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ASSESSING INFRASTRUCTURE ELEMENTS USING AUTOMATED OBJECT 

DETECTION TECHNIQUE IN SMART CITY APPLICATIONS 

 

   Majid Mastali, Ph.D. 

Western Michigan University, 2019 

 

Nowadays, road features are becoming more complex leading to more complicated complaints 

regarding urban environments. Point Cloud Data (PCD) processing is an essential element for 

detecting objects and analysing human driving behavior to identify the variables defining 

challenging objects and maneuvers in smart cities. PCDs include a range of processing, including 

indirect processing (e.g., data converting, cleaning process) and direct process (e.g., pass through 

elevation filter, statistical outlier removal, normal estimation as well as classification). 

 Static and dynamic object detection and analysis are typically considered the most sophisticated 

options subsumed under PCDs. They involve direct evaluation of both static and dynamic objects 

of maneuvers variables for people who use the road with and without a vehicle in line with 

American with Disability Act (ADA) and trajectory variables of passing distance law for 

challenging scenarios. 

 The results of point cloud data evaluations allow government agencies to provide communities 

with the information necessary to strategically plan transportation infrastructure improvements for 

people using roads and sidewalks. This two-part study identifies the essential components of 

sidewalk evaluation, and driver behaviors and reports the degree to which object and driver 

analysis are aligned with the expert recommended components of the ADA and passing distance 

law. 

 

 

 



The first study explores the feasibility of using both terrestrial laser scanner and open source 

processing algorithms to develop an approach to automate the evaluation of the alignment of 

transportation infrastructure with public rights of way. In the second study, a new approach of 

LIDAR data processing is developed to determine the speed and distance of vehicles approaching 

and entering the passing zone for bicycles. The model develops a technique for analysing the 

motorist passing behavior in the natural driving environment using the data collected from real 

vehicle and bicycle maneuvers. 
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1 INTRODUCTION 

1.1 Overview of the Study 

Government agencies have made attempts to employ remote sensing to detect and analyze 

static and moving objects to provide communities with the information necessary to strategically 

planned transportation and infrastructure improvements for individuals using roads and sidewalks. 

High-resolution data could be a primary source of data for many complex dynamic urban 

environments. A high-resolution dataset not only can be used to extract and assess static objects 

such as sidewalls but also can evaluate vehicles passing maneuvers. Remote sensing sensors such 

as Light Detection and Ranging (LiDAR) and laser scanners can be adopted as an integral 

component in an accurate measurement and assessment process.  

LiDAR and laser scanner sensors supply a high-resolution source of data which can 

synchronize and generalize data with an Inertial Measurement Unit (IMU). The LiDAR 

continuously measures and captures the data and integrates data with the IMU. Detecting and 

generalizing the complex objects and maneuvers can be enhanced using LIDAR and laser scanner 

in point cloud data (PCD). Mobile and static objects such as sidewalks and vehicles can be detected 

and evaluated in PCD shaped by three-dimension LIDAR and laser scanner information. 

Furthermore, the LIDAR data also provide an opportunity to track the speed and distance of 

motorists and bicyclists while passing maneuvers; however, laser scanner data mostly can be used 

to detect fixed objects such as sidewalk, curbs, and ramps.  

Remote sensing analysis is beneficial; however, it generates big size data. Manual object 

extraction and evolution is time-consuming; therefore, automated algorithms are essential in the 

trajectory detection process. A comprehensive set of data would help the city officials in utilizing 

the interaction of static and mobile objects features. The accessibility of individuals with 
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disabilities has been taken into consideration, whereas the focus was on the assorted variables, 

including topography (ramps, slopes), accessible routes, curbs, alternate routes, boards, signage, 

facility maintenance, social barriers, and access to the public transportation services such as buses 

or taxies. 

 

1.2 Scope of the Study 

Object detection, clustering, and analysis are significant factors in analyzing the behaviors 

of drivers, bicyclists, and pedestrians. This dissertation addresses the static and dynamic object 

detection problem using LiDAR and Laser Scanner. Laser scanner data was analyzed to provide 

facilities for individuals with a disability in accordance with the ADA regulation. Obje To some 

extent, autonomous vehicles must have a comprehensive algorithm to detect and analyze obstacle 

detection, recognition, and analysis. They must also examine vehicles and bicycles as well as 

infrastructure elements such as sidewalks, ramps, and curbs. Laser scanner as a fix scanning device 

produces massive point cloud data with high accuracy, which can be used to detect fix and complex 

objects such as ramps and curbs. LiDAR can be used as fixed and moving devices, which supplies 

point cloud data with a smaller number of points and is most efficient in object detection. 

 The methods proposed in the present study focused on point information for laser scanner 

data as well as point and pixel information for LiDAR data classifications. For object detection in 

both LiDAR and laser scanner, PCD point based detection is common in order to use point 

information-based detection. In LiDAR data processing, however, pixel boundary is used to limit 

the object’s relevant points. After detecting and recognizing objects in laser scanner data, objects 

will be analyzed based on the ADA regulation. Moreover, with the detection and recognition of 

objects in LiDAR data, the driver’s behavior toward objects in different frames can be further 
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distinguished. 

Operating speed and moving vehicle speed, as well as moving distances, further impose 

requirements on maximum detection distance and reading frequencies. In LiDAR data processing, 

detection box was developed to analyze the driver’s behavior. Detection box was limited to 18ft 

longitude and 33ft in latitude distance from the LiDAR. A semi-automated method was developed 

to meet the object tracking requirements. 

 

1.3 Americans with Disability and Limitations 

Individuals with disabilities have rights, according to the movement laws to defend their 

equality with all society members. The Americans with Disabilities Act (ADA) advocates for the 

rights of individuals with disabilities and provides excellent services for those with disabilities to 

live within the community. The ADA 1990 is a civil right statute, prohibiting discrimination 

against individuals with disabilities (Americans with Disabilities Act 1990, 1991). As a necessary 

step to provide accessibility under the ADA, the local public entities are required to perform 

inventories for their current facilities. Among other cases, the ADA requires access to the roadway 

paths such as sidewalks and curbs. The information developed through the inventory (or self-

evaluation) process must be quantified and presented as a baseline so that the progress can be 

monitored and measured. The ADA Application Guideline (ADAAG) is a primary set of laws 

dealing with the disabled individuals’ needs for technical requirements in planning and designing, 

including the construction facilities tailored to the conditions of individuals with disabilities. The 

primary goal of this study is to provide an automated process solution as one of the fastest and 

securest ways of checking the accessibility of the existing facilities for ADA. Since there are 

numerous incentives to complete an ADA transition plan to act as valid defenses in ADA-related 
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legal actions, there have been a lot of measures adopted to foster more walkable, attractive, and 

livable communities. The overall completion of an inventory of the physical barriers can be a 

daunting task for municipal budget and staff constraints.  

Stakeholders are responsible to provide accessibility for individuals with disabilities, 

particularly access to route facilities such as sidewalks and curbs. This includes individuals 

concerned with transportation and construction projects. In 2000, the analysis conducted by the 

US Congress showed that 20% of Americans have disabilities. Moreover, the number of 

individuals with disabilities increases as the population ages. Obviously, individuals with 

disabilities are more concerned with the use of public facilities, especially sidewalks (Kockelman 

et al., 2000). 

A series of demanding compliances are required to evaluate the facilities at various levels. 

New constructions need to consider ADA or ADAAG and the Uniform Federal Accessibility 

Standards (UFAS) (as long as it is applicable) in the design and construction phases (Kockelman 

et al., 2000). For the existing facilities, however, the ADA requirement checklist needs to be 

observed. The ADAAG provides a list of the vital features to be checked in numerous steps from 

planning to construction in the new and existing transportation and construction projects. On the 

other hand, the conventional methods of checking the roadway facilities are usually time-

consuming and costly, and it is hard to maintain the facilities in a convenient timeframe (Ai & 

Tsai, 2016). The most essential guideline regarding the accessible design is the UFAS, which 

should be observed in all construction phases (Steven Winter Associates, 2017). 

ADA is one of the first comprehensive civil right laws to support individuals with 

disabilities and to protect them against discrimination imposed by their disabilities. The ADA is 

divided into five sections addressing different areas of public life such as employment, programs, 
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and activities of state and local government entities (design criteria for the environment, 

transportation, communication, medical diagnostic equipment, and information technology), 

private entities considering the places with public accommodation. 

As a necessary step to provide the accessibility under the ADA, the state and local entities 

are required to evaluate their current facilities according to the accessibility requirements of this 

act. Further, these public entities are required to develop a transition plan, which describes the 

accessibility act for non-compliances within the public right of way. Accordingly, the accessibility 

act of non-compliances will be modified, scheduled, budgeted, and monitored for progress and 

compliance. The evaluation process for accessibility can help communities to solve problems and 

leads to positive changes benefiting those with disabilities (Jacobs Engineering Group, 2009). 

In the long term, improving the accessibility for individuals with disabilities may reduce 

paratransit demand response services. Enhancing accessibility is especially important in terms of 

the high costs of demand-response transit services (which can be four times as much per as fixed-

route bus service (Fei & Chen, 2015)) and aims at a rapidly growing older and limited mobility 

population. For instance, the US Census Bureau estimates that 19.5% of the Michigan population 

will be 65 and older by 2030— 38.1 % increase in comparison to 2015—whereas the total 

population of Michigan is estimated to grow by less than 1% within the same period (State 

Population Projections by 2030, Michigan Department of Technology, Management, and Budget, 

2016). 

 

 It should also be noted that improved accessibility via ADA compliance brings the 

benefits not only to individuals with disabilities but also to the whole community at a large scale 

(McCann, 2013). Recent investigations regarding transportation have revealed that the public 
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right-of-way accessibility brings a more livable community (Burden, 2000). 

The ADA was passed almost unanimously by US Congress and signed by President George 

H.W. Bush on July 26, 1990. The Department of Justice was settled in Toledo, Ohio, where it was 

agreed to remove the barriers for individuals with a disability (Settlement Agreement Between the 

United States of America and Toledo, Ohio, 1999). Since then, the Disability Rights Section (DRS) 

of the Department’s Civil Rights Division monitored several other local and state governments to 

develop technical assistance checklists. The checklists of local agents could be immediately used 

to become fully compliant with the requirements of the ADA (Project Civic Access Fact Sheet, 

2018). 

 The above project now includes more than 222 settlement agreements with 

localities in all 50 states, including four Michigan communities (Burton [2004], Detroit [2004], 

Mount Pleasant [2001], and Muskegon [2010]). In most of these cases, the compliance reviews 

were undertaken for the Department’s initiatives under the authority of Title II Section 504 of the 

Rehabilitation Act of 1973. Hence, the governments receive financial assistance from the 

Department and are prohibited by the Act from discrimination against disability. In other cases, 

reviews were undertaken in response to complaints filed against the localities in cases which the 

communities had inaccessible programs or facilities and lacked an up-to-date transition plan 

(CMAP, 2012). 

 The first step in preparing an ADA transition plan is to conduct an inventory of the 

existing physical barriers to accessibility (i.e., a self-evaluation process). Different deficiencies 

were frequently reported in an inventory of the pedestrian facilities in public rights-of-way, 

including sidewalks, pedestrian paths, and curb ramps, etc. The information developed through the 

inventory process should be quantified and presented as a baseline so that the progress can be 
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monitored and measured. 

Since more compelling incentives for a comprehensive ADA transition plan are 

implemented, the completion of such a plan and the inventory of existing the physical barriers, in 

particular, can be a daunting task. The combination of budget and staff insufficiencies make the 

inventory process extremely challengeable to be completed. For instance, a survey sponsored by 

the National Cooperative Highway Research Program showed that the budgetary constraints on 

staffing and supporting ADA programs were significant factors to complete the tasks of the 

transition plan (Jacobs Engineering Group, 2009). As a result, many transition plans tend to stall 

in the inventory phase, either awaiting a full completion of self-evaluation activities or unable to 

collect data and develop priorities for remediation. 

 

1.4 ADA and Technology 

The explosion of new technology in data processing has changed the automated analysis and 

assessment conditions. This research presents a new-brand of algorithm analysis to assess the 

accessibility compliance of the current facilities based on the PCD analysis technique. A set of 

data points are needed as a database to begin the analysis. Raw data were collected in X, Y, and Z 

coordinates referring to PCD to represent the surface, which preserves the flexibility and accuracy 

within the new and existing transportation facilities. 
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1.5 Cyclist and Limitations 

In 2016, the National Highway Traffic Safety Administration (NHTSA) reported more than 

11 bicyclists being killed in a total of 2000 traffic fatalities from 2015 in the United States. In 

2016, there were 840 bicyclists killed in traffic crashes, and this number had steadily increased 

from 628 in 2009. The numbers represent a 34 percent increase in accidents from 2009. Seventy-

one percent of pedal cyclist’s fatalities have occurred in urban areas. Additionally, more than 50 

bicyclists were killed on shoulder/roadside, more than 33 of whom were killed using the bicycle 

lane. Kay et al. (2014) study show that motorists do not share the road fairly with the pedal cyclist 

(Kay. et al., 2016).  

The detection and evaluation of the motorist and pedal cyclist’s interactions are essential 

to facilitate a better understanding of overtaking in the metropolitan areas. Thus, the overtaking 

analysis of motorist and bicyclists is one of the main factors that could affect interactions. The set 

of speed and distance data for vehicles which overtaking bicyclists would generate a valuable 

dataset to be used in a micro traffic level analysis of the motorist and bicyclist interactions. 

However, the accurate speed and distance of overtaking measurements are vital for overtaking 

analysis; therefore, the feature data from bicyclists and motorists are needed to analyze different 

road types at the highest possible accuracy to have an overview of bicyclist and motorist 

interactions. 

Transportation agencies are to use remote sensing to detect and analyze the trajectories of 

mobile objects’ such as cars and bicycles to generate the bicyclist’s perceived level of clearance. 

It is desirable to have an automated platform to detect vehicles and bicycle maneuver in order to 

measure passing characteristics based on the high-resolution datasets in the complex urban 

environment. Furthermore, high-resolution data could be a primary solution for many complex 
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dynamic urban environments. A high-resolution dataset can be used to extract and assess passing 

maneuvers automatically. Remote sensing sensors such as Light detection and ranging (LiDAR) 

and laser scanners can be used as an integral component in an accurate measurement and 

assessment process.  

LiDAR technology supplies a high-resolution source of data which can synchronize and 

generalize data with an inertial measurement unit (IMU). LiDAR continuously measures and 

captures the data and then integrates data with the IMU. Detecting and generalizing the complex 

maneuvers could promote the use of the LIDAR data. Objects such as vehicles and pedestrians are 

extracting from data processing phases which are shaped by three-dimension LIDAR information. 

LIDAR data also provide an opportunity to track the speed and distance of motorists and bicyclists 

during passing maneuvers. Remote sensing analysis is beneficial; however, it generates big size 

data. Manually interrogating overtaking maneuvers information is time-consuming; therefore, 

automated algorithms are essential in the trajectory detection process. A comprehensive set of data 

would help city officials in utilizing the features of interactions between motorists and bicyclists 

such as bicyclists and motorists for the speed and distance analysis. 

 

1.6 Cyclist and Technology 

U.S. Department of Transportation (U.S. DOT) in 2003 introduced the vehicle-infrastructure 

integration (VII) systems such as remote sensing in vehicle and infrastructure communication 

systems to improve mobility and safety (Farradyne, 2005). Most recent remote sensing instruments 

can be employed to detect objects, make a classification, and provide tracking data. Data collection 

of advanced remote sensing instruments have been developed over time. LIDAR is classified as a 

high-resolution sensor that can operate to achieve the defined research goals (Antonellis, 2017). 
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For instance, A Velodyne V16 LIDAR can generate up to 600000 coordinate positions of the 

surrendering conditions. In addition, LIDAR has a 360-degree horizontal and a 15-degree vertical 

field of view (Velodyne, 2018). However, in the way of contrast individuals have an approximate 

front-horizontal view field of 210-degrees (Traquair, 1927).  

Kidono (2011) defined light detection and ranging as a horizontally scanning laser scanner, which 

generates the point cloud data. The dataset generated by LIDAR provides high-resolution 

environmental perception opportunities. Remote sensing sensors such as the LIDAR and laser 

scanner which are usually set up in the stationary or mobile mode can supply a three-dimension 

dataset and would be used in the object detection procedure. The LIDAR produces an accurate 

measurement of object characteristics in the PCD environment. The point cloud data are used to 

extract different surfaces of the motor vehicles and bicycles in overtaking maneuver detections. 

There are many techniques to detect and measure objects in the point cloud data, including 

grouping methods or segmentation methods which are used in the first stage of this research. In a 

three-dimension trajectory detection method, data directly retrieved from LIDAR are converted to 

PCD. However, processing large sets of data such as point cloud data processing is time-

consuming. An automated algorithm was developed to overcome the discussed limitations. 

The LIDAR and laser scanner technology are affected by machine learning technique (e.g., 

autonomous cars and automated measurements) accompanied by many advances having been 

achieved in the field. In general, the integration of LIDAR data and machine learning techniques 

have brought many benefits to the users in terms of reducing the time consumption and increasing 

the accuracy of data processing. Many powerful algorithms have been developed for the 

classification and regression of the data such as the k-Nearest Neighbors (KNN) at least squares, 

k-Nearest Neighbors, and Support Vector Machine (SVM). Vehicle and bicycle feature detection 
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is a primary goal in this investigation. In object detection, the determination of a smooth and 

reasonable boundary is required to track the mobile objects.  

Pucher’s (2017) research showed that cycling is one of the most rapidly developing sustainable 

transportation modes (Pucher 2017); therefore, state agencies have become interested in providing 

a safe and comfortable bicycle infrastructure. Reviewing previous studies generally shows that 

geometric road information and speed limits can affect the drivers and bicyclists’ behaviors 

considering different transportation’s infrastructures (Evans et al., 2018; Parkin et al., 2010; and 

Mehta et al., 2015). Studies indicate that many states have passed laws to provide adequate 

clearance for motorists passing bicyclists when the drivers are overtaking a cyclist. According to 

this legislation, drivers must pass cyclists at a lateral distance of more than three feet (Burbidge et 

al., 2018). The interaction between speed and safe passing distance, however, is not empirically 

determined. Marco 2016 has broken down the behavior of drivers’ overtaking cyclist in a 4-step 

model. These four steps encompass the vehicle approaching bicycle, steering away, passing zone 

and returning mode (Dozza et al., 2010). Moreover, different overtaking strategies considered in 

previous studies are the flying strategy, the accelerate strategy, and the piggy backer’s strategy 

(Wilson et al., 1982).  

This technology offers an integrated solution to implement complex issues in a sustainable way in 

megacities, called “smart cities.” Smart cities use different types of technology to integrate all data 

and platforms to provide a higher quality of life (Van der Hoeven et al., 2017). Smart cities need 

to develop a bicyclist infrastructure monitoring system to provide safe and comfortable bicycle 

facility in order to increase the bicyclist’s perceived level of comfort. Real-time data processing 

facilitates the use of big data (Malik et al., 2017). Smart algorithms play an important role in 

improving service quality through accelerating and coordinating data processing in smart cities. 
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1.7 The Impact of Measurement Equipment on an Analytical Process 

Efforts have been made in developing the measurement systems that combine sensing technologies 

with a mobile platform to explore a cost-effective approach for data collection in the self-

evaluation step. LiDAR is a survey technology that collects spatial information based on the 

distance traveled by a laser beam; thus, it is also called laser scanner. LiDAR is widely used in 

surveys and 3D model creation for many industrial sectors because of its high accuracy (i.e., 

millimeter level accuracy). In the construction industry, each project includes many different tasks, 

which could benefit from new visualization and automation measurement-interfacing techniques. 

Recent developments in terrestrial LiDAR, GPS, and inertial measurement unit provide the 

grounds to collect 3D point clouds with high frequency and accuracy, which in turn lead to high 

accountability and high quality of city model reconstruction and road feature extraction. 

Identifying accessibility compliance is the main goal of our attempts in developing an automatic 

analysis approach. The collected datasets need to be segmented to check the compliances. Each 

segment represents an object in the PCD.  

PCD is used to generate a 3-dimension surface with particular coordinate information for each 

segment, which may be used in facility’s evaluation process to analyze the accessibility of the new 

and existing public facilities for ADA compliance. The laser scanner is one of the most stable and 

accurate measurement equipment that can provide X, Y, and Z coordinates.  

These scanners are significantly developing these days. In 2000, laser scanners could 

approximately collect around 1000 points per second, and they can now collect around a million 

points per second (Geosystems, 2017). This increase provides more precise and clear observation 

to record the surrounding environment. 

In this research, a Leica C10 laser scanner with the capability of reading up to 50000 points per 
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second was used. Laser scanner collected point cloud data employed for surface modeling of as-

built objects in an accurate mensuration of the objects (Argüelles-Fraga et al., 2013). Such laser 

scanner data is also widely used to detect static and moving objects in the fields (Sun et al., 2018). 

In this research, a Leica C10 laser scanner was used, which can read up to 50,000 points per second. 

Laser scanner collected point cloud data has been employed for surface modeling of as-built 

objects for an accurate mensuration of the objects (Argüelles-Fraga et al., 2013). Such laser 

scanner data is also widely used to detect static and moving objects in the fields (Sun et al., 2018). 

 

1.8 Object Detection in PCD 

Nowadays, road features are getting more complicated, leading to more complex complaints 

regarding urban environments. Commonly, PCD produces a rich source of data, which needs to 

undergo a PCD processing to identify and detect the objects in the target. It is essential to extract 

objects such as edges, pedestrians, curbs, and ends from the PCD. Over the past few years, many 

efforts have been made for the detection of objects such as buildings, doors, etc. from the PCD 

(Wang et al., 2014). Cluster analysis, which is a massive PCD processing that contributes to the 

recognition of different naturally clustered groups or structures, is one of the primary methods for 

massive data analysis to detect objects. In other words, clustering can create a set of meaningful 

subclasses of data, which makes it easier to detect different objects (e.g., Curbs, Ramps) in 

comparison to the direct detection in the whole dataset (Ankerst et al., 1999). Figure 1 shows the 

PCD data processing that would be essential for high-level sensing tasks such as simultaneous 

localization and mapping to detect an object (Wang et al., 2003). Wang et al. (2003) evaluated a 

mathematical framework that integrated simultaneous localization and mapping to detect an object 

and to help with detecting and tracking moving objects. 
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Figure 1 3D laser scanner point cloud data 

 

1.9 The Role of Automation in the Analysis Process 

The automation in accessibility assessment facilitates the realization of compliance through the 

following steps:  

1. Conducting automatic data analysis and reviewing as the best practice, which allows more 

time for interpretations. It facilitates the federal or state agencies’ self-evaluation process;  

2. Boosting productivity through automation of the calculation process by using the 

algorithms, where the PCD processing would, otherwise, be time-consuming; and 

3. Improving the efficiency and accuracy of ADA evaluation in the same way as most 

automated systems. 

The manual evaluation methods faced different problems, which need to be considered in this 

automated method, including the classification of ground surfaces, intersections, cars, pedestrians, 

vegetation, poles, sidewalks, and construction options (Bisio, 2016). 
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Completely different scopes –like ground surfaces, intersections, cars, pedestrians, vegetation, 

poles, sidewalks, and building options—need to be considered in the automated method. Isolating 

the noise and eliminating the number of errors in the data and unnecessary points to layers is one 

of the foremost and vital benefits of the automated method. In addition to classifying planes and 

ground surfaces, it also extracts edges, pedestrians, curbs, and ends. The advantages of automated 

modeling and identification are significant. In scanning a public environment with many 

intersections and a thousand miles of sidewalks and curbs of various classifications and styles, the 

automatic identification and modeling would save the cost and time (Bisio, 2016). 

 

1.10 Contribution of the Study 

This dissertation presents several methods and approaches for Laser scanner and LiDAR-based 

fixed and dynamic object detection in a complex urban environment. One approach classifies point 

clouds from a laser to detect objects such as curb ramps and sidewalks, while another approach 

classifies point cloud data from a LiDAR to detect moving vehicles. The proposed methods and 

their experimental results are summarized in the following chapters. The presented data, collected 

data, and proposed approach in the urban environment to analyze fixed and moving objects 

encompass some contributions and novelties. This dissertation addresses two core problems in 

laser scanner and LiDAR-based object detection and analysis. The main contributions of this study 

are as follows: 

• A multi-model dataset for static objects in accordance with the ADA regulation.  

• An automated procedure to detect, cluster, and save object analysis and data 

• A multi-corridor dataset for dynamic objects in order to conduct driver’s behavior analysis.  
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A semi-automated procedure to detect, cluster, and analyze object analysis in order to produce 

trajectories and driver behaviors.  
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2 STATIC OBJECT DETECTION 

2.1 Overview 

The ADA 1990 includes the civil right laws that require the same general protection for individuals 

with disabilities as those given to other individuals on the basis of race, sex, national origin, and 

religion under the Civil Rights Act 1964. Ramps and curb ramps along accessible routes in public 

are required. These requirements are applicable wherever the sidewalks meet. The ADA intends 

to address all public facilities in the long term to provide services to the public. The public facility 

ought to be made accessible to individuals with disabilities through an endless unobstructed 

pedestrian circulation of networks. Therefore, once altered, most streets (except for rural roads 

associated with highways) need to construct an accessible pathway wherever possible (Pölzlbauer 

et al., 2012). 

An accessible route is a roadway specifically designed to provide access for people with 

disabilities, including those who need a particular width and require passing areas for their 

wheelchairs or other mobility devices. The accessible routes are required wherever a circulation 

of ways is altered or designed. The allocation of the public facility to individuals with disabilities 

will contribute to cities and turn into various structures. 

The main ADA checklist for the existing facilities includes: 

1. Travel route, stair, stable, firm and slip-resistant, 36 inches wide, protruding into the

circulation paths. 

2. Ramps with a slope of 1:12 (i.e., one-inch height increases per 12 inches of the ramp). For

a 1:12 slope, at least one foot of ramp length is required. Ramps longer than 6 feet (1.83 m) should 

have railings on both sides, railings sturdy. The railings should mostly be between 34 (0.86 m) and 
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38 (0.96 m) inches of height, and the width between railings or curbs must be at least 36 inches. 

3. Parking and Drop-Off Areas should be 8 feet wide for the car plus 5-foot access aisle, 8-

foot-wide spaces, with minimum foot wide access aisles, and 98 inches of vertical clearance 

available for lift-equipped vans). 

4. Building Entrances (If there are stairs at the main entrance).

Table 1 shows the accessibility guidelines for accessible routes according to different regulations. 

The following values indicate the necessity of measuring different aspects of path accessibility. 

Table 1 Accessibility guidelines for accessible routes 

Source Maximum Allowable 

Running Grade 

without Handrails 

Maximum Allowable 

Running Cross 

Slope 

Maximum 

Allowable Vertical 

Change in Level 

ADA Standards for 

Accessible Design 1 (US 

DOJ, 2010) 

5.0% 2.0 % 6.4 (mm) 

In Table 2, the guidelines for curb ramps for ADA and ADAAG are presented. The 

requirements for curb ramps apply just to the ramps that go through curbs or are constructed up to 

the ramp (Figure 2). 
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Table 2 Accessibility guidelines for curb ramps (CR) 

Source Maximum 

Slope of Curb 

Ramps 

Maximum Cross-

Slope of Curb Ramps 

Maximum Slope of 

Flared Sides 

ADA Standards for 

Accessible Design (US DOJ, 

2010) 

8.33 % 2.0 % 10.0 % 

Figure 2 Curb ramps (CR) of the slope 

According to the literature review, the accessibility for individuals with disabilities has been 

attended, whereas the focus has been on the assorted variables, including topography (ramps, 

slopes), accessible routes, curbs, alternate routes, boards, signage, facility maintenance, social 

barriers, and access to the public transportation services such as bus or taxi. In this research, a new-

brand analysis technique is proposed based on unorganized PCD measurements. This approach 

can measure existing facility components by employing a Leica C10 laser scanner to scan the case 

study area. The automated algorithm will provide reliable analysis measurements and results for 

evaluating ADA compliance of the infrastructure facilities. This study aims to assess the reliable 

routes for those who need to have access and use federal or state roadway facilities through an 

automatic measuring technique for ADA roadway users. 
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2.1.1 Proposed Approach and Algorithm 

Manually checking the compliance of roadway’s infrastructures with ADA requirements is time-

consuming, costly, and error-prone (Thi & Helfert, 2017). The primary aim of this study is to 

develop an approach and corresponding algorithms using the manipulated standard algorithm to 

automatically evaluate the compliance of transportation and construction infrastructures/facilities 

(i.e., ramps, curbs, and alternate routes) with ADA based on the analysis of the PCD. Detecting 

the status of route accessibility is essential in this analysis, which is carried out by analyzing 

quantitative features (e.g., width, depth, and the slope of curb ramps, and sidewalks) of the 

roadway infrastructure and comparing the results with the regulated requirements. A critical step 

in this research was to classify the infrastructure/facility components (e.g., for the curb ramp and 

sidewalk). In the present study, two significant steps were adopted: (1) detecting the normal 

surface of planes; and (2) segmenting the point cloud into separate datasets to represent potential 

objects. The following four steps describe the fully automated segmentation and tracking of 

transportation infrastructure: 

Data acquisition and pre-processing: Scanning the environment with the laser scanner. The PCD 

data collected from the laser scanner is pre-processed by importing into PCD platforms (e.g., 

Microsoft Visual Studio, Cloud Compare, and Cyclone). PCD will be thus cleaned up and 

organized; 

Data processing: In this step, the PCD data is filtered with respect to the point coordinates 

information, outlier removal (K-nearest point), and normal estimation; 

Classification: Enormous information (such as points coordinates and colors) was captured in PCD 

by the laser scanner. After preprocessing and processing steps, PCD still has random objects, 
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which need to be classified based on their features. In this step, plane normal vector information 

was used to extract different surfaces such as roads, sidewalks, and ramps; 

Feature extraction: PCD is classified based on the plane vectors. Each surface has some unique 

information used to classify objects. After such a classification, each object has geometric 

information such as slope, width, and length. This information was employed to analyze the ADA 

requirements such as sidewalk width or ramp slope.  

A summary of the proposed methodology is depicted in Figure 3. 
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Figure 3 The proposed methodology 
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2.1.2 Data Acquisition and Pre-Processing 

The laser scanner produces a large number of points with their coordinate information. In this 

study, about 70 million points were collected. High-quality data is required to process the PCD 

data (Rusu et al., 2008). An automated algorithm was developed in a preprocessing step to produce 

high-quality information, which improves the operational processes. Before any PCD processing 

(Figure 4), noises and errors need to be filtered (Figures 5 and 6) and then be organized as 

meaningful patterns. 

 

 

 

Figure 4  PCD before data processing 

In the PCD data, each point contains X, Y, and Z coordinates along with its color intensity. Figure 

5 shows the distribution of the points along the X, Y, and Z dimensions and the color intensity by 

individual points. The frequency of PCD error range in the point cloud data distribution is shown 
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in figure 6. Figure 6a illustrated X range point data distribution while 6b shows Y range point data 

distribution and Z data distribution has is presented in 6c. On the other hand, Figure 6d illustrate 

the color distribution of the point.  

The plot matrix of the point cloud data distribution is shown in Figure 7. 

 

Figure 5 PCD X, Y and Z coordinates and color intensity (Red, Green, Blue) 

 

(a)                            (b)            (c)            (d) 

Figure 6 PCD error range frequency 
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Figure 7 PCD plot matrix of the case study 

             

2.1.3 Data Processing 

After pre-processing the PCD, the information is ready to be used in the process and analysis steps. 

In the processing step, elevation and outlier removal filter was applied to the points to exclude the 

outlier by Descriptive Statistics method (e.g., mean and standard deviation) and to outrange the 

points based on their coordination information (Figure 8). 

This step processes the PCD using normal estimation and data segmentation. In this step, the 

surface normal of planes is calculated by the point cloud data information. The segmentation of 

the PCD by normal estimation calculations would generate a compact representation for robust 

model fitting. This step has three subtasks: (1) passing through the elevation filter; (2) statistical 
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outlier removal; and (3) normal estimation. 

 

 

Figure 8 The effect of applied filters on point cloud data 

 

2.1.3.1 Pass through Elevation Filter 

The first step of PCD processing is to use a pass-through elevation filter to filter the points 

based on their assessment information (Z). The points placed beyond the boundary of the dense 

PCD environment were removed. In this case, those points required to build facades, trees, 

electrical poles, etc. were also removed. The boundary distance was set to be from ground zero to 

6 ft. 
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2.1.3.2 Statistical Outlier Removal 

The laser scanner generates point cloud datasets with varying point densities, which makes 

erroneous results if it is directly used to determine the normal surface as the points belong to 

different surfaces. This process is generally conducted in descriptive statistics, which can modify 

these irregularities by a variety of statistical methods such as the mean, median, and standard 

deviation. The sparse outlier removal is one of the most commonly used methods in normalizing 

the points in the PCD. The sparse outlier removal is computed by standard deviations (σ), sample 

distributions (S), and the mean values (µ) of the nearest neighbor distances (N) (OuYang & Feng, 

2005). The distance (D) between points P1(x1, y1, z1) and P2 (x2, y2, z2) is calculated by Eq. (1). 

 

D (P1, P2) =√(𝑥2−𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2                                                               Eq. 1 

 

The data will be trimmed if the calculated distance is out of the boundary Z =µ± α*σ. Aligned with 

the goal of this research, Equations (2) and (3) were used to normalize the PCD in this research. 

 

Z =µ± α*σ                                                                                                                                 Eq. 2 

 

σ=S/√K                                                                                                                                     Eq. 3 

 

In this research, we have α = 1 and k = 100 to provide the right balance between accuracy and 

efficiency in the proposed algorithm (Figure 3). As indicated in Figures 9 and 10, experiments 



28 

with multiple PCD segmentations from the collected PCD confirmed that µ ± σ thresholds would 

eliminate noise in PCD. 

Figure 9 Noises and errors in PCD 

Figure 10 PCD after pre-processing 

2.1.3.3 Normal Estimation  

After a series of sequential steps such as pass-through elevation and outlier removal filter, the data 

were prepared to be processed for pattern identification and normalization. These steps prepare the 

PCD for planes/surface fitting. Planes/surface fitting is a process, through which the points would 
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fit in an estimated surface in the PCD with an angular direction. For angular direction estimation, 

100 neighbor point needs to be calculated. Uniform PCD data have better estimation results of the 

normal vectors from the same surface compared to non-uniform data (Trevor et al., 2013). Figure 

11 indicates the magnitude and direction of the vectors that describe the normal surface of planes. 

The left part shows the normal surface of planes fitted to non-uniform points in the PCD. The right 

part depicts the surface normal of planes fitted to the points using the normal estimation technique. 

 

 

Figure 11 Non-uniform and uniform PCD after normal vector estimation 

 

The ground plane is not to be recognized right after the data pre-processing. The proposed 

approach to detect the plane is to compute the plane equation for a set of data in Euclidean space. 

The plane equation was used to find the normal planes in the planar segmentation process. The 

hessian’s normal form was employed to describe planes. Four coefficients of the plane are normal 

x, normal y, normal z, and the constant d shifts the plane so that it does not pass through the origin. 

As shown in Eq. (4). 
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ax + by + cz + d = 0                                                                                                                 Eq. 4 

 

The equation for a plane with nonzero normal vector n= (a, b, c) through the point x0= (x0, y0, 

z0) can be described as a set of points (x, y, z) meeting the Eq. (4) in data processing (Hara et al., 

2013). 

 

2.1.3.4 Classification  

The boundary points in the automated segmentation provide numerous benefits for the 

evaluation of road facilities such as the facility’s edge detections (Miraliakbari et al., 2015). 

Boundary points make a higher accuracy in the plane normal calculation process in a massive PCD 

to detect objects with similar geometric information. For example, Miraliakbari (2015) 

successfully extracted a curbstone and road surface by using the jump detection method to detect 

height differences and height data histograms (El-Halawany et al., 2011). Using the elevation 

gradient with the normal surface of the local neighborhood can isolate the curbs from the rest of 

the objects in a scene (Fischler & Bolles, 2011).  

In an attempt to improve the efficiency and accuracy of the classification step, an 

automated curb ramp and sidewalk detection method was established based on the plane vectors. 

Each plane has a specific angular direction, which produces a unique normal vector. The 

characteristics of the plane normal vector were used to extract each object automatically and to 

organize points. The points were organized according to their characteristics in different data sets 

for the further calculation process.  

Several techniques (e.g., Naïve Bayes Classifier Algorithm, K Means Clustering 
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Algorithm, and Support Vector Machines Algorithm) can be used to fit a parametric model into 

the data (Wu X. et al., 2008). Random sample consensus (RANSAC) is selected to estimate the 

residual of the objects in a model based on the distance threshold (Veichtlbauer et al., 2011) 

because of the robust approach used in this method to estimate the matrix. In the algorithm, 

RANSAC was employed to determine if a point was an inlier or an outlier in an object.  

Object segmentation is another step in our automated classification process. In this step, 

point cloud data are broken down into different objects based on their characteristics and 

contextual information about neighboring points. Figure 12 depicts the results of segmentation of 

the PCD. 
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(a) 

 

(b) 

 

(C) 

 

(d) 

Figure 12 Sidewalk and ramp detection flow in the automated PCD (top view (a), front view (b), 

top PCD view (c), surface top PCD view(d)) 
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2.2 Case Study for Static Object Detection  

2.2.1 Overview 

Individuals with different disabilities face different barriers to have access to public and 

commercial services (Park & Subeh, 2018). The Business district of Kalamazoo, Michigan, is a 

useful case study to investigate the disability barriers according to the ADA. The case considered 

in this study was located on Ross Street between West Michigan Ave. and East Kalamazoo Ave. 

in the downtown of Kalamazoo. This area is located in a business district with various public and 

commercial buildings (e.g., a museum, university campus buildings, public parking facilities, 

banks, and hotels), which cause high pedestrian traffic. It is a residential-commercial area with a 

wide variety of residents as road users (Figure 13).  

 

 

 

Figure 13 The bird-eye-view image of the case study area and its PCD (Green color passed ADA 

and red color rejected) 
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Some constraints affecting the data collection through laser scanning (e.g., the Leica C10 laser 

scanner used in this study scans 50,000 pts/s) were detected, and it took 2 to 5 minutes to finish 

each scan (Figure 14).  

 

 

Figure 14 laser scanner in data collection 

Moving vehicles and pedestrians may block the laser beams, while the laser scanner scans areas; 

therefore, the noise needs to be analyzed and removed from the PCD (Figure 15). 

 

 

 

 

Figure 15 Laser scanner view image of the case study area (Sources of errors) 
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2.3 Data Collection of Static Object Detection 

 

Bascom and Christensen (2017) showed that 70% of those with a disability need to balance 

their accessibility requirements with their life, indicating the significance of the measurement 

accuracy in their life quality (Bascom & Christensen, 2017). Through having accurate detection 

and analysis of sidewalks and ramps, automatic measurements of different object elements could 

subsequently be conducted. The experiment was conducted to assess the accuracy of the proposed 

approach. The sidewalk and curb ramp features (Figure13) were manually registered by measuring 

tape to obtain a ground truth for curbs and sidewalks. Tables 3 and 4 compare the results of two 

sets of object features detected for measurements. Tables 3 and 4 present the performance of the 

proposed algorithm for essential features of the sidewalks and ramps in the case of compliance 

checking. 
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Table 3 Comparison of the selected curb ramp slopes 

Results of Curb Ramp Slopes 

Number By manual measurements 

(%) 

By proposed 

approach (%) 

The difference (%) 

1 8.17 7.99 0.18 

2 10.42 10.21 0.21 

3 10.42 10.60 -0.18 

4 7.11 6.45 0.66 

5 7.62 7.64 -0.02 

 

Table 4 Comparison of the selected sidewalk slopes 

Results of Sidewalk Ramp Slope 

Number By manual measurements 

(%) 

By proposed approach 

(%) 

The difference (%) 

6 1.23 0.95 0.28 

7 2.00 1.67 0.33 

8 1.14 1.57 -0.43 

 

The proposed approach and algorithms were tested by different experiments with different 

curb ramp and sidewalk data sets. The measurements derived from the proposed approach were 
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close to the ground truth data. Checking the requirements of ADA regulations should be continued 

to ensure the accessibility of the public facility for the ones with limited mobility (Oh et al., 2017). 

As shown in Figure 13, the green color represents sidewalks and ramps meeting the ADA 

regulation, and the red color represents curbs not meeting the ADA regulations. Table 2 shows the 

results of the curb ramp slope data by comparing the physical measurements and the results 

obtained from the proposed automation method in five different ramps across the studied area. The 

mean absolute error of the selected curb ramps data is 0.22%, which indicates the accuracy of our 

proposed method. Three out of five selected curb ramps met the ADA requirements in terms of 

the maximum slope of curb ramps (8.33%). 

 

2.4 Limitations in Static Object Detections 

This study is one of the few investigations on the use of a comprehensively automated algorithm 

in assessing the compliance of roadway features with ADA. The primary motivation was to prepare 

a comprehensive evaluation method for the public infrastructure facilities (such as curb ramps and 

sidewalks) according to the ADA requirements. To achieve this aim, the PCD was collected by 

laser scanning. ADA maintains the design criteria for safe and accessible roadways for individuals 

with disabilities. Data acquisition and 3D modeling facilitated the evaluation process of the local 

facilities according to the ADA requirements. Point cloud data is a high-quality 3D modeling data 

collected by laser scanners.  

Different research methods were used to investigate the accessibility checking. Alghamdi. et al. 

(2017) used a simulation technique to check compliance (Alghamdi et al., 2017) and Ai. et al. 

(2017) reported an accurate measurement technique of the sidewalk cross slope and grade by using 

LIDAR and camera data (Ai, and Tsai, 2016); however, they reported different appearance 
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challenging to implement a fully automated curb ramp extraction method, so they used a semi-

automatic approach.  

In the present research, an automated assessment methodology was proposed for ADA compliance 

to adopt various types of point-based measurement technology using LIDAR. Standard data format 

from these measurements are in the form of PCD, and this study addresses the steps to identify 

critical features that constitute ADA compliances of these measurements. Although a variety of 

sensors are available to measure different maneuvers, only a few sensors can provide 

comprehensive data. 

 

2.5 Static Object Detection Summary 

The PCD data is required to process and interpret various techniques to be used. Different 

data processing techniques such as normal estimation, surface fitting, and segmentation can be 

used to analyze and categorize road features. This helps the automated detection of road elements 

such as sidewalk and curb ramp, and the automated measurement of their dimensions, including 

slopes. We proposed a new approach to use LiDAR data to automatically detect different objects 

such as curb and sidewalk and calculate different object characteristics such as slope, length, and 

width. Experimental testing was conducted to evaluate the proposed technique in a real case study 

on Ross Street in Kalamazoo, Michigan. The results showed that the mean absolute error of the 

selected curb ramps data was 0.22% and this value was 0.13% for the sidewalks when compared 

to other manual measurements. The proposed method and algorithms were expected to help the 

local authorities in assessing their infrastructure facilities and identify accessibility problems based 

on the ADA requirements.  
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3 DYNAMIC OBJECT DETECTIONS 

3.1 Overview 

 

Nowadays, bike riding is considered as an expanding sustainable mode. Transportation modes are 

getting more sophisticated, particularly in megacities, and this leads to more complicated 

interactions between vehicles and bicycles; hence, it is necessary to generate a reliable design and 

plan to facilitate safe interactions between vehicles and bicycles. 

Analyzing drivers’ behaviors is one of the most important and critical topics in traffic engineering 

and management. The effect of the drivers’ behaviors has been studied in a few different methods 

which were developed by other researchers. For example, Wang, et al. 2014 developed an 

instrument to measure the driver behavior in the different scenarios.  

Most of the remote sensing techniques used for vehicle detection and vehicle tracking are based 

on fixed sensors installed along the roads (Yang &Rong, 2009 ). 

Nonetheless, analyzing vehicle and bicycle maneuver is still exposed to many problems. An 

accurate analysis of data of the passing maneuver is critical to address the central problems of 

overtaking research. Safe interaction between cyclists and drivers consistently arises in a broad 

spectrum of real-life applications.  

Most of the previous studies, for example, those by Dozza et al. (2016) _ and Debnath et al. (2018) 

only focused on passing distance as the main factors to analyze the vehicle overtaking trajectories. 

However, Sun et al. (2018) used LiDAR to analyze speed as one of the vehicle trajectory factors. 

As discussed, the drivers’ overtaking a bicyclist behavior has long been studied; however, it has 

never been investigated in terms of highly accurate speed and distance. The speed and distance are 
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considered as important factors before and after the adaptation of an approach in vehicle-bicycle 

passing interactions. The data was collected from two and three-lane roads with or without a 

shoulder for the bicycle, which were equipped with a LiDAR. One of the significant limitations of 

the existing vehicle and bicycle feature analysis is access to the comprehensive database to be used 

for analyzing the data. The general concept of LiDAR object detection can be used to generate 

object features for the motor vehicle and bicycle trajectories after data processing. 

In this study, a new analysis algorithm is presented to assess the speed and distance transformation 

of the vehicles approaching and entering the passing zone of the bicycles in the micro level 

transportation systems. Data collected from X, Y and Z coordinates that are referred to as PCD to 

represent the surface of objects in the transportation facilities. For the purpose of this research, the 

definition of data gathering and post-processing would involve complex calculation challenges. 

The entire recognition process was implemented by a single algorithm. The recognition process 

was implemented by a semi-automated point-wise classification process by using an adaptive 

neighborhood in the region of interest (ROI) within a complex urban environment. Points were 

classified as either vehicle or others, which would store vehicle information for further data 

processing. 

According to the literature review, data processing methods and corresponding algorithms were 

developed to detect vehicles automatically. Most of the publications used data obtained from the 

controlled environments and did not consider the relationship between distance and speed 

measurements as overtaking-related parameters; however, our data collection method represents 

the real vehicle and bicycle maneuvers. In this study, there was a vehicle detection, and tracking 

based on the length, height, intensity and pulse reflections is developed to classify the vehicles and 

extract trajectories in order to analyze drivers’ behavior.  
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Two significant measures were adopted to accurately evaluate and assess vehicles overtaking a 

bicycle: (1) detecting vehicles by preprocessing and processing raw data in this step from multiple 

sensors such as GPS and IMU to produce a point cloud information; and (2) segmenting extracted 

vehicles and then evaluating vehicles overtaking bicycle’s characteristics data. At the same time, 

the region of the study was detected, and the data was extracted from the concerned study area. 

Based on our study, the objects are within the boundary are extracts and other data will be 

discarded. The details of our proposed method to accomplish the automated evaluation and 

extraction of vehicles overtaking a bicycle are shown in the following figure (Fig. 16): 
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Figure 16 Proposed methodology flow chart 
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3.2 Raw Data Acquisition and Preprocessing for Dynamic Object Detection 

The LiDAR sensor used in this study was Velodyne’s VLP-16 model, and it was mounted on the 

back side of the bicycle. The LiDAR view is 360 degrees to be installed vertically on the bicycle. 

The LiDAR usually collected distance and reading deliver distance in a 3D point cloud 

environment. 

Moreover, the LiDAR serves as a 3-dimension (3D) scanner recording the range and direction of 

each point around the bicycle. The LiDAR frame is a set of 3D point information about distance, 

integrity, and pulse. The 3D data information in the data frames allows the measurement of speed 

and distance. The LiDAR is a sensor which can generate up to 30,000 points with their 

coordination information in each data frame. Figure 17 shows a 3D data frame. In the frame, the 

X and Y respectively are the vertical and horizontal distance of the points from the LIDAR and Z 

is the height of the points based on the LiDAR height. 

 

 

Figure 17 Raw data of a vehicle (left) and the camera view of the same vehicle (right) 
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The first step in drivers’ behavior information analysis is to improve data quality. The first key 

factor considered in this study was a boundary limit for our Region of Interest (ROI). The second 

key factor was cleaning the noises and errors in this step to construct an automated algorithm to 

extract vehicle and bicycles trajectory information with high-resolution. Finally, the integrated 

data frames were in the format settled for the next step.  

The LiDAR data was used to acquire data points from the object’s surface such as the vehicle, 

trees, building surfaces, etc. When the outliers were removed, the objects such as traffic signs, 

trees, and others that are noise in our dataset should be filtered out within the range of 16 feet. 

 

3.3 Dynamic Object Detection Procedures 

3.3.1 Smart Segmentation in ROI (Statistical Outlier Removal) 

When the dataset is clean, the noise and inconsistent noise data points near the Object of Interest 

(OOI) will be removed. This process is carried out by using a descriptive statistic method in a 

machine learning process. The sparse outlier removal is one of the most commonly used methods 

to trim data out of the research ROI dataset. This step is needed to calculate standard deviations 

(σ) and the mean values (µ) of the nearest neighbor distances (N) (NND) (Rusu et al., 2008). The 

object of the research in ROI it would define the dataset. Three main phases were executed to 

perform segmentation based on the existing ROI to define dataset. The first step was to limit the 

boundary based on timestamps in each LiDAR frame. The second step was to restrain longitudinal 

and lateral distance to the bicycles (X and Y dimension). And the last step was to have distance 

calculations. The distance (D) between the points was calculated by the following Eq. (1). 
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D (P1, P2) =√(𝑥2−𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2                                                                   (1) 

 

Where, X, Y, and Z represent X-dimension, Y-dimension, and Z-dimension of the LiDAR 

(Bicycle), respectively. The following algorithm was also used in all steps. 

If the distance between the points is taken from the boundary Z =µ± α X σ, the obtained data is 

removed. In accordance with the research ROI, the following equation was used. 

Z =µ± α*σ                                                                                                                                     (2) 

σ=S/√K                                                                                                                                          (3)    

                                                                                                                           

In this algorithm, α = 1 and k = 100. The experiment shows that the adoption of µ ± σ eliminates 

the objects with the highest outlier properties. 

 

3.3.2 Segmentation in the Time Stamp, X and Y Dimensions  

The key point is to keep the information belonging to the vehicles in the segmentation process for 

each frame and to keep tracking the same segmentations in the following frames. The LiDAR 

scans and collects data for all surrounding objects such as trees, buildings, vehicles, bicycles, etc. 

In our complex urban environment, there were multi-corridors for the vehicles moving on one-

way or two-way paths. In order to extract objects, it is thus necessary to exclude the points 

belonging to the vehicles moving in the opposite directions. Accordingly, the primary objective in 

the vehicle and bicycle trajectory detection is to define the ROI, which is a portion of a data-limited 

based on the road and vehicle geometry. In this study, the data analysis was run for the considered 
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area. Based on Dozza et al. (2016), the vehicles which maneuver more than 12 feet on the side of 

bicycle and 16 feet before and after leaving the bicycle are not significant in determining the 

overtaking trajectory of the overtaking vehicle (10). In the present research, a threshold distance 

was required to differentiate the points belonging to the other side vehicles. It is therefore assumed 

that vehicles pass the left side of bicycles and their longitudinal distance is less than 18 ft. In 

addition, the ROI was defined for a lateral distance of 33 feet, indicating that all points with 

distance above 33 feet are removed from the LiDAR (Figure 18). 

 

 

Figure 18 ROI schema for a vehicle trajectory detection 

 

3.3.3 Vehicle Detection and Clustering 

The general vehicle detection applications involved in developing an algorithm to filter out the 

noises clean unrelated objects automatically, build the models such as Random Sample Consensus 

(RANSAC), and finally assess the model in the format finalized for the ground plane detection 

and segmentation. In RANSAC, a mathematical model needs to be developed for each targeted 

surface. The data is explored using an iterative process to fit the object’s surfaces. The RANSAC 

model was developed to analyze the relationship between various variables fitting the surfaces. 

These procedures should be adopted for each individual surface. Finally, each unfit surface is 
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removed from the dataset. Although this method works, it is time-consuming when applied to the 

big size datasets.  

The authors present a new solution for processing the vehicle’s surface detection in a high-

frequency vehicle detection environment. In this phase, the author developed an automated method 

for mobile trajectory detection by using the developed algorithm. The LiDAR builds a 3-D map 

of an object's surroundings surfaces by firing thousands of laser pulses at a second. LiDAR fires 

laser pulses to collect the reflections from various target surface’s density. Each surface has a 

specific density which can be calculated based on the laser pulses. Some surfaces such as vehicles, 

however, may return more or fewer pulses than the local density; therefore, each object’s surface 

can be detected by calculating the pulse data (Watershed Sciences, 2009). The reflection time is 

measured for round-trip travel from LiDAR to the target surface by the laser pulse. Distance is 

also measured based on the flight time principle. Furthermore, surface angle and coordination 

information are measured and recorded in the data frames. Accordingly, data frames not only 

present surface coordination values, but also target the surface intensity, vertical angle, and other 

point attributes (Fernandez-Diaz et al., 2014).  

In our proposed method, instead of a complicated mathematical model such as RANSAC, an 

algorithm was developed to extract and cluster object’s range measures by using the vertical 

angles, distances, and the coordination of each vehicle’s surface in the data frame. Figure 19 

indicates the effect of the developed algorithm to detect vehicle processing in a noisy data frame. 

Furthermore, the developed algorithms help users to define another specific ROI in the detected 

object, as it will be discussed later.  

The X- Y- T- I (X, Y dimension, timestamp, and integrity) plane was developed to divide the data 

frames into several small pieces. Each piece will be associated with one object; therefore, any other 



48  

point might also be removed. Since the number of objects in one frame is unknown and varying in 

different frames, the data frames should be broken down into the different regions with similar 

features such as distance and intensity.  

Equation. 4 shows the relationship between the X- Y- I- T plane and the data frames. 

                                                Ymax -j * ∆y ≤ y ≤Ymax - (j -1) * ∆Y   

       (i, j) ↔ {(X, Y, I, T),        Xmax -j * ∆X ≤ x ≤ Xmax - (j -1) * ∆X       , t=ti}                            (4) 

                                                                   0 ≤ I ≤5 

Where, (i ; j) show a piece of an object in the data frame; the sets on the right side of the curly 

brackets are the corresponding area in the X, Y, I, T space; Xmax and Ymax are the conversion 

range of the Y and X dimensions, which are set to be 33 and 18ft, respectively. ∆Y is the length 

of the rectangular area, ∆x is the width of the rectangular area, “I” is the integrity of the points, 

and ti is the timestamp of the corresponding LiDAR frame.  

 

Figure 19 The results of the proposed method: noisy data frame (left) before processing and 

vehicle points (right) after processing. 
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3.3.4 Point Cloud Classification (Smart Segmentation in ROI) 

The automated approach in point cloud classification was adopted in vehicle detection by 

measuring range data. Accurate identification of a vehicle approaching and entering the passing 

zone in point cloud is one of the most critical steps in vehicle trajectory processing. As discussed, 

the LiDAR produces a 3D point cloud of the surrounding objects, which is ideal for object 

detection; however, massive data filtering, as well as the cleaning of unrelated points in the data 

frames, are required to reduce the size of the data based on the research ROI boundary. Using our 

advanced algorithm, we managed to detect just vehicle information in 2016 for the National 

Highway Traffic Safety Administration in our ROI boundary. There was still a big size of datasets 

generated. In this step, we suggested a smart approach technique for the segmentation. The 

algorithm would limit the points to the detected part of the OOI in the ROI data frames to reduce 

the number of dataset points before bringing them into the analysis. The smaller size of the final 

dataset points would reduce the processing time through clustering the OOI to multiple 

segmentation and analysis just for the specific segments of the OOI in a data frame. The yellow 

boundary in Figure 20 shows the smartly detected segmentation of the OOI. 

Equations 5 and 6 show the relationship between the object and the OOI. 

 

Strat maneuvering bicycle (i, j) ↔ {(D, t), Di -Dj =Z, Z =µ± α * σ, σ=S/√K, t=ti}                      (5) 

                                                                                                                           

where, (i; j) express a piece of an object in the data frame; D is the distance of the object from 

LiDAR and α = 1 and k = 5. The experiment shows that µ ± σ eliminates the objects with the 

highest heterogeneous properties. 
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While passing bicycle:  

(i, j) ↔ {(x, y, t), Ymin -j * ∆y ≤ |y| ≤Ymin - (j -1) * ∆Y, 0 ≤ X≤ 18, t=ti}                                     (6) 

 

where (i; j) express a piece of an in the data frame; ∆D is the distance of the object and Ymin is 

the conversion range of the Y-dimension; ∆y is the length of the rectangular area and ti is the 

timestamp of the corresponding LIDAR frame.  

Figure 20 shows the detected steps required for detecting a vehicle trajectory in different data 

frames. In Figure 20 (a), Vehicle (a) enters to the approaching zone of the bicycle. Vehicle (b) 

enters to the bicycle passing zone. Vehicle (c) passes the bicycle. 

 

 

                          a     b     c  

Figure 20 Smart detect at the Front-end of the vehicle (a) whole vehicle (b) and the rear-end of 

vehicle segmentation in ROI (c) 
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3.3.5 Overtaking Maneuver 

According to Rasch (2018), overtaking and passing definitions are not the same. Overtaking is 

defined as any maneuver through which one vehicle passes another object such as a car or a bicycle 

when they are in the same direction. Rasch (2018) also notes that the overtaking maneuver is a 

special situation in the passing.  

On the other hand, a driver passes a bicycle or a pedestrian or any vehicle which is in front of the 

vehicle either through increasing speed or traffic condition. Overtaking starts at the moment when 

a driver changes the lane and increases the speed to pass another object. Overtaking is completed 

whenever the vehicle moves back in the same direction in front of another moving object. The 

overtaking maneuver should occur in a sufficient longitudinal direction for a safe maneuver. 

Overtaking by a cyclist is dangerous because of different relative speeds. Different variables affect 

overtaking maneuvers scenarios, including geography conditions, speed limitation, vehicle speed, 

and bicycle speed. In the following section, we will analyze vehicle trajectories while passing a 

bicycle. Overtaking happens in five phases. The first phase is approaching phase, i.e., the driver 

observes a bicyclist and makes a decision about his next act. The second phase is steering away, 

i.e., the driver starts to change the speed and changes the lane. The third phase is passing, i.e., the 

vehicle is passing a cyclist at a higher relative speed. The fourth phase is steering back to the same 

lane and direction. The last step is to continue driving in the same path and direction. Our proposed 

algorithm can be used to accurately detect the trajectory to understand better human behaviors at 

different road conditions, including different lateral and longitudinal scenarios involving different 

speeds for both drivers and cyclists.  

The key elements of overtaking are the time of observation of the cyclist which is related to the 

speed of the bicyclist and vehicle. Based on the proposed algorithm, all variables could be 
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extracted from LiDAR data object extraction at a high standard level. 

 

3.3.6 Maneuver Detection in Time Series 

As we discussed in the previous section, the maneuver information needs to be extracted from 

LiDAR frames. For the moving LiDAR, two speed needed to extract, Bicycle speed from IMU 

and vehicle speed which extracted from LiDAR Data. Vehicle speed and bicycle speed are not 

constant and change during the drivers and bicyclists’ maneuvers. Moreover, the LiDAR can 

collect data at the rate of 5-10 HZ which altogether will contort the vehicle detection process in a 

complex urban environment with multiple objects at one frame. Speed of the bicycle will extract 

based on IMU information. Moreover, the distance between the two frames can be calculated via 

the following formula. 

 

𝑥𝑉 =∑(𝑇𝑖 − 𝑇𝑖−1) ∗ 𝑉𝑖

𝑛−1

𝑖=1

 

 

Where, T and V represent the time differences between frames ith and (i-1) th and speed of the 

bicycle, and x_V is the bicycle’s traveling distance during the data collection process. 
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3.4 Data Collection for Dynamic Object Detection 

3.4.1 Overview 

 

In 2016, the NHTSA report indicated that 58 percent of pedal cyclist’s fatalities did not occur at 

intersections and that 71 percent of pedal cyclists’ fatalities occurred in urban areas. The procedure 

of the developed algorithm was tested by the data collected at two cities with different road 

geometrics and speed limit information in Lansing, Michigan, and South Bend, Indiana. 

 

3.4.2 LiDAR and Bicycle Setup 

This research employs a bicycle equipped with different sensors such as LiDAR and GPS and a 

data acquisition system to integrate all data. To meet the data collection needed, a Velodyne 

LiDAR system was installed at the top of the case. The Sony X3000 4K camera was installed on 

the left corner of the case viewed passing motorists from it is concealed location within the case. 

The configuration of the system was not likely to attract the attention of passing vehicles as it was 

inserted within the typical outline of the bicyclist. The LiDAR, Sony camera, Garmin GPS 

receiver, and accelerometer equipment (SBG sensor) were all powered by a pair on onboard 

batteries (Figure 21). 
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Figure 21 LIDAR and bicycle set-up 

 

The overall weight of the system installed on the bike was not an impedance to the rider and never 

impacted its normal operation. The resulting point cloud data was used to extract vehicles and 

analyze the drivers’ behaviors. In addition, Table 5 shows more details of the devices installed on 

the bikes. 

Table 5 LiDAR data setup package  

Sensor type Sensor Name Data Provided Resolution Sample 

frequency 

LIDAR Velodyne V-16 Point Cloud Angular resolution 

(vertical): 2° 

5 – 20 Hz 

Camera Sony X3000 Video Frames 1920*1080 Pixel 30 fps 

GPS Garmin 18x 

LVC 

Latitude and Longitude 1 MS 1 Hz 
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3.4.3 Data Validation for Vehicle Detection 

The experiment was conducted to evaluate the accuracy of the proposed method. The overtaking 

distance was manually measured by using a fixed measuring tape to obtain the ground truth for the 

overtaking distance.  

The proposed method and algorithms tested in the experiments by using different datasets and 28 

vehicles passing distances, which were measured manually and compared with the database. The 

measurements derived from the proposed method were close to the ground truth data.  

Table 6 LiDAR data collection package 

Measuring Results 

 Number of 

samples 

Mean 

standard 

Deviation 

Standard 

Error 

Manual Measurements 28 68.18 20.98 3.96 

C3FT 28 64.54 19.29 3.65 

Proposed Method 28 69.79 21.01 3.99 

 

Table 6 shows the results of overtaking pass distances for the vehicle and bicycle data, obtained 

from physical measurements and C3FT. The results were obtained by using the proposed 

automated method for 28 different interactions. The standard error of the overtaking test distance 

data was 3.96 inch for manual measurements, 3.65 for C3FT, and 3.99 inches for the proposed 

method, indicating the accuracy of the proposed method. 
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3.5 City Selection 

Study areas should be selected based on different factors such as population, number of bicyclists, 

the traffic condition, and passing distance regulations. Different cities were analyzed, and two 

cities were selected: Lansing in Michigan, and South Bend in Indiana. During the data collection 

period, South Bend had passed 3 feet passing distance law but not Lansing. Three different types 

of roads were analyzed: Roads with a bike lane, roads with a shoulder, and roads without bike lane 

and shoulder (Figure 22). In South Bend, even though, four types of roads were analyzed: roads 

with a bike lane, shoulder, and sharrow and roads without a shoulder, sharrow, and bike lane 

(Figure 23) 

 

 

Figure 22 Selection of routes in Lansing, Michigan 
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Figure 23 Selection of routes in Lansing, Michigan 

 

 

3.6 Data Measured from LiDAR Data 

After data collection, LiDAR data was processed by the proposed algorithm. Passing distance was 

detected for each individual vehicle, and 304,000 data frames were analyzed. A total of 830 

vehicles were detected in the studied area. The data was limited to 12 feet from the bicycles. Table 

7 shows a summary of the collected data in Lansing and South Bend. 
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Table 7 Bike speed data in approaching and passing zone     

Feature City Road 
Vehicle 

position 
Mean 

Standard 

Error 
Median 

Standard 

Deviation 
Sample 

Variance 
Minimum Maximum Count 

B
ik

e 
S

p
ee

d
 

L
an

si
n

g
 

West 
Kalamazoo 

 vehicle in 

approaching 
zone 

16.09697 0.75514752 15.877 3.699452209 13.68594665 9.451035 21.35424 24 

vehicle in the 

passing zone 
16.76843 0.528644908 16.731 2.589820559 6.707170527 12.54326 21.335853 24 

East 

Kalamazoo 

 vehicle in 

approaching 
zone 

22.46351 0.492662187 22.9615 2.872689515 8.252345051 14.67552 26.982184 34 

vehicle in the 
passing zone 

22.09692 0.535069989 22.2715 3.07374307 9.447896462 14.52422 27.672126 33 

Pleasant 

Grove Road 

 vehicle in 
approaching 

zone 

20.35747 0.461408003 20.8657 3.915176731 15.32860884 9.564625 26.672857 72 

vehicle in the 

passing zone 
20.29449 0.446687234 20.5449 3.790266866 14.36612291 9.583785 25.917294 72 

East Miller 

Road 

 vehicle in 
approaching 

zone 

19.82562 0.348688913 20.1523 3.62368148 13.13106747 13.21844 26.839178 108 

vehicle in the 

passing zone 
19.6091 0.349838714 19.9148 3.635630558 13.21780955 11.66567 27.661278 108 

East 

Cavanaugh 

road 

 vehicle in 

approaching 

zone 

22.46351 0.492662187 22.9615 2.872689515 8.252345051 14.67552 26.982184 33 

vehicle in the 

passing zone 
22.09692 0.535069989 22.2715 3.07374307 9.447896462 14.52422 27.672126 33 

Martin 
Luther king 

 vehicle in 

approaching 
zone 

20.35747 0.461408003 20.8657 3.915176731 15.32860884 9.564625 26.672857 72 

vehicle in the 

passing zone 
20.29449 0.446687234 20.5449 3.790266866 14.36612291 9.583785 25.917294 72 

S
o

u
th

 B
en

d
 

Lincoln Way 

 vehicle in 

approaching 
zone 

23.02656 0.276817155 23.3932 2.299415982 5.287313858 17.04745 27.820289 69 

vehicle in the 
passing zone 

22.83232 0.277011029 23.1144 2.301026428 5.29472262 16.46792 28.451266 69 

Portage 

Avenue 

 vehicle in 
approaching 

zone 

21.77876 0.252647839 22.2974 3.361260877 11.29807468 12.6447 27.74256 177 

vehicle in the 

passing zone 
21.47809 0.241428495 21.9388 3.211997217 10.31692612 13.49856 27.209239 177 

Twyckenham 

Drive 

 vehicle in 
approaching 

zone 

20.08889 0.441718404 20.6549 3.721985432 13.85317556 3.377464 26.392604 71 

vehicle in the 

passing zone 
19.89819 0.372395876 20.0825 3.137863425 9.846186877 12.63797 25.265304 71 

South Main 
Street 

 vehicle in 

approaching 

zone 

21.7917 0.279628053 21.891 2.810227152 7.897376644 10.96991 29.388784 101 

vehicle in the 

passing zone 
21.54958 0.276470937 21.6471 2.778498532 7.720054091 12.23766 27.334933 101 
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Table 8    Relative speed data between bicycle and vehicle in approaching and passing zone    

   

Feature City Road Vehicle position Mean 
Standard 

Error 
Median 

Standard 

Deviation 
Sample 

Variance 
Minimum Maximum Count 

R
el

at
iv

e 
S

p
ee

d
 

L
an

si
n

g
 

West 

Kalamazoo 

vehicle in 

approaching zone 
2.521711 0.185033669 2.49299 0.90647615 0.82169901 1.034215 4.712038 24 

vehicle in the 

passing zone 
0.912393 0.065463483 0.89179 0.320704262 0.102851224 0.505319 1.776925 24 

East 

Kalamazoo 

vehicle in 

approaching zone 
3.105782 0.126052042 3.06291 1.241468633 1.541244366 0.198824 7.6882915 97 

vehicle in the 

passing zone 
1.349377 0.063999833 1.29018 0.630325255 0.397309927 0.158005 3.0881332 97 

Pleasant 

Grove Road 

vehicle in 

approaching zone 
3.643323 0.164320981 3.63436 1.304257355 1.701087248 0.947404 7.4757806 63 

vehicle in the 

passing zone 
1.553983 0.091880705 1.47639 0.729280487 0.531850028 0.321527 3.9480053 63 

East Miller 

Road 

vehicle in 

approaching zone 
3.303867 0.127377089 3.24468 1.323741537 1.752291657 0.486252 7.5653103 108 

vehicle in the 

passing zone 
1.405616 0.078135222 1.27293 0.812005049 0.659352199 0.226835 3.6462416 108 

East 

Cavanaugh 

road 

vehicle in 

approaching zone 
2.491594 0.131965706 2.44308 0.769485681 0.592108213 0.907887 4.0738303 34 

vehicle in the 

passing zone 
1.452196 0.115179275 1.37163 0.671604811 0.451053022 0.569581 3.5283833 34 

Martin 

Luther king 

vehicle in 

approaching zone 
2.380966 0.119065962 2.25286 1.010308187 1.020722632 0.593804 4.8222003 72 

vehicle in the 

passing zone 
2.380966 0.119065962 2.25286 1.010308187 1.020722632 0.593804 4.8222003 72 

S
o

u
th

 B
en

d
 

Lincoln Way 

vehicle in 

approaching zone 
2.581997 0.148311256 2.34696 1.231965815 1.517739769 0.621568 7.4683926 69 

vehicle in the 

passing zone 
1.381193 0.08146518 1.39923 0.676700604 0.457923708 0.221789 3.1065871 69 

Portage 

Avenue 

vehicle in 

approaching zone 
3.18115 0.127223177 2.90164 1.692594284 2.86487541 0.227838 9.2082363 177 

vehicle in the 

passing zone 
1.821196 0.074532196 1.70617 0.991586379 0.983243547 0.266321 5.2057308 177 

Twyckenham 

Drive 

vehicle in 

approaching zone 
3.388507 0.155533128 3.37746 1.310545432 1.71752933 1.230526 7.5631084 71 

vehicle in the 

passing zone 
1.435885 0.078163218 1.26315 0.658614978 0.433773689 0.407725 2.9098473 71 

South Main 

Street 

vehicle in 

approaching zone 
3.347146 0.152226135 3.20015 1.529853719 2.340452402 0.503352 8.1227046 101 

vehicle in the 

passing zone 
1.575861 0.080008922 1.4363 0.804079713 0.646544185 0.12078 4.7939582 101 
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Table 9     Latitude distance data between vehicle and bicycle in approaching and passing zone  

 

Feature City Road 
Vehicle 

position 
Mean 

Standard 

Error 
Median 

Standard 

Deviation 
Sample 

Variance 
Minimum Maximum Count 

L
at

it
u

d
e 

D
is

ta
n

ce
 

L
an

si
n

g
 

West 

Kalamazoo 

vehicle in 

approaching 

zone 31.13492 0.246935572 31.3914 1.209732304 1.463452247 26.41919 32.382481 24 

East 

Kalamazoo 

vehicle in 

approaching 

zone 30.22663 0.676535339 31.4478 6.663100356 44.39690636 17.09377 32.388879 97 

Pleasant 

Grove Road 

vehicle in 

approaching 

zone 29.66376 0.811180399 31.3759 6.43854481 41.45485927 16.68957 32.42697 63 

East Miller 

Road 

vehicle in 

approaching 

zone 28.42219 0.413287322 30.4121 4.295007838 18.44709233 16.35961 32.124246 108 

East 

Cavanaugh 

road 

vehicle in 

approaching 

zone 28.00947 0.639061326 29.017 3.726335847 13.88557885 21.14843 32.341865 34 

Martin 

Luther king 

vehicle in 

approaching 

zone 29.50482 0.415714915 30.6858 3.527458025 12.44296012 14.32205 32.724017 72 

S
o

u
th

 B
en

d
 

Lincoln Way 

vehicle in 

approaching 

zone 30.73468 0.216369598 31.3059 1.797300863 3.230290393 20.47034 32.163813 69 

Portage 

Avenue 

vehicle in 

approaching 

zone 29.61589 0.264879951 31.2236 3.523998549 12.41856578 16.21887 32.653708 177 

Twyckenha

m Drive 

vehicle in 

approaching 

zone 30.795 0.298276427 31.5007 2.513321849 6.316786716 19.00725 32.365749 71 

South Main 

Street 

vehicle in 

approaching 

zone 29.6192 0.377889635 31.1557 3.797743834 14.42285823 16.00551 32.461057 101 
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3.7 Limitation in Dynamic Object Detection 

There were some limitations to this research. They can be eliminated in future studies to improve 

the performance of driver behavior detection. We used Velodyne V16 as the data collection device; 

however, its accuracy sharply decreased after 15-20 ft away from the LiDAR. Velodyne V-16 was 

equipped with 16 laser beams, which had a Field of View with a +15 to -15 vertical degrees. 

Furthermore, based on the LiDAR website, each of the 16-laser beams was directed about two 

degrees apart which means is for every 10 ft different between each channel would be 0.35 ft away. 

Another limitation of this study was object detection based on the distance. At 33ft far from the 

LiDAR, we had just two channels out of 16 channels to read the data. 

 

3.8 Dynamic Object Detection Summary 

This study used an automated method to extract and smartly assess the data of vehicles 

overtaking bicycles. This research introduces a reliable and straightforward vehicle trajectory 

extraction method regarding the LiDAR point clouds preprocessing. The proposed method has 

been tested by moving vehicle trajectory detection procedures for massive data processing. This 

procedure encompasses four main steps: (1) Organizing point clouds by preprocessing the raw 

data, e.g., filtering and cleaning the defined RON and OOI; (2) Filtering raw point clouds using a 

statistical outlier removal method to trim nearby object points; (3) Introducing our new vehicle 

detection and clustering method by using surface angles collected based on laser pulse in a novel 

way through extracting the initial features; (4) Projecting initial ROI features onto the OOI. 

The developed algorithm method relies on the 3D coordinate and angle values of point 

clouds. The dataset was applied to the two datasets. A total of 260,000 data frames was collected 

and analyzed. The algorithm was applied to Lansing, Michigan and South Bend, Indiana. The 
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trajectories were then plotted. 

The developed algorithm could also be applied to different transportation road facilities 

to analyze the vehicle and bike trajectories. This algorithm would also be applied to the variety of 

traffic applications to provide safe interaction between vehicles and bicycles in smart cities. 

Moreover, this algorithm can be used in autonomous car applications for automated overtaking 

procedures. It should be stated that the effects of different transportation facilities were not 

considered in this study. 
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4 CONCLUSION 

This dissertation demonstrated that a LiDAR and Laser Scanner can be used for fix and dynamic 

object detection and classification. In this study in section 2, the road features were distinguished 

from off-road features based on the object detection and boundaries and the features were analyzed 

based on the ADA regulation. This study is one of the few investigations using a fully automated 

algorithm to assess the compliance of roadway features with the ADA. To achieve this aim, the 

PCD was collected by laser scanning. The ADA maintains design criteria for safe and accessible 

roadways provided to individuals with disabilities. Data acquisition and 3D modeling facilitated 

the evaluation process of the local facilities with regard to the ADA requirements. Point cloud data 

is a high-quality 3D modeling data collected by laser scanners. The PCD data is required to process 

and interpret various techniques to be used. Different data processing techniques such as normal 

estimation, surface fitting, and segmentation can be used to analyze and categorize road features.  

Data processing helps the automated detection of road elements such as sidewalk and curb ramp, 

and the automated measurement of their dimensions, including slopes. Experimental testing was 

conducted to evaluate the proposed technique in a real case study on Ross Street in Kalamazoo, 

Michigan. The results showed that the mean absolute error of the selected curb ramps data was 

0.22% and this value was 0.13% for the sidewalks when compared to other manual measurements.  

In Section 3, the LiDAR was equipped with GPS and IMU, and a camera was mounted on the top 

of the bicycle to provide drivers’ maneuver behaviors. Every single object that is possible to be a 

vehicle was extracted from the LiDAR frames using a combination of the smart segmentation and 

object of interest detection. Furthermore, after detecting all possible vehicles, the vehicles were 

tracked in each individual frame, the trajectory was created, and the driver’s behaviors were 

analyzed. The approach finds the possible vehicles and differentiates the on-road objects and other 
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objects based on their features. The IMU and GPS were also used to implement both relative and 

absolute speeds of mobile vehicles. The IMU and LiDAR data implemented to the developed 

vehicle detection method empowers data processing applications to extract objects and 

differentiate them from background information effectively.  

As future research, the analysis of both directions while passing a bicycle is suggested. The new 

data processing would provide a comprehensive set of information for both path traffic while one 

vehicle is passing a bicycle.  

It is unlikely that a single LiDAR can acquire all the necessary information required to perform 

acceptable and accurate detection, recognition, analysis, and prediction; therefore, it would be 

more visible to combine laser scanner’s massive point cloud data as a database data for 

autonomous vehicles are using LiDAR to detection and recognition object. Merging both point 

cloud data and LiDAR could the information in a cloud environment would supply a novel 

opportunity for autonomous vehicles to have a human maunder prediction. 
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APPENDICES 

 

A. Data Distribution 

In this appendix collected data from Lansing and South bend analyzed. Data distributions plotted 

in a 3 dimensions contour model which express relations between vehicle and bike speeds with 

longitude distances. This section, Mu represents Mean of the normal distribution. In addition, 

sigma represents the standard deviation of normal distribution. 
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West Kalamazoo 

• A 2 and 3-lanes road with bike lane and shoulder 

• The speed limit of 25 mph 

Table 10 Normal data distribution in approaching zone in West Kalamazoo 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 16.09697 14.61691 17.57703 

 Scale sigma 3.69945 2.76215 4.95481 

Vehicle Speed Normal Location mu 18.61868 16.9593 20.27807 

 Scale sigma 4.14768 3.09682 5.55514 

Longitude Distance Normal Location mu 8.0924 7.31935 8.86544 

 Scale sigma 1.93224 1.44269 2.58792 

 

Table 11 Normal data distribution in the passing zone in West Kalamazoo 

 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 16.76843 15.7323 17.80455 

 

Scale sigma 2.58982 1.93366 3.46864 

Vehicle Speed Normal Location mu 17.68082 16.61389 18.74775 

 

Scale sigma 2.66682 1.99115 3.57176 

Longitude Distance Normal Location mu 6.69327 6.09301 7.29352 

 

Scale sigma 1.50035 1.12022 2.00948 

 

 



73  

 

 

 

Figure 24 Vehicle, bicycle speed and longitude distance distribution in West Kalamazoo 
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Figure 25 Maneuver analysis in approaching zone in West Kalamazoo 

 

 

Figure 26 Maneuver analysis in the passing zone in West Kalamazoo 
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East Kalamazoo 

• A 2 and 3-lanes road with bike lane and shoulder 

• The speed limit of 25 mph 

Table 12 Normal data distribution in approaching zone in East Kalamazoo 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 17.59718 16.83243 18.36193 

 

Scale sigma 3.84286 3.33476 4.42839 

Vehicle Speed Normal Location mu 20.86518 20.06966 21.66071 

 

Scale sigma 3.99755 3.46899 4.60664 

Longitude Distance Normal Location mu 8.04197 7.6109 8.47304 

 

Scale sigma 2.16613 1.87972 2.49617 

 

Table 13 Normal data distribution in the passing zone in East Kalamazoo 

 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 17.788 17.00588 18.57012 

 

Scale sigma 3.93017 3.41052 4.529 

Vehicle Speed Normal Location mu 21.17883 20.4877 21.86997 

 

Scale sigma 3.47295 3.01376 4.00212 

Longitude Distance Normal Location mu 7.28678 7.00003 7.57354 

 

Scale sigma 1.44094 1.25042 1.6605 

 



76  

 

 

 

 

Figure 27 Vehicle, bicycle speed and longitude distance distribution in East Kalamazoo 
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Figure 28 Maneuver analysis in approaching zone in East Kalamazoo 

 

 

Figure 29 Maneuver analysis in the passing zone in East Kalamazoo 
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Pleasant Grove Road 

• A 2-lane road with a bike lane 

• The speed limit of 35 mph 

Table 14 Normal data distribution in approaching zone in Pleasant Grove Road 

 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.08645 20.21434 21.95857 

 

Scale sigma 3.53179 2.95968 4.21449 

Vehicle Speed Normal Location mu 24.72978 23.84012 25.61944 

 

Scale sigma 3.60285 3.01923 4.29929 

Longitude Distance Normal Location mu 8.07478 7.65531 8.49425 

 

Scale sigma 1.69872 1.42355 2.02709 

 

 

Table 15 Normal data distribution in the passing zone in Pleasant Grove Road 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 20.81469 19.95444 21.67494 

 Scale sigma 3.48374 2.91941 4.15716 

Vehicle Speed Normal Location mu 22.36867 21.47852 23.25883 

 Scale sigma 3.60486 3.02091 4.30168 

Longitude Distance Normal Location mu 7.07466 6.6711 7.47822 

 Scale sigma 1.6343 1.36956 1.95022 
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Figure 30 Vehicle, bicycle speed and longitude distance distribution in Pleasant Grove Road 
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Figure 31 Maneuver analysis in approaching zone in Pleasant Grove Road 

 

 

Figure 32 Maneuver analysis in the passing zone in Pleasant Grove Road 
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Miller Road 

• A 3-lane road with a shoulder  

• The speed limit of 30 mph 

 

Table 16 Normal data distribution in approaching zone in Miller Road 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 19.82188 19.14472 20.49904 

 

Scale sigma 3.60708 3.15576 4.12294 

Vehicle Speed Normal Location mu 23.12564 22.41324 23.83804 

 

Scale sigma 3.79481 3.32 4.33752 

Longitude Distance Normal Location mu 9.0541 8.5177 9.59049 

 

Scale sigma 2.85725 2.49975 3.26588 

 

Table 17 Normal data distribution in the passing zone in Miller Road 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 19.63575 18.9544 20.31711 

 Scale sigma 3.62944 3.17533 4.1485 

Vehicle Speed Normal Location mu 21.04498 20.38468 21.70528 

 Scale sigma 3.51725 3.07717 4.02027 

Longitude Distance Normal Location mu 8.1272 7.80178 8.45261 

 Scale sigma 1.73341 1.51652 1.98131 
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Figure 33 Vehicle, bicycle speed and longitude distance distribution in Miller Road 
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Figure 34 Maneuver analysis in approaching zone in Miller Road 

 

 

 Figure 35 Maneuver analysis in the passing zone in Miller Road 
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East Cavanaugh Road 

• A 2-lane road with no bike lane 

• The speed limit of 35 mph 

 

Table 18 Normal data distribution in approaching zone in East Cavanaugh Road 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 22.46351 21.49791 23.42911 

 

Scale sigma 2.87269 2.25274 3.66326 

Vehicle Speed Normal Location mu 24.9551 23.97825 25.93195 

 

Scale sigma 2.90615 2.27898 3.70593 

Longitude Distance Normal Location mu 7.42329 6.63414 8.21243 

 

Scale sigma 2.34773 1.84107 2.99383 

 

Table 19 Normal data distribution in the passing zone in East Cavanaugh Road 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 22.17657 21.14725 23.20588 

 

Scale sigma 3.06224 2.40138 3.90497 

Vehicle Speed Normal Location mu 23.62876 22.57183 24.6857 

 

Scale sigma 3.14441 2.46582 4.00975 

Longitude Distance Normal Location mu 6.24236 5.65705 6.82767 

 

Scale sigma 1.74132 1.36552 2.22053 
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Figure 36 Vehicle, bicycle speed and longitude distance distribution in East Cavanaugh Road 
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Figure 37 Maneuver analysis in approaching zone in East Cavanaugh Road 

 

 

Figure 38 Maneuver analysis in the passing zone in East Cavanaugh Road 
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Martin Luther King 

• A 2 and 3-lane road with bike lane and shoulder  

• The speed limit of 25 mph  

 

Table 20 Normal data distribution in the approaching zone in Martin Luther King 

 

Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 20.35747 19.45312 21.26181 

 

Scale sigma 3.91518 3.31946 4.6178 

Vehicle Speed Normal Location mu 22.73843 21.85992 23.61695 

 

Scale sigma 3.80336 3.22466 4.48592 

Longitude Distance Normal Location mu 6.8542 6.33076 7.37763 

 

Scale sigma 2.26609 1.92129 2.67277 

 

Table 21 Normal data distribution in the passing zone in Martin Luther King 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 20.29449 19.41899 21.16998 

 Scale sigma 3.79027 3.21355 4.47048 

Vehicle Speed Normal Location mu 22.67545 21.81813 23.53277 

 Scale sigma 3.71158 3.14684 4.37767 

Longitude Distance Normal Location mu 5.34348 4.88571 5.80125 

 Scale sigma 1.98182 1.68027 2.33748 
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Figure 39 Vehicle, bicycle speed and longitude distance distribution in Martin Luther King 
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Figure 40 Maneuver analysis in approaching zone in Martin Luther King 

 

Figure 41 Maneuver analysis in the passing zone in Martin Luther King 
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Lincoln-Way 

A 3-lane road with a bike lane and sharrow  

The speed limit of 40 mph 

 

Table 22 Normal data distribution in approaching zone in Lincoln Way 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 23.02656 22.48401 23.56911 

 Scale sigma 2.29942 1.94249 2.72193 

Vehicle Speed Normal Location mu 25.60856 25.0686 26.14851 

 Scale sigma 2.28841 1.93318 2.7089 

Longitude Distance Normal Location mu 7.67485 7.28475 8.06496 

 Scale sigma 1.65332 1.39668 1.95712 

 

 

Table 23 Normal data distribution in the passing zone in Lincoln Way 

  

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 22.83232 22.28939 23.37525 

 Scale sigma 2.30103 1.94385 2.72384 

Vehicle Speed Normal Location mu 24.21351 23.7004 24.72662 

 Scale sigma 2.17464 1.83708 2.57423 

Longitude 

Distance Normal Location mu 6.76016 6.44614 7.07418 

 Scale sigma 1.33085 1.12427 1.57539 
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Figure 42 Vehicle, bicycle speed and longitude distance distribution in Lincoln Way 
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Figure 43 Maneuver analysis in approaching zone in Lincoln Way 

 

 
 

Figure 44 Maneuver analysis in the passing zone in Lincoln Way 
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Portage Avenue Road 

 

A 2-lane road with a sharrow, and no bike lane  

The speed limit of 30 mph 

 

Table 24 Normal data distribution in approaching zone in Portage Avenue Road 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 

 

 

 

Table 25 Normal data distribution in the passing zone in Portage Avenue Road 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 
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Figure 45 Vehicle, bicycle speed and longitude distance distribution in Portage Avenue Road 
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Figure 46 Maneuver analysis in approaching zone in Portage Avenue Road 

 

Figure 47 Maneuver analysis in the passing zone in Portage Avenue Road 
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Twyckenham Drive 

A 2-lane road with bike lane and shoulder  

The speed limit of 30 mph 

 

Table 26 Normal data distribution in approaching zone in Twyckenham Drive 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 

 

 

 

 

Table 27 Normal data distribution in the passing zone in Twyckenham Drive 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 
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Figure 48 Vehicle, bicycle speed and longitude distance distribution in Twyckenham Drive 
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Figure 49 Maneuver analysis in approaching zone in Twyckenham Drive 

 
 

Figure 50 Maneuver analysis in the passing zone in Twyckenham Drive 
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South Main Street 

3-lane road with no bike lane and shoulder,  

The speed limit of 30 mph  

 

Table 28 Normal data distribution in approaching zone in South Main Street 

 

 Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 

 

 

 

Table 29 Normal data distribution in the passing zone in South Main Street 

 

 

 

  Distribution Parameter Estimate Lower 95% Upper 95% 

Bike Speed Normal Location mu 21.77876 21.28358 22.27394 

 Scale sigma 3.36126 3.02739 3.73195 

Vehicle Speed Normal Location mu 24.95991 24.42221 25.49761 

 Scale sigma 3.64989 3.28735 4.05241 

Longitude Distance Normal Location mu 7.21654 6.82455 7.60854 

 Scale sigma 2.66082 2.39652 2.95426 
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Figure 51 Vehicle, bicycle speed and longitude distance distribution in South Main Street 
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Figure 52 Maneuver analysis in approaching zone in South Main Street 

 

 

Figure 53 Maneuver analysis in the passing zone in South Main Street 
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B. Application and Service of Proposed Method: Trajectory Data 

Overview 

The most significant output of the developed algorithm is trajectory extraction. Trajectories were 

recorded while vehicles were entering and passing the bicyclists. As it was discussed, the LiDAR 

record the surrounding information. The developed algorithm could extract the locations of the 

moving objects at certain moments, and this provides the necessary means for studying drivers and 

bicyclists’ behavior and a safer place for both vehicle drivers and bicyclists. Trajectory detection 

and analysis is one of the most critical applications in smart cities. Kong (2018) mentions that one 

of the most critical results of trajectory analysis is understanding travel behavior. It was also 

illustrated that the investigation of travel behavior is complex and involves a verity of variables 

(Kong, Xiangjie, et al., 2018). 
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Figure 54 Trajectory extraction 
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C. Data Processing 

Lansing, Michigan trajectories 

In Lansing, a total number of 143,174 data frames (10 frames per second) were analyzed (around 

239 minutes), and 378 vehicle maneuvers were detected. 

The developed algorithm was applied to West and east Kalamazoo Road, Pleasant Grove Road, 

Cavanaugh Road, and Miler Road. Table 8 shows vehicles and bicycles’ passing distance in 

Lansing. It should be noted that the distance was calculated based on the clearance between the 

bicycle handles and vehicles. Pleasant Grove Road has a 2-lane road with a bike lane and a speed 

limit of 35 mph, and its most recent counted Annual Average Daily Traffic (AADT) is 9300 Miller. 

The road has a 3-lane road with shoulder and speed limit of 30 mph, and its most recent counted 

Annual Average Daily Traffic (AADT) is 8800. Kalamazoo road has a 2 and 3-lane road with bike 

lane and shoulder and a speed limit of 25 mph, and it is most recent counted Annual Average Daily 

Traffic (AADT) is 14000. Cavanaugh road has a 2-lane road with no bike lane, and a speed limit 

of 35 mph and it is most recent counted Annual Average Daily Traffic (AADT) is 5000. 143,174 

data frames and 378 vehicles were analyzed.  

The following figures indicate different trajectories for different road types. 
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Distance Traveled: 9,287 

Total Number of Elements in Point Cloud: 90,000,000 

 

Figure 55 Bicycle trajectory in West Kalamazoo Street  

 

Figure 56 West Kalamazoo Street trajectories 
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Distance Traveled: 5,493 

Total Number of Elements in Point Cloud: 90,000,000 

 

Figure 57 Bicycle trajectory in East Kalamazoo Street 

 

Figure 58 East Kalamazoo Street trajectories 
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Distance Traveled: 2,301 

Total Number of Elements in Point Cloud: 48,824,125 

 

 

 

Figure 59 Bicycle trajectory in East Kalamazoo Street 

 

 

Figure 60 East Kalamazoo Street trajectories 
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Distance Traveled: 2,595 

Total Number of Elements in Point Cloud: 24,135,150 

 

 

Figure 61 Bicycle trajectory in East Kalamazoo Street 

 

Figure 62 East Kalamazoo Street trajectories 
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Distance Traveled: 3,100 

Total Number of Elements in Point Cloud: 72,327,613 

 

Figure 63 Bicycle trajectory in Pleasant Grove Road 

  

Figure 64 Pleasant Grove Road trajectories 
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Distance Traveled: 1,134 

Total Number of Elements in Point Cloud: 28,016,644 

 

Figure 65 Bicycle trajectory in Cavanaugh Road 

 

 

Figure 66 Cavanaugh Road trajectories 
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Distance Traveled: 5,183 

Total Number of Elements in Point Cloud: 90,000,000 

 

Figure 67 Bicycle trajectory in Miller Road 

 

Figure 68 Miller Road trajectories 
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South Bend, Indiana Trajectories 

In South Bend, a total number of 125,548 data frames (10 frames per second) were analyzed 

(around 209 minutes) for passing distance measurements, and 452 vehicle maneuvers were 

detected. 

The developed algorithm was applied to Lincoln Way, Portage Avenue, Twyckenham Drive, and 

Main Street. The following figures show vehicles and bicycles’ passing distance. The results are 

shown in Table 10. Table 10 also contains the vehicles and bicycles’ passing distance information 

in Lansing. It should be noted that the distance was calculated based on the clearance between the 

bicycle handles and vehicles. Lincoln-Way has a 3-lane road with a bike lane and sharrow and a 

speed limit of 40 mph, and its most recent counted Annual Average Daily Traffic (AADT) is 

35000. Portage Avenue has a 2-lane road with a sharrow, and no bike lane and a speed limit of 30 

mph, and it's most recent counted Annual Average Daily Traffic (AADT) is 17500. Twyckenham 

Drive has a 2 lane road with bike lane and shoulder, and a speed limit of 30 mph and it is most 

recent counted Annual Average Daily Traffic (AADT) is 14500. Main Street has a 3-lane road 

with no bike lane and shoulder, and a speed limit of 30 mph and it is most recent counted Annual 

Average Daily Traffic (AADT) is 5000. 125,548 data frames and 452 vehicles were analyzed.  

The following figures indicate different trajectories for different road types.  

 

The following figures indicate different trajectories for different road types at different day times. 
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Distance Traveled: 6,715 

Total Number of Elements in Point Cloud: 86,244,499 

 

Figure 69 Bicycle trajectory in Lincoln Way 

 

 

Figure 70 Lincoln-Way trajectories 
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Distance Traveled: 5,340 

Total Number of Elements in PointCloud: 65,870,007 

 

Figure 71 Bicycle trajectory in Lincoln-Way 

 

  

Figure 72 Lincoln-Way trajectories 
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Distance Traveled: 5,177 

Total Number of Elements in Point Cloud: 50,837,941 

 

 

Figure 73 Bicycle trajectory in Portage Ave. 

 

 

Figure 74 Portage Ave. trajectories 
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Distance Traveled: 7,082 

Total Number of Elements in Point Cloud: 83,133,779 

 

Figure 75 Bicycle trajectory in Portage Ave. 

  

 

Figure 76 Portage Ave trajectories 
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Distance Traveled: 6,615 

Total Number of Elements in PointCloud: 46,685,681 

 

Figure 77 Bicycle trajectory in Portage Ave. 

  

Figure 78 Portage Ave trajectories 
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Distance Traveled: 3,576 

 Total Number of Elements in PointCloud: 72,510,989 

 

 

Figure 79 Bicycle trajectory in Portage Ave. 

  

Figure 80 Portage Ave trajectories 
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Distance Traveled: 2,292 

Total Number of Elements in PointCloud: 40,906,033 

 

Figure 81 Bicycle trajectory in Twyckenham Drive 

 

  

 

Figure 82 Twyckenham Drive trajectories 
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Distance Traveled: 5,518 

Total Number of Elements in PointCloud: 60,903,632 

 

Figure 83 Bicycle trajectory in Twyckenham Drive 

 

 

Figure 84 Twyckenham Drive trajectories 
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Distance Traveled: 4,474 

Total Number of Elements in PointCloud: 67,702,547 

 

Figure 85 Bicycle trajectory in S. Main Street 

 

 

 

Figure 86 S. Main Street trajectories 
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Distance Traveled: 4,474 

Total Number of Elements in PointCloud: 67,702,547 

 

Figure 87 Bicycle trajectory in S Main Street 

 

 

 

Figure 88 S Main Street trajectories 
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