
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

12-2019

Toward Self-Reconfigurable Parametric Systems: Reinforcement Toward Self-Reconfigurable Parametric Systems: Reinforcement

Learning Approach Learning Approach

Ting-Yu Mu
Western Michigan University, tingyu.mu@icloud.com

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mu, Ting-Yu, "Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach" (2019).
Dissertations. 3546.
https://scholarworks.wmich.edu/dissertations/3546

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3546?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

TOWARD SELF-RECONFIGURABLE PARAMETRIC SYSTEMS:

REINFORCEMENT LEARNING APPROACH

by

Ting-Yu Mu

A dissertation submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Computer Science

Western Michigan University

December 2019

Doctoral Committee:

Ala Al-Fuqaha, Ph.D., Chair

Ajay Gupta, Ph.D.

Fahad Saeed, Ph.D.

J. Michael Tarn, Ph.D.

Copyright by

Ting-Yu Mu

2019

ii

ACKNOWLEDGEMENTS

I would like to begin by presenting my gratitude to my advisor, Dr. Ala Al-

Fuqaha for all his dedication and contribution to this work, and my academic career.

Who, without his dedicated efforts and efficient guidance this work would have not been

possible. I also like to thank Dr. Ajay Gupta, Dr. Fahad Saeed, and Dr. J. Michael Tarn

for all their precious insight and contributions into this research, and the valuable

knowledge and suggestions they have put into this work and helped me learn throughout

my works.

Secondly, I would like to thank my family, friends, and love ones, especially my

wife Shiao-Min Lu for all their support and encouragement, without which, this work

would have not been possible.

Lastly, I would like to thank my father Ching-Ping Mu, and mother Ching-Chih

Pao, for all they have done for me both for my education and personal life; without

which, none of this would be possible.

Ting-Yu Mu

TOWARD SELF-RECONFIGURABLE PARAMETRIC SYSTEMS:

REINFORCEMENT LEARNING APPROACH

Ting-Yu Mu, Ph.D.

Western Michigan University, 2019

For the ongoing advancement of the fields of Information Technology (IT) and

Computer Science, machine learning-based approaches are utilized in different ways in

order to solve the problems that belong to the Nondeterministic Polynomial time (NP)-

hard complexity class or to approximate the problems if there is no known efficient way

to find a solution. Problems that determine the proper set of reconfigurable parameters of

parametric systems to obtain the near optimal performance are typically classified as NP-

hard problems with no efficient mathematical models to obtain the best solutions. This

body of work aims to advance the knowledge of machine learning techniques for the

adaptive applications that depend on the set of configurable parameters, particularly the

reinforcement learning approach, to address such problems. This work focuses on

applying reinforcement learning to two chosen applications: (1) the MapReduce

framework, and (2) the flow management in Software-Defined Networking (SDN). To

demonstrate the effectiveness of this work, three studies were conducted: 1- The

literature review of SDN technologies, architectures, applicable applications, underlying

protocols, and deployments. 2- The use of reinforcement learning algorithm to search for

the set of reconfigurable parameters that yields the near optimal performance

automatically and adaptively, including the development of the simulator for evaluating

the results and applying the obtained results to the real world application, and 3- The

feasibility for the development of the emulation-based environment for the utilization of

reinforcement learning in flow management in SDN, in order to address the limited

capacity issue of the Ternary Content-Addressable Memory (TCAM) installed in an

OpenFlow enabled switch. The MapReduce simulator was implemented using Network

Simulator 3 (NS-3) simulation engine and the SDN emulation was built on top of Mininet

network emulator. The results of these studies provide information on the effectiveness

and efficiency of reinforcement learning algorithms for improving the performance of the

parametric systems adaptively and automatically.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION .. 1

1.1 Machine Learning .. 1

1.2 Motivations for Study .. 7

1.3 Objectives of Research .. 7

CHAPTER 2 LITERATURE REVIEW – EMPOWERING NETWORKING

RESEARCH AND EXPERIMENTATION THROUGH SOFTWARE-DEFINED

NETWORKING ... 9

2.1 Introduction .. 9

2.2 Overview of SDN .. 10

2.3 Network Function Virtualization ... 12

2.4 SDN Technologies ... 14

2.5 Programmable Data Planes .. 18

2.6 SDN Infrastructure ... 20

2.7 SDN Deployment Environments.. 29

2.8 Standardizing SDN .. 33

2.9 SDN Applications and Experiments .. 34

2.10 Conclusion ... 38

CHAPTER 3 AUTOMATING THE CONFIGURATION OF MAPREDUCE: A

REINFORCEMENT LEARNING SCHEME .. 39

3.1 Abstract .. 39

3.2 Introduction .. 39

3.3 Related Work ... 41

3.4 Motivation .. 43

3.5 Overview of RL-MRCONF ... 43

3.6 The Design and Implementation of RL-MRCONF ... 50

3.7 The Evaluation of RL-MRCONF .. 53

3.8 Conclusion ... 68

iv

Table of Contents - Continued

CHAPTER 4 SDN FLOW ENTRY MANAGEMENT USING REINFORCEMENT

LEARNING .. 70

4.1 Abstract .. 70

4.2 Introduction .. 70

4.3 Background and Related Work .. 74

4.4 Design and Implementation ... 82

4.5 Experiment Analysis and Performance Evaluation ... 93

4.6 Conclusion ... 102

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 103

CHAPTER 6 PUBLISHED WORKS ... 106

REFERENCES ... 107

v

LIST OF TABLES

1. The Difference between SDN and NFV with Combined Benefits 13

2. The Open Source SDN Controllers... 22

3. The OpenFlow Compatible Open Source SDN Switches... 29

4. The List of Large Scale SDN-based Testbeds .. 31

5. Overview of Candidate MapReduce Configuration Parameters 45

6. The Configuration Parameters of NS-3 Simulator.. 54

7. The Best Obtained MapReduce Configuration Parameters for Job Types 60

8. Performance Comparison Based on Job Types between RL-MRCONF and Real

Hadoop Cluster ... 65

9. The TCAM Capacity Utilization Optimization Approaches .. 81

vi

LIST OF FIGURES

1. The relationship between artificial intelligence and machine learning, and the type of

learning techniques ... 2

2. The graphical representation of a deep neural network .. 4

3. The relationships between phases and how the trained model can be applied to predict

the behavior ... 5

4. The overview of Software-Defined Networking Architecture 10

5. The architectural diagram of ForCES ... 14

6. The ForCES interface with CE and FE functions ... 15

7. The relationship between OF-CONFIG components ... 16

8. The ProGFE structure diagram ... 17

9. The block diagram of OpenDaylight framework architecture 21

10. The relationship between NETCONF and YANG ... 23

11. The packet and flow tables pipeline process... 25

12. The components of the OpenFlow switch .. 27

13. The architectural blocks of Open vSwitch and main components 28

14. The feedforward neural network architecture of deep reinforcement learning 48

15. The operation phases of RL-MRCONF .. 51

16. MR-Perf workflow .. 52

17. RL-MRCONF execution time vs. number of iterations for different types of jobs 55

18. Relationship between execution time and key input parameters 57

19. Performance with and without Q-table initialization while varying number of

iterations .. 58

20. Performance comparison between the execution times using the initial and best

configuration for different job types ... 60

21. Deep reinforcement learning performance with different training scenarios 62

22. Performance comparison between RL and DQN under different training scenarios . 63

23. Performance evaluation of RL and DQN agents under the same training and

objective .. 64

vii

List of Figures - Continued

24. CHD cluster resources utilization matrix based on different jobs running on the

cluster .. 66

25. Adaptability of RL-MRCONF to similar submitted jobs that varies with input data

size .. 67

26. The normalized job execution time with respect to AROMA and Starfish for three

studied jobs with input size as 20GB .. 68

27. The overview of proposed RL-based approach for managing SDN flow entry 73

28. The deep RL neural network architecture ... 89

29. The Mininet emulation topology .. 90

30. The workflow of the proposed technique ... 92

31. The traditional RL agent with different parameters set .. 94

32. The traditional RL agent with and without initialized Q-table 95

33. The DQN-based RL agent with different training scenarios 97

34. The comparison between learning agents trained with the same 20 samples with

goal state in 40% control plane overhead reduction ... 99

35. The comparison between learning agents trained with the same 20 samples with

goal state in 60% control plane overhead reduction ... 99

36. The comparison between our proposed RL agents and the MBF-based approach in

terms of table-hit ratio ... 100

37. The significance of each decisive parameter, and the impact when they are

considered jointly .. 101

1

CHAPTER 1

INTRODUCTION

With the evolution of Information Technology, adaptive frameworks were

developed not only to address the proposed issues, but also have the capability to respond

to environmental changes, including available computing and networking resources that

the frameworks running with. To provide the adaptability of the framework, sets of

reconfigurable parameters are utilized, and properly configuring these parameters are

essential in achieving better performance and high stability of the framework. However,

an optimal solution comes with the expensive cost for extremely long searching time,

since there is no effective mathematical models to capture the dynamics of the

heterogeneity of the computing resources and the applications executing on the

environment. Based on the fact that the search space is comprised of several performance

critical multi-valued parameters and their complex relationships, the machine learning

based approaches fit this scenario better since they can capture the characteristics of the

application and its relationships among those parameters from various scheduled tasks

[153], [162]. Therefore, the goal of this work is to characterize the effectiveness of the

machine learning based approach, specifically the reinforcement learning algorithms, to

perform the best-effort operation to obtain the set of reconfigurable parameters that yields

the near optimal performance of the given framework. This chapter provides a brief

introduction to the field of machine learning and discusses some common nomenclature.

Additionally, the motivations and objectives are also discussed.

1.1 Machine Learning

From the beginning of the technological era, computer scientists have vision of

making computers to reason and make intelligent decisions like humans do, by

performing objects classification and patterns extraction from complex information

without explicit instructions. To one aspect of the goal, machine learning is a model that

takes the input and produces the desired outcome, and the model can be considered as the

process of the approximation [2], [4] that we would like the machines to perform.

2

Artificial intelligence (AI) is the common term that usually appears with machine

learning. As depicted in Figure 1, the core building block of AI is machine learning,

which contains statistical algorithms that are capable to produce generalizable models by

processing the given dataset. Although there are other approaches that can be classified

under AI, but they would not be necessarily considered as the subset of machine learning.

Generally speaking, there are multiple techniques to create AI, and machine learning is

one of them. As stated by Professor Tom Mitchell from Carnegie Mellon University for

the definition of artificial intelligence: “A computer program is said to learn from

experience E with respect to some class of task T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E” [1].

Figure 1. The relationship between artificial intelligence and machine learning, and the

type of learning techniques

Within the machine learning domain, the learning techniques can be further

categorized into the following types:

 Supervised Learning: This type of machine learning model is used to predict the

outcome based on the given dataset. The objective of this learning model is to

infer a mapping or function from the labeled training data. Each training data

consist of a vector of input data with its corresponding output value. Specifically,

3

this type of learning algorithm utilizes a technique namely inductive bias, which

is defined as the set of assumptions used by learning agent to predict outputs of

the given inputs that are not part of training data (unlabeled).

 Unsupervised Learning: Contrary to supervised learning, unsupervised learning

does not have supervisor or labeled training data, and the objective of this model

is to discover a hidden structure in the given unlabeled data. The structure is

usually obtained by clustering the input data based on the relationships. A good

representation of this model is the k-means clustering algorithm, where it

emphasizes on partitioning n observations into k clusters in which each cluster has

the nearest mean among its corresponding observations.

 Semi-supervised Learning: In this type of learning, the given data is the

combination of labeled and unlabeled dataset used to produce an appropriate

model for data classification. In most cases, the minority of the data is labeled,

whereas the majority of the data is unlabeled, and this mixture of data types has

proven to have the considerable significance for improving learning model

accuracy when the unlabeled data is utilized in conjunction with the labeled data

[2], [4]. Intuitively, this learning process can be considered as the way we solve

problems where the labeled data represents the solved problems, and the

unlabeled data is the unsolved problems that we are going to solve for which they

might or might not be related to the solved problems.

 Reinforcement Learning: This machine learning technique, differs from

aforementioned techniques, does not need to know the correct input/output pairs

at the beginning phase, with clear objective used to drive learning agent to

establish the policy that maximizes the long-term cumulative satisfaction from

unknown environment [3]. Through the interactions with the unknown

environment, reinforcement learning has additional responsibility for making

decisions based on the feedback supplied by the environment for the

corresponding rewards. Unlike supervised learning, the results produced by

reinforcement learning are not immediate and may require sequence of steps to be

performed before the final result is acquired. In particular, the following steps are

utilized by reinforcement learning:

4

1. The input state space as observed by the learning agent.

2. The function for making decisions to drive the agent to perform an action.

3. The agent receives reward from the environment based on action

performed.

4. The reward information of the state-action pair is stored as the

experienced matrix.

 Deep Learning: Deep learning technique is considered as the subset of Artificial

Neural Networks (ANNs). In the relationship with artificial neural networks, this

model is an advancement of ANNs that can be employed to process large amount

of dataset to derive the representations of the data [5]. The term “deep”, as

depicted in Figure 2, is defined by multiple layers used in neural network model

as there is no constant value that defines how many hidden layers should be used.

The learning process of this model can be supervised, semi-supervised or

unsupervised [4], [5], for which the features of the data is extracted and

transformed by using multiple layers of nonlinear processing units. As

represented in Figure 2, each connected layers (except for input layer) uses the

output from the previous layer as input, and the multiple hidden layers can be

used as the representation of the different levels of abstraction, based on the

applications of the learning.

Figure 2. The graphical representation of a deep neural network

5

Generally, when utilizing machine learning in the context of the application, two

types of datasets are required: one is manually constructed dataset where the input data

and the corresponding output data are available, and it is crucial that each input has an

expected output as this is the required condition for supervised learning to establish the

rule or policy; another type of dataset is where we have the input data and there is no

expected output as we are expecting the machine learning to perform the prediction or

approximation for the output. In addition, those datasets can be further classified into

training, validation, and testing dataset respectively, where training dataset is used by the

machine learning to gain the knowledge from, the validation dataset is used to verify the

established rule for the accuracy tuning of the output, and the testing dataset is used to

assess the performance of the established rule or policy.

Figure 3. The relatiohships between phases and how the trained model can be applied

to predict the behavior

To perform machine learning, there are three phases involved in the process:

Phase 1 is training phase, where the learning model is trained with <input, output> pair

in order to build the learning rule. Phase 2 is validation and test phase used to evaluate

the quality of the trained learning model in terms of measurement in error rate, accuracy,

6

etc. Phase 3 is the application phase where the trained model is deployed onto the real-

world application for production process. The relationships between the phases are

illustrated in Figure 3.

To further elaborate the types of problems that machine learning can be

employed, those problems can be categorized as follow:

 Classification: This is a problem to determine or establish a grouping technique

for a given dataset based on its target output or attribute, and the entire dataset can

be classified to belong to a class by using this grouping technique, which is also

known as discrimination mechanism [2], [4].

 Clustering: Differs from classification, clustering is a technique to extract the

interesting patterns of the given dataset without an explicit definition of the target

output. As in aforementioned type of unsupervised learning, this technique

emphasizes on partitioning n observations into k clusters in which each cluster has

the nearest mean among its corresponding observations.

 Prediction or regression: Similar to classification, this problem is used to

determine the way things would happen in the future by using the information

derived from past experience or knowledge, which is also called as rule

extraction.

 Simulation: This is the problem where we need to address the uncertainty of the

given dataset since we do not know how the data is correlated and there is no

equation to describe the relationship among the data attributes. This type of

problem can be used to solve challenging issues including robots design, behavior

prediction, big data information extraction, etc.

Based on the preceding discussed characteristics of machine learning, these

techniques are frequently utilized to address challenging problems where constructing the

mathematic model to extract information from dynamics of the application is extremely

difficult. In addition, the machine learning based usage is rapidly increasing among

research fields and business organizations. Every organization is actively devising the

strategies on how to utilize their data properly to increase the profits and establish new

businesses to accommodate the evolving economy.

7

Moreover, in the field of data analytics, machine learning is also employed as the

method to construct complex models or algorithms as the guideline for prediction, which

is also known as predictive analytics [4]. These techniques allow researchers, scientists,

and analysts to unveil the hidden insights through the use of machine learning based on

the historical and future trends of the data.

1.2 Motivations for Study

The use of reinforcement learning in our approach is inspired by the modern

robotic learning research where a robot is allowed to obtain skills and necessary

capabilities to adapt the external environment that robot interacts with, and the

responses to different stimuli provided by the environment. Besides, the robot is also

capable of using learned experience to further strengthen its future behavior through

the use of reinforcement.

To further extend the scope of the application, we believe the use of

reinforcement learning algorithm can also help us achieve the objective of self-

reconfigurable mechanism in tuning parametric systems that allow the learning agent

to explore the configurations space through the given feedback provided by the

environment based on the action performed by the agent. The goal of the agent is to

establish the policy that maximizes the cumulative long term reward and uncover the

hidden relationship between the system dynamics and its configurable parameters

without the deep knowledge knowing how the system works. As a result, self-tuning

capability based on the system’s dynamics is needed by the adaptive parametric

systems, and studies are needed to interpret how the reinforcement learning can be

utilized to improve the performance of parametric systems in terms of processing

time and the resources utilization rate, which are the aims of this work.

1.3 Objectives of Research

To implement adaptive self-reconfigurable parametric systems, there exists a need

for a better understanding of how reinforcement learning algorithms can be utilized to

improve the performance and hardware resources utilizations of the system. The

objective of this research is to advance the knowledge of the efficacy for deploying

reinforcement learning algorithms on tuning the performance of the parametric system

8

automatically and adaptively. Another objective is to utilize a similar approach to manage

flow entries of SDN to minimize the communication overhead between controller and the

OpenFlow enabled network switches, and further improve the utilization efficiency of

TCAM capacity installed in the switch. To accomplish these objectives, this dissertation

research was organized and advanced in three projects.

In the first project, the literature review of Software-Defined Networking (SDN)

technologies was conducted to elaborate the potential of the current evolving network

architecture, which represents a new approach to orchestrate networks based on the needs

of the dynamic nature of current networking capabilities. The review covers the

architectures, applications, corresponding protocols, and deployments associated with

SDN.

In the second project, the Reinforcement Learning (RL) based scheme, namely

RL-MRCONF, was proposed and developed to automatically tune the reconfigurable

parameters of MapReduce framework. Specifically, two variations of RL algorithms were

studied; one is traditional reinforcement learning algorithm and another one is deep

reinforcement learning algorithm. In addition, the MapReduce simulator was also

implemented to demonstrate the effectiveness of our proposed approach. The simulation

results show that the RL-MRCONF is capable of reconfiguring MapReduce parameters

automatically and dynamically in response to varying job types and underlying

computing resources.

In the third project, a novel approach to enable machine learning capabilities to

manage flow entries of SDN enabled networking environment in response to the

partitioned and aggregated network traffic patterns was created by using reinforcement

learning to reduce network reconfiguration overhead. It is significant to determine which

flow entries (forwarding rules) should be stored in the flow table of the OpenFlow

enabled switch when considering the limited capacity of Ternary Content-Addressable

Memory (TCAM) installed in the switch. The emulation results demonstrate that our RL

based approach is capable of reducing network reconfiguration overhead in the long-term

and further improve the table-hit ratio of the SDN enabled network.

9

CHAPTER 2

LITERATURE REVIEW – EMPOWERING NETWORKING RESEARCH AND

EXPERIMENTATION THROUGH SOFTWARE-DEFINED NETWORKING

2.1 Introduction

The trend for researching Future Internet is driven by the drawbacks of present

day’s Internet and the demand for more sophisticated applications and services. Future

Internet focuses on developing novel network and architecture principles, allowing the

applied technologies to go beyond the existing standards or models to resolve the issues

identified in today’s Internet. Recently, Software-Defined Networking (SDN) has

emerged as the exciting technology challenges the current networking paradigm in terms

of management and orchestration of present computer networks, which allows SDN to

have potential to evolve not only how networks are implemented but can inspire novel

applications that are limited by existing network structures.

In order to address the known issues of the current computer networking

structures: (1) Difficulty in optimizations, (2) shortcomings in security, robustness,

manageability, and scalability, and (3) increasing capital expenses; SDN was developed

by delivering significant benefits to end users to accomplish the needs for managing the

dynamics of computer networks as in [8]:

 Managing the networking devices in logically centralized manner;

 Eliminating the need to manually configure each device over the network;

 Utilizing the common programming environments and APIs to improve

programmability;

 Improving the security and reliability of network services by using centralized

network devices management;

 Lowering operational costs by improving efficiency for services provisioning.

The purpose of this chapter is to provide readers with fundamental information

pertaining to SDN. What SDN is, and the associated applications utilizing SDN to

empower the research of computer networks and experiments. In addition, the underlying

OpenFlow protocol utilized by SDN, and some experiments on evaluating the benefits

obtained by utilizing SDN, including the recent researches and associated literature

papers, are also discussed and summarized in this chapter, with the goal of broadening

10

innovations and promoting new researches in evolving the capabilities of future computer

networks.

2.2 Overview of SDN

SDN is a novel networking paradigm of computer networks proposed as the

approach to advance networks with programmable capability. The fundamental concept

of SDN emphasizes on simplifying and optimizing the network management operation by

decoupling the data plane (the mechanism that forwards the data packets to the specified

destination) from the control plane (the mechanism that makes decisions regarding where

the packet is sent). The transparency of the programming interface that enables the

development of applications to dynamically control and manage the connectivity between

the participated network elements is the primary goal of SDN.

Figure 4. The overview of Software-Defined Networking Architecture

An overview of the SDN architecture is depicted in Figure 4. The layers of

application, control, and infrastructure have been referred as the application, control, and

data planes respectively [8]. The application plane consists of several SDN applications

that utilize open APIs to interact with the SDN controller. Those APIs are referred as

Northbound Interface (NBI) Drivers and it is used as the communication gateway to send

11

application requirements to the control plane, and receives network activities such as

states and events from the control plane. In the control plane, the SDN controller is

employed to disclose the statistics, instrumentation, and events from the underlying data

plane network elements up to the application plane, and interprets the requests of the

applications down to the data plane. Multiple network elements, as illustrated at the

bottom of Figure 4, represent the data plane that utilize the Control Data Plane Interface

(CDPI) to reveal their SDN Datapaths and capabilities, providing the SDN controller the

capability to enforce low-level network control over those datapaths.

In addition, a Management & Admin plane is used to interact with all these three

planes and is responsible for orchestrating the network elements, making proper

assignment of SDN controller to the SDN datapaths, and managing network policies that

define the controllability of the assigned SDN controller or SDN application. As the

result, the SDN programmability is further achieved by utilizing the SDN controller that

controls the communication between upper-level applications and low-level network

elements. Due to the benefits provided by SDN as in openness, flexibility, functionality,

and programmability, several research works proposed several network programming

languages that are compatible with the OpenFlow [8] protocol. The idea of using high-

level abstraction for developing network applications has been cultivated by those

research works. Examples of such programming initiatives include Frenetic [130], [131],

Pyretic [132], and Nettle [133]. Those languages are briefly discussed as follow:

 Frenetic: Frenetic is designed to mitigate the barrier between the low level design

of OpenFlow interface and the orchestration of the high-level concept on the

switching hardware, and this is achieved by supporting a domain-specific

language for SDNs. Frenetic proposes a set of functional abstraction to enable

modular program development and reduces the difficulties of the controller-to-

network programming by using a “see-every-packet” abstraction feature. Frenetic

operates at the abstraction on the packet-level and it is considered as a functional

reactive programming (FRP) language.

 Pyretic: A Python-based programming language implemented as the extension of

Frenetic that includes all the features of Frenetic. It emphasizes on the high-level

abstraction of the network policy and refines the support of modular programming

12

by using “policies-as-abstraction-functions” feature to integrate multiple network

policies as parallel and sequential compositions when utilizing policy

composition operators.

 Nettle: Based on the principles of functional reactive programming, Nettle is a

domain-specific programming language and has the ability to capture/monitor the

communication patterns between SDN controller and OpenFlow switches

discretely and continuously. It supports programming of the OpenFlow-enabled

networks with high-level network abstraction concept with declarative manner.

OpenFlow protocol has realized the programmability of SDN that provides a

flexible, dynamic, and standardized programmable interface allowing OpenFlow-enabled

switches to be managed by the logically centralized SDN controller.

2.3 Network Function Virtualization

The ability to synthesize the multiple hardware and software networking

resources as the logical software-based virtual network entity executing on top of

commercial computing servers is defined as Network Function Virtualization (NFV)

[124], which is achieved by decoupling network services in terms of network address

translation (NAT), firewalling, intrusion detection, domain name service (DNS), caching,

etc., from proprietary hardware devices for easy integration and management.

The NFV technology was initiated by European Telecommunication Standard

Institute (ETSI) with the goal of reducing both capital costs (CAPEX) and operating costs

(OPEX) in daily information technology (IT) business operations. NFV is capable of

delivering network functions on various locations of the network to provide a fully

virtualized infrastructure, without the need for physically installing, deploying or

configuring the network devices. As the result, NFV provides several benefits based on

[124], [126]:

 Conserves IT equipment expenditures and energy consumption by integrating

network appliances;

 Dynamically optimizes network topology based on the real-time traffic utilization

to further improve scalability and resiliency of the network;

 Delivers the customized network services on demand;

13

 Shortens IT orchestration cycles to improve operating performance and efficiency.

The concept of functional entities and the reference points within the functional

domain are utilized by ETSI NFV group when defining the architecture of NFV, and

there is no specific implementation for these entities. The detail NFV information is

described in [125] and further discussed in [126]. Additionally, NFV technology is often

mistakenly considered as synonym of SDN technologies due to the similarity of the

characteristics in software controlled computer networking capabilities. However, both

SDN and NFV are two different independent technologies but they are complementary to

each other [124], [126]. The comparison between SDN and NFV with the aspect of what

can be achieved for being utilized jointly are presented in Table 1.

Table 1. The Difference Between SDN and NFV with Combined Benefits.

 SDN NFV SDN + NFV

Characteristics Decouples the control

and data planes [8]

 Provides

programmable

networking and

logically centralized

management [8]

 Transfers the

network functions

from the proprietary

devices into

software-based

implementation

[124]

 Decreases CAPEX,

OPEX, and energy

consumption [124]

 SDN provides programmable

interface between each

Virtualized Network Function

(VNF), which can be

managed by SDN controller

or VNF orchestrator [126],

[127].

 NFV provides software-based

network functions that can be

used by SDN to deliver

services on the certain

network locations as required

[125].

Standardization

Group

Open Networking

Foundation (ONF)

ETSI NFV Group

Equipment Commercial servers and

switches

Commercial servers and

switches

Commercial servers and

switches

Applications Cloud computing and

networking

Network traffic

engineering

Usage Data centers Network service

providers

Non-SDN based deployments can be utilized to achieve NFV functionalities, but

in order to accomplish better network performance, compatibility, and manageability;

join operations in the aspect of SDN control and data planes separation with NFV are

preferred [124], [125], [127].

14

2.4 SDN Technologies

The core concept behind SDN is the separation of the control plane from its

underlying data plane. This approach can be traced back to early 2000s [11], where

researchers focus on developing a solution to address increasing network traffic volumes,

and to improve network reliability, manageability, and performance. Overall, the

realization of this core concept of SDN has been enabled by the following technologies:

ForCES: Forwarding and Control Element Separation (ForCES) [16] [17] is an

architectural framework used to define the communication protocol between control

plane and data plane, which have been represented as two major elements: Control

Element (CE) and Forwarding Element (FE). This design can improve flexibility of

network elements and network scalability by adding additional CEs and FEs to the

existing network topology without the need to perform full-scale updates to the

infrastructure. The architecture of ForCES is presented in Figure 5.

Figure 5. The architecturial diagram of ForCES

In the domain of ForCES, multiple instances of CE and FE are permitted, and

each FE is equipped with one or more physical media interfaces as the communication

channel to the external world. In addition, the network element components are

interconnected and one element can forward the network packet to any other elements,

for which the load balancing, resource sharing, distributed control, and other purposes,

can be further achieved by using this redundant CEs and FEs mechanism. Distributed

control is utilized when multiple CEs are concurrently active but only certain CEs are

capable of processing specific requests. The Logical Function Block (LFB), defined by

15

multiple FEs, is the building block controlled by CEs via the ForCES communication

protocol. This allows CEs to control and manage the FEs regarding how the packets can

be processed by them.

Figure 6. The ForCES interface with CE and FE functions

The functions of CE and FE in ForCES, as depicted in Figure 6, consist of

multiple layer 3 and layer 2 protocols, which are employed by CE and FE respectively.

ForCES interface resides on both CE and FE as it is used to carry both control messages

and network data packets. Moreover, two protocol layers in both CE and FE are

connected by Transport Mapping Layer (TML), and the implementation of TMLs varies

depending on the capabilities of underlying transport and media. However, as long as

both endpoints support the identical TML, the interoperability between TMLs is

guaranteed. Moreover, the Protocol Layer (PL) is used as the bridge to carry various

events and requests between CE and FE, such as event subscription, FE activation, etc.

The information exchange standardization is defined by ForCES protocol between CE(s)

and FE(s) only.

OpenFlow: OpenFlow [8], [14], a communication protocol, is defined and

implemented in the Control Data Plane Interface (CDPI) of the SDN structure.

16

OpenFlow enables the direct access to the underlying forwarding plane of network

element as in routers or switches, and the route of network data packets can be

constructed programmatically to travel through those network elements. Currently, the

core concept of SDN has been complied in the OpenFlow protocol involving two

categories: one is the wired protocol defined by an OpenFlow switch (OF-SWITCH) with

most recent version in 1.5.1 [8]; another one is the remote management protocol defined

by the OpenFlow configuration and management protocol (OF-CONFIG) with most

recent version in 1.2 [8], both specifications are maintained and published by the Open

Networking Foundation (ONF).

Figure 7. The relationship between OF-CONFIG components

As a companion protocol to OpenFlow, the OF-CONFIG is developed to

configure OpenFlow switches remotely. The abstraction view of an OpenFlow switch in

OF-CONFIG is defined by an OpenFlow Logical Switch (OFLS) to allow OpenFlow

controller to communicate and control the OFLS via the OpenFlow protocol. An

17

OpenFlow Capable Switch (OFCS) is developed to integrate one or more OpenFlow

switches as an organizational operating context. The dynamic association of the

OpenFlow related resources with a specific OFLS can be achieved by partitioning hosted

OpenFlow Logical switches within the OFCS. The relationship between OF-CONFIG

protocol components is illustrated in Figure 7.

An OpenFlow Configuration Point (OFCP) is defined as the service to transmit

the messages of OF-CONFIG to an OFCS, and the service can be either implemented

programmatically using software, or can be supported by a traditional network

framework. The communication between the OFCPs and OFCSs is defined by OF-

CONFIG, and the communication protocol between OpenFlow Controllers (OFC) and

OFLSs is defined by OpenFlow.

Figure 8. The ProGFE structure diagram

ProGFE: Based on the LFBs defined by ForCES, Programming Generic

Forwarding Element (ProGFE) [48] provides an elastic and reconfigurable network

system, and each LFB controls how ProGFE functions. An XML-based API is utilized to

configure ProGFE dynamically in order to adapt the dynamic nature of network in

providing various network functions, protocols, and topologies. One or more LFBs are

18

connected using a directed graph and can be used to define processing operation of

ProGFE. Additionally, the path between two LFBs is used to represent frame type-based

processing of the system.

Two groups, namely management and run-time modules as depicted in Figure 8,

can be used to classify the modules of ProGFE. The communication to CE is controlled

by management module to manage the LFB information, and the internal data structure is

used to define how those run-time module process the frame. In general, ProGFE has

three main modules: Protocol Agent, XML Handler, and Low Level Rule Enforcer

(LLRE). The protocol agent uses general protocols, such as HTTP, Wired, and more, to

communicate with the CE. The XML handler is responsible for paring/translating the

LFB XML information and passing the processed information to relevant data structure.

Furthermore, the LLRE is responsible executing the meta-program capable of processing

pre-defined LFB types, and the meta-program is used to describe various of LFBs and

their associated parameters defined by the CE.

2.5 Programmable Data Planes

The renovation of network devices as in switches, routers, middleboxes, and

commodity computing server technologies have driven the researchers not only focusing

on achieving high packet processing efficiency but putting more attention on

sophisticated network services. The obstacles have been encountered in present day’s

evolving Internet by current closed and proprietary design of the network equipment. To

mitigate these barriers, there are multiple efforts have been conducted to address the

issues and demonstrate the improved flexibility and extensibility of current networks:

Open vSwitch: Open vSwitch (OVS) [21], [22], [23], is an open source and

software-based multilayer switch that executes on top of virtualized environment or

hypervisor. OVS enables the capability of large scale network deployment automation

through software implementation while preserving the compatibility of existing protocols

and standard management interfaces. With the advantages of easy adaption to increasing

employment of virtualization technologies, OVS is developed for the deployments of

multi-server virtualization environments [21].

19

Recently, several OVS developers have been worked with the development team

of OpenStack to develop a flexible virtual network service framework namely

“Quantum” project [21]. OpenStack has gained more attention in the industry as it

provides an open source cloud infrastructure management platform that supports

computing resources orchestration, as in Infrastructure as a Service (IaaS), to provide

cloud computing services on demand. Based on the current limitations of the OpenStack

network architecture in terms of complex agents, flat networking and VLAN-based

networking, those drawbacks have limited the number of available VLANs to be 4096

and the number of MACs that can be stored in the switch table is also limited. In order to

address these issue, the objective of the Quantum project is to provide a simple, clean,

and flexible API for service providers or users to manage their own network topologies.

In addition, OVS utilizes the concept of “ports” for the instantiation and management of

the virtual networks, and a port can be attached to any network interfaces, regardless of

the type (virtual or physical).

Click: A software-based modular router, Click [134], [135] provides the

framework for implementing configurable routers that enables users to develop packet

processing functions as the configuration via a set of interconnected elements. Each

element in Click is used to represent a simple processing computation instead of a

complex one. The directed graph is utilized to describe the connections between each

connected elements and the route for which the packet should traverse. The ports are used

in each element to send or receive data and the deployment of new network services or

functions is simply by adding or rearranging the elements. The open and simple design of

Click has gained more popularity in network research as it provides an array of reusable

open source modules.

RouteBricks: RouteBricks [136] is another software-based router architecture

designed to utilize the advantage of router functional parallelization by employing

multiple server machines or a single server with multiple cores. The performance of the

router can be further improved by using parallelization in terms of adding more servers to

increase computing resources. The goal of RouteBricks is to make networks easier to

build, deploy, and program by utilizing commodity server machines, and it allows

developers to rapidly build and program/reprogram of networks using general hardware

20

and software resources. Besides, RouteBricks has been presented with fast network

processing by using software executing on clusters of computing resources, and further

reduces the operating costs with improved programmability and flexibility when

compared with proprietary network devices.

ClickOS: In order to adapt the increasing utilization of network function

utilization in current networks, ClickOS [137] is implemented to run Click on top of the

Xen-based virtual machine (MiniOS). With the purpose of dynamic instantiation, update,

and orchestration of network functionality, ClickOS is designed to utilize the concept of

middleboxes to improve the programmability of data plane. It provides the advantages of

rapid instantiation (about 30 milliseconds), light weighted (6MB when running), good

isolation (running on top of virtual machine), high speed (10 Gb/s pipe network), and

improved flexibility.

2.6 SDN Infrastructure

The SDN architecture can be further classified into three major components:

Application Plane, Control Plane, and Data Plane. The core concept of SDN is defined by

the collaboration of Control Plane and Data Plane which includes the implementation of

SDN and the interaction between the controller and the underlying network elements. In

this section we will discuss a variety of recent development of SDN controllers, including

the Southbound APIs that are responsible for the communication between Control and

Data Planes, the Northbound APIs that are used as the bridge between SDN applications

and the controller, the flow table mechanism that performs packet forwarding, and

different type of SDN switches employed in such architecture.

The SDN Controller: As the “brain” of SDN, the SDN controller is implemented

using a software system or a collection of systems incorporated to support the

programmability of the network. It decouples the control plane from the data plane and

utilizes the logically centralized control plane to manage the dynamics of the network.

SDN controller employs the high-level data model to manage network state as the

relationships between managed resources, policies, and other network services. In

addition, the common API (northbound interface) is supported in the form of

Representational State Transfer (REST) or Java to disclose the services provided by the

21

controller to the SDN application and manages the interactions between the application

and the controller.

Figure 9. The block diagram of OpenDaylight framework architecture

As illustrated in Figure 9, the OpenDaylight [41] framework is a collaborative

project developed by Linux Foundation. Based on the openness characteristic of the

project, the framework integrates all the open resources, open source codes, and open

projects from open community developers. The top layer of the framework, consists of

network logic and business applications, is responsible for managing and monitoring

network behavior; a collection of common APIs to the application layer (the northbound

APIs) is the major component of the middle layer, which is also in charge of managing

the underlying physical network elements within the network with one or more protocols

22

(southbound APIs); all the bottom layer devices, both physical and virtual, are used to

connect all the endpoints in the network.

The OpenFlow network is managed using a set of common functionalities

exposed by the controller, and the upper level applications provide various features based

on the user requirements. The core component of the controller is responsible for

processing I/O from switches and the OpenFlow messages is translated in the form of

events, providing an event-driven application as in Floodlight [39] SDN controller. The

Floodlight controller allows built-in modules to communicate with their implementation

of OpenFlow services, and the OpenFlow protocol is used by the controller to interact

with the underlying forwarding devices. There are several types of SDN controller

platforms available, as presented in Table 2, can be used as the panel for the public to

have a peak into the realm of SDN.

Table 2. The Open Source SDN Controllers.

Controller Summary

NOX [36] The first-generation controller implemented in Python/C++ that is compatible with

OpenFlow 1.0 (0x01)

POX [37] The Python based general open source controller that supports OpenFlow 1.0 (0x01)

Trema [38] The Ruby/C based framework that provides basic libraries and functional

component as the interface to interact with OpenFlow 1.0 (0x01) for developing

OpenFlow controllers.

Floodlight [39] The Java implemented OpenFlow controller based on the Beacon controller

developed by Stanford University

Ryu [40] A component-based OpenFlow controller framework written in Python, integrated

with OpenStack by using OpenStack Quantum plug-in and currently supports

OpenFlow protocol 1.4 (0x05)

The Southbound APIs: The southbound APIs, as in SDN architecture, are used

to control the communication between the SDN controller and the forwarding devices,

orchestrate the efficient control over the network, and enable the controller to adapt the

real-time dynamic needs of the network.

The OpenFlow protocol implemented by ONF is the first and most well-known

southbound interface that supports network management over the communication of

control-data planes. The detailed information regarding OpenFlow protocol has been

discussed in the previous section. In addition to OpenFlow, the LISP (Locator ID

23

Separation Protocol) is also advocated by ONF as one of the southbound API that

enables flow mapping, and MPLS (Multiprotocol Label Switching) protocol is also being

studied to operate in an SDN domain.

Figure 10. The relationship between NETCONF and YANG

NETCONF [13], [29], [30], standardized by IETF network management protocol,

is another southbound API that provides functionalities to modify and delete the

configuration of the network devices over the network, it uses XML-based encoding with

SSH-based encryption, and performs operations over Remote Procedure Call (RPC).

Additionally, the robust transaction integrity defined by ACID (Atomicity, Consistency,

Independency, and Durability) properties are also supported by NETCONF along with its

paired data model YANG [13], [34]. YANG model is used to indicate which data of the

network devices can be modified. Figure 10 represents the relationship between

NETCONF and YANG, and YANG is visible externally to be utilized in defining the

structure, syntax, and the semantics of the configuration data.

When the communication between NETCONF enabled device and manager is

established, the <hello> message is exchanged over the communication channel,

presents the capabilities of each connected device, and the type of YANG data model

compatible with the device. The <hello> message enables the NETCONF manager to

know which operations can be performed on the device. The single <edit-config>

ACID enforced transaction is used by the NETCONF manager to deploy a set of

24

configuration changes, or an entirely new configuration to the device. To activate a

change and test it, the Confirm-commit command is used by the manager and it also

provides the flexibility to ignore the configuration if it is not working properly and the

connection to the device can be dropped. There are some examples of basic operations

supported by NETCONF include <get>, <get-config>, <edit-config>, <copy-

config>, <commit>, <discard-changes>, <delete-config>, etc.

The tree structure is utilized by the YANG data modeling language in the form of

modules and sub-modules, which can import data from other external modules or sub-

modules. The augmentation is supported in this tree hierarchy for adding data nodes to

the hierarchy defined by another module. Moreover, a type mechanism is also utilized in

defining a set of built-in types in YANG. Currently, the OF-CONFIG of the OpenFlow

protocol integrates both NETCONF and YANG data model to remotely control the

configuration of all the connected OpenFlow switches [8] [13] in providing different

perspective to manage the network resources and operations.

The Northbound APIs: In the SDN structure, the Northbound Interface (NBI),

as implemented between SDN applications and SDN controller, is also an open and

vendor independent interface. The NBI provides an abstracted view in describing the

network states, requirements, and behaviors. The driver-agent pair model is used when

implementing the interface to provide an easy information extraction process from the

network devices to the external applications.

Despite the fact that northbound APIs has not been standardized but they are

developed as on-demand basis for targeted applications. As the starting point, both

Floodlight [39] and OpenDaylight [41] are good instances for demonstrating the cases for

employing REST APIs as the NBI. The Northbound Interfaces Working Group has been

constituted at ONF to develop a single standardized northbound interface, but this

process remains in challenging due to the variety of all the available interfaces in this

area.

Flow table: The flow entries (forwarding rules) of SDN is administered using the

flow table for packet matching process. This matching process is performed by checking

the fields in each flow entry (match fields, priority, counters, instructions, timeouts, and

cookie). Intuitively, the headers from layer 2 and layer 3 protocols of the TCP/IP suite are

25

contained in the match field. The precedence of the matching process of the flow entry is

defined by priority field; the counters are updated whenever the flow entry is matched

with the packets; the action set or pipeline processing is controlled by the instructions

field; the timeout value represents the maximum time before the entry is expired; the flow

statistics are filtered by SDN controller using cookie field, which is ignored when packets

are processed.

Figure 11. The packet and flow tables pipeline process

The mechanism of the pipeline process defines the interaction between packets

and multiple flow tables, as illustrated in Figure 11. Whenever a packet arrives at an

OpenFlow switch, the packet is further processed against each flow table by using

following procedures:

 Searching the matching flow entry with highest priority;

 Performing instructions by updating the packet and the match fields, along with

the action set and the metadata (a value of register used to convey information

from one table to another);

 Passing the match data and action set to the next table.

Sequential number is labeled on each flow table starting at 0 to indicate the

forward-only pipeline process due to a flow entry can only forward the packet to the flow

26

table with larger number than its own flow table. The pipeline process stops when the

packet cannot be forwarded to another flow table.

For the case when a packet cannot be matched with a flow entry within the flow

table, a table-miss event will occur, and the corresponding table miss action may vary

depends on the configuration of the flow table. In order to handle this scenario, a table-

miss flow entry is utilized to control how an unmatched packet is processed such as

dropping the packets, passing the packets to another flow table, or forwarding them to the

controller for further process. Both match and priority fields are used to represent a table-

miss flow entry by ignoring all the match fields and using 0 in the priority field to

indicate the lowest priority. By default, the table-miss flow entry does not exist in the

flow table and it may be added or removed by the controller, or it can be managed by the

expiry mechanism.

To remove flow entries from the flow table, there are three approaches: the

request from controller, flow entry expiry mechanism, or eviction mechanism supported

by switch. Two attributes idle_timeout and hard_timeout are utilized by the entry

expiry mechanism and it is enforced and executed by the switch. A non-zero

idle_timeout field is used to define the removal of the flow entry when the entry is

not being matched for the given time frame, whereas a non-zero hard_timeout is used

to indicate the removal of the flow entry regardless of the value in the match field of the

flow.

SDN switch: In the SDN domain, the OpenFlow enabled switches can be

discussed as follow:

OF-SWITCH: As depicted in Figure 12, the OF-SWITCH is an OpenFlow switch

consists of one or more flow tables, one group table, and an encrypted OpenFlow channel

to the external controller. The OpenFlow protocol enables the controller to efficiently

manage the flow tables of the switch by inserting, modifying, and removing the set of

flow entries based on the network packets and traffic conditions.

27

Figure 12. The components of the OpenFlow switch

Whenever a packet arrives at the switch, the pipeline packet matching process is

initiated from the first flow table, and flow entries within each flow table are matched

based on the priority order of the entry in the packet being processed. The corresponding

instructions are performed whenever the packet matches an entry of the flow table.

According to the configuration of the table-miss flow entry of the switch, the unmatched

packet maybe dropped, forwarded to the controller, or sent to the next flow table for

further processes.

A set of instructions that contains actions such as packet forwarding, packet

modification, and group table processing, is used to associate with each flow table.

Similar to flow entry table, the group table also has group entries, and a list of action

buckets with specific semantics contained in each group entry depending on the group

type.

Another essential concept of OpenFlow protocol is the employment of the

OpenFlow Ports. These ports are used as the network interfaces for passing packets

among OpenFlow processes and the rest of the network. The logical connection between

the OpenFlow switches is also using port. In addition, the communication between

OpenFlow switch and controller is managed by the OpenFlow Channel in terms of

managing, configuring, receiving events from, and sending packets to the connected

switch(s).

28

Figure 13. The architectural blocks of Open vSwitch and main components

Open vSwitch: Open vSwitch (OVS) is the virtualized software-based switch

platform compatible with OpenFlow protocol. As presented in Figure 13, the OVS

constitutes a Control Cluster, an ovsdb-server, an ovs-vswitchd, and the OVS Kernel

Module. The definitions of switch level configurations, such as network bridges,

interfaces, tunnels, addresses of the OVSDB, and the OpenFlow controller, are stored in

the configuration database (ovsdb-server). The root table of the configuration database,

namely “Open_vSwitch”, is used to store the configuration of one Open vSwitch daemon

(ovs-vswitchd), and other tables are utilized to store related records only when they can

be accessed directly or indirectly from the “Open_vSwitch” table. The unreachable

records from the root table will be automatically purged. To query and configure OVS

daemon, the high-level utility program “ovs-vsctl” is employed to apply changes to the

database, which then will be deployed to the connected OVS daemon.

The core component and actual implementation of OVS is the Open vSwitch

daemon, and the utility “ovs-appctl” is utilized to configure the daemon and modify the

switch behavior at run-time. During the booting process of the OVS, the OVS daemon

fetches the configuration from the database and orchestrates the OVS datapaths and

executes switching operations across each bridge. Additionally, the configuration is

synched automatically between database and OVS daemon whenever the configuration is

29

updated. Multiple independent datapaths (bridges) are supported by OVS daemon using

“ovs-dpctl” utility, which is used to communicate with the kernel module to perform

CRUD (Create, Read, Update, and Delete) operations on OVS datapaths, and only one

network device can be deployed with a newly created datapath. The remote controller

utility “ovs-ofctl” enables OVS to manage multiple Open vSwitches with OpenFlow

protocol.

Table 3. The OpenFlow Compatiable Open Source SDN Switches.

SDN Switch Summary

OpenFlow Switch [8] The C/C++ based software switch compatible with OpenFlow 1.4 with

pipelined flow table processing, and support flow monitoring, extensible match,

and optical port.

Open vSwitch [21] The C/Python based open source switch for virtual machine environment, the

current version supports communication monitoring, 802.1 ag link and BFD

monitoring, OpenFlow protocol, LACP protocol, and etc.

NetFPGA [42] The open source OpenFlow compatible hardware platform that supports

hardware enhanced Ethernet switching capabilities.

Indigo [47] A C based open source software switch compatible with OpenFlow protocol

that operates over physical and hypervisor switches.

The basic switching and tunneling operations are handled by OVS kernel module

for fast and simple packets processing. Whenever a packet arrives, the lookup and

matching operations are performed, and the associated actions are executed with updated

counters if a match is found; if there is no match, the packet is sent to the user space for

further processing. The detailed supporting information can be found in [21]. The variety

of OpenFlow compatible SDN switches are presented in Table 3.

2.7 SDN Deployment Environments

To construct a system, design, deployment, and verification are considered as the

crucial steps involved in this process. In this section, the deployment of SDN/OpenFlow

technology in the variety of environments such as in datacenters, testbeds, and high

performance clusters are discussed.

Software emulation-based deployment: A software-based network emulator,

Mininet [45], [46], is developed to emulate a collection of end-hosts, network devices

(switches and routers), and links over a single Linux kernel. Mininet provides the

capability to have entire OpenFlow network to be emulated on a single computer with

30

lightweight process-based virtualization. It simplifies the initial network deployment, and

testing by using virtual Ethernet as the link between switches and endpoints. Mininet

enables the experimental network orchestration to be first initiated and tested on the

emulation environment before being physically deployed.

Hardware emulation-based deployment: NetFPGA [42], [44] is considered as

an open source hardware and software platform utilized by academic researchers and

industry experts for easy prototyping the networking devices. To achieve the

configurability of an integrated circuit (IC), NetFPGA uses a hardware description

language (HDL) to perform the configuration of the device. The programmable logic

components (logic blocks) contained in FPGA enable developers to perform complex

integrated functions and processes on the IC. In addition, as a hardware-based networking

device platform, NetFPGA provides the ability to process network packets at a line-rate,

which is considered as the compensation capability lacked in the software-based

approaches. Currently, NetFPGA has two types of platforms: One is HetFPGA 1G (4 ×

1G) that provides one Xilinx Vertex-II Pro 50 FPGA logic unit with four 10-Gigabit

Ethernet interfaces. Another one is NetFPGA 10G (4 × 10G) that provides faster

resources with one powerful Xilinx Virtex-5 FPGA logic unit and four 10-Gigabit

Ethernet interfaces. The more detailed information of NetFPGA can be found in [42].

With the fast line-rate packet processing supported by NetFPGA, the OpenFlow

protocol has been implemented on the 1G platform proposed by [44] that employs the

entire NetFPGA SRAM (Static Random Access Memory) for storing flow entries, and the

output queues are stored in DRAM (Dynamic Random Access Memory) for fast data

retrieval. This approach allows more than 64,000 exact flow entries and more than 32

wildcard rules to be created in support of typical network demands. Another NetFPGA

1G approach [43] proposes the OpenFlow-enabled switch can be used in more network

applications than traditional packet switching by utilizing only half of the SRAM

capacity to handle up to 100,000 wildcard rules, with remaining other half to be utilized

for storing output queues to mitigate the loss of performance.

Testbed-based deployment: The SDN technology has been deployed in applied

network engineering research fields with the objective for orchestrating and developing

fully functional OpenFlow compatible SDN testbeds. The testbeds constitute with both

31

virtual (Open vSwitch, ofsoftswitch13, etc.) and physical (OpenFlow-enabled hardware

devices from variety of vendors, physical and virtual hosts, slices, etc.) SDN/OpenFlow-

enabled networking elements. The individual slices [50] can be differentiated from each

other by utilizing the networking hypervisor such as FlowVisor [75]. The experiments

conducted on the testbed have the capability to generate and route traffic, which expands

the horizon for more innovative researches. In addition, the researcher could deploy more

realistic network traffic imported from real world scenario in the testbed environment.

Moreover, there are several ongoing research efforts that focus on supporting the small

scale of SDN testbeds such as in [114] for the Raspberry-pi based SDN testbed, which

has been proposed to use Open vSwitch as the forwarding engine. A few examples of

large-scale SDN testbeds are presented in Table 4.

Table 4. The List of Large Scale SDN-based Testbeds.

Testbed Funding Agency Geographical Spans Example of Experiments

GENI [51] NSF (National Science

Foundation)

USA Novel Routing [49], MobilityFirst

Internet Architecture [106]

COTN [52] NSF, GENI USA-California SDN/OpenFlow-based

experiments [52]

OF@TEIN [53] NIA (National

Information Society)

of Korea

Korea, South East

Asia Country

L2 Generic Routing Encapsulation

tunneling of Narinet/NF/OVS

Capsulators for the linking of the

OpenFlow-enabled switches [53]

TWAREN [54] NCHC (National

Centre for High

performance

Computing) of Taiwan

Taiwan Topology discovery, virtual

network integration, and

multimedia streaming [56]

OCEAN [57] NSF, DARPA,

Industry

USA-UIUC Verifying network-wide invariants

in real time [110]

RISE [64] NICT Japan MPLS-based tunneling (EoMPLS)

over Wide area OpenFlow

Networks (OFNs) [63], [64]

FEDERICA

[70], [71]

European project of

the 7th Framework

Europe Optimal Resource Allocation for

Disaster Recovery [113]

OFELIA [74] European

Commission’s FP7

ICT Work Programme

Europe and Brazil Software Transactional

Networking [77]

Community

Network

Testbed [78]

CONFINE2 European

project

Europe Long-term running services

(crowdsourcing) [78]

32

Commercial-based deployment: The realization of large-scale network research

infrastructures [49], [54], [63], [64] made the integration of existing network with

OpenFlow-enabled network possible. Specifically, a hybrid network architecture that

incorporates the characteristics of SDN/OpenFlow with existing network. The

commercial based deployments of the SDN technology is discussed in this subsection.

Google’s SDN Solution for WAN: B4, a private commercial level deployment of

SDN Wide Area Network (WAN) from Google, is one of Google’s two backbone

networks. Initially the B4 was implemented to serve as a low cost backend backbone,

especially for transmitting high volume copy traffic. As discussed in [59], the detailed

design of B4 involves a WAN connecting to Google’s datacenters, and the capabilities of

SDN/OpenFlow can provide a flexible administration of the network, improved network

utilization, and cost effective datacenter-to-datacenter network [58], [59]. Google’s WAN

is structured as two backbones based on characteristics of traffic: I-scale and G-scale.

With integrated SDN capabilities, the user traffic is carried by I-scale (an Internet facing

network) while the traffic of datacenter-to-datacenter is handled by G-scale (an internal

network) [58], [59]. The OpenFlow is utilized as the communication protocol between

the controller and associated switches to ensure the reliability and scalability of the

backbone [58], [59]. Furthermore, the real-time network utilization metrics and topology

data are collected by the centralized Traffic Engineering (TE) service for calculating the

efficient path assignments for the traffic, and programming the computed paths into the

underlying switches [58], [59]. Those SDN supported capabilities fulfill the network

managerial needs for deadline scheduler features, which is utilized in large file data

transfer [58], [59]. More detailed design and implementation of Google’s B4 can be

referenced in [59].

Hadoop-OFE: With the exponential growth of data and the high demand for the

analysis of large dataset, the Hadoop platform has been commonly utilized to process

data in a timely and efficient manner. Recently, OpenFlow-enabled Hadoop cluster has

become the popular research area in the High Performance Computing (HPC)

community. OpenFlow is utilized to reduce limitations of Hadoop, and further improve

the performance. For instance, during shuffling and sorting phases of MapReduce

process, the switches in the Hadoop cluster suffer from saturation, specifically the

33

“hotspots” scenario resulting insufficient bandwidth offered to the computing resources.

To address this issue, the authors of [68], [69] proposed an OpenFlow-based solution to

provide dynamic network topology adjustment for local and wide area Hadoop clusters in

order to improve performance by offering additional bandwidth to the computing

resources as needed.

2.8 Standardizing SDN

Despite SDN promises the programmable network, the lack of standardized

interfaces between the SDN controller and the forwarding devices is currently the major

challenge of SDN. To address this, IETF 86, the first face-to-face meeting was held to

focus on the dynamic management of the routing information and the I2RS WG

(Interface to Routing System Working Group) was formed to fulfill the requirements.

Additionally, the existing technologies are required to work with the logically centralized

SDN management model to support additional capabilities. For instance, the existing

standard PCE (Path Computation Element) is utilized to search for the optimal LSPs

(Label Switched Paths) in IP/MPLS (Multi-Protocol Label Switching Protocol).

However, due to the state of LSP cannot be managed by the controller, the stateful-PCE

is proposed to mitigate this disadvantage.

To provide network topology transparency in SDN, ALTO (Application-Layer

Traffic Optimization) is employed to collect the topology data and manage devices with

new protocol extension. A newly implemented interface, BGP-LS (BGP link state) is

developed for publishing the link-state and TE information by the network devices to the

SDN controller.

Moreover, the Internet Research Task Force (IRTF) [35] is also making efforts on

the field of SDN to explore more innovations to build future networking, which is

advocated by the Software-Defined Networking Research Group (SDNRG) of IRTF. In

the context of the management protocol, NETCONF (Network Configuration Protocol)

was proposed by the IETF Network Configuration working group in 2006 [29], and the

most recent proposed standard RFC 6241 [30] was published in June 2011.

The ONF [8] has been dedicated efforts on promoting standard architecture of

SDN and the associated white paper was published in April 2012 on defining the demand

34

for the new network architecture, and the formal SDN definition. Correspondingly, the

Internet-Draft [33] was published by the IETF Network Working Group in January 2014

in promoting a functional taxonomy of the approaches that can be utilized in the SDN

domain. The efforts have been coordinated among those groups to convert existing

standards with newly proposed standards to accommodate the dynamic and evolving

nature of networks.

2.9 SDN Applications and Experiments

According to MIT Tech Review, Software-Defined Networking has been

considered as one of the top ten evolving technologies of the year 2009 [85]. As the

world is experiencing the benefits provided by the applications of this technology, the

most promising SDN applications, variety of experiments, and research efforts are

discussed in this section.

Cloud computing: In this IT-driven era, cloud computing has been widely

adopted due to the rapid infiltration of IT in our daily life and the high demand for

computing such as utility computing, reliable data storage, on-demand computing

services, flexible infrastructure, and more. In addition to the supported capabilities of

cloud computing, the privacy and security of the stored data are the major components

that need to be addressed in the cloud computing infrastructure. It is crucial for the cloud

services providers to take these two aspects into consideration, especially when the

Transborder data flow, the governance of geographical border data flow, is involved in

the scenario [81]. To properly address this concern, SDN/OpenFlow-enabled network is

used for managing sovereignty and border control of the data based on its capability in

controlling the data flow path [81]. According to the report of IDC (International Data

Corporation), the SDN technology is growing rapidly via deployment in the datacenters,

and the market is about to increase $3.7 billion by 2016 [82].

The cloud computing datacenter is designed to provide scalable and reliable

computing resources for cloud based services. Although the datacenter can provide

promising benefits to support cloud based services, the hunger for power of datacenter

remains a major issue that needs to be improved. According to [96], the cost of electrical

energy consumption is about 70% of its total power budget. In USA, the total power

35

consumption was around 3 billion kWh in 2006 [87], [96], which is about 10 ~ 20% of its

total power consumed by the datacenters networking elements. Reducing the total energy

consumption of cloud computing datacenters is important, and a SDN-based network-

wide power manager [96] was proposed to analyze the traffic of the datacenters and

dynamically adjust the set of active network devices in the datacenters. The power being

conserved could range from 25% to 62%, depends on the conditions of the network load

[87], [96].

Virtualization, a revolutionary technology, has been considered as the accelerator

for improving cloud computing datacenters’ advancement. The utilization of VMs

provides multiple promising benefits such as isolated environment, workload

consolidation and migration, improved manageability, increased fault tolerance, and

higher performance [101]. To achieve VMs migration to a different set of physical

resources, SDN is employed to carry the migration of VMs, underlying network, and

management system [98]. The state of VMs and the networks are maintained and

synchronized during the time of migration [97]. In the work of [99], a management

framework LiveCloud has been proposed to manage the resources in the cloud computing

datacenters for providing elastic cloud architecture in production applications.

Several academic and industrial research efforts have been emphasize on

improving datacenters efficiency, power consumption, and carbon emission. Besides,

fulfilling Service Level Agreements (SLAs) is considered as the major challenges for

cloud service providers to their customers with specific requirements on the Quality of

Service. The larger the size of the datacenter, the better performance customer can

acquire. However, the energy consumption associated with the scale of the datacenter

resulting a basic trade-offs with customer satisfaction. SDN technology has been used by

several research works to mitigate these cloud computing challenges in cloud computing

datacenters [86], [120], [122], [123]. These efforts employed SDN based techniques in

support of virtualization, service consolidation, and optimization to allocate resources

within the virtualized environment dynamically to minimize the energy cost while

fulfilling the SLA.

Enterprise network: Enterprise networks, such as university’s networks, Internet

infrastructure, and cloud datacenters, all share the common characteristic of having the

36

massive facilities that are difficult to manage. In the context of management, the network

administration, security, and dynamic resources allocation are laborious to control. To

reduce the problem scope, the SDN technology can be utilized to provide some

indisputable solutions such as hybrid network architecture [64], research testbeds,

improved manageability, programmable network, higher security, and high quality

network services.

The authors of [14] proposed the employment of OpenFlow protocol in

university’s network. In [26], this research effort proposed Ethane, a novel network

architecture for enterprise networks. Additionally, enterprise WLANs (Wireless Local

Area Networks) are normally leveraged by many network services such as authorization,

load balancing, credential authentication, and mobility [88], [89]. There are some

anomaly issues associated with WLANs and the work of [88], [89] proposed a

programmable SDN framework to mitigate the issues by implementing WLANs services

as the applications. Moreover, the security mechanism is generally controlled by the host

security and middle boxes, which usually leads to a complicated synergy between system

and the underlying protocols, further producing multiple vulnerabilities such as

malfunctioning behavior, and tardy reaction to attacks [90]. The authors of [90] addressed

this issue by proposing a design of a system that uses the programmable switches to

manage the lower layers traffic for securing the enterprise network. Furthermore, the

authors of [91] present a Software Defined MB (Middle Box) networking framework to

manage middle boxes.

Wireless network: Currently, the innovation in the field of wireless network has

been obscured by the closed and proprietary nature of the wireless infrastructure. To

eliminate this obstacle, the work of [102] proposed a SDN-based solution to open the

domain of wireless mobile network by providing the freedom for wireless service tenants

to move freely between any wireless infrastructure owned by the service providers, and

this is achieved by decoupling the network services from the lower level network

infrastructure, which enables the innovative technology practitioners, developers, and

vendors to dedicate their efforts in the network services area [103]. This work is currently

deployed on the university’s networks allowing researchers to experiment the new

network services in the production network over the virtualization.

37

Multiple disadvantages are associated with legacy cellular networks such as non-

programmable costly equipment, and complex control-plane protocols. A SDN-based

solution, namely OpenRoads [104], is proposed to address these issues by emphasizing

the simplified design and management framework of cellular networks. OpenRoads

provides an open and innovative mobile network platform that enables the novel routing

protocols, network services, and mobility functions to be tested [102]. It provides the

researchers with full control on two aspects: datapath control using OpenFlow and device

configuration control using SNMP [102].

In addition, the programmability of wireless data plane is demonstrated by the

effort of OpenRadio [105]. The proposed approach enables the delivery of the declarative

and modular programming interfaces through entire wireless stack. OpenRadio redefines

the wireless protocols into processing and decisions planes [105]. Moreover, SoftCell

[140] provides the capability to direct the traffic dynamically based on the subscriber’s

profile and executes detailed classification of the packets at the access switches, allowing

the network state and the bandwidth demands to be processed easily by the software

switches. In the context of Heterogeneous Mobile Networks (HMNs), SoftMobile [141]

provides the efficient control of coordinating complex radio access in HMNs using the

concept of SDN.

To build the next generation mobility-centric network, MobilityFirst Internet

Architecture Project [106], funded by Future Internet Architecture (FIA) of NSF, is

proposed to address problems and challenges in the areas of wireless access and mobility

associated with large scale wireless network. The project has the goal to provide new

multi-path, multicast, any-cast, and context-aware services [106]. Overall, the

implementation of this mobility-centric network consists of multiple major protocol

components such as identity and network location separation, Name Certification Service

(NCS) de-centralization, Massively Scalable Global Name Resolution Service (GNRS),

Generalized Storage Award Routing, Content and Context-aware Services, and

Computing and Storage layer [106], [107]. Moreover, the GENI framework provides

realistic environment for the MobilityFirst FIA project to be evaluated and validated with

its underlying protocols and algorithms [49], [106]. Currently, the realization of

MobilityFirst on GENI constitutes three edge networks with twelve routers [49], and

38

these edge networks support WiMAX capabilities with Wi-Fi access points for end-user

access [49].

To integrate the concept of SDN and NFV in the field of wireless networking, an

open experimental testbed EmPOWER [138], is proposed to utilize Open vSwitch and

Click Modular Router to build the datapath, and employs Floodlight controller to

implement wireless SDN applications. This project comprises 30 programmable access

points and 30 power meters for monitoring the power consumption of those access points.

2.10 Conclusion

In this chapter, the architecture, infrastructure, recent deployments, and

innovative applications of SDN were discussed. As addressed earlier, it is predicted the

market of SDN will keep growing [82]. There are multiple indisputable advantages

accompanied by the SDN technology including logically centralized control, opened

development, simplified operations, flexible and scalable network management,

enhanced network security, programmable interface, and easier to evolve. The existence

of the testbeds play a major role in aiding the advancement of SDN technology with the

capability to test and experiment the innovative ideas. Additionally, there are some other

technologies such as Network Function Virtualization (NFV), Network Virtualization

(NV), Information Centric Networking (ICN), and Recursive InterNetwork Architecture

(RINA), are utilized jointly with SDN to provide more innovative functionalities and

better network manageability. To conclude this literature review, we believe SDN

framework will play a major role in shaping the future networks as the type of hybrid and

integrated networks that fuses the existing network architecture with SDN/OpenFlow-

enabled infrastructure.

39

CHAPTER 3

AUTOMATING THE CONFIGURATION OF MAPREDUCE: A REINFORCEMENT

LEARNING SCHEME

3.1 Abstract

With the exponential growth of data and the high demand for the analysis of large

datasets, the MapReduce framework has been widely utilized to process data in a timely,

cost-effective manner. It is well-known that the performance of MapReduce is limited by

its default configuration parameters, and there are a few research studies that have

focused on finding the optimal configurations to improve the performance of the

MapReduce framework. Recently, machine learning based approaches have been

receiving more attention to be utilized to auto configure the MapReduce parameters to

account for the dynamic nature of the applications. In this paper, we propose and develop

a Reinforcement Learning (RL) based scheme, named RL-MRCONF, to automatically

configure the MapReduce parameters. Specifically, we explore and experiment with two

variations of RL-MRCONF; one variation is based on the traditional reinforcement

learning algorithm and the second is based on the deep reinforcement learning algorithm.

Results obtained from simulations show that the RL-MRCONF has the ability to

successfully and effectively auto-configure the MapReduce parameters dynamically

according to changes in job types and computing resources. Moreover, simulation results

show our proposed RL-MRCONF scheme outperforms the traditional RL-based

implementation. Using datasets provided by MR-Perf, simulation results show that our

proposed scheme provides around 50% performance improvement in terms of execution

time when compared with MapReduce using default settings.

3.2 Introduction

With the continuous growth in the volume, velocity, veracity and variability of

data (i.e., four V’s), big data processing started to play an ever-increasing role in today’s

datacenters. The Hadoop [141] framework and its MapReduce [143], [144] programming

model have been leveraged to address large-scale experimentation, simulation, and

computation, and more importantly to address big data challenges, allowing for large-

scale data processing across the entire datacenter with superior level of parallelism,

40

performance, and efficiency. MapReduce is now being heavily used in Google,

Facebook, Yahoo!, Amazon, and many other leading companies.

The performance of MapReduce is heavily impacted by its configuration

parameters [145]. Therefore, despite the fact that MapReduce has been widely adopted in

several fields, system administrators or application developers still face the challenge of

having to identify the best configuration parameters to obtain the best performance for

their applications running on Hadoop. Re-searchers have demonstrated that MapReduce

configurations play a key role on delivering high performance execution. Fortunately,

this role can be affected by a limited number of configuration parameters that make a

remarkable difference in performance when processing the same MapReduce job [146].

Furthermore, due to the dynamic and heterogeneous nature of Hadoop clusters in terms of

computing and networking resources and the variety of the submitted jobs, it is extremely

difficult to formulate a mathematical model that captures the dynamics and behavior with

all the configurations of Hadoop cluster related to a specific job.

To address this issue, we have implemented a reinforcement learning (RL)

scheme, named as RL-MRCONF, to automatically tune and determine the optimal

MapReduce configuration parameters based on the type of submitted MapReduce jobs

and the cluster resources. Reinforcement learning is a machine learning technique

inspired by behavioral psychology where an agent needs to take actions in order to

maximize its cumulative reward. For the MapReduce framework in Hadoop cluster, all

the possible combinations of the configurable parameters can be treated as a state space,

and the action space is defined as the reconfiguration of the parameters in the state space.

In particular, our pro-posed RL-MRCONF has the following key contributions:

 It can adapt to all types of jobs submitted to a MapReduce framework, and to the

dynamic changes in computing and networking resources within the cluster.

 It has the ability to obtain near optimal configuration tailored to the specific job

type, and to the specific hardware profile for the Hadoop cluster automatically.

 It can achieve around 50% of performance improvement in terms of execution

time when com-pared with default MapReduce settings.

41

In this paper, we implement a simulation model of the MapReduce framework

using the Network Simulator 3 (NS-3) [148] based on the original work of Wang et al.

[149], [150], and add an extra layer of RL to automatically deter-mine the near optimal

configuration parameters that can be utilized in the MapReduce framework to enhance

the performance. The implementation contains two types of reinforcement learning

algorithms: (1) Traditional reinforcement learning; (2) Deep reinforcement learning. Both

are used to drive the simulation and tweak (learn) the configuration parameters with the

intention to determine the proper actions needed to be carried out at each state to

maximize the long term accumulated re-ward. Since the majority of jobs submitted to the

MapReduce framework are repeated or having similar properties [162], [163], the

experienced reinforcement learning agent is able to obtain the near optimal configuration

that is suitable to the submitted jobs to obtain the best performance. Additionally, our

proposed approach was carried out on original MapReduce framework and we expect the

similar results in YARN [141], one of the key features in the 2nd generation of Hadoop,

and this has been emphasized in our ongoing research to address usefulness of our

proposed scheme in YARN model.

The rest of the paper is organized as follows. Section 3.3 discusses related work

and compares them with our scheme; the motivation is briefly discussed in section 3.4;

the design structure and algorithm overview are addressed in Section 3.5; the detailed

design and implementation of RL-MRCONF are given in Section 3.6; and the

performance evaluation is conducted in Section 3.7. Finally, the paper is concluded in

Section 3.8.

3.3 Related Work

Research work on improving the performance of MapReduce started as early as

2008. These studies tack-led the MapReduce performance from different perspectives.

However, most papers argue that Hadoop MapReduce configuration has to be adjusted

based on the available resources, task scheduling, and the application-specific compute

requirements within the cluster. The automation and self-configuration of the MapReduce

framework have been discussed in several research studies based on the heterogeneous

nature of the jobs submitted.

42

The automation of configuring the MapReduce parameters has been recently

addressed using a variety of techniques. In [147], the author shows how MapReduce

parameter configuration can play a significant contributing key role in determine

performance, and presents different techniques to automate the optimization of

MapReduce applications. However, it is unclear how effective the proposed techniques

are and there was no clear plan on how to apply them. In addition, in order to ease the

challenges in effectively managing the resources of MapReduce clusters, [152] proposed

a framework called “Profiling and Performance Analysis-based System” (PPABS) for the

automatic tuning of Hadoop configuration set-tings based on deduced performance

requirements of the application. However, such an approach lacks a “definitive function”

on how the “optimal solution” is obtained.

AROMA [153] and Starfish [154] are other research efforts that are related to our

approach. AROMA uses two-phase machine learning techniques to automatically al-

locate the computing resources in the cluster and configures Hadoop parameters by

adapting the cluster to the newly submitted jobs if their pattern in resource utilization

matches the previously processed jobs. However, AROMA observes the resource

utilization pattern of the job by statistically calculating the computing resources usage

profile every second on each computing node within the cluster, which introduces more

overheads. Besides, it uses supervised learning to learn the performance model of each

set of jobs, which requires a large number of training samples in order to produce

accurate results. Therefore, this approach has low scalability. Starfish provides a method

to find the optimal cluster settings by collecting the executed job profile in terms of job-

level tuning that selects efficient execution techniques automatically for MapReduce

jobs, and work-flow-level tuning by using a “What-If Engine,” that searches the

parameter space for optimal solutions. Such an approach has the potential to fail in

searching for optimal parameters due to the complexity of the MapReduce framework.

The research studies in [155], [156] are the most relevant to our research, these

studies utilize reinforcement learning of the automatic tuning of parameterized systems

and they are proven to be effective. The algorithm adapts well to different types of

computing environments. However, the technique that the authors employed to

automatically tweak the system considers the parameters in turn (i.e., one parameter at a

43

time), which leads to efficiency and scalability issues as the number of parameters

increases.

The core functionality of RL-MRCONF is based on the reinforcement learning

algorithm, a machine learning technique that does not required the correct in-put/output

pairs at the starting point, with the clear objective used to establish the policy that

maximizes the long term cumulative satisfaction from unknown environment with all its

characteristics. Instead of tuning all the configurable parameters one-by-one, our scheme

considers all the selected parameters as a whole and processes them jointly to reduce the

time needed to search for the best configuration. This technique makes our scheme

significantly different from the aforementioned techniques reported in the literature.

Further-more, our proposed scheme offers better scalability compared to [155] and [156].

Finally, our scheme makes use of deep reinforcement learning, a combination of

reinforcement learning and neural networks, which has the capability to handle more

complex systems with superior performance [157], [158], [161].

3.4 Motivation

The motivation of using reinforcement learning in our scheme is inspired by

modern robotic learning research where it allows a robot to acquire skills or capabilities

to adapt to its environment and respond to different stimuli in the environment, and

further use it to strengthen its future behavior through the use of reinforcement. In

addition, the efficacy of utilizing reinforcement learning to tune the reconfigurable

parametric systems has been proven in [155] and [156], and MapReduce framework

shares the similar properties by having a set of reconfigurable parameters.

To realize an automatic self-reconfiguration mechanism, we believe the use of

reinforcement learning algorithm is advantageous as it allows the agent to explore the

space of configuration options through the feedback given by the environment based on

the action performed by the agent in order to acquire the policy that maximizes the long

term reward.

3.5 Overview of RL-MRCONF

The details of our proposed RL-MRCONF scheme are discussed in this section.

Since we focus on the automatic configuration of MapReduce parameters within a

44

Hadoop cluster, a brief introduction to the Hadoop and MapReduce frameworks is

necessary to review related background and make this research article self-contained.

Configurability of Hadoop MapReduce Framework: The configuration

parameters of the Hadoop MapReduce framework can be granulated into 100 or more

parameters. Based on the way they affect the performance of MapReduce applications,

these parameters can be mainly classified into three categories:

 Cluster parameters: These are considered as the environmental parameters to

Hadoop cluster, including the path to the temporary data, the maximum number of

concurrent MapReduce tasks, buffer size, etc.

 MR-associated parameters: These parameters are relevant to the MapReduce

operations, with some of them specifically target the Map and Reduce phases,

such as the number of concurrent mappers and the number of concurrent reducers.

 Job-specific parameters: These parameters are specifically related to job

configuration such as the size of each data block, the replication factor, and the

amount of memory being utilized when processing the job.

Although the available simulator [149], [150] can be used to allow users to

specify the values of the cluster parameters before running MapReduce jobs, in real-

world scenarios, it is impractical and costly to change the hard-ware of each computing

servers within the cluster. Therefore, the cluster parameters are typically not taken into

consideration to further reduce the state space in the reinforcement learning algorithms.

Overview of RL-MRCONF Architecture: There are more than 100

configuration parameters for the Hadoop MapReduce framework, but some of them are

more significant than others in impacting the performance. To increase the feasibility of

automatic configuration using RL-based approach, we first consider the most

performance-significant parameters suggested in [147], [152], [153], [154] to generate

candidate configurations. The number of configurable parameters dramatically increases

the states space, leading to the possibility of state explosion that would cause the

significant overhead to produce reasonable results in a timely fashion. The initial value

ranges of the selected parameters are also carefully determined based on the prior work

done by [147], [152]; therefore, we reduce the learning time of our scheme since we only

consider the configuration parameters and values that significantly impact the

45

performance. In our scheme, the chosen configuration parameters are initialized as shown

in Table 5, where it contains the default value of those chosen parameters as suggested by

Hadoop [141], and the range of values constructed by prior studies, along with the

description of each parameter. Our scheme uses an RL-based agent that automatically

configures the Hadoop MapReduce framework. The agent changes the configuration

parameters and monitors the performance in terms of the execution time while making

decisions based on what it learned from previous experiences.

Table 5. Overview of Candidate MapReduce Configuration Parameters.

Parameter Name
Default

Value

Values

Considered
Description

mapreduce.tasktracker.map.tasks.maximum 2 1 ~ 15 The maximum number of map

tasks concurrently running on a

node

mapreduce.tasktracker.reduce.tasks.maximum 2 1 ~ 15 The maximum number of

reduce tasks concurrently

running on a node

mapreduce.task.io.sort.factor 10 10 ~ 150 The number of streams used

while sorting files

mapreduce.task.io.sort.mb (MB) 100 60 ~ 200 The amount of buffer memory

used when sorting files

mapreduce.map.sort.spill.percent 0.8 0.66 ~ 0.8 The soft limit that determines

whether to spill contents to

disk

dfs.block.size (MB) 64 32 ~ 512 The size of the data block used

in the file system

Reinforcement learning is a machine learning technique that is inspired by

behaviorist psychology where an agent needs to take actions in order to maximize its

cumulative reward. A finite Markov Decision Process (MDP) is typically used to

formulate a reinforcement learning model. The model contains a set of states and several

actions associated in each state. The learning agent receives a reward during the state

transition process, defined by a reward function and the ultimate goal of the agent is to

develop a policy 𝜋 ∶ 𝑆 → 𝐴 to maximize the obtained cumulative rewards on the longer

term from the iterative trial-and-error learning processes [3]. In this paper, we utilize

following reinforcement learning algorithms:

Traditional Reinforcement Learning: We transform the automatic parameter

reconfiguration problem of the MapReduce framework into a MDP by implementing a

46

state space 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑖}, a space of actions 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑗}, and the immediate

reward function 𝑟(𝑠, 𝑎). The notions of state space, action space, and reward function

used in our model are defined as follows:

 State Space: The state space in our model represents all the possible combinations

of framework configurations. For the chosen group of six parameters shown in

Table 5, we denote a state as follows:

𝑠𝑖 = (𝑃𝑎𝑟𝑎𝑚1, 𝑃𝑎𝑟𝑎𝑚2, 𝑃𝑎𝑟𝑎𝑚3 … , 𝑃𝑎𝑟𝑎𝑚6)

 Action Space: The action space in our model consists of the following: (1) No

action; (2) increase; and (3) decrease action associated with each parameter. For

example, we denote the decrease action on parameter i as follows:

𝑎𝑖
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = (… , 𝑃𝑎𝑟𝑎𝑚𝑖

𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 , … , 𝑃𝑎𝑟𝑎𝑚𝑛)

 Immediate Reward Function: The immediate re-ward is determined based on the

simulation execution time (which is the primar performance metric) using the

given values for the configuration parameters. The immediate reward is

represented as follows:

𝑟𝑡 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑝𝑒𝑟𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡, 𝑝𝑒𝑟𝑓𝑡)

where 𝑝𝑒𝑟𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 is the current best performance obtained so far by the

simulation. For a given comparison, a lower performance time returns a positive

reward +1 to the agent; otherwise, the agent is given a negative value -1 as the

reward. If 𝑝𝑒𝑟𝑓𝑡 equals 𝑝𝑒𝑟𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 then a 0 reward is given.

The temporal difference (DT) Q-Learning algorithm is used in our simulation to

update the Q-values at each time step based on the estimation of the algorithm (i.e.,

action-value function). The learning process is an iterative process in which the agent

interacts with environment in discrete time steps. In each time step, the agent chooses an

action 𝑎𝑡 ∈ 𝐴 in the given state 𝑠𝑡. The state of the agent is changed from 𝑠𝑡 to 𝑠𝑡+1 when

it takes action 𝑎𝑡 and obtains the immediate reward 𝑟𝑡+1. The agent makes its own

decisions to choose an action to be taken with the goal of maximizing the expected

reward. The notation 𝑄(𝑠, 𝑎) denotes the average Q-value of an action a at state s. Once

the immediate reward is collected, the 𝑄(𝑠, 𝑎) can be further refined as:

47

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ∗ [𝑟𝑡+1 + 𝛾 ∗ max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1)

where 𝛼 (0 < 𝛼 ≤ 1) is the learning rate that determines to what degree the newly

obtained information will override the old one and 𝛾 (0 ≤ 𝛾 ≤ 1) is the discount factor

that defines the importance of future reward and guarantees convergence of the

accumulated reward. The action selection is based on the ϵ-greedy policy. A greedy

policy always selects the action with highest Q-value, whereas the ϵ-greedy policy has

the small probability, 𝜖, for selecting another action at random. This allows the algorithm

to occasionally explore the action space uniformly at random, in the hope of finding a

better action to ensure proper state convergence. The algorithm represents the “quality”

of a certain action in a given state; hence, it is also known as Q-function. The pseudocode

of the Q-Learning algorithm utilized in our work is presented in Algorithm 1.

Algorithm 1: Q-Learning Algorithm

Pre-condition:

 Initialize Q table with small random number

 Initialize state 𝑠𝑡

 Initialize goal 𝜇

Procedure:

01:improvement = 0

02:repeat

03: for (step = 0; step < learning_iteration; step++)

04: Get action 𝑎𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

05: Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

06: 𝜖 = 𝜖 – (step / learning_iter) * 𝜖

07: Take action 𝑎𝑡 on the 𝑝𝑎𝑟𝑎𝑚𝑡 and receive reward r, obtain 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑡

08: Sample new state 𝑠𝑡+1 after applied action 𝑎𝑡

09: Update 𝑄𝑡 ← 𝑄𝑡 + 𝛼 ∗ (𝑟 + 𝛾 ∗ max 𝑄𝑡+1 − 𝑄𝑡)

10: Update the corresponding 𝑝𝑎𝑟𝑎𝑚𝑡 of 𝑄𝑡

11: improvement = get_improvement(𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡)

12: 𝑠𝑡 = 𝑠𝑡+1, 𝑎𝑡+1 = Get action from 𝑠𝑡 , 𝑎𝑡 = 𝑎𝑡+1

13: end for

14:until improvement > 𝜇

Deep Reinforcement Learning: The deep reinforcement learning algorithm is a

variation of traditional RL implemented on top of a new type of learning agent, called

deep Q-network (DQN), which is the combination of traditional reinforcement learning

with a class of artificial neural network known as deep neural network [157].

Artificial Neural Networks (ANNs) are networks of primitive neurons inspired by

the process of how the human brain works [156]. They can be used to approximate

48

functions by learning from large sets of input data. The feed-forward neural network is

the only approach used in DQN and consists of the basic components depicted in Figure

14: (1) Neurons inter-connected using unidirectional links to form a network; (2) Weights

associated with each connection; (3) Layers consisting of a number of neurons.

Figure 14. The feedforward neural network architecture of deep reinforcement learning

A neural network with multiple hidden layers is considered as a deep neural

network (DNN) [5]. A notable property of DNNs is that the number hidden layers and the

number of neurons in each layer are free parameters. This means that there is no

predefined or default value for these parameters. The larger/deeper the neural network,

the more complex application it can model. An activation function is used to calculate the

activation value and propagate it between connected neurons. The numeric weight value

associated with each connection between two neurons is used to determine the weight of

the link. To compute the activation value 𝑎𝑗 from neuron i to neuron j, the j neuron needs

to compute a weighted sum of all of its inputs, and then applies an activation function f as

follows:

𝑎𝑗 = 𝑓(∑ 𝑤𝑖,𝑗 ∗ 𝑎𝑖

𝑛

𝑖=0
) (2)

There are several flavors of activation functions available based on the users’

interest, including Sigmoid, SoftMax, Rectified Liner Unit (ReLU), etc. Different types of

activation functions have different ways to calculate the activation value. Among all the

available activation functions, ReLU is gaining the popularity in deep neural networks

due to its faster and more efficient learning in terms of reducing the likelihood of

49

vanishing gradient problem, and sparsity in activation [5], which provides better degrees

of freedom in learning from the underlying complex dataset. The ReLU has the following

form:

𝑓(𝑥) = {
0, for 𝑥 < 0
𝑥, for 𝑥 ≥ 0

 (3)

The feedforward DQN for deep reinforcement learning is used in our scheme. In

our scheme, we assume that among all the states in our state space, some of them would

never or rarely be chosen to run the simulation; otherwise, it would take long time for the

Q-table to converge. Therefore, it is a good idea to guess (predict) the Q-values for those

rarely chosen states instead of actually processing them in our simulation. The prediction

is based on the states being processed previously (i.e., during the training phase). With

this in mind, we can represent our original Q-function with a deep neural network that

takes the state (i.e., MapReduce configuration parameters) and the selected action as the

input and output the Q-value for all possible actions.

During the training phase, an array of experience memory is used to store all the

experienced transitions (𝑠, 𝑎, 𝑟, 𝑠′), where s denotes the current state, a denotes the action

selected to be carried out, r denotes the reward obtained, and 𝑠′ denotes the next state

after the action is applied. Random mini-batches from the experience memory are chosen

to train the network instead of using the most cur-rent transition in order to avoid the

similarity of subsequent training samples. The Q-network update in the ith iteration is

formulated by the following loss function:

𝐿𝑖(𝜃𝑖) = 𝔼(𝑠,𝑎,𝑟,𝑠′)~𝑃(𝐷) [(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖−1) − 𝑄(𝑠, 𝑎, ; 𝜃𝑖))
2

] (4)

where 𝔼(𝑠,𝑎,𝑟,𝑠′) is the processed experience which is uniformly drawn using the

probability 𝑃(𝐷) from the experience memory, 𝛾 is the discount factor, and 𝜃𝑖 is the state

of the Q-network in the ith iteration, whereas 𝜃𝑖−1 is the state used to compute the target

in the ith iteration.

Similar to the traditional RL, the ϵ-greedy policy is also used to select the action

to perform based on the highest Q-value associated with that action. The initial ϵ value is

set to 1 at the beginning so that the agent can choose random actions. This value is then

50

decreased over time in order to maintain a fixed exploration rate. The pseudocode of the

Deep Q-Network algorithm utilized in our work is presented in Algorithm 2.

Algorithm 2: Deep Q-Network Algorithm

Pre-condition:

 Initialize expereince memory M

 Initialize action-value pair Q with random weights

 Initialize state 𝑠𝑡

 Initialize goal 𝜇

Procedure:

01:improvement = 0

02:repeat

03: for (step = 0; step < learning_iteration; step++)

04: Get action 𝑎𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

05: Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

06: 𝜖 = 𝜖 – (step / learning_iter) * 𝜖

07: Take action 𝑎𝑡 on 𝑝𝑎𝑟𝑎𝑚𝑡 and receive reward r, obtain 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑡

08: Observe new state 𝑠𝑡+1

09: Store experience memory (𝑠, 𝑎, 𝑟, 𝑠𝑡+1) into M

10: Sample n random transitions (𝑠′, 𝑎′, 𝑟′, 𝑠′′) from M

11: Update 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑡 ← 𝑟′ + 𝛾 ∗ max(𝑠′′ − 𝑎′′)

12: Update the 𝑝𝑎𝑟𝑎𝑚𝑡 of 𝜃𝑖

13: Train the Q network using loss = (𝑡𝑡 − 𝑄(𝑠′, 𝑎′))2

14: improvement = get_improvement(𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡)

15: 𝑠𝑡 = 𝑠𝑡+1, 𝑎𝑡+1 = Get action from 𝑠𝑡 , 𝑎𝑡 = 𝑎𝑡+1

16: end for

17:until improvement > 𝜇

3.6 The Design and Implementation of RL-MRCONF

To demonstrate the usefulness of our proposed RL-based scheme to auto-

configure the MapReduce parameters, we implemented a simulator for the MapReduce

framework. The details of our simulator are presented in the following sub-sections.

Operation Phases of RL-MRCONF: Real-time MapReduce auto-

reconfiguration has a time efficiency requirements, which makes conventional RL

approaches impractical to the system that needs to process the information in a timely

manner. To reduce the initial learning overhead, we setup our RL-MRCONF into two

phase: orchestration phase and production phase. The cluster settings used in the

orchestration phase are identical with the cluster used in the production phase.

From Figure 15 we can see the orchestration phase is where the learning agent

spends time to obtain the near optimal configuration while acquiring the experience

through the submitted jobs to the MapReduce framework. Once the best-effort near

optimal configuration of each type of job is obtained, the configuration along with the

51

initialized policy will be deployed onto the production system for improving the

performance while the learning agent continues to learn over time to adapt the dynamic

nature of the cluster.

Figure 15. The operation phases of RL-MRCONF

MR-Perf Simulator: MR-Perf [149], [150] is the simulator that models Hadoop

cluster and its MapReduce framework on top of the NS-2 simulation engine. The goal of

MR-Perf is to serve as a design and planning tool for MapReduce infrastructure and

deployment. It provides an interface for easy configuration of a number of configurable

parameters that currently need to be hand-tweaked using rules of thumb.

The simulator requires several files as input to specify hardware profile of

participating nodes, cluster topology, data specification, and job description. The

simulation output contains a detailed trace of the jobs executed by the simulator,

including job execution time (i.e., runtime), the time stamped status of each task phase,

and the amount of data being transferred. As illustrated in Figure 16, the Job Tracker is

the main driver of the simulator responsible for generating map and reduce tasks,

monitoring progresses of different phases, and producing the final results when job is

completed. The simulated behavior is modeled in response to the messages received from

other nodes. Besides, the functions and operations of the Job Tracker are initiated and

captured using heartbeat trigger, which is implemented using timer mechanism that ticks

every 1 second of the simulation time.

52

Figure 16. MR-Perf workflow

When simulation starts, it reads all the configurable parameters specified by the

input files, and instantiates the participating nodes according to the topology specification

file. The jobs are submitted based on the scheduled simulation time, and each node starts

to process the scheduled job and communicates with other nodes using the NS-2

simulation engine.

MR-Perf provides key features and characteristics for the application within its

simulated environment to take advantage of which include:

 TeraSort: This application is inspired by the TeraSort benchmark [141] that

measures the time required to sort one terabyte of data that is randomly

distributed within the cluster.

 Search: This application matches each input data with a set of criteria and outputs

the data of the match results. The CPU load represents the complexity of the

match criteria in the map tasks. The search application, characterized by match

complexity, allows the simulator to observe the relationship between the map

times given fixed input and output sizes.

 Index: This application generates map or reduce the output for each unique word

found in the input data. The number of unique words in the input data defines the

size of output data. Characterized by the fraction of the unique input words, the

53

index application allows the simulator to observe the impact of the size of the

intermediate data on the map time.

The characteristic of the above applications (jobs) are defined by using two

parameters in the MR-Perf simulator: cycle/byte and filter ratio. The Cycle/byte

parameter models the complexity of the computation by defining the number of compute

cycles used per input byte. The filter ratio parameter is used to model the difference in

size between the input and output data during the map phase.

Integration with NS-3: As was mentioned before, our implementation of the

MapReduce framework simulation is based on the work of Wang et al. [149], [150], with

the goal of making MR-Perf deployable on top of the NS-3 simulator. MR-Perf was

implemented using multiple programming languages including C++, TCL, and Python.

Due to the nature of the code base of NS-3, we use C++ as our primary programming

language in order to maintain full compatibility. Fortunately, approximately 60% of code

of MR-Perf is implemented using C++.

With this objectives in mind, we made no change to the core logic of MR-Perf.

However, we converted the Python parts of the code to C++ for integration purposes. In

addition, MR-Perf requires multiple XML files as input for the specifications of the

participating nodes, network topology, and jobs property. We eliminated this requirement

by writing additional code to incorporate the integration of these parameters.

Our simulator design made use of the NS-3 Application class extensively to

create functionalities to respond to events (sending/receiving packets). We also extended

the base class Node for adding more functionalities in computing resources such as

CPUs, memory, and hard drive of each node instance so that the node level computing

statistics can be collected by the simulator. Moreover, the extended application modules

are installed on to each node that runs individually within the node domain, and the

computing power is distributed equally among the assigned jobs for the node. The basics

and foundations of the simulation workflow and processes can be found in [149], [150].

3.7 The Evaluation of RL-MRCONF

In this section, we evaluate the usefulness and effectiveness of the reinforcement

learning based scheme in auto-configuring the MapReduce configurable parameters. We

54

also conduct systematic experiments to compare the traditional RL with deep RL. The

performance metric considered in our study is the execution time of the MapReduce job.

To evaluate the effectiveness of our RL-MRCONF scheme, we setup a dedicated

server machine to run the simulation experiments. The physical server is equipped with

two Intel Xeon quad-core E5520 CPUs with 64GB of memory. The simulation is

compiled using Microsoft Visual Studio with Visual C++ 11 compiler.

The simulation starts by generating all the possible combinations of the chosen 6

configurable parameters shown in Table 5. Then, the program starts creating simulation

nodes, building the cluster topology, loading the initial MapReduce configuration, and

starting the simulation. The detailed simulation parameters are presented in Table 6.

These parameters are not considered configurable in our RL based scheme since they

remain constant until the physical machines of the cluster are upgraded.

Table 6. The Configuration Parameters of NS-3 Simulator.

Simulation Parameter Values

Number of nodes 30

Number of racks 2

Number of switch per rack 1

Number of routers 1

Node hardware profile CPUs: 2

Cores per CPU: 2

Memory: 16GB

Hard disk capacity: 500GB

Hard disk read bandwidth: 280MB/sec.

Hard disk write bandwidth: 75MB/sec.

Hard disk read/write seek time: 0.2ms

Links profile between nodes Intra rack link bandwidth: 1Gbps

Intra rack link latency: 0.15ms

Inter rack link bandwidth: 10Gbps

Inter rack link latency: 0.05ms

Submitted jobs type Search

TeraSort

Index

HDFS file size 2 GB

Before the MapReduce process starts, the HDFS data write process discussed in

section 4 must take place to ensure the availability of the data for the MapReduce

process. In our simulations, we assume the data is divided based on the default data

55

replication factor of 3 and the size of each replica (i.e., data block). We also assume that

the replicas are well-distributed based on the default replica placement policy of Hadoop

[141]. This policy ensures that two data block replicas are placed in the same rack to

leverage the in-rack network bandwidth and fast failover. The third replica is placed onto

different rack to maintain failover capability while ensuring data availability in the event

that the rack becomes offline.

The performance of each MapReduce configuration is defined by the execution

time of the submitted job given the current configuration used for the MapReduce

framework. Each job has its own submission time. Once the job is processed

successfully, the simulator computes the actual job processing time by subtracting the job

submission time from the current simulation time when the job completes its execution.

Effectiveness of Traditional Reinforcement Learning (RL): In this section, we

discuss the effectiveness of our proposed RL-MRCONF scheme to auto-configure the

MapReduce framework. The RL-MRCONF agent automatically tweaks the system

starting from an initial set of random configuration parameters and tunes these

configurations based on the policy it learns. The agent does not tune these six parameters

individually, but collectively. This repetitive process stops when the configuration

parameters yield a job execution time that satisfies our objective, say at least 50%

improvement on the execution time. Such a configuration will be considered optimal for

the given job.

Figure 17. RL-MRCONF execution time vs. number of iterations for different types of jobs

Adaptability of RL-MRCONF: In our first experiment, we studied the

performance of RL-MRCONF on three job types; namely, Search, Index, and TeraSort.

0
6

12
18
24
30

1 21 41 61 81

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

(a) Search

0
15
30
45
60
75

1 21 41 61 81

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

(b) TeraSort

0
4
8

12
16
20

1 21 41 61 81

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

(c) Index

56

The goal of this experiment is to evaluate the adaptability of the RL-MRCONF agent to

the different job types. The simulator processes each job for 100 iterations before it

processes another type of job. The simulation results are depicted in Figure 17 where it

shows a clear performance improvement in terms of execution time for the three job

types.

In our scheme, the goal of the RL-MRCONF agent is to obtain the MapReduce

configuration that can yield at least 50% improvement on the execution time compared to

the initial configuration. The results shown in Figure 17 demonstrate the effectiveness

and adaptability of our proposed scheme. The results show that the execution time of all

the jobs processed by our scheme has be improved by at least 50% compared to the

execution time obtained initially using the initial configuration. From Figure 17 (a) and

17 (b) we can see the execution time drops after 41st iteration, 25th iteration for Figure 17

(c), for the execution time is improved at least 50%. Based on the results presented in

Figure 17, it can be seen that RL-MRCONF adapts to the different job types and that the

agent can find a near optimal configuration within 50 learning iterations. In addition, the

best configuration found resulted in 50% better performance in terms of execution time

compared to the execution time using an initial random configuration.

It should be observed that in some cases the performance obtained by the RL

policy deteriorates towards the end of the learning iterations. For instance, the execution

time of the TeraSort job in Figure 17 starts to deteriorate after the 51st iteration. We have

determined that this is due to the nature of the 𝜖-greedy policy that has 𝜖 probability to

pick some other action at random, regardless of its Q-value. Although the exploration rate

𝜖 decrease as number of iterations goes up, the learning agent still has the possibility to

perform an action that deviates from the known best action. Another instance of this

situation occurs on the index job after the 25th iteration.

Significance of each chosen parameter: In our second experiment, we analyzed

the significance of each parameter on the performance of the MapReduce framework.

Figure 18 presents a series of values of each parameter selected by our RL-MRCONF

agent (rows 2 through 4 on Figure 18) and the corresponding execution time (row 1 on

Figure 18). As expected, the parameters map.tasks.maximum and reduce.tasks.maximum

have more significance to impact the performance compared to other parameters. From

57

Figure 18 (a), it can be seen that the execution time tends to go down for the search job as

the maximum number of map tasks parameter increases while the maximum number of

reduce tasks remains mostly unchanged for most of the iterations. This situation does not

apply to all the jobs submitted to the MapReduce simulator. For example, as depicted in

Figure 18 (b) for the TeraSort job, the execution time tends to decrease as the maximum

number of reduce tasks parameter increases whereas the maximum number of map tasks

remains between 1 and 3.

(a) (b)

Figure 18. Relationship between execution time and the key input parameters

0
6

12
18
24
30

1 16 31 46 61 76 91

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Iterations

Search

0
15
30
45
60
75

1 16 31 46 61 76 91

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Iterations

TeraSort

0
2
4
6
8

10

1 16 31 46 61 76 91P
ar

am
et

er
 V

al
u

e

Iterations

map.tasks.maximum

0

1

2

3

4

1 16 31 46 61 76 91P
ar

am
et

er
 V

al
u

e

Iterations

map.tasks.maximum

0

1

2

3

1 16 31 46 61 76 91P
ar

am
et

er
 V

al
u

e

Iterations

reduce.tasks.maximum

0

2

4

6

1 16 31 46 61 76 91P
ar

am
et

er
 V

al
u

e

Iterations

reduce.tasks.maximum

0

128

256

384

512

1 16 31 46 61 76 91

SI
Z

E
 (

M
B

)

Iterations

dfs.block.size

0

128

256

384

512

1 16 31 46 61 76 91

SI
Z

E
 (

M
B

)

Iterations

dfs.block.size

58

A common observation to these two jobs is impact of the dfs.block.size parameter

on the execution time. The execution time tends to decrease as the size of the replicated

data blocks decreases. This supports the fact that the size of the data block has a

significant role in determining the performance of the MapReduce process.

These results indicate that our proposed RL-MRCONF leads to significant

execution time improvements and adapts well to the job types submitted to the

MapReduce framework. The Search job requires more mappers to match each input data

with a set of criteria whereas the TeraSort job requires more reducers to perform the

sorting process.

Effectiveness of initialized Q-table: The number of configurable parameters

determine the size of the state space of the RL algorithm. This size grows exponentially as

the number of parameters increases. Due to the nature of the RL algorithm, the RL agent

performs a large number of explorations before it reaches the goal state. We believe this

significantly degrades the performance of the MapReduce framework.

In our third experiment, we observed the impact of the initialized Q-table (i.e.,

initialized policy) on improving the performance of our proposed scheme. The motivation

behind this experiment is that in a typical setting, the same jobs or jobs with similar

properties are submitted to the MapReduce process. Hence, under this assumption, we

argue that our RL-MRCONF agent can achieve the objective we set for the end state of

the learning process faster, and minimize the time and computing resources needed in

order to find a near optimal solution.

(a) (b)

Figure 19. Performance with and without Q-table initialization while varying number

of iteractions

0

5

10

15

20

25

30

1 11 21 31 41 51 61 71 81 91

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

Search Job

Search

Search with 100
Initialization

0

5

10

15

20

25

30

1 11 21 31 41 51 61 71 81 91

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

Search Job

Search with 100
Initialization
Search with 150
Initialization

59

Figure 19 presents the performance of the RL-MRCONF agent with and without

initializing the Q-table for the search job. As depicted in the figures, the agent with an

initialized Q-table (trained) yields a considerable performance improvement over a

shorter time interval. Figure 19 (a) shows that the initialized policy can lead the agent to

obtain at least 35% improvement from the 2nd iteration and finds a configuration with at

least 57% improvement in the 27th iteration. Conversely, the agent without initialized Q-

table finds the configuration that produces 66% performance improvement after the 44th

iteration; thus, resulting in a longer time to search for the best configuration.

In this experiment, we further analyzed the impact of the number of Q-table

learning iterations on the execution time. Figure 19 (b) shows the execution time when

the Q-table is initialized after 100 and 150 learning iterations, respectively. We observe

that agent with the Q-table that has been initialized over 150 learning iterations can

achieve 57% performance improvement in less than 16 iterations. Again, this is faster

compared to the one initialized after 100 learning iterations. This demonstrates that a

larger number of learning iterations used to initialize the Q-table can significantly

improve the convergence time to a goal state that achieves the target improvement.

From this experiment, it can be noticed that the RL-MRCONF agent without

initialization can find the better MapReduce configuration compared to the two other

initialized agents. This is due to the dynamic exploration rate used during the learning

process, which is defined based on the ratio of the current iteration to the total number of

learning iterations. The value of 𝜖 decreases as the iteration index increases. When we

evaluate the initialized Q-table used by the agent, we use a static exploration rate as small

as 0.1 so that the agent performs less exploration and more exploitation of its initialized

Q-table to perform the proper actions based on its past experience in order to obtain

better accumulative long-term reward.

The uninitialized agent achieves a 71% improvement on the execution time but

the agent requires long time to find such configuration. This can be unacceptable for time

sensitive systems that require fast or near real-real time processing of big data.

Conversely, the figure shows that the two other initialized agents obtained a good

configuration in less time. Therefore, the RL-MRCONF agent with initialized policy can

obtain a near optimal configuration in a timely manner. The RL-MRCONF performs well

60

to fit applications that require fast or near real-time processing of big data. Moreover, the

RL-based approach continues to learn over time which allows the MapReduce framework

to adapt regardless of the type of job submitted to the cluster.

Table 7. The Best Obtained MapReduce Configuration Parameters for Job Types.

MapReduce Parameters Search Index TeraSort

mapreduce.tasktracker.map.tasks.maximum 7 3 2

mapreduce.tasktracker.reduce.tasks.maximum 1 4 4

mapreduce.task.io.sort.factor 10 40 20

mapreduce.task.io.sort.mb (MB) 80 80 100

mapreduce.map.sort.spill.percent 0.7 0.67 0.67

dfs.block.size (MB) 32 64 64

Best Runtime (sec.) 7.0632 7.3198 18.574

Initial Runtime (sec.) 24.468 16.916 47.178

Performance Improvement 71.13% 56.73% 60.63%

Figure 20. Performance comparison between the execution times using the initial and

best configuration for different job types

Table 7 ranks in terms of performance the MapReduce configurations obtained by

our uninitialized RL-MRCONF agent that correspond to the different job types and the

resulting percentage of improvement. Figure 20 illustrates the effectiveness of our

scheme in improving the execution time for the different job types. The initial

configuration is defined as the worst case scenario when the parameters are poorly

configured.

0

10

20

30

40

50

Search Index TeraSort

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

Job Types

Performance Comparison

Initial Runtime Best Runtime

61

Effectiveness of Deep Reinforcement Learning (DQN): In this section, we

conduct experiments to study the effectiveness of deep reinforcement learning to support

auto-configuration of MapReduce. Our simulator was modified to use Caffe library to

develop a deep Q-network. Similar to our RL-based scheme, the DQN-based RL-

MRCONF agent automatically tunes the configurable MapReduce parameters based on

what it learned during the training process. Instead of evaluating the chosen actions

individually on a given configuration from the previous state as implemented in the

traditional RL agent, the Deep Q-Network estimates the possible reward for all the

actions for the given configuration produced by applying the chosen action on the

configuration from the previous state.

Before the DQN-based RL-MRCONF agent starts to learn the environment

though the simulation, the underlying neural network, as illustrated in Figure 14, is

constructed with 8 neurons in the input layer (6 configurable parameters + the chosen

action + the immediate reward), and 3 neurons in the output layer (3 actions) with Q-

value associated with each action. The number of hidden layers can be freely determined

based on user’s preference. In this research work, we consider 3 hidden layers.

During the training phase, the Stochastic Gradient Descent (SGD) method is used

to obtain the minimum loss value. A vector of memory is used to collect all the processed

states associated with the action performed and the parameter selected by the deep Q-

network learning agent. These processed states are referred to as transitions in our

scheme. Each transition is a tuple that consists of the previous state, the chosen action,

the reward obtained by performing the action, the selected parameter, and the next state

produced by the action. When the size of the memory vector reaches a certain threshold,

50 transitions in our simulation, the algorithm updates the network by randomly selecting

4 transitions and uses them to calculate the weights in the network. The update process

lasts until the agent reaches the goal state. The goal state requires 40% performance

improvement on the initial configuration when using the DQN-based RL-MRCONF

scheme.

In order to evaluate the effectiveness of the trained network, we considered and

designed 3 training scenarios to evaluate the performance of the DQN that is trained with

10, 20, and 30 uniformly selected random configurations. In theory, the more samples get

62

used to train the network, the better the performance of the DQN in finding a near

optimal configuration. Therefore we expect the network trained with 30 randomly

selected configurations to perform better than the one with 10 or 20 configurations.

The evaluation of the DQN is conducted by feeding a configuration that excludes

the randomly picked training configurations set to the network, as follows:

𝐶𝑜𝑛𝑓𝑖𝑔𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ∉ {𝐶𝑜𝑛𝑓𝑖𝑔𝑠𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔}

and evaluate its performance by obtaining the number of iterations for the DQN-based

RL-MRCONF agent requires to find a configuration that satisfies our objective.

Figure 21. Deep reinforcement learning performance with different training scenarios

The performance of the deep Q-network that has been trained under different

training scenarios is depicted in Figure 21. The Figure shows that the DQN-based RL-

MRCONF agent trained with 30 randomly chosen configurations outperforms the two

other scenarios. In this scenario, the goal configuration was reached after 18 iterations

whereas the other scenarios required 35 or more iterations to obtain a configuration that

satisfies the goal. This clearly supports our initial hypothesis that the more samples used

to train the network, the better the performance of the DQN in finding a near optimal

configuration. Similar to the traditional reinforcement learning algorithm, the exploration

and learning rates of the DQN-based RL-MRCONF agent are set to a value of 0.1 when

evaluating the performance of the agent.

8

11

14

17

20

1 11 21 31 41 51 61 71 81 91 101

E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

Index Job

Trained 10 Configurations

Trained 20 Configurations

Trained 30 Configurations

63

Performance Comparison between Algorithms: The previous sections illustrate

the effectiveness and usefulness of RL and DQN to support the automatic configuration

of MapReduce. In this section, we conduct experiments to compare the performance and

the effectiveness of RL with DQN. As discussed in [158], [159], [161], the DQN has

been demonstrated to be effective in solving complex problems.

To compare the performance of RL and DQN, we designed a

training/initialization scenario that include 10, 20, and 30 uniformly selected random

configurations. The configurations used to evaluate both algorithms are excluded from

the chosen sets of training configurations to fairly measure the performance of the

trained/initialized Q-matrix and Q- network.

In our first experiment, we evaluated the performance of the learning agent using

one evaluation configuration that is not part of the training set. In other words, this

evaluation configuration is considered as the new configuration state by the agents, and

how the agents react to this configuration completely relies on their experiences and the

knowledge obtained from the training dataset. The objective of both agents is set to 40%

for the performance improvement. The Index Job provided by the MR-Perf framework is

used to evaluate the agents.

 (a) (b) (c)

Figure 22. Performance comparison between RL and DQN under different training

scenarios

As illustrated in Figure 22, it can be observed that the performance of the DQN

agent is always better than the RL agent regardless of the number of configurations used

during the training process. It can also be noticed that the DQN-based RL-MRCONF

agent is capable of finding the better configuration in a shorter period of time in terms of

the number of required iterations needed to converge to the goal state. Moreover, the

8

10

12

14

16

18

20

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iterations

Comparison for trained 10
configs in Index Job

DQN trained with 10 Configs
RL trained with 10 Configs 8

10

12

14

16

18

20

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Number of Iterations

Comparison for trained 20
configs in Index Job

DQN trained with 20 Configs
RL trained with 20 Configs

8

10

12

14

16

18

20

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1E
xe

cu
ti

o
n

 T
im

e
(s

ec
.)

Number of Iteration

Comparison for trained 30
configs in Index Job

DQN trained with 30 Configs

RL trained with 30 Configs

64

DQN-based RL-MRCONF agent outperforms the RL-MRCONF agent under the same

training scenarios with the same type of job.

With the same settings as our previous experiment, we evaluate the performance

of both learning agents using the Search Job and an objective of 50% performance

improvement. Based on the results from our previous experiments, we can conclude that

the more the agent is trained, the faster it can find the optimal solution that satisfies the

objective. In contract to our first experiment, we focus on the relationship between

training scenarios and the near-optimal configuration found by the agents. The evaluation

process terminates when the agent satisfies the pre-defined goal.

Figure 23. Performance evaluation of RL and DQN agents under the same training and

objective

Our experimental results show that under the same training scenarios (i.e., 10, 20,

and 30 sets of training configurations), the DQN-based agent always finds better

configuration compared to the RL agent (c.f. Figure 23). From the results, it can be

concluded that the RL agent trained with 10 randomly chosen configurations could not

find the configuration that satisfies the predefined goal within the limited number of

iterations (i.e., 100 iterations), whereas the DQN-based agent can satisfy the goal within

the limited number of iterations. Moreover, for both agents being trained under 30

randomly chosen configurations, the DQN-based can even find the configuration that

produces 72.8% performance improvement, while the RL agent finds the configuration

that yields 55.4% improvement in performance. The results of our second experiment

0

10

20

30

40

50

60

70

80

Trained with 10
Configs

Trained with 20
Configs

Trained with 30
Configs

P
er

fo
rm

an
ce

 I
m

p
ro

ve
m

en
t

(%
)

Training Scenarios

Performance Comparison for RL Agents

RL

DQN

65

negate and invalidate the naïve assumption that both agents produce similar results given

similar training sets. Our results clearly show that the DQN-based agent performs better

than the RL and the performance gap grows as the training set size increases.

By combining the results of those two experiments, we conclude that the

effectiveness and the performance of the DQN-based RL-MRCONF learning agent are

better than the Original RL-MRCONF learning agent. Our experimental results clearly

demonstrate the superiority of the Deep Reinforcement Learning algorithm.

Validation Experiment: In this section, we conduct the experiment to verify the

correctness of our simulation results by collecting data from a real cluster environment

and compared it with that obtained through RL-MRCONF. The cluster was configured

using Cloudera [166] CDH 5 with 30 nodes divided into 2 sever rack groups, and each

node is equipped with 2 CPUs, 16GB of memory, and 500 GB of hard drive capacity that

can be utilized by the unified interface of Cloudera Manager. The near optimal

configuration obtained by the RL-MRCONF will be brought over to the Cloudera cluster

for this validation experiment.

Table 8. Performance Comparison Based on Job Types between RL-MRCONF and Real

Hadoop Cluster.

MapReduce Parameters
Job Types in RL-MRCONF Job Types in CDH

Search Index TeraSort Grep WordCount TeraSort

map.tasks.maximum 7 3 2 7 3 2

reduce.tasks.maximum 1 4 4 1 4 4

mapreduce.task.io.sort.factor 10 40 20 10 40 20

mapreduce.task.io.sort.mb 80 80 100 80 80 100

mapreduce.map.sort.spill.percent 0.7 0.67 0.67 0.7 0.7 0.67

dfs.block.size (MB) 32 64 64 32 64 64

Best Runtime (sec.) 7.0632 7.3198 18.574 6.13 6.21 17.28

Initial Runtime (sec.) 24.468 16.916 47.178 21.57 15.43 46.03

Performance Improvement 71.13% 56.73% 60.63% 71.5% 59.75% 62.45%

The optimal configuration of the maximum number of mappers/reducers obtained

by RL-MRCONF are specified as part of command line parameters when the job is

initiated, while the rest of 4 chosen parameters are reconfigured by using Cloudera

Manager before the job is submitted to the cluster. The jobs used in our simulation are

Search, Index, and TeraSort, and the corresponding jobs used in CDH are grep (i.e.,

counts the matches of a regex in the input), WordCount (i.e., counts the works in the

66

input file), and TeraSort respectively, and the input data size is 1GB as used in the

simulation.

For the studied jobs, as summarized in Table 8, it is clearly observed that most

map tasks are data-local, and the simulation results show similar performance for these

jobs as observed through the real cluster. The simulation also produces similar job

performance under difference configurations. Overall, even at this granularity, the

simulated results are quite similar to the actual results.

 (a) (b) (c)

Figure 24. CHD cluster resources utilization matrix based on different jobs running on the

cluster

The computing resources utilization characteristics of the studied jobs with the

obtained optimal MapReduce configuration are depicted in Figure 24, where 24 (a), 11

(b), and 24 (c) represent the utilizations for CPU, Memory, and Disk I/O, respectively.

We can observe that the computing resources were properly utilized during the execution

of the jobs, and based on the results demonstrated in Figure 24, we can conclude that the

WordCount job has the balanced utilization between CPU and memory, whereas the

Terasort is I/O intensive and grep is CPU intensive.

Effectiveness of RL-MRCONF: In this section, we conduct more experiments

and comparisons to verify the effectiveness of our proposed scheme RL-MRCONF. The

verification process has two parts: one is to verify the generality of RL-MRCONF in

terms of performance for similar jobs that differ in the input data size; another is the

effectiveness comparison in terms of searching for the optimal configuration that yields

the near optimal performance between RL-MRCONF and the previous studies.

To verify the effectiveness of RL-MRCONF adapts well to similar submitted

jobs, we consider 3 different input data sizes as in 2GB, 4GB and 8GB respectively for

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (Sec.)

Cluster CPU Utilization
Grep
WordCount
TeraSort

0

20

40

60

1 2 3 4 5 6 7 8 9 10

M
em

. U
ti

li
za

ti
o

n
 (

%
)

Time (Sec.)

Cluster Memory Utilization
Grep
WordCount
TeraSort

0

250

500

750

1 2 3 4 5 6 7 8 9 10

K
-b

y
te

s
/

Se
co

n
d

Time (Sec.)

Cluster Disk I/O
Grep
WordCount
TeraSort

67

the submitted job types: Search, Index, and TeraSort. As depicted in Figure 25, we can

see RL-MRCONF adapts well to similar submitted jobs with different in-put data sizes,

the proposed scheme can achieve 40% ~ 45% on average of performance improvement in

terms of job execution time when compared with the default configuration.

 (a) (b) (c)

Figure 25. Adaptability of RL-MRCONF to similar submitted jobs that varies with input

data size

Through this experiment, we notice the convergence time of our proposed

heuristic increases with the size of the input data, along with the characteristics of the

submitted jobs. This directly impacts the cost of our orchestration phase. However, when

comparing with deploying the orchestration phase onto the real cluster and waiting for

the results before initiating the production phase, the simulation-based approach can be

deployed onto one or more independent machines that requires less computing resources

to run the learning processes that are specifically targeted certain job profiles with

various input data sizes. In addition, these learning processes can be executed in parallel

with production phase and the learning agents keep collecting data over time. We believe

this can reduce the time needed in orchestration phase and increase the viability of our

proposed approach.

For a fair comparison with other schemes reported in the literature, we compare

our RL-MRCONF against AROMA [153] and Starfish [154] to assess how much

performance we can obtain with each approach. We performed the experiments using the

studied jobs (i.e., Grep, WordCount, and TeraSort) with identical input data size as in

20GB. We compared the job execution time of our approach against the execution time

achieved with the configuration recommended by AROMA and Starfish respectively. In

addition, the absolute job execution time numbers are not directly comparable, and we

0

20

40

60

80

2GB 4GB 8GBE
xe

cu
ti

o
n

 T
im

e
(S

ec
.)

Input Data Size

Search Default

Optimized

0

20

40

60

80

2GB 4GB 8GBE
xe

cu
ti

o
n

 T
im

e
(S

ec
.)

Input Data Size

Index Default

Optimized

0

50

100

150

200

2GB 4GB 8GBE
xe

cu
ti

o
n

 T
im

e
(S

ec
.)

Input Data Size

TeraSort Default

Optimized

68

have normalized the job execution time with respect to the execution time obtained with

the default settings in order to make fair comparison.

Figure 26. The normalized job execution time with respect to AROMA and Starfish for

three studied jobs with input data size as 20GB

Figure 26 shows the results of our comparison. For the Grep, our RL-MRCONF

has improved the job execution time by 26% and 15% compared with AROMA and

Starfish, respectively. For the WordCount, our proposed scheme still performs better than

AROMA and performs similarly with Starfish that improved the performance around

45%. Similarly, for the TeraSort, RL-MRCONF achieves better performance than

AROMA, and exhibited relatively similar performance improvement with Starfish being

slightly better than RL-MRCONF (around 7%). Since our proposed scheme has a smaller

number (of 6 in total) of parameters than Starfish (which has 14), we expect that

increasing the number of scheme input parameters will provide more flexibility for auto-

tuning the parameters and further improve the scheme performance. Our results show that

our RL-MRCONF achieves (when compared with other popular schemes) comparable or

even better performance improvement in terms of job execution time in some cases.

3.8 Conclusion

In this chapter, we have presented a reinforcement learning scheme, named RL-

MRCONF, to automatically configure the parameters of the MapReduce framework in a

0

0.2

0.4

0.6

0.8

1

GREP WORDCOUNT TERASORT

N
o

rm
a

li
ze

d
 J

o
b

 E
x

e
cu

ti
o

n

T
im

e

Job Type

Peroformance Comparison Default

AROMA

Starfish

RL-MRCONF

69

Hadoop cluster. The majority of jobs submitted to a MapReduce process are repeated

jobs or jobs with similar characteristics. Under such scenarios, an RL-MRCONF agent

can be trained to automatically tune and adjust parameters to improve the overall system

performance. Moreover, the training overhead can be reduced over time since this

process is only performed during the initialization process of the agent. Our experiments

demonstrate that the RL-MRCONF agent without initialization can be highly effective in

finding configurations that yield better performance. We also showed the initialized RL-

MRCONF agent is capable to find in a shorter time the near optimal. Moreover, we

investigated the performance of the DQN-based agent. Experimental results of both

trained/initialized DQN-based and RL-based agents show that the DQN-based learning

agent outperforms the RL-based agent by 25% on average regardless of the job type or

the configuration used to achieve optimal performance.

70

CHAPTER 4

SDN FLOW ENTRY MANAGEMENT USING REINFORCEMENT LEARNING

4.1 Abstract

The popularity of cloud computing services has evolve the way we implement

modern information technology services. To facilitate cloud computing infrastructure,

datacenter is built on top of high-speed Datacenter Networks (DCNs) to provide better

flexibility and resiliency. Based on the dynamic nature of this network environment, the

network traffic patterns can be further classified into long-lived (elephant) and short-lived

(mice) flows with partitioned/aggregated traffic types. Despite the fact that SDN-based

solution can dynamically allocate networking resources toward such flows, the network

reconfiguration overhead can have the major impact on network performance. With this

in mind, it is indisputable to decide which forwarding rules should remain in the flow

table and which rules should be carried out by the SDN controller in the case of table-

miss on the switch, especially when the limited capacity of Ternary Content Addressable

Memory (TCAM) is installed in an OpenFlow enabled switch. To address this issue, we

propose a machine learning scheme classified into two variations of Reinforcement

Learning (RL) algorithms: one is traditional RL-based approach, and another one is deep

reinforcement learning-based. With the fixed size of flow table of 4KB, the emulation

results over RL algorithm demonstrate around 60% improvement in reducing long-term

network reconfiguration overhead and improved the table-hit ratio around 14% when

compared to the existing Multiple Bloom Filters (MBF) method.

4.2 Introduction

The demand for rapid big data analysis and fast computing power with large-scale

datacenters has introduced the need for efficient network management systems. This

trend inspired the current networking architecture to evolve toward Software-Defined

Networking (SDN) [8], [26], a popular networking paradigm that enables the

programmability of the network and decouples the packet forwarding plane from the

control (decision making) plane. SDN advocates the openness of the programmable

interface allowing network connectivity to be managed dynamically by network

71

applications with participating network elements, which enables the properties of

“application-aware” and “network-aware” of the network.

At the time of writing this chapter, the dominating SDN protocol is OpenFlow

[8], [14]. This protocol is utilized by controllers and switches of SDN environment to

exchange information, which allows a switch to notify the controller of an incoming

packet cannot be matched with the forwarding rules in the flow table. Analogously, the

control message can be sent from the controller to a switch waiting for the instruction to

add a new or modify an existing forwarding rule in the flow table to process incoming

packets. This message exchange process is referred as network control overhead in this

chapter. This overhead will gradually consumes networking resources and eventually

decrease the performance of the packet forwarding process of the network.

To analyze the traffic pattern in datacenters, the flow of the traffic are further

categorized into elephant flows (throughput-dependent), and mice flows (short-lived).

Normally, web searches, social networking, etc. are considered as transactional

applications executed by multiple end users that produces small flows need to be

delivered in the timely manner. Alternatively, the applications like MapReduce, virtual

machine migration, etc. that require bulk transfers with minimal packet delivery delays

while consuming high network bandwidth. Based on the previous studies on datacenters

traffic pattern [167], [168], the number of elephant flow is less than 10% among the

traffic flows in the DCN, but the payloads contained by such flows consumes more than

80% of the entire traffic volume. Additionally, the short-lived mice flow might be

harmless if considered individually, but mice flows account for 90% of the entire flows

[167], [168], and they can have major impact on the performance of the network if they

are not handled delicately.

The characteristics of the traffic pattern represented by such elephant and mice

flows indicate a challenge in current DCNs as the large volume of mice flows can cause

the forwarding rules of the elephant flow to be evicted prematurely from the flow tables,

especially under the scenario of having a bust of mice flows arrive at a switch in between

the ongoing elephant flow [169]. With the limited amount of memory capacity for storing

forwarding rules (e.g., flow entries), the switch will not have sufficient space to

accommodate additional flow entries for packets require new forwarding rules. This will

72

ultimately lead to packet drops and/or processing delays due to the increasing network

control overhead.

The traffic patterns of DCNs are dynamic and heterogeneous depending on the

services provided over their networking resources, it is extremely difficult to formulate a

mathematical model to effectively and efficiently manage the flow entries with the

capability to accommodate the pattern of elephant and mice flows. To mitigate this issue,

we propose to utilize Reinforcement Learning (RL) algorithm to search for an optimized

set of forwarding rules automatically to minimize the long-term network control

overhead. The objective of this approach is to improve the long-term table miss event

occurrences and packet processing latencies in considering the capacity of the Ternary

Content-Addressable Memory (TCAM) equipped inside the SDN switches. The

motivation of utilizing RL in our approach is based on the impressive capabilities of RL

for exploring the unknown operating environments and improving its decision making

using reinforcement through previous acquired experience in interacting with the

environment. We believe that RL is well suited approach in achieving automatic self-

adapting mechanism that enables the learning agent to explore the flow configurations

space with the feedback provided by the environment based on the action performed by

the agent. The objective of the learning agent is to construct the policy that maximizes the

reward for the long-term. The RL is also the better fit than traditional optimization

approaches (e.g., discrete optimization techniques like integer linear programming) since

RL adapts in dynamic environments, whereas traditional optimization techniques only

produce the optimum for a given snapshot of the problem scope.

Our proposed RL-based approach, as depicted in Figure 27, is deployed in the

controller that utilizes two metrics to select the flow entries that should be installed on the

switch: the flow match frequency and the flow recentness (duration). According to the

OpenFlow specification [8], these two metrics are automatically recorded by the design

of the protocol. The objective of the learning agent is to develop the policy that

maximizes the long-term accumulative reward, which is taken to be inversely

proportional to the network configuration overhead and the number of table-miss events.

Based on this, the RL agent divides the pool of flow entries into two sets: the local switch

entries and the remote controller entries. The purpose of this division is to reduce the

73

control plane overhead in considering the TCAM capacity of the SDN switches. Besides,

our proposed RL approach is capable of adapting the aforementioned traffic pattern of the

network.

Figure 27. The overview of proposed RL-based approach for managing SDN flow

entry

To determine the efficacy of our proposed RL-based approach in terms of

reducing the overall control overhead via appropriate parameter selection for flow entries

placement in TCAM, we have conducted a series of systematic effectiveness evaluation

using Mininet [45], [46], a network emulator software that emulates the set of network

elements. Our evaluation experiments are performed on two types of RL algorithms:

traditional RL and deep RL. Both algorithms are utilized to drive the tuning of the

parameter in the emulations to determine the proper needed actions in each state with the

goal to maximize the accumulated log-term rewards. The emulation results demonstrate

an improvement of around 60% in reducing the long-term control plane overhead and

around 14% improvement in table-hit ratio compared with the existing Multiple Bloom

Filters (MBF) method [170] given 4KB as the fixed flow table size. To the best of our

74

knowledge, this is the first research effort that has utilized RL for managing flow entries

in SDNs.

The rest of the chapter is structured as follows. The research background and

related works are discussed in section 4.3. In section 4.4, the design and implementation

details are presented. The experiments, analysis, and evaluations are performed in section

4.5. Finally, we conclude this chapter in section 4.6.

4.3 Background and Related Work

In this section, the research background and related works are discussed.

Particularly, we provide a brief discussion on the OpenFlow protocol, the characteristics

and limitations of OpenFlow-enabled switch, TCAM utilization optimization methods,

and RL applications in networking in the following subsections. We cover a discussion

on these topics due to the essential understanding of the problem scope and its

background. This work aims to divide the forwarding rules properly between the

OpenFlow-enabled switches and the controller to further reduce the network

configuration control overhead in SDNs.

OpenFlow Protocol: As stated in the chapter 2, OpenFlow is a communication

protocol utilized between an SDN controller and OpenFlow-enabled switches. OpenFlow

enables the direct access to the forwarding plane of network elements and their packets

routing path programmatically. According to the specification of the OpenFlow switch

supplied by ONF [8], one or more flow tables and a group table are involved when the

packet forwarding process is initiated.

While OpenFlow is being utilized between the SDN controller and the OpenFlow-

enabled switches as the communication protocol, the controller can add, update, and

delete flow entries of the switch in two manners: 1). Reactive control through the

processing of the incoming packets. 2). Proactive control via the built-in flow entry

timeout mechanism [8]. A flow entry comprises of multiple components (match fields,

priority, counters, instructions, timeouts, cookies, and flag) in performing the packet

matching process. The uniqueness of the flow entry in each flow table is defined by the

combination of match fields and priority.

75

When multiple flow tables are defined in the OpenFlow switch, the packet

matching pipeline process may be initiated. When a packet arrives at the OpenFlow

switch, the packet is processed by matching the flow entries with the defined priority, and

then the instructions are applied to update the match fields, the action set, and the

metadata (information used between tables) of the packet, and lastly by forwarding the

matching data and the action set to the next table if required. In addition, when there is no

flow entries can be matched with the packet, a table-miss event is triggered. The action

associated with the table-miss event is defined by the table configuration describing how

the unmatched packets can be processed, which includes the operations such as

forwarding the packet to the controller, dropping the packet, or sending it to another

table. Table-miss flow entries can be added in the flow table of the switch for executing

appropriate table-miss actions in the future. The unmatched packets will be dropped if the

table-miss flow entry does not exist in the flow table [8].

Characteristics and Limitations of OpenFlow Switch: Network policies are

typically deployed in DCNs to provide quality network and infrastructure services to end

users and cloud applications. These policies are implemented through a collection of

forwarding rules, and the rule number can easily reach hundreds or thousands depending

on the size of the SDN-based datacenter. As the result, it is important to design a better

way to store those rules due to the limited memory capacity equipped inside the switch.

The SDN switch is generally using the embedded memory module in an

Application Specific Integrated Circuit (ASIC) that executes a line-rate hardware-based

packet processing. Typically, the memory module used by most common SDN switch is

TCAM [171], which is considered as the extension of content-addressable memory

(CAM). The primary difference between the most commonly used random access

memory (RAM) and TCAM is that a data memory address is required for accessing data

in TCAM. To access data in CAM, a query is employed to the data content itself for the

entire memory in one clock cycle. The performance in data access process of CAM is

better than RAM due to the nature of its data access parallelism and retrieval mechanism.

Additionally, the term “ternary” in TCAM is described by the capability of using three

different inputs (i.e., 0, 1, and X). This mechanism broadened the search patters in the

entire memory, and this search pattern process is considered as the better fit in dealing

76

with networking applications based on its similarity of the process on how net-masks

work, whereas the binary CAM module only operates exact pattern searches using only

0s and 1s.

With the capabilities provided by TCAM, it is commonly used in packet

switching devices in order to achieve superior performance and perform additional

wildcard matching process. However, high cost and high energy consumption are

considered as the disadvantages of TCAM when compared with RAM (around $350 for 1

Mbits chip [172]), and the cost of a TCAM module is around 400 times more than a

RAM module with the same capacity, the energy consumption is around 100 times of

RAM [172]. Based on the current limitations of technological advancement, the size of

TCAM is usually around 1 ~ 2 Mbits [173] and the TCAM capacity utilized by

commercial grade networking devices is typically about 18 Mbits [172]. According to the

information provided by OpenFlow specification 1.4 [8], 40 tuples are employed to form

a single flow entry and 13 of them are essential tuples with 27 optional. In most cases, a

15 tuples flow entry occupies 356 bits [173] of memory. With a device installed with a

TCAM memory module of 2 Mbits size, the device is anticipated to store around 6,200

flow entries. Depends on the scale of the network, the average number of flows arriving

at a switch is estimated to be 75,000 to 1.3 million flows per minutes.

Under this scenario, an SDN controller can exceed the TCAM capacity limitation

of the managed switches easily by installing a large volume of flow entries into their flow

table(s). Additionally, the switches also needs to maintain policy/security associated rules

such as firewalling, Access Control List (ACL), or rules defining routing mechanisms

and traffic monitoring [179]. The OpenFlow switches will eventually stop accepting

control messages from the controller once their limited TCAM capacity is reached. This

issue can have major impact on packet switching performance of the switch since all new

arriving packets need to be forwarded to the controller for further process if the packets

cannot be matched locally by the switch. This posts a situation where the controller-to-

switch communication volume is largely increased and further consumes unnecessary

network resources on the control plane and delays the packet processing speed.

TCAM Capacity Utilization Optimization Approaches: Since the number of

nodes connected to the network can have direct influence on the number of forwarding

77

rules required to provide the service, the current TCAM capacity cannot accommodate all

entries for the large-scale networks with lots of network participants, and this has been

proven in the work of [179] when OpenFlow-enabled switches are deployed in the

production environments. To address this issue, several research efforts have been

conducted and they are organized as follows:

Flow Table Compression: The flow table compression techniques are proposed

by several research efforts [173], [174], [175]. In the work of [174], the authors proposed

to utilize zero compaction method to reduce the routing table size for storing IPv6

addresses in two steps: 1) A don’t care statement (x) is used to replace the number of

zeros in the IPv6 address in the IP lookup table to reduce the size of IP address occupied

within the table. 2) For the IP addresses having the same next hop IP addresses, the prefix

overlapping approach is employed to store only one of those overlapping prefixes in the

memory. The combination of zero compaction with prefix overlapping and prefix

minimization techniques in Veeramani et al. [173] can reduce the table size by 50 ~ 60%.

In Zhu et al. [175], the authors proposed a Multidimensional Table Compression

(MDTC) method to represent a flow entry in the table by using the concept of a box, and

a set of boxes comprise a multidimensional table. The small boxes are obtained by

iteratively dividing this multidimensional space, and those boxes can be merged if they

have the same action. The fundamental idea behind this approach is to use a larger box to

contain multiple smaller boxes performing the same action. According to the work of

[175], the MDTC can shrink entries of ACLs by 23% and the size of the generated

OpenFlow tables by 2.4%. A two-level tagging approach, namely Tag-in-Tag, is

proposed by the work of [173] to substitute flow entries with two layers of simpler and

smaller tags to further reduce the size of flow entries. This approach consists of two types

of tags: 1) The PATH TAG (PT) is used to associate a tag with a given path to route the

packet. 2) The FLOW TAG (FT) is used to associate packets with a flow. Both PT and

FT are utilize jointly to uniquely identify the flow without using the original flow entry

tuples. The Tag-in-Tag method can store 15 times more entries in a fixed-size TCAM

based on the work of [173].

Flow Entries Aggregation: The authors of [176] proposed to merge multiple flow

entries by using two different schemes to minimize the flow table usage. One is the

78

offline scheme called Fast Flow Table Aggregation (FFTA) to reduce the flow table size;

another one is online scheme called improved-FFTA (iFFTA) used to update the flow

entries efficiently. For the design of FFTA, the fundamental concept is similar to the 3-

step aggregation framework of bit weaving. First, the framework converts the forwarding

rule list into the Binary Search Tree (BST)-based prefix-permutable partitions and then

executes the Optimal Routing Table Constructor (ORTC) to aggregate flow table.

Second, it performs the bit merging process that merges those rules that differ by a single

bit or having the same action into one entry on each partition together iteratively to shrink

the number of entries stored in the flow table. With the original flow table being

partitioned and each partition is aggregated, the iFFTA can then perform flow entry

updates efficiently by updating the affected partition in the modified-BST first, and then

the bit merging process is re-executed for the associated rules.

Efficient Flow Table Management: Based on the specification of OpenFlow

protocol, the flow entries can be evicted from the flow table proactively or reactively.

The flow entry expiry mechanism is utilized in the proactive mode, which is defined by

two attributes: idle_timeout and hard_timeout [177]. The idle_timeout is used to enforce

the flow entry to be removed when the flow entry is not being matched for a given time

frame. The hard_timeout is utilized to have flow entry evicted from the flow table

regardless of its status. The removing of the flow entries by the switch itself is defined as

the reactive mode. The works of Challa et al. [170] and Lu et al. [178] employ this

default flow expiry mechanism to efficiently manage the flow table. In [170], the authors

proposed an autonomous and smart flow eviction mechanism to remove the flows from

the flow table using smart data logging methods with MBFs. The design of MBFs utilize

the logical shift operations in column-major order to deduct an importance value of each

flow, which is defined by two attributes of the flow: locality and recentness. The higher

the importance, the higher the weight value of the flow, and the less important flow

entries will be automatically purged from the switch to reduce switch-controller

communication overhead. In [178], the authors proposed a method called TF-IdleTimeout

to adjust the value of flow entry idle_timeout attribute dynamically based on real-time

network traffic. This real-time network traffic evaluation is conducted from analyzing the

79

packet arrival intervals and further modifying flow entry idle_timeout to effectively

improve the management of the flow table and improve the utilization of TCAM.

Flow Cache Mechanism: The authors of work [172] proposed a flow cache

architecture that combines both of hardware and software switches as if they were a

single switch with unlimited flow entry capacity. This approach employs one

CacheMaster module to get the OpenFlow commands from the controller and distribute

the flow entries to the managed switches. The delicacy of the forwarding rules placement

lies in the algorithm used in [172] that utilizes the priority of the flow to arrange the order

of the entries. In addition, each forwarding rule is associated with a match, action, and a

weight value used to compute the traffic matching the rule. A list of prioritized n rules is

compiled by the algorithm in order to maximize the weights sum of the rules placed in

the TCAM. In the work of [169], Lee et al. proposed a shared cache architecture that uses

a separate cache memory accessible by multiple switches, which is placed between the

controller and the managed switches. If the scenario requires, the switch can first consult

the flow cache memory instead of consulting the controller directly. The SHA hashing

algorithm is used to make sure the flows are mapped to the proper shared cache of each

switch in order to maintain the fairness between mice and elephant flows and also to

protect elephant flows from premature eviction. To replace the cache flow in the shared

cache memory, the authors design a localized Least Recently Used (LRU) algorithm to

remove flows from the cache memory with specific constrain that only a mice flow can

evict mice flow and an elephant flow can only evict an elephant flow.

Despite the dynamic management of the utilization of networking resources is

promised by SDN-enabled environment, the efficient placement of the flow entries in the

switch to reduce the overall information exchange between the controller and the

switches still remains as the challenge. Besides, it is difficult to protect the TCAM

capacity from being overused without the constant proactive monitoring performed by

the controller, which indicates more control message exchange overhead is required by

this process. On the other hand, our proposed approach can mitigate aforementioned

issues using machine learning technique to automatically determine which forwarding

rules should be placed inside the switch memory to reduce overall network configuration

80

overhead regardless of the traffic pattern in DCN. The technique does not require

proactive inspection or monitoring of the incoming packets.

RL Network Applications: In this artificial intelligence era, the machine learning

based approaches have motivated researchers to utilize similar techniques in innovating

current networks. Particularly, the RL-based technique is considered as part of machine

learning paradigm that allows the learning agent know how to choose the action it should

perform in interacting with an unknown system to maximize the cumulative reward. The

RL-based approach is getting more attention and it has been applied on multiple network

applications [3], [4] (e.g., network routing [181]). In the RL-based technique, the

repetitive learning process is performed by the agent who receives the feedback as the

form of the reward from the dynamic system through the interaction with current system

state, and then carry out the associated action based on its past experience to establish a

policy to maximize the received cumulative rewards via transitioning of the system state

in the long-term.

In the work of [182], Desai and Patil proposed a novel machine learning

technique to determine the optimized route in ad hoc networks by modeling the swarm

intelligence from the models of social insect behavior using cooperative RL. To evaluate

the effectiveness of the proposed approach, the comparison with the existing routing

protocols were conducted, and the results demonstrate the packet delivery ratio for RL-

based approach is significantly improved.

Moreover, the authors of [183] presented the RL-based extensions of the existing

Ad hoc On-Demand Distance Vector (AODV) routing protocol. The approach

emphasized on improving route error tolerance by performing route reconstruction from

the closest neighboring node instead of the source node in the case of a link failure. The

simulation results imply the proposed approach is superior to the traditional AODV in

terms of transmission delay and packet delivery ratio. Additionally, the results also

indicate the improvement in reducing the route discovery frequency and further minimize

the routing overhead of the wireless network.

The RL-based technique is also employed for improving the efficiency of the

network routing in the work of [184] in the SDN domain. The Lin et al. utilizes a QoS-

aware Adaptive Routing (QAR) in the three-level, multilayer, and hierarchical large-scale

81

SDNs involving different types of controllers. The design distribute the control loads

among the controllers and is capable of reducing signaling delay remarkably. In

combining with the characteristics of RL-based algorithm, their simulation results

demonstrate that QAR performs better than the existing learning solutions and provides a

faster convergence rate in QoS provisioning.

Additionally, the authors of [185] presented a deep RL algorithm, a Deep Q-

Network (DQN) approach, to process large number of correlated channels in a Wireless

Sensor Network (WSN). This work is similar to our proposed approach and the goal of

this design is to maximize the long-term reward in obtaining the near optimal channel

utilized for delivering the packets without failing. The simulation results of [185] show

that DQN-based approach can accomplish the near-optimal performance on real complex

scenarios that do not necessarily behave Markovian dynamics.

Table 9. The TCAM Capacity Utilization Optimization Approaches.

Approach Category Summary

Flow Table Compression The authors of [173] proposed the use of two-level tagging approach to

replace flow entries in order to reduce the size of the flow entries.

 Veeramani et al. [174] proposed to use zero compaction method to

reduce the size of the routing table in storing IPv6 addresses.

 Zhu et al. [175] presented a “Multidimensional Table Compression”

technique.

Flow Entries Aggregation The work of [176] designed a set of offline scheme (Fast Flow Table

Aggregation) and an online scheme (improved-FFTA) to shrink the

flow table and efficient update the flow entries respectively.

Flow Table Management Challa et al. [170] proposed an automatic and intelligent flow eviction

technique to purge the entries using smart data logging with Multiple

Bloom Filters (MBF).

 The authors of [178] proposed the TF-IdleTimeout mechanism to adjust

the value of the flow entry idle_timeout attribute dynamically based on

the real-time network traffic.

Flow Cache Mechanism The authors in [172] presented a differential flow cache framework that

achieves fairness and efficient cache utilization with fast lookup.

 The work of [169] proposed an integrated hardware-software

architecture namely “CacheFlow” with infinite rule capacity.

There are several research works that deployed RL over the network applications.

However, none of these works apply RL in flow entry management in SDNs. To the best

of our knowledge, our proposed approach is the first work that utilizes RL algorithms,

traditional RL and deep RL (DQN), in managing SDN flow entries. In our scheme, DQN

82

is the fusion of traditional RL with neural networks, which has been proven to be capable

of dealing with more complex systems with superior performance [157], [158], [161].

The summarization of aforementioned approaches and the existing research work that

emphasizes the efficient utilization of TCAM capacity of OpenFlow-enabled switches is

organized in Table 9.

Based on the discussed related works, Challa et al. [170] is similar to our

proposed approach since both efforts utilize flow entry frequency and recentness in the

algorithms, with the similar objective to reduce overall network configuration overhead

while improving the table-hit ratio. The detailed study between our proposed RL-based

scheme and the MBD-based approach [170] is discussed in section 4.5.

4.4 Design and Implementation

To properly construct and emulate the networking environment that is SDN-

enabled, we utilize a software-based network emulator called “Mininet” [45], [46] that

provides the capability to emulate a collection of endpoints (hosts), network intermediate

devices (switches, routers, etc.), and links on top of a single Linux kernel. Mininet

enables the entire OpenFlow-enabled network to be emulated using the lightweight

process-based virtualization over a single computer. In this section, we introduce the

learning framework firstly, then provide a detailed discussion on the design of our

technique, and lastly discuss the details of the proposed algorithms.

The Design of the Learning Framework: For our specified approach, the

property/configuration of the flow entries can be described by two deterministic

parameters: flow match frequency and flow recentness. With this in mind, the RL

algorithm can be built to acquire the configuration of the network that reduces the overall

network control overhead. The Markov Decision Process (MDP) [3] is used to model our

proposed algorithms that can be represented as the tuple <S, A, P, R>, where 𝑆 =

 {𝑠1, 𝑠2, … , 𝑠𝑖} refers as the state space, 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑗} refers as the action space, P

represents the probability of the state transitions from state i to state n, and R refers the

reward received associated with actions set 𝑎 ∈ 𝐴. The goal of this MDP is to establish a

policy 𝜋 ∶ 𝑆 → 𝐴 that maximizes the long-term cumulative rewards. Given the

capabilities provided by SDN, we are able to obtain all the forwarding rules needed for

83

all traffic flows traversed on the network in order to mitigate the problem we address in

this work. For the scope of this research, the state space, action space, and immediate

reward function are defined as follows:

 State Space: The state space in our model represents all the possible combinations

of finite values of flow match frequency and the flow recentness parameters. For

the state of the chosen two decisive parameters, we denote a state as follows:

𝑠𝑖 = (𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖, 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖)

where 𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖 is denoted as the matched frequency of the flow, and

𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖 represents the duration of the given flow entry resides in the

switch’s memory.

 Action Space: The action space in our model consists of the following: (1) No

action; (2) increase; and (3) decrease action associated with each chosen

parameter. For example, we denote the decrease action on the given flow

frequency parameter as follows:

𝑎𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (𝑓𝑙𝑜𝑤𝑓𝑟𝑒𝑞𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖)

 Immediate Reward Function: The network control/configuration overhead is

defined as the number of communications initiated between the controller and the

switches in order to process the incoming packets properly. The immediate

reward is determined based on the measured configuration overhead given the

selected flow entries are placed in the switch. The immediate reward is

represented as follows:

𝑟𝑡 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
, 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡)

where 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑠𝑡 is the current best network control overhead

obtained so far by the emulation. For a given comparison, a less overhead returns

a positive reward +1 to the agent; otherwise, the agent is given a negative value -1

as the reward. If 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡 equals 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑠𝑡 then a 0 reward is

given.

In our proposed technique, we deploy the following RL algorithms:

84

Traditional RL: The temporal difference (TD) Q-Learning algorithm is used in

our design for the emulation experiments. The reason behind this decision for utilizing Q-

Learning algorithm is inspired by the characteristic that it does not need a model for the

given environment, and the algorithm keeps updating the Q-values in each learning step

based on the estimation of the calculated action-values function. The iterative nature of

this learning process is performed in discrete time steps where the learning agent can

interact with the environment. In each step, the agent choose an action 𝑎𝑡 ∈ 𝐴 in the

given state 𝑠𝑡. Specifically, the agent makes its own decisions to select an action to

perform based on the action selection policy in order to achieve the goal of maximizing

the obtained reward. The Q(s, a) represents the average Q-value of an action a at state t,

whereas the immediate reward is received after the chosen action has been performed to

alter the state. The formal notation of this Q-Learning algorithm is given in the Equation

(1) of the chapter 3. In this research work, we use a learning rate of 0.1 and a discount

factor of 0.95 as they are commonly used in practice as suggested by [3].

Algorithm 3: Q-Learning Algorithm

Pre-condition:

 Initialize Q table with small random number

 Initialize state 𝑠𝑡

 Initialize goal 𝜇

Procedure:

01:improvement = 0

02:repeat

03: for (step = 0; step < learning_iteration; step++)

04: Get action 𝑎𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

05: Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

06: 𝜖 = 𝜖 – (step / learning_iter) * 𝜖

07: Take action 𝑎𝑡 on the 𝑝𝑎𝑟𝑎𝑚𝑡 and receive reward r, obtain control overhead c

08: Sample new state 𝑠𝑡+1 after applied action 𝑎𝑡

09: Update 𝑄𝑡 ← 𝑄𝑡 + 𝛼 ∗ (𝑟 + 𝛾 ∗ max 𝑄𝑡+1 − 𝑄𝑡)

10: Update the corresponding 𝑝𝑎𝑟𝑎𝑚𝑡 of 𝑄𝑡

11: improvement = get_improvement(𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡)

12: 𝑠𝑡 = 𝑠𝑡+1, 𝑎𝑡+1 = Get action from 𝑠𝑡 , 𝑎𝑡 = 𝑎𝑡+1

13: end for

14:until improvement > 𝜇

Similar to our previous work in chapter 3, the ϵ-greedy policy is also utilized as

the action selection policy where the action with the highest Q-value is always picked

with a small probability that agent will pick other action at random. This indicates that

the learning agent is provided with the opportunity to explore the action space for

85

obtaining the better action that generates the better reward. Moreover, the algorithm also

records the selected parameter associated Q-value of each action. If the action is selected

by the agent based on its Q-value, the corresponding parameter value will also be

updated. The complete Q-Learning algorithm utilized in our approach is presented in

Algorithm 3.

Deep RL (DQN): The Deep Q-Network is a deep RL algorithm that integrates the

capabilities of Artificial Neural Networks (ANN) known as Deep Neural Networks

(DNNs) [157]. Neural networks are used to approximate functions by learning a large

collection of input data, the term “deep neural network” is represented by a neural

network with n number of hidden layers [5]. Similar to aforementioned algorithm in

chapter 3, the feedforward neural network is employed by DQN that comprises three

components: 1) the interconnected neurons using directed links to constitute the network,

2) the connection associated weights value, and 3) layers contain a number of neurons

(including hidden layers).

As we have discussed in chapter 3, a notable property of DNNs is that the number

hidden layers and the number of neurons in each layer are free parameters. This means

that there is no predefined or default value for these parameters. The larger/deeper the

neural network, the more complex application it can model. Besides, an activation

function is used to calculate the activation value and propagate it between connected

neurons. The numeric weight value associated with each connection between two neurons

is used to determine the weight of the link. To calculate the activation value 𝑎𝑗 from

neuron i to neuron j, the j neuron needs to compute a weighted sum of all of its inputs.

This activation function is presented in the Equation (2) in chapter 3.

Additionally, there are several flavors of activation functions available based on

the users’ preference. Different types of activation functions have different ways to

calculate the activation value. Among all the available activation functions, ReLU is

gaining the popularity in deep neural networks due to its faster and more efficient

learning in terms of reducing the likelihood of vanishing gradient problem, and sparsity

in activation [5]. The ReLU activation function is denoted in the Equation (3) of chapter

3.

86

In our research, it is inefficient to process all the possible state in the state space

since some of them are rarely selected and further cause longer convergence times for the

Q-table. Thus, the approximation (prediction) of the Q-values for those extreme states is

considered as the better way to handle those states instead of actually processing them.

The prediction process is performed based on previous processed states (i.e., during the

training phase), and this is done by combining our original Q-function with a DNN that

takes the state, which consists of flow match frequency, recentness, chosen action-

parameter pair, and the received reward as the input, and produce the Q-values for all

possible actions and its associated chosen parameter. The complete DQN update process

can be formulated in the Equation (4) in chapter 3.

Algorithm 4: Deep Q-Network Algorithm

Pre-condition:

 Initialize expereince memory M

 Initialize action-value pair Q with random weights

 Initialize state 𝑠𝑡

 Initialize goal 𝜇

Procedure:

01:improvement = 0

02:repeat

03: for (step = 0; step < learning_iteration; step++)

04: Get action 𝑎𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

05: Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

06: 𝜖 = 𝜖 – (step / learning_iter) * 𝜖

07: Take action 𝑎𝑡 on 𝑝𝑎𝑟𝑎𝑚𝑡 and receive reward r, obtain control overhead c

08: Observe new state 𝑠𝑡+1

09: Store experience memory (𝑠, 𝑎, 𝑟, 𝑠𝑡+1) into M

10: Sample n random transitions (𝑠′, 𝑎′, 𝑟′, 𝑠′′) from M

11: Update 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑡 ← 𝑟′ + 𝛾 ∗ max(𝑠′′ − 𝑎′′)

12: Update the 𝑝𝑎𝑟𝑎𝑚𝑡 of 𝜃𝑖

13: Train the Q network using loss = (𝑡𝑡 − 𝑄(𝑠′, 𝑎′))2

14: improvement = get_improvement(𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡)

15: end for

16:until improvement > 𝜇

Similar to the traditional RL, the ϵ-greedy policy is also used to select the action

to perform based on the highest Q-value associated with that action. The initial ϵ value is

set to 1 at the beginning so that the agent can choose random actions. This value is then

decreased over time in order to maintain a fixed exploration rate. In DQN, the algorithm

will also keep track the Q-value of each action and its associated chosen parameter. The

detail of the DQN algorithm is represented in Algorithm 4, and the terminal objective of

the algorithm is denoted as 𝜇.

87

Problem Formulation: We can describe the process of finding the best parameter

set that reduces the overall control overhead in our approach is the set partition problem,

and this problem is known to be NP-Hard. The problem emphasized in this research can

be formally defined as an Integer Liner Programing (ILP) problem. However, due to the

scale of the problem space, the ILP problems are considered troublesome for large-sized

problems, we will use an RL-based solution as the alternative, which provides better

efficiency for dealing with larger networks.

Let T denoted as a multiset where 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}, and the element 𝑡𝑖 is the rate

of overhead traffic generated by the control plane of the network when the ith flow entry

is installed on the SDN controller. Alternatively, when the flow entry is installed on the

switch, the flow traffic rate generated on the control plane is zero. In addition, let S

denoted as the multiset where 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, and the element 𝑠𝑖 represents the size of

the ith flow entry. Lastly, we denote 𝑎𝑖
𝑐 and 𝑎𝑖

𝑠 as the selectors where the value 1 will be

given if the ith flow entry is assigned to the SDN switch or controller, and the value of 0

will be given otherwise. Therefore, the problem can be formulated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑖 ∗ 𝑎𝑖
𝑐

𝑁

𝑖=1
 (5)

Such that

∑ 𝑠𝑖 ∗ 𝑎𝑖
𝑠 ≤ 𝐶𝑇𝐶𝐴𝑀

𝑁

𝑖=1
 (6)

𝑎𝑖
𝑐 + 𝑎𝑖

𝑠 = 1 ∀𝑖 1 ≤ 𝑖 ≤ 𝑁 (7)

𝑎𝑖
𝑐 ∈ {0, 1} ∀𝑖 ≤ 𝑖 ≤ 𝑁 (8)

𝑎𝑖
𝑠 ∈ {0, 1} ∀𝑖 ≤ 𝑖 ≤ 𝑁 (9)

where 𝐶𝑇𝐶𝐴𝑀 refers the TCAM capacity of the SDN switch and N refers the number of

flow entries that require to be placed on the switch or controller. The objective of

Equation (5) focuses on reducing the rate of overhead traffic generated on the control

plane of the network. Equation (6) defines the constraint to ensure the total size of the

88

flow entries placed on the switch does not overwhelm the capacity of the TCAM installed

on the switch. In Equation (7), the constraint is used to enforce that each flow entry is

placed on the switch or the controller, and further ensure that no flow entry is left unused

or duplicated. Finally, the rule for decision variables can only use integer values of a 0 or

1 is enforced by Equations (8) and (9).

Caffe – The Deep Learning Framework: In our design, the open source deep

learning framework namely “Caffe” [159] is employed. Caffe is an open source

framework developed and maintained by Berkeley Vision and Learning Center (BVLC)

using the C++ programming language. The framework provides a toolset with key

functionality of deep learning algorithms to users. Caffe typically runs with CUDA

technology so that the execution and computation of the algorithm can be further boosted

by using GPU(s) and it also supports Python and MATLAB bindings. The main

components of the Caffe framework are as follows:

 Blobs: A 4-dimentional array used by Caffe as a unified memory interface for

holding data such as batches of images, model parameters, and so on. Blobs

conceal the underlying operations in CPU/GPU by synchronizing the information

between them as needed. For instance, the user can use the CPU to load the data

into blob from the file system, and invoke the CUDA kernel to perform GPU

calculation without knowing the low-level details.

 Layers: Similar to a neural network layer, a Caffe layer plays an important role in

the deep learning algorithm that takes one or more blobs as input, and produces

one or more blobs as output. There are two major functions that need to be

performed within the Caffe layer: (1) the forward pass that produces output based

on the input fed into the layer; (2) the backward pass that takes the gradients of

the output to calculate the parameters along with the gradients of the inputs and

propagates them back to the previous layer using the backpropagation process.

Caffe provides several types of layers including convolutional, pooling, and more.

More details about Caffe can be found in [159].

 Network: Caffe network represents a set of connected layers in the form of a

directed acyclic graph that ensures the correctness of the network being

constructed in terms of forward and backward pass operations. The network starts

89

by loading the data from the disk into the data layer and generates the results in

the loss layer that can be used in classification or pattern extraction applications.

Caffe library is utilized for our deep reinforcement learning algorithm. The deep

Q-network algorithm development is based on the work of Mnih et al. [157], [158] with

some modifications tailored for our research focus.

Figure 28. The deep RL neural network achitecture

The architecture of our deep learning network, as illustrated in Figure 28, consists

of one input layer that takes as input high-dimensional data (i.e., the state space), three

fully connected hidden layers, and a loss layer that produces output. The output in our

case maps each configuration state to one of the three actions: no action, increase, and

decrease operation, with its corresponding parameters (i.e., flow match frequency or flow

recentness) with its associated Q-value. The training of the network starts by loading all

the states into the input layer, passing it through the layers of the network, and feeding

the final prediction into the loss layer that yields the loss and gradients. These are further

used to train the entire network through the backpropagation process.

Generation of the Traffic Flow: One of the essential element of our emulation

experiments is the flows. According to the previously discussed flow patterns, the flows

can be further divided into two categories: the elephant flows that convey high volumes

of data and the mice flows that carry small amounts of data generated from several

endpoints/applications. Typically, these two types of flows running on top of the network

has the ratio 1:9, where elephant flows account 10% and mice flows are 90%. Based on

90

the work of [181], the size of a mice flow is around 256 KB in average, whereas the size

of an elephant flow is considered as tens of megabytes. In our emulation experiments, the

values of 25.6 MB and 256 KB were employed to represent elephant and mice flows,

respectively, and all the flows are conveyed over the 1 Gb/s links using TCP/IP protocol.

Additionally, the Mininet emulator supports the capability to execute Python

codes within each emulated endpoint, which can run the script discretely or

simultaneously to generate TCP/IP traffic to the predefined destination with the specified

port number programmatically. The flow destination used by each endpoint is defined

based on the passed-in arguments for the purpose of the script reusability. Moreover,

Mininet is equipped with the built-in “iperf” tool that is also utilized collectively with our

Python script to create randomly generated traffic patterns to simulate the real traffic in

DCN. The traffic model used in our experiments assumes a greedy source producing

Poisson traffic at an average rate of 310 Mbits/sec.

Figure 29. The Mininet emulation topology

Design of Mininet Emulation: In order to simplify the problem scope of our

research, we designed a simplified SDN topology that utilizes one SDN controller and

one OpenFlow switch with 20 connected endpoints. This network topology is capable of

generating more than 4,000 flow entries to be resided in the OpenFlow switch and this is

no doubt that those entries can exceed the 1 Mbits TCAM module. For the role

assignment of those emulated 20 network participants, some of them will send traffic

while others act as receivers, as illustrated in Figure 29. The network configuration

91

overhead is defined by number of times the controller exchanges messages with a switch

in order to properly process the incoming packets to its destination.

The POX [37] SDN controller is employed in our emulation experiments. As we

have discussed in chapter 2, POX is am open source, Python-based networking software

platform that supports OpenFlow protocol version 1.0 and provides abundant APIs that

reveal the capabilities of POX. To utilize POX in our emulation and ensure the full

compatibility, we developed a customized POX component that can be used by the POX

framework and further extended the following built-in event handlers of POX:

 ConnectionUp: This event is triggered by the establishment of a new control

connection with a switch. We extend the functionality of this event handler by

implementing additional Python code to install the selected flow entries generated

by learning agent before the processing of any incoming traffic.

 ConnectionDown: Similar to the ConnectionUp event handler, this event is

triggered when a channel to a switch is dropped, either explicitly from controller

or the reboot of the switch. We extend this handler to output the final value of the

measured control overhead during the emulation session, and the value can then

be used later to calculate the immediate reward received by the learning agent for

that specific session.

 PacketIn: This event is fired whenever an OpenFlow packet-in message (sent by

the switch) is received by the controller. This event refers to a packet has arrived

at the switch port and can represent two scenarios: 1) the switch does not know

how to process this packet (i.e., it failed to match all the flow entries in the table),

or 2) the matched flow entry contains the instruction to send the packet to the

controller. This event is where the controller calculates the overhead by

incrementing the overhead value when the switch forwards a packet to the

controller.

During the initial phase of each emulation experiment, the traffic is injected onto

the network, and the state of the flow table is logged and monitored. To reduce the

learning time of the agent, the deployment of our proposed technique can be divided into

two phases: learning engine orchestration phase and production phase. We initiate the

state space construction process in the orchestration phase to collect all the forwarding

92

rules needed to properly handle all the incoming traffic on the switch. During this flow

entries collection process, the pool of flows is built on the controller side to observe all

the unique flow entries for the given time interval after the traffic has been placed onto

the network. We notice that the orchestration phase has direct impact on the efficiency

and performance of the production phase due to the fact that network traffic patterns vary

with time of the day and with the applications consuming the network resources. The

implementation of the intelligent state space construction process that adapts to the

dynamic nature of the network during the orchestration phase will be carefully studied in

our ongoing research. To set the time limit of the data collection process in our

experiments, we define this constraint to be 5 minutes.

When the agent is deployed on the controller during the production phase, the

agent is expected to explore the state space and automatically search for the near optimal

network flow entries from the flow pool by using two decisive criteria: flow match

frequency and flow recentness. The ultimate goal of the agent is to determine the flow

entry configurations that reduce the overall control plane overhead, and further yields a

configuration that can accommodate the traffic patterns monitored on the network.

The detail workflow of our proposed approach, as illustrated in Figure 30, can be

organized into series of procedures as follows:

Figure 30. The workflow of the proposed technique

93

1) Depends on the decision made by the learning agent, the value of flow_freq and

flow_recentness are used to filter all the flow entries from the flow pool and select

all the candidate entries that satisfy those two criteria.

2) The selected flow entries are placed in the flow table of the switch before the

traffic is pushed into the network.

3) The Mininet emulation session is initiated and the control plane overhead is

obtained at the end of the emulation process.

4) The reward is calculated by the algorithm for the current flow entry configuration

and the Q-values with its corresponding parameters are updated.

5) The aforementioned steps are repeated until the goal is met.

Whenever the near optimal parameters for choosing the flow entries that need to

reside on the switch memory is obtained by the agent, the overall network control plane

overhead can be reduced in the long-term while maintaining sufficient capacity for the

TCAM module.

4.5 Experiment Analysis and Performance Evaluation

To present the effectiveness and performance of our proposed RL-based

technique, the systematic evaluation experiments are conducted to compare the

traditional RL and deep RL algorithms against a baseline that deployed the MBF method

proposed in the work of [170]. Our proposed RL-based learning algorithm is added to the

SDN controller as an extra layer of intelligence and the performance matric utilized in

our study is the control plane overhead generated by each emulation experiment.

To setup the proper experiment environment, we use two Mininet-enabled Virtual

Machines (VMs) operating over a VirtualBox hypervisor. One VM is implemented with

traditional RL agent while another is DQN agent. The environment is equipped with

Python version 2.7 with Ubuntu Linux LTS 14.04, and the Mininet is in version 2.2.1.

Performance of Traditional RL: The effectiveness of the RL-based approach is

discussed in this section. The goal of the learning agent is to build a policy that

minimizes the overall control plane overhead while improving the switch memory

utilization efficiency.

94

In our first experiment, the performance of the traditional RL on two different sets

of decision parameters on the light weight traffic network is studied. The first set, as

depicted in Figure 31(a), contains the flow entries that satisfy flow match frequency as

90, and flow recentness as 30. In other words, this indicates any flow entries with the

match frequency are more than or equal to 90 or recentness are less than or equal to 30

seconds will be selected to be installed into the flow table of the switch. The second set,

as illustrated in Figure 31(b), has the flow entries the satisfy 40 as the match frequency

and 50 as the flow recentness. The purpose of this experiment is to evaluate the

adaptability of the traditional RL agent to different sets of parameter values. As we can

observe in Figure 31, the emulation results show the control plane overhead is gradually

reduced over time for those two different sets of parameters.

Figure 31. The traditional RL agent with different parameters set

The goal of this experiment for the traditional RL agent is to obtain the set of

parameter that can be used to select the flow entries that can at least reduce the 40% of

the network control plane overhead. The results indicate the control plane overhead has

been reduced at least 40% when compared with the initial state of the configuration. The

40% here is the predefined objective set for this experiment, and other goals can be

chosen as well depending on the requirement of the application. If the predefined goal is

unreasonable or infeasible, the learning agent will run indefinitely as it will continue to

strive to accomplish the given goal.

In observing the experiment results, we have noticed that the obtained control

overhead increases toward the end of learning episode. As illustrated in Figure 31(b), the

95

obtained control overhead starts to deteriorate after 300th episode for the learning agent. It

is due to the property of the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy utilized in the learning process that

allows the agent to pick some other action at random regardless of its Q-value. Based on

the design of the algorithm, the exploration rate 𝜖 decreases as learning episode increases,

but the learning agent still has the possibility to make the decision that deviates from the

known best course.

The Effectiveness of the Initialized Q-table: The size of the state space of the RL

algorithm is defined by the number of configurable parameters and the range of values in

each parameter. The state space grows exponentially as number of parameters and the

range of values increase. Due to the nature of the RL algorithm, the RL agent performs a

large number of explorations before it reaches the goal state. We believe this significantly

degrades the performance of the RL algorithm.

With this in mind, we observed the impact of the initialized Q-table (i.e.,

initialized policy) on improving the performance of our proposed approach. The

motivation behind this experiment is that in a typical setting, the networks experience

similar traffic patterns repeatedly. Hence, under this assumption, we argue that our RL

agent can achieve the objective faster, and minimize the time and computing resources

needed in order to satisfy the goal. We again randomly selected two different parameters

sets that do not belong to the set used to initialize the Q-table in order to evaluate the

impact of the initialized policy in our second experiment, and the predefined goal of this

experiment is 40% reduction in the control plane overhead.

Figure 32. The traditional RL agent with and without initialized Q-table

96

The performance of the traditional RL agent with and without initialized Q-table

is represented in Figure 32. As illustrated in Figure 32(a), the results show how the

initialized policy can guide the agent to achieve at least 31% reduction in control

overhead on the 17th learning episode. Besides, the agent can also achieve the predefined

goal, which is 40% reduction on the control plane overhead, on the 106th episode.

Alternatively, the agent without the initialized policy could not obtain the configuration

that meets the goal within a finite 150 learning episodes, and further prolonging the

convergence time of the agent.

In addition, the influence of the quality of the initialized Q-table on searching for

the configuration that would produce the optimal network control overhead in terms of

the number of the episodes needed is also studied in this experiment. Figure 32(b)

represent the results when the Q-table is initialized with 10 and 20 different parameters

sets. We observe that the agent with Q-table initialized with 20 different sets can achieve

around 44% control plane overhead reduction on as early as 18th episode. This implies the

more training set used to initialize the Q-table, the better performance that the agent can

have in terms of convergence time. In this experiment, we used a static exploration rate

as 0.1 to make the agent perform less exploration, but more exploitation on the

knowledge enclosed in the Q-table.

Performance of Deep RL (DQN): In this section, we conduct experiments to

study the effectiveness of deep reinforcement learning in support of searching a

configuration set that minimizes the overall network control plane overhead. Our

emulations utilize the Caffe library to develop a deep Q-network. Similar to our RL-

based scheme, the DQN-based RL agent explores the parameters sets based on what it

has learned during the training process. Instead of evaluating all the actions individually

on a given configuration from the previous state as implemented in the traditional RL

agent, the DQN estimates the Q-values for all the actions for the given configuration

produced by applying the chosen action on the configuration from the previous state.

Before the DQN learning process is initiated, the fundamental neural network is

built with four neurons in the input layer (two decisive parameters, the selected action,

and the immediate reward) and three neurons in the output layer used to represent each

97

action with associated Q-value and parameter. Moreover, three hidden layers are utilized

in our approach as depicted in Figure 28.

During the training phase, the Stochastic Gradient Descent (SGD) method is used

to obtain the minimum loss value. A vector of memory is used to collect all the processed

states associated with the action performed and the parameter selected by the DQN

learning agent. These processed states are referred to as the state transitions in our

approach. When the size of the memory vector reaches a certain threshold, the algorithm

updates the Q-network by randomly selecting four transitions and uses them to calculate

the weights in the network. The update process lasts until the agent reaches the goal state.

In this experiment, the goal state requires 40% control plane overhead reduction

compared to the initial state.

To assess the performance of our proposed DQN technique, we designed two

training scenarios to evaluate the performance of the DQN agent trained with 10 and 20

uniformly selected random parameters sets. The same light weigh traffic used to evaluate

the performance of the traditional RL agent is also utilized in this experiment.

Figure 33. The DQN-based RL agent with different training scenarios

Based on Figure 33, we can learn that the agent trained with 20 randomly chosen

sets is superior to the one trained with 10 sets. By observing the results, the goal state was

achieved within 5 learning episodes while another scenario needs 28 or more learning

episodes to reach the objective as represented in Figure 33(b). This implies the

98

performance of the DQN agent improves with number of training samples utilized to

train the network. During this evaluation process, the similar setting of the traditional RL

experiments is also employed where a static exploration rate as 0.1 is used to let the agent

perform less exploration and more exploitation of its learned experience.

Performance Comparison between the RL agents: In this section, we

conducted multiple experiments to compare the performance of the traditional RL and

DQN agent. To ensure the fairness of the comparison, we implemented a

training/initialization scenario with 20 uniformly randomly chosen parameters sets. The

selected candidate sets used to evaluate the learning agent are not part of the sets used to

train the agents. Different from out previous experiments, the light weight traffic pattern

is used to train/initialize the Q-matrix, and we utilize another heavier traffic pattern to

initiate the evaluation process. In addition, we have predefined two objectives, 40% and

60%, to evaluate the effectiveness for reducing the control plane overhead of the two

learning agents.

Moreover, we are interested in how the experienced agents interact with the

unknown traffic patterns and the experiments started with the initial parameters set that

are not part of the training sets. The decision making process of the agents in dealing with

this unknown pattern completely relies on their past experience and the knowledge

gained during the training phase. The initial state used to begin the learning emulation

consists of randomly chosen parameters sets and they are enforced to be independent

from the training sets. The objectives of this evaluation experiments are 40% and 60%

reduction on the control plane overhead, respectively.

As depicted in Figure 34, we observe that the performance of the DQN learning

agent is always superior to the traditional RL agent when the goal state is set to 40%

reduction on control plane overhead. Based on Figure 34(a) and 34(b), we can also learn

that DQN agent is able to obtain the better parameters set using shorter learning episode.

Additionally, as illustrated in Figure 35(a) and 35(b), the DQN learning agent continued

outperform the traditional RL agent when the goal state is set to 60% overhead reduction.

Therefore, based on the results of the experiments, we can conclude that DQN learning

agent has better efficiency and performance than the traditional RL agent when both

99

agents were trained using the same parameters sets, initialized similarly, and has the

identical predefined goal state.

Figure 34. The comparison between learning agents trained with the same 20 samples with

goal state in 40% control plane overhead reduction

Figure 35. The comparison between learning agents trained with the same 20 samples with

goal state in 60% control plane overhead reduction

From the results shown in Figures 34 and 35, it can also be noticed that the

traditional RL agent could not converge to yield the parameters set to satisfy the goal

state within the finite learning episode (i.e., 100 episodes), whereas the DQN agent is

capable to achieve the goal in shorter episodes. To clarify the purpose of the experiments,

the agent can stop the learning process whenever it satisfies the objective, and we make

the agents run for 100 episodes for demonstrating the concept of the experiments.

Statistically speaking, the average control plane overhead obtained by the DQN agent is

100

close to where the goal was defined. In addition, the DQN learning agent can even obtain

the parameters set that produce more reductions than the predefined objective.

Performance Comparison between RL-based Approach and MBF: In this

section, we conducted the experiment to compare the performance of our proposed RL

agents with MBF-based approach presented in the work of [170] due to the fact that MBF

utilizes the similar decisive parameters in our technique. Also, this work is the first

research effort to employ MBF on top of the built-in flow entry eviction mechanism in

OpenFlow switches. The flow table-hit ratio is used as the measurement to compare the

performance, and the statistics event handler “FlowStatsReceived” provided by POX API

is utilized for collecting the flow statistics. From the experiment, we generate a traffic

pattern with around 8K flows and 48 million packets for this emulation process. In

addition, a fixed flow table size of 4K is used in this experiment, which is employed to

ensure the agent does not exceed the flow table limit when selecting the flow entries.

Figure 36. The comparison between our proposed RL agents and the MBF-based

approach in terms of table-hit ratio

From Figure 36, we can observe that up to 41.3% table-hit ratio is achieved by the

traditional RL agent, whereas MBF-based approach can achieve up to 59.5% [170] and

DQN agent is up to 73.5% table-hit ratios. Thus, based on this results, our DQN learning

agent outperforms the MBF-based approach by 14% in table-hit ratio, while the

101

traditional RL agent is 16.4% lower than the MBF-based approach in terms of table-hot

ratio.

To this end, we can conclude on the basis of our experiments that performance of

the DQN-based learning agent is better than both traditional RL agent and MBF-based

approach presented by Challa et al. [170].

The significance of the Decisive Parameters: In our final experiment, we are

interested in knowing the significance of each decisive parameter for satisfying the

predefined objective for the emulation experiment. As shown in Figure 37, when the

DQN agent is trained using 20 parameters sets with the objective of achieving the 60%

reduction in overall control plane overhead, the total overhead reduction rate was only

12.3% when flow match frequency is the solo parameter considered in the flow entries

selection process. The overall control plane overhead reduction is improved to 23.2%

when the flow recentness parameter is considered alone. This results imply that the flow

recentness parameter is more significant than the flow match frequency parameter on

impacting the performance of the learning agent. As illustrated in Figure 37, the total

overall control plane overhead can be reduced to 58.5% when considering both

parameters jointly. Hence, this experiment provides valuable insight that both parameters

should be utilized in the flow entries filtering and selection process.

Figure 37. The significance of each decisive parameter, and the impact when they are

considered jointly

102

4.6 Conclusion

In this chapter, we have demonstrated a novel RL-based approach that

automatically search for the values of the two decisive parameters used to choose the

candidate flow entries to be installed inside the switch’s memory with the goal to

minimize the overall control plane overhead while improving the table-hit ratio over the

SDN-enabled environment. The results generated by our experiments indicate the

proposed RL approach is more effective in minimizing the control plane overhead in

comparing with the MBF-based approach proposed in the recent research efforts. The

performance evaluations prove that the DQN-based learning agent outperforms the

traditional RL-based agent and results in better efficiency in the aspect of convergence

time. From statistical perspective, the emulation results demonstrate the DQN method has

the ability to reduce the control plane overhead to 60%, with 13.9% more table-hit rate

compared to the MBF-based method. Our novel technique promotes an online and flow

pattern-aware forwarding rules selection mechanism that improves the utilization of the

capacity of the switch’s TCAM module while minimizing the overall control plane

overhead effectively.

103

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The presence of novel parametric systems focusing on providing more efficient

manner in dealing with complicated processes. To facilitate the flexibility and resilience

of the system, the framework of the system provides a set of tunable and reconfigurable

parameters that can be adjusted depending on the underlying hardware the system

operates with. To achieve the maximum performance, those parameters must be studied

and tuned carefully. Due to the dynamic nature of the available computing resources, the

parameters tuning process of the system is considered as NP-Hard since there is no

known effective mathematical formula can be utilized to locate the best solution.

Given that fact that it is impractical to locate the best solution mathematically, the

most suitable approach is to utilize approximation to obtain the near optimal solution.

The results of this work advance the understanding of the employment of the machine

learning technique, particularly the reinforcement learning (RL), to automatically and

adaptively tune those reconfigurable parameters to acquire the maximum performance of

the system. To evaluate the effectiveness of the RL-based approach, the comparison

among traditional RL algorithm, DQN-based algorithm, and other research efforts, has

been conducted in this work, and it was observed that the DQN-based approach has better

performance/efficiency in finding the parameters set that significantly improve the

performance of the system automatically and adaptively given the dynamics of the

system. Additionally, the significance of each reconfigurable parameter was further

examined. Depending the characteristics of the system and the applications operating on

the system, each tunable parameter possesses different level of significance. Although the

parameter with the most significance can have the major influence on the system

performance, the overall performance improvement is superior when all the configurable

parameters were considered jointly, whereas the improvement scale is limited when the

parameters were considered individually.

By providing a greater understanding of the efficacy for employing reinforcement

learning toward self-reconfigurable systems and implementation of novel techniques to

locate the near optimal solution adaptively, this work has contributed to the advancement

104

of machine learning technology in searching for the optimal configuration that fulfills the

predefined objectives of the system.

Despite the fact that the RL and DQN based agents perform well in our RL-

MRCONF approach, further development is needed to expand the capabilities of our

simulator and the underlying learning algorithms. Currently, our simulator only takes into

account six MapReduce configuration parameters. With the capability of deep

reinforcement learning, more parameters can be considered and the MapReduce process

can be studied and analyzed more precisely. In addition, the current version of the

simulator does not include the implementation of Hadoop YARN resources management

module. The RL-MRCONF was implemented based on the work of Wang et al. [149],

[150] with the goal of making MR-Perf deployable on top of NS-3 simulator. With this

objective in mind, we have no intention to change the core implementation of MR-Perf

and we leave it as is since MR-Perf has modeled the performance of most Hadoop setups

effectively. Nonetheless, since such support will enhance the value of RL-MRCONF and

enable us to explore the configurations of MapReduce thoroughly, implementing the

support of Hadoop YARN module is the focus of our ongoing research.

Furthermore, the value of the exploration rate in our scheme still needs to be

studied carefully in order to ensure the learning process of the agent does not deviate

from its intended predefined objective. Such deviation will increase the time required to

find the MapReduce configuration that satisfies the goal conditions. Lastly, we plan to

deploy the proposed system into real-world cloud environment, such as amazon AWS

MapReduce service.

In the application of using RL-based approach in managing flow entries in the

SDN environment, although the machine learning-based approach performs well in our

experiments, further implementation is required to expand the capabilities of the

emulation scope. Currently, our experiments were built on top of the simplified network

topology, and the real-world deployments are considered as the essential step to prove the

value of the proposed approach. Moreover, the flow entry collection process initiated in

this research needs to be studied carefully in order to build more intelligent state space

construction process that adapts to the dynamic nature of the network. Since such support

will promote the significance of the research and allows us to have deeper comprehension

105

in SDN flow management, development of such framework in support of the real-world

SDN topology is the center of our ongoing research.

106

CHAPTER 6

PUBLISHED WORKS

Publications

1. M. Anan, A. Al-Fuqaha, N. Nasser, T. Mu, and H. Bustam, “Empowering

Networking Research and Experimentation through Software-Defined

Networking,” Journal of Network and Computer Applications, vol. 70, pp.

140-155, July 2016.

2. T. Mu, A. Al-Fuqaha, K. Shuaib, F. M. Sallabi, and J. Qadir, “SDN Flow

Entry Management Using Reinforcement Learning,” ACM Transactions

on Autonomous and Adaptive Systems, vol. 13, no. 2, article 11, Nov. 2018

3. T. Mu, A. Al-Fuqaha, and K. Salah, “Automating the Configuration of

MapReduce: A Reinforcement Learning Scheme,” accepted on IEEE

Transactions on Systems, Man, and Cybernetics: Systems, Dec. 2019

107

REFERENCES

[1] Mitchell, T. M. The Discipline of Machine Learning, Machine Learning

Department technical report CMU-ML-06-108. Pittsburgh, PA: Carnegie Mellon

University, July 2006

[2] Mitchell, T. M. Machine Learning. New York: McGraw-Hill, 1997

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

1998

[4] S. Marsland. Machine Learning. CRC Press, 2nd Edition, 2014

[5] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural

Networks, vol. 61, pages 85-117, January 2015

[6] D. Meyer, V. Fuller, D. Lewis, E. Lear, S. Brim, D. Oran, N. Chiappa, J. Curran,

and D. Farinacci, “Locator/ID Separation Protocol (LISP) Tutorial,” Dec. 2007.

[Online]. Available: http://www.ietf.org/proceedings/70/slides/RRG-7.pdf

[7] [30] F. d. O. Silva, J. H. d. S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling

Future Internet Architecture Research and Experimentation by Using Software

Defined Networking,” in European Workshop on Software Defined Networking

(EWSDN), pp. 73-78, October 2012

[8] Open Networking Foundation. [Online]. Available:

https://www.opennetworking.org, July 2014

[9] H. Kim and N. Feamster. “Improving Network Management with Software Defined

Networking,” IEEE Communication Magazine, vol. 51, pp. 114-119, Feburary

2013

[10] R. Jain and S. Paul. “Network Virtualization and Software Defined Networking for

Cloud Computing: A Survey,” IEEE Communication Magazine, vol. 51, pp. 24-31,

November 2013

[11] N. Feamster, J. Rexford, and E. Zegura. "The road to SDN: an intellectual history

of programmable networks." ACM SIGCOMM Computer Communication Review

44.2, pp. 87-98, 2014

[12] Nadeau, Thomas D., and Ken Gray. “SDN: Software Defined Networks." O'Reilly

Media, Inc., 2013.

[13] Tail-f Systems. “Tutorial – SDN, NETCONF and YANG,” 2013. [Online].

Available: https://www.comsoc.org/form/tutorial-registration-sdn-netconf-and-

yang-programmable-networks-managed

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,”

in ACM SIGCOMM Computer Communications Review, vol. 38, no.2, pp. 73-78,

April 2008

[15] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The Locator/ID Separation

Protocol (LISP),” Internet Engineering Task Force RFCs, ISSN 2070-1721, RFC

6830, January 2013

[16] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and Control Element

Separation (ForCES) Framework,” Internet Engineering Task Force RCFs, RFC

3746, April 2004

[17] A. Doria, J. Hadi Salim, R. Haas, W. Wang, R. Gopal, and J. Halpern, “Forwarding

and Control Element Separation (ForCES) Protocol Specification,” Internet

Engineering Task Force RFCs, ISSN: 2070-1721, RFC 5810, March 2010

108

[18] D. Allan and T. Nadeau, “A Framework for Multi-Protocol Label Switching

(MPLS) Operations and Management (OAM),” Internet Engineering Task Force

RFCs, RFC 4378, February 2006

[19] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching

Architecture,” Internet Engineering Task Force RFCs, RFC 3031, January 2001

[20] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-TE:

Extensions to RSVP for LSP Tunnels,” Internet Engineering Task Force RFCs,

RFC 3209, December 2001

[21] Open vSwitch: An Open Virtual Switch. [Online]. Available:

http://www.openvswitch.org, July 2014

[22] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual Switching in an Era

of Advanced Edges,” in 2nd Workshop on Data Center – Converged and Virtual

Ethernet Switching (DC-CAVES), September 06, 2010

[23] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker, “Extending

Networking into the Virtualization Layer,” in ACM Workshop on Hot Topics in

Networks (HotNets-VIII), October 22-23, 2009

[24] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open Signaling for ATM,

Internet and Mobile Networks (OPENSIG’98),” in Workshop of Open Signaling

Working Group (OPENSIG), October 1998

[25] Ethane: A Security Management Architecture, [Online]. Available:

http://yuba.stanford.edu/ethane/index.html

[26] M. Casado, M. J. Freedman, J. Pettit, J. Lou, N. McKeown, and S. Shenker.

"Ethane: Taking control of the enterprise." ACM SIGCOMM Computer

Communication Review 37.4, pp. 1-12, October 2007

[27] The 4D Project. [Online]. Available: http://www.cs.cmu.edu/~4D/, July 2014

[28] The Internet Engineering Task Force (IETF). [Online]. Available:

http://www.ietf.org, July 2014

[29] R. Enns, “NETCONF Configuration Protocol,” Internet Engineering Task Force

RFCs, RFC 4741, December 2006

[30] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network

Configuration Protocol (NETCONF),” Internet Engineering Task Force RFCs,

ISSN: 2070-1721, RFC 6241, June 2011

[31] K. Ogawa, W. Wang, E. Haleplidis, and J. Hadi Salim, “High Availability within a

Forwarding and Control Element Separation (ForCES) Network Element,” Internet

Engineering Task Force RFCs, ISSN: 2070-1721, RFC 7121, February 2014

[32] A. Rodriguez-Natal, A. Cabellos-Aparicio, S. Barkai, V. Ermagan, D. Lewis, F.

Maino, and D. Farinacci, “Software Defined Networking extensions for the

Locator/ID Separation Protocol,” IETF LISP Working Group Internet-Draft,

February 7, 2014

[33] M. Boucadair and C. Jacquenet, “Software-Defined Networking: A Perspective

From Within A Service Provider,” IETF Network Working Group Internet-Draft,

January 6, 2014

[34] M. Bjorklund, “YANG – A Data Modeling Language for the Network

Configuration Protocol (NETCONF),” Internet Engineering Task Force RCFs,

RFC 6020, October 2010

109

[35] Internet Research Task Force (IRTF). [Online]. Available: https://irtf.org, July

2014

[36] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,

“NOX: Towards an Operating System for Networks,” ACM SIGCOMM Computer

Communication Review, 38(3), pp. 105-110, July 2008

[37] NOX/POX. [Online]. Available: http://www.noxrepo.org, July 2014

[38] Trema OpenFlow Controller. [Online]. Available: https://github.com/trema/trema,

July 2014

[39] Floodlight Controller. [Online]. Available:

http://www.projectfloodlight.org/floodlight/, July 2014

[40] Ryu SDN Framework. [Online]. Available: http://osrg.github.io/ryu/, July 2014

[41] OpenDaylight – A Linux Foundation Collaborative Project. [Online]. Available:

http://www.opendaylight.org, July 2014

[42] NetFPGA. http://www.netfpga.org, July 2014

[43] G. Antichi, A. D. Pietro, S. Giordano, G. Procissi, and D. Ficara, “Design and

Development of an OpenFlow Compliant Smart Gigabit Switch,” in IEEE Global

Telecommunication Conference (GLOBECOM 2011), pp. 1-5, December 2011

[44] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown,

“Implementing an OpenFlow Switch on the NetFPGA platform,” in Proceedings

of the 4th ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS’08), pp. 1-9, 2008

[45] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping

for Software-Defined Networks,” in Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, October 2010

[46] Mininet – An Instant Virtual Network on your Laptop (or other PC). [Online].

Available: http://www.mininet.org/, July 2014

[47] Big Switch, Indigo. [Online]. Available: http://www.projectfloodlight.org/indigo/

[48] R. Giladi and N. Yemini. “A Programmable, Generic Forwarding Element

Approach for Dynamic Network Functionality.” in Proceedings of the 2nd ACM

SIGCOMM workshop on Programmable Routers for Extensible Services of

Tomorrow. PRESTO, pp. 19-24, August 21 2009

[49] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci,

and I. Seskar, "GENI: A federated testbed for innovative network experiments."

Computer Networks, vol. 61, pp. 5-23, March 14, 2014

[50] H. Kim, J. Kim, and Y. Ko, "Developing a cost-effective OpenFlow testbed for

small-scale Software Defined Networking." Advanced Communication Technology

(ICACT), 2014 16th International Conference on. IEEE, 2014

[51] GENI, [Online]. Available: www.geni.net, June 2014

[52] COTN, [Online]. Available: http://www.cenic.org/page_id=143/, June 2014

[53] J. Kim, B. Cha, J. Kim, N. Kim, G. Noh, Y. Jang, H. An, H. Park, J. Hong, D. Jang,

T. Ko, W, Song, S. Min, J. Lee, B. Kim, I. Cho, H. Kim, and S. Kang, "OF@TEIN:

An OpenFlow-enabled SDN Testbed over International SmartX Rack Sites."

Proceedings of the Asia-Pacific Advanced Network 36, pp. 17-22, 2013

[54] TWAREN, [Online]. Available: http://www.twaren.net/ , June 2014

[55] National Center for High-performance Computing (NCHC), [Online]. Available:

http://www.nchc.org.tw/en/, February 2014

110

[56] J. Hu, W. Huang, H. Tseng, H. Lee, L. Ku, S. Lin, T. Liu, and C. Yang, "Future

Internet in Taiwan: Design and Research Activities over TWAREN Network."

Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012

Sixth International Conference on. IEEE, 2012

[57] OCEAN, [Online]. Available: http://ocean.cs.illinois.edu/, June 2014

[58] Inter-Datacenter WAN with centralized TE using SDN and OpenFlow, [Online].

Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/customer-case-studies/cs-googlesdn.pdf, June 2014

[59] S. Jain, A. Kumar, S. Mandal, J. Ong, L, Poutievski, A. Singh, S. Venkata, J.

Wanderer, J. Zhou, M. Xhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat, "B4:

Experience with a globally-deployed software defined WAN." Proceedings of the

ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2013

[60] U. Hölzle, "OpenFlow@Google," Open Networking Summit 2012, Apr. 2012.

[61] E. Kawai, "Can SDN Help HPC?," Applications and the Internet (SAINT), 2012

IEEE/IPSJ 12th International Symposium on , vol., no., pp. 210, 16-20 July 2012

[62] National Institute of Information and Communications Technology. [Online].

Available: http://www.nict.go.jp/en/ , February 2014

[63] Y. Kanaumi, S. Saito, E. Kawai, S. Ishii, K. Kobayashi, and S. Shimojo,

"Deployment and operation of wide-area hybrid OpenFlow networks." Network

Operations and Management Symposium (NOMS), 2012 IEEE. IEEE, 2012

[64] Y. Kanaumi, S. Saito, E. Kawai, S. Ishii, K. Kobayashi, and S. Shimojo, "RISE: A

Wide-Area Hybrid OpenFlow Network Testbed." Ieice Transactions on

Communications 96.1, pp. 108-118, 2013

[65] V. Kotronis, D. Schatzmann, and B. Ager, "On bringing private traffic into public

SDN testbeds." Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking. ACM, 2013

[66] Enterprise GENI, [Online]. Available: https://www.geni.net/?p=1463, June 2014

[67] TangoGENI, [Online]. Available: http://groups.geni.net/geni/wiki/TangoGENI,

June 2014

[68] S. Narayan, S. Bailey, M. Greenway, R. Grossman, A. Heath, R. Powell, and A.

Daga, "OpenFlow Enabled Hadoop over Local and Wide Area Clusters," High

Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC

Companion: , vol., no., pp.1625-1628, 10-16 November 2012

[69] S. Narayan, S. Bailey, and A. Daga, "Hadoop Acceleration in an OpenFlow-Based

Cluster," High Performance Computing, Networking, Storage and Analysis (SCC),

2012 SC Companion: , vol., no., pp.535-538, 10-16 November 2012

[70] M. Campanella, "The FEDERICA Project: creating cloud infrastructures."

Proceedings of Cloudcomp, pp. 19-21, 2009

[71] M. Campanella, and F. Farina, "The FEDERICA infrastructure and experience."

Computer Networks (2014)

[72] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G.

Parulkar, “Can the production network be the testbed?” in Proceedings of USENIX

OSDI, Canada, 4-6 October 2010

[73] R. DoriguzziCorin, M. Gerola, R. Roggio, F. De Pellegrini, and E. Salvadori,

“VeRTIGO: Network virtualization and beyond,” in Proceedings of EWSDN,

Germany, October 2012

111

[74] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Kopsel, D. Colle, B. Puype, D.

Simeonidou, R. Nejabati, M. Channegowda, M. Kind, T. Dietz, A. Autenrieth, V.

Kotronis, E. Salvadori, S. Salsano, M. Korner, and S. Sharma, "Design and

implementation of the OFELIA FP7 facility: The European OpenFlow testbed."

Computer Networks, vol. 61, pp. 132-150, March 14 2014

[75] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo, "Implementing Layer

2 Network Virtualization using OpenFlow: Challenges and Solutions." Software

Defined Networking (EWSDN), 2012 European Workshop on. pp. 30-35, IEEE,

2012

[76] M. Gerola, R. Doriguzzi Corin, R. Riggio, F. De Pellegrini, E. Salvadori, H.

Woesner, T. Rothe, M. Sune, and L. Bergesio, “Demonstrating inter-testbed

network virtualization in OFELIA SDN experimental facility,” INFOCOM, April,

2013

[77] A. Köpsel, and H. Woesner. "OFELIA–pan-european test facility for openflow

experimentation." Towards a Service-Based Internet. Springer Berlin Heidelberg,

pp. 311-312, 2011

[78] E. Dimogerontakis, I. Vilata, and L. Navarro, "Software Defined Networking for

community network testbeds," Wireless and Mobile Computing, Networking and

Communications (WiMob), 2013 IEEE 9th International Conference on , pp. 111-

118, 7-9, October 2013

[79] CONFINE Project – Community Networks Testbed for the Future Internet.

[Online]. Available: http://confine-project.eu/

[80] B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, "Pathlet routing." ACM

SIGCOMM Computer Communication Review. Vol. 39. No. 4. ACM, 2009

[81] D. Pitt, "Trust in the cloud: the role of SDN." Network Security, pp. 5-6, March

2013

[82] IDC Predictions 2013: Competing on the 3rd Platform, [Online]. Available:

http://www.idc.com/research/Predictions13/downloadable/238044.pdf, April 2014

[83] A. Sydney, D. Ochs, C. Scoglio, D. Gruenbacher, and R. Miller, "Using GENI for

Experimental Evaluation of Software Defined Networking in Smart Grids."

Computer Networks, vol. 63, pp. 5-16 April 22, 2014

[84] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, "Packet and

circuit network convergence with OpenFlow." Optical Fiber Communication

Conference. Optical Society of America, 2010.

[85] MIT Tech Review, 2009; [Online]. Available:

http://www2.technologyreview.com/specialreports/specialreport.aspx?id=37

[86] H. Goudarzi, M. Ghasemazar, and M. Pedram. "Sla-based optimization of power

and migration cost in cloud computing." Cluster, Cloud and Grid Computing

(CCGrid), 2012 12th IEEE/ACM International Symposium on. IEEE, 2012

[87] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, "A survey of

software-defined networking: Past, present, and future of programmable networks."

Communications Surveys & Tutorials, IEEE vol. 16, pp. 1617-1634, February 13

2014

[88] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, "Towards

programmable enterprise WLANs with Odin." Proceedings of the first workshop

on Hot topics in software defined networks. ACM, 2012

112

[89] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, "Demo:

programming enterprise WLANs with Odin." ACM SIGCOMM Computer

Communication Review 42.4, pp. 279-280, 13-17 August 2012

[90] A. Nayak, A. Reimers, N. Feamster, and R. Clark, "Resonance: Dynamic Access

Control for Enterprise Networks." Proceedings of the 1st ACM workshop on

Research on enterprise networking. ACM, 2009

[91] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, "Toward Software-defined

Middlebox Networking." Proceedings of the 11th ACM Workshop on Hot Topics

in Networks. ACM, 2012

[92] SDN FOR HOME NETWORKS, [Online]. Available:

http://onrc.stanford.edu/research_sdn_home_networks.html, March 2014

[93] K. Calvert, W. Edwards, N. Feamster, R. Grinter, Y. Deng, and X. Zhou,

"Instrumenting Home Networks." ACM SIGCOMM Computer Communication

Review 41.1, pp. 84-89, 2011

[94] R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, A. Moore, A. Koliousis,

and J. Sventek, "Control and Understanding: Owning Your Home Network."

Communication Systems and Networks (COMSNETS), 2012 Fourth International

Conference on. IEEE, 2012

[95] F. Hsu, M. Malik, and S. Ghorbani. "OpenFlow as a Service."

[96] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee,

and N. McKeown, "ElasticTree: Saving Energy in Data Center Networks." NSDI.

vol. 10. 2010

[97] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, "Live Migration of an Entire

Network (and its Hosts)." Proceedings of the 11th ACM Workshop on Hot Topics

in Networks. ACM, 2012

[98] H. Shirayanagi, H. Yamada, and K. Kono, "Honeyguide: A VM Migration-aware

Network Topology for Saving Energy Consumption in Data center Networks."

IEICE TRANSACTIONS on Information and Systems 96.9, pp. 2055-2064, 2013

[99] X. Wang, Z. Liu, Y. Qi, and J. Li, "LiveCloud: A Lucid Orchestrator for Cloud

Datacenters." Cloud Computing Technology and Science (CloudCom), 2012 IEEE

4th International Conference on. IEEE, 2012

[100] R. Raghavendra, J. Lobo, and K. Lee, "Dynamic Graph Query Primitives for SDN-

based Cloud Network Management." Proceedings of the first workshop on Hot

topics in software defined networks. ACM, 2012

[101] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, "Cost of Virtual Machine

Live Migration in Clouds: A Performance Evaluation." Cloud Computing. Springer

Berlin Heidelberg, pp. 254-265, 2009

[102] K. Yap, R. Sherwood, M. Kobayashi, T. Huang, M. Chan, N. Handigol, N.

McKeown, and G. Parulkar, "Blueprint for Introducing Innovation into Wireless

Mobile Networks." Proceedings of the second ACM SIGCOMM workshop on

Virtualized infrastructure systems and architectures. ACM, 2010

[103] L. Li, Erran, Z. Mao, and J. Rexford. "Toward Software-Defined Cellular

Networks." Software Defined Networking (EWSDN), 2012 European Workshop

on. IEEE, 2012

113

[104] K. Yap, M. Kobayashi, R. Sherwood, N. Handigol, T. Huang, M. Chan, and N.

McKeown, "OpenRoads: Empowering Research in Mobile Networks." ACM

SIGCOMM Computer Communication Review 40.1, pp. 125-126, 2010

[105] M. Bansal, J. Mehlman, S. Katti, and P. Levis. "OpenRadio: A Programmable

Wireless Dataplane." Proceedings of the first workshop on Hot topics in software

defined networks. ACM, 2012

[106] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. "MobilityFirst Future

Internet Architecture Project." Proceedings of the 7th Asian Internet Engineering

Conference. ACM, 2011

[107] MobilityFirst Future Internet Architecture Project [Online]. Available:

http://mobilityfirst.winlab.rutgers.edu/ , April 2014

[108] H. Owens, and A. Durresi, "Video over Software-Defined Networking (VSDN),"

Network-Based Information Systems (NBiS), 2013 16th International Conference

on , vol., no., pp.44,51, 4-6 September 2013

[109] H.E. Egilmez, B. Gorkemli, A.M. Tekalp, and S. Civanlar, "Scalable Video

Streaming Over OpenFlow Networks: An Optimization Framework for QoS

Routing." Image Processing (ICIP), 2011 18th IEEE International Conference on.

IEEE, 2011

[110] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P.B. Godfrey, "VeriFlow: Verifying

Network-Wide Invariants in Real Time." ACM SIGCOMM Computer

Communication Review 42.4, pp. 467-472, 2012

[111] A. Singla, C. Hong, L. Popa, and P.B. Godfrey, "Jellyfish: Networking Data

Centers Randomly." 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI). 2012.

[112] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, "Software Transactional

Networking: Concurrent and Consistent Policy Composition." Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined networking.

ACM, 2013

[113] A. Bianco, L. Giraudo, and D. Hay. "Optimal Resource Allocation for Disaster

Recovery." Global Telecommunications Conference (GLOBECOM 2010), 2010

IEEE. IEEE, 2010

[114] Raspberry Pi. [Online]. Available: http://www.raspberrypi.org/, June 9, 2014

[115] J. Zhang, B. Seet, T. Lie, and C. Foh, "Opportunities for Software-Defined

Networking in Smart Grid." Information, Communications and Signal Processing

(ICICS) 2013 9th International Conference on. IEEE, 2013

[116] L. Ilyes, M. Anan, A. Al-fuqaha, and M. Ayyash, "Cloud-based Autonomic Service

Monitoring In The Future Internet,” IEEE International Wireless Communications

and Mobile Computing Conference (IWCMC), pp.63-68, 2014

[117] IEEE & Smart Grid, [Online]. Available: http://smartgrid.ieee.org/ieee-smart-grid,

October, 2014

[118] V.C. Gungor, B. Lu, and G.P. Hancke. "Opportunities and Challenges of Wireless

Sensor Networks in Smart Grid." Industrial Electronics, IEEE Transactions on, no.

10, pp. 3557-3564, 2010

[119] [C. Tang, M. Steinder, M. Spreitzer and G. Pacifici, “A scalable application

placement controller for enterprise data centers,” The 16th International World

Wide Web Conference (WWW’07), pp. 331-340, 2007.

114

[120] N. Bobroff, A. Kochut, K. Beaty, "Dynamic Placement of Virtual Machines for

Managing SLA Violations," IEEE International Symposium on Integrated Network

Management, pp. 119-128, 2007.

[121] H. Goudarzi, M. Ghasemazar and M. Pedram, “SLA-based Optimization of Power

and Migration Cost in Cloud Computing,” IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp. 172-179, 2012

[122] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, “Energy-Aware Autonomic

Resource Allocation in Multi-Tier Virtualized Environments,” IEEE Transactions

on Services Computing, vol. 5, no. 1, pp. 2-19, 2010

[123] H. Goudarzi and M. Pedram, “Energy-Efficient Virtual Machine Replication and

Placement in a Cloud Computing System”, IEEE 5th International Conference on

Cloud Computing, pp. 750-757, 2012

[124] ETSI, “Network Functions Virtualisation: An Introduction, Benefits, Enablers,

Challenges & Call for Action.” [Online]. Available:

https://portal.etsi.org/NFV/NFV_White_Paper.pdf. October 2012

[125] ETSI, “Network Functions Virtualisation: Architectural Framework.” [Online].

Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002

v010101p.pdf. October 2013

[126] H. Hawilo, A. Shami, M. Mirahmadi, and A. Asal, “NFV: State of the Art,

Challenges and Implementation in Next Generation Mobile Networks (vEPC).”

IEEE Network, vol. 28, no. 6, pp. 18-26, Nov.-Dec. 2014

[127] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software-Defined

Networking: State of the Art and Research Challenges.” Computer Networks

Journal, vol. 72, 29, pp. 74-98, October 2014

[128] L. Liao, A. Shami, V. C.M. Leung, “DFVisor: A Distributed FlowVisor Platform

for QoS awared Cloud Network Virtualization.” IET Networks Journal, vol. 4, no.

5, pp. 270-277, September 2015

[129] W. Xia, Y. Wen, C. Foh, D. Niyato, and H. Xie, “A Survey on Software-Defined

Networking.” IEEE Communication Surveys & Tutorials, vol. 17 no. 1 2015

[130] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D.

Walker, “Frenetic: A Network Programming Language.” Proceedings of the 16th

ACM SIGPLAN international conference on Functional programming. ICFP, pp.

279-291, 2011

[131] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. Katta, C. Monsanto, J. Reich,

M. Reitblatt, J. Rexford, C. Schlesinger, A. Story, and D. Walker, “Language for

Software-Defined Networks.” IEEE Communications Magazine, vol. 51, no. 2, pp.

128-134, February 2013

[132] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular SDN

Programming with Pyretic.” The Usenix Magazine, vol. 38, no. 5, pp. 40-47,

October 2013

[133] A. Voellmy and P. Hudak, “Nettle: Functional Reactive Programming of

OpenFlow Networks.” Proceedings of the 13th international conference on

Practical Aspects of Declarative Languages. PADL, 2011

115

[134] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click Modular

Router.” ACM Transactions on Computer Systems (TOCS), vol 18, no. 3, pp. 263-

297, August, 2000

[135] Click Modular Router. Click Elements. http://read.cs.ucla.edu/click/click,

September 2015

[136] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone, A. Knies, M.

Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Parallelism to Scale

Software Routers.” Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles. SOSP, pp. 15-28, 2009

[137] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling Fast, Dynamic Network

Processing with ClickOS.” Proceedings of the 2nd workshop on Hot topics in

software defined networking. ACM SIGCOMM, pp. 67-72, 2013

[138] R. Riggio, T. Rasheed, and F. Granelli, “EmPOWER: A Testbed for Network

Function Virtualization Research and Experimentation.” IEEE SDN conference for

Future Networks and Services. SDN4FNS, pp. 1-5, November 2013

[139] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software Defined Radio

Access Network.” Proceedings of the 2nd workshop on Hot topics in software

defined networking. ACM SIGCOMM, pp. 25-30, 2013

[140] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and Flexible

Cellular Core Network Architecture.” Proceedings of the 9th conference on

Emerging networking experiments and technologies. ACM CoNEXT, pp. 163-174,

2013

[141] T. Chen, H. Zhang, X. Chen, and O. Tirkkonen, “SoftMobile: Control Evolution

for Future Heterogeneous Mobile Networks.” IEEE Wireless Communications, vol.

21, no. 6, pp. 70-78, December 2014

[142] "Apache Hadoop." http://hadoop.apache.org

[143] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on Large

Clusters,” Communications of ACM, vol. 51, pages 107-113, January 2008

[144] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing Tool,”

Communications of ACM, vol. 53, no 1, pages 72-77, 2010

[145] K. Wang, X. Lin, and W. Tang, “Predator – An Experience Guided Configuration

Optimizer for Hadoop MapReduce,” in Cloud Computing Technology and Science

(CloudCom), 2012 IEEE 4th International Conference, pages 419-426, 2012

[146] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving

MapReduce Performance in Heterogeneous Environments,” in Proceedings of the

8th USENIX conference on Operating systems design and implementation, pages

29-42, 2008

[147] S. Babu, “Toward Automatic Optimization of MapReduce Programs,” in

Proceedings of the 1st ACM symposium on Cloud computing, SoCC’10, pages 137-

142, 2010

[148] Network Simulator 3 (NS-3). [Online]. Available: https://www.nsnam.org/

[149] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A Simulation Approach to

Evaluating Design Decisions in MapReduce Setups,” in IEEE International

Symposium on MASCOTS 2009, pages 1 – 11, September 2009

[150] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using Realistic Simulation for

Performance Analysis of MapReduce Setups,” in Proceedings of the 1st ACM

116

workshop on Large-Scale System and Application Performance 2009, pages 19 –

26, 2009

[151] C. Tain, H. Zhou, Y. He, and L. Zha, “A Dynamic MapReduce Scheduler for

Heterogeneous Workloads,” in Grid and Cooperative Computing, 2009. GCC’09,

8th International Conference, pages, 218-224, 2009

[152] D. Wu and A. Gokhale, “A Self-Tuning System based on Application Profiling and

Performance Analysis for Optimizing Hadoop MapReduce Cluster Configuration,”

in 20th Annual International Conference in High Performance Computing, pages

89- 98, December 2013

[153] P. Lama and X. Zhou, “AROMA: Automated Resource allo-cation and

Configuration of MapReduce Environment in the Cloud,” in Proceedings of the 9th

International Conference on Automatic Computing 2012, pages 63 – 72, 2012

[154] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu,

“Starfish: A Self-tuning System for Big Data Analytics,” in 5th Biennial

Conference on Innovative Data Systems Research (CIDR), pages 261 – 272,

January 2011

[155] J. Rao, X. Bu, C. Xu, L. Wang, and G. Yin, “VCONF: A Reinforcement Learning

Approach to Virtual Machine Auto-configuration,” in Proceedings of the 6th

International Conference on Autonomic Computing, ICAC ’09, pages 137-146,

2009

[156] X. Bu, J. Rao, and C. Xu, “A Reinforcement Learning Approach to Online Web

Systems Auto-configuration,” in Proceedings of the 29th IEEE International

Conference on Distributed Computing Systems (ICDCS ‘09), pages: 2-11, 2009

[157] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” arXiv preprint,

arXiv: 1312.5602. December 19, 2013

[158] V. Mnih, K. Kavukcuoglu, D. Silver, AA. Rusu, J. Veness, MG. Bellemare, A.

Graves, M. Riedmiller, AK. Fidjeland, G. Ostrovski, and S. Petersen, “Human-

level Control through Deep Reinforcement Learning,” Nature, 518(7540), pages

529-533. February 26, 2015

[159] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature Embedding,”

in Proceedings of the 22nd ACM International Conference on Multimedia, pages

675-678. November 03, 2014

[160] Caffe Tutorial. [Online]. Available: http://caffe.berkeleyvision.org/tutorial/

[161] Google DeepMind. [Online]. Available: https://deepmind.com/

[162] Z. Bei, Z. Yu, H. Zhang, W. Xiong, C.Xu, L. Eeckhout, and S. Feng, “RFHOC: A

Random-Forest Approach to Auto-Tuning Hadoop’s Configuration,” IEEE Trans.

On Parallel and Distributed Systems, vol. 27, no. 5, pages, 1470-1483, May 2016

[163] L.Cai, Y. Qi, and J. Li, “A recommendation-based parameter tuning approach for

Hadoop,” in 2017 IEEE International Symposium on Cloud and Service Computing

(IEEE SC2-2017), pages 223-230. November 22-25, 2017

[164] T. White, Hadoop: The Definite Guide, 3rd ed. O’ Reilly Media/Yahoo Press,

Sebastopol, California, 2012

[165] Cloudera, “Configuration Parameters,” 2012. [Online]. Available:

http://blog.cloudera.com/blog/author/aaron

117

[166] “Cloudera.” http://www.cloudera.com

[167] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of

data center traffic: Measurement & Analysis,” in Proceedings of the 9th ACM

SIGCOMM conference on International measurement, ser. IMC ’09. New York,

NY, USA: ACM, 2009, pp. 202-208

[168] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data

centers in the wild,” in Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, ACM, Melbourne, 2010, pp. 267-280

[169] B. S. Lee, R. Kanagavelu and K. M. M. Aung, "An efficient flow cache algorithm

with improved fairness in Software-Defined Data Center Networks," 2013 IEEE

2nd International Conference on Cloud Networking (CloudNet), IEEE, San

Francisco, CA, 2013, pp. 18-24

[170] R. Challa, Y. Lee and H. Choo, "Intelligent eviction strategy for efficient flow table

management in OpenFlow Switches," 2016 IEEE NetSoft Conference and

Workshops (NetSoft), IEEE, Seoul, 2016, pp. 312-318

[171] “TCAMs and OpenFlow – What Every Practitioner Must Know,” [Online].

Available: https://www.sdxcentral.com/articles/contributed/sdn-openflow-tcam-

need-to-know/2012/07/, 2012

[172] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Inifinite CacheFlow in

Software-Defined Networks,” in Proceedings of the 3rd workshop on Hot topics in

software defined networking. ACM, Chicago, pp. 175-180, 2014

[173] S. Banerjee and K. Kannan, "Tag-In-Tag: Efficient flow table management in SDN

switches," 10th International Conference on Network and Service Management

(CNSM) and Workshop, IEEE, Rio de Janeiro, 2014, pp. 109-117

[174] S. Veeramani, M. Kumar and S. N. Mahammad, "Minimization of flow table for

TCAM based openflow switches by virtual compression approach," 2013 IEEE

International Conference on Advanced Networks and Telecommunications Systems

(ANTS), IEEE, Kattankulathur, 2013, pp. 1-4

[175] H. Zhu, M. Xu, Q. Li, J. Li, Y. Yang and S. Li, "MDTC: An efficient approach to

TCAM-based multidimensional table compression," 2015 IFIP Networking

Conference (IFIP Networking), IEEE, Toulouse, 2015, pp. 1-9

[176] S. Luo, H. Yu and L. M. Li, "Fast incremental flow table aggregation in SDN,"

2014 23rd International Conference on Computer Communication and Networks

(ICCCN), IEEE, Shanghai, 2014, pp. 1-8

[177] M. Anan, A. Al-Fuqaha, N. Nasser, T. Mu, and H. Bustam, “Empowering

Networking Research and Experimentation through Software-Defined

Networking,” Journal of Network and Computer Applications, vol. 70, pp. 140-

155, July 2016

[178] M. Lu, W. Deng and Y. Shi, "TF-IdleTimeout: Improving efficiency of TCAM in

SDN by dynamically adjusting flow entry lifecycle," 2016 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), IEEE, Budapest, Hungary,

2016, pp. 002681-002686

[179] X. N. Nguyen, D. Saucez, C. Barakat and T. Turletti, "Rules Placement Problem in

OpenFlow Networks: A Survey," in IEEE Communications Surveys & Tutorials,

vol. 18, no. 2, pp. 1273-1286, May 20 2016

118

[180] C. Lee, Y. Nakagawa, K. Hyoudou, S. Kobayashi, O. Shiraki and T. Shimizu,

"Flow-Aware Congestion Control to Improve Throughput under TCP Incast in

Datacenter Networks." In Proceedings of the IEEE 39th Annual Computer Software

and Applications Conference, IEEE, Taiwan, Taichung, 2015, pp. 155-162

[181] H. A. A. Al-Rawi, M. A. Ng, K.-L. A. Yau, "Application of reinforcement learning

to routing in distributed wireless networks: a review", Artificial Intelligence

Review, vol. 43, no. 3, pp. 381-416, 2015

[182] R. Desai, B.P. Patil, "Cooperative reinforcement learning approach for routing in

ad hoc networks", in Proceedings of the 2015 International Conference on

Pervasive Computing (IEEE ICPC 2015), IEEE, Pune, pp. 1-5, January 8–10, 2015

[183] J. Solanki, A. Chauhan, "A Reinforcement Learning Network based Novel

Adaptive Routing Algorithm for Wireless Ad-Hoc Network", International Journal

of Science Technology & Engineering., vol. 1, no. 12, pp. 135-142, 2015

[184] S. C. Lin, I. F. Akyildiz, P. Wang and M. Luo, "QoS-Aware Adaptive Routing in

Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning

Approach," 2016 IEEE International Conference on Services Computing (SCC),

IEEE, San Francisco, CA, 2016, pp. 25-33

[185] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, "Deep reinforcement

learning for dynamic multichannel access", in International Conference on

Computing, Networking and Communications (ICNC), IEEE, Silicon Valley, 257-

265, 2017

119

	Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach
	Recommended Citation

	tmp.1582301808.pdf.c9rlc

