 2-hole shake off configurations.

20 Chapter 2. ecap package

389

Electron Capture Documentation, Release 0.7

get_2Hu_F (overlap, partial=False)
Return F for 2-hole shake up excitation given overlap.

F calculated up to order 2

get_3Ho_F (overlap, partial=False)
Stub.

get_3Hu_F (overlap, partial=False)
Stub.

get_A()
Return A

get_F (excitation, overlap, partial=False)
Call the appropriate function given excitation and overlap

get_Q()
Return Q.

get_R()
Return R

get_Z()
Return Z

get_capture_J()
Return possible J-values from which capture is allowed.

If relativistic, return kappa-values: [-1,1] If nonrelativistic, return 1-values: [0,1]

get_capture_set ()
Return list of elements from which capture is possible.

For s- or p:math:{}_{1/2}- orbitals: If relativistic, element must have a kappa equal 1 or -1 If nonrelativistic,
element must have an 1 equal 0 or 1

The parent must have an electron in that orbital. The daughter orbital’s binding energy must be less than
Q.

get_code ()
Return code string.

get_component (excitation)
Return component given excitation type.

get_component_Fs (excitation)
get_component_configs (excitation)
get_component_energies (excitation)
get_component_widths (excitation)

get_configuration_by_ energy (energy, deltabE=5, excitation=None)
Find configuration by energy. If not exact energy, find it within a tolerance of deltaE. May return more
than one configuration.

get_directory ()
Return directory string.

Default is ‘C:/Data/spectra/isotope/code/’

get_excitation_order (excitation)
Return order of given excitation.

2.8. ecap.spectrum module 21

390

Electron Capture Documentation, Release 0.7

excitation — string such as “1H” or “3Ho” or “2Hu”

get_excitation_orders ()
Return dictionary storing excitation and orders.

get_filename (overwrite=True)
Return filename.

get_directory() returns directory, which is appended to a filename of the format:
mnu_{mnu}_{XXXXX}_nuc_{Y}.pickle
emnu is the mass of the neutrino.
*{XXXXX} is the order of each excitation type. e.g. -12000 stands for O(-1) for 1H and O(2) for 2Hu
*{Y} is the index of the nuclearoverlap type. e.g. 1 is P(R)/R

get_nuclearelement (hole)

get_nuclearoverlap (pytom, element)
Return nuclear overlap.

get_orderstring ()
Return string representing excitation_order dictionary.

get_partial_spectrum (excitation)
Return the spectrum component as an array from the given excitation type.

get_peak_areas (excitation="1H’)
Return array of peak areas for all peaks contributing to a component defined by excitation.

get_spectrum ()
Return numpy array spectrum

get_spectrum as_dataframe ()
Return spectrum as dataframe with index as x and each component as a column.

get_spectrum_norm()
Return normalized spectrum, such that the sum is 1.

get_x()
Return numpy array x.

integrate_peak (lparams)
Return peak for Lorentzian described by the LorentzianParams

integrate_spectrum (Elow, Ehigh)
Return integral of spectrum for region from Elow to Ehigh

is_E_conserved (daughter)
Return True if the daughter configuration energy is less than the Q value

is_orbital_overlap_nonzero (elementl, element2)
Return True if element2 and element2 have the same orbital quantum number I (or kappa if relativistic)

is_relativistic()
Return RELFLAG

classmethod load (filename)
Load saved Spectrum pickle.

classmethod load_by_characteristics (code, isotope, mnu, orderstring, nuctype)
Load saved Spectrum pickle.

22 Chapter 2. ecap package

391

Electron Capture Documentation, Release 0.7

print_2H configs (noblegascoreformat=True)
Print noble gas format of 2-hole configurations.

If noblegascoreformat==False, print hparray instead of noble gas core format.

save (filename="", overwrite=True)
Save self as a pickle using filename (default from get_filename ()).

save_components (directory="")
Save each populated component as a pickle.

save_text (filename)
Save spectrum as 2-column, comma-separated file using filename.

set_1H_Spectrum (order=-99999, configs=None, energies=None, partial=False)
Calculate and populate the 1-hole Component.

default order is taken from excitation_order dictionary.

*For each configuration from get_2H _configs (), adaughter Pytom is created with that configu-
ration and the Overlap object is created with the parent.

*F is calculated given the excitation and overlap parameters.

*If Fis 0, the configuration is skipped, otherwise a Lorentzian is calculated using the daughter pytom’s
get_width () and get_energy () methods.

*The Lorentzian is added to the Component as a LorentzianParams, Overlap, and an array
with the lorentzian calculated on the x-mesh of the Spect rum.

set_2Ho_Spectrum (order=-99999, configs=None, partial=False)
Calculate and populate the 2-hole shake off component.

default order is taken from excitation_order dictionary.

*For each configuration from get_2H configs (), adaughter Pytom is created with that configu-
ration and the Overlap object is created with the parent.

*F is calculated given the excitation and overlap parameters.

*If F is 0, the configuration is skipped, otherwise a Lorentzian is calculated using the daughter pytom’s
get_width () and get_energy () methods.

*The Lorentzian is added to the Component as a LorentzianParams, Overlap, and an array
with the lorentzian calculated on the x-mesh of the Spect rum.

set_2Hu_Spectrum (order=-99999, configs=None, energies=None, partial=False)
Calculate and populate the 2-hole shake up component.

default order is taken from excitation_order dictionary.

*For each configuration from get_2H configs (), adaughter Pytom is created with that configu-
ration and the Overlap object is created with the parent.

*F is calculated given the excitation and overlap parameters.

oIf F is 0, the configuration is skipped, otherwise a Lorentzian is calculated using the daughter pytom’s
get_width () and get_energy () methods.

*The Lorentzian is added to the Component as a LorentzianParams, Overlap, and an array
with the lorentzian calculated on the x-mesh of the Spect rum.

set_A (A)
Set instance variable A to A.

A is the total number of nucleons

2.8. ecap.spectrum module 23

392

Electron Capture Documentation, Release 0.7

set_0Q(Q)

Set instance variable Q to Q.
Q is the total reaction energy

set_R (R)
Set nuclear radius to R.

This sets the instance variable to R as well as setting the nucoverlap_params instance variable to R.

set_2Z (Z)
Set instance variable Z to Z.

Z is the number of protons in the parent atom decaying

set_code (code)
Set instance variable code to code string and set RELFLAG.

Valid options are “SRFontes”, “Gorczyca”, “FRFontes”, and “Gorczyca”. The former 2 set the RELFLAG
to False. The latter 2 set it to True.

set_component (excitation, component)
Set Component of a given excitation to the passed component.

Recalculates spectrum by calling add_components ().

set_daughter ()
Set instance variable daughter to a Pytom with Spectrum’s code and Z-1 (in the ground state).

set_excitation_order (excitation, order)
Set order of given excitation.

excitation — string such as “1H” or “3Ho” or “2Hu” order — number indicating how many orbital overlaps
have unmatched quantum numbers

set_nucoverlap_params (nucoverlap_type=0, R=-1)
Set instance variable to a NuclearOverlapParams object with the given type (default is 0) and radius
(default is self.R).

set_parent ()
Set instance variable parent to a Pytom with Spectrum’s code and Z (in the ground state).

set_x (x)
Set instance variable x to x.

Resets x and zeros spectrum.

setup ()
Set up the Spectrum class.

Runs during initialization. - Assign Q, Z, A, R. - Create the x-array. Default is 0.1 eV bins up to 2*Q -
Calls set_parent () and set_daughter ()

2.9 ecap.xspectrum module

class ecap . xspectrum.XSpectrum (isotope, x, y, deltaE=0)
XSpectrum class is similar to Spect rum, but used to store experimental spectra.

Variables
* isotope (string)— Decaying isotpe. e.g. “Ho163”

e deltaE (float) - resolution of detector (default is 0).

24 Chapter 2. ecap package

393

Electron Capture Documentation, Release 0.7

* x —numpy array storing the x-values in eV
* spectrum—numpy array storing the y-values in counts/bin

* filename (string)— filename of experimental data

>>> from ecap import Spectrum
X = Spectrum("SRFontes","Pt193",0)
X.get_capture_set ()
X.print_2H_configs ()

>>> X.set_1H_spectrum()
X.set_excitation_order ("2Hu", 2)
X.set_2H_spectrum()

convolve_gaus (sigma)
Set spectrum to spectrum convolved with with gaussian described by sigma.

get_directory ()
Return directory string.

Default is ‘C:/Data/spectra/isotope/code/’ for Windows
Default is ‘/Users/kkoehler/ecapData/ for Mac

get_filename ()
Return filename.

get_internal_indices (xi, xf)
get_spectrum ()

get_spectrum_norm/()
Return normalized spectrum, such that the sum is 1.

get_x()

integral (xi, xf, bkg=0)
Return the sum of the counts in the spectrum between xi and xf with an optional background subtracted.

integral_uncertainty (xi, xf, bkg=0)
Return the uncertainty of the sum of the counts in the spectrum between xi and xf with an optional back-
ground subtracted.

classmethod load (filename)
Load saved XSpectrum pickle.

save (filename="")
Save self as a pickle using filename (default from get_filename ()).

save_text (filename)
Save spectrum as 2-column, comma-separated file using filename.

set_filename (filename)

set_x (x)

2.10 Module contents

2.10. Module contents 25

394

Electron Capture Documentation, Release 0.7

26

Chapter 2. ecap package

395

e

PYTHON MODULE INDEX

ecap, 25

ecap.
ecap.
ecap.
ecap.
.overlap, 17
ecap.
ecap.
.xspectrum, 24

ecap

ecap

component, 13
ecalhelper, 14
lorentzianparams, 15
nuclearoverlapparams, 16

spechelper, 18
spectrum, 19

27

396

Electron Capture Documentation, Release 0.7

28

Python Module Index

397

A

add_components() (ecap.spectrum.Spectrum method), 20
add_configuration() (ecap.component.Component

method), 13

add_electron() (pytom.configuration.Configuration
method), 1

add_to_component() (ecap.component.Component
method), 13

add_wfn() (pytom.pytom.Pytom method), 5

B

bortels() (in module ecap.ecalhelper), 14

C

calc_Lorentzian() (ecap.spectrum.Spectrum method), 20
calc_shakeoff_integral() (ecap.spectrum.Spectrum
method), 20
calibrate_optmax() (in module ecap.ecalhelper), 14
code (ecap.spechelper.PeakRatiolD attribute), 18
codealias() (in module pytom.pytomhelper), 7
combine_spectra() (ecap.spectrum.Spectrum
method), 20
Component (class in ecap.component), 13
Configuration (class in pytom.configuration), 1
convolve_gaus() (ecap.spectrum.Spectrum method), 20
convolve_gaus() (ecap.xspectrum.XSpectrum method),
25

class

D

describe() (pytom.pytom.Pytom method), 6

description() (ecap.nuclearoverlapparams.N uclearOverlapPaIrzﬁﬁ?s

method), 16
description() (pytom.freewfn.FreeWfn method), 3
description() (pytom.wfn.Wfn method), 9

E

ecap (module), 25

ecap.component (module), 13
ecap.ecalhelper (module), 14
ecap.lorentzianparams (module), 15
ecap.nuclearoverlapparams (module), 16
ecap.overlap (module), 17

INDEX

ecap.spechelper (module), 18

ecap.spectrum (module), 19

ecap.xspectrum (module), 24

evaluate_P() (pytom.freewfn.FreeWfn method), 3

evaluate_P() (pytom.wfn.Wfn method), 9

evaluate_peak_area() (in module ecap.ecalhelper), 14

evaluate_peak_area_uncertainty() (in module
ecap.ecalhelper), 14

evaluate_Q() (pytom.freewfn.FreeWfn method), 3

evaluate_Q() (pytom.wfn.Wfn method), 9

evaluate_wfn_at_nucleus() (pytom.freewfn.FreeWfn
method), 4

evaluate_wfn_at_nucleus() (pytom.wfn.Wfn method), 9

exponential_fit() (in module ecap.ecalhelper), 14

flmesh_interp() (in module pytom.wfnhelper), 11

f2mesh_interp() (in module pytom.wfnhelper), 11

fill_blockmatrix() (ecap.overlap.Overlap method), 17

fill_overlapmatrix() (ecap.overlap.Overlap method), 17

fill_overlapmatrix_free() (ecap.overlap.Overlap method),
17

find_max() (in module ecap.spechelper), 18

find_peak_indices() (in module ecap.ecalhelper), 14

find_peaks() (in module ecap.ecalhelper), 15

fit_and_evaluate_exponential_on_new_mesh() (in mod-
ule ecap.ecalhelper), 15

fit_ehist() (in module ecap.ecalhelper), 15

fit_npeaks() (in module ecap.ecalhelper), 15

fit_peak() (in module ecap.ecalhelper), 15

Wih (class in pytom.freewfn), 3

G

G() (in module ecap.ecalhelper), 14

get_1H_configs() (ecap.spectrum.Spectrum method), 20

get_1H_F() (ecap.spectrum.Spectrum method), 20

get_1H_labels() (ecap.spectrum.Spectrum method), 20

get_1H_ratio_labels() (ecap.spectrum.Spectrum method),
20

get_1H_ratios() (ecap.spectrum.Spectrum method), 20

get_2H_configs() (ecap.spectrum.Spectrum method), 20

get_2Ho_configs() (ecap.spectrum.Spectrum method), 20

29

398

Electron Capture Documentation, Release 0.7

get_2Ho_F() (ecap.spectrum.Spectrum method), 20
get_2Hu_F() (ecap.spectrum.Spectrum method), 20
get_3Ho_F() (ecap.spectrum.Spectrum method), 21
get_3Hu_F() (ecap.spectrum.Spectrum method), 21
get_A() (ecap.spectrum.Spectrum method), 21
get_BE() (pytom.pytom.Pytom method), 6
get_blockmatrix() (ecap.overlap.Overlap method), 17
get_capture_J() (ecap.spectrum.Spectrum method), 21
get_capture_set() (ecap.spectrum.Spectrum method), 21
get_code() (ecap.spectrum.Spectrum method), 21
get_code() (pytom.freewfn.FreeWfn method), 4
get_code() (pytom.wfn.Wfn method), 9
get_code_from_filename() (in module pytom.wfnhelper),
11
get_component() (ecap.component.Component method),
13
get_component() (ecap.spectrum.Spectrum method), 21
get_component_configs() (ecap.spectrum.Spectrum
method), 21
get_component_energies()
method), 21
get_component_Fs() (ecap.spectrum.Spectrum method),
21
get_component_widths()
method), 21
get_config() (ecap.lorentzianparams.LorentzianParams
method), 16
get_config() (pytom.freewfn.FreeWfn method), 4
get_config() (pytom.pytom.Pytom method), 6
get_config() (pytom.wfn.Wfn method), 9
get_configs() (ecap.component.Component method), 13
get_configuration_by_energy() (ecap.spectrum.Spectrum
method), 21
get_directory() (ecap.spectrum.Spectrum method), 21
get_directory() (ecap.xspectrum.XSpectrum method), 25
get_E() (pytom.freewfn.FreeWfn method), 4
get_E_from_filename() (in module pytom.wfnhelper), 11
get_element() (pytom.wfn.Wfn method), 9
get_element_by_label() (in module pytom.pytomhelper),
7
get_element_by_label_with_subshells() (in module py-
tom.pytomhelper), 7
get_element_with_alternate_subshell() (in module py-
tom.pytomhelper), 7
get_elements_by_J() (pytom.configuration.Configuration
method), 1
get_elements_by_J() (pytom.pytom.Pytom method), 6
get_energies() (ecap.component.Component method), 14
get_energy() (ecap.lorentzianparams.LorentzianParams
method), 16
get_energy() (pytom.pytom.Pytom method), 6
get_excitation() (ecap.component.Component method),
14

(ecap.spectrum.Spectrum

(ecap.spectrum.Spectrum

get_excitation_order() (ecap.spectrum.Spectrum

method), 21

get_excitation_orders() (ecap.spectrum.Spectrum
method), 22

get_F() (ecap.lorentzianparams.LorentzianParams
method), 16

get_F() (ecap.spectrum.Spectrum method), 21
get_filename() (ecap.spectrum.Spectrum method), 22
get_filename() (ecap.xspectrum.XSpectrum method), 25
get_filename() (in module pytom.wfnhelper), 11
get_filename() (pytom.freewfn.FreeWfn method), 4
get_filename() (pytom.wfn.Wfn method), 9
get_free_label() (in module pytom.pytomhelper), 7
get_freeenergies() (pytom.pytom.Pytom method), 6
get_freeenergy_by_index() (pytom.pytom.Pytom
method), 6
get_freel() (ecap.overlap.Overlap method), 17
get_freeJ() (pytom.configuration.Configuration method),
1
get_free]() (pytom.pytom.Pytom method), 6
get_freewfn_by_energy() (pytom.pytom.Pytom method),
6

get_freewfn_by_index() (pytom.pytom.Pytom method), 6

get_freewfns() (pytom.pytom.Pytom method), 6

get_Fs() (ecap.component.Component method), 13

get_full_occnum_by_element() (in module
tom.configurations), 2

get_full_occupation() (in module pytom.configurations),
2

py-

get_gs_occupation() (in module pytom.configurations), 2
get_hole_energy() (pytom.pytom.Pytom method), 6
get_holes() (pytom.configuration.Configuration method),
1
get_holes() (pytom.freewfn.FreeWfn method), 4
get_holes() (pytom.wfn.Wfn method), 9
get_holes_from_filename() (in
tom.wfnhelper), 11
get_hparray() (pytom.configuration.Configuration
method), 1

module py-

get_hparray_configurationformat() (in module py-
tom.configurations), 3

get_hparray_format() (py-
tom.configuration.Configuration method),
1

get_hparray_from_occ() (in module py-

tom.configurations), 3
get_hparray_labels() (in module pytom.configurations), 3
get_hpstring() (in module pytom.wfnhelper), 11
get_internal_indices() (ecap.xspectrum.XSpectrum
method), 25
get_J() (in module pytom.pytomhelper), 7
get_J() (pytom.freewfn.FreeWfn method), 4
get_J() (pytom.wfn.Wfn method), 9
get_j_from_kappa() (in module pytom.pytomhelper), 7

30

Index

399

Electron Capture Documentation, Release 0.7

get_J_label() (in module pytom.pytomhelper), 7

get_jstring_from_kappa() (in module py-
tom.pytomhelper), 7

get_K() (ecap.overlap.Overlap method), 17

get_kappa_from_filename() (in module py-

tom.wfnhelper), 11
get_kappa_from_I() (in module pytom.pytomhelper), 7
get_l() (in module pytom.pytomhelper), 7

get_nuclearoverlap_type()
(ecap.nuclearoverlapparams.NuclearOverlapParam
method), 16

get_occ_from_noblegascoreformat() (in module py-
tom.configurations), 3

get_occupation() (pytom.configuration.Configuration
method), 1

get_occupation() (pytom.pytom.Pytom method), 6

get_l() (pytom.freewfn.FreeWfn method), 4 get_occupation_from_gs() (in module py-
get_L() (pytom.pytom.Pytom method), 6 tom.configurations), 3
get_1() (pytom.wfn.Wfn method), 9 get_occupation_of_element() (py-
get_l_from_J() (in module pytom.pytomhelper), 8 tom.configuration.Configuration method),
get_l_from_kappa() (in module pytom.pytomhelper), 8 2
get_l_from_label() (in module pytom.pytomhelper), 8 get_occupied_elements() (py-
get_1_label() (in module pytom.pytomhelper), 8 tom.configuration.Configuration method),
get_label() (ecap.nuclearoverlapparams.NuclearOverlapParams 2

method), 16 get_occupied_elements() (pytom.pytom.Pytom method),

get_label() (in module pytom.pytomhelper), 8
get_label() (pytom.freewfn.FreeWfn method), 4
get_label() (pytom.wfn.Wfn method), 10
get_label_formatted() (in module pytom.pytomhelper), 8
get_lparams_by_configuration()
(ecap.component.Component method), 14
get_lparamss() (ecap.component.Component method), 14
get_matrix_antidiagonal() (ecap.overlap.Overlap
method), 17
get_matrix_as_log() (ecap.overlap.Overlap method), 17
get_matrix_diagonal() (ecap.overlap.Overlap method), 17
get_matrix_extremum() (ecap.overlap.Overlap method),

17

get_matrix_extremum_bytype() (ecap.overlap.Overlap
method), 17

get_matrix_value_position() (ecap.overlap.Overlap
method), 17

get_n() (in module pytom.pytomhelper), 8
get_n() (pytom.wfn.Wfn method), 10

get_noble_gas_core_format() (py-
tom.configuration.Configuration method),
1

get_noble_occupation() (in module py-
tom.configurations), 3

get_noblegascoreformat() (in module py-

tom.configurations), 3

get_nonexistent_path() (in module ecap.spechelper), 18

get_nonrel_element() (in module pytom.pytomhelper), 8

get_nonrel_element_from_rel_element() (in module py-
tom.pytomhelper), 8

get_nonrel_info_df() (in module pytom.pytomhelper), 8

get_nuclearelement() (ecap.spectrum.Spectrum method),
22

get_nuclearoverlap() (ecap.spectrum.Spectrum method),
22

get_nuclearoverlap_label() (in module ecap.spechelper),
18

6
get_occupied_wfns() (pytom.pytom.Pytom method), 6
get_order() (ecap.component.Component method), 14
get_order_label() (in module ecap.spechelper), 18
get_orderstring() (ecap.spectrum.Spectrum method), 22
get_overlapmatrix() (ecap.overlap.Overlap method), 17
get_overlapmatrix_free() (ecap.overlap.Overlap method),
17
get_overlaps() (ecap.component.Component method), 14
get_p() (pytom.freewfn.FreeWfn method), 4
get_p() (pytom.wfn.Wfn method), 10
get_partial_occupation() (pytom.pytom.Pytom method),
6

get_partial_occupation_of_element() (py-
tom.configuration.Configuration method),
2

get_partial_spectrum() (ecap.spectrum.Spectrum
method), 22

get_peak_areas() (ecap.spectrum.Spectrum method), 22

get_peak_ratios() (in module ecap.spechelper), 18

get_peakratios_1H_as_function_of R() (in module
ecap.spechelper), 19

get_peaks() (in module ecap.spechelper), 19

get_poles() (pytom.configuration.Configuration method),
2

get_poles() (pytom.freewfn.FreeWfn method), 4

get_poles() (pytom.wfn.Wfn method), 10

get_Q() (ecap.spectrum.Spectrum method), 21

get_q() (pytom.freewfn.FreeWfn method), 4

get_q() (pytom.wfn.Wfn method), 10

get_R() (ecap.nuclearoverlapparams.NuclearOverlapParams
method), 16

get_R() (ecap.spectrum.Spectrum method), 21

get_r() (pytom.freewfn.FreeWfn method), 4

get_r() (pytom.wfn.Wfn method), 10

get_rel_element() (in module pytom.pytomhelper), 8

get_rel_element_from_nonrel_element() (in module py-

Index

31

400

Electron Capture Documentation, Release 0.7

tom.pytomhelper), 8
get_rel_info_df() (in module pytom.pytomhelper), 8

get RELFLAG_from_code() (in module py-
tom.pytomhelper), 7

get_rpq() (pytom.freewfn.FreeWfn method), 4

get_rpq() (pytom.wfn.Wfn method), 10

get_shakeoff_energies() (in module py-

tom.freewfn_helper), 5
get_shakeoff_files() (in module pytom.freewfn_helper), 5
get_shakeoff_wfns() (in module pytom.freewfn_helper),
5

get_shakeoff_wfns_and_energies() (in module py-
tom.freewfn_helper), 5
get_sorted_wfns_by_E() (in module py-

tom.freewfn_helper), 5

get_spectrum() (ecap.spectrum.Spectrum method), 22

get_spectrum() (ecap.xspectrum.XSpectrum method), 25

get_spectrum_as_dataframe() (ecap.spectrum.Spectrum
method), 22

get_spectrum_norm() (ecap.spectrum.Spectrum method),
22

get_spectrum_norm()
method), 25

get_subplot_from_index() (in module ecap.spechelper),
19

get_unfilled_shells() (pytom.configuration.Configuration
method), 2

get_win() (pytom.pytom.Pytom method), 6

get_wins_by_J() (pytom.pytom.Pytom method), 6

get_width() (ecap.lorentzianparams.LorentzianParams
method), 16

get_width() (pytom.pytom.Pytom method), 6

get_widths() (ecap.component.Component method), 14

get_x() (ecap.spectrum.Spectrum method), 22

get_x() (ecap.xspectrum.XSpectrum method), 25

get_XNlabel() (in module pytom.pytomhelper), 7

get_7Z() (ecap.spectrum.Spectrum method), 21

get_Z() (pytom.configuration.Configuration method), 1

get_Z() (pytom.freewfn.FreeWfn method), 4

get_Z() (pytom.wfn.Wfn method), 9

get_7_from_filename() (in module pytom.wfnhelper), 11

H

hpstring_to_hparray() (in module pytom.wfnhelper), 11

integral() (ecap.xspectrum.XSpectrum method), 25

integral_uncertainty() (ecap.xspectrum.XSpectrum
method), 25

integrate() (in module pytom.wfnhelper), 11

integrate() (pytom.freewfn.FreeWfn method), 4

integrate() (pytom.wfn.Wfn method), 10

integrate_peak() (ecap.spectrum.Spectrum method), 22

(ecap.xspectrum.XSpectrum

integrate_peak_minus_background() module
ecap.ecalhelper), 15

integrate_peak_minus_background_with_new_x()
module ecap.ecalhelper), 15

integrate_spectrum() (ecap.spectrum.Spectrum method),
22

interpolate_linmesh() (in module pytom.wfnhelper), 11

interpolate_wfn() (in module pytom.wfnhelper), 11

is_E_conserved() (ecap.spectrum.Spectrum method), 22

is_filled() (pytom.pytom.Pytom method), 6

is_occ_same() (pytom.configuration.Configuration
method), 2

is_occupied()
method), 2

is_occupied() (pytom.pytom.Pytom method), 7

is_orb_P() (in module pytom.pytomhelper), 8

is_orb_S() (in module pytom.pytomhelper), 8

is_orbital_overlap_nonzero() (ecap.spectrum.Spectrum
method), 22

is_overfull() (in module pytom.configurations), 3

is_relativistic() (ecap.spectrum.Spectrum method), 22

is_relativistic() (pytom.configuration.Configuration
method), 2

is_relativistic() (pytom.freewfn.FreeWfn method), 4

is_relativistic() (pytom.pytom.Pytom method), 7

is_relativistic() (pytom.wfn.Wfn method), 10

isotope_to_TeX() (in module ecap.ecalhelper), 15

isP() (in module pytom.pytomhelper), 8

isS() (in module pytom.pytomhelper), 8

L

L() (in module ecap.ecalhelper), 14

load() (ecap.component.Component class method), 14

load() (ecap.spectrum.Spectrum class method), 22

load() (ecap.xspectrum.XSpectrum class method), 25

load_by_characteristics() (ecap.spectrum.Spectrum class
method), 22

LorentzianParams (class in ecap.lorentzianparams), 15

M

make_ehist() (in module ecap.ecalhelper), 15
make_npeak_model() (in module ecap.ecalhelper), 15

N

NuclearOverlapParams (class in
ecap.nuclearoverlapparams), 16
nuctype (ecap.spechelper.PeakRatiolD attribute), 18

O

optmax2energy() (in module ecap.ecalhelper), 15
order (ecap.spechelper.PeakRatiolD attribute), 18
Overlap (class in ecap.overlap), 17

overlap_wfn() (pytom.freewfn.FreeWfn method), 4

(in

(in

(pytom.configuration.Configuration

32

Index

401

Electron Capture Documentation, Release 0.7

overlap_wfn() (pytom.wfn.Wfn method), 10

P

PeakRatiolD (class in ecap.spechelper), 18

plot() (ecap.overlap.Overlap method), 17

plot_free() (ecap.overlap.Overlap method), 18

populate_wfn() (pytom.freewfn.FreeWfn method), 4

populate_wfn() (pytom.wfn.Wfn method), 10

populate_wfns() (pytom.pytom.Pytom method), 7

print_2H_configs() (ecap.spectrum.Spectrum method),
22

print_description() (pytom.freewfn.FreeWfn method), 4

print_description() (pytom.wfn.Wfn method), 10

Pytom (class in pytom.pytom), 5

pytom (module), 12

pytom.configuration (module), 1

pytom.configurations (module), 2

pytom.freewfn (module), 3

pytom.freewfn_helper (module), 5

pytom.pytom (module), 5

pytom.pytomhelper (module), 7

pytom.wfn (module), 8

pytom.wfnhelper (module), 11

R

read_ehist() (in module ecap.ecalhelper), 15
read_optmax() (in module ecap.ecalhelper), 15
repopulate_wfns() (pytom.pytom.Pytom method), 7
reread_wfn() (pytom.freewfn.FreeWfn method), 5
reread_wifn() (pytom.wfn.Wfn method), 10

S

save() (ecap.component.Component method), 14

save() (ecap.spectrum.Spectrum method), 23

save() (ecap.xspectrum.XSpectrum method), 25

save_components() (ecap.spectrum.Spectrum method),
23

save_text() (ecap.component.Component method), 14

save_text() (ecap.spectrum.Spectrum method), 23

save_text() (ecap.xspectrum.XSpectrum method), 25

set_1H_Spectrum() (ecap.spectrum.Spectrum method),
23

set_2Ho_Spectrum() (ecap.spectrum.Spectrum method),
23

set_2Hu_Spectrum() (ecap.spectrum.Spectrum method),
23

set_A() (ecap.spectrum.Spectrum method), 23

set_blockmatrix() (ecap.overlap.Overlap method), 18

set_code() (ecap.spectrum.Spectrum method), 24

set_code() (pytom.freewfn.FreeWfn method), 5

set_code() (pytom.pytom.Pytom method), 7

set_code() (pytom.wfn.Wfn method), 10

set_component() (ecap.component.Component method),
14

set_component() (ecap.spectrum.Spectrum method), 24
set_config() (ecap.lorentzianparams.LorentzianParams
method), 16
set_config() (pytom.freewfn.FreeWfn method), 5
set_config() (pytom.pytom.Pytom method), 7
set_config() (pytom.wfn.Wfn method), 10
set_daughter() (ecap.spectrum.Spectrum method), 24
set_energy() (ecap.lorentzianparams.LorentzianParams
method), 16
set_excitation_order() (ecap.spectrum.Spectrum method),
24
set_F() (ecap.lorentzianparams.LorentzianParams
method), 16
set_filename() (ecap.xspectrum.XSpectrum method), 25
set_filename() (pytom.freewfn.FreeWfn method), 5
set_filename() (pytom.wfn.Wfn method), 10
set_freeJ() (pytom.configuration.Configuration method),
2
set_freewfns() (pytom.pytom.Pytom method), 7
set_gs_occupation() (pytom.configuration.Configuration
method), 2
set_K() (ecap.overlap.Overlap method), 18
set_lparamss() (ecap.component.Component method), 14
set_noble_occupation() (py-
tom.configuration.Configuration method),
2
set_nuclearoverlap_type()
(ecap.nuclearoverlapparams.NuclearOverlapParam

method), 16

set_nucoverlap_params() (ecap.spectrum.Spectrum
method), 24

set_occupation() (pytom.configuration.Configuration
method), 2

set_occupation_from_gs() (py-
tom.configuration.Configuration method),
2

set_occupation_from_noblegascoreformat() (py-
tom.configuration.Configuration method),

2

set_overlapmatrix() (ecap.overlap.Overlap method), 18

set_p() (pytom.freewfn.FreeWfn method), 5

set_p() (pytom.wfn.Wfn method), 10

set_parent() (ecap.spectrum.Spectrum method), 24

set_Q() (ecap.spectrum.Spectrum method), 23

set_q() (pytom.freewfn.FreeWfn method), 5

set_q() (pytom.wfn.Wfn method), 10

set_R() (ecap.nuclearoverlapparams.NuclearOverlapParams
method), 16

set_R() (ecap.spectrum.Spectrum method), 24

set_r() (pytom.freewfn.FreeWfn method), 5

set_r() (pytom.wfn.Wfn method), 10

set_relativistic() (pytom.configuration.Configuration
method), 2

set_width() (ecap.lorentzianparams.LorentzianParams

Index

33

402

Electron Capture Documentation, Release 0.7

method), 16
set_x() (ecap.spectrum.Spectrum method), 24
set_x() (ecap.xspectrum.XSpectrum method), 25
set_Z() (ecap.spectrum.Spectrum method), 24
set_Z() (pytom.configuration.Configuration method), 2
set_Z() (pytom.freewfn.FreeWfn method), 5
set_Z() (pytom.wfn.Wfn method), 10
setup() (ecap.overlap.Overlap method), 18
setup() (ecap.spectrum.Spectrum method), 24
setup() (in module pytom.pytomhelper), 8
setup() (pytom.freewfn.FreeWfn method), 5
setup() (pytom.pytom.Pytom method), 7
setup() (pytom.wfn.Wfn method), 10
simpson_nonuniform() (in module pytom.wfnhelper), 11
Spectrum (class in ecap.spectrum), 19
square() (pytom.freewfn.FreeWfn method), 5
square() (pytom.wfn.Wfn method), 10

T

to_relativistic() (pytom.configuration.Configuration
method), 2
two_tailed_bortels() (in module ecap.ecalhelper), 15

U

unionmesh_interp() (in module pytom.wfnhelper), 12

\Y

V() (in module ecap.ecalhelper), 14
VoigtExpConv() (in module ecap.ecalhelper), 14

W

Wihn (class in pytom.wfn), 8
write_ehist() (in module ecap.ecalhelper), 15
write_energy() (in module ecap.ecalhelper), 15

X

XSpectrum (class in ecap.xspectrum), 24

34

Index

403

