
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Honors Theses Lee Honors College

12-7-2021

Surface Reconstruction Library Surface Reconstruction Library

Jhye Tim Chi
Western Michigan University, jhyetim@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/honors_theses

 Part of the Other Computer Sciences Commons, Software Engineering Commons, and the Theory and

Algorithms Commons

Recommended Citation Recommended Citation
Chi, Jhye Tim, "Surface Reconstruction Library" (2021). Honors Theses. 3473.
https://scholarworks.wmich.edu/honors_theses/3473

This Honors Thesis-Open Access is brought to you for
free and open access by the Lee Honors College at
ScholarWorks at WMU. It has been accepted for inclusion
in Honors Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/honors_theses
https://scholarworks.wmich.edu/honors
https://scholarworks.wmich.edu/honors_theses?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/honors_theses/3473?utm_source=scholarworks.wmich.edu%2Fhonors_theses%2F3473&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

Surface Reconstruction

Harsh Sinha, Jhye Tim Chi

Western Michigan University

December 2021

 2

Contents
Abstract ... 5

Problem Statement ... 5

Need .. 5

Objective(s) ... 5

Terms, Acronyms, Glossary ... 6

Problem Analysis and Research .. 7

Volumetric Grid Creation .. 7

Volumetric Grid Dilation ... 7

Unsigned Distance Function ... 8

Graph and S-T Min Cut .. 8

Triangulation ... 8

Smoothing ... 8

Requirements .. 9

General Requirements .. 9

Programming Environment ... 9

Security ... 9

Quality ... 9

Safety .. 9

Regulatory ... 9

Serviceability ... 9

Installation and Acceptance .. 9

Functional Requirements .. 9

Versioning ... 9

Application Interface ... 9

Usage ... 10

Constraints .. 10

Other ... 10

Standards and Constraints .. 11

Applicable Standards .. 11

Constraints .. 11

Introduction .. 11

 3

Recommendation .. 11

Moral Issue .. 11

Additional Facts ... 11

Available Alternatives ... 11

Personal Impacts to Decision Maker .. 12

Shareholder Theory .. 12

Stakeholder Theory ... 12

Virtue Theory .. 12

Conclusion ... 12

System Design ... 13

Volumetric Grid Creation .. 13

Volumetric Grid Dilation ... 13

Unsigned Distance Function ... 13

Graph Creation .. 14

S-T Min-cut .. 14

Triangulation ... 14

Smoothing ... 14

Testing ... 15

Software Requirements Specification ... 15

SwReqID1 .. 15

SwReqID2 .. 15

SwReqID3 .. 15

SwReqID4 .. 15

SwReqID5 .. 15

SwReqID6 .. 15

SwReqID7 .. 16

SwReqID8 .. 16

SwReqID9 .. 16

SwReqID10 .. 16

SwReqID11 .. 16

SwReqID12 .. 16

SwReqID13 .. 16

 4

SwReqID14 .. 17

SwReqID15 .. 17

SwReqID16 .. 17

SwReqID17 .. 17

SwReqID18 .. 17

SwReqID19 .. 17

SwReqID20 .. 17

SwReqID21 .. 18

Implementation Testing .. 18

Volumetric Grid Creation .. 18

Volumetric Grid Dilation ... 18

Unsigned Distance Function ... 18

Graph Creation .. 18

S-T Min-cut .. 18

Triangulation ... 18

Smoothing ... 19

Accuracy Testing ... 19

Results ... 20

Realization of Requirements ... 20

Realization of Standards and Constraints ... 20

Testing Results .. 20

Future Work .. 22

S-T Min-cut Algorithm ... 22

Graph Creation .. 22

Smoothing ... 22

Conclusion ... 23

References .. 24

Appendices .. 25

Project Management Plan .. 25

Progress Reports ... 26

Development Costs ... 26

Institution Costs .. 26

 5

Sponsor Costs .. 26

Team Costs .. 26

Abstract
The project aims to convert an arbitrary point cloud into a triangular mesh. Point clouds are a

list of 3d points that model the topology of an object. Point clouds can have various issues, such as

missing or noisy data. For the scope, we had no control over point cloud generation. We were also

unable to deal with underlying registration or alignment problems. Triangular meshes are a list of

triangles that have 3d vertices. This aggregate list of triangles defines the reconstructed surface. Our

project implementation is based on Alexander Hornung and Leif Kobbelt’s method for surface

reconstruction using the unsigned distance function [1]. Stryker did not have any preexisting software

that we could use to accomplish our project. We had to implement the entire algorithm and sub

algorithms from scratch.

Problem Statement

Need
We are unable to discuss the need for this technology because Stryker wishes to protect it as a

trade secret.

Objective(s)
The objective of this project is to take an arbitrary point cloud and turn it into a triangular mesh.

Moreover, the reconstructed triangular mesh had to be an accurate representation of the original object

that was scanned. Point cloud generation was outside the scope of the project, so our group had no

control over the quality of the point clouds given to us.

 6

Terms, Acronyms, Glossary

Acronyms/Terms Definition

Mesh A collection of vertices and edges that define the shape of a polyhedral.

Triangular Mesh A mesh is made up of a collection of triangles.

Morphological

Dilation

An operation that probes and expands the shapes contained in an input image

by using a structuring element.

Point Cloud A set of 3D points that represent a 3D shape or object in space.

Point Normal A point where a line is perpendicular to an object.

SRL Surface Reconstruction Library

Volumetric Grid A collection of voxels that creates a grid-like structure that represents the point

cloud.

Volumetric

Resolution

The resolution of the volumetric grid in three dimensions.

Voxel A point in a 3D grid where each of the coordinates is defined in terms of its

position. It is a singular component of the volumetric grid.

6-Neighborhood The six voxels neighboring at each surface of a single voxel.

 7

Problem Analysis and Research
 The first major challenge that we encountered was that no one in our group had any prior

knowledge about Surface Reconstruction. As a group, we decided that we would find and read current

white papers published to try and gain more background knowledge in the area. Our Stryker sponsors

suggested that we read survey papers on Surface Reconstruction rather than trying to go out and find

research papers to read ourselves. We found that reading these papers was quite challenging because

there were a lot of new concepts and terminology that we were unfamiliar with. We were able to get

through this period by rereading the paper multiple times, asking questions, and doing some

background research for our background research.

The next major challenge was that we were tasked with defining the methodology for going

from a point cloud to a triangle mesh. We had closed-door discussions with Stryker to better understand

their use case. We decided that the best route would be to take an existing white paper and implement

it. We then proceeded to read the survey papers to try and identify a white paper that was suited for

the intended use case. We worked to identify papers by continuously reading white papers and checking

in with our Stryker sponsors on whether the said paper covered all the different things they were

looking for. It was very challenging because there was a lot of back and forth involved with trying to

better understand the requirements and getting feedback from Stryker.

Once we had defined the white paper that we would use for the implementation, the next

challenge was understanding all the different steps they took to go from a point cloud to a triangular

mesh. We had to reread the paper multiple times to try and get a better understanding of what was

going. But we were able to break down the white paper into specific steps, and below we go over the

challenges involved with each step.

Volumetric Grid Creation
 A volumetric grid is a data structure that is typically implemented as an octree, which is

analogous to a binary space partitioning tree (BSP). While a BSP partitions into two different branches,

an octree partitions into eight different branches. Our first challenge was learning about the octree data

structure and time and memory-efficient representations of the octree. We tackled this issue by

watching multiple videos and reading other white papers that used octrees for their data structure. We

also did libraries that had efficient implementations of octrees. But we were advised against using them

because Stryker did not wish to deal with open-source libraries. Their reasoning for not doing so is

because of the challenges they have faced in the past.

Volumetric Grid Dilation
 The next challenge was dilating the volumetric grid. Conceptually, this is an easy concept

because dilations simply use a morphological operator. However, this was quite challenging for us

because when we create new nodes or voxels in the volumetric grid or octree, we are inserting a new

point in the octree. The challenge was using surrounding voxels to try and estimate the center of the

new voxel/node that is generated. Our group was able to overcome this challenge by working with

Stryker sponsors to try and derive a mathematical formula based on the current voxel/node index and

voxel side length to determine voxel centers.

 8

Unsigned Distance Function
The next step was understanding how the researchers intended to use the unsigned distance

function. Computationally, this was simple, because all we had to do was loop through every voxel and

average the six neighborhood unsigned distance functions to estimate the new unsigned distance

function. What was confusing to us was why these researchers deviated from using the traditional

signed distance functions to try and reconstruct a surface. What we were able to find through research

was that signed distance functions have trouble reconstructing surfaces if the input point clouds have no

point normal information. Through continuously rereading the white paper, we were able to understand

that the researchers used unsigned distance functions to estimate the confidence value of a voxel being

a part of the optimal surface.

Graph and S-T Min Cut
 The next challenge was converting the volumetric grid into the described graph structure in the

white paper. This was more of an algorithmic challenge because each voxel face had a node placed on it,

and voxels that shared faces had shared nodes. We had to ensure that our graph did not contain

duplicate vertices in places where it should not.

 After converting the volumetric grid to the graph structure described in the white paper, our

next challenge was implementing the Boykov Kolmogorov min-cut algorithm. It is a commonly used min-

cut algorithm used throughout various computer vision applications. The major challenge with this was

understanding the implementation of the algorithm. The white paper on this algorithm simply supplied

the user with pseudocode and explanations for each of the different algorithms. We had spent countless

hours reading the paper repeatedly to try and implement it properly.

Triangulation
 Triangulation was not as difficult as the other steps because the white paper we were using gave

us a pseudocode for the triangulation. It still took some algorithmic work to get the pseudocode to work

with all the different data structures and formats we used. It was the only pseudocode given by the

white paper we used.

Smoothing
 The challenge with implementing Laplacian smoothing was trying to understand conceptually

how this algorithm worked. We were able to figure it out through Wikipedia and by watching a couple of

videos on it. The most challenging aspect was trying to understand the mathematics that was involved.

Once we understood the math, the implementation was straightforward.

 9

Requirements
We worked with Stryker’s Quality Management team to ensure that our requirements covered

the breadth of what was needed for a Stryker software product. The following sub-sections highlight all

of our categorized requirements.

General Requirements

Programming Environment
SwReqID1. SRL shall be implemented in MATLAB.

SwReqID2. SRL shall be implemented for usage in a Windows environment.

Security
SwReqID3. SRL exposed functions shall be reentrant.

SwReqID4. SRL shall handle dynamic memory allocation and deallocation internally as needed.

SwReqID5. SRL shall handle thread synchronization and clean up internally as needed.

SwReqID6. SRL exposed functions shall handle null pointer exceptions.

SwReqID7. SRL exposed functions shall handle incorrect data being passed in.

Quality
SwReqID8. This module shall meet or exceed all requirements specified in this SRS.

SwReqID9. This module shall be written using the naming conventions defined in Stryker IMT

Coding Standards documented in [3].

Safety
N/A

Regulatory
N/A

Serviceability
Updates to SRL will be done in conjunction with end applications only. It is the responsibility of

the user to integrate future versions with existing or new software applications.

Installation and Acceptance
SwReqID10. SRL shall be delivered as code files that can be compiled with end application.

Functional Requirements

Versioning
SwReqID11. SRL shall rely on release strategy for versioning

Application Interface
SwReqID12. SRL shall provide an interface to set desired volumetric resolution.

SwReqID13. SRL shall provide an interface to set desired number of morphological dilations.

 10

SwReqID14. SRL shall provide an interface to set desired point cloud for reconstruction.

SwReqID15. SRL shall provide an interface to set desired location to save output mesh.

SwReqID16. SRL shall provide an interface to set desired number of smoothing iterations.

SwReqID17. SRL shall provide an interface to select usage of multiple threads.

SwReqID18. SRL shall provide an interface to set various tuning parameters for reconstruction

attempts.

SwReqID19. SRL should provide an interface to indicate a success/failure for an attempted

reconstruction.

Usage
SwReqID20. SRL should have allow for timeout for attempted reconstructions in MATALB.

SwReqID21. SRL shall return a mesh as a collection of vertices and edges.

Constraints
1) SRL itself will not provide any critical section protection or multithreaded support. The

application must ensure protection for multithreaded environments.
2) SRL expects that point clouds at a minimum represent the top and all sides of the object the

user wishes to reconstruct.
3) SRL is unable to reconstruct surfaces with extremely high volumetric resolutions because of

memory constraints.
4) SRL shall not use any inter-process communication to share data with the application.
5) SRL should use data in-place rather than copying data from buffers to buffers.

Other
One of the requirements not mentioned in the requirements documents is that our sponsor

wanted to achieve a reconstruction mean error of less than 2mm, and a max error of less than 5mm

with the point clouds that they supplied to us. This was not included in the requirements documents

because these errors are highly dependent on the point cloud quality that SRL receives, and SRL serves

as a generic component.

 11

Standards and Constraints

Applicable Standards
 We had to implement the surface reconstruction algorithm in MATLAB for use in a Windows

environment.

Constraints
 In the following sub-sections, we give an ethics analysis for our project.

Introduction
The question that needs to be answered is whether hospitals should use computer vision-based

medical technologies. We are unable to conduct an ethics analysis on our surface reconstruction project

directly because we are unable to talk about the need or usage of the project. Instead, we offer an

ethics analysis for generic computer vision-based medical technologies used in hospitals. We will not

specifically refer to a unique existing product currently in the market but talk about the product as a

concept.

Recommendation
After an analysis of this question using Hosmer’s 6-step process for ethical decision-making, our

recommendation is for hospitals to use computer vision-based medical technologies. The benefits

provided by using computer vision-based medical technologies, such as recognizing hidden patterns and

making diagnoses with fewer errors than human professionals, far outweigh the drawbacks.

Moral Issue
In computer vision-based medical technologies, cameras have to be able to take pictures or

videos of patient-specific anatomies. For example, a computer vision-aided tumor identification

application would have to be supplied with patient-specific MRI scans. This information is considered

sensitive and is protected under HIPAA. This exposes this type of technology to ethical concerns because

if this data were to get leaked, it would be a huge violation of the patient’s sensitive data. Moreover, as

computer vision-based technologies start gaining more traction, we will see them used in various

operations on various body parts. One can imagine that some areas are more private than others.

Additional Facts
1. Who can access this information?

2. Are the patients aware of what data is collected and how the data can or cannot be used?

3. Is the data being logged to a local hard drive?

4. Is the computer vision application connected to the internet?

Available Alternatives
Computer vision-based medical technology is a new field that brings new capabilities to the

medical field. There are no other technologies that bring the same capabilities as what computer vision

can bring to the table. To ensure the absolute privacy of the patient, this technology could have

restrictions placed on it that it should never connect to the internet or log any patient-specific data. This

would mitigate some of the concerns of possible data breaches and malicious agents gaining access to

 12

this patient-specific data. Moreover, this type of medical imagery is similar to a hospital storing images

of x-rays. While x-rays do not have the potential to have as much sensitive information as computer

vision technologies, they can still be thought of as very similar.

Personal Impacts to Decision Maker
We viewed the hospital as the decision-maker in this case. There are several ways in which

either choice, using computer vision-based medical technologies or not, could affect them. If the

diagnoses done using computer vision-based medical technologies were inaccurate, it could lead to the

hospital losing trust among the community and future patients. Patients could also threaten to use legal

action due to misdiagnosis.

Shareholder Theory
We viewed the shareholders of the computer vision-based medical technology as the

corporation selling the technology to the hospitals. The goal of corporations is to maximize profits, and

being able to sell computer vision products that help doctors do their jobs better would allow them to

place higher price tags on the products. These computer vision products would also help build the

company's brand and image if they could produce better results or ease the doctor’s job. On the other

hand, if these products were liable to data breaches, it would severely harm the company brand and

image, and make hospitals less inclined to buy products from them in the future.

Stakeholder Theory
We viewed the stakeholders of computer vision-based medical technologies extending past the

corporation to the patients, doctors, and nurses that would interact with or use this technology.

For the doctors and nurses in the hospitals, this technology could give them access to advanced

diagnostic tools that can recognize hidden patterns and make diagnoses with fewer errors. With better

diagnosis technology, patients would also benefit by receiving the most accurate diagnosis they require.

The integration of computer vision-based medical technologies could also lower the cost of medical

diagnosis for patients. However, an issue would be how the data collected could be used without the

patient's consent or be stolen in a data breach.

Virtue Theory
The Virtue Theory states that every individual has the right to be free from any unwarranted

publicity. Since we cannot predict if a patient's data can be breached, we look at other considerations. If

the public can access advanced technologies to help diagnose them more efficiently with fewer errors,

then using computer vision-based medical technologies in hospitals is recommended.

Conclusion
After applying Shareholder Theory, Stakeholder Theory, and Virtue Theory to the problem, a

conclusion is clear. Hospitals should use computer vision-based medical technologies. Shareholder

theory, Stakeholder Theory, and Virtue Theory lean towards hospitals using computer vision-based

medical technologies. Personally, we also agree and lean towards the same conclusion.

 13

System Design
 Since we are unable to go into the system design as it is considered Stryker IP. So we will be

going into more detail about the overall steps that we take to get from a point cloud to a triangular

mesh.

Volumetric Grid Creation
Volumetric grids are analogous to pictures in 2d. Each picture contains a collection of pixels

referred to by their x and y index in the grid. In a volumetric grid, there is a collection of voxels referred

to by their x, y, and z index. Each volumetric grid defines a bounding box around the point cloud. This

bounding box is thought of as the min and maxes on each axis such that the entire point cloud is

contained within it. Each voxel is a smaller bounding box within the overall volumetric grid. This concept

allows us to insert points from our point clouds into our volumetric grid.

We start by defining a voxel length desired which will partition the volumetric grid into a

collection of voxels. Next, we insert points from our point cloud into the volumetric grid, and for voxels,

with multiple points in them, we average the points (each voxel only contains a single point). As

described, we have chosen to represent our volumetric grid as an octree. An octree is synonymous with

a binary space partitioning tree, but instead of only partitioning into two sections, the octree partitions

into eight sections. Notice that there are eight octants in a 3d graph.

Using the volumetric grids allows us to better organize the data for manipulation and retrieval.

This data structure is an efficient way to store 3D data and allows for faster manipulation in comparison

to using the raw point cloud.

Volumetric Grid Dilation
Once we have created a volumetric grid, we address the first challenge of missing point cloud

data by dilating the volumetric grid. This is extremely similar in concept to the dilation of a 2d image. We

use a 6-neighborhood dilation operator described in the paper to dilate our volumetric grid. Using a

series of dilations, we can close holes that previously existed. Each dilated voxel gets filled with a point

that exists at the center of the voxel bounding box. We must be careful about how many dilations we

use as this increases input size and processing times in the subsequent steps described below.

One important thing is that if a whole is too big to fill in with a reasonable number of dilations,

we report back to the user that this is a failed reconstruction attempt. The reason for this is through

dilations, we are trying to estimate regions with holes in them, and we do not want to provide a

reconstruction that has an inaccurate guess at what the surface looks like at the hole. This is influenced

by our requirement for the accuracy of reconstructed surfaces.

Unsigned Distance Function
As we dilate voxels, we close holes but we also introduce uncertainty into the problem. The

dilated voxels were not part of the input point cloud, and we are unsure if they are a part of the optimal

surface or not. The paper uses the concept of an unsigned distance function to deal with this

uncertainty. We start by assigning a value of 0.0001 to all voxels that were a part of the input point

cloud and assigning a value of 1 to all voxels that were generated through dilation. Next, we start

looking at 6-neighborhoods of all dilated voxels and average the value of the unsigned distance

 14

functions. We allow the user to specify how many iterations of this averaging they would like to take

place. This makes it so that dilated voxels closer to original voxels have a lower unsigned distance

function value, and voxels further away from original voxels have higher unsigned distance function

values. Conceptually, a closer value to zero states that the algorithm is more confident that the voxel is a

part of the optimal surface.

The motivation for this step is that it allows the algorithm to assign confidences to different

voxels of how confident it is that the voxel is a part of the optimal surface. The next step is to compute

the subset of voxels that minimize this unsigned distance function and still form a manifold surface (no

holes). Researchers have found that the fastest way possible to do this type of computation is through

the S-T min-cut algorithm. Thus, it requires that we convert our volumetric grid into a graph structure.

Graph Creation
The paper defines how to convert a single voxel into the graph structure required for the S-T

min-cut algorithm. It states that for every voxel that has a point in it, we place a graph node on each

face of the voxel (a voxel can be thought of as a cube here). Looping through all active voxels, we had to

take care of repeated graph nodes because many voxels share faces. Once we have these nodes, we

must connect every node in a voxel to all other nodes in the voxel. Each edge weight in a voxel is

determined by the unsigned distance function value of the voxel.

S-T Min-cut
For simplicities sake, I will not define a graph cut, min-cut, or s-t min-cut as it is assumed that

the reader has sufficient knowledge of the concepts. We use the famous Boykov-Kolmogorov S-T min-

cut algorithm famously used in many computer vision algorithms. The BK S-t Min cut works by using a

push relabel strategy but improves the concept by using search trees such that the breadth-first search

is not repeatedly recomputed. More information can be found on this through the original paper

published [2]. The output of this algorithm is cut edges that represent the min-cut of the graph

structure.

Triangulation
Once we have computed the min-cut edges, we can then start to triangulate the surface.

Conceptually combining the min-cut edges and edge structure in voxels, we see that there are multiple

3d polygons defined. These polygons define the optimal surface. Our requirement of outputting

triangular meshes requires us to loop through these polygons to transform them into a collection of

triangles. Our algorithm works by looping through each polygon, converting them to a collection of

triangles, appending these triangles to the overall list of triangles. After this loop, we have a collection of

triangles that represent our reconstructed surface.

Smoothing
 After the initial crude mesh has been generated, we allow the user to specify if they wish to

apply Laplacian smoothing to the mesh as well as the number of iterations. Laplacian smoothing works

by generating a linear approximation of the Laplacian operator for each vertex. It then tries to drive this

approximation down by shifting the vertex in space to get rid of spikes or extremities in the mesh. By

doing this process on all the vertices in the mesh, we get a smoother mesh rather than a blockish

estimation generated because of the grid-like structure of the volumetric grid.

 15

Testing
In the following sub-sections, we go over our test strategies for the different requirements

found in the SRS, unit tests for implementation, and accuracy testing for reconstructed meshes.

Software Requirements Specification
Please reference software requirements IDs provided in the requirements section.

SwReqID1
 After discussion with our sponsor, we decided that the best way to validate this requirement

was to do a static code analysis with Stryker software engineers. We also discussed that if we wrote all

of our test cases in MATLAB, it would also validate this requirement.

SwReqID2
 After discussion with our sponsor, we decided that the best way to validate this requirement

was to carry out the development of the SRL on a Windows machine that uses MATLAB. We also

discussed that if we wrote all of our test cases in MATLAB, it would also validate this requirement.

SwReqID3
 At the end of development, SRL only had a single exposed function. We decided that the best

way to validate this requirement was through static code analysis showing that SRL does not hold any

global data that can be accessed by other scripts or functions running in MATLAB.

SwReqID4
 After discussion with our sponsor, we concluded that the best way to test this requirement was

to write a unit test that did an arbitrary reconstruction and use MATLAB’s in-built profiler. The profiler

allowed us to view the memory utilization of the system before and after the function call. Our unit test

took in a point cloud, attempted a reconstruction, and remembered memory usage before and after the

reconstruction attempt. The test would then compare the before and after memory usage and pass only

if they were the same. We also conducted static code analysis with Stryker Software Engineers to verify

that there were no glaring memory leaks identifiable.

SwReqID5
 We concluded the best way to validate this requirement was to write a unit test that attempted

a reconstruction that both failed and succeeded because this would allow us to view memory and CPU

usage on both attempts. We validated that the output of both attempts was as expected. In the failed

attempt, we verified that a failed reconstruction error was generated. In the successful attempt, we

validated that a valid mesh was generated and was the expected mesh based on the input. We were

unable to do further testing for thread synchronization because MATLAB does not have any in-built

thread profiling that we could use. To further ensure satisfiability of this requirement we conducted a

static code analysis with Stryker Software Engineers.

SwReqID6
 MATLAB does not have the concept of NULL pointers but rather has empty objects. We

interpreted this requirement as if we were passing an empty object. Then we would not crash but be

able to report this as an error. SRL at the end of the project only had an exposed function, so we wrote

 16

multiple test cases where we passed in every combination of empty objects that could be passed in. The

test cases verified that the reconstruction attempt failed with a NULL pointer error.

SwReqID7
 SRL at the end of the project only had an exposed function, so we wrote multiple test cases

where we passed in every combination of incorrect objects that could be passed in. The test cases

verified that the reconstruction attempt failed with an incorrect parameter passed in error.

SwReqID8
 This requirement refers to the quality of SRL and is automatically satisfied if all other

requirements are satisfied. So, no unit tests or static code analyses are required.

SwReqID9
 We decided that the best way to validate that SRL was written to the supplied coding standard

was through a static code analysis conducted with Stryker Software Engineers.

SwReqID10
 We tested this requirement by handing SRL implementation and test code files to the project

head and verified that all the test cases that were written passed on his machine. Moreover, we ensured

that it could reconstruct meshes with point clouds that he had generated or had access to.

SwReqID11
 This requirement was more of a project management requirement, so we were not responsible

for any test coverage for this one.

SwReqID12
 We decided that the best way to test this requirement was to write multiple test cases that set

different volumetric resolutions (voxel side length). The generated mesh in each test case would be

decomposed into a list of vertices. We would loop through each vertex and find the 6 closest vertices

and average the distance to each of these 6 vertices from the original vertex. Once we complete this for

all the vertices in the mesh, we would average this and would end up with an average distance that any

vertex is from other vertices. This average distance should be within 10% of the volumetric resolution

because of how the algorithms work. This strategy ensured that the set volumetric resolution was being

used.

SwReqID13
 We decided that the best way to test this requirement was to write multiple test cases with the

same input point cloud and a different number of dilations. The input point cloud had holes in it that

were filled with any number of dilations greater than 3. Our test cases tried all dilations from 0-4 and

observed the output. In the test cases with 0-2 dilations, we checked the output of the reconstruction

for a failed attempt because there was a hole that we were unable to fill. In the test cases with 3+

dilations, we checked for a successful reconstruction. All test cases were done using the same

volumetric resolution.

 17

SwReqID14
 We decided that the best way to test this requirement was to write a single test case where we

reconstructed a mesh on a unique point cloud A and then reconstruct another mesh on a unique point

cloud B. We then compared the results of the reconstructions to ensure that they were not the same

mesh.

SwReqID15
 We decided that the best way to test this requirement was to write a single test case where the

requested mesh location was a subdirectory called ‘test_dir’. After the reconstruction, we would check if

a file was created in the subdirectory with the expected name and was the expected mesh for the test

case.

SwReqID16
 We decided the best way to test this requirement was to write single test cases. We started by

reconstructing a point cloud into a mesh with zero iterations of smoothing. We then took this mesh and

applied 25 iterations of Laplacian smoothing using open-source software MeshLab. We then wrote our

test case to take the original point cloud and apply 25 iterations of smoothing. Then we compare the

newly generated mesh to our manually generated mesh and ensure that they are the same meshes.

SwReqID17
We decided the best way to test this requirement was to write a single test case where we

attempted two reconstructions. The first reconstruction would use the single-threaded implementation,

and the second reconstruction would use the multi-threaded implementation. We knew that the

multithreaded implementation would be able to reconstruct a mesh faster than the single-threaded

implementation. We used the same input data for both reconstruction attempts and timed the amount

of time each reconstruction took. We passed the test case if the multi-threaded implementation was

able to reconstruct a mesh faster than the single-threaded implementation. We had to resort to a

timing-based case because of how MATLAB handles its threading and limited threading debug tools.

SwReqID18
 We decided the best way to test this requirement was to write multiple test cases where we

changed various tuning parameters for reconstructions. Each test case was encapsulated under a master

test case that then compared the output of each of the sub-test cases and ensured that all the outputs

were different because of different tuning parameters. We used the same input across all the test cases

other than the tuning parameters.

SwReqID19
 Many of our other test cases have been described to use the success or failure output feature of

SRL. We decided that we have shown that we meet this requirement through other test cases for other

requirements.

SwReqID20
 We decided that the best way to test this requirement was to write a single test case. And to

attempt a reconstruction with a timeout of one second and ensure that SRL adhered to the timeout.

 18

SwReqID21
 Many of our other test cases have been described using the output of SRL. So, we decided that

we can satisfy this requirement through other test cases described for other requirements.

Implementation Testing
 Since we are unable to provide system design, we are also unable to disclose the classes

implemented and the relationship between all of them. For all the classes implemented, we wrote unit

tests for all exposed functions by mocking input data and manually computing what the output data

should be. We will give an overview of the general unit tests for the steps we took for going from a point

cloud to a triangular mesh.

Volumetric Grid Creation
 We wrote test cases where we manually created point clouds and ran them through the

software to create a volumetric grid. We then checked the entire volumetric grid to ensure that only

voxels that should be populated are populated. Moreover, we ensured that populated voxels started

with the correct initialization data.

Volumetric Grid Dilation
 We wrote test cases where we manually created point clouds and ran them through the

software to create a volumetric grid. We then used the generated volumetric grid for a multiple number

of dilations and compared them to the manually created expected volumetric grid after the dilation.

Unsigned Distance Function
 We wrote test cases that took volumetric grids that have already been dilated and ran them

through the software to compute the unsigned distance function for each voxel. We then looped

through every voxel in the volumetric grid to ensure that no new voxels were populated. Moreover, we

compared the unsigned distance function to manually generated expected output.

Graph Creation
 We wrote test cases that took volumetric grids that have already have the unsigned distance

function computed and ran them through the software to create the graph structure. We then

compared the generated graph to the expected graph. This was quite a tedious task to create expected

output for, so our expected output and generated inputs are quite small in comparison to what is

generally encountered during reconstructions.

S-T Min-cut
 Since we were tasked with implementing the Boykov-Kolmogorov min-cut algorithm we decided

the best way to test this was to implement a simpler min-cut algorithm and compare the outputs. We

used graphs generated through the graph creation stage and ran them through both the BK-Min-cut and

Ford Fulkerson-Min-cut algorithms and compared the output of the two. We passed the test case if both

outputs the same cut edges as the min-cut.

Triangulation
 We used generated data from all previous steps of the algorithm and manually created the

expected output. We wrote multiple test cases with different expected outputs and compared the

generated outputs to what was expected.

 19

Smoothing
 We did not explicitly test for smoothing because we were covered by our test strategy for

SwReqID16 described in the requirements section.

Accuracy Testing
 We worked with our sponsor to define acceptable mesh accuracy testing standards. We

collectively agreed to use open-source software (Cloud Compare) which gave us the ability to do mesh

to mesh comparison. Cloud Compare would generate a report that gave us the distribution of errors

across the entire mesh. We would use this data to generate statistical data for offline analysis. We did

some research and found that cloud compare provides a command-line interface, so we created

MATLAB scripts to test reconstructions and plot the mean error of the triangular mesh versus the

amount of time the reconstruction took. These plots were then analyzed by Stryker. And we were given

feedback on what needed to improve on. And how we could go about doing so.

 20

Results

Realization of Requirements
 We met all the requirements specified in the Requirements section. This list of requirements

was agreed upon between Stryker and our group. We gave them a final demo of the product, handed

them the implementation, and all of our test code. They then reviewed the material and verified that

the requirements were met, and they signed off on it.

Realization of Standards and Constraints
 We have successfully implemented the product in MATLAB for use in a windows

environment. Therefore, we have realized our standards and constraints. There are other constraints

described in the requirements section that our implementation is still constrained by. However, these

were constraints that were discussed and agreed upon for SRL.

Testing Results
In the following section, we go over how we tested accuracies of reconstructions. We start by

importing our ground truth mesh (shown below) into Cloud Compare and using it to generate a point

cloud of a million points.

We then ran the generated point cloud through our surface reconstruction algorithm, which

generated meshes as such.

 21

We use Cloud Compare to run a mesh to mesh comparison using our generated mesh against

the ground truth mesh (example results below).

We were asked to redact some of the names of the meshes and the locations that they were

accessed from. In the example above, the mesh titled ‘TEMP’ is our generated mesh, and the mesh titled

‘MATLAB_1’ is the ground truth mesh that we used. In the console output at the bottom, we see that

Cloud Compare computed a mean error of 1.67 mm and a standard deviation of 1.60 mm. In the

window labeled properties, we can see that cloud compare has drawn a histogram that plots the

distribution of the error. Moreover, it is also color-coded the error and uses these colors to animate the

mesh shown in the picture to the right. This mesh is the generated mesh with colors that correspond to

errors. This was a useful tool because it gave us and our client insight as to where the errors were

coming from.

 22

Future Work
 Despite meeting all of the requirements that were agreed upon between us and our client, we

believe that there exist areas where we can improve the implementation to gain better performance. In

the following subsections we highlight areas where we think with more time, we can make huge

performance improvements.

S-T Min-cut Algorithm
 While we did implement one of the most famous S-T min-cut algorithms for computer vision

problems, there has been a lot more research coming out in this field since the time that the original

paper has been published. This algorithm accounts for over 75% of reconstruction times, and any work

done to reduce this would allow faster and more accurate reconstructions. One idea that researchers

have proposed algorithms for is a parallel Boykov-Kolmogorov S-T min-cut algorithm that takes

advantage of multi-core processors to efficiently solve the S-T min-cut problem. Another paper

introduces the use of GPUs to speed up the computation of S-T min-cut. Overall, this algorithm is part of

the NP-Hard algorithm class and does not have a computationally fast implementation. [3] [4]

 This was not originally in the scope of this project, so we did not work to implement this

feature. We have brought this to the attention of our sponsor, and they have noted this as an area for

improvement for future Stryker software engineers to work on.

Graph Creation
 The graph structure that we implemented was a simple adjacency matrix. The rationale for this

was that MATLAB is optimized for working with matrices and does not handle dynamic memory

allocation well. In comparison to C++, MATLAB is often 3x-10x slower when trying to dynamically build

an adjacency list. This adjacency matrix uses the most amount of memory in comparison to all other

algorithms and data structures. Being able to reduce this memory footprint would allow SRL to perform

using hardware with limited memory.

 Researchers proposed a compact representation of the adjacency graph that exploits the

connectivity generally seen in computer vision problems. For example, our voxels are what we

considered to be six connected (each voxel face touches another voxel). This structure shows up in the

way the graph is created since many voxels share the same graph nodes as described in the system

design section. The researchers stated that this reduced memory footprint of the graph would also

decrease the overall computation time for the S-T min-cut algorithm because the new graph structure

would showcase better spatial locality. [5]

Smoothing
For the scope of this project, we were tasked with implementing Laplacian smoothing which is

one of the simpler smoothing algorithms. However, Laplacian smoothing suffers from mesh shrinkage

over a period of multiple smoothing iterations. We could remedy this problem by implementing Taubin

smoothing which is a smoothing algorithm that does not cause as much shrinkage in the original mesh.

While most smoothing algorithms have some form of shrinkage, the Taubin smoothing algorithm is

among those smoothing algorithms that do not cause as much in comparison to others. [5]

 23

Conclusion
 At the start of this project, no one in our group had any experience with surface reconstruction

algorithms. We started this project by researching current industry standards and surveying the latest

white papers published to try and gain more knowledge. Through the continuous presentation of our

knowledge to our sponsor and continuous feedback, we were able to start developing an understanding

of state-of-the-art surface reconstruction algorithms.

 Once we had the technical knowledge to start discussions with Stryker on what they were

looking for, we were able to start soliciting requirements. We spent weeks conducting use case analysis

on multiple white papers on surface reconstruction. We would generate an overview, pros, and cons of

the approach and present them to Stryker. We would also give a rationale as to why a specific approach

fit or didn’t fit their requirements. Through these discussions, we were able to generate an agreed-upon

requirements document for the project as well as an agreed-upon approach for the project.

 We started by reading Alexander Hornung and Leif Kobbelt’s method of reconstruction using

unsigned distance functions and breaking it down into a list of achievable milestones. We were able to

break it down into the steps that have been talked about in the previous sections (volumetric grid

creation, dilation, etc.). As we read more and more into the specific subsections, we realized that we

had to do more and more research to understand what was required for each step of the process.

 During this research phase, we were constantly watching videos and reading white papers on

various topics to bring ourselves up to speed on all technical concepts required for the implementation.

Moreover, we had weekly meetings with our sponsors who were available to answer technical questions

to the best of their abilities or point us to sources that would help our research.

 Once we had enough background knowledge, we started implementing the white paper using

an extreme programming project management style. During this time, we also held frequent meetings

with our sponsor to showcase progress as well as start discussing our testing strategy to validate our

requirements. We spent the entire summer implementing the white paper and test cases to ensure that

our project was ready to hand off to Stryker.

 At the end of the summer, we were able to give Stryker an implementation of the white paper

that had passed 100% of the test cases that we had implemented. We also worked on giving demos of

usability and reconstruction accuracy to engineers at Stryker before they signed off on the project.

Throughout this project, we worked with Stryker and WMU to ensure that no NDAs were being

breached and that requirements for the senior design project were being met. There was a small portion

of our project time that can be allocated to this synchronization between Stryker and WMU.

 Overall, we were able to start with no prior knowledge in the field of surface reconstruction and

end with a software solution capable of reconstructing an arbitrary point cloud. Moreover, we worked

closely with Stryker to ensure that the end software product was one that they were satisfied with, and

could be used for however they intend to use it.

 24

References
[1] Hornung, A., & Kobbelt, L. (2006, June). Robust reconstruction of watertight 3 d models from non-

uniformly sampled point clouds without normal information. In Symposium on geometry

processing (pp. 41-50).

[2] Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms

for energy minimization in vision. IEEE transactions on pattern analysis and machine

intelligence, 26(9), 1124-1137.

[3] Bokhari, S. H., Çatalyürek, Ü. V., & Gurcan, M. N. (2014). Massively multithreaded maxflow for image

segmentation on the Cray XMT‐2. Concurrency and Computation: Practice and Experience,

26(18), 2836-2855.

[4] Jamriška, O., Sýkora, D., & Hornung, A. (2012, June). Cache-efficient graph cuts on structured grids. In

2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3673-3680). IEEE.

[5] Taubin, G. (1995, June). Curve and surface smoothing without shrinkage. In Proceedings of IEEE

international conference on computer vision (pp. 852-857). IEEE.

 25

Appendices

Project Management Plan
 Our group decided to use an extreme programming style for our program management. At the

start of the project, we were concerned with completing the project within the time frame given

because of our lack of knowledge in anything surface-reconstruction-related. We figured that finishing

tasks as fast as possible was in our best interest to complete the project on time.

 After we had decided on a white paper to base our implementation on, we started

brainstorming milestones that we could have for our project. Our paper was laid out in a way that made

it simple for us to define milestones. We created a total of seven milestones (volumetric grid creation,

volumetric grid dilation, unsigned distance function, etc.). We defined that successful completion of a

milestone included a fully working implementation of the feature, fully implemented test cases and that

the implementation passed all the associated test cases.

 Since there was a lot of uncertainty with what the end product would look like, one challenge

was that we were not able to implement a proper design for the software. The way we dealt with this is

by working until we felt there was a logical reason to refactor or combine different functions into a class.

For example, when we saw that we had any repeated code, we designed a temporary software solution

to eliminate duplicate code. Moreover, when there were functions that logically made sense to group

together, we would refactor them into a class. For example, it made sense to refactor volumetric grid

creation and dilation into a single volumetric grid class rather than having them be separate functions or

scripts.

 As the project progressed, this refactoring ended up taking a good amount of time while

implementing. Because we constantly found ourselves in situations where we could make

improvements to the overall design. Where this extreme programming broke down a bit was when we

found ourselves refactoring certain functions over and over again. While this was not ideal, this was

expected since we did not know the full system design before the start, and this was a hurdle that we

just had to get over.

 We held weekly meetings to show our progress and show the current state of design of the

software. Through this, we were able to get constant feedback on the design and priorities of certain

tasks. We would also take this time to review the tasks that we would be working on over the next

week. These meetings allowed our sponsor to have full visibility as to what was going on with the

project and allowed us to get any feedback or technical guidance from them. Moreover, we also held

meetings as needed over Teams for our group to discuss priorities, next steps, and to help with any

technical challenges.

 As we got further into the project, we started dealing more with trying to gain better

performance of our algorithms and better accuracy of our reconstructions. Our group naturally split into

two workstreams to make this happen. One person would work to gain better accuracy and

performance, while the other would make these changes and refactor them into the overall

implementation. This person was also responsible for running the changes against the new features and

making sure that they passed.

 26

 Overall, we had an extremely positive experience working together and with Stryker on this

project. Our group’s dedication and motivation allowed us to complete the project.

Progress Reports
 We worked on this project over the summer and provided progress reports to our client on a

weekly basis. Moreover, they have reviewed our final implementation and are satisfied with the results.

Development Costs
In the following sections, we go over costs for the development of this project incurred by the

three different parties interested in this project.

Institution Costs
There was no direct monetary cost to WMU, however, indirectly they had to provide us with

access to MATLAB (accessible through computer labs or remote access). This was already provided to

students, so we do not consider it a direct cost.

Sponsor Costs
 There was no direct monetary cost to our sponsor since we all had access to MATLAB through

WMU. Our sponsor cost can be thought of as the time that full-time engineers, quality engineers, and

project managers spent helping us with our project. For example, the software engineers that

conducted our static code analysis.

Team Costs
We did not have to spend any money to complete this project, as our sponsor was ready to

cover any costs that came up. The only cost to our team can be measured in the time we spent working

on the project.

	Surface Reconstruction Library
	Recommended Citation

	tmp.1643646638.pdf.T83kP

