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Localized surface plasmons resonances (LSPRs) in metallic nanoparticles (NPs) arise from 

the interactions between incident light and conduction electrons and have attracted enormous 

research interest in recent years both for their fundamental nature as well as applications in inter-

disciplinary areas of sciences such as biological imaging, plasmonic photo-thermal therapy, 

photovoltaics, and plasmonic sensors. LSPRs are strongly localized and depend on the shape, size, 

the composition of the NPs, the polarization direction of the incident light, refractive index (RI) of 

the surrounding medium as well as on the chemical environment that surrounded NPs. Although 

significant research has progressed both theoretically and experimentally, several questions need 

to be answered, including regarding the quantum size effects and the effect of the surface 

passivating layer on the LSPR. The research work carried out in this study is to understand the 

plasmonic properties of metal nanoparticles in different environments. 

Firstly, we introduced a package written in MATLAB to describe discrete dipole 

approximation (DDA) method for computing optical properties of arbitrary-shaped NPs. This is 

the first package written in MATLAB language that implicates Biconjugate Gradient and one-

dimensional Fast Fourier Transform techniques to reduce the computational cost of the DDA 

calculation significantly. This study also represents an algorithm to run the DDA in graphics 

processing units, which reduces the computational time by almost one order of magnitude. One 

aspect of LSPR that did not attract much research attention is for plasmons of small plasmonic 

NPs in size range from 2 to 10 nm. In this study, we investigated the influence of the size, RI of 



 

the medium, and chemical ligand effect on the plasmonic properties of the spherical quantum-

sized silver NPs using both quantum and classical models. Also, ligand and size effect on the 

electron-phonon (e-p) relaxation dynamics of the thiolate-protected gold (Au) clusters was 

unraveled. From the studies, it was shown that aromatic passivating ligands deaccelerate e-p 

relaxation dynamics of the Au clusters more in comparison to an aliphatic ligand. 

 Binding molecules on the surface of the NPs change the RI of the surrounding medium that 

results in shifting LSPR wavelength. This plasmonic shift can be used to detect biological 

molecules. In this study, we explore the LSPR sensitivity of six different hollow-Au nanoshells 

(sphere, disk, rod, ellipsoid, rectangular block, and prism). The results show that the shell thickness 

affects the LSPR sensitivity. Also, the study demonstrates that the LSPR sensitivity of the rod 

shape and rectangular block nanoshells are higher than other structures. In an effort to understand 

the plasmonic properties of embedded metal nanoparticles, LSPR properties of Au, Ag, and Cu 

NPs in silica matrix are studied using the DDA. The results show that rod-shaped NPs have higher 

extinction and produce stronger field enhancement in comparison to the spherical ones. The study 

also demonstrates that embedded Ag NPs have stronger plasmonic properties than Au and Cu NPs.
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1. Introduction 

The resonant interaction of the light beam with the free electrons of the noble metals led to 

the emerging of a fast-developing research field named plasmonics [1–3]. One of the oldest 

observations of the light-metal interaction dates back to Roman times in the Lycurgus cup [4]. Due 

to the presence of the nanoparticles with size up to 100 nm (silver 66.2%, gold 31.2%, and copper 

2.6%), which dispersed in the cup [5], it appears green and purple-red when illuminated from 

inside and outside, respectively (see Figure 1.1). The green color is attributed to scattering of the 

light by silver nanoparticles dispersed in the cup, whereas purple-red colors are mainly due to 

absorption of the incident light by gold nanoparticles (see Figure 1.1) [5].  

 

 

 
Figure 1.1. Lycurgus cup (left) appears green when illuminated from outside and (right) purple-red when shinned 
from inside. The images are kindly provided by the British Museum, ref [6].
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The polarizability of the free electron cloud in the noble metals leads to efficient interaction 

of the incident light with particles that are much smaller than the incoming wavelength [1–3]. This 

phenomenon provides the opportunity to manipulate and control light on the nanometer scale [1–

3] and opens up a new window for a variety of the applications in nanophotonic such as solar cells 

[7, 8], biological imaging [9–14], plasmonic photo-thermal therapy [15–20], photovoltaics [7], 

molecular diagnostics [21–26], plasmonic sensors [21–40], surface-enhanced Raman spectroscopy 

[41–47], metal-enhanced luminescence [48] and plasmonic rulers [49]. 

There are two types of plasmonic interaction: (1) interaction of the incident light with a 

dielectric-metal interface [1, 3, 50, 51], and (2) coupling of the electromagnetic wave with metallic 

nanoparticles [1, 3, 50]. In resonance condition, the coupling of the light with the first 

configuration (see Figure 1.2) creates the excited collective oscillations of free electrons, which 

propagates at the interface of the metal-dielectric and called surface plasmon resonance (SPR) [1, 

3, 50, 51]. On the other hand, the resonance interaction of the incident electromagnetic wave with 

the free electron cloud of the metallic nanoparticles leads to collective oscillation of the free 

electrons in the close vicinity of the nanoparticle (refer to Figure 1.4) [1, 3, 50]. This phenomenon 

which produces an enhanced electric field by several orders magnitude of the incident light field 

around the nanoparticle (see Figure 1.5) is highly localized and called localized surface plasmon 

resonance (LSPR) [1, 3, 50]. 

In this chapter, I begin with a discussion about the fundamentals of the surface plasmon 

polaritons and localized surface plasmons, and then briefly discuss some interesting applications 

of the LSPRs property of the plasmonic nanoparticles. The chapter continues by stating the goals 

and questions of the research and ends with presenting our contributions and introducing the 

structure of the dissertation. 

 

1.2. Surface Plasmon Polaritons and Localized Surface Plasmons  

Free electrons in metals oscillate rapidly around positive ions with plasma frequency. This 

collective longitudinal oscillation of free electrons is quantized with the quantum of oscillation 

called plasmon [1, 3, 50, 51]. Plasmons play important roles in determining the optical properties 

of metals.  Light with frequencies below than plasma frequency will be screened and reflected by 

free electrons oscillation in metals, while the light with frequencies above plasma frequencies is 
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transmitted through metals. The transmission is due to the fact that the oscillation of the electrons 

is not fast enough to screen the incident field [52].  

When a beam of light travels through a dielectric medium and reaches the surface of the 

metal it can couple with oscillation of the delocalized electrons at the interface of the metal and 

dielectric. This coupling creates an electromagnetic wave at the boundary of two medium, called 

surface plasmon polaritons (SPPs) [1, 3, 50, 51]. SPPs includes charge motion in the metal (surface 

plasmon) and EM wave in the dielectric medium (polariton) [1, 3, 50, 51]. This surface wave 

propagates along with the interface, while decays exponentially in the directions perpendicular to 

the boundary of the two mediums (see Figure 1.2) [1, 3, 50, 51]. It should be noted that as SPPs 

propagate along with the interface loses its energy due to absorption by the metal and scattering 

into other directions [1, 3, 50, 51]. As shown in Figure 1.2 the characteristic distances of the surface 

plasmon are 1) decay length of the evanescent field in the dielectric, 2) decay length of the 

evanescent field in the metal and 3) propagation length in the interface of the dielectric and metal 

that are represented as δଵ , δଶ and δୱ୮୮ in Figure 1.2, respectively. 

 

Figure 1.2. Exciting surface plasmon polaritons at the boundary of the metal and dielectric medium. Adapted by 

permission form Springer Nature, Nature, ref [53], 2003.  

 

At the interface of the two mediums, the six components of the electromagnetic wave can 

be decomposed into two independent sets: transverse electric (TE) and transverse magnetic (TM). 

The SPPs normally can be excited by a p-polarized wave (TM mode) where the electric field has 

a component in the direction of the propagation [50]. If we consider the interface of the two 

medium at the x-y plane, three components of TM mode of the SPP wave which is propagating in 
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the x-direction and decaying in the z-direction can be expressed as following in the dielectric 

medium (Z > 0) [1, 3, 50] 

H௬భ
= Aଵ exp൫ik௫భ

X൯ eି୩భ                                                                                                               (1.1. a) 

E௫భ
= iAଵ

k௭భ

ωεεଵ
exp (ik௫భ

X) eି୩భ                                                                                                (1.1. b) 

Eభ
= −Aଵ

k୶భ

ωεεଵ
exp൫ik௫భ

X൯ eି୩భ                                                                                                (1.1. c) 

And in the metal (Z < 0) [1, 3, 50] 

H୷మ
= Aଶ exp൫ik௫మ

X൯ e୩మ                                                                                                                 (1.2. a) 

E୶మ
= −iAଶ

kమ

ωεεଶ
exp൫ik௫మ

X൯ e୩మ                                                                                                (1.2. b) 

Eమ
= −Aଶ

k௫మ

ωεεଶ
exp൫ik௫మ

X൯ e୩మ                                                                                                 (1.2. c) 

Since the charge density is zero (ρ = 0), by applying the Maxwell equation (∇. D = ρ) in the 

above equations we have  

𝑖k୶భ
E୶భ

− kభ
Eభ

= 0                                                                                                                           (1.3. a) 

ik୶మ
E୶మ

+ kమ
Eమ

= 0                                                                                                                           (1.3. b) 

By applying the boundary conditions [54, 55] (Eଵ୲ = Eଶ୲, Hଵ୲ = Hଶ୲ , Dଵ୬ = Dଶ୬) the surface 

plasmon polaritons dispersion relation can be expressed as [1, 3, 50, 51] 

kୱ୮୮ =
ω

c
ඨ

εଵεଶ

εଵ + εଶ
                                                                                                                                   (1.4) 

where ω, c, ε1 and 𝜀ଶ are the frequency and speed of the incident light in vacuum, dielectric 

function of the dielectric medium, and dielectric function of the metal, respectively. As mentioned 

already, the surface waves lose their energy while propagating in the interface. Thus, the real and 

imaginary part of the surface plasmon wavevector can be expressed as below [1, 3, 50, 51, 54]: 
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Re൫kୱ୮୮൯ =  
ω

c
ඨ

εଶRe(εଵ)

εଶ + Re(εଵ)
                                                                                                            (1.5. a) 

Im൫kୱ୮୮൯ =  
ω

c
ඨ

εଶRe(εଵ)

εଶ + Re(εଵ)
ቈ

εଶ

2Re(εଵ)൫εଶ + Re(ε୫)൯
 Im(ε୫)                                              (1.5. b) 

where Re and Im denote the real and imaginary part, respectively. Also, the normal component of 

the wavevector of the SPP can be expressed as [1, 3, 50, 51, 54] 

k
=

ω

c
ቆ

ε୧
ଶ

εଵ + εଶ
ቇ

ଵ
ଶ

                                                                                                                                 (1.6)  

where i = 1, 2 and represents the i-th medium. 

If the incident light activates resonant oscillation of the conduction electrons in the metal, 

the surface plasmon resonance (SPR) occurs and gives rise strongly enhanced surface fields [1, 3, 

50, 51]. To excite the surface plasmon in a resonant manner by the light beam, the momentum 

must be conserved at the interface of the two mediums [1, 3, 50, 51]. However, the wavevector of 

impinging light is smaller than the wavevector of the SPP  in the metal and there is phase mismatch 

(~∆k) between the propagating light line and SPP [1, 3, 50, 51]. Hence, the SPPs cannot be excited 

resonantly by the direct shining of the light to the interface of the dielectric medium and the metal. 

 

 

 Figure 1.3. Schematic of (a) Otto and (b) Kretschmann configuration to excite the surface plasmon resonances at the 
interface of the metal and dielectric medium. To excite surface plasmon resonances using Kretschmann configuration, 
the thickness of the metal layer must be smaller than the skin depth of the evanescent wave. Fig. (a) is adapted by 
permission form Springer Nature, Zeitschrift für Physik A Hadrons and Nuclei, ref [56], 1968. 
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To overcome the momentum mismatch problem and excite surface plasmons, the wavevector of 

the incident light can be increased using adaptive optics [57, 58]. Figure 1.3 shows the two 

examples of the configurations that have been proposed by Otto and Kretschmann to overcome 

the momentum mismatch problem [57, 58]. The total internal reflection of the incident light creates 

evanescent waves at the boundary of the two mediums (see Figure 1.3) that have higher wavevector 

in comparison to air and can be used to excite SPPs [57, 58].  

If the dimension of the metal-dielectric interface is much smaller than the δୱ୮୮ a special 

kind of surface plasmon will be formed, called localized surface plasmon. In contrast to SPP, 

localized surface plasmons (SPP of the very small metallic nanoparticles (NPs)) are highly 

localized, non-propagative, and free from losses related to the retardation of large metallic surface  

(see Figure 1.4 and 1.5) [1, 3, 50, 59]. Due to the non-propagative property of surface plasmons of 

metal NPs, localized surface plasmon resonances (LSPRs) can be excited by direct illumination of 

the light without applying phase matching techniques at the boundary of the metal and surrounding 

medium [1, 50]. Thus, they are not characterized by a wavevector kୱ୮୮.  

 

 

 

 

 

 

 

Figure 1.4. Schematic of excitation of localized surface plasmon resonances (LSPRs) of plasmonic nanoparticles by 
illuminating light to them. 

 

Figure 1.5 shows electric field enhancement around a 40 nm spherical gold NP in the 

vacuum. As shown, due to LSPR a strong electric field has been produced at the surface of the NP 

(4.5 stronger than the incident field) that is decaying very fast by increasing distance from its 

surface. This optical phenomenon strongly depends on the shape, type, size, composition of the 
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+ + + Electric Field 
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nanoparticles, the polarization direction of the incident light as well as on the chemical 

environment that surrounded them [60–65].  

 

 

Figure 1.5. Strong localized electric field around a 40 nm spherical gold nanoparticle that is produced due to LSPR 

by direct illumination of the laser light to the nanoparticle.  

 

In this dissertation, we focus on the LSPRs of the plasmonic nanoparticles. LSPRs attracted 

enormous research interest in recent years due to their profound applications in inter-disciplinary 

areas of sciences [7, 9–47, 49, 66]. In the next section of this chapter some of the applications of 

the LSPRs have been provided. 

 

1.3. Some Applications of LSPRs 

1.3.1. Plasmonic Photothermal Therapy (PPTT)  

In the past few decades photothermal therapy (PTT) has been used to destroy cancer cells 

to some degree [15–20]. As minimally invasive therapy, the photothermal treatment strategy uses 

absorbing light dye molecules to absorb electromagnetic energy and convert it into enough heat to 

destroy cancer cells with minimum side effects [15–20]. However, because of the low absorption 

efficiency of natural tissue absorbents and conventional dye molecules, PTT has not been widely 

used for cancer therapy [15–20]. Recently plasmonic nanoparticles have attracted new interest to 

PTT [15–20]. Among these NPs, gold NPs in comparison to other plasmonic NPs attracted 

significant research attention as a potential candidate for photothermal therapy [15–20] due to their 
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unique properties such as non-toxicity, biocompatibility, inertness, and high scattering and 

absorption [27, 67, 68]. At LSPR frequency the light absorption and scattering of the Au NPs are 

much stronger than any organic dye molecule [14]. The absorbed light can be transferred from the 

NPs to the surrounding medium through three processes: (1) electron-electron scattering 

(occurring in order of 100 fs), (2) electron-phonon interaction (in order of ps) and (3) phonon-

phonon relaxation (in order of 10 ps-100 ps) [14]. If the NPs are located in the close vicinity of the 

cancer cells, the transferred heat from NPs can destroy the malignant cells by increasing the 

temperature of the targeted region [11, 12, 15–20, 69, 70]. This photothermal therapy, which is 

induced by plasmonic gold nanoparticles, is called plasmonic photothermal therapy (PPTT) [11, 

12, 15–20, 69, 70]. 

Lin and coworkers, for the first time, reported the destruction of over 90% of cancer cells 

using the illumination of a nanosecond visible laser light to the spherical Au nanoparticles, which 

were located in the close vicinity of the malicious cells [71]. Visible range PPTT of the cancer 

cells by shining the laser light to the Au nanospheres has also been studied by other groups [11, 

70]. However, solid spherical Au nanoparticles practical applications in vivo are limited due to the 

fact that the light penetration in tissue is negligible at their corresponding LSPR frequencies 

(visible range). 

The LSPR of the plasmonic NPs can be tuned from visible to the near-infrared (NIR) region 

by varying size, shape and refractive index (RI) of the medium [60–65]. Interestingly, in the NIR 

region, the biological tissue is transparent, and light penetration is optimum due to the minimum 

absorption of the hemoglobin and water molecules in tissues in this electromagnetic window [47]. 

Thus, plasmonic nanoparticles such as gold nanoshell [20] and gold nanorods [12] with LSPR in 

the NIR region received considerable attention in PPTT. As an example, in 2003 Hirsch et al. using 

gold nanoshells destroyed breast cancer tumors after exposure to NIR light at an intensity of 35 

W/cm2  for 7 minutes [20].  

 

1.3.2. Biological Imaging 

As mentioned already, plasmonic nanoparticles strongly scatter the incident light at their 

LSPRs frequencies due to resonant excitation of their free conduction electrons. The amount of 

scattering depends on the size of the nanoparticles and increases by expanding their dimensions 
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[9]. This optical property of the plasmonic NPs provides the opportunity to use them for making 

high-resolution optical images and labeling biological systems [9–14]. A simple optical 

microscope equipped with a dark-field condenser can be applied for imaging NPs in a dark medium 

by capturing the strong scattered light correspond to their LSPRs. Figure 1.6a and 1.6c show 

molecular imaging of the healthy cells which have been produced by capturing the scattered light 

of the randomly dispersed gold nanospheres and nanorods, respectively [12].  

 

 
 

Figure 1.6. (a) Optical image of the biological cells by spherical gold NPs randomly dispersed on the tissue. (b) 
Optical image of the cancer cells targeted by anti-EGFR conjugated by spherical gold NPs. (c) Optical image of the 
biological cells by gold nanorods randomly dispersed on the tissue. (d) Optical image of the cancer cells targeted by 
anti-EGFR conjugated by gold nanorods. Reprinted by permission from ref. [12].  
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In addition, dark-field microscopy technique can be very effectively utilized for molecular 

imaging of biomolecules by conjugating the gold nanoparticles with specific targeting molecules 

[19]. As an example, to target specifically the cancer cells, El-Sayed and his group targeted cancer 

biomarkers epidermal growth factor receptor (EGFR) which highly present in cancer cells [12]. 

By conjugating Au nanoparticles with anti-EGFR, they bounded the NPs to the surface of the 

malignant cells and constructed their image by collecting the scattered light from the Au NPs in 

the dark medium [12]. Figure 1.6b and 1.6d show image of the cancer cells produced by the use 

of the gold nanospheres and gold nanorods, respectively. As shown, owing to high penetration of 

NIR frequencies at living tissues the gold nanorods provide a high-resolution image of the cancer 

cells in comparison to the Au nanospheres [12].  

 

1.3.3. Plasmon – Fluorescence Enhancement 

As demonstrated in Figure 1.7 (Jablonski diagram), the electrons of the fluorophore 

molecules transfer to the excited state by absorbing high energy photons and then move back from 

the excited state to the ground one through phonon-phonon collision (non-radiative decay) and 

emitting a low energy photon (radiative decay) [72]. The fluorescence or emitted light of the 

fluorophore molecules has been applied for the detection of biological and chemical species [72]. 

However, due to the low signal-to-noise ratio in this technique, the detection of desired species 

using the typical fluorescence methods is difficult [48].  

 

 

 

 

 

 

 

 

Figure 1.7. The excited electron will relax through two processes: phonon-phonon relaxation, and emitting a photon 
with the wavelength higher than the incident one (Jablonski diagram). 
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LSPRs properties of the plasmonic NPs offer an effective way to increase the efficiency of 

the fluorescence technique by introducing two enhancement mechanisms: excitation enhancement, 

and emission enhancement [73]. LSPR frequency of the isotropic plasmonic nanoparticles such as 

solid spherical nanoparticles or spherical nanoshells, which just have one resonance plasmon 

frequency, can be adjusted either to excitation or emission frequency of the fluorophore molecule 

to increase the fluorescence efficiency (see Figure 1.8a). More interestingly, anisotropic plasmonic 

NPs such as nanorods, which have two LSPRs peaks, simultaneously could enhance excitation 

wavelength and emission band of the fluorophores by matching them to the transversal and 

longitudinal LSPRs frequencies of the NPs, respectively (see Figure 1.8b) [74]. 

 

 

Figure 1.8. Schematic of fluorescence enhancement by LSPR of the plasmonic NPs. a) excitation enhancement (Left), 
emission enhancement (Middle) and compromised enhancement (Right) with the use of a single LSPR plasmonic NP. 
b) Simultaneous extinction and emission enhancement by a double LSPR metal NP. Reprinted by permission from  

ref [74].  

 

Figure 1.9 shows an example of the fluorescence enhancement of fluorophore molecules 

using three different hybrid nanostructures [74]. The structures were composed of an Au core and 

fluorophore-embedded silica shell. The first sample (GNR1) is made of Au nanorod- silica shell 

with the length and diameter of the core, and thickness of the silica shell of 100 ± 4 nm, 44 ± 2 nm 

and 23 ± 1 nm, respectively. The second sample (GNS1) is a spherical core-shell (Au-silica) with 
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a core diameter of 69 ± 5 nm and a shell thickness of 23 ± 1 nm. The third composite is an Au 

nanorod- silica shell that the length and diameter of the core, and thickness of the silica shell are 

43 ± 2 nm, 11 ± 3 nm and 22 ± 2 nm, respectively. Emission from the same number of the Oxazine-

725 molecules (1000) from each sample has been obtained. As demonstrated in Figure 1.9, GNR1 

significantly enhanced the fluorescence intensity of the fluorophore molecules in comparison to 

other samples. This result can be explained by the fact that transitional and longitudinal plasmon 

peaks of this sample (532nm and 693nm, consequently) are matched with the excitation 

wavelength (532nm) and emission band (with FWHM from 660nm to 702nm) of the Oxazine-725, 

respectively, that leads to simultaneous excitation and emission enhancement. However, the LSPR 

peak of the GNS1 (554 nm) is matched with the excitation wavelength of the fluorophore that 

enhances only the excitation. It should be noted that LSPRs frequencies of the GNR2 are matched 

neither with the excitation wavelength nor with the emission band of Oxazine-725 that results in 

less fluorescence enhancement in comparison to other samples [74].  

 

Figure 1.9. Fluorescence emission spectra of GNR1, GNS1, and  GNR2. The peak fluorescence intensities from 
GNR1, GNS1, and GNR2 have been enhanced by the factors of 20.8, 5.3, and 4.5, respectively. Reprinted by 

permission from ref [74]. 
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1.4. Goals of the Research 

In this dissertation we aim to achieve the following goals: 

a. Provide a comprehensive explanation for all steps of the discrete dipole approximation 

along with accelerative techniques such as Fast Fourier Transform (FFT) and 

Biconjugate Gradient (BCG). We also developed a MATLAB package to compute the 

optical properties of different kinds of nanostructures. 

b. Explore the optical properties of the quantum-sized nanoparticle. 

c. Study chemical ligand and size effect on the electron relaxation dynamics of the small-

sized gold nanoparticles. 

d. Introduce hollow-nanoshell structures to study size, shape, shell thickness and aspect 

ratio effects on the localized surface plasmon sensitivity of the gold nanoshells. Our 

goal is to obtain structures with high LSPR sensitivity.  

e. Investigate optical properties of the different kind plasmonic nanoparticles which are 

embedded in a silica matrix. In addition, our goal is to explore the electric field 

enhancement of the different embedded structures. 

 

1.5. Research Questions 

In this dissertation we address the following questions: 

a. How reducing the size of the NPs will change the optical properties of the plasmonic 

nanoparticles? 

b. How will different chemical ligands affect electron relaxation process in small-sized 

heated plasmonic nanoparticles? 

c. How can LSPR sensitivity of the hollow-Au nanoshells be adjusted by changing size, 

shape and shell thickness to obtain a structure with higher sensitivity? 

d. How optical properties, such as absorption and electric field enhancement, in embedded 

plasmonic nanostructures depend on the type, size, shape, and the number of the embed 

nanoparticles? 
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1.6. Contributions 

The main contributions of this dissertation are as follows: 

a) In chapter II, we discuss the electromagnetic methods that have been used in this 

dissertation to simulate the optical properties of the studied plasmonic nanoparticles. 

In the first section, the modified dielectric permittivity of the small-sized bare and 

ligand-conjugated metallic nanoparticles have been discussed. In the second section, 

we review some electromagnetic methods such as Mie theory and Multilayered Mie 

theory as exact electromagnetic methods to calculate the optical properties of the solid 

spherical and multilayered spherical nanoparticles, respectively. In the last section of 

this chapter we review all steps of this DDA along with the accelerative methods. We 

also introduce a MATLAB package to calculate the optical properties of arbitrary 

shaped plasmonic NPs using DDA. One dimensional FFT and BCG  have been applied 

in this proposed package to reduce the computational time and memory in the DDA 

method. To further accelerate the computational procedure, we applied the graphics 

processing unit (GPU) algorithm, which is provided in MATLAB software, to our 

problem. Using GPU, the computation cost decreased by almost one order of 

magnitude when compared to CPU. In the end, we calculated the optical properties of 

the plasmonic NPs such as extinction, absorption and scattering efficiencies, electric 

field enhancement around the NPs and creation of the hot spots in dimeric structures 

using this package. 

b) In chapter III, we studied the plasmonic properties of the spherical Ag NPs in the size 

range of 3 to 20 nm. We used both quantum and classical modeling to understand the 

importance of invoking quantum regime to accurately describe Ag NPs properties in 

this size regime. As a case study, using standard Mie theory we monitored the LSPR 

peak shift and electric field enhancement as a function of the size of the metallic particle 

and the refractive index of the surrounding medium. Also, optical properties of Ag 

nanoparticles conjugated with a chemical ligand using multi-layered Mie theory were 

studied and interesting trends were observed.  

c) In chapter IV, we explored the influence of passivating ligand on electron-phonon 

relaxation dynamics of the smallest sized gold clusters using ultrafast transient 

absorption spectroscopy. To study size and ligand effect, we explored electron 
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dynamics in seven different samples: Au279 passivated with 4-tert-butylbenzene thiol 

(TBBT), Au329 passivated with phenylethane thiol (SC2Ph), Au329 and Au~1400 and 

Au~2000 conjugated with hexane thiol (SC6), and 13 nm Au stabilized in citrate solution. 

The study has revealed interesting aspects of the role of ligand on electron-phonon 

relaxation dynamics wherein the aromatic passivating ligands, SC2Ph and TBBT, have 

shown smaller power dependency and higher plasmonic bleach while the cluster with 

aliphatic passivating ligands has behaved similarly to regular plasmonic gold 

nanoparticles. Also, we modeled the effect of the ligand on the plasmonic properties of 

the investigated samples by calculating the free electron density correction factor of 

each sample using the three-layered Mie theory. The results show that SC6 interacts 

least with core-gold while TBBT and SC2Ph have a greater effect on the surface 

electronic conductivity that is attributed to π-interaction of the ligand with gold. 

d) In chapter V, we investigated the localized surface plasmon resonance sensitivity of the 

hollow gold nanoshells using multi-layered Mie theory and discrete dipole 

approximation. In this research, the influence of shape, size, shell thickness and aspect 

ratio on the plasmon sensitivity of the hollow gold nanoshells are addressed. Different 

shapes of hollow-Au nanoshells are studied that include: sphere, disk, triangular prism, 

rod, ellipsoid, and rectangular block. Our results show that the rectangular block and 

rod-shaped Au nanoshells have maximum LSPR sensitivity when compared to other 

shaped Au nanoshells.  

e) In chapter VI, the plasmonic properties of metallic NPs embedded in silica matrix were 

investigated using the DDA method. The optical properties of the spherical and rod 

shape Au, Ag, and Cu NPs were simulated. The influence of size and interparticle 

distance on the plasmonic spectra and field enhancement of the embedded NPs are 

studied in monomeric and dimeric structures, respectively. In dimeric structures, the 

electric field evolution versus distance from the center of the matrix was calculated. 

The study has revealed that rod-shaped NPs have higher field enhancement at the 

surface of the matrix when compared to the spherical case. Also, Ag NPs have shown 

higher extinction, greater scattering quantum yield, and stronger field enhancement in 

comparison to the Au and Cu. As a case of study, we also explored the effect of the 
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number of NPs on the aforementioned optical properties, and interesting results were 

observed. 

 

It is worth mentioning that this research work has resulted in the following published and 

unpublished journal publications: 

1. Masoud Shabaninezhad, Abubkr Abuhagr, Naga Arjun Sakthivel, Chanaka Kumara, 

Amal Dass, Kyuju Kwak, Kyunglim Pyo, Dongil Lee and Guda Ramakrishna. 

"Ultrafast Electron Dynamics in Thiolate-Protected Plasmonic Gold Clusters: Size and 

Ligand Effect". (Published:  J. Phys. Chem. C 2019, 123, 13344−13353; DOI: 

10.1021/acs.jpcc.9b01739).  

2. Masoud Shabaninezhad, and Guda Ramakrishna. "Theoretical investigation of size, 

shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells". 

(Published: J. Chem. Phys. 150, 144116 (2019); DOI: /10.1063/1.5090885). 

3. Shahid Iqbal, Masoud Shabaninezhad, Mohammad Hatshan, Prashanta M. Niraula, 

Abubaker Abuhagr, Hasna Alali, Ramakrishna Guda, and Asghar Kayani. "Ion-

implanted silver nanoparticles for metal-enhanced fluorescence". (Published: AIP 

Advances 8, 095217 (2018); DOI: 10.1063/1.5045570). 

4. Masoud Shabaninezhad, and Guda Ramakrishna."Theoretical Investigation of 

Plasmonic Properties of Quantum-Sized Silver Nanoparticles". Under review. 

5. Masoud Shabaninezhad, Muaaz. G. Awan and Guda Ramakrishna. " MATLAB 

Toolbox for Discrete Dipole Approximation by Graphics Processing Unit: One 

Dimensional Fast Fourier Transform and Biconjugate Gradient ". Under review. 

6. Masoud Shabaninezhad, and Guda Ramakrishna. "Optical Properties of Embedded 

Plasmonic Nanoparticles Using Discrete Dipole Approximation". Under Process. 

 

In addition, the results of this dissertation have been presented in the following American 

Physics Society (APS) meetings: 

1. Size, Shape and Aspect Ratio Effect on the LSPR Sensitivity of Hollow-Gold 

Nanoshells, Annual Spring Meeting of the APS, Ohio- Region Section (Wooster, 

2019), Oral presentation. 
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2. An overview of discrete dipole approximation by means of Graphics Processing Unit, 

Fast Fourier Transform, and Biconjugate Gradient in MATLAB, Annual Spring 

Meeting of the APS, Ohio- Region Section (Wooster, 2019), Poster presentation. 

3. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver 

Nanoparticles, Annual March Meeting of the APS (Boston, 2019), Oral Presentation. 

4. Electron-Phonon Relaxation Dynamics of Thiolate-Protected Plasmonic Gold Clusters, 

Annual Fall Meeting of the APS, Ohio- Region Section (Toledo, 2018), Oral 

presentation. 

 

A DDA package written in MATLAB also provided that is available in the Appendices for 

use by other researchers. 

 

1.7. Structure of the Dissertation 

The overall structure of this dissertation takes the form of six chapters, excluding this 

introductory chapter. 

A. Chapter 2: Electromagnetic Methods 

B. Chapter 3: Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver 

Nanoparticles  

C. Chapter 4: Ultrafast Electron Dynamics in Thiolate-Protected Plasmonic Gold 

Clusters: Size and Ligand Effect  

D. Chapter 5: Theoretical Investigation of Size, Shape and Aspect Ratio Effect on the 

LSPR Sensitivity of Hollow-Gold Nanoshells  

E. Chapter 6: Optical Properties of Embedded Plasmonic Nanoparticles Using Discrete 

Dipole Approximation  

F. Chapter 7: Conclusion and Future works
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CHAPTER 2 
 
 

COMPUTATIONAL METHODS 
 
 
2.1. Introduction 

This chapter discusses the theoretical models that have been used in this dissertation to 

describe the optical properties of the metallic nanoparticles. The first section of this chapter begins 

with the Drude model to describe the dielectric function of bulk metals [75], then discusses the 

modified version of the Drude model to represents the dielectric function of the bare and ligand 

conjugated metallic nanoparticles [76, 77]. The section follows by explaining the quantum model 

that has been applied to obtain the electric permittivities of the quantum-sized NPs [78, 79]. The 

second section starts with describing the Mie theory as an exact solution for the light scattering, 

and absorption field by a spherical shape target that inserted in a homogeneous and isotropic 

medium and illuminated by a plane wave [1, 80]. Also, the equations for calculating the electric 

and magnetic fields inside and around spherical NPs have been provided [1]. The section continues 

by explaining the particular case of Mie theory, Quasistatic approximation, that provides a solution 

for modeling the optical response of spherical and ellipsoid NPs with sizes much smaller than the 

incident light wavelength [1, 81]. In the last part of this section, we explain the Multi-layered Mie 

theory for calculating the optical properties of the Multi-layered spherical NPs [82].  

The LSPR properties of the metallic NPs strongly depends on the shape and configuration 

of the NPs [1, 9, 64, 65, 83]. However, there is no analytical solution to model the optical response 

of the non-spherical nanoparticles or multimer structures. In this dissertation, the discrete dipole 

approximation [1, 9, 64, 65, 83–88]. has been used to compute the optical properties of the 

monomer or multimer nanostructures with arbitrary shape and configuration. The third section of 

this chapter describes the DDA and all of the techniques that have been applied in this work to 

reduce the computational time and memory. At the end of this chapter, we provided some examples 

of the optical properties of the plasmonic NPs that can be obtained using DDA.
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2.2. Dielectric Function 

2.2.1. Drude’s Model 

For calculating the plasmonic properties of the metallic NPs, at first step, it is required to 

calculate their corresponding dielectric function. The classical Drude Model is a well known 

theoretical model to describe the dielectric function of bulk metals [75]. In this classical model, 

the metal is made of free electrons moving in a positive ions background [75]. According to this 

theory, the electric response of the metals is dispersive and varying by changing the frequency of 

the incident light. The dielectric function of the bulk metals in the Drude Model is given by [75] 

ε୳୪୩(ω) = ε୍(ω) −
ω୮

ଶ

ωଶ + iΓω
                                                                                                          (2.1) 

where ω, Γ and ω୮ are representing the frequency of the incident light, scattering frequency of 

the electrons in bulk metal and the plasma frequency, respectively. In the above equation, ε୍  

demonstrates the contribution of the interband transitions in the electric response of the metal to 

the incident light that is due to transferring the electrons from the valence d-band to the conduction 

band. 

 

2.2.2. Modified Drude Model for Nanoparticles 

In metallic nanostructures, the mean free path of conduction electrons is less than bulk 

material due to the interaction of the free electrons with the surface of the nanoparticles [9, 75, 77, 

83]. The mean free path of the NPs reduces more by further decreasing their size, which leads to 

the additional increasing of the collision frequency and more damping of the surface plasmons [9, 

75, 77, 83]. Thus, to fully describe the electric response of the metallic NPs, a modification term, 

which inversely proportional to the size of the particles, needs to be considered in their dielectric 

function. By adding this size effect, the electric permittivity of nano-sized metallic particles can 

be described by modifying the Drude model as following [75, 83] 

ε(ω, rୣ) = εୠ୳୪୩(ω) +
ω୮

ଶ

ωଶ + iΓω
−

ω୮
ଶ

ωଶ + iΓ(rୣ)ω
                                                                (2.2) 

where rୣ is the effective radius which is defined as a radius the sphere has a volume equal to that 

of the nanoparticle.  Γ(rୣ) represents the modified damping frequency which is given by [75, 77, 

83] 
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Γ(rୣ) = Γ + A
V

rୣ
                                                                                                                                 (2.3) 

where V is Fermi velocity, and A is an empirical parameter that has been used for the matching of 

calculated damping with the experimental one. 

One common way to stabilize the small-sized NPs in a solution in order to prevent the 

amalgamation of them is conjugating them with chemical ligands [76, 77, 89–93]. However, 

integrating the NPs with the chemical ligands will reduce free electron density on the conduction 

band of the nanoparticles due to a chemical interaction between the ligand and the metallic NPs. 

Accordingly, it reduces plasma frequency (ω = ට
୬ୣమ

୫கబ
) and damps the plasmon spectra [76, 77, 

89–93]. It should be noted that the conductivity of the surface layer of the NPs will reduce more 

in comparison to the core region due to the direct interaction between this layer and the chemical 

ligands. To consider these effects, the electron density of the core region and the skin layer of the 

NPs need to be modified by multiplying them to a factor of gୡ୭୰ୣ
ଶ  and gୱ୩୧୬

ଶ , respectively [76, 77]. 

By applying these factors in Eq. (2.3), the revised dielectric function of the  ligand- conjugated 

metallic NPs can be expressed as below [76, 77] 

εେ(ω, r) = εୠ୳୪୩(ω) +
ω୮

ଶ

ωଶ + iΓω
−

gଶω୮
ଶ

ωଶ + iΓ(rୣ)ω
                                                                  (2.4) 

where gଶ is free electrons density correction factor and is gୡ୭୰ୣ
ଶ  and gୱ୩୧୬

ଶ  in the core and the skin 

region, respectively. 

 

2.2.3. Dielectric Function of the Quantum-Sized Nanoparticles 

By further reducing the size of the NPs the modified classical Drude model is no longer 

valid for describing the electric response of the metallic NPs to the incident light [78, 79, 94]. For 

the NPs with an effective diameter below 10 nm the conduction band is not continuous anymore 

[78, 79, 94]. The inter-level discretization energy for these small-sized NPs is more than the 

thermal energy which increases more by further reducing the size of the particles [78, 79, 94]. 

Thus, to calculate the electric permittivity of these quantum-sized NPs all allowed inter-level 

transitions should be taken into account. By considering these effects, the dielectric function of the 

ultra-small NPs is given by [78, 79] 
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ε୕(ω) = ε୍(ω) + ω୮
ଶ  

S୧

(ω୧
ଶ − ωଶ − iΓ(rୣ)ω)

                                                               (2.5)

୧

 

where summations are taken on the all allowed initial (i) and final (f) states. S୧  and ω୧ are 

representing the weight factor of the transition (or oscillator strength) and the transition frequency 

from the initial state i to final state f, respectively. The weight factor of allowed inter-level 

transitions can be calculated as [78, 79] 

S୧ =
2mω୧ ℏ

N
|〈i|z|f〉|ଶ                                                                                                                            (2.6) 

where m is mass of the electron, and N is the number of the conduction electrons in the NPs.  

For the ligand-conjugated quantum-sized metallic NPs the modified electric permittivity can be 

expressed as below 

ε୕(ω) = ε୍ + gଶω୮
ଶ  

S୧

(ω୧
ଶ − ωଶ − iΓ(rୣ)ω)

୧

                                                                  (2.7) 

As already mentioned, the gଶ is representing the conductivity correction factor for the core or 

surface region of the NPs. 

 

2.3. Mie Theory  

Mie theory presents the exact solution for the light scattering, and absorption by a spherical 

shape target that is inserted in a homogeneous and isotropic medium and illuminated by a plane 

wave.[1, 80] The electric and magnetic fields inside and outside of the nanoparticles must satisfy 

the Maxwell equations 

∇. (εE) = 0                                                                                                                                              (2.8. a) 

∇. H = 0                                                                                                                                                   (2.8. b) 

∇ × E = iωμH                                                                                                                                        (2.8. c) 

∇ × H = −iωεE                                                                                                                                     (2.8. d) 

where ε and μ are continuous at all points and exp(-iωt) time dependence is assumed for both E 

and H field. In addition, a time-harmonic electromagnetic field in a homogeneous, linear and 

isotropic medium must satisfy the wave equations  
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∇ଶE + kଶE = 0                                                                                                                                       (2.9. a) 

∇ଶH + kଶH = 0                                                                                                                                     (2.9. b) 

where k is wavevector. By solving the above-mentioned equations the scattering field coefficients 

outside of a sphere with a refractive index of ns and radius of r are given by [1] 

a୬ =
μmଶ j୬(mx)[x j୬(x)]ᇱ − μୱ j୬(x)[mx j୬(mx)]ᇱ

μmଶ j୬(mx)ቂx h୬
(ଵ)(x)ቃ

ᇱ

− μୱ h୬
(ଵ)(x)[mx j୬(mx)]ᇱ

                                                         (2.10. a) 

b୬ =
μ j୬(mx)[x j୬(x)]ᇱ − μୱ j୬(x)[mx j୬(mx)]ᇱ

μ j୬(mx)ቂx h୬
(ଵ)

(x)ቃ
ᇱ

− μୱ h୬
(ଵ)

(x)[mx j୬(mx)]ᇱ
                                                               (2.10. b) 

and the electric field coefficients inside the sphere are [1]  

c୬ =
μୱ j୬(x)ቂx h୬

(ଵ)
(x)ቃ

ᇱ

− μୱh୬
(ଵ)

(x)[x j୬(x)]ᇱ

μୱ j୬(mx)ቂx h୬
(ଵ)

(x)ቃ
ᇱ

− μh୬
(ଵ)

(x)[mx j୬(mx)]ᇱ
                                                                (2.11. a) 

d୬ =
μୱm j୬(x)ቂx h୬

(ଵ)
(x)ቃ

ᇱ

− μୱm h୬
(ଵ)

(x)[x j୬(x)]ᇱ

μmଶ j୬(mx)ቂx h୬
(ଵ)

(x)ቃ
ᇱ

− μୱh୬
(ଵ)

(x)[mx j୬(mx)]ᇱ
                                                          (2.11. b) 

where m =
|୬౩|

|୬ౣ|
, x = k୫r =

ଶ୬ౣ୰


 , and μ and μୱ represent the permeability of the surrounding 

medium and the sphere, respectively. ns, nm and km are the refractive index of the target particle, 

the refractive index of the surrounding medium, and the wavevector of the incident light in the 

medium, respectively. In the above equations, the j୬(ρ) and h୬
(ଵ)

(ρ) are the spherical Bessel 

function and the spherical Hankel function, respectively [1, 95]. It is worth mentioning that full 

derivation of the coefficients presented in equations 2.10 and 2.11 can be found elsewhere [1].  

Important optical properties such as scattering, absorbing, and extinction cross-sections of 

the spherical particle can be calculated using the scattered field coefficients, which are provided 

in Eq. 2.10. These cross-sections can be expressed as follows [1] 

Cୱୡୟ୲ =
2π

k୫
ଶ

(2n + 1)

ஶ

୬ୀଵ

(|a୬|ଶ + |b୬|ଶ)                                                                                       (2.12. a) 
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Cୣ୶୲ =
2π

k୫
ଶ

(2n + 1)

ஶ

୬ୀଵ

Re(a୬ + b୬)                                                                                             (2.12. b) 

Cୟୠୱ = Cୣ୶୲ − Cୱୡୟ୲                                                                                                                             (2.12. c) 

where Cscat , Cext and Cabs are representing the scattering, extinction and absorption cross-sections, 

respectively. n=1, 2, 3, … corresponds to dipole, quadrupole, octopole modes, … . By dividing the 

optical cross-sections (Eq.2.12) to the geometrical cross-section of spherical nanoparticles the 

corresponding efficiency factors or Q-factor of the particle are given by 

Qୱୡୟ୲ =
Cୱୡୟ୲

πrଶ
                                                                                                                                       (2.13. a) 

Qୣ୶୲ =
Cୣ୶୲

πrଶ
                                                                                                                                         (2.13. b)  

Qୟୠୱ =
Cୟୠୱ

πrଶ
                                                                                                                                         (2.13. c) 

where Qscat, Qext and Qabs are the scattering, extinction and absorption efficiency factors, 

respectively. Figure 2.1 shows an example of the extinction, absorption and scattering efficiencies 

of a spherical gold nanoparticle which have been calculated using Mie theory.  
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Figure 2.1. Extinction, absorption and scattering efficiencies of a spherical gold nanoparticle with diameter of 40 nm 

that is dispersed in water (nb = 1.34).  
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The expansion of the electric and magnetic fields inside the particle and the scattered fields 

by the spherical target are other important optical properties that can be obtained by the Mie 

coefficients provided in the equations 2.10 and 2.11. These fields can be expressed as [1] 

E୧୬ =  E୬

ஶ

୬ୀଵ

ቀc୬Mଵ୬
(ଵ)

− id୬Nୣଵ୬
(ଵ)

ቁ                                                                                                 (2.14. a) 

H୧୬ =
−kୱ

ωμୱ
 E୬

ஶ

୬ୀଵ

ቀd୬Mୣଵ୬
(ଵ)

+ ic୬Nଵ୬
(ଵ)

ቁ                                                                                        (2.14. b) 

Eୗ =  E୬

ஶ

୬ୀଵ

ቀia୬Nୣଵ୬
(ଷ)

− b୬Mଵ୬
(ଷ)

ቁ                                                                                                   (2.14. c) 

Hୱ =
k

ωμ
 E୬

ஶ

୬ୀଵ

ቀib୬Nଵ୬
(ଷ)

+ a୬Mୣଵ୬
(ଷ)

ቁ                                                                                           (2.14. d) 

where E୬ =  i୬E(2n + 1)/n(n + 1), and kୱ is the wavevector inside the sphere.The Mଵ୬
(୯) , Nଵ୬

(୯) , 

Mୣଵ୬
(୯)  and Nୣଵ୬

(୯)  are the vector spherical harmonics generated by the scalar wave equations in 

spherical polar coordinates [1] 

Mୣ୫୬
()

=
−m

sin θ
sin mφ P୬

୫(cos θ)Z୬
(୯)(ρ)eො − cos mφ

dP୬
୫(cos θ)

dθ
Z୬

(୯)
(ρ)eො                     (2.15. a) 

M୭୫୬
(୯)

=
m

sin θ
cos mφ P୬

୫(cos θ)Z୬
(୯)(ρ)eො − sin mφ

dP୬
୫(cos θ)

dθ
Z୬

(୯)
(ρ)eො                     (2.15. b) 

Nୣ୫୬
(୯)

=
Z୬

(୯)
(ρ)

ρ
cos mφ n(n + 1)P୬

୫(cos θ)eො୰ + cos mφ
dP୬

୫(cos θ)

dθ

1

ρ

d

dρ
ቂρZ୬

(୯)
(ρ)ቃ eො  

− m sin mφ
P୬

୫(cos θ)

sin θ

1

ρ

d

dρ
ቂρZ୬

(୯)
(ρ)ቃ eො                                                       (2.15. c) 

N୭୫୬
(୯)

=
Z୬

(୯)
(ρ)

ρ
sin mφ n(n + 1)P୬

୫(cos θ)eො୰ + sin mφ
dP୬

୫(cos θ)

dθ

1

ρ

d

dρ
ቂρZ୬

(୯)
(ρ)ቃ eො               

+ m cos mφ
P୬

୫(cos θ)

sin θ

1

ρ

d

dρ
ቂρZ୬

(୯)
(ρ)ቃ eො                                                      (2.15. d) 

where ρ = kr and is a dimensionless variable. In the above equations, the q=1,3 where Z୬
(ଵ)

(ρ) and 

Z୬
(ଷ)

(ρ) are the spherical Bessel function (j୬) and the spherical Hankel function (h୬
(ଵ)

), respectively 

[1]. 
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The total electric and magnetic field around the NP is the superposition of the incident light 

electric field and scattered field by particle 

Eሬሬ⃗ ୲ = Eሬሬ⃗ ୧ + Eሬሬ⃗ ୱ                                                                                                                                         (2.16. a) 

Hሬሬ⃗ ୲ = Hሬሬ⃗ ୧ + Hሬሬ⃗ ୱ                                                                                                                                       (2.16. b) 

where the incident light and scattered light electric field can be expressed as below  

E୧ = Eexp(ik. r − iωt)                                                                                                                    (2.17. a) 

H୧ = Hexp(ik. r − iωt)                                                                                                                   (2.17. b) 

As an example, the electric field enhancement of a 40 nm spherical gold nanoparticle that is 

obtained using Mie theory is provided in Figure 2.2.  

 

 

 

 

 

 

 

 

Figure 2.2. Electric field enhancement of a spherical gold nanoparticle with a diameter of 40 nm in vacuum.  

 

2.4. Quasi-Static Approximation 

When the size of the NP is very small in comparison to the incident light wavelength, the 

phase shift (kr) inside the Np is negligible. In this limit, which is called Quasi-static approximation 

regime, the electric field and polarization inside the NP are almost constant [1, 81]. Since the 

contribution of the higher-order modes is negligible in this regime, the scattering, absorption and 

extinction cross-sections of the spherical NPs can be calculated by considering only the dipole 
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term in the Mie coefficients [1, 81]. Interestingly, in this regime an analytical solution, named Mie-

Gans solution, is also available for calculating optical properties of the spheroidal particles [1, 81, 

96]. The scattering, absorption and extinction cross-sections of the spherical and spheroidal NPs 

in the Quasi-static approximation can be computed as below [1, 81] 

Cୱୡୟ୲ =
8π

3
k୫

ସ |α|ଶ                                                                                                                              (2.18. a) 

Cୟୠୱ = 4πk୫Im(α)                                                                                                                            (2.18. b) 

Cୣ୶୲ = Cୱୡୟ୲ + Cୟୠୱ                                                                                                                             (2.18. c) 

where α is the polarizability of the particle.The polarizability of the small spherical and spheroidal 

NPs in each direction in the Quasi-static approximation can be expressed using the Clausius - 

Mossotti [1, 81, 96] 

α୧ =
V

4π
൬L୧ +

1

ε୰ − 1
൰

ିଵ

,   i = 1, 2, 3                                                                                                (2.19) 

where V and εr are the volume and effective dielectric function (ratio of the dielectric function of 

the NP to the surrounding medium). Li is the depolarization factor which depends on the shape and 

structure of the NPs and always fulfills the sum rule L1+L2+L3= 1 [1, 96]. For a prolate spheroidal 

particle (c > a = b) the depolarization factor along different semi-axises can be calculated as below 

[1, 96] 

Lଵ = Lଶ =
1

2
(1 − Lଷ)                                                                                                                        (2.20. a) 

Lଷ =
(1 − f ଶ)

f ଶ
൬−1 +

1

2f
ln

1 + f

1 − f
൰                                                                                                  (2.20. b) 

and for oblate (c < a = b) we have 

Lଵ = Lଶ =
1

2
(1 − Lଷ)                                                                                                                        (2.21. a) 

Lଷ =
(1 + f ଶ)

f ଶ
൬1 −

1

f
 tanିଵ(f)൰                                                                                                    (2.21. b) 

where f = ቚቀ
ୟమ

ୡమ
ቁ − 1ቚ.  
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For a spherical particle Lଵ = Lଶ = Lଷ =
ଵ

ଷ
 [1, 96]. 

After calculating Li and αi in different directions, the polarizability α can be expressed as               

α = ∑ α୧eො୧
ଷ
୧ୀଵ  (�̂� is the polarization direction of the incident light). 

  

2.5. Multi-Layered Mie Theory 

Electromagnetic (EM) radiation scattering by multi-layered spheres has attracted much 

research attention due to their application in several studies [1, 10, 27, 76, 77]. As an example, 

Peng et. al modeled the optical properties of the ligand conjugated silver NPs by considering three-

layered Mie theory [76]. In this study, we used the recursive algorithm developed a few years ago 

by Yang that overcomes most of the numerical problems that exist in the previous models [82]. In 

this model, as demonstrated in Figure 2.3, the multilayered sphere composed of L layers which 

each one is characterized by a size parameter Xl= kmrl and relative refractive index of ml=nl/nm, 

l=1, 2, …, L  , where km, rl, nl and nm are the wave vector of the incident light in the surrounding 

medium, the outer radius of the l-th layer, the refractive index of l-th layer and the surrounding 

medium, respectively.  

 

  

 

 

 

 

 

 

 

 

Figure 2.3. Schematic of a multilayered spherical particle. 
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It is assumed these concentric spheres are illuminated by an x-polarized electric field E୧ =

 Eexp(ik୫rcos(θ)) with time-harmonic factor exp(−iωt). The total space of this model is 

divided into two different regions: inside and outside of the sphere. Similar to Mie theory for a 

single sphere, inward and outward electric and magnetic fields of the l-th layer of the multi-layered 

spherical particle can be expressed using Eq. 2.14. The  total E and H of each layer can be 

computed by superposition of the inward and outward fields in that layer and for the l-th layer are 

given by: 

E =  E୬ቂc୬
()

M୭ଵ୬
(ଵ)

− id୬
()

Nୣଵ୬
(ଵ)

+ ia୬
()

Nୣଵ୬
(ଷ)

− b୬
()

M୭ଵ୬
(ଷ)

ቃ                                                     (2.22. a)

ஶ

୬ୀଵ

 

H =
−k୪

ωμ
 E୬ቂd୬

()
Mୣଵ୬

(ଵ)
+ ic୬

()
N୭ଵ୬

(ଵ)
− ib୬

()
N୭ଵ୬

(ଷ)
− a୬

()
Mୣଵ୬

(ଷ)
ቃ                                             (2.22. b)

ஶ

୬ୀଵ

 

where En= inE0(2n+1)/n(n+1) and Mଵ୬
(୯) , Nଵ୬

(୯) , Mୣଵ୬
(୯)  and Nୣଵ୬

(୯)  are the vector spherical harmonics 

which have been provided in Eq. 2.15. However, each layer has its own specific Mie coefficients 

which can be calculated by applying boundary conditions at each layer. By applying boundary 

conditions, it can be inferred that the expansion coefficients a୬
(ଵ)

= b୬
(ଵ)

= 1, and c୬
(ାଵ)

=

d୬
(ାଵ)

= 1 [82]. It should be noted that the scattering coefficients of this multi-layered 

nanostructure are the expansion coefficients of the outward field in the outside region of the sphere 

which can be expressed by [82] 

a୬ = a୬
ାଵ =


H୬

ୟ(Z)
m

+
n

X
൨ ψ୬(X) − ψ୬ିଵ(X)


H୬

ୟ(Z)
m

+
n

X
൨ ξ୬(X) − ξ୬ିଵ(X)

                                                                     (2.23. a) 

b୬ = b୬
ାଵ =


H୬

ୠ(Z)
m

+
n

X
൨ ψ୬(X) − ψ୬ିଵ(X)


H୬

ୠ(Z)
m

+
n

X
൨ ξ୬(X) − ξ୬ିଵ(X)

                                                                    (2.23. b) 

where Z =  nX and X = k୫r. ψn and ξn are Riccati-Bessel functions:  

ψ୬(X) = Xj୬(X)                                                                                                                            (2.24. a) 

ξ୬(X) = Xh୬(X)                                                                                                                           (2.24. b) 
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The explicit expressions for H୬
ୟ and H୬

ୠ can be found elsewhere [82]. By calculating Mie 

coefficients of the multi-layered sphere, the scattering, extinction, and absorbing cross-sections 

and their corresponding efficiency factors can be obtained using Eq. 2.12 and Eq. 2. 13, 

respectively. As an example, the extinction, absorption and scattering efficiencies of a two-layers 

spherical gold nanoparticle have been computed using Multi-layered Mie theory and the spectra is 

presented in Figure 2.4. In our simulation, the core region is chosen to be vacuum and the thickness 

of the gold layer has set to be t = 0.4 r where r is the radius of the nanoparticle.  
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Figure 2.4. Extinction, absorption and scattering efficiencies of a two-layered gold nanosphere. The core region is 
vacuum, and the total radius and shell thickness of the particles are 20 nm and 8 nm, respectively.  

 

2.6. Discrete Dipole Approximation  

Several theoretical methods were used by researchers to describe the optical properties of the 

arbitrary shaped plasmonic NPs [1, 84–86, 97–100]. Among them, the discrete dipole approximation 

(DDA) has been widely used due to its computational simplifications in comparison to other 

electromagnetic methods [84–88]. DDA is a powerful and general technique to calculate scattering 

and absorption of the arbitrarily shaped particles. This electromagnetic method was initially 

proposed by Purcell and Pennypacker to calculate light scattering from grains in the interstellar 

medium [85]. In the last 25 years, DDA has been applied to calculate optical properties of the non-

spherical plasmonic nanoparticle [9, 64, 65, 83] such as scattering [1, 9, 64, 65, 83], absorption [1, 

9, 64, 65, 83], extinction [1, 9, 64, 65, 83], localized plasmon resonance sensitivity [27, 60, 61, 

101, 102], and electric field enhancement around them [65, 103]. 



 

30 
 

In DDA, the particle is discretized into N cubic array of polarizable elements with the 

almost constant electric field and polarization inside each nanocube. The optical response of each 

element (dipole) is the summation of the electric fields of the incident light and its N-1 neighboring 

elements [84–88].  

The primary objective in DDA is to compute the polarization of each dipole (nanocube) in 

order to calculate the optical properties of the NPs, which includes solving 3N linear equations 

[87, 104–112]. Calculating 3N elements of the polarization vector using direct method is 

computationally very expensive, and computing time and memory increases dramatically with 

increasing N [87, 104–112]. The aforementioned problems have been addressed by combining 

complex conjugate gradient (CCG) method and Fast Fourier Transform technique (FFT) in 

literature, which reduced the computational time and required memory from the order of N2 to 

Nlog(N) [87, 104–112]. However, in other electromagnetic scattering problems, biconjugate 

gradient (BCG) technique has been used as an iterative method, which is three- to six- times faster 

than the corresponding CCG [105, 113].  

Several attempts have been made to increase the performance of the DDA [104, 106, 108–

112, 114–118]. One of the pioneering works was carried out by Drain and Flatau, who popularized 

the DDA by releasing an open-source package named DDASCAT that was written in FORTRAN 

[104, 106]. By applying 3D FFT with a number of iterative methods such as BCG and CCG, they 

significantly reduced the required time and computational memory to calculate the polarizability 

of each element [104, 106]. In another work, Mc Donald et al. developed an open-source package 

named OpenDDA to optimize DDA by developing new Discrete Fourier Transform (DFT) kernel 

which performs 3-D DFTs as assemble of 1-D DFTs [108]. They were able to reduce over 80% 

the required memory to calculate the polarizability vector of the particles. Other works modified 

the DDA by adding capabilities to simulate the light scattering of the particles on a planar surface 

by developing packages written in FORTRAN [109, 110]. However, these packages were not open 

source. In another study, Loke et al. released an open-source MATLAB package to calculate the 

light scattering of the particles in free space and on a planar surface [111]. Despite its user-

friendliness, the toolbox suffers from a lack of optimized methods like BCG and FFT, which made 

it computationally very expensive. In another attempt, to calculate scattering of the ice particles 

using DDA, Huntemann et al. performed their simulation on GPUs by implementing Amsterdam 
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DDA (ADDA) program package in open computing language (OpenCL), and calculated the 

scattering of the ice particles in GPUs,which was 5 times and 15 times faster than CPU in double 

and single precision, respectively [112]. 

Although the aforementioned works have made significant progress in decreasing the 

computational cost and required memory but no MATLAB package with accelerated methods to 

calculate DDA is available. The aim of this section is to provide a conceptual theoretical 

framework using a MATLAB package for all the steps of DDA and link them to the corresponding 

computational functions. All of the packages are provided in the appendices. To significantly 

reduce the computational time and memory in DDA, we applied FFT and BCG on the 

corresponding functions in MATLAB, which have not implemented in previous MATLAB 

packages [111, 119], inspired by Drain and Flatau [104, 106]. Also, GPU function in MATLAB 

has been used in our problem to significantly reduce the time of the calculation in comparison to 

CPU. Functions for creating NPs with cubic mesh, obtaining coordinates of dipoles, calculating 

extinction, scattering and absorption efficiencies of the monomeric and dimeric structures for four 

different shapes of plasmonic NPs, electric field enhancement in monomeric, and hot spots in 

dimeric structures are provided in the packages (see the appendices). 

The remaining part of chapter 2 proceeds as follows: 1) Explaining the conceptual basis of 

the DDA, 2) Discussing BCG as an iterative method, 3) Outlining the Toeplitz matrices and the 

way to convert them to the corresponding circulant matrices, 4) Converting the tensor blocks of 

the interaction matrix in DDA to Toeplitz structures in order to accelerate their multiplication to 

the polarization vectors by transforming them to the circulant structures and 5) applying GPU to 

accelerate our problem more. Calculation of the optical cross-section efficiencies of the different 

shaped NPs, electric field enhancement around single NPs and the hot spot in dimeric structures 

along with their corresponding MATLAB scripts have been explained in the end. 

 
2.6.1. Discrete Dipole Approximation Formalism 

The DDA is a general and effective electromagnetic technique to compute the optical 

properties of monomeric or multimeric structures with arbitrary shapes and compositions [84, 85, 

88, 104, 120]. As demonstrated in Figure 2.5, in this method the particle is divided into N 

nanocubes with size much smaller than the incident wavelength. The size of each cube should be 
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small enough to represent the particle shape satisfactory and to obtain a negligible phase shift 

inside each [85, 104]. To fulfill the aforementioned criteria we have  

kd =
 2π n(ω)

λ
d ≪ 1                                                                                                                           (2.25) 

where k, d, and λ are wavevector, length of each cube, and wavelength of the incident light, 

respectively. The n(ω) represents the refractive index of the NPs which is dispersive and changing 

with the frequency of the incident light.  

The corresponding functions to calculate the position of each dipole and obtain the shape 

of an arbitrary NP are provided in the appendix A. 

 

 

 

 

 

 

 

 

Figure 2.5. Schematic of (a) spherical NP, (b) ellipsoid NP, and (c) rod shape nanoshell,  which are made of  N=10648, 

N = 10422,  and N = 8192 dipoles, respectively.  

 

Each cube in NP is representing a point dipole that interacts with the electric fields of the 

incident light and N-1 other dipoles [85]. The polarization of each dipole can be expressed by [85, 

87]  

P୧ = α୧E୪୭ୡ(r୧)                                                                                                                                         (2.26) 

where αi and Eloc(ri) are the polarizability and the total electric field at location ri, respectively. In 

an anisotropic particle, the polarizability of each cube is changing with varying the direction. This 
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can be explained by the fact that the light passing through an anisotropic material will experience 

different refractive indices in different directions inside the material. However, the metal and the 

medium that have been used in this work are isotropic, and their corresponding polarizabilities are 

direction independent. Lattice dispersion relation polarizability is the  most common used αi in 

literature [104, 111] and is given by [121] 

 α୧
ୈୖ =

3dଷ

4π
ቀ

ε୧ − 1
ε୧ + 2

ቁ

1 +
3dଷ(ε୧ − 1)

4πdଷ(ε୧ + 2)
[(bଵ + mଶbଶ + mଶbଷS)(kd)ଶ −

2
3

i(kd)ଷ]
                                            (2.27. a) 

bଵ = −1.891531, bଶ = 0.1648469, bଷ = −1.7700004                                                          (2.27. b) 

S = ൫aෝeෝ൯
ଶ

ଷ

୨ୀଵ

                                                                                                                                       (2.27. c) 

where aො and eො are unit vectors that are representing the direction and polarization of the incident 

light, respectively. The m-file “Polarizability.m” has been provided in the appendix D.5 to 

calculate the polarizability of each dipole in the NP. 

As can be understood from Eq. 2.26, to compute the polarization of each dipole we need 

to obtain the total electric field at its position. Each dipole or nanocube inside the particle interacts 

with the incident light field and the electric field of N-1 neighboring dipoles [104]. Thus, the total 

electric field interacting with a dipole located at position ri is given by 

E୪୭ୡ(r୧) = E୧୬ୡ, ୧ + E୭୲୦ୣ୰ ୢ୧୮୭୪ୣୱ, ୧ = E exp(ik. r୧ − iωt) −  A୧୨P୨



୨ஷ୧

                                        (2.28) 

where N is the number of the dipoles, and A୧୨ is a complex matrix which represents the interaction 

between a receiving dipole at r୧ and the radiating dipole at r୨, and Pj  is the polarization of radiating 

dipole at rj. A୧୨ can be expressed as following [104] 

A୧୨ =
exp൫ikr୧୨൯

r୧୨
ቈkଶ൫rො୧୨rො୧୨ − 𝟏ଷ൯ +

൫ikr୧୨ − 1൯

r୧୨
ଶ ൫3rො୧୨rො୧୨ − 𝟏ଷ൯                                                    (2.29) 
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In Eq. 2. 29, the r୧୨ is the distance from the dipole i to j, rො୧୨ is a unit vector in the direction from the 

dipole i to dipole j, and 13  represents the 3×3 identity matrix. The diagonal elements of the 

interaction matrix are defined  as A୧୧  = α୧
ିଵ  which leads to a simplified format of Eq. 2.28 [104]  

 A୧୨P୨



୧ୀଵ

= E୧୬ୡ, ୧                                                                                                                                     (2.30) 

The above equation can be shown in a matrix-vector format as following 



A୶୶ A୶୷ A୶

A୷୶ A୷୷ A୷

A୶ A୷ A

 

P୶

P୷

P

 = 

E୧୬ୡ,୶

E୧୬ୡ,୷

E୧୬ୡ,

                                                                                                       (2.31) 

where Anm (n and m = x,y or z) is an N×N matrix that represents the interaction matrix between  

n-th and m-th components of the dipoles. Pn and Einc, n are N×1 arrays representing the n-th 

components of the polarization vector and the incident electric field, respectively. Since the nine 

blocks of the interaction matrix are symmetric regarding changing the indices (refer to Eq. 2.29) 

we have 

A୶୷ = A୷୶                                                                                                                                             (2.32. a) 

A୶ = A୶                                                                                                                                             (2.32. b) 

A୷ = A୷                                                                                                                                             (2.32. c) 

The aforementioned property reduces the computational burden of the interaction matrix from 9 

tensor blocks (Axx, Axy, , Axz, Ayx, Ayy, Ayz, Azx, Azy and Azz) to 6 (Axx, Axy, Axz, Ayy, Ayz and Azz). 

The simplified format of Eq. (2.30) can be expressed as following 



A୶୶ A୶୷ A୶

A୶୷ A୷୷ A୷

A୶ A୷ A

 

P୶

P୷

P

 = 

E୧୬ୡ,୶

E୧୬ୡ,୷

E୧୬ୡ,

                                                                                                       (2.33) 

The primary objective of the DDA is to solve Eq. 2.33 to compute the polarization of each 

dipole and consequently calculate the optical properties of the NPs. By calculating the polarization 

of each dipole inside NP, the optical properties of NP structures such as absorption, scattering and 

extinction cross-sections, dipole force, Poynting vector, filed enhancement around a single NP, 

and hot spot in multimeric structures can be computed. In the remaining part of this chapter, we 
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focus on how to implement the accelerative techniques such as BCG, 1D FFT, and GPU to solve 

Eq. 2.33. In the following subsection, we provide a short review of the iterative technique (BCG) 

that has been applied to solve Eq. 2.33. 

 

2.6.2. Computational Techniques 

2.6.2.1. Biconjugate Gradient  

As already mentioned in this chapter, using the direct method to solve the Eq. 2.33 is 

computationally very expensive. However, it has been demonstrated that iterative methods are 

effective and efficient than the direct method to solve Eq. 2.33 for obtaining the polarization of 

each dipole inside the particle [87, 104, 105, 113]. Here, we review the BCG method [113] that 

has been used as an iterative technique in our problem to solve Eq. 2.33. By setting the initial guess 

of P to zero we have 

P =  0                                                                                                                                                   (2.34. a) 

r = q = E୧୬ − AP                                                                                                                          (2.34. b) 

r = q  =  r
∗                                                                                                                                      (2.34. c) 

P୩ାଵ = P୩ + α୩q୩                                                                                                                               (2.34. d) 

r୩ାଵ = r୩ − α୩Aq୩                                                                                                                             (2.34. e) 

q୩ାଵ = r୩ାଵ + β୩q୩                                                                                                                               (2.34. f) 

where A, P, and r0
* are the interaction matrix, the polarization vector and the complex conjugate 

of r0, respectively. The αk and βk can be calculated as  

α୩ =
〈r୩|r୩〉

〈q ୩|Aq୩〉
                                                                                                                                    (2.35. a) 

β୩ =
〈r୩ାଵ|r୩ାଵ〉

〈r୩|r୩〉
                                                                                                                                (2.35. b) 

It is worth to mention that the iterative process will be terminated if the error of the residual fulfill 

the following equation [105, 113] 

Error =
|r୩|

|E୧୬|
≤ 10ିଷ                                                                                                                            (2.36) 
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The flowchart of the BCG to compute the polarization vector of the dipoles inside the NP 

in DDA using the iterative process is provided in Figure 2.6. 

 

 

 

 

 

 

 

Figure 2. 6. Flowchart of Biconjugate Gradient as an iterative method to find the polarization of each dipole. 

 

It is worth to mention that as the elements of the interaction matrix are complex numbers 

and each block requires 8(N/1000)2
 Mb to be stored, where N is the number of the nanocubes or 

dipoles inside the NP. By increasing N not only the required storage memory increases but also 

the computational time drastically increases. So, using the iterative method solely is not a particle 

way to solve the DDA problems of the NPs with a number of the dipoles more than a few thousand. 

In the following subsections, first, we explain Toeplitz matrices and how to convert them 

to circulant ones. Then, we will discuss how to convert the blocks of the interaction matrix to 

Toeplitz structures and consequently to the circulant ones in order to significantly reduce the 

computational time and memory by performing matrix-vector multiplication of A.P in Fourier 

domain.  

 

2.6.2.2. Toeplitz Matrix and the Way to Convert it to a Circulant One 

A Toeplitz matrix of order n is made of 2n-1 independent elements where all elements in 

each diagonal are constant [107, 108]. This kind of matrix can be entirely defined by its first row 

and the first column as following [107] 
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T(୬) =
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                                                                                        (2.38) 

A typical case of the Toeplitz matrix is a circulant matrix. In this particular case, every row 

of the matrix is a right cyclic shift of the row above it so that the last element of each row is the 

same as the first element of the next row [107, 122]. To convert a Toeplitz matrix of order n to a 

circulant one with the order of 2n-1, first we need to obtain its first column and then each column 

can be defined by down cyclic of the column in the left side of it. The first column can be obtained 

in three steps: (1) taking the first column of the Toeplitz matrix, (2) joining the first row to the first 

column in reverse order, and (3) excluding the last element which is the first element of the first 

row [107]: 

c(ଶ୬ିଵ) = ൣt tିଵ tିଶ ⋯ tି(୬ିଵ) t(୬ିଵ) t(୬ିଶ) ⋯ tଵ൧
୲୰ୟ୬ୱ୮୭ୱୣ

                            (2.39) 

and the full (2n-1)×(2n-1)  circulant matrix is 

C(ଶ୬ିଵ) =
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                             (2.40) 

It should be noted that the circulant matrix can completely be defined by its first column elements 

which result in significant simplification. Interestingly, a circulant matrix can be diagonalized by 

the Fourier matrix. This property reduces the computational load of the problems (such as in DDA) 

that need to compute the multiplication of this kind of the matrices to an arbitrary vector by 

carrying out the product in the Fourier domain [86, 105, 107, 108, 110, 122].  

 

2.6.2.3. Performing Matrix-Vector Multiplication in DDA using FFT 

As mentioned already the Fourier domain can be applied to accelerate matrix-vector 

multiplication of the matrices that have Toeplitz structures. However, six tensor blocks of the 
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interaction matrix in DDA have only level-three single element Toeplitz structure for the 

rectangular particles [88]. The aforementioned matrices can be converted to Toeplitz structures for 

an arbitrary shaped NP by embedding the NP in the smallest rectangular block in such a way that 

the new lattice completely encompasses the NP (see Figure 2.7) [86, 107, 108]. It should be noted 

that the diagonal terms of the dipoles inside the NP are nonzero while the corresponding terms for 

the dipole outside the NP in the extended lattice are zero (light blue region in Figure 2.7) which 

are breaking the Toeplitz symmetry [86, 107, 108]. To prevent this effect, the diagonal terms must 

be negated initially and be added in the end to the resultant of the matrix-vector multiplications 

(see Appendix D.7) [86, 107, 108]. 

 

 

 

 

 

 

Figure 2.7. Schematic of embedding a rod shape NP inside a rectangular block. 

 

The extended lattice is divided into Nx, Ny and Nz dipoles in the x, y and z directions, 

respectively. In other words, the new structure is made of  Nx×Ny×Nz nanocubes or dipoles. As 

mentioned already, the first column and first row of a Toeplitz matrix are sufficing to define the 

whole matrix. Interestingly, the six tensor blocks in the interaction matrix are symmetric respect 

to changing of the indices, which provide the opportunity to define the whole matrix using their 

first column. Thus, it is required only to calculate the first column of each tensor block which 

represents the interaction of the first dipole in the extended lattice with other dipoles. After 

computing the first column of each tensor block, the first element should be negated by zeroing it 

and then the column be rearranged in a Nx×Ny×Nz three-dimensional matrix (see Appendix D.7) 

[86, 107, 108]. 
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To perform matrix-vector multiplication using the Fourier domain in DDA it is required 

first compute FFT of the six 3D tensor blocks, second calculate FFT of the three components of 

the polarization vector, third perform the element-wise multiplication and finally operate inverse 

FFT of each. The FFT of the obtained 3D matrices of the first column of the block tensors can be 

carried out by taking FFT in x, y, and z-direction, consecutively, as following: 

1. Take each line of obtained 3D matrices in the x-direction, expand them to the length of 2Nx -1 

by mirroring each in the reverse order and excluding the first element (refer to  Eq. 2.39). After 

expanding each line, compute the FFT of each and insert the resultant in a matrix with a 

dimension of (2Nx -1)×(Ny)×(Nz). It should be noted that as there are  (Ny)×(Nz) lines in the x-

direction, it is required to perform (Ny)×(Nz) FFTs in this step. 

2. Take each y-direction’s lines of the modified matrices obtained in step 1 and expand them to the 

arrays with the length of (2Ny -1) using Eq. 2.39. Then, perform the FFT of each line in the y-

direction and insert the result in matrices with the dimension of (2Nx -1)×(2Ny -1)×(Nz). In this 

step, it is needed to perform FFT of (2Nx -1)×(Nz) lines in the y-direction. 

3. Take z-direction’s lines of the obtained matrices in step 2, expand them to the vector with the 

length of (2Nz -1) using Eq. 2. 39. And finally, calculate the FFT of each line in the z-direction 

and insert the resultant in matrices with the dimension of (2Nx -1)×(2Ny -1)×(2Nz -1). In this step, 

it is required to perform (2Nx -1)×(2Ny -1) FFTs in the z-direction. 

 
It is worth mentioning that the mirror elements in steps 1, 2 and 3 must be multiplied to appropriate 

coefficients provided in Table 1 [107, 108]. The schematic of the performing FFT of the six tensor 

blocks of the interaction matrix has been demonstrated in Figure 2.8. Also, the ‘FFT_Interaction’ 

file provided in the Appendix D.8 to calculate the aforementioned FFTs.  

 

Table 2.1. Coefficients which should be multiplied to the mirror elements for operation DFT [107, 108] 

 

 

 
Axx Axy Axz Ayy Ayz Azz 

X-DFT +1 -1 -1 +1 +1 +1 

Y-DFT +1 -1 +1 +1 -1 +1 

Z-DFT +1 +1 -1 +1 -1 +1 
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Figure 2.8. Schematic is representing the procedures of applying 1D FFT to the six 3D blocks of the interaction 
matrix. (A) Applying FFT to the Ny×Nz lines with the length of (2Nx -1) in the x-direction, (B) Performing FFT to 
(2Nx -1)×(Nz) lines with the length of (2Ny -1) in the y-direction and (C) Obtaining FFT of  the (2Nx -1)×(2Ny -1) 
lines with the length of (2Nz -1)  in the z-direction. 

 

In the next step, we need to obtain the FFT of each component of the polarization vector 

(Px, Py, and Pz). Similar to the 3D blocks, before performing the FFT of each component they must 

be transferred from a vector with a length of N (Nx×Ny×Nz) to a 3D matrix with the dimension of 

Nx×Ny×Nz. To fulfill the dimension requirement to perform element-wise multiplication of FFT(A) 

and FFT(P), the 3D components of the polarization vector must be extended from 3D matrices 

with dimension of Nx×Ny×Nz to the matrices with dimension of (2Nx -1)×(2Ny -1)×(2Nz -1). The 

FFT of Px, Py and Pz can be carried out by taking 1D FFT in y, x, and z-direction, consecutively, 

as following:  

1) Take each line in the y-direction and expand them to the length of (2Ny -1) by zero paddings, 

perform the FFT for the Nx× Nz lines in this direction and embed the results in the matrices 

with the dimension of (Nx)×(2Ny -1)×(Nz). This can be computed in MATLAB as 

FFT(P୧) =  fft൫P୧, 2N୷ − 1, 2൯                                                                                                       (2.41) 

where i represents the x, y or z-direction. It should be noted that 2Ny-1 is presenting (2Ny-1)-

point FFT along each line in the y-direction. Since the length of each line in Px, Py and Pz is 

Ny, before computing FFT, MATLAB will extend the length of each by zero paddings them to 

length 2Ny-1 [123]. 

2) Take the results of the previous step, expand the lines in the x-direction to the lines with a 

length of (2Nx -1) by zero paddings, calculate the FFT of (2Ny -1)×Nz lines in this direction 

and embed the results in a matrix with dimension of (2Nx -1)×(2Ny -1)×(Nz). Similar to the 

previous step, this can be done as below in MATLAB  
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FFT(P୧) =  fft(P୧, 2N୶ − 1, 1)                                                                                                       (2.42) 

3) Take the results of the step (2) and expand the length of the lines in the z-direction from Nz to 

(2Nz -1) by zero paddings them, perform the FFT for the (2Nx -1)×(2Ny -1) lines in z-direction 

and embed the results in the matrices with the dimension of (2Nx -1)×(2Ny -1)×(2Nz -1).  

 

Figure 2.9 shows the procedures of applying 1D FFT to the 3 components of the polarization vector 

in DDA (see Appendix D.10). 

 

 
Figure 2.9. Schematic representing applying the 1D FFT to the three components of the polarization vector in the (A) 
y-direction, (B) x-direction and (C) z-direction. 

 

By calculating the FFT of the tensor blocks of the interaction matrix and three components 

of the polarization vector the element-wise multiplication of the FFT(A) and FFT(P) can be 

performed as below (see Appendix D.10) 

 
FFT(A. P)୶,ୣ୶ =  ൣFFT൫A୶୶,ୣ୶൯.∗ FFT൫P୶,ୣ୶൯ +  FFT൫A୶୷,ୣ୶൯.∗ FFT൫P୷,ୣ୶൯ +  FFT൫A୶,ୣ୶൯.

∗ FFT൫P,ୣ୶൯൧                                                                                                             (2.43. a) 

FFT(A. P)୷,ୣ୶ =  ൣFFT൫A୶୷,ୣ୶൯.∗ FFT൫P୶,ୣ୶൯ +  FFT൫A୷୷,ୣ୶൯.∗ FFT൫P୷,ୣ୶൯ + FFT൫A୷,ୣ୶൯.

∗ FFT൫P,ୣ୶൯൧                                                                                                            (2.43. b) 

FFT(A. P),ୣ୶ =  ൣFFT൫A୶,ୣ୶൯.∗ FFT൫P୶,ୣ୶൯ +  FFT൫A୷,ୣ୶൯.∗ FFT൫P୷,ୣ୶൯ +  FFT൫A,ୣ୶൯.

∗ FFT൫P,ୣ୶൯൧                                                                                                             (2.43. c) 
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where FFT(A.P)x,ex, FFT(A.P)y,ex, and FFT(A.P)z,ex are presenting the matrix-vector element-wise 

multiplication resultant in the x, y, and z-direction, respectively. The subscribe ‘ex’ in the above 

equations represents an extended matrix and the symbol ‘.*’ denotes element-wise multiplication. 

To transfer A.P from the Fourier domain to the main domain, it is needed to carry out the 

inverse FFT of each component obtained in Eq.24. This can be taken by computing inverse FFT 

in the z, x, and y-direction, consecutively. As shown in Figure 2.10, this computation can be 

expressed in three steps as below (see Appendix. D.10): 

1)  Performing inverse FFT of the FFT(A.P)x,ex, FFT(A.P)y,ex and FFT(A.P)z,ex for (2Nx -1)×(2Ny 

-1) lines in the z-direction.  

2) Take (2Ny -1)×(Nz) lines in the x-direction of the results obtained in the step (1) and perform 

the inverse FFT for the lines in the x-direction.  

3) Take Nx×Nz lines in the y-direction of the results obtained in the step (2) and perform the 

inverse FFT for all of the lines in the y-direction.  

 

 

Figure 2.10. Schematic of applying 1D inverse FFT for calculating matrix-vector multiplication of (A.P) in DDA. 

 

After obtaining the results of the matrix-vector multiplication (A.P) in all directions, in the 

final step, it is required to nullify the contribution of the dipoles which lie outside of the NP 

boundary and add the first elements which have been negated in the previous steps. The 

aforementioned operations can be applied as below: 

(A. P)୮,୶ = (A. P)୶.∗ B +  αିଵP୶.∗ B                                                                                             (2.44. a) 

(A. P)୮,୷  = (A. P)୷.∗ B +  αିଵP୷.∗ B                                                                                           (2.44. b) 
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(A. P)୮,  = (A. P).∗ B +  αିଵP.∗ B                                                                                            (2.44. c) 

where (A.P)Np, x, (A.P)Np, y  and (A.P)Np, z are the results of the A.P in the x, y, and z-direction, 

respectively, and the symbol ‘.*, denotes the element-wise multiplication. In the above equations, 

the matrix B is a 3D matrix with a dimension of Nx×Ny×Nz which its elements are one and zero 

for the nanocubes inside and outside of the NP, respectively. This matrix has been applied to nullify 

the contribution of the dipoles which lie outside of the NP. The second terms in the above equations 

are representing the contribution of the first elements in the corresponding direction which have 

been negated in the previous steps (see Appendix D.10).  

A flowchart of the matrix-vector multiplication (A.P) steps using FFT and inverse FFT is 

presented in Figure 2.11. Also, the corresponding MATLAB scripts for calculating all of the steps 

in Figure 2.11 are provided in the Appendices. D.8, D.9, and D.10. 

 

 

Figure 2.11. Flowchart of all of the required procedures to obtain matrix-vector multiplication A.P results in DDA in 
the Fourier domain. 
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As already mentioned, to obtain the polarization vector of the plasmonic nanoparticles 

using iterative methods after obtaining the results of the matrix-vector multiplication (A.P) the 

corresponding components of the polarization vector will be updated using BCG iterative method. 

The iteration process will continue until satisfying the terminating criterion that is provided in Eq. 

2.35. The MATLAB script of the iterative technique (BCG) to modify the Px, Py and Pz is provided 

in Appendix D.9. 

 

2.6.2.4. Running DDA in Graphics Processing Units (GPUs) 

Graphics Processing Units (GPUs) have shown to be a cost-effective, energy-efficient and 

successful solution in comparison to CPUs for running a large amount of data in modern scientific 

studies [124]. In contrast to CPUs which typically have cores in the range of 2-8, GPU’s 

architecture is unique in its design and typically has thousands of cores (see Figure 2.12) [125–

128]. Although modern CPUs can have an even larger number of cores, it is still very small as 

compared to GPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Schematic of CPU and GPU architecture and PCle cable for transferring data from CPU to GPU and vice 
versa. 

 

To accelerate DDA more, I modified the codes to run them using the GPU toolbox in the 

MATLAB. Since GPU is considered a foreign device, any data which needs to be processed in it 

should be transferred from CPU to it, and after finishing the processing of the data in the GPU it 
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must be offloaded back to the CPU. Offloading data from CPU to GPU and transferring it back 

from GPU and CPU can be done using ‘gpuArray’ and ‘gather’ commends in MATLAB, 

respectively [129]. Figure 2.13 demonstrates the flowchart of the data transferring in DDA from 

CPU and GPU  and vice versa. It should be noted that a PCIe cable is responsible to move data 

between CPU and GPU device, which is highly limited in data communication speeds, and transfer 

of larger datasets may cause bottlenecks. In some cases, data transfer times can even exceed the 

processing time thus nullifying any advantage gained in the first place [128]. Hence, to accelerate 

our algorithms, the amount of data transferring from CPU to GPU and vice versa should be 

minimized. As demonstrated in Figure 2.13, only two communications happen between CPU and 

GPU in the whole algorithm in DDA. First, we transferred input parameters (wavelength, dielectric 

function and position of the dipoles) from CPU to GPU, run all intensive portions of DDA in GPU 

and then transferred final results from GPU to CPU.  

 

 

Figure 2.13. Flowchart of the data transfer from CPU to GPU and vice versa. 

 

To compare the speed of the calculation of DDA in CPU and GPU, we computed absorption 

efficiency of a spherical gold NP with a diameter of 40 nm. Figure 2.14A shows the computational 

times of DDA versus number of the dipoles in CPU and GPU. By comparing the results, it can be 
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inferred from Figure 2.14B that the overall relative speedup of GPU aided implementation to CPU 

method enhances more with further increasing the number of the dipoles. The results demonstrate 

that for a nanoparticle that consists of ~106 dipoles the GPU computational time is almost 10 times 

less than CPU. Figure 2.15 shows the overall flowchart of the DDA using GPU. 

 

 

Figure 2.14. (A) Comparison computation time of DDA in CPU and GPU and (B) their ratio versus the number of 
the dipoles. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Flowchart of DDA for computing optical properties of the NPs using FFT, BCG, and GPU. 
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Table 2.2 presents a summary of some important MATLAB commands used in the 

proposed package.  

 

Table 2.2. Description of some MATLAB functions applied in DDA 

MATLAB function Description 
fft(A,[],i) Compute 1D FFT of the lines of matrix A in i-direction 
ifft(A,[],i) Calculate inverse 1D FFT of the lines of matrix A in i-direction 
gpuArray Transfer data from CPU to GPU and running codes in GPU  
gather Transfer data from GPU to CPU 

 

In the next section, we provide some examples of the optical properties of the metallic NPs 

that have been computed using the package provided in the Appendices. 

 

2.6.3. Calculating Optical Properties of the Metallic NPs 

2.6.3.1. Absorption, Scattering and Extinction Efficiencies 

After calculating the polarization vector of the dipoles of an arbitrary shaped NP at different 

wavelengths, the absorption, extinction, and scattering cross-sections of the NP can be calculated 

using the following equations [87] 

Cୟୠୱ =
4π|k|

|E|ଶ
[Im(

P୧. P୧
∗

α
∗



୧ୀଵ

) −
2

3
|k|ଷ|P୧|

ଶ]                                                                                    (2.44. a) 

Cୣ୶୲ =
4π|k|

|E|ଶ
[Im(E୧୬ୡ,୧

∗



୧ୀଵ

). P୧]                                                                                                       (2.44. b) 

 Cୱୡୟ୲ = Cୣ୶୲ − Cୟୠୱ                                                                                                                            (2.44. c) 

where ‘Im’ and ‘*’ are representing the imaginary part and complex conjugate, respectively. The 

absorption, extinction and scattering efficiencies factors are defined as Cabs/ πreff
2, Cext/ πreff

2 and 

Cscat/ πreff
2, where πreff

2 and reff are geometrical cross-sections and effective radius of the NP. For a 

nonspherical nanoparticle with the volume of V, the reff is equal to the radius of a sphere with equal 

volume as NP that can be defined as reff = (3V/4π)1/3.  



 

48 
 

Figure 2.16 shows the extinction efficiency of a spherical gold NP with a diameter of 40 

nm obtained using DDA for two different mesh sizes of d=0.5 nm and 0.25 nm. To verify our code, 

the extinction efficiency of the mentioned NP has been obtained using the exact solution (Mie 

theory [1]) and the result has been added to Figure 2.16. By comparing the spectra obtained through 

the exact solution and DDA code, it can be inferred that the approximation method spectra 

converge more to the exact solution by further decreasing the size of the cubic mesh. The results 

show that the average error between the extinction spectra of DDA and Mie theory reduced from 

6.7% to 1.4 %  by reducing the size of the mesh from 0.5 nm to 0.25 nm.  

 

   

Figure 2.16. Extinction efficiency of a spherical Au Np with r = 20 nm using Mie theory (exact solution), and DDA 
with two different mesh sizes of 0.5 and 0.25 nm. 

 

As mentioned already, approximation methods such as DDA [85–88, 104, 109, 130] mainly 

have been used to simulate the optical properties of non-spherical NPs due to lack of exact solution. 

Figure 2.17 demonstrates the extinction, absorption and scattering efficiencies of a gold nanorod. 

As demonstrated in Figure 2.5c, the rod NP is made of a cylinder and two semi-spheres caps at 

both ends. In our simulation, we set the effective radius of the NP to 20 nm and chose the aspect 

ratio (AR), which is defined as the ratio of the longer axis to shorter one, to be 2. Also, the incident 

light field is polarized along the long axis of the NP. Interestingly, by comparing the results of 

Figure 2.16 and 2.17 it can be inferred that the rod shape NP absorb and scatter the incident light 

much stronger than spherical one, despite the fact that they have the same volume. The extinction 
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spectra presented in Figure 2.16 and 2.17 have been computed using the m-file presented in 

Appendix B and the functions provided in Appendix D. 

 

  

Figure 2.17. Extinction, absorption and scattering efficiencies of the longitudinal mode of a rod shape Au Np with 
reff= 20 nm, AR=2 and d = 0.5 nm using the DDA. 

 

2.6.3.2. Calculating Electric Field Enhancement Around Plasmonic NPs 

The total electric field at position r୧ around a nanoparticle can be calculated by the 

summation of the incident light field and the scattered fields of N-1 other dipoles at position ri , 

and is given by [111]  

E୲୭୲(r୧) = E୧୬ୡ(r୧) + Eୱୡୟ୲(r୧)                                                                                                             (2.45) 

where the incident and scattered field at position ri are 

E୧୬ୡ(r୧) = E exp(ikr୧)                                                                                                                         (2.46) 

 Eୱୡୟ୲(r୧) = 
exp (ikr୧୨)

r୧୨
ቈkଶ(rො୧୨rො୧୨ − 𝟏ଷ) +

൫ikr୧୨ − 1൯

r୧୨
ଶ (3rො୧୨rො୧୨ − 𝟏ଷ)



୨ୀଵ

. P୨                            (2.47) 

where r୧୨ is the distance between the position of dipole i and j. Figure 2.18A and 2.18B show 

electric field enhancement around a spherical and a rod shape Au NP with an effective radius of 

20 nm, respectively, at their corresponding localized surface plasmon resonance (LSPR) 
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wavelength. For the nanorod, the incident light electric field is aligned to be parallel to the long 

axis of the NP which creating longitudinal mode. Although the NPs in Figure 2.18A and 2.18B 

have the same volume, the average distance between the positive and negative charges in the 

longitudinal mode of the rod shape nanoparticle is bigger than the spherical NP, which leads to 

much stronger polarization and field enhancement in comparison to the spherical case [27, 131]. 

 

 

Figure 2.18. Electric field enhancement around (A) a spherical Au Np with r= 20 nm (λLSPR= 525 nm) (B) a rod shape 
Au Np with reff = 20 nm and AR= 2 for longitudinal mode (λLSPR= 620 nm), using DDA. The mesh size for both cases 
has been set to d= 0.5 nm. 

 

2.6.3.3. Computing Hot Spots Between Nanoparticles in Dimeric Structures 

When the distance between the two nanoparticles is small enough in comparison to the 

incident light wavelength the electric dipoles of the one NP can interact with the dipoles of another 

particle [63, 102, 103, 132]. This coupling, which depends on the polarization direction of the 

incident light [63, 103, 132], the orientation of the nanoparticles [63, 103, 132] and the inter-

particle distances [63, 103, 132, 133], can create a bright or dark mode between the NPs. Figure 

2.19A, 2.19B, and 2.19C show three different configurations, as examples, of the plasmonic 

coupling between two neighboring nanoparticles. In Figure 2.19A, the nanoparticles are oriented 

head-by-tail and the incident light electric field polarized in the direction of the long inter-particles 

axis. This interaction enhances absorption and scattering efficiencies and redshifts LSPR peak in 

comparison to the single NP due to the constructive coupling between neighboring particles, which 

(A) (B) 
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reduces the restoring Coulombic force between the positive and negative charges [27, 63], This 

constructive coupling leads to huge enhancing of the electric field between the NPs by creating a 

hot spot between them (see Figure 2.20A). In Figures 2.19B and 2.19C, the NPs are linked together 

in a side- by- side configurations. In Figure 2.19B, the electric field of the incident light is parallel 

to the long axis of each NP, while in Figure 2.19C it is oriented in the direction of the short inter-

particles axis. The electric field enhancement in both structures is much weaker than the 

configuration presented in Figure 2.19A. In Figure 2.19B, the side by side parallel orientation of 

the electric dipoles of the neighboring NPs leads to a destructive coupling, which creates dark 

mode between them (See Figure 2.20B). In Figure 2.19C, although head to tail orientation of the 

dipoles of the neighboring NPs leads constructive coupling between them, the electric field 

enhancement of the transversal mode of each particle is weak in comparison to the longitudinal 

one due to smaller average distances between positive and negative charges in each NP which 

increases the required electromagnetic energy for exciting the conduction electrons of each particle 

(See Figure 2.20C).  

 

 

Figure 2.19. Schematic of the charge distribution around the plasmonic NPs in the dimeric structures  (A) for head to 
tail orientation with incident light parallel to the long interparticle axis, (B) for side by side orientation with incident 
light parallel to the long axis of the NPs, and (C) for side by side orientation with incident light perpendicular to the 
long axis of the NPs. 

 

The electric field enhancement in the monomeric and dimeric structures can be computed 

using the m-file (‘𝐸_𝑓𝑖𝑒𝑙𝑑_𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡. 𝑚’) that is provided in the Appendix C along with the 

MATLAB functions that are provided in Appendix D. 
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Figure 2.20. Surface plot representing the creation of (A) longitudinal hot spot, (B) dark mode and (C) transversal hot 
spot, between ellipsoid Au NPs in the dimeric structures presented in Figure 19A, 19B, and 19C, respectively. In our 
simulation, the effective radius of each NP, the aspect ratio, the interparticle distances, and the mesh sizes are chosen 
to be 20 nm, 2 nm, 4 nm and 0.5 nm, respectively.  
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CHAPTER 3 
 
 

THEORETICAL INVESTIGATION OF PLASMONIC PROPERTIES OF QUANTUM -
SIZED SILVER NANOPARTICLES 

 

 

3.1. Introduction 

Localized surface plasmon resonance (LSPR) is produced by strong coupling of the 

incident light and the oscillation of conduction band electrons in metallic NPs [1, 134, 135]. This 

phenomenon leads to strong scattering and absorption of the light as well as significant electric 

field enhancement around the NPs at LSPR frequency [49]. These optical properties, which 

resulted from the LSPRs of metallic NPs, have found applications in the fields of photonics [11, 

14, 43, 102, 136–141], medicine [12, 14, 20, 142, 143], biological imaging [11, 14, 144, 145], 

biosensing [27, 29, 31, 146–152], plasmonic resonance energy transfer (PRET) [136–138], 

fluorescence enhancement [102, 147], and surface-enhanced Raman scattering (SERS) [43, 139]. 

Also, it was shown that plasmonic NPs can transfer the extra heat to the surrounding medium 

through electron-electron, electron-phonon, and phonon-phonon interactions [153–155]. which 

can be applied for destroying malignant cells [12, 14, 20, 143, 144]. As an example, gold nanorods 

conjugated with anti-epidermal growth factor receptor (anti-EGFR) antibody has been used to heat 

up and destroy the cancer cells [12, 14, 20, 143, 144]. Owing to overexpressed EGFR on the 

cytoplasmic membrane of the malignant cells, the anti-EGFR antibody integrated nanorods 

attached with higher affinity to the surface of the malignant cells [12, 14, 20, 143]. By continuous 

irradiation of these nanoparticles by low power laser light at the LSPR frequency, it was observed 

that malignant cells were photothermally destroyed when compared to healthy cells [12, 14, 20, 

143].  

The LSPR frequency of plasmonic NPs can be tuned by different parameters such as shape, 

size, the refractive index of the surrounding medium, the polarization direction of the incident 

light, and inter-particle plasmonic coupling [9, 49, 61, 63-65, 83, 103, 132, 156–165]. Reducing 

the size of the NPs would enable them to integrate more into biological cells for biological imaging           
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or photothermal therapy. The small-sized plasmonic NPs can be ideal candidates to detect and 

sense a single molecule or electron or few electron transfer phenomena [79]. Although a significant 

amount of the theoretical and experimental research was carried out on understanding the LSPR 

properties of the classical-sized metallic NPs( > 10 nm) [9, 49, 61, 63-65, 83, 103, 132, 156–162], 

few studies concentrated on the LSPR properties of the quantum-sized ( ≤ 10 nm) NPs [76, 79, 

166–173]. For instance, Scholl et al. investigated optical properties of small-sized Ag NPs using 

aberration-corrected transmission electron microscope (TEM) imaging and scanning TEM 

electron energy- loss microscopy [79]. Using an analytical quantum model, they observed 0.5 eV 

blue shift of the LSPR frequency by decreasing the size of the NPs from 20 nm to less than 2 nm 

[79]. Varas et al. studied the anisotropy effect on the plasmon coupling, field enhancement, and 

electron tunneling in dimer junction of Naଶଽ for different inter-particle distances using ab initio 

study [166]. In another study, Barbry et al. explored the atomic distribution dependence of 

plasmonic hot spots of the ultra-small sodium NPs using time-dependent density functional theory 

(TDDFT) [167]. They demonstrated that formation of the subnanometric hot spot in the inter-

particle junction is due to the distribution of the near-field close to the NPs. Recently, Mokkath 

observed shape- anisotropy effect on the optical properties of the quantum-sized spherical 

aluminum NPs (made of 807 atoms) using TDDFT [168]. He demonstrated that stretching of the 

NPs in one or two directions caused significant enhancement of the plasmon spectra and led to the 

appearance of distinct plasmon peaks in optical spectra of the aluminum NPs in UV- visible region.  

To describe the optical properties of the NPs, it is required to define their dielectric 

function, which plays a vital role in determining their LSPR properties. The classical Drude model 

is a commonly used approach to calculate the dielectric function of the bulk metals and big-sized 

plasmonic NPs [1, 174]. However, by reducing the size of the NPs, the mean free path of the 

electrons decreases due to the increased number of the collisions of the electrons with the boundary 

of the nanoparticles [1, 174, 175]. To consider this effect, an additional term, which is inversely 

proportional to the size of the NPs, has been applied to intrinsic collision frequency for describing 

the electric permittivity of the classical-sized NPs (d > 10 nm) [174]. However, this classical 

approach failed to predict the optical properties of the ultra-small NPs, which can be described as 

quantum-sized NPs (d ≤ 10 nm) [79]. This can be ascribed to the discretization of the band structure 

of the NPs by further reducing the size [78, 79, 94], where demanding quantum calculations, and 

solving many-body problems might be needed. Few theoretical models have been proposed to 
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calculate the electric permittivity of the quantum-sized NPs [78, 79, 94, 176, 177]. The first 

theoretical model was developed by Gonzel and Martin in 1975 using a simple model of electrons 

in a box [78]. This model was able to observe the ultrafine structures in the spectra of ultra-small 

NPs. However, the drawback of this is model is that it overestimated the plasmon peak broadening 

of the quantum-sized NPs with countable atoms [176]. In another study, the permittivity of ultra-

small silver NPs (up to 586 atoms) has been calculated using density functional theory (DFT) [94]. 

In this work, He and Zeng derived an empirical equation as a function of the radius of NPs and 

frequency of the incident light for the intraband term of the imaginary part of the dielectric constant 

and calculated the real part of the dielectric function using the Kramer-Kronig relation [177]. In 

another work, Scholl and coworkers developed an analytical equation to model the optical 

properties of the quantum-sized NPs [79]. They used Lorentzian oscillation terms to describe 

allowed quantum electron transition frequencies for NPs with a diameter less than 10 nm. Their 

results successfully explained the blueshifts and reducing of the absorption efficiency as the size 

of the isolated ultra-small NPs is decreased [79]. Although these studies have improved the 

understanding of ultrasmall plasmonic NPs, several factors remain to be understood that include a 

systematic size effect, effect of the surrounding medium and the effect of passivating ligands on 

the optical properties of the plasmonic NPs. 

In this chapter, we focused on the size and refractive index (RI) of surrounding medium 

effects on plasmonic absorption, LSPR frequency shift, and field enhancement of the individual 

ultrasmall spherical Ag NPs in size range of 3 to 20 nm. To understand the optical properties of 

the Ag NPs theoretically, first, the dielectric function of the NPs was calculated. For NPs with size 

ranges from 10 to 20 nm, the modified classical Drude model was used to calculate the dielectric 

function, whereas for quantum-sized NPs (3 to 10 nm), the quantum model proposed by Scholl et 

al. has been utilized [79]. Utilizing the standard Mie theory, the size, and surrounding medium 

effects on the plasmonic properties were explored using both classical and quantum models. By 

comparing the results of these two models, it is conceivable that the quantum model could predict 

a blue shift of LSPR peak when the size of NPs decreases from 10 to 3 nm while the classical 

model failed to observe this effect. We studied the effect of RI of the surrounding medium on the 

LSPR peak position and field enhancement around NPs. Also, the evolution of the enhanced 

electric field against the distance from the surface of the NP has been investigated, and interesting 

results were obtained. Then, the dependence of the aforementioned optical properties for ligand 
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passivated NPs has been studied in detail for spherical Ag NPs conjugated with oleylamine (OAM) 

using multi-layered Mie theory. Both models predicted an enhancement for the LSPR wavelength 

difference (Δλ) between the ligand-conjugated and ligand-free samples by shrinking the dimension 

of the NPs. However, the quantum model demonstrated a larger Δλ than the classical one for NPs 

less than 10 nm. 

In the following section, we discuss the theoretical methods that have applied to describe 

electric permittivity and calculate the optical properties of the quantum-sized nanoparticles. 

 

3.2. Theoretical Methods  

3.2.1. Electric Permittivity 

Values of the electric permittivity of a bulk Ag at different wavelengths were taken from 

experimental data provided by Johnson and Christy [78]. In nanoscale regime, when the size of 

NPs is smaller than the mean free path of the free electrons in bulk metal, the collision frequency 

has been modified using Eq. 2.3. The revised electric permittivity of the classical-sized NPs (d > 

10 nm) has been calculated using Eq. 2.2. In the quantum regime (d < 10 nm), we obtained the 

imaginary part of the permittivity of these quantum-sized NPs for the sizes ranging from 3 to 10 

nm by calculating the imaginary part of the interband contribution through the analytical equation 

that is given in Eq. 2.5. Then, the Kramer- Kronig relation [177] has been applied to compute the 

real part of the dielectric function of each NP  

ℇଵ(ω) = 1 +
2

π
P න dωᇱ

ωᇱଶ
ℇଶ(ωᇱ)

ωᇱଶ − ωଶ

ஶ



                                                                                                  (3.1) 

here P is the Cauchy principal value. 

Also, the dielectric permittivities of the classical and quantum-sized ligand-conjugated Nps have 

been calculated using Eq. 2.4 and Eq. 2.7, respectively. 

It is worth mentioning that, in our simulation, ε୍ was considered to be independent of the 

size of the NPs in the energy range that we performed our calculations [79, 94]. Also, the bulk 

collision frequency, plasma frequency, Fermi velocity and empirical parameter in Ag NPs were 
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taken to be Γ = 2.43 × 10ଵଷ ୰ୟୢ

ୱ
 [78], ω୮ = 1.37 × 10ଵ ୰ୟୢ

ୱ
 [178], V = 1.39 × 10 ୫

ୱ
 [179], and 

A = 0.25 [79], respectively. 

 

3.2.2. Calculation Methods 

For ligand-free samples, we performed standard Mie theory to study the size and the 

surrounding medium influence on the LSPR resonance wavelength and the optical efficiencies of 

the spherical Ag NPs [80]. The incident, scattered and total electric fields have been obtained from 

[180] 

E୧୬ = 
ቂMଵ୬

(ଵ)
− iNୣଵ୬

(ଵ)
ቃi୬(2n + 1)

[n(n + 1)]E

ஶ

୬ୀଵ
                                                                                             (3.2) 

Eୱ =
∑ ቂia୬Nୣଵ୬

(ଷ)
− b୬Mଵ୬

(ଷ)
ቃஶ

୬ୀଵ i୬(2n + 1)

[n(n + 1)]E
                                                                                        (3.3) 

Eሬሬ⃗ ୲ = Eሬሬ⃗ ୧୬ + Eሬሬ⃗ ୱ                                                                                                                                             (3.4) 

where n is the summation index of the partial waves, E0 is the magnitude of the incident wave at 

the origin, and Ein, Es and Et are the incident, scattered and the total electric field, respectively. The 

Mଵ୬
(୨)  and Nୣଵ୬

(୨)  (j = 1, 3) are the vector spherical harmonics, where detailed information about 

them can be found elsewhere [180]. 

In the case of ligand-conjugated samples, we employed three-layered Mie theory [82, 181] 

to investigate chemical bonding effects on the plasmon damping, LPSR wavelength shifting, 

electron conductivity and field enhancement around the NPs. Inspired by Peng [76], this three-

layered model consists of an inner or core region with a diameter of dୡ୭୰ = d − 2t, outermost 

atomic layer with a thickness of t and the chemical ligand layer with a width of l (see Figure 3.1).  

We performed our simulation for different size spherical Ag NPs which integrated with 

OAM ligand and dispersed in Hexane solution. The ligand layer and outermost shell thickness 

were taken to be 2 and 0.25 nm, respectively [76]. Also, the dielectric constant was chosen 1.4596 

for OAM ligand and 1.379 for the Hexane solution [76]. 
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Figure 3.1. Schematic illustration of a three-layered nanosphere consists of the core region of diameter dcore, and the 
skin and surrounding chemical ligand with a thickness of t and l, respectively.  

 

3.3. Results and Discussion 

3.3.1. Electric Permittivity of the Quantum-Sized NPs 

Figure 3.2A and 3.2B show dispersion spectra of the real and the imaginary part of the 

dielectric function of the spherical Ag NPs with the diameter ranged from 3 to 10 nm using the 

quantum model, respectively. These quantities have been calculated using Eq. 2.7 by setting g =1. 

Our results show that by decreasing the size of the NPs some small peaks appeared in both the real 

and imaginary parts of the dielectric function which their magnitude increases more by the further 

shrinking the dimension of the NPs. The appearance of new peaks in the dielectric function spectra 

can be attributed to the inter-level transitions of the electrons due to the discretization of the 

conduction band. A likely explanation for the increasing size of peaks is that the inter-level 

transition frequency between the initial state of i and the final state of f, which is inversely 

proportional to the square of the radius of NPs (ω୧ ∝
ଵ

ୖమ
), increases with reducing the size of the 

NPs, resulting in enhanced oscillator strength for the transition. As a comparison, the dielectric 

function of the NP with d = 10 nm was calculated using the classical model and has been added to 

Figure 3.2. In the classical approach, the experimental permittivity of the bulk metal has been 

altered only by adding size modification term to the damping frequency of the electrons, whereas, 

in the quantum modeling both the surface and the conduction band discretization effects have been 

considered for calculating the permittivity. Our simulation results show that the calculated 
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permittivity from these two models overlaps for the desired range of wavelengths (300 - 500 nm) 

for sizes greater than or equal to10 nm. 
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Figure 3.2. Quantum modeling (QM) of the real (A) and imaginary (B) part of the dielectric function of the spherical 
Ag NPs with diameters ranged from 3 nm to 10 nm. Green lines represent the permittivity of the Ag NPs with d =10 
nm that have been obtained using the classical model.  

 

3.3.2. Absorption Efficiency and LSPR Wavelength 

In this section, the absorption efficiency of the spherical Ag NPs in the size range of 3 to 

20 nm was determined using standard Mie theory. To show the discrepancies between the classical 

and quantum model, we simulated the aforementioned optical property using both models and 

represented the results in Figure 3.3. In our simulation, the refractive index of the medium was set 

to be 1.34. It is expected that LSPR peak magnitude increases and shifts to longer wavelengths by 

increasing the size of the NPs.[9] The results of both models show that the absorption efficiency 

grows with an increase in the size of the NPs, and the maximum amount of the absorption remains 

relatively the same for both approaches. However, the LSPR peak wavelength obtained from the 

quantum model significantly differs from the classical calculation. To present this discrepancy 

clearly, the full evolution of the LSPR peak position against the diameter of the Ag NPs was shown 

in Figure 3.4 for both models. It is observed from the figure that the classical model does not show 

a noticeable shift for the LSPR maximum, and it stays around 380 nm as the diameter of the NPs 

decreased from 20 to 3 nm. By comparing the results of both models, a slight difference was 

observed between the predicted LSPR peak positions of the quantum and classical model when 
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the size of the NP decreased from 20 to 10 nm. However, by further reducing the size of the NP, 

the calculated LSPR peak energy of the quantum model diverges from the classical one and it 

predicts a noticeable (~ 30 nm) blue shift for the plasmon resonance wavelength as the NP size 

decreased from 10 to 3 nm and matched relatively well with the experimental result [79]. Thus, 

the classical calculation has failed to predict the expected LSPR shift for the small-sized NPs (d ≤ 

10 nm), while the quantum simulation has shown the expected plasmon resonance shift.  
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Figure 3.3. Absorption efficiency of the different size spherical Ag NPs inserted in water (nb = 1.34) using (A) classical 
and (B) quantum Model. The quantum model predicts a redshift for LSPR peak wavelength with the increasing 
dimension of the NPs ,while the classical model obtains an almost constant value for LSPR with changing the size of 
the NPs. 
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Figure 3.4. Comparing the Classical Model (CM) and Quantum Model (QM) LSPR peak wavelength evolution versus 
diameter of the Ag NPS dispersed in water. 
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3.3.3. Medium Effect on the LSPR Wavelength  

Absorbing molecules on the surface of the NPs change the RI of the medium around their 

surface, leading to the shifting of the LSPR energy. This leads to changing the peak color of the 

spectra and provides opportunities for the NPs to be potential candidates for imaging and single-

molecule detection [9, 14, 67, 182, 183]. Our group has shown recently that LSPR sensitivity 

depends on the shape, size, and structure of the NPs [27]. Although absorption and scattering 

efficiencies of the plasmonic NPs decreases by reducing their size [27], their surface to volume 

atoms ratio increases by shrinking the size that makes them very sensitive to few absorbates on 

their surface.[67, 79] In this section, we explored the effect of changing RI of the surrounding 

medium on the LSPR wavelength shift of the quantum-sized Ag NPs with varying RI of the 

medium from 1 to 2 (See Figure 3.5). For comparison, the results of the classical-sized spherical 

Ag NPs with diameters of 20, 30, and 40 nm have been added to Figure 3.5. In our simulation, the 

quantum model was applied to calculate the LSPR wavelength of the NPs in the size range from 3 

to 10 nm, whereas the classical model was used for NPs with sizes bigger than 10 nm. 
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Figure 3.5. Evolution of the LSPR peak wavelength of the spherical Ag NPs versus RI of the surrounding medium. 
LSPR shift rate increases by increasing the size of the NPs. 

 

As shown in Figure 3.5, the LSPR wavelength of the NPs increased by increasing the RI 

of the medium. The observed result could be attributed to enhanced electric field shielding effect 

by increasing nୠ, which decreases the attractive coulombic force between the electron clouds and 

positive ions, and consequently reduces the required energy to excite electrons on the surface of 
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the NPs [61]. Similar to the results observed by Lee and El-Sayed for large-sized NPs, our results 

show that the LSPR wavelength follows a clear linear trend of increasing with increasing RI of the 

medium [184]. Interestingly, as demonstrated in Figure 3.5, the LSPR shift increases with 

increasing the size of the NPs. This result can be explained by the fact that the contribution of the 

higher-order plasmonic modes increases by increasing the size of the NPs [185]. 

 

3.3.4. Medium Effect on the E-field Enhancement 

Interaction of the incident light with plasmonic NPs results in a strong localized electric 

field around their surface at corresponding LSPR frequency that decays exponentially with 

increasing the distance from the surface of the NPs. This property, which depends on the shape, 

size, and configuration of the NPs and RI of the medium, creates a small sensing volume around 

the NPs that increases their capability to effectively detect the target molecules in their close 

vicinity through observing the LSPR peak shift or enhancing the targets signals [67, 79, 186]. As 

explained already, owing to the smaller size and higher surface-to-volume ratio, the quantum-sized 

NPs are potential candidates to detect single molecules [79]. It is therefore of interest to see how 

the electric field around the quantum-sized NPs will alter with varying the size of NPs, the distance 

from their surface, and changing RI of the surrounding medium. 

 

      

Figure 3.6. Surface plot of the normalized electric field enhancement of the spherical Ag NPs with D=5 nm in (A) 
vacuum (B) aqueous solution. 
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Figures 3.6A and.3.6B show the surface-plot of E field enhancement around the Ag NPs 

with a diameter of 5 nm that was dispersed in two different mediums with nb = 1 and nb = 1.34, 

respectively, at corresponding LSPR wavelengths. The electric field around the NPs has been 

normalized to the incident light electric field. Our results show that the electric field enhancement 

around the NPs reaches its maximum value of 12.37 in vacuum, whereas this amount increases in 

aqueous solution and gets to 23.65. 

To further understand the trend of the electric field evolution of the quantum-sized NPs by 

varying the RI of the medium, we obtained the field enhancement factor (FEF) of the different size 

Ag NPs (See Figure 3.7) against the normalized distance (normalized to each particle diameter) 

from the surface of each one. FEF, which is a dimensionless parameter, quantifies the ability of an 

NP to enhance the electric field around itself and described by 

FEF = ฬ
E

E
ฬ

ଶ

                                                                                                                                               (3.5) 

where E and E0 are the total electric field around the NP and the incident light electric field at the 

origin, respectively.  

The simulation was performed for the NPs with a diameter in the range of 3 - 6 nm and for 

different RI of the medium, which varied from 1 to 1.6. As expected, the FEF enhances by 

increasing the diameter of the NPs due to the increasing volume of the NPs. For example, at the 

nb =1.6 maximum FEF for the NP with a diameter of 6 nm is 1170, which is 4.7 times greater than 

FEF of the NP with a diameter of 3 nm.  Also, it can be seen that the FEF is rising by increasing 

the RI of the medium. This observation can be ascribed to enhancing the polarizability of the NPs 

with increasing nb in the studied range. However, the decay length of the scattered field of each 

NP is independent of the RI of the medium and is almost 0.2 times of their corresponding 

diameters. This result suggests that sensing volume of the NPs is enlarged by increasing the size 

of the NPs while it remains unchanged by varying the RI of the surrounding medium. 
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Figure 3.7. Evolution of FEF of the spherical quantum-sized Ag NPs versus distance from the surface of each, which 
normalized by the diameter of the particles. FEF has been calculated with varying nb from 1 to 1.6 for different sizes: 
(A) D= 3 nm, (B) D= 4 nm, (C) D= 5 nm, and (D) D= 6 nm. 

 

3.3.5. Chemical Ligand Effect 

Synthesized NPs in solution agglomerates due to van der Waals attractive forces, which 

prevents them to obtain small-sized clusters [77, 187]. To prevent this effect, it is common to 

conjugate the NPs with ligands that help the stabilization of the particles by counterbalancing the 

van der Waals forces [77, 187]. However, the chemical bonding between the NPs and the ligands 

dampens the surface plasmons of the NPs and reduces their free electron density, especially on the 

surface atoms [76, 188]. Reducing the conductivity alters the optical properties of the NPs such as 

increasing plasmon damping and shift of LSPR frequency to longer wavelengths. In this section, 

we have studied the optical properties of different sized spherical Ag NPs that were dispersed in 

hexane and bound to OAM ligand. The absorption spectra were calculated using multi-layered 
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Mie theory [76], and for clarity, the absorption spectrum of each NP is multiplied by an arbitrary 

factor mentioned in the parentheses (See Figure 3.8).  
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Figure 3.8. The absorption spectrum of different sized spherical Ag NPs that dispersed in Hexane solution and 
conjugated with OAM ligand using (A) the classical, and (B) the quantum model. In the inset, the numbers outside of 
the parentheses represent the diameter of the NPs, whereas the numbers inside them express an arbitrary factor that 
multiplied to their corresponding spectra for clarity. 

 

These spectra were obtained by fitting the LSPR peaks to the experimental results that were 

reported by Peng et al.[76] through adjusting the conductivity of the core and the skin regions. As 

shown in Figure 3.8, both classical and quantum models predict that by decreasing the size of the 

NPs the absorption spectrum diminishes, while its full width at half maximum (FWHM) increases. 

These effects are due to reducing the volume of the NPs and increasing the electron-surface 

collision rate by reducing the size of the NPs. Similar to Peng et al. work, it is obtained that the 

plasmon absorption spectra of the ligand-conjugated spherical Ag NPs show an anomalous 

behavior by reducing the size of the NPs. It started with a gradual blue shift, then followed by 

strong redshift as the size of the NPs decreased further. This abnormal behavior is ascribed to 

increasing surface effects by decreasing the size of the NPs, and the chemical bonding between 

the ligand and NPs that reduces the conductivity of the NPs, especially the surface layer that is in 

direct contact with chemical ligands [76].  

Figure 3.9 shows the conductivity correction factors of the core and skin regions of the 

studied ligand-conjugated Ag NPs using both models. In the classical model, the conductivity 
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correction factor of the core region ( gୡ୭୰ୣ
ଶ ) was set to be 1, while the gୱ୩୧୬

ଶ  varied slightly from its 

proposed simulated value (0.632) [76] in order to obtain perfect matching between the 

experimental and the theoretical spectra peak. The quantum model, on the other hand, predicted a 

reduced conductivity for both core and skin regions due to the chemical bonding between the 

ligand and the NPs. As expected, the conductivity of the surface atoms reduced more than core 

ones due to the direct interaction between the chemical ligand and surface atoms. Interestingly, it 

is shown that in size range of 18 to 10 nm the conductivity correction factor of the surface and core 

layers are almost independent of the size of the NPs, while both are reduced by decreasing the size 

of particles from 10 to 3 nm. These findings further support the observed anomalous LSPR peak 

behavior of the ligand-conjugated samples by reducing the size of the NPs. 
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Figure 3.9. The conductivity correction factors of the core and skin regions of the Ag NPs versus the diameter using 
both quantum and classical models. 

 

To further verify the validity of the quantum model, we calculated the absorption spectra 

of ligand-free samples with different diameters dispersed in hexane solution using both models 

(Figure 3.10). The absorption spectra were calculated using the standard Mie theory [80], and for 

clarity, the absorption spectrum of each NP is multiplied by an arbitrary factor mentioned in the 

parentheses. A comparison of the two models reveals that LSPR peak position in the classical 

calculation remains almost constant (λLSPR ≈ 390 nm) by changing the dimension of the Ag 

nanoparticles, whereas in the quantum model the absorption maximum redshifts from 346 to 390.5 
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nm as the size of the NPs changes 3.1 to 17.8 nm. The LSPR peak shift of the NPs due to the 

chemical ligand was calculated by subtracting corresponding ligand-free values from the ligand-

conjugated one (Δλ = λୡ − λ, where Lc and Lf are representing the Ligand-conjugated and 

Ligand-free NPs, respectively). As shown in Figure 3.11A, both models predict that the LSPR 

peak redshifts because of the chemical ligand binding, and the shift is increased by reducing the 

size of the NPs. However, the quantum model results deviate from the classical one by predicting 

a large redshift as the size of the NPs reduces. Also, the absorption spectra change versus the 

diameter of the NPs was calculated using both models (See Figure 3.11B). These changes were 

obtained by subtracting the peak absorption spectra of ligand-free samples from ligand integrated 

ones and normalized to absorption spectra of ligand-free ones (ΔA =
(ైౙିై)

ై
% ). From Figure 

3.11B we can see that the classical model predicts that the |ΔA| reduces by reducing the size of the 

NPs from ≈ 18 nm to 10 nm, and then turns over and slightly increases by further reducing the 

size. On the other hand, the quantum model predicts that in size range from ≈ 18 nm to 10 nm the 

|ΔA| stays almost constant, while increases exponentially by further reducing the size of the NPs. 

As explained already, this is ascribed to the further reduction of the conductivity correction factors 

of the core and skin region due to increasing the surface effect by reducing the size of the NPs. 
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Figure 3.10. Size-dependent absorption spectra of the different size Ag NPs dispersed in Hexane solution using the 
(A) classical model, and (B) quantum model. 
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Figure 3.11. Size evolution of (A) LSPR peak shift, and (B) normalized LSPR peak absorption spectra changes of the 
spherical Ag NPs, dispersed in Hexane solution, due to adding OAM ligand to the Hexane solution. 

 

Concerning the ligand effect on the field enhancement around the NPs, the evolution of the 

FEF versus normal distance from the surface of the NPs has been calculated using both models, 

and the results are presented in Figure 3.12. As shown, both models demonstrate that the electric 

field jumps from a particular distance for all NPs. This increase, which occurs in the boundary of 

the ligand and hexane solution, is due to changing RI of the medium when the electric field crosses 

the boundary of the ligand and solvent. By passing the electric field from the ligand to hexane 

solution, RI of the medium decreases, resulting in decreasing electric field shielding and 

consequently enhancing the electric field. However, by comparing the results of both models, it 

can be inferred that the quantum model predicts less amount of the electric field enhancement for 

the small size NPs as it accurately predicts decreased electronic conductivity. For comparison, The 

electric field evolution versus distance from the surface of bare nanoparticles has been presented 

in Figure 3.13. 
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Figure 3.12. Distance evaluation of normalized FEF of the ligand-conjugated spherical Ag NPs that dissolved in 
Hexane solution using: (A) Classical model, and (B) Quantum model. We calculated FEF evaluation from the surface 
of the NPs and normalized distance from the center to the diameter of each NPs.  

 

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15

20

25

30

|E
/E

0|

 

 3.1 nm
 3.8 nm
 4.7 nm
 5.3 nm
 7.3 nm
 10 nm
 12.5 nm
 15.5 nm
 17.7 nm

Norm. Distance (S/D)

A Classical Model

       
0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15

20

25

30

Norm. Distance (S/D)

|E
/E

0|

 3.1 nm
 3.8 nm
 4.7 nm
 5.3 nm
 7.3 nm
 10 nm
 12.5 nm
 15.5 nm
 17.7 nm

 

B
Quantum Model

 

Figure 3.13. Distance evaluation of the normalized electric field of the ligand-free spherical Ag NPs that dissolved in 
Hexane solution using: (A) Classical model, and (B) Quantum model. We calculated E field evaluation from surface 
of the NPs and normalized distance from center to the diameter of each NPs.  

 

The changing of the electric field on the surface of the Ag NPs due to the chemical ligand 

is calculated by (See Figure 3.14) 

ΔE =
(Eୡ − E)

E
                                                                                                                                      (3.6) 
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where ELc and ELf are the electric field around ligand conjugated and ligand-free nanoparticles, 

respectively. As it is clear from Figure 3.14, the classical model failed to predict the electric field 

changes due to the chemical ligand and shows a reduction of ΔE by increasing the size of the NPs. 

On the other hand, the quantum model accurately demonstrates that the electric field of the ligand-

conjugated NPs following a similar trend as ΔA, and in size range from ≈ 18 nm to 10 nm stays 

almost constant, while exponentially decreases by shrinking the dimension of the particles from 

10 to 3 nm. 

 

3 6 9 12 15 18

-28

-24

-20

-16

-12
 Quantum Model
 Classical Model

 

 




Diameter (nm)  

Figure 3.14. Size evolution of the changing the electric field around NPs due to adding OAM ligand. Electric field 
change has been normalized by the electric field of the corresponding ligand-free samples 
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CHAPTER 4 
 
 

ULTRAFAST ELECTRON DYNAMICS IN THIOLATE-PROTECTED PLASMONIC 
GOLD CLUSTERS: SIZE AND LIGAND EFFECT1 

 
 

4.1. Introduction 

Optical properties of noble-metal nanoparticles (NPs) have been the subject of widespread 

research interest for the past two decades [7, 20, 47, 49]. The coupling of the electromagnetic field 

to free electrons in metal NPs creates quasi-particles named surface plasmons and was the focus 

of research for both theoreticians and experimentalists alike [50]. The surface plasmon resonance 

(SPR) of metal NPs strongly depends on the density of electrons, shape, type, size, the composition 

of the NPs, the polarization direction of the incident light, as well as the chemical environment 

that surrounds them [50, 60, 61–65, 75, 83, 189, 190, 191]. Among plasmonic NPs, gold NPs have 

attracted significant interest owing to their high chemical and physical stability, biocompatibility, 

photo-stability, and large optical cross-sections [69, 192, 193]. The SPR of gold NPs found 

applications in manifold areas [45]  that included optical sensing [27, 194], biological imaging [9, 

12, 195], plasmonic photo-thermal therapy [20], molecular diagnostics [11, 12, 47], surface-

enhanced Raman spectroscopy [47], metal-enhanced luminescence and plasmonic rulers [49]. 

Enormous research has focused on the plasmonic properties of Au NPs and significant 

breakthroughs were made in the field [9, 11, 12, 47, 49, 62, 64, 69, 90, 92, 192, 196–198]. 

However, a bulk of the surface plasmon research has focused on gold NPs passivated with 

surfactants or gold nanomaterials in different matrices [196, 199–205]. The SPR properties seem 

to be influenced by the chemical environment around the NPs and can be greatly altered if the 

surface of the gold NPs is chemically bound to ligands [196, 199–202]. The ligands that are 

chemically bound to Au NPs prevent coalescence of the NPs by counterbalancing the van der- 

                                                           
1 The chapter 4 is reprinted by permission from ref [188] 
J. Phys. Chem. C 2019, 123, 13344−13353; DOI:10.1021/acs.jpcc.9b01739 
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Waals attractive forces [76, 206, 207]. Coupling NPs with chemical ligands potentially reduces the 

electron density of the conduction electrons, thereby, altering the effective optical refractive index 

in the near field of the NPs [76, 77, 207]. A remarkable work was carried out by Peng et al.[76] on 

the plasmon absorption spectrum of spherical silver (Ag) NPs with diameters in the range of  2-20 

nm. They observed an interesting trend where the absorption peak of the ligand-conjugated Ag 

NPs shifted to higher energies when size was decreased from 20 to 12 nm, whereas the absorption 

peak shifted to longer wavelengths with the further reduction of the size. This unusual trend was 

assigned to the ligand effect on SPR absorption. Although significant progress was made on gold 

NPs of varying sizes and shapes, corresponding research on ligand-protected plasmonic gold NPs 

such as thiolated gold NPs was rather limited [9, 11, 12, 20, 47, 61, 64, 65, 69, 131, 162].  In recent 

years, thiolate-protected gold clusters have received enormous research attention as the clusters 

with sizes less than 2 nm seem to show interesting quantum size behavior and excitonic properties 

[90, 109, 196–198, 208–210]. The advent of modern synthetic and characterization techniques has 

made the science of atomically precise thiolate-protected gold clusters interesting for theoreticians 

and experimentalists. Even thiolate-protected gold clusters show plasmonic properties and Au329 

protected with hexane thiol was found to be the smallest aliphatic thiolate protected plasmonic Au 

NPs [86, 211, 212]. The composition of 76.3 kDa aliphatic or aliphatic-like (SC2Ph) thiolate-

protected gold cluster has been found to be Au329(SR)84 (where SR is the thiolate ligand) by 

employing SC2Ph, SC6, and SC12 ligands with and without Cs+ adducts [213]. A closely related 

composition of Au333(SR)79 has been reported for the 76.3 kDa cluster based on Cs+ adduct peaks 

and it remains to be addressed [93, 214]. Recently, hexane thiolate-protected Au~1400 and Au~2000, 

two new sizes in aliphatic thiolate-protected plasmonic Au NPs of size ~3.6 and ~3.8 nm, 

respectively, have been reported [89, 215]. 

One common way to study plasmons in metal nanoparticles is via the use of ultrafast 

transient spectroscopy and corresponding pump-power dependence that yields information of 

electron dynamics [92, 93, 131, 216–223]. Illuminating the metallic nanoparticles by a 

femtosecond laser pulse will perturb the electron distribution in them due to absorption of the heat. 

This phenomenon creates non-thermalized electrons that have a higher temperature in comparison 

to other conduction band electrons [93, 131, 215–218, 220]. These electrons transfer their extra 
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heat to the surrounding medium in three processes: 1) electron-electron collision, 2) electron-

phonon scattering and 3) phonon-phonon interaction (see Figure 4. 1) [93, 131, 215–218, 220]. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Schematic of the relaxation dynamics of the heated NP through electron-electron collision (~ 0.1 ps), 
electron-phonon scattering (~1 ps) and phonon-phonon interaction (~ 10-100 ps). 

 

Comprehensive understanding of the relaxation processes of metal NPs yielded valuable 

information that was useful for applications like exciton-plasmon energy transfer and optical 

switching [217–222]. Link and El-Sayed investigated pump-power, size, and shape effects on 

electron-phonon (e-p) relaxation dynamics in gold and silver nanospheres and nanorods in size 

range from 10 to 100 nm [131]. The studies demonstrated that e-p relaxation dynamics was 

independent of the size and shape of NPs [131]. Similarly, Hodak and co-workers reported a size-

independent electron-phonon coupling in Au NPs in the 2.5-8 nm range in aqueous solution [217]. 

Link et al. embedded 14.5 nm and 12.1 nm Au NPs in MgSO4 powder and solution to test the effect 

of the surrounding medium on the recovery time of plasmon bleach [218]. They found that 

electron-phonon relaxation time of Au NPs in MgSO4 powder is higher than in solution by a factor 

of 2 that was assigned to the effect of the medium. In recent work, e-p dynamics of the different-

sized gold NPs conjugated with the chemical-ligand have been studied [93]. By mapping the 

Hot electrons 

e-e collisions 

Thermalized electrons 

p-p collisions 

e-p collisions 
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bleach recovery dynamics of these NPs, Zhou et al. demonstrated that Au clusters with diameters 

larger than 2.3 nm show metallic behavior, whereas NPs with a diameter smaller than 1.7 nm 

display pure molecular behavior. In addition, it was shown that particles with 1.7 to 2.3 nm range 

show both metallic and excitonic behavior. In a recent study, the first crystal structure of plasmonic 

gold nanocrystal, TBBT-protected Au279 has been reported [224]. More recently, our group studied 

the optical properties of Au36(SR)24, Au44(SR)28, Au133(SR)52, and Au279(SR)84 using steady-state 

and transient absorption (TA), time-dependent density function theory, and density of state 

calculations [92]. By observing power-dependent bleach recovery kinetics in Au279 (SR)84, our 

group reported that it is the smallest gold thiolate NP that has shown metallic behavior and supports 

localized SPR. 

The type of ligand (aliphatic/aromatic/bulky) being used determines the structure and 

properties of metal clusters [91, 225]. Although significant research has focused on molecule-like 

properties of gold clusters and how ligands alter their optical properties, the same influence of 

ligands on the e-p relaxation dynamics of ultra-small clusters has not been addressed. In addition, 

previous theoretical studies have neglected the chemical ligand effect on the conductivity of Au 

NPs and consequently on their e-p relaxation. In the present work, e-p relaxation dynamics of 

smallest-sized plasmonic gold clusters conjugated with different thiolate ligands was studied using 

ultrafast pump-probe spectroscopy. To explore the effect of aromatic and aliphatic ligands on the 

electron dynamics, investigations were carried out on Au279 (d ≈ 2.1 nm [224]) passivated with 

TBBT and Au329 (d ≈ 2.2 nm [226]) passivated with phenylethane thiol (SC2Ph), and hexane thiol 

(SC6). To understand the ligand effects theoretically, the free electron density of the clusters was 

modeled using three-layered Mie theory [181], inspired by Peng et al.[76]. The size effect on the 

electron dynamics in aliphatic thiolate protected plasmonic gold clusters was investigated by 

studying the optical properties of hexane thiolate protected Au329 (d ≈ 2.2 nm), Au~1400 (d ≈ 3.6 

nm), and Au~2000 (d ≈ 3.8 nm). 

 

4.2. Methods 

4.2.1. Synthesis and Characterization of the Clusters 

Au279 (TBBT)84, Au329 (SC2Ph)84, Au329 (SC6)84, Au~1400 (SC6) and Au~2000 (SC6) were 

synthesized following the reported protocols from ref. [224], ref. [226], ref. [212], ref. [89], and 
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ref. [215], respectively. Citrate stabilized gold NPs were synthesized following a procedure 

published elsewhere [227]. 

 

4.2.2. Transient AbsorptionMeasurements 

Femtosecond TA measurements were carried out at the Center for Nanoscale Materials, 

Argonne National Laboratory [212]. In brief, a Spectra Physics Tsunami Ti:Sapphire, 75 MHz 

oscillator was used to seed a 5 KHz Spectra-Physics Spit-fire Pro regenerative amplifier. 95% of 

the output from the amplifier is used to pump a TOPAS optical parametric amplifier, which is used 

to provide the pump beam in a Helios TA setup (Ultrafast Systems Inc.). A pump beam of 370 nm 

was used for the measurements. The remaining 5% of the amplified output is focused onto a 

sapphire crystal to create a white light continuum that served as the probe beam in our 

measurements (450-700 nm). The pump beam was depolarized and chopped at 2.5 kHz, and both 

pump and probe beams were overlapped in the sample for magic-angle transient measurements. 

 

4.2.3. Theoretical Modeling  

From the TA measurements, it was shown that the ligand plays an important role in the 

surface plasmon bleach spectral width as well as e-p relaxation time and coupling strength. To 

understand this behavior, the SPR bleach was modeled with three-layered Mie theory (refer to 

chapter 2) [76, 82, 181]. We considered the modeling geometry as a single NP because of the fact 

all of the investigated clusters characterized by mass spectrometry [89, 212, 215, 224, 226] and 

have very narrow size distribution. In our simulation, the NP has been considered to be a sphere 

in order to take into account all of the possible orientations of the icosahedral NPs to the incident 

light beam. In addition, as these NPs are coated with the ligand layer which alters the conductivity 

of the surface and core region of the NP differently, the three-layered Mie theory has been used to 

simulate their optical properties (refer to chapter 2).  
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Figure 4.2. Schematic illustration of three layers structure of spherical NPs consists of the core region of diameter 
dcore, and skin and surrounding chemical ligand with a thickness of t and l, respectively. 

 

As illustrated in Figure 4.2, the three layers structure of gold clusters consists of a core 

region with a diameter of dcore = dNPs - 2t, skin layer with a thickness of t, and chemical ligand with 

a width of 𝑙. We fixed t to be roughly the thickness of an atomic Au layer (or Au-Au bonding 

length), t = 0.28 nm. In addition, in our simulation, the diameter of clusters were obtained from 

the literature and are taken as: d279 = 2.1 nm [224], d329 = 2.2 nm [226], d~1400 = 3.6 nm [89], and 

d~2000= 3.8 nm [215]. The thickness of chemical ligands was fixed to l = 0.8 nm. Finally, the 

refractive index was used as 1.492, 1.43, and 1.375 for the TBBT, SC2Ph, and SC6 ligands, 

respectively [228]. In this work, values of the electric permittivity of a bulk Au at different 

wavelengths were taken from experimental data provided by Johnson and Christy [78]. We applied 

Eqs. 2.4 and 2.7 to obtain the dielectric function of the Au13nm and all ligand-protected clusters, 

respectively.  

 

4.3. Results and Discussion 

4.3.1. Ultrafast Transient Absorption Measurements 

The optical absorption spectra of the investigated gold clusters are shown in Figure 4.3. 

The linear absorption maxima of smaller sized ligand-protected gold clusters are appearing at 

around 500- 510 nm, much below the expected surface plasmon absorption of larger-sized gold 

NPs. This condition is arising because of the overlapping of inter-band transitions with the surface 
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plasmon absorption, thereby shifting the shape and maximum of absorption maximum to higher 

energies. Because of this reason, the linear absorption of the thiolate-protected clusters is unable 

to represent the true surface plasmon absorption. Thus, to model the ligand effects on the SPR, we 

used the bleach spectrum obtained from TA measurements. 
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Figure 4.3. Normalized absorption spectra of Au279(TBBT), Au329(SC2Ph), Au329(SC6) and 13-nm citrate stabilized 
gold nanoparticles.  

 

TA measurements were carried out after excitation at 370 nm for all clusters and probing 

in the visible region. Pump-power dependent TA measurements were carried out to follow the 

electron dynamics. Parts A, B, C, D, E, and F of Figure 4.4 show the TA spectra at a pump energy 

of 120 nJ for Au279 (TBBT), Au329 (SC2Ph), Au329 (SC6), Au1400 (SC6), Au2000 (SC6), and Au13 nm 

(citrate), respectively. Excitation of the NPs creates hot electrons and their relaxation is often 

monitored using pump-power dependent TA measurements [131, 215, 216, 220]. As observed in 

Figure 4.4, a negative absorption with two positive wings was observed for all investigated gold 

clusters. The bleach maximum is attributed to SPR absorption of the clusters and the accurate 

maximum was determined by the fit of the bleach curve [93, 131, 220, 223, 229, 230]. The bleach 

maximum has shifted to higher energies for all samples with an increase in time, except for Au329 

(SC2Ph) that has shown two peaks (see Figure 4.4). The presence of two peaks for Au329 (SC2Ph) 

in the bleach spectrum was also observed by Zhou and co-workers and is quite interesting to see 

why such behavior was observed for this cluster [93]. 
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Figure 4.4. Transient absorption spectra at different time delays for (A) Au279 (TBBT), (B) Au329 (SC2Ph) (C) Au329 
(SC6), (D) Au1400 (SC6) and (E) Au2000 (SC6)  and (F) Au13 nm (citrate) after excitation at 370 nm. 
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The shift of the bleach maximum to the higher energies is attributed to a decreased 

electronic temperature of the illuminated clusters because of the heat transfer to the phonon bath. 

From Figure 4. 4, it can be seen that the bleach maximum of the ligand-passivated gold clusters is 

shifted to lower energies as well as broadened when compared to ligand-free gold nanoparticles 

[76].  
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Figure 4.5. fwhm of the studied samples at a time delay of 0.5 ps for the pump energy of 120 nJ. 

 

The full width at half maximum (fwhm) depends on many factors, such as the size of NPs, 

polydispersity in size and shape, and chemical bonding between the NPs and ligand [76]. Although 

the ligand exchange can diphase the oscillations of the plasmonic electrons by adding an additional 

decay channel due to the transient in and out tunneling in interfacial orbitals with the NP and ligand 

[231–233], the size of the NPs plays a dominant role in plasmonic damping (see Figure 4.5). As 

demonstrated in the Figure 4.5 and Figure 4.6, the fwhm of the smaller samples (Au279 (TBBT), 

Au329 (SC2Ph), and Au329 (SC6)) at a delay time of 0.5 ps were determined to be ~92 nm, which 

decreases with further increasing the size of the samples and reaches to  ~53 nm for  13 nm - Au. 
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Figure 4.6. Comparison the plasmon damping of (a) Au279 (TBBT), Au329 (SC2Ph), Au329 (SC6), and Au13 nm (citrate), 
and (b) Au329 (SC6), Au1400 (SC6), Au2000 (SC6), and Au13 nm (citrate) at a time delay of 0.5 ps for the pump energy of 
120 nJ. As guides to the eye, the bleach maximum of all samples shifted to ~535 nm and normalized to -1. 

 

As the central aim of the study is to understand the influence of passivating ligand on the 

electron dynamics, transient bleach recovery dynamics was monitored as a function of pump 

power. Pump-power dependence of bleach recovery kinetics is a key feature for plasmonic NPs as 

it alters the electronic temperature of the NPs. Figure 4.7 A-F shows the bleach recovery kinetic 

traces for the investigated clusters at different pump powers. As expected with an increase in pump-

power, the bleach signal increases as the local temperature of cluster increases. Increasing pump 

energy will heat up more electrons and decelerating the e-p coupling leads to slowing down of 

electron relaxation [93, 234]. The pump-power dependence of bleach recovery can be modeled 

using a two-temperature model [235–238]:  

Cୣ(Tୣ )
∂Tୣ

∂t
= −γ(Tୣ − T୪) + αN                                                                                                           (4.1) 

C୪

∂Tୣ

∂t
= γ(Tୣ − T୪) + βN                                                                                                                        (4.2)

where Ce, Te, and Cl, Tl are heat capacity and temperature of the electron gas and lattice, 

respectively. αN describes the heating of the electron gas by the initial non-thermalized electrons, 

βN represents the direct coupling between the non-thermalized electrons and the lattice occurs 

during the electron gas thermalization process [235], and γ is the e-p coupling constant [13, 217, 

239, 240]. The electron heat capacity of the metals is proportional to the electron gas temperature. 
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Increasing the temperature of electron gas reduces the e-p effective coupling rate (γ/Ce(Te)), 

deaccelerating the e-p coupling time.  

 

4.3.2. Calculating Electron-Phonon Coupling Time 

The non-normalized (ΔA) and normalized bleach recovery (-Norm. ΔA) for the 

investigated clusters are shown in Figure 4.7 A-F and Figure. 4.8 A-F, respectively. To extract 

electron-phonon relaxation for each cluster, the bleach recovery dynamics was fitted (see Figure 

4.7 and 4.8) using [93, 241, 242]:  

∆A(t) = න H(τ) ቂA൫1 − e
ିத

தൗ ൯e
ିத

த౦ൗ + B ቀ1 − e
ିத

த౦ൗ ቁቃ
ஶ

ିஶ

 e
ି(தି୲)మ

தబ
మ൘
  dτ                            (4.3) 

where H(τ) is the Heaviside function, A and B are e-e and e-p scattering amplitudes, where |B| < 

|A|/10. τee is e-e coupling time and is on the order of a few hundred femtoseconds, and τep is e-p 

coupling time and is on order of ~ 1 ps. τ0  is the instrument response obtained by the cross-

correlation of the pump and probe beams. From the intercept and slope of the linear fit of e-p 

relaxation lifetime versus pump energy, intrinsic e-p coupling time and e-p coupling strength for 

all samples were determined and are provided in Table 4.1. 
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Figure 4.7. Temporal evolution of the e-p dynamics of (A) Au279 (TBBT), (B) Au329 (SC2Ph), (C) Au329 (SC6), (D) 
Au1400 (SC6), (E) Au2000 (SC6), and (F) Au13 nm (citrate) for different pump powers at their corresponding bleach 
maximum wavelength. Solid lines are the fit of the bleach curve. 
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Figure 4.8. Normalized bleach recovery kinetics (-ΔA) of (A) Au279 (TBBT), (B) Au329 (SC2Ph), (C) Au329 (SC6), (D) 
Au~1400 (SC6), (E) Au~2000 (SC6), and (F) Au13 nm (citrate) at different pump powers. 

 



 

84 
 

Figure 4.9A shows the plot of calculated τep at different pump energies for Au279 (TBBT), 

Au329 (SC2Ph), Au329 (SC6), and Au13 nm (citrate) NPs. As seen from the figure, the slopes and 

intercepts varied for different clusters. Au279 (TBBT) and Au329 (SC6) has shown an intercept of 

close to 1 and 0.8 ps, respectively, whereas Au329 (SC2Ph) has shown an intercept of 1.4 ps. Similar 

higher intercept was also observed by Zhou et al.[93] for Au329 (SC2Ph). One another interesting 

observation is the difference in slopes for Au279 (TBBT), Au329 (SC6), and the 13 nm Au cluster. 

The slope is smaller for Au279 (TBBT) when compared to Au329 (SC6), which is much smaller than 

that of 13 nm Au NP (see Table 4.1). This is attributed to differences in electric conductivities 

because of the nature of passivating ligands. Aromatic passivating ligands seem to have smaller 

slopes and higher intercepts when compared to hexane thiol ligand.  Also, the plot of e-p relaxation 

as a function of pump power for different-sized SC6-protected gold cluster is shown in Figure 4.9B. 

It can be observed from the Figure 4.9B and Table 4.1 that with an increase in size, total electric 

conductivity increases slightly due to a decrease of the surface to volume ratio, and thereby 

increasing the intercept (intrinsic electron-phonon coupling time) and slope (electron-phonon 

coupling strength). However, the slope is definitely smaller when compared to Au13 nm NP that was 

passivated with a surfactant, again signifying the importance of the ligand on electron-phonon 

relaxation dynamics.  
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Figure 4.9. Electron-phonon relaxation as a function of pump pulse energy for (A) Au279 (TBBT), Au329 (SC2Ph), 
Au329 (SC6), and Au13 nm (citrate), (B) Au329 (SC6), Au~1400 (SC6), and Au~2000 (SC6). 
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Table 4.1. Electron-Phonon coupling time and coupling strength obtained from power-dependent bleach recovery 
kinetics of the investigated clusters 

 Au279-TBBT Au329-SC2Ph Au329-SC6 Au~1400-SC6 Au~2000-SC6 Au13nm-citrate 

Slope (2.6 ± 0.3)×10-3 (1.2 ± 0.2)×10-3 (3.2 ± 0.3)×10-3 (3.7 ± 0.3)×10-3 (3.9 ± 0.3)×10-3 (6.0 ± 0.4)×10-3 

Intercept 1.0± 0.2 1.4 ± 0.2 0.8 ± 0.2 0.8± 0.1 1.0± 0.2 1.0 ± 0.2 

 

4.3.3. Ligand Effect on Electron Conductivity 

Among all investigated clusters, unique behavior was observed for Au329 (SC2Ph). The 

transient bleach of Au329 (SC2Ph) has shown two negative bleach peaks around ~493 and 540 nm. 

A similar result was reported by Zhou and co-workers and assigned to the excitonic and plasmonic 

behavior of the cluster [93].  

 

 

Figure 4.10. Cartoon diagram depicting the interaction of (A) SC6, (B) STBBT, and (C) SC2Ph, with the surface of 
gold atoms. 

 

Interestingly, a closer look to the TA spectrum of the samples in Figure 4.4 reveals that 

transient bleach of the Au329 (SC2Ph) is higher than Au279 (TBBT) and Au329 (SC6), respectively. 

This unusual result can be ascribed to specific Au-π interaction between the aromatic ring in 

Au-π interaction

A

B

C
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phenylethane thiol and surface gold atom of Au329 (SC2Ph), significantly reducing the electric 

conductivity of the surface and core layers of the cluster (see Figure 4.10). This specific Au-π 

interaction potentially reduces the free electron density of Au329 significantly (refer to Theoretical 

Modeling section), thereby creating a hybrid state [93] (metallic/molecular) for it. Additional 

modeling is necessary to understand the influence of passivating ligands on electron density in 

these clusters. 

As the transient bleach at initial times represents the SPR bleach, the spectrum at a time 

delay of  500 fs has been used into the fit to the theoretical absorption spectra (see Figure 4.11) in 

order to obtain the electronic conductivities and corresponding gcore and gskin [93, 131, 220, 223, 

229, 230]. Obtained gcore
2 and gskin

2
 from the analysis for different samples are shown in Figure 4. 

12A. A closer inspection of Figure 4.12A reveals interesting trends. Both gcore
2 and gskin

2 values for 

aromatic passivating ligands are much smaller when compared to the hexane thiol passivating 

ligand. Also, the gskin
2 obtained for SC2Ph is much smaller than that for TBBT, and the results are 

consistent with experimentally observed electron dynamics in these clusters. The modeling 

suggests that it is the electron density difference, which is crucial for electron dynamics in these 

clusters. Due to the direct interaction between the chemical ligand and surface layer, electron 

conductivity of the outermost layer of the metallic NPs is decreased more when compared to the 

core region. In agreement with our experimental results, aromatic ligands, especially SC2Ph, 

lowered the conductivity of the NPs more when compared to hexane thiol. As mentioned above, 

owing to the specific Au-π interaction between the surface gold and SC2Ph ligand, the free electron 

density of the skin and core regions of Au329 are lowered by a factor of 0.64 and 0.9, respectively. 

This significant reduction of the electron conductivity, especially for the outermost layer, is a 

further justification of deaccelerated electron-phonon dynamics in Au329 (SC2Ph) and is the reason 

for observed smaller power dependence for this cluster. Also, smaller electron conductivity was 

also observed for Au279 (TBBT) that can be attributed to the Au-π interaction. However, this 

interaction is probably the reason for observing plasmon behavior for this cluster even though its 

size is smaller when compared to Au329.  
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Figure 4.11. Normalized theoretical absorption spectra which fitted into the normalized experimental bleach at t≈ 500 
fs: (A) Au279 (TBBT), (B) Au329 (SC2Ph), (C) Au329 (SC6), (D) Au1400 (SC6), (E) Au2000 (SC6), and (F) Au13 nm (citrate) 
for their corresponding pump power mentioned on their corresponding legend. 
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For the clusters with same SC6 passivating ligand, the gskin
2 values have slightly increased 

with an increase in cluster size, whereas gcore
2 values are the same as those of 13 nm Au NP and 

increased electron conductivity with increase in the size of the cluster (see Table 4.2). Present 

results show zero reduction in the number of free electrons in citrate-capped 13 nm Au NPs. The 

total conductivity correction factor of each cluster has been calculated by 

g୲
ଶ = gୡ୭୰ୣ

ଶ fୡ୭୰ୣ + gୱ୩୧୬
ଶ fୱ୩୧୬                                                                                                                    (4.4) 

where fcore and fskin are core and skin volume fraction, respectively. As shown in Figure 4.12B, the 

total conductivity correction factor of Au329 (SC2Ph) is smaller than other samples. In addition, for 

the clusters with the same SC6, owing to the decreasing surface to volume ratio, the total modified 

conductivity increases with increasing size of the samples. The three-layered Mie theory results 

were able to accurately model the influence of the ligand on electron density and their effect on 

plasmon quality factor. This ligand influence can have consequences for electric field enhancement 

offered by ligand-protected plasmonic clusters. 

 

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
u27

9

T
B

B
T

g2 sk
in

 

A
u

13
 n

m

 C
it

ra
te

A
u20

00

S
C

6

A
u

14
00

SC
6

A
u

32
9

S
C

2P
h

g2 co
re

A
u

32
9

S
C

6

 

 

 

A

      

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1.0

 

A
u13

 n
m

 C
it

ra
te

A
u

20
00

S
C

6

A
u14

00

S
C

6

A
u32

9

S
C

6

A
u32

9

S
C

2P
h

A
u27

9

T
B

B
T

g2 t

 

 

B

 

Figure 4.12. (A) Free electron density correction factor of the outermost layer (gskin
2) and core region (gcore

2), (B) total 
free electron density correction factor (gt

2) of the investigated Au clusters. 
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Table 4.2. Summary of the studied samples and their characteristics. FWHM of each sample has been at the delay 
time of 0.5 ps for the pump energy of 120 nJ   

Samples Size  (nm) FWHM (nm) gcore
2 gskin

2 te-ph 

Au279 (TBBT) 2.1  91 ± 3 0.9 0.71 1.0 ± 0.2 

Au329 (SC2Ph) 2.2 93 ± 3 0.9 0.64 1.4 ± 0.2 

Au329 (SC6) 2.2 92 ± 3 1 0.86 0.8 ± 0.2 

Au~1400 (SC6) 3.6 77 ± 5 1 0.875 0.8 ± 0.1 

Au~2000 (SC6) 3.8 77 ± 4 1 0.88 1.0 ± 0.2 
Au13 nm (Citrate) 13 53 ± 4 1 1 1.0 ± 0.2 

 

 



 

90 
 

CHAPTER 5 

 
 

THEORETICAL INVESTIGATION OF SIZE, SHAPE AND ASPECT RATIO EFFECT ON THE 
LSPR SENSITIVITY OF HOLLOW-GOLD NANOSHELLS2 

 
 
5.1. Introduction 

Plasmonic sensors have attracted enormous scientific interest in recent years as the optical 

properties are governed by strong coupling between the incident light and conduction electrons 

leading to LSPR [11, 12, 14, 25, 37–39, 43, 60, 101, 146, 151, 186, 243–256]. The LSPR leads to 

strong scattering and absorption of incident light, resulting in highly localized and amplified 

electric field around the NPs [1, 12, 14, 61, 64, 101, 151, 185] and plays a vital role in applications 

of plasmonic NPs [11, 12, 14, 25, 37–39, 43, 60, 101, 146, 151, 186, 243–256]. Among plasmonic 

NPs, gold NPs have received significant attention for biological and chemical applications as they 

are non-toxic, biocompatible, inert and ease of synthesis [67, 68]. Also, Au nanoparticles possess 

strong extinction spectra with LSPR peak that can be tuned from visible to near infrared region 

based on their size, shape and configuration [256]. The tunability of  LSPR peak into the near 

infrared region is highly desirable, especially for biological applications as the human tissue has 

the highest transparency in this frequency region [248, 257]. The LSPR maximum of plasmonic 

NPs is very sensitive to the refractive index (RI) of the surrounding medium and shifts to longer 

wavelengths with an increase in RI. Since the RI of biological or chemical analytes is usually 

higher than the RI of the surrounding medium [258], binding of the molecules to the surface of the 

plasmonic NPs alters the effective RI of the surrounding medium, redshifts the LSPR maximum 

and changes the electric field intensity around the NP [11, 12, 14, 25, 37-39, 43, 60, 101, 146, 151, 

186, 243–256]. In addition, the localized enhanced electric field around plasmonic NPs decay 

exponentially with increasing distance from the surface that creates a small sensing volume and 

                                                           
2 The Chapter 5 is reprinted by permission from ref [27] 

J. Chem. Phys. 150, 144116 (2019); https://doi.org/10.1063/1.5090885 
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detects the target molecules in the close vicinity of the NPs [25]. The LSPR peak shift, which is 

the basis of the majority of LSPR sensing applications, can be detected by measuring scattered 

light from the NPs [25]. However, to sense the RI change induced LSPR peak shift of the small-

sized NPs that weakly scatter incident light, ensemble extinction methods are commonly used [25].  

LSPR biosensors offer a wide range of advantages such as low-cost, higher surface to 

volume ratio, facile surface chemistry, detecting of several different targets at the same time and 

monitoring binding of molecules in real-time [186, 250, 251, 256]. For example, a gold nanorod 

with different aspect ratios have been used for multiplex sensing by monitoring the distinct LSPR 

peak shift caused by the binding of three different molecules on their surfaces [186]. In another 

study, to determine the concentration of the microRNAs (miRs) in the plasma or blood of 

pancreatic cancer patients, Joshi et al. applied nanoprism Au nanoparticles to detect and measure 

miRs [259]. Using LSPR sensing technique, they observed that concentration of miR-10b is almost 

four times greater than of miR-21 in pancreatic cancer patients [259]. More recently, Sriram et al. 

developed an analyzing technique to detect interleukin-6 (IL-6) protein based on the changing in 

color from plasmonic gold nanoparticles using dark field microscopy and digital camera with a 

CMOS sensor [260]. They were able to detect 4.76 nM (100 ng/mL) of IL-6 using this technique. 

However, the main drawback of this method is that its working wavelength range is from 450 nm 

to 625 nm and can be applied only for NPs that have single plasmon peak.  

In contrast to the vast majority of the biological sensors, which need labels such as 

fluorophores, radioisotopes or enzyme to generate and enhance target signals [38], LSPR based 

biosensors are label-free [37, 261, 262]. Due to enhanced electric field around NPs, the target 

molecule signals can be amplified and be used to detect the molecules without chemical or 

biological labels [37, 261, 262]. In addition, unlike surface plasmon resonance (SPR) sensing that 

has been widely used for detecting bimolecular interactions [263], LSPR sensing is not sensitive 

to temperature and requires simple instrumentation [264]. At the same time, LSPR leads to 

enhanced localized electric field around plasmonic NPs that have shorter decay length in 

comparison to SPR and results in better sensitivity to changing RI in the close vicinity of the NPs 

[25, 248]. However, despite the advantages mentioned above, the sensitivity and the signal-to-

noise ratio of LSPR sensing is much less than the SPR sensing technique [25, 256]. Thus, designing 
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and optimizing different LSPR plasmonic nanostructures to obtain higher sensitivity by changing 

the refractive index of the surrounding medium is desirable for sensing applications [249, 256].  

Attaching target molecules to the surface of the NP (see Figure 5.1) alters the effective 

refractive index of the surrounding medium. Since the refractive index of the target molecules is 

more the refractive index of the medium, it increases the RI of the surrounding medium and 

consequently redshifts the LSPR peak wavelength. 

 

 

Figure 5.1. Red-shifting of the LSPR peak shift due to attaching target molecules at the surface of the NP. 

 

The LSPR sensitivity of plasmonic NPs is widely defined as LSPR peak shift per 

surrounding medium refractive index unit (RIU) [23]  

S =
dλୗୖ 

dn
                                                                                                                                                (5.1) 

In addition to medium effect, the LSPR peak position and its shift, electric field 

enhancement and its decay length can be adjusted by changing parameters such as shape and size 

of the NPs, and the polarization direction of incident light [9, 64, 76, 83, 158, 180, 185, 211, 245, 

248, 252, 265–267]. All these optical properties can also be adjusted by varying inter-particle 

distances of neighboring nanoparticles in dimer or trimer structures [63, 77, 103, 132, 156] or 
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varying shell thickness in core-shell nanostructures [20, 268]. Several research efforts have 

focused on the shape, size and other parameter effects on the sensitivity of the plasmonic NPs [33, 

37, 38, 76, 244, 254, 265, 269, 270]. For example, a sensitivity factor of 408.8 nm/RIU has been 

reported for a spherical hollow core- Au nanoshells with a mean total size of 50 nm and shell 

thickness of 4.5 nm, which was almost 6- times stronger than the solid Au NPs with the same 

diameter [270]. In this study, the core region was filled out with the surrounding medium [270]. 

In a theoretical work, Jain et al.  investigated LSPR sensitivity of spherical silica- gold core-shell 

with a total diameter of 80 nm and demonstrated that LSPR sensitivity of nanoshells versus shell-

to-core ratio shows universal scaling behavior [271]. In addition, due to increased plasmonic 

coupling between inner and outer surface layers of shell by reducing shell thickness, they had 

observed significant enhancement of LSPR sensitivity from 129 nm/RIU to 363 nm/RIU when 

shell thickness decreased from 40 nm (solid sphere) down to 4 nm [271]. In another study, a 

nanorice nanoshell with longitudinal diameter of 340± 20 nm, transverse diameter of 54± 4 nm 

and shell thickness of 13.1± 1.1 nm has shown LSPR sensitivity of 801.4 and 103.0 nm/RIU for 

longitudinal and transverse plasmon modes, respectively [76]. Lee et al. have shown that the LSPR 

sensitivity of Au nanoparticles increases with increase in the size and the AR. Interestingly, they 

observed 491.4 (nm/RIU) LSPR sensitivity for Au nanorod with an aspect ratio of 3.4 and effective 

radius of 20 nm was almost 3.2 and 1.5 times higher when compared to spherical Au NPs with 

r=20 nm and r=60 nm, respectively [248]. In another study, by varying AR of gold nanorods (with 

an effective diameter of 50 nm) from 2 to 6, LSPR sensitivity in the range of  200-600 (nm/RIU) 

has been obtained from FDTD simulations [272]. Dondapati and coworkers have used biotin-

modified gold nanostars to sense binding of streptavidin with concentrations as low as 0.1 nM by 

measuring the plasmon shift [37]. These nanoparticles have shown average sensitivity of 218 

nm/RIU [37]. In recent work, Woo et al. elucidated anisotropic property of arrays of Au nanodisks 

with a structural dimension of 162 and 340 nm, and measured sensitivity of 327 nm/RIU and 167 

nm/RIU for longitudinal and transverse modes, respectively [256].  

Although extensive research has been carried out on LSPR sensitivity of the different shape 

solid plasmonic NPs [37, 186, 244, 248, 261, 262, 269, 273] and spherical nanoshells [76, 211, 

270, 271], there has been little quantitative analysis of size, shape, shell thickness and aspect ratio 

effects on the LSPR sensitivity of the hollow/Au nanoshells. In this chapter, we focused on 
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understanding these parameters' effects on the plasmonic properties of hollow/Au nanoshells in 

order to obtain structures with higher sensitivity. The main objectives of this study are to probe 

the effect of (1) size and shell thickness, (2) shape and shell thickness, and (3) aspect ratio on 

LSPR sensitivity. Multi-layered Mie theory was used to calculate the size effect of LSPR 

sensitivity for different size gold spheres from 20 to 80 nm. Then, to understand the shape effect, 

we have performed simulations on disk, rod, ellipsoid, rectangular block, and prism shape NPs 

with an effective diameter of 40 nm by varying shell thicknesses (see Figure 5.2). 

 

 

 

 

 

 

 

 

 

Figure 5.2. Schematic of (a) Spherical, (b) Disk, (c) Triangular Prism, (d) Rod, (e) Ellipsoid and (f) Rectangular block,  
hollow/Au nanoshells that have been investigated in this work. Sharp corners of the rectangular block and prism have 
been rounded. To specify the sizes of the non-spherical nanoparticles with volume V, the effective radius is defined 
as radius of a sphere per equal volume of the particle: reff = (3V/4π)1/3. In addition, the rounding radius for the outer 
surface set to be 2 nm and the inner radius has been calculated by multiplying ratio of the core-to-total size to 2 nm.  

 

Also, we have studied the AR effect on plasmonic properties of rod and rectangular block 

shaped hollow/Au nanoshells while varying AR from 1 to 5 for a fixed effective diameter of 40 

nm. Section 5.2 describes the calculation methods and results and discussion is provided in Section 

5.3. 
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5.2. Calculation Methods 

In this work, for bulk Au, values of the dielectric function at different wavelengths were 

taken from experimental data provided by Johnson and Christy [274]. The modified dielectric 

function of the hollow-gold nanoshells has been calculated using Eq. 2.2. In addition, ω୮ = 1.35 ×

10ଵ radsିଵ [274], Γ = 1.06 × 10ଵସ radsିଵ [64], V = 1.4 × 10 msିଵ
 and A=1 have been 

chosen in our simulation.  

In the simulation, multi-layered Mie theory [80, 82, 181] and discrete dipole approximation 

(DDA) [104, 107, 108, 275, 276] have been used to obtain optical properties of the spherical and 

non-spherical nanoshells, respectively. All codes were developed by our group in MATLAB 

Software. To test the DDA codes, the results of DDA code for spherical nanoshells were compared 

against multi-layered Mie theory, and there was an excellent agreement in the calculation of 

extinction, absorption and scattering efficiencies by both methods. Then, to check our DDA codes 

for non-spherical hollow/Au nanoshells, we compared the results with available spectra of solid 

NPs in the literature [266] for three cases: 1) setting the refractive index of core to be equal to 

refractive index of the shell, 2) setting the effective radius of the core to be zero, and 3) vanishing 

shell thickness. In all of the cases, there was an excellent agreement between our results and 

available data in the literature. Figure 5.2 shows the schematic of six different (Sphere, Disk, 

Triangular Prism, Rod, Ellipsoid, and Rectangular block) hollow-Au core-shell structures that 

have been investigated in this research. Rod NPs are made of one cylinder and hemisphere caps at 

both ends. In addition, to obtain appropriate mesh size for the non-spherical nanoshells, Cext of 

samples was calculated with different mesh sizes (d= 0.25 nm, d= 0.35 nm, and d = 0.5 nm) to 

show convergence in the simulation.  

Extinction spectra of Rod, ellipsoid, and rectangular block with shell thickness of t > 0.3 

reff have been converged at d = 0.5 nm, while for t ≤ 0.3 reff, d= 0.25 nm has been employed to 

collecting data. For Disk and Prism hollow nanoshells, d has been set to 0.25 nm to collect the 

data. Figure 5.3 shows an example of the convergence of extinction spectra of 40 nm ellipsoid 

hollow/Au nanoshells with a shell thickness of a) t =0.1 reff and b) t=0.2 reff. 
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Figure 5.3. Convergence of the extinction spectra of the ellipsoid hollow/Au nanoshells with an effective diameter 
of 40 nm and a shell thickness of a) t = 0.1 reff and b) t = 0.2 reff. As shown in these figures, for t=0.1 reff  and t=0.2 
reff extinction spectra converge at d = 0.35 nm and d = 0.5 nm, respectively. The incident light electric field is 
parallel to the main axis of the NPs. 

 

5.3. Results and Discussion 

5.3.1. Dielectric Function Effect on Sensitivity and FWHM 

In order to theoretically elucidate the shell thickness influence on the dielectric function 

and consequently on plasmon sensitivity and FWHM of the hollow/Au nanoshells, Quasi-static 

approximation was used. In this approximation, the size of the NPs is much smaller than incident 

light wavelength (kd<<1) whereby the electromagnetic phase shift and electric field and 

polarizability variation are negligible inside the Np [277]. In this model, by considering dipole 

mode and ignoring higher-order modes, the absorption spectrum inside Np is given by [277] 

σୟୠୱ(ω) =
V

3c
ε୫

ଵ.ହ 
1

L୧
ଶ

ଷ

୧ୀଵ

ωεଶ

ቂεଵ + ε୫ ቀ
1
L୧

− 1ቁቃ
ଶ

+ εଶ
ଶ

                                                                           (5.2) 

where V, c and 𝜀 are the volume of the nanoparticle, the speed of the light in a vacuum and the 

dielectric function of the surrounding medium. L୧ represent shape factors related to depolarization 

effect and are equal to 1/3, 1 and 0 for spherical, flat disk and infinite spheroid (when the incident 

light is in direction of the long axis) [277]. In addition, εଵ and εଶ are the real and imaginary part 

of the dielectric function of the metallic nanoparticles. In order to obtain the corresponding 

wavelength of LSPR, the denominator of the Eq. 5.2 should be minimum that gives [277] 
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εଵ + ε୫ ൬
1

L୧
− 1൰ = 0                                                                                                                               (5.3) 

with minimizing the denominator of σୟୠୱ in Eq. 5.2, LSPR frequency can be expressed as [277] 

ωୗୖ =
ω୮

ቂε୍ + ε୫(
1
L୧

− 1)ቃ

ଵ
ଶ

                                                                                                                (5.4) 

From the above equation, it is evident that ωୗୖ decreases with increasing the refractive index of 

the medium. This shift to longer wavelengths can be ascribed to decreasing the restoring 

Coulombic force due to increased shielding effect between the oscillating electrons and positive 

ions that results in a reduction of the required incident light energy to excite coherent oscillation 

of the electrons [252].  

To evaluate  hollow/Au nanoshells electric permittivity, we used the composition-weighted 

average to calculate εୣ of the structure [248, 278–280] 

εୣ(ω) = Xୡ୭୰ୣ εୡ୭୰ୣ(ω) + (1 − Xୡ୭୰ୣ)εୱ୦ୣ୪୪(ω)                                                                             (5.5) 

where Xୡ୭୰ୣ , and (1 − Xୡ୭୰ୣ)  are core and shell volume fractions, respectively. 

Figure 5.4a and 5.4b show real part of the effective dielectric function of spherical 

hollow/Au nanoshells with a diameter of the 40 nm for different shell thicknesses without and with 

electron-surface collision effect, respectively. It is evident from Figure 5.4 and Figure 5.5 that 

electron-surface collision has little to no effect on the real part of the electric permittivity. 

However, as can be understood from these figures, the slope and amount of εଵୣ significantly alter 

with changing the shell thickness. Since the dielectric function of the air (εୟ୧୰ = 1) is 

dispersionless, and εଵ of Au is negative and varying with the wavelength of incident light, the core 

volume fraction will increase that results in increase of εଵୣ , and reducing the slope with a 

decrease in shell thickness. On the other hand, εଶୣ depends on two factors: volume fraction of the 

shell and electron-surface scattering rate. As shown in Figure 5.4c and 5.4d, the εଶୣ decreases by 

reducing shell thickness. However, it has already been noted above that by decreasing effective 

size of the shell electron-surface collision frequency increases. As demonstrated in Figure 5.5b, 

the electron-surface effect will become important for longer wavelengths and leads to increasing 
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εଶୣ with reducing shell thickness. In hollow nanoshell structures, reducing shell thickness 

increases the real part of the dielectric function while decreases its gradient (See Figure 5.4a and 

5.4b). To satisfy Eq. 5.3 for plasmon resonance, with a decreasing gradient of the real part of the 

dielectric function, it requires the LSPR peak to shift significantly with changing the refractive 

index of the medium. Thus, decreasing shell thickness for fixed total size leads to increased 

sensitivity for hollow-Au nanoshells. 
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Figure 5.4. Changing real (𝜀ଵ) and imaginary part (𝜀ଶ) of the dielectric function of hollow Au nanoshell with a total 
diameter of 40 nm for different shell thicknesses versus incident light wavelength: (a) and (c) without considering 
electron-surface scattering effect, (b) and (d) with considering electron-surface scattering effect in damping frequency. 
For comparison, electric permittivity of solid NPs in both cases has been added. 
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To characterize the LSPR sensitivity, the FWHM of the LSPR resonance spectrum has 

been obtained by Taylor expansion of the absorption spectrum at LSPR wavelength as [248, 281]  

∆λଵ
ଶൗ ≈ 2 ቚλୖ − λଵ

ଶൗ ቚ ≈
2εଶ(λୗୖ)

dεଵ(ω)
dλ

|ୀైౌ

                                                                                           (5.6) 

FWHM plays an important role to determine relative scattering and absorption to extinction. Eq. 

5.6 suggests that in order to have narrower bandwidth it is required to optimize NP structures to 

have smaller imaginary part of the dielectric function and steeper derivative of the real part at the 

resonance frequency. As it is demonstrated in Figure 5.4 for spherical hollow-Au nanoshells with 

a total diameter of 40 nm, both the imaginary part and slope of the real part of the dielectric 

function reduce by decreasing shell thickness. From this result, it can be concluded that the 

imaginary part of dielectric functions and gradient of the real part of structures play important role 

to obtain higher sensitivity and lower FWHM. 
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Figure 5.5. Percentage of changing of the (a) real part and (b) the imaginary part, of the dielectric function of spherical 
hollow/Au nanoshells with a total size of d=40 nm with varying shell thickness due to considering surface effect (∆𝜀 =
𝜀௪ − 𝜀௪ , where 𝜀௪  and 𝜀௪ are the dielectric function of the hollow/Au nanoshell with and without considering the 
surface effect, respectively). Here 𝜀ଵ୵  and 𝜀ଶ୵ are real and imaginary part of the dielectric function of hollow/Au 
nanoshells without electron- surface scattering effect. 
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5.3.2. Size Effect on the LSPR Sensitivity 

In this section, the size effect on the LSPR sensitivity of spherical hollow-Au nanoshells 

with varying shell thickness was studied. Two-layered Mie theory was used to calculate the 

extinction spectrum and corresponding LSPR wavelength of each sample (See Figure. 5.6). 
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Figure 5. 6. Extinction spectrum of spherical hollow/Au nanoshells for different shell thickness with a total diameter of (a) 20 nm 
and (b) 60 nm. 

 

Figure 5.7a-5.7d show LSPR peak wavelength versus the refractive index of the medium 

for different shell thicknesses for nanoparticles with a total diameter of d=20 nm, d=40 nm, d=60 

nm, and d=80 nm, respectively. As shown in Figure 5.7, 𝜆ௌோ and its corresponding gradient 

significantly increases with reducing the ratio of shell thickness-to-total radius (t/r). The two 

possible explanations for this result are: 1)  enhancing inner and outer layers plasmonic coupling 

due to reducing the shell thickness [44, 49, 271], 2) decreasing gradient of the real part of the 

dielectric function (
ୢகభ(ன)

ୢ
).  

 



 

101 
 

 t=0.1 r
 t=0.2 r
 t=0.4 r
 t=0.6 r
 Solid Np

1.0 1.1 1.2 1.3 1.4 1.5 1.6
500

600

700

800

900

 
m

ax
 (

nm
)  

 

 

 

n
b
 

Spherical Au (20 nm)
(a)

      

 t=0.1 r
 t=0.2 r
 t=0.4 r
 t=0.6 r
 Solid Np

1.0 1.1 1.2 1.3 1.4 1.5 1.6
500

600

700

800

900
Spherical Au (40 nm)

 
m

ax
 (

n
m

)  
 

 

 

n
b

(b)

 

 t=0.1 r
 t=0.2 r
 t=0.4 r
 t=0.6 r
Solid Np

1.0 1.1 1.2 1.3 1.4 1.5 1.6
500

600

700

800

900

n
b
 

Spherical Au (60 nm)

 
m

ax
 (

n
m

)  
 

 

(c)

      

 t=0.1 r
 t=0.2 r
 t=0.4 r
 t=0.6 r
 Solid Np

1.0 1.1 1.2 1.3 1.4 1.5 1.6
500

600

700

800

900
Spherical Au (80 nm)

n
b
 

 
m

ax
 (

nm
)  

 

 

 

(d)

 

Figure 5.7. LSPR peak wavelength of the spherical hollow/Au nanoshells for different shell thicknesses versus RI of 
the surrounding medium with the diameter of (a) d=20 nm (b) d=40 nm, (c) d=60 nm and (d) d= 80 nm. 

 

Figure 5.8 shows the LSPR peak shift at different refractive index of the surrounding 

medium for different size spherical nanoshells. The shift calculated respect to the LSPR peak of 

the corresponding particle at vacuum. 
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Figure 5.8. LSPR peak wavelength shift of the spherical hollow/Au nanoshells with varying shell thicknesses for the 
diameter of (a) d = 20 nm, (b) d = 40 nm (c) d = 60 nm, and (d) d= 80 nm, versus the RI of the surrounding medium. 

 

The LSPR sensitivity is obtained by the slope of the linear fit of the LSPR wavelength 

versus RI of the surrounding medium and is presented in Figure 5.9. Similar to previous studies 

[76, 271], our finding shows that the LSPR sensitivity increases with reducing shell thickness, at 

an exponential rate. As an example, for Np with d=20 nm, the LSPR sensitivity increases 

significantly from 57.5 to 338 nm/RIU by reducing shell thickness from t=1 r (Solid Sphere) to 

t=0.1 r. In addition, the sensitivity increases with increasing the size due to increased contribution 

from higher-order modes [248, 282]. However, by reducing the shell thickness, the LSPR 

sensitivity of the different size NPs converge. This can be ascribed to the decrease in contribution 

of the higher-order modes leading to size-independent behavior of LSPR sensitivity for thin shells.  
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Figure 5.9. Size effect on the LSPR sensitivity of the spherical hollow/Au nanoshells for the NPs with the total 
diameter of d=20 nm, d=40 nm, d=60 nm, and d= 80 nm. Lines are added as guides to the eye.  

 

In order to easily detect the LSPR peak shift with changing RI of the surrounding medium, 

structures with lower FWHM that have higher extinction (See Figure 5.10) are desirable [248]. 

FWHM in nanoshells depends on several factors: electron- surface scattering at the boundaries of 

the nanoshell; shell to core volume ratio; and retardation effect, including the contribution of 

higher-order plasmon modes [248, 282]. Figure 5.11 shows the calculated FWHM of the different 

size spherical nanoshells that were obtained using Gaussian fit to extinction spectrum of the NPs 

in aqueous solution (𝑛 = 1.34). Interestingly, the plasmon bandwidth is minimum at t=0.2 r for 

all sizes. This observation could be attributed to the fact that the reduction in imaginary part of the 

dielectric function is dominated by a decrease of  
ୢகభ(ன)

ୢ
 leading to a decrease of the FWHM of the 

nanoshells. Interestingly, the results also show that with an increase in the size of NPs from 20 nm 

to 40 nm, FWHM decreases and then increases by further enlarging the NPs size. The 

inconsistency may be due to the increased retardation effect and contribution of the higher 

plasmonic modes that overcome the reduced electron-surface scattering rate effect with increasing 

size of the NP from 40 to 80 nm, and results in a net increase of the plasmon bandwidth. 
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Figure 5. 10. Maximum extinction efficiency of the spherical hollow/Au nanoshells against RI of the surrounding 
medium for different shell thickness with a total diameter of (a) 20 nm and (b) 60 nm.  
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Figure 5.11. Evolution of FWHM of spherical hollow/Au nanoshells versus shell thickness-to-total radius (t/r) for the 
NPs with the total diameter of d=20 nm, d= 40 nm, d=60 nm and d= 80 nm. Lines are added as guides to the eye.  

 

5.3.3. Shape Effect on LSPR Sensitivity 

In order to explore the shape effect on the LSPR peak wavelength, and LSPR sensitivity, 

we have performed DDA simulation for five different shapes (disk, prism, rod, ellipsoid, and 

rectangular block) with an effective diameter of 40 nm and compared their optical properties with 

same sized spherical hollow/Au nanoshells. With changing the particle shape, the curvature of the 

nanoparticles change that alters the charge distribution, electric field enhancement and LPSR peak 
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position, and consequently effects LSPR sensitivity. In addition, by changing the shape of the 

nanoparticles, the effective distance between the positive and negative charges will change that 

result in shifting LSPR peak wavelength and altering LSPR sensitivity. For the rod, ellipsoid and 

rectangular block, the aspect ratio was set to 2 and direction of the incident light electric field has 

been considered parallel to the long axis of the nanoshells. For the prism, the thickness was 

considered to be half of the side length of equilateral triangular and incident light has been chosen 

in the direction of the trigonal axis. The thickness of the disk nanoshell was set to be equal to its 

radius, and the electric field was chosen in the direction of its main axis. DDA calculation was 

performed for varying shell thickness of each sample while the total effective diameter of each 

was fixed to 40 nm. Figure 5.12 shows the evolution of the LSPR peak wavelength of each sample 

with changing RI of the medium for different shell thicknesses. As a reference, the calculated 

LSPR of the spherical hollow/Au nanoshells with a total diameter of 40 nm was added to the figure. 

It is observed that LSPR shift for a given surrounding medium RI increases by reducing shell 

thickness in all samples. As shown in Figure 5.12, for a given RI change of the surrounding 

medium, the LSPR peak of the ellipsoid, rod, and rectangular block nanoshells shifted to longer 

wavelengths more than other shaped shells and can be tuned from visible to infrared region by 

changing the shell thickness. These results are mainly due to lower depolarization factor or higher 

polarizability of the ellipsoid, rod, and rectangular block nanoshells when compared to other 

structures [252]. By decreasing the depolarization factor, the restoring Coulombic force between 

the positive ions and oscillating electrons decreases which decreases the required incident light 

energy to excite the free electrons of the nanoshell [252]. The results show that the sensitivity of 

the rectangular block and the disk is the highest and lowest for all shell thicknesses, respectively 

(see Figure 5.13). For example, at t = 0.1 reff, the LSPR sensitivity of the rectangular block is 594.9 

nm/RIU which is almost 1.7 times of the sphere (350 nm/RIU) and 2.1 times of the disk (278.4 

nm/RIU) with same shell thickness. In addition, LSPR sensitivity of rod and ellipsoid converge to 

rectangular block by further reducing the shell thickness. The sensitivity of rod nanoshells is 

slightly higher than ellipsoid in all shell thickness, which can be ascribed to the larger average 

distance between positive ions and excited electrons in rod nanoshell.  
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Figure 5.12. LSPR peak wavelength of the hollow/Au nanoshells versus RI of the surrounding medium for different 
shapes: (a) Spherical, (b) Disk, (c) Rod, (d) Ellipsoid, (e) Rectangular block and (f) Prism, with deff = 40 nm. The 
incident light electric field was chosen to be parallel to the main axis of the NPs. 
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Figure 5.13. Influence of shape and shell thickness on the LSPR sensitivity of the sphere, disk, rod, ellipsoid, 
rectangular block, and prism, shaped hollow/Au nanoshell with an effective diameter of deff = 40 nm. Lines are added 
as guides to the eye. 

 

As mentioned earlier, structures with lower FWHM that have higher extinction are 

desirable LSPR sensitivity applications [248]. Owing to inner and outer layers coupling the 

maximum extinction efficiency in most of the shell structures is more than the solid particles (See 

Figure 5.14). As shown in Figure 5.14, the extinction spectra’s maximum of all of the structures 

increases by reducing shell thickness until 0.2 reff, however, it increases by further decreasing the 

outer layer thickness. This can be attributable to increasing electron-surface scattering rate by 

reducing the thickness of the gold layer. Figure 5.15 shows the summary of the FWHM of the 

studied samples with varying shell thickness. It shows a clear trend of exponential decreasing of 

the FWHM for ellipsoid, rod, rectangular block, and prism with increasing shell thickness. The 

significant reduction has happened when the shell thickness varied from t=0.1 reff to t=0.2 reff. At 

t=0.2 reff, the FWHM reaches 86.8, 75.62, 73.1 and 74.3 nm for ellipsoid, rod, rectangular block, 

and prism, respectively. However, the FWHM of spherical and disk reduces just in the range of 

t=0.1- 0.2 reff and reaches its minimum value at t= 0.2 reff, and then increases with further increasing 

the shell thickness. In the next section, the aspect ratio effect on the optical properties of the 

rectangular block and rod hollow/Au nanoshells is presented.  

 



 

108 
 

 t=0.1 r
 t=0.2 r
 t=0.4 r
 t=0.6 r
 Solid Np

1.0 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

12

n
b

Spherical (Au), d= 40 nm

M
ax

. E
xt

in
ct

io
n 

ef
fi

ci
en

cy
 

 

 
(a)

      
1.0 1.1 1.2 1.3 1.4 1.5

0

2

4

6

8

10
Disk (Au), d

eff
= 40 nm

 t=0.1 r
eff

 t=0.2 r
eff

 t=0.3 r
eff

 t=0.4 r
eff

 Solid Np

n
b

M
ax

.  
E

xt
in

ct
io

n
 e

ff
ic

ie
n

cy

 

 

(b)

 

1.0 1.1 1.2 1.3 1.4 1.5

6

8

10

12

14

16

18

20

M
ax

.  
E

xt
in

ct
io

n 
ef

fi
ci

en
cy

n
b

 Rod (Au), d
eff

= 40 nm
 t=0.1 r

eff

 t=0.2 r
eff

 t=0.3 r
eff

 t=0.4 r
eff

 Solid Np

 

 

 

(c)

      
1.0 1.1 1.2 1.3 1.4 1.5

4

6

8

10

12

14

16

18
 Ellipsiod (Au) , d

eff
= 40 nm

 t=0.1 r
eff

 t=0.2 r
eff

 t=0.3 r
eff

 t=0.4 r
eff

 Solid Np

n
b

M
ax

.  
E

xt
in

ct
io

n
 e

ff
ic

ie
n

cy

 
(d) 

 

 t=0.1 r
eff

 t=0.2 r
eff

 t=0.3 r
eff

 t=0.4 r
eff

 Solid Np

1.0 1.1 1.2 1.3 1.4 1.5
6

8

10

12

14

16

18

20

22
 Rectangular block (Au) , d

eff
= 40 nm

M
ax

.  
E

xt
in

ct
io

n
 e

ff
ic

ie
n

cy

n
b

 
(e)

    

1.0 1.1 1.2 1.3 1.4 1.5

4

6

8

10

12

 t= 0.1 r
eff

 t= 0.2 r
eff

 t=0.3 r
eff

 t=0.4 r
eff

 Solid Np

Prism (Au),  d
eff

= 40 nm

M
ax

.  
E

xt
in

ct
io

n
 e

ff
ic

ie
n

cy

 

n
b

 
(f)

 

Figure 5.14.  Maximum extinction efficiency of spherical hollow Au nanoshells versus RI of the surrounding medium 
for different shapes: (a) Spherical, (b) Disk, (c) Rod, (d) Ellipsoid, (e) Rectangular block and (f) Prism, with deff = 40 
nm. The incident light electric field is parallel to the main axis of the NPs. 
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Figure 5.15. Influence of shape and shell thickness on the FWHM of the sphere, disk, rod, ellipsoid, rectangular block, 
and prism, shaped hollow/Au nanoshell with an effective diameter of the deff = 40 nm. Lines are added as guides to 
the eye.  

 

5.3.4. Aspect Ratio Effect on the LSPR Sensitivity  

Increasing AR of the NPs will enhance surface area-to-volume ratio that can make sensing 

of target molecules easy by providing enhanced active area [67]. To study AR effects in LSPR 

sensitivity, we investigated the optical properties of the rectangular block and rod nanoshells which 

have shown higher sensitivity for AR = 2 when compared to other structures, as discussed in the 

previous section. The effective total diameter of the samples was set to 40 nm, and the AR was 

varied from 1 to 5. Note that at AR = 1, Rod and Rectangular block will convert to spherical and 

cube, respectively. The DDA calculation was performed for three different cases: 1) Solid Np, 2) 

nanoshell with fixed t = 0.2 reff and 3) nanoshell with fixed shell volume. In the third case, the 

volume of the shell for all aspect ratios was set to be equal to the volume of the shell with AR=2 

and t = 0.2 reff. 

Figure 5.16a and 5.16b show the LSPR sensitivity of the rod and the rectangular block 

versus AR, respectively. It is observed that sensitivity for all cases increases with increasing AR. 

This observation, first, can be attributed to enhancing polarizability or decreasing depolarization 

factor due to increasing the effective distance between the positive and negative charges in the 

NPs which reduces the required energy to excite electrons on their surface. Second, it can be 

ascribed to increasing the surface to volume ratio by increasing aspect ratio which leads to 
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enhancement of surface effect and more shifting of the LSPR peak with changing RI of the 

surrounding medium. Also, it was demonstrated that the sensitivity for both hollow/Au nanoshells 

is significantly higher than the solid NPs due to strong plasmon coupling between the inner and 

outer layer of the shell. However, it must be noted that the sensitivity of the structures with fixed 

shell volume diverges and become higher than the case with fixed shell thickness with an AR 

greater than 2. This observation is due to the fact that in the case with fixed shell volume, shell 

thickness slightly reduces with increase in AR. For example, at an AR of 5 and for fixed shell 

volume, the LSPR sensitivity of rectangular block is 800 nm/RIU that is ,despite its smaller size, 

almost same as the longitudinal plasmons mode of the nanorice (801.4 nm/RIU) with longitudinal 

diameter of 340± 20 nm, transverse diameter of 54± 4 nm and shell thickness of 13.1± 1.1 nm [76]. 

A comparison of the two results reveals that for small AR (<3), the sensitivity of the rectangular 

block is more than the rod, whereas by further increase in AR, the rod sensitivity exceeds that of 

rectangular block. The interesting finding was that the LSPR sensitivity of the nanorod with an 

AR of 5 and for fixed shell volume is 829.5 nm/RIU, which is higher than the structures mentioned 

above (rectangular block and nanorice).  
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Figure 5.16. The sensitivity of the hollow/Au nanoshells, (a) Rod and (b) Rectangular block, with deff = 40 nm versus 
aspect ratio. Lines are added as guides to the eye.  

 

However, it must be noted that a further increase of the AR reduces the extinction spectra 

due to increasing electron-surface scattering rate, which makes detection of the wavelength 
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changes experimentally difficult. As shown in Figure 5.17, by increasing the AR of both rod and 

rectangular block the extinction spectra and FWHM will increase. 
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Figure 5.17. Extinction efficiency spectra of the (a) rod shape, and b) rectangular block, hollow/Au nanoshells with 
an effective diameter of 40 nm, and shell thickness of t=0.2 reff, for varying the AR from 1 to 5.  

 

In summary, it has been shown that both the rectangular block and rod hollow/Au 

nanoshells provide higher sensitivity in comparison to other structures. Also, due to their smaller 

sizes, the RI of the surrounding medium can change effectively with a low binding concentration 

of the target molecules, which offers the possibility to sense and detect the analytes such as DNA 

which have low concentrations. The tunability of the sensitivity of these structures with changing 

the shell thickness and AR provides the opportunity to further enhance LSPR sensitivity and 

molecules detecting capabilities of the single NP.
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CHAPTER 6 

 
OPTICAL PROPERTIES OF EMBEDDED PLASMONIC NANOPARTICLES USING 

DISCRETE DIPOLE APPROXIMATION 
 
 

6.1. Introduction 

Collective oscillations of the conduction band electrons of plasmonic NPs lead to a 

fundamental property called localized surface plasmon resonance (LSPR) [1, 49, 134, 135]. Owing 

to strong scattering and absorption of the incident light due to LSPR, and significant enhancement 

of the electric field, which is highly localized around the surface of the nanostructures, plasmonic 

NPs have received considerable attention in nanophotonic research [1, 49, 134, 135]. Due to higher 

scattering and absorption of the incident light, noble metallic nanoparticles such as Au and Ag 

have been subjected to extensive studies with potential application in biomedical field [9–26], solar 

cells [7, 8], plasmonic sensors [21–40], catalysis [283], surface-enhanced Raman spectroscopy 

[41–47], and metal-fluorescence enhancement [48], For example, El-Sayed and his group have 

shown that scattered light of the Au NPs bounded to the surface of malignant cells can be used to 

construct the image of the cancerous tissues [12]. In another study, Joshi and coworkers via LSPR 

sensing technique, by monitoring plasmonic wavelength shift of the NPs due to changing the 

refractive index of the surrounding medium, observed that concentration of miR-10b is almost four 

times greater than of miR-21 in the plasma or blood of pancreatic cancer patients [259]. Zhang et 

al. fabricated tubular Ag NPs/silica nanotubes nanocomposites catalysts by assembling size-

controlled Ag NPs on the inner and outer surface of the nanotubes, which could be easily recycled 

without decreasing of the catalytic activity [283]. Since the redox potential and the surface-to-

volume ratio of the Ag NPs are size-dependent, they demonstrated that the catalytic activity of the 

nanocomposite can be increased by reducing the size of the Ag NPs [283]. Liu et al. used Au 

nanorods that have two LSPR peaks to significantly enhance the fluorescence of the Oxazine-725 

molecules embedded in silica shell around the NP [74]. They simultaneously enhanced excitation 

and emission of the dye molecules by matching the LSPR wavelengths of the transversal and    
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longitudinal modes to the excitation and emission wavelengths, respectively, which results in 20.8 

times stronger fluorescence enhancement in comparison to the emission from the same amount of 

dye molecules in solution [74]. Recently, researchers have shown an increased interest in 

plasmonic properties of the copper (Cu) NPs due to their large extinction cross-section, high 

conductivity and photosensitivity, cost-effectiveness when compared to Au and Ag, and their 

capability of insertion in host polymer matrices [284, 285]. The aforementioned properties of the 

metallic Cu NPs provide a wide range of applications in chemistry, material science, catalysis, and 

nonlinear optics [286–288]. For example, a recent study has shown that chemically grown Cu NPs 

onto TiO2  leads to significant improvement of the electrocatalytic activity in oxygen reduction in 

alkaline media [286]. 

LSPR properties of the plasmonic NPs can be tailored by their size, shape, composition, 

the refractive index of the medium, and the polarization direction of the incident light [9, 64, 76, 

83, 158, 180, 185, 211, 245, 248, 252, 265–267]. The LSPR properties of the metallic NPs also 

can be tuned by changing the interparticle distances in multimeric structures [63, 77, 103, 132, 

156]. or changing shell thickness and core size in nanoshell compositions [20, 27, 268]. Several 

studies have been carried out to investigate the effect of the parameters mentioned above on the 

LSPR properties of the plasmonic NPs [9, 20, 27, , 63, 64, 76, 77, 83, 103, 132, 156, 158, 180, 

185, 211, 245, 248, 252, 265–268]. In one well-known study, Jain et al. explored the size, shape, 

and composition effect on the absorption and scattering properties of Au nanoparticles [9]. By 

studying three different structures viz. silica-Au nanoshells, Au nanosphere, and Au nanorods, 

they observed that extinction cross-section and relative scattering contribution of the NPs enhance 

by increasing the size of the NPs. Also, it has been shown that LSPR peak of the Au nanospheres 

lies in the visible range, whereas the plasmonic resonance peak of the nanorods and nanoshells 

structures can be tuned to in the near-infrared region by altering aspect ratio (AR) and shell 

thickness, respectively, which makes them a potential candidate for vivo applications [9]. In 

another work, Jain and coworkers investigated the plasmonic coupling effect on the optical 

properties of Au nanorods assemblies [61]. By studying extinction efficiencies of side-by-side and 

head-to-tail linkage of Au nanorods, they observed that LSPR peak of a longitudinal plasmon mode 

blue shifts in the first configuration whereas redshifts in the latter case. They also demonstrated 

that the amount of shifting of the plasmon resonance peak increases further by decreasing 
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interparticle distances [61]. More recently, we investigated the size, shape, shell thickness, and 

aspect ratio effect on the LSPR sensitivity of the hollow-Au nanoshells [27]. It was conclusively 

shown that reducing the shell thickness increases the LSPR sensitivity of the nanoshell structures 

due to the inner and outer surface coupling effect. Also, by studying different shaped hollow-Au 

nanoshells (sphere, disk, prism, ellipsoid, rectangular block, and nanorod), we demonstrated that 

rectangular block and rod shape hollow-Au nanoshells have higher LSPR sensitivity in comparison 

to other nanostructures that enhances more by a further increase in the aspect ratio [27]. 

Chemical ligands are widely used to stabilize small-sized nanoparticles in a solution [76, 

77, 187, 188]. Conjugating the NPs with chemical ligands prevents the integration of the NPs in the 

solution by counterbalancing the Vander Waals attractive forces between them and helps the 

stabilization of the NPs [76, 77, 187, 188]. However, the chemical ligands usually alter the electron 

conductivity of the NPs due to the chemical bonding between the ligands and conduction electrons 

of the NPs and consequently changing the optical properties of the NPs [8, 76, 77, 187, 188]. In one 

of the well-known study, Peng et al. used chemical ligand to synthesize small-sized Ag 

nanoparticles with uniform morphologies and narrow size distribution [76]. They observed that the 

plasmonic peak blue shifts by reducing the size of the NPs from 20 to 12 nm, however, it turns 

over and redshifts by further reducing the size of NPs [76]. Peng and coworkers justified their 

results by the fact that the chemical bonding between the NPs and the ligand reduces the electron 

conductivity of the surface atoms in NPs that results in unusual behavior in LSPR peak [76]. 

Addition to the above-mentioned effect, transient in and out tunneling of the plasmonic electrons 

in interfacial orbitals with the NP and ligand alters hot electron relaxation processes in NP and 

adds an extra decay channel to their oscillations which results in dampening of the plasmonic band 

[188, 231–233]. For example, our group recently has shown that conjugating Au clusters with 

aromatic passivating ligands decelerate electron-phonon relaxation dynamics more than alphabetic 

ones due to the special Au-π interaction between the NPs and the ligands which reduces the 

electron conductivity of the NPs significantly [188].  

An alternative method to control the size distribution and interparticle distances of the NPs 

is embedding them in a matrix [289–294]. The ion implementation method is one of the most 

promising techniques that has been used to embed NPs into a matrix [147, 293]. This technique 

offers an effective way to control the distance between the embedded NPs and the surface of the 
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matrix by adjusting the incident energies of the ion beam [147, 295]. Recently, researchers have 

shown an increased interest in the embedded plasmonic NPs [7, 147, 289–298]. By placing 

fluorophore molecules on the surface of the matrix, the electric field of the embedded NPs can 

enhance the fluorescence of these molecules [147]. For example, our group carried out a study to 

investigate the fluorescence enhancement of the Coumarin515 (C515) dye molecules via the 

plasmonic field of the embedded Ag nanoparticles in a quartz matrix. We have shown a 

fluorescence enhancement factor ranging from 1.0 to 2.1 with a maximum enhancement for larger 

NPs [147]. Interestingly, it has been suggested that trapping of the incident light by exciting LSPR  

of the embedded plasmonic NPs in a semiconductor can be used to design solar cells with 10- to-

100 folds thinner photovoltaic layer thickness [7, 296–298]. The strong enhanced electric field 

around the NPs can also be used to increase the absorption in the semiconductor matrix [7, 296–

298]. 

Although some experimental research was carried out on embedded plasmonic NPs, there 

is very little theoretical understanding of the optical properties of these kinds of nanostructures [7, 

147, 289–298]. The main objectives of this research are to investigate optical properties such as 

the extinction cross-section, scattering quantum yield, and electric field enhancement of the 

embedded NPs. We studied size, shape, interparticle distances, and the number of the NPs effects 

on plasmonic properties of the Au, Ag, and Cu embedded NPs in a silica matrix. Figure 6.1 shows 

a schematic of nanospheres and nanorods Au NPs that embedded in a matrix. It has been observed 

that nanorods possess higher extinction cross-section and produce a stronger electric field in 

comparison to spherical NPs. Ag nanoparticles show stronger plasmonic properties against other 

samples. In addition, interesting results have been observed about field enhancement and 

concentration of the electric field in the multimeric structures. 

This work has been organized in the following way. Section 6.2 is concerned with the 

computational method used in this study. Section 6.3 represents the results and discussions of the 

research. This section begins with studying how the shape, size, aspect ratio and type of embedded 

monomeric structures influence their corresponding optical properties, then will go on to 

investigate coupling effects in extinction spectra, and enhancement and concentration of the 

electric fields in the dimeric structures, and will end by exploring the number of the NPs influence 

on the aforementioned optical properties. 
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Figure 6.1. Schematic of an embedded gold (A) nanosphere, and (B) nanorod in the matrix. 

 

6.2. Computational Methods 

The optical properties of the embedded Au, Ag and Cu nanoparticles were quantified in 

terms of their calculated extinction (Cext), absorption (Cabs) and scattering (Cscat) cross-sections, 

scattering quantum yield, LSPR wavelength, and electric field enhancement inside and on the 

surface of the matrix. The aforementioned optical properties are calculated using the DDA (refer 

to chapter 2, section 6.2) [84, 85, 88, 104, 120]. In DDA the particle is divided into N cubic meshes 

with dimensions much smaller than the incident light wavelength [84, 85, 88, 104, 120]. Each cube 

represents a point dipole that interacts with the incident light field and the electric field of N-1 

neighboring cubes [84, 85, 88, 104, 120]. It is worth mentioning that we applied the biconjugate 

gradient (BCG) and fast Fourier transform (FFT) techniques to significantly reduce the time and 

required memory of the calculation [87, 104–113]. Our codes have been tested in the following 

ways. First, by vanishing the difference between the refractive index of the matrix and the 

surrounding medium the optical spectrum of a single spherical embedded nanoparticle was in 

excellent agreement with the spectrum of the same size spherical nanoparticle obtained using Mie 

theory. Second, by setting the dielectric function of the matrix to be equal to the dielectric function 

of the embedded nanoparticle the spectra of the spherical and rod shape embedded nanoparticles 

converged to the spectrum of a single rectangular block shaped nanoparticle with the size same as 

the matrix. Third, by vanishing the size of the embedded nanoparticle, the optical spectrum was in 

good agreement with the result of a silica matrix. 

The Cext, Cabs, and Cscat of each studied case can be calculated as follows [87] 
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Cୱୡୟ୲ = Cୣ୶୲ − Cୟୠୱ                                                                                                                                 (6.1𝑐) 

where k, E0, and Einc,i are representing wavevector, the amplitude of the incident light filed, and 

the incident light field at the position of the dipole i, respectively. αi [121] and Pi [85, 87] are the 

polarizability and polarization of each dipole, respectively. Also, in Eq. 6.1 ‘Im’ denotes the 

imaginary part, and the symbol ‘*’ represents the complex conjugate. The whole procedure of 

DDA, such as calculating αi and Pi has been explained in full detail in the second chapter of this 

dissertation.  

The total electric field at position ri around a plasmonic nanoparticle can be obtained by 

summing the electric field of the incident light and scattered field of the N-1 neighboring dipoles 

at position ri [111] 

E୲୭୲(r୧) = E୧୬ୡ(r୧) + Eୱୡୟ୲(r୧)                                                                                                               (6.2) 

where the incident and scattered field at position ri are 

E୧୬ୡ(r୧) = E exp(ikr୧)                                                                                                                           (6.3) 
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where rij is the distance between the position of dipole i and j, rො୧୨   is a unit vector in the direction 

from the dipole i to j, and 13  represents the 3×3 identity matrix. 

The total electric field has been calculated in two different planes (see Figure 6.2): (1) at 

x-z plane inside the matrix at y = 0, and (2) at the x-y plane on the surface of the matrix. It is worth 

mentioning that the origin is chosen at the center of the matrix. 
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Figure 6.2. Schematic of embedded nanoparticles in a matrix and two planes (x-y plane at z = c/2, and x-z plane at  y 

= 0) that electric field enhancement has been calculated. 

 

The bulk dielectric function of the Au, Ag, and Cu at different wavelengths were obtained 

from Johnson and Christy [78]. However, due to increasing electron-surface scattering rate in 

nanostructures, it is required to modify the scattering frequency of the electrons in bulk metal [77]. 

This modification can be applied by adding an extra term to the collision frequency which is 

inversely proportional to the size of the NP. The corrected dielectric function for the nanostructures 

can be expressed as below [77] 

ε(ω, rୣ) = εୠ୳୪୩(ω) +
ω୮

ଶ

ωଶ + iΓω
−

ω୮
ଶ

ωଶ + iΓ(rୣ)ω
                                                                (6.5) 

where εbulk, ω, ωp, and Γ0 are representing the bulk dielectric function, frequency of the incident 

light, plasma frequency, and the collision frequency of the electrons in bulk metal, respectively. 

The reff is the effective radius of the nanoparticle, which is defined as a radius the sphere that has 

a volume equal to that of the nanoparticle (reff = (3V/4π)1/3). Γ(reff) is the corrected collision 

frequency for nanostructures which is given by [174] 

Γ(rୣ) = Γ + A
V

rୣ
                                                                                                                               (6.6) 
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where A is the empirical fitting parameter, and VF is the Fermi velocity. The A was chosen to be 

1, 0.25, and 0.5 for Au, Ag, and Cu, respectively. The values of the ωp, Γ0, and VF  that have been 

used in our simulation provided in Table. 6.1.  

 

Table. 6.1. Summary of the plasma frequency, bulk collision frequency, and Fermi velocity of the Au, Ag, and Cu 

Metal Au Ag Cu 

ωp [78] 1.35 × 1016 rad s-1  1.39 × 1016 rad s-1 1.34 × 1016 rad s-1 

Γ0 [78] 1.07 × 1014 rad s-1  3.22 × 1013 rad s-1 1.45 × 1014 rad s-1  

VF [299] 1.40 × 106 m/s 1.39 × 106 m/s 1.59 × 106 m/s 

 

In our simulation, the nanoparticles were embedded in a silica matrix with the refractive 

index of 1.55 at all wavelengths and dimensions of 200 × 60 × 60 nm (see Figure 6.2). The 

polarization and propagation directions of the incident light are aligned to be parallel to the x and 

y-axis, respectively, otherwise, they are given. The surrounding medium in all studied cases was 

considered to be a vacuum with a refractive index of 1+0i. To calculate the aforementioned optical 

properties of the embedded NPs, the mesh size was set to be 0.6 nm for all investigated cases.  

 

6.3. Results and Discussion 

6.3.1. Monomeric Structures 

6.3.1.1. Size Effect on the Extinction Spectra  

Figure 6.3 shows the calculated longitudinal mode (the electric field parallel to the long 

axis of the particle) extinction cross-section (Cext) spectra of the single embedded Au, Ag, and Cu 

NPs. The spectra have been obtained for two different shapes viz. nanosphere and nanorod at 

different sizes. The nanorods are made of a cylinder capped with two hemispheres, and their aspect 

ratio (AR), defined as the ratio of the long-to-short axis of the NP, is fixed to be 2. As shown in 

Figure 6.3A-6.3F, the extinction spectra of all investigated cases show a clear trend of increasing 

by an increase in the size of the NP while the LSPR peak wavelengths experience small redshifts. 

It is apparent from these figures that the embedded nanorods in each case show stronger extinction 

spectra as well as redshifted LSPR peak when compared to the corresponding spherical NPs. For 
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example, Au nanorod with an effective diameter of 40 nm has a calculated maximum extinction 

cross-section of  3.67×104 nm2  at λmax = 656 nm that is almost four times higher than the 

corresponding value of the spherical-shaped embedded Au NP with the same volume (Cext = 

9.76×103 nm2 at λmax = 544 nm). This observation, which clearly demonstrates that plasmonic 

properties of the NPs depend on the shape of the NPs, can be attributed to the fact that in 

longitudinal mode the average distance between the positive and negative charges increases by 

stretching the NPs. This effect, which increases the polarizability of the NP, decreases the 

Coulombic attractive force between the positive and negative charges and consequently reduces 

the required excitation energy of the NPs and redshifts the plasmonic peak [27]. Also, the surface 

area of the NPs increases by stretching them which leads to an enlarged extinction spectrum in 

comparison to the nanospheres. A comparison of the extinction spectra of the embedded 

monomeric structures in Figure 6.3 reveals that Ag NPs have higher extinction spectra and 

narrower plasmon width in comparison to the Au and Cu NPs. On the other hand, spherical-shaped 

Cu NPs possess weak plasmonic spectra among the simulated samples. 

The observed differences may be explained in part by looking to plasmonic bandwidth 

formulas of the plasmonic NPs in Quasi-static approximation, which is given as below [248, 281] 

∆λଵ
ଶൗ ≈ 2 ቚλୗୖ − λଵ

ଶൗ ቚ ≈
2εଶ(λୗୖ)

dεଵ(ω)
dλ

|ୀైౌ

                                                                                                     (6.7) 

where ε1, and ε2 are the real and imaginary parts of the dielectric function of the NP, respectively. 

As suggested by equation 6.7, the NPs that have smaller ε2 and higher ୢகభ(ன)

ୢ
|ୀైౌ

 at their 

corresponding LSPRs wavelengths have a narrower plasmonic peak. As can be seen from Figure 

6.4, the amount of slopes of the real part of the dielectric functions of the Au, Ag, and Cu at a 

constant effective diameter of 40 nm are almost the same and slightly increases by increasing the 

wavelength of the incident light. However, the imaginary part of the dielectric function of the Ag 

is significantly less than the ε2 of Au and Cu at all wavelengths. Thus, Eq. 6.7 and the results of 

Figure 6.4 further explain why Ag NPs possess higher and narrower extinction spectra in 

comparison to Au and Cu NPs. 
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Figure 6.3. Extinction spectra of the different size and shape embedded monomeric NPs: (A) Au nanosphere, (B) Au 
nanorod, (C) Ag nanosphere, (D) Ag nanorod, (E) Cu nanosphere, and (F) Cu nanorod. 
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Figure 6.4. (A) Real, and (B) imaginary part of the dielectric function of Au, Ag, and Cu at deff  = 40 nm. 

 

6.3.1.2. Evolution of the LSPR Peak Wavelength with Aspect Ratio  

In nanorod geometry, changing the AR alters the LSPR peak wavelength, the optical 

scattering, and absorption cross-sections as well as their relative contributions to the total 

extinction cross-section. Here, we investigated the AR ratio effect on the longitudinal mode 

properties of the single embedded Au, Ag, and Cu nanorods in a silica matrix with an effective 

diameter of 40 nm. Figure 6. 5 presents the change of the LSPR wavelength of the studied nanorod 

geometries versus the change of the AR. It should be noted that AR=1 is corresponding to the 

spherical NP. From this figure, we can see that the λmax of all studied cases increases linearly with 

increasing the AR. The linear redshift of the λmax  on the aspect ratio of the embedded Au, Ag, and 

Cu nanorods are  λmax = 418 + 121 AR, λmax = 290 + 137.2 AR, and λmax = 444 + 109.8 AR, 

respectively. A similar trend has been seen in experiments [300] and simulations [9, 301] for 

nanorods in solution. As mentioned already, this observation is ascribed to increasing the 

polarizability and outer surface of the NP by increasing the AR which results in reducing the 

required excitation energy and redshifting the plasmonic peak [27]. 
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Figure 6.5. Changing the longitudinal mode LSPR wavelength of the extinction spectra of the Au, Ag, and Cu 

nanorods by altering their AR. In all cases, the effective diameter of the NPs is chosen to be 40 nm. 

 

Besides the linear dependence of the LSPR wavelength to the AR, the peak of the extinction 

spectra of all investigated nanorods is increasing by increasing the AR (see Figure 6.6A). As can 

be seen from Figure 6.6A, the extinction spectra enhancing rates slow down by increasing the AR 

of Au and Cu nanorods, whereas, the extinction spectra of Ag nanorods show a clear linear 

increasing trend by further elongation and is much higher than the Au and Cu. Also, the relative 

enhancement of the scattering to the absorption can be influenced by changing the elongation of 

the NPs. To study this effect, the scattering quantum yield, which is defined as the ratio of the 

scattered cross-section to extinction one at each resonance wavelength, is given by 

η =
Cୱୡୟ୲

Cୣ୶୲
|௫                                                                                                                                            (6.8) 

where Cscat and Cext  are scattering and extinction cross-sections, respectively. Figure 6.6B shows 

the evolution of the η of the longitudinal mode in monomeric embedded Au, Ag, and Cu structures 

at a constant effective diameter of 40 nm. The results show that the embedded Ag NPs possess 

higher scattering quantum yield in comparison to the Au and Cu NPs. From this figure, we can see 

that by changing the AR from 1 to 2 in Au and Cu NPs the scattering quantum yields increase, 

reaches their maximum values at AR = 2, and then start to decrease by further stretching the NPs. 

It should be emphasized that by increasing the AR of the Au and Cu NPs from 1 to 2, their 
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corresponding scattering quantum yields increase from (0.084, 0.107) to (0.173, 0.187), 

respectively. However, the η of Ag NPs slightly depends on the elongation of the NP. The results 

mentioned above may be explained by carefully looking at the behavior of the imaginary part of 

the dielectric functions of each NP (see Figure 6.4B). Obviously, changing the AR of the Au and 

Cu from 1 to 2 shifts the corresponding LSPR wavelengths from ~ 550 nm to ~ 650 nm, and the 

further increase of the AR moves the LSPR peaks to the wavelengths longer than 650 nm (see 

Figure 6.5).  As shown in Figure 6.4B, the ε2 of both Au and Cu decrease in the wavelength range 

from ~ 550 nm to ~ 650 nm, whereas they show a clear trend of increasing by a further increase 

of the wavelength. The aforementioned trends of the imaginary part of the dielectric functions of 

the Au and Cu lead to increase of the corresponding scattering quantum yields in AR range from 

1 to 2 and then result in reducing it with further elongation of the NPs as a consequence of 

increasing absorption contribution. However, the ε2 of the Ag NPs is very small in the visible and 

near-infrared regions when compared to the Au and Cu (see Figure 6.4B) and increases slowly by 

increasing wavelength. This behavior of the ε2 is the one possible reason for the higher observed 

η with a small shift in Ag NPs (see Figure 6.6B).  
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Figure 6.6. (A) Maximum of the extinction spectra and (B) Scattering quantum yield of the longitudinal mode versus 

aspect ratio of the NPs. In all cases, the effective diameter of the NPs is chosen to be 40 nm. 
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6.3.1.3. Electric Field Enhancement in Embedded Monomeric NPs 

Figure 6.7 shows the DDA simulated electric field enhancement surface plot of the 

embedded plasmonic NPs with an effective diameter of the 40 nm at the x-z plane inside the matrix 

for y = 0.  

 

 

Figure 6.7. Electric field enhancement around single embedded plasmonic NPs at their corresponding LSPR 
wavelengths at the x-z plane and y = 0 for (A) spherical Au,  (B) rod-shaped Au, (C) spherical Ag, (D) rod-shaped 
Ag, (E) spherical Cu, and (F) rod-shaped Cu. The effective diameter of each NP in each case is 40 nm. 

 

It is worth mentioning that the aspect ratio of the embedded nanorods is set to be 2, and 

their electric fields have been calculated at their corresponding longitudinal LSPR wavelength. 

Here, we see that electric field enhancement for longitudinal mode around the rod-shaped NPs is 



 

126 
 

stronger than the corresponding spherical case. For example, the largest electric field around Au 

nanorod is 26 (times of the incident field), whereas it is 6 for the spherical case. This effect, again, 

can be attributable to the large polarizability and bigger surface area of the nanorod structures 

which results in stronger extinction spectra and higher electric field enhancement. A comparison 

of the results of Au, Ag, and Cu NPs reveals that the electric field enhancement of the Ag 

nanoparticles is much stronger than the Au and Cu. This observation is in agreement with the 

plasmonic spectra of these samples in the previous sections. 

 

 

 
Figure 6.8. Electric field enhancement around single embedded plasmonic NPs at their corresponding LSPR 
wavelengths at x-z plane at surface of the matrix for (A) spherical Au,  (B) rod-shaped Au, (C) spherical Ag, (D) rod-
shaped Ag, (E) spherical Cu, and (F) rod-shaped Cu. The effective diameter of each NP in each case is 40 nm. 
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As mentioned in the introduction section, the electric field enhancement of the embedded 

NPs can be used to enhance the fluorescence of fluorophore molecules which placed on the surface 

of the matrix [147]. Thus, it is interesting to examine the electric field enhancement of the 

abovementioned structures at the surface of the matrix (see Figure 6.8). Since the effective 

diameter of the embedded NPs is constant, the average distance between the surface of the nanorod 

and the outer surface of the matrix is more than spherical ones. Interestingly, the results show that 

nanorods structures not only produce stronger electric fields at the outer surface of the matrix but 

also enhancing field at a larger surface area in comparison to the spherical ones. It is apparent from 

these figures that Ag nanorods are showing stronger electric field enhancement in comparison to 

other samples which make them a suitable candidate for embedded metal-fluorescence 

enhancement. 

 

6.3.2. Embedded Dimeric Structures 

When two nanoparticles are located in the close vicinity of each other, the electric dipoles 

of the one NP not only interact with other dipoles of that particle but also interact with the dipoles 

of the neighboring NP [61, 63, 103]. As a result of these interactions, plasmon oscillations of the 

two neighboring NPs become coupled. This coupling, which depends on the polarization direction 

of the incident light and the interparticle distance, can have a constructive or destructive effect on 

the nature of the plasmon excitation and electric field enhancement [61, 63, 103]. Here, we 

simulated the plasmonic properties of the longitudinal mode in the dimeric structures made of two 

embedded NPs with an effective diameter of 40 nm each. The polarization direction of the incident 

light is considered to be parallel to the long interparticle axis that leads to enhancing the extinction 

spectra and creating hot spot between the NPs. Also, the minimum separation distance from the 

surface of the one NP to other one was set to be 0.2 deff, since the electron cloud of one NP can 

tunnel to the neighbor NP at shorter distances which make the use of the dielectric function 

provided in Eq. 6.5 questionable [103].  
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6.3.2.1. Coupling Effect on the Optical Spectra  

In this subsection, we have performed DDA calculations to simulate the coupling effect on 

the changing optical cross-sections and LSPR wavelength of the dimeric embedded structures. 

Figure 6.9 shows extinction, absorption, and scattering cross-sections of the embedded dimeric 

Au, Ag, and Cu structures for an interparticle distance of 0.2 deff (8 nm).  

The spectra have been calculated for embedded nanospheres and nanorods. Also, for 

comparison, the optical spectra of the monomeric structure have been added to the figure. Since 

the direction of the incident light is set to be parallel to the interparticle distance, the coupling in 

the dimeric structures is constructive. As can be seen from Figure 6.9, the optical spectra of the 

dimeric structures not only enhanced due to the plasmonic coupling but also red-shifted when 

compared to the spectra of the corresponding monomeric structures.  

The plasmonic coupling strength between the neighboring NPs depends on the spacing 

between NPs. To study this effect, we calculated the evolution of the LSPR peak in dimeric 

structures versus interparticle distance. As shown in Figure 6.10, the LSPR wavelength of all 

structures blue-shifts by increasing the separation distance between the neighboring NPs. This 

result may be explained by the fact that the coupling strength between NPs in dimeric structures 

reduces by increasing interparticle distance, which increases the required energy to excite 

plasmonic oscillations. It should be noted the spherical Cu NPs do not show a clear plasmonic 

peak at larger interparticle distances. 
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Figure 6.9. Optical spectra of the embedded nanosphere and nanorod: (A) monomeric Au, (B) dimeric Au, (C) 
monomeric Ag, (D) dimeric Ag, (E) monomeric Cu, and (D) dimeric Cu. The effective diameter of each nanoparticle 
is chosen to be 40 nm. In dimeric structures, the interparticle distance is 8 nm, and the incident light electric field is 
aligned to be parallel to the long interparticle axis. 
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Figure 6.10. LSPR peak wavelength versus inter-particle distance in embedded dimeric Au, Ag, and Cu structures 
with (A) spherical, and (B) rod-shaped nanoparticles. 

 

6.3.2.2. Coupling Effect on the Electric Field Enhancement 

As noted in section 6.3.1.3., the single embedded nanoparticles create a strong electric field 

around themselves and also enhance the electric field at the outer surface of the matrix. It is 

therefore of interest to see how plasmonic coupling between the neighboring NPs will affect the 

electric field enhancement in dimeric structures. To study this effect, we have performed the DDA 

simulation to calculate the electric field of the aforementioned dimeric structures at the x-z plane 

inside the matrix for y = 0. The results have been obtained for the interparticle distance of  0.2 deff 

with the induced polarization along the interparticle long axis. Figure 6.11 shows the electric field 

enhancement surface plot of these structures for corresponding LSPR wavelengths (see Figure 6. 

10). In all structures, we see a strong field enhancement between the pair of NPs. Again, this is 

attributable to the constructive plasmonic coupling, which produces a hot spot between the NPs. 

Similar to the monomeric structures, the rod-shaped Ag nanoparticles pairs produce stronger field 

enhancement in comparison to other dimeric structures. Comparing Figure 6.7 and 6.11 reveals 

that the maximum electric field in dimeric structures is at least two times stronger than the 

corresponding monomer structures. Interestingly, the ratio of field enhancement in a pair of 

nanospheres is more than the corresponding pair of the nanorods.  
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Figure 6.11. Creation of hot spot in the dimeric embedded NPs at their corresponding LSPR wavelengths at x-z plane 
and y = 0 for  (A) spherical Au,  (B) rod-shaped Au, (C) spherical Ag, (D) rod-shaped Ag, (E) spherical Cu, and (F) 
rod-shaped Cu. The effective diameter of each NP in each case is 40 nm, and the interparticle distance is set to be 8 
nm. 

 

Figure 6.12 shows the electric field enhancement of the above mentioned dimeric structures 

at the surface of the matrix. It can be seen that the plasmonic coupling has a small effect on the 

enhanced electric field on the surface of the NPs. The observed result could be attributed to a long 

distance between the center of the hot spot and the surface of the matrix. As the electric field is 

highly localized, the electric field between the NPs reduces by increasing the distance from the 

center of the hot spot and results in small field enhancement at the surface of the matrix due to the 

hot spot. It should be noted that there is a small difference between the maximum electric field on 

the surface of the matrix in the dimeric and monomeric structures of the Au and Cu. However, the 

main difference in the field pattern of the two structures is that in dimeric structures the effective 
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area that the electric field has been enhanced is bigger when compared with results of the 

monomeric structures, presented in Figure 6.8. By comparing Figure 6.8 and Figure 6.11, it can be 

observed that the maximum electric enhancement due to dimeric Ag NPs at the surface of the 

matrix is less than the corresponding monomeric structures. The reason for this unexpected result 

is not clear, but it may have something to do with the size of cubic meshes, which need to be 

reduced further in order to obtain a more accurate result.  

 

 

 

 

Figure 6.12. Field enhancement due to the embedded dimeric NPs at their corresponding LSPR wavelengths at the x-
z plane for  (A) spherical Au,  (B) rod-shaped Au, (C) spherical Ag,  (D) rod-shaped Ag, (E ) spherical Cu, and (F) 
rod-shaped Cu, at the surface of the matrix. The effective diameter of each NP in each case is 40 nm, and interparticle 
distance is set to be 8 nm.  
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Figure 6.13. Evolution of the electric field versus distance from the center of the matrix in the dimeric structures for 
different interparticle distances: (A) spherical Au, (B) rod-shaped Au, (C) spherical Ag, (D) rod-shaped Ag, (E) 
spherical Cu, and (F) rod-shaped Cu. The effective diameter of each NP in each case is 40 nm. 
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To have a quantitative understanding of the localization length of enhanced electric field 

in the embedded dimeric structures, we simulated the evolution of |Ez|2 from the center to the 

surface of the matrix for different interparticle spacing (see Figure 6.13). As expected, the E-field 

enhancement is very sensitive to the interparticle distance. The E-field enhancement is large for 

small interparticle separations due to the strong plasmonic coupling between neighboring NPs and 

significantly reduces by increasing the spacing between neighboring particles (see Figure 6.13). 

For example, for the spherical Au structure, at d = 0.2 deff the |Ez/E0|2 is 750 at the center of the hot 

spot which reduces three times by increasing interparticle distance to d = 0.3 deff. Again, the rod-

shaped Ag structure shows higher field enhancement in comparison to the other structures. The 

most interesting result to emerge from the data is that as the interparticle distance decreases, which 

leads to higher electric field enhancement between NPs, the |Ez/E0|2 decreases faster. In other 

words, the decay length is smaller for a higher amount of |Ez/E0|2. A possible explanation for this 

observation might be that the plasmonic coupling strength is increased by reducing the interparticle 

distance, which results in stronger localization of the enhanced electric field and reduction of the 

localization length. 

 

6.3.3. Optical Properties of the Embedded Trimeric and Tetrameric Structures 

In this section, we extended our calculation to the trimeric and tetrameric structures to 

investigate the effect of the number of embedded NPs on the optical extinction and plasmonic field 

enhancement. To do this, the effective diameter of each particle and interparticle distance were set 

to be 40 nm and 0.2 deff, respectively. The optical properties have been calculated for spherical-

shaped embedded NPs, and the polarization direction of incident light was chosen to be parallel to 

the interparticle axis. Figure 6.14 shows the extinction cross-section of the trimeric and tetrameric 

configurations mentioned above. It is not surprising that the extinction spectra increase as the 

number of NPs increases. However, a comparison of the results of Figure 6.14 and Figure 6.9 

reveals that the number of NPs has a small effect on the LSPR wavelength. This observation is 

due to the fact that the NPs only have strong interactions with the closest neighboring NPs.  
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Figure 6.14. Extinction spectrum of the (A) Trimeric, and (B) Tetrameric embedded spherical structures of the Au, 
Ag, and Cu. The diameter of each NP is 40 nm, and the interparticle distance is set to be 8 nm. Also, the electric field 
is aligned to be parallel to the long interparticle axis (longitudinal mode). 

 

To further investigate the number of NPs influence on the optical properties of the 

embedded NPs, we simulated electric field enhancement of the trimeric and tetrameric 

configurations mentioned above at two different planes: (1) x-z plane at y = 0, (2) at the surface of 

the matrix (see Figure 6.15 and 6.16). Except for Ag structures (for the same reason mentioned in 

the previous section), the maximum electric field enhancement between NPs (at x-z plane) 

increases by increasing number of the NPs. However, no significant differences were found 

between the maximum electric field enhancement in the dimeric, trimeric, and tetrameric 

structures.  
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Figure 6.15. Field enhancement due to 3-embedded spherical NPs at their corresponding LSPR wavelengths and at 
x-z plane for  (A) Au at y = 0, (B) Au at y = b/2, and (C) Ag at y = 0, (D) Ag at y = b/2, (E ) Cu at y = 0, and (F) Cu 
at y = b/2. The effective diameter of each NP is 40 nm, and the interparticle distance is taken to be 8 nm.  

 

 

 



 

137 
 

 

 
Figure 6.16. Field enhancement due to 4- embedded spherical NPs at their corresponding LSPR wavelengths and at 
xz plane for  (A) Au at y=0,  (B) Au at y=b/2, and (C) Ag at y=0, (D) Ag at y=b/2, (E ) Cu at y=0, and (F) Cu at y=b/2. 
The effective diameter of each NP in each case is 40 nm and interparticle distance is 8 nm.  
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CHAPTER 7 
 
 

CONCLUSIONS AND FUTURE WORKS 
 
 

7.1. Conclusions 

The plasmonic nanoparticles attracted enormous research interest in recent years due to 

their profound applications in inter-disciplinary areas of sciences such as biological imaging, 

plasmonic photo-thermal therapy, photovoltaics, plasmonic sensors, and molecular diagnostics. 

LSPR of the plasmonic NPs is responsible for novel spectroscopic fields such as surface-enhanced 

Raman spectroscopy, metal-enhanced luminescence, and plasmonic rulers. In this work, we 

investigated the following areas of the plasmonic NPs as detailed below: 

E. This dissertation gives first a brief introduction regarding the characteristics of the 

plasmonic nanoparticles and reviews some of the LSPR applications. 

 
B. In this dissertation, we reviewed the electromagnetic methods such as standard and Multi-

layered Mie theory and discrete dipole approximation (DDA) as commonly used methods 

to describe optical properties of the nanoparticles. As part of the aim of this study, we 

introduced a package in MATLAB to calculate the optical properties of plasmonic NPs 

such as extinction, scattering and absorption efficiencies, electric field enhancement in 

monomeric structures and creation of the hot spots in dimeric structure using DDA. This 

study represents the first application of BCG, FFT to accelerate DDA in MATLAB 

software. All procedures of DDA discussed in detail and their corresponding MATLAB 

functions were introduced. In addition, to further accelerate the calculations of the 

polarization vector of the dipoles inside NPs, we transferred all of the initial data of the 

problem from CPU to GPU and run our simulation in it. By performing the calculations in 

GPU, the computation time decreased more with an increase in the number of the dipoles 

(decreasing size of mesh). For N~106, the GPU performance is ~ 10 times faster than the 

CPU.
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C. We explored the optical properties of the quantum-sized silver nanoparticles using both 

classical and quantum model. Due to discretization of the band structure by reducing the 

size of the NPs, the quantum model shows a different trend in comparison to the classical 

one by reducing the size of the NPs. We demonstrated that the quantum modeling LSPR 

prediction differs from the classical one for the particles with a diameter less than 10 nm. 

The quantum calculation has shown that LSPR energy of the quantum-sized Ag NPs blue 

shifts by reducing the size of the NPs while the classical simulation fails to predict this 

expected increase of the LSPR energy. Also, we observed that LSPR energy decreases 

linearly by increasing the refractive index of the surrounding medium. It has been observed 

that by increasing the size of the NPs the LSPR energy shift accelerated by changing the 

refractive index of the medium. Also, by calculating the total electric field around the NPs, 

we observed that FEF increases by increasing the size of the NPs and RI of the surrounding 

medium. Interestingly, the results show that the enhanced electric field decay length and 

consequently the sensing volume of the NPs increases by increasing the size of NPs, while 

it remains unchanged by changing the refractive index of the medium (~ 0.7 D). To further 

study the optical properties of quantum sized Ag NPs, we investigated the OAM ligand 

effect on the free-electron conductivity of surface and core regions, LSPR wavelength, 

absorption cross-sections, and the electric field enhancement using both classical and 

quantum models. By fitting the theoretical data to the corresponding experimental results 

in Pen et al. paper [76], the quantum model demonstrated that electron conductivity of both 

core and skin region decreased more by further reducing the size of NPs, while the classical 

simulation predicted a slight change in electron conductivity of the surface layer. The 

quantum simulations results were in agreement with the fact that by the shrinking 

dimension of the NPs the surface-to-volume ratios will increase, resulting in enhancing the 

surface effect and further reducing the conductivity of the core and skin region. Also, it has 

been observed that both models predicted that the amount of LSPR wavelength difference 

(Δλ) between the ligand-conjugated and ligand-free samples increases by reducing the size 

of the NPs. However, the quantum model observed larger Δλ than the classical one for NPs 

less than 10 nm.  By calculating the ΔA and ΔE, the quantum model predicted that these 

properties reduce more by further reducing the size of the NPs that are in agreement with 

increasing surface and ligand effect with reducing the size of the NPs. 
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D. We studied size and ligand effects on the electron-phonon relaxation time of the thiolate-

protected plasmonic gold clusters using ultrafast transient absorption and multi-layered 

Mie theory. The electron-phonon relaxation dynamics measurements carried out on 

smallest-sized plasmonic gold clusters have shown interesting trends with regard to the 

effect of the ligand on the electron dynamics. The results show that the The electron 

dynamics of gold clusters with hexane thiol are in line with the results obtained for citrate-

stabilized gold clusters as well as larger gold clusters with the same passivating ligand. The 

different electron dynamics observed for aromatic passivating ligands is ascribed to 

reduced electron conductivity offered by Au-π interaction and conjugation. The electron 

conductivity was modeled with three-layered Mie theory and the results have shown that 

all ligand passivated gold clusters have smaller surface conductivity when compared to 

citrate-stabilized gold NPs. Within the ligand-passivated clusters, TBBT, and SC2Ph ligand 

passivated clusters have much smaller electron conductivity that can be attributed to the 

way the aromatic ligands interact with surface gold atoms. Especially, unique results were 

obtained for Au329 (SC2Ph) that has shown smaller surface electron conductivity as well as 

two bleach maxima in TA spectra and can be attributed to specific π interactions between 

the ligand and Au on the surface creating a hybrid molecule/metallic state. However, 

similar π-conjugation was probably the reason for observing plasmon behavior for Au279, 

which is smaller in size when compared to Au329. In addition, it was found that the electron-

phonon coupling of the samples conjugated with same chemical ligands (Au329 (SC6), 

Au~1400 (SC6), and Au~2000 (SC6)) depend on the size of the cluster, wherein the electron 

conductivity increased with increase in the size of the cluster. 

 
E. We investigated the effect of the size, shape, shell thickness and AR on the LSPR sensitivity 

of hollow-Au nanoshell structures. Six different shaped hollow/Au nanoshells structures 

were investigated that include: sphere, disk, rod, ellipsoid, rectangular block, and prism. 

From the results, it was observed that by reducing the shell thickness of the shells, the 

plasmonic coupling between the inner and outer surface of the Au shell increases that leads 

to shift of LSPR maximum to longer wavelengths and increasing its sensitivity. Also, 

results show that LSPR sensitivity increases with an increase in the size of NPs. From 

shape effect studies, it was demonstrated that rod and rectangular block nanoshells show 
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higher sensitivity when compared to other samples. In addition, the AR effect was 

simulated for rod and rectangular block nanoshells, which show higher sensitivity when 

compared to other structures. It is found that for both structures, LSPR peak shifts more 

and its sensitivity enhanced by increasing the AR of the nanoshells. This study has found 

that rod and rectangular block hollow/Au nanoshells possess higher LSPR sensitivity in 

comparison to other structures, which make them suitable candidates for sensing 

applications. 

 
F. We studied the optical cross-sections and field enhancement of the sphere and rod-shaped 

embedded NPs, using the discrete dipole approximation method. To obtain a quantitative 

guide for the selection of nanoparticles for field enhancement applications such as metal-

fluorescence enhancement and energy harvesting, a systematic study was performed to 

explore the aforementioned optical properties in embedded monomeric, dimeric, trimeric, 

and tetrameric NPs in silica matrix for three different metallic NPs viz. Au, Ag, and Cu. 

This theoretical study set out to determine the effect of the size, shape, aspect ratio, 

interparticle distance, and the number of the NPs effects on the aforementioned optical 

properties of the embedded NPs. By performing simulation in embedded monomeric 

structures, it was found that the plasmonic properties of all investigated cases significantly 

increase by increasing the size of the NPs. The results of this study have shown that 

longitudinal mode of the rod-shaped Ag NP possesses the highest extinction, and produces 

the strongest electric field around itself and at the surface of the matrix. Also, it was shown 

that by increasing the elongation of the embedded NPs not only the extinction spectra 

increases but also the LSPR wavelength redshifts due to increasing polarizability of the 

NPs. Interestingly, the scattering quantum yield of the Au and Cu NPs increases by 

increasing the AR from 1 to 2, shows saturation around AR = 2, and then turn over and 

starts to reduce by further increasing the elongation of the NPs. We observed that the η of 

Ag NPs is much higher than the Au and Cu at different AR but slightly changes with 

stretching the NP, possibly due to the small variation of the imaginary part of the dielectric 

function of the Ag NPs in the studied wavelength region. To study the coupling effect on 

the optical properties of the embedded NPs, we calculated the extinction, absorption, and 

scattering cross sections in embedded dimeric structures. The results of the longitudinal 
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modes in dimeric structures show an increase in the optical cross-sections and a strong field 

enhancement at the junction of the neighboring NPs as well as a redshift in LSPR 

wavelength when compared to the corresponding monomeric configurations. Moreover, it 

was observed that electric field enhancement between the embedded NPs is strong at 

shorter distances; however, it decays faster as the spacing between neighboring NPs 

decrease. An additional goal of this research was to investigate the influence of the number 

of embedded NPs on the optical properties of the NPs. The simulation results show that by 

increasing the number of the embedded plasmonic NPs in the matrix, the extinction spectra 

increases, while the LSPR wavelength and maximum field enhancement between NPs 

experience small changing.  

 

7.2. Future Works 

This research provides the following insights for future research: 

I. Further work will need to be done to extend the DDA package to calculate the optical 

properties of the NPs near a planer surface and in periodic structures.  

 
II. Further theoretical investigation of the ligand effect on the electron relaxation dynamics of 

the small-sized Au cluster using DFT is strongly recommended.  

 
III. Another possible area of future research would be investigating LSPR sensitivity of the 

three-layered nanoparticles with a different shape. It is expected that coupling between the 

first and the second regions, and between the second and third regions redshifts LSPR peak 

significantly and increases the LSPR sensitivity and figure of merit (FOM). A three-layered 

structure will provide an additional adjusting parameter to design a structure with higher 

LSPR sensitivity and FOM. 
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A. MATLAB Script for Forming a Nanoparticle Using of Cubic Meshes. Four Different Shapes 
Have Been Provided in this m.file. 
 

%%%%%%%%%%%%%% Forming a 3D nanoparticle with cube meshes %%%%%%%%%%%%%%%% 

clear all 

clc 

tic 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Nps_number=1 produces a Sphere with cubic mesh 

% Nps_number=2 produces an Ellipsoid with cubic mesh 

% Nps_number=3 produces a Rod, Made of a disk and two semi-sphere at ends 

% Nps_number=4 produces a nanoshell, here I provided an example of a Rod Np 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% Initial parameters %%%%%%% 

r_eff=20;      % Effective radius of the Nps 

Nps_number=2;  % Choosing the shape of NPs 

d=1;           % size of each cube 

dx=d;          % x-length of each cube 

dy=d;          % y-length of each cube 

dz=d;          % z-length of each cube 

%%%%% Coordinate of the center of Np %%%%% 

X0=0; 

Y0=0; 

Z0=0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if Nps_number==1       % Nps is Sphere 

    d_eff=2*r_eff;     % Effective diameter 

    Lx=d_eff; 

    Ly=d_eff; 

    Lz=d_eff; 

elseif Nps_number==2   % Nps is Ellipsoid 

    ARyx=1;                             %Ratio of y-axis to to x-axis 

    ARzx=2;                             %Ratio of z-axis to to x-axis 

    %%%%% if a=b and a<c Nps is prolate (incident light in z-direction) %%% 

    %%%%% if a=b and a>c Nps is oblate  (incident light in z-direction) %%%
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    d_eff=2*r_eff; 

 

    a=((1/(ARyx*ARzx))^(1/3))*r_eff;    % Semi- minor axis in x- direction 

    b=ARyx*a;                           % Semi- minor axis in y- direction 

    c=ARzx*a;                           % Semi- major axis in z- direction 

 

    Lx=2*a; 

    Ly=2*b; 

    Lz=2*c; 

elseif Nps_number==3  % Np is Rod with caps 

    d_eff=2*r_eff; 

    volume=4*pi/3*(r_eff^3); 

    AR=2;         % Aspect Ratio: ratio of the long axis to short one 

    r=(volume/(pi*(2*(AR-1)+4/3)))^(1/3); % Raduis of the Rod 

    diameter=2*r;                         % Diameter of the Rod 

    higth=AR*diameter;                    % Higth of the Rod 

    Lx=diameter; 

    Ly=diameter; 

    Lz=higth; 

else           %Np is nanoshell (Rod with caps) 

    d_eff=2*r_eff; 

    volume=4*pi/3*(r_eff^3); 

    AR1=1;                          % aspect ratio or ratio of b to a 

    AR2=2;                          % aspect ratio or ratio of c to a 

    a=(volume/(AR1*AR2))^(1/3);     % First side of rectangular block 

    b=AR1*a;                        % Second side of rectangular block 

    c=AR2*a;                        % Third side of rectangular block 

    Lx=a; 

    Ly=b; 

    Lz=c; 

end 

%%%%%%%%%%% Obtaining Coordinates of nanocubes or nanocells within the NPS %%%%%%%%%% 

Max_x=Lx; 

Max_y=Ly; 

Max_z=Lz; 

ix=-round(Max_x/(2*dx))-0.5:round(Max_x/(2*dx))+0.5; 

iy=-round(Max_y/(2*dy))-0.5:round(Max_y/(2*dy))+0.5; 
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iz=-round(Max_z/(2*dz))-0.5:round(Max_z/(2*dz))+0.5; 

[y,x,z]=meshgrid(iy,ix,iz); 

Nx=length(ix);                   % Number of the dipoles in the x-direction 

Ny=length(iy);                   % Number of the dipoles in the y-direction 

Nz=length(iz);                   % Number of the dipoles in the z-direction 

 

N=Nx*Ny*Nz;                      % Total number of the dipoles 

% Converting each component of the dipoles coordinates to a vector 

X=(reshape(x,[N,1]))*dx;         % X-coordinates of the dipoles 

Y=(reshape(y,[N,1]))*dy;         % Y-coordinates of the dipoles 

Z=(reshape(z,[N,1]))*dz;         % Z-coordinates of the dipoles 

 

r_block=[X Y Z];                 % Position of the each dipoles inside Nps 

 

%%%%%%%%%%%%%%%%% Finding Dipoles inside the nanoparticle %%%%%%%%%%%%%%%% 

if Nps_number==1      %Nps is a Sphere, vertically oriented 

    Index_in=find(sqrt((X-X0).^2+(Y-Y0).^2+(Z-Z0).^2)<=(Lx/2-d/2)); 

 

elseif Nps_number==2  %Nps is an Ellipsoid, vertically oriented 

    Index_in=find(sqrt((X-X0).^2/((Lx/2)^2)+(Y-Y0).^2/((Ly/2)^2)+(Z-Z0).^2/((Lz/2)^2))<=1); 

elseif Nps_number==3  %Nps is Rod with caps, vertically oriented 

    Index_in=find((sqrt((X-X0).^2+(Y-Y0).^2+(abs(Z-Z0)-Lz/2+Lx/2).^2)<=(Lx/2)... 

        & abs(Z-Z0)>(Lz/2-Lx/2))|((sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx/2))... 

        & abs(Z-Z0)<=(Lz/2-Lx/2))); 

else                %Nps is Rod-nanoshell with caps, vertically oriented 

    % Drawing the cubes of a nanoshell, remove one quadratant of shape 

    Lx_core=Lx-4*d;          % Diameter of the core region 

    Ly_core=Ly-4*d;          % Diameter of the core region 

    Lz_core=Lz-4*d;          % Hight of the core region 

 

    % Finding dipoles inside the core region 

    Index_core=find((sqrt((X-X0).^2+(Y-Y0).^2+(abs(Z-Z0)-Lz_core/2+Lx_core/2).^2)<=(Lx_core/2)... 

        & abs(Z-Z0)>(Lz_core/2-Lx_core/2))|((sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx_core/2))... 

        & abs(Z-Z0)<=(Lz_core/2-Lx_core/2))); 

    % Finding dipoles inside the whole particle 

    Index_total=find((sqrt((X-X0).^2+(Y-Y0).^2+(abs(Z-Z0)-Lz/2+Lx/2).^2)<=(Lx/2)... 

        & abs(Z-Z0)>(Lz/2-Lx/2))|((sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx/2))... 

        & abs(Z-Z0)<=(Lz/2-Lx/2))); 
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    % Finding dipoles inside the first quadrant of the core region 

    Index_core_quad=find((X>=0 & Y>=0 & Z>=0 & (sqrt((X-X0).^2+(Y-Y0).^2+... 

        (abs(Z-Z0)-Lz_core/2+Lx_core/2).^2)<=(Lx_core/2) ... 

        & abs(Z-Z0)>(Lz_core/2-Lx_core/2)))| ... 

        (X>=0 & Y>=0 & Z>=0 &(sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx_core/2))... 

        & abs(Z-Z0)<=(Lz_core/2-Lx_core/2))); 

    % Finding dipoles inside the first quadrant of the whole Np 

    Index_total_quad=find((X>=0 & Y>=0 & Z>=0 &(sqrt((X-X0).^2+(Y-Y0).^2+... 

        (abs(Z-Z0)-Lz/2+Lx/2).^2)<=(Lx/2) & abs(Z-Z0)>(Lz/2-Lx/2)))| ... 

        (X>=0 & Y>=0 & Z>=0 &(sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx/2))& abs(Z-Z0)<=(Lz/2-Lx/2)));       

    % Removing the contribution of the core region 

    Multiply_core=zeros(N,1); 

    Multiply_total=zeros(N,1); 

    Multiply_core(Index_core,1)=Index_core; 

    Multiply_core(Index_core_quad,1)=0; 

    Multiply_total(Index_total,1)=Index_total; 

    Multiply_total(Index_total_quad,1)=0; 

    INDEX_Shell=Multiply_total-Multiply_core; 

    Index_in=nonzeros(INDEX_Shell); 

    Index_core=nonzeros(Multiply_core); 

end 

X_in=X(Index_in,1); 

Y_in=Y(Index_in,1); 

Z_in=Z(Index_in,1); 

for i=1:length(X_in) 

    % Obtaining coordinate of the corners of the each nanocube 

    nodeCoordinates=[0+X_in(i), 0+Y_in(i), 0+Z_in(i); 0+X_in(i), 0+Y_in(i), d+Z_in(i);... 

        d+X_in(i), 0+Y_in(i), d+Z_in(i); d+X_in(i), 0+Y_in(i), 0+Z_in(i);... 

        0+X_in(i), d+Y_in(i), 0+Z_in(i); 0+X_in(i), d+Y_in(i), d+Z_in(i);... 

        d+X_in(i), d+Y_in(i), d+Z_in(i); d+X_in(i), d+Y_in(i), 0+Z_in(i)]; 

    elementNodes = [1 4 3 2; 5 8 7 6; 1 2 6 5; 3 4 8 7; 2 3 7 6; 1 5 8 4]; 

    patch('Faces', elementNodes,'EdgeColor','g','FaceColor','y', 'Vertices', nodeCoordinates) 

    light               % create a light 

    lighting gouraud    % preferred method for lighting curved surfaces 

    ii=i 

    axis equal 

    hold on 

end
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B. MATLAB Script for Calculating Scattering, Absorption and Extinction Efficiencies of 
Plasmonic NPs. 
 

%HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH% 

% Calculating Cext, Cabs and Cscat using DDA 

% Cext= Extinction cross section 

% Cabs= Absorption cross section 

% Cscat= Scattering cross section 

% "GpuArray" will transfer data from CPU to GPU 

% "gather" will transfer data from GPU to CPU 

% if Nps_number=1,    Nps is spherical 

% X if Nps_number=2,  Nps is ellipsoid, vertically oriented 

% X if Nps_number=3,  Nps is Rod with caps, vertically oriented 

% if Nps_number=4,    Nps is Rectangular block, vertically oriented 

%MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM% 

clear all 

clc 

tic 

%%%%%%%%%%%%%%%%%%%% Input Parameters %%%%%%%%%%%%%%%%%%%%%%% 

Nps_number=1; 

nb=1.34;           % Refractive index of background medium 

n_core=1;          % Refractive index of the matrix 

r_eff=20; 

d_eff=2*r_eff; 

volume=4*pi/3*(r_eff^3); 

d=0.5;                      % size of the mesh 

epsb=nb^2;            % Dielectric function of background medium 

E0=[0 0 1];              % Incident electric field 

K0=[0 1 0];              % unit vector in direction of wave vector 

 

%GGGGGGGGGGGGGGGGGGGGGGGG Optical constants of Gold GGGGGGGGGGGGGGGGGGGGGG% 

% To calculate Cext, Cabs, Cscat of the other metals their corresponding 

% data should be entered 

hb_ev=6.58211951440*10^(-16); 

Wp=8.9*1.5186*(10^15);              % plasma frequency of Au 

L0=0.07/hb_ev;                                  % Collision freguency of Au in bulk medium 

Ap=0.5;                                                 % damping correction factor 

Vf=1.4*(10^6);                                  % Fermi Velocity
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%%%%%%%%%%%%%%"loading Wavelength, and Refractive index of the metal" %%%%%%%%%%%% 

% if initial data are save in an excell sheet it can load as below 

Data=xlsread('Copy the address link of the initial data here\file name'); 

 

% if initial data are m.file can be loaded: ... 

% Data=load('Copy the address link of the initial data here\file name'); 

Wavelength=Data(:,1); 

Re_n=Data(:,2);                     % Real part of the refractive index 

Im_n=Data(:,3);                     % Imaginary part of the refractive index 

eps=(Re_n+1i*Im_n).^2;     % Dielectric function of the bulk metal 

 

%%%%%%%%%%%%%%%% Obtaining Modified dielectric function %%%%%%%%%%%%%%%%%% 

r_np=r_eff*(10^(-9));% radius of nanoparticle 

W=2*pi*3*10^17./Wavelength;         % incident radiation frequency 

k=2*pi./Wavelength*nb;              % wave vector of light in first layer 

L=L0+Ap*Vf/r_np;                    % Modified damping frequency 

eps_nps=eps+(Wp^2)./(W.^2+1i*L0.*W)-(Wp.^2)./(W.^2+1i*W.*L); % Modified dielectric function 

ep_nps_eb=gpuArray(eps_nps./epsb);  % Ratio of metal-to-medium dielectric function 

%NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN% 

% Finding dimension of the Rectangular block that NP is embedded inside it 

[Lx,Ly,Lz]= Nps_parameters(r_eff,Nps_number); 

 

% Finding coordinate of the dipoles inside the rectangular block 

[Max_x,Max_y,Max_z,N,Nx,Ny,Nz,r_block,X,Y,Z]=Coordinates(d,Lx,Ly,Lz,d_inter,Structure);  

% Finding index of the dipoles inside NPs and ingoring other elements 

[Multiply_coeff]=INDEX_INSIDE_NP(X,Y,Z,N,Nps_number,Lx,Ly,Lz,Structure,d_inter); 

INDEX_IN=gpuArray(reshape(Multiply_coeff,[Nx,Ny,Nz])); INDEX_INSIDE=reshape(INDEX_IN,[N,1]); 

%Calculating RijRij-I3 and 3RijRij-I3 in interaction matrix A 

[rjkrjk1_I,rjkrjk2_I,rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I,rjkrjk31_I,rjkrjk32_I,... 

    rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,RJK]=RijRij(r_block); 

 

for J=1:length(Wavelength) 

      %Obtaining inverse of polarizibilty of each nanocube at different Lambda 

     eps_NP_eb=ep_nps_eb(J); 

     kvec=gpuArray(k(J)*K0); 
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     [Inverse_Alpha]=Polarizability(kvec,eps_NP_eb,INDEX_IN,d,E0); 

 

    % Calculating Incident electric filed components  

    [E_x,E_y,E_z,E_vector]=Incident_Field(r_block,kvec,INDEX_INSIDE,Nx,Ny,Nz,E0); 

    Exp_ikvec_rjk=exp(1i*norm(kvec)*RJK)./RJK; 

    ikvec_rjk=(1i*norm(kvec)*RJK-1)./(RJK.^2);   % ikvec_rjk=(1i*norm(kvec)*rjk-1)/rjk^2 

 

    % Calculating six tensor blocks:Axx, Axy, Axz, Ayy, Ayz, Azz  

    [Axx,Axy,Axz,Ayy,Ayz,Azz]=Interaction_Matrix(kvec,Exp_ikvec_rjk,... 

        ikvec_rjk, rjkrjk1_I,rjkrjk2_I,rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I,... 

        rjkrjk31_I,rjkrjk32_I,rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,Nx,Ny,Nz); 

    % Calculating FFT of six tensor blocks of the interaction matrix 

    [FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ]=FFT_Interaction(Axx... 

            ,Axy,Axz,Ayy,Ayz,Azz,Nx,Ny,Nz); 

    %Applying Biconjugate gradient as an iterative method to obtainPx,Py,PZ 

    [px,py,pz]=Biconjugate_Gradient(E_x,E_y,E_z,Nx,Ny,Nz,N,Inverse_Alpha,... 

             INDEX_IN,E_vector,FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ); 

    clear FFT_AXX FFT_AXY FFT_AXZ FFT_AYY FFT_AYZ FFT_AZZ 

 

    px=px.*INDEX_IN; 

    py=py.*INDEX_IN; 

    pz=pz.*INDEX_IN; 

    PX_vector=reshape(px,[N,1]); 

    PY_vector=reshape(py,[N,1]); 

    PZ_vector=reshape(pz,[N,1]); 

    Inv_Alpha=reshape(Inverse_Alpha,[N,1]); 

    Inv_Alpha_vec=[Inv_Alpha;Inv_Alpha;Inv_Alpha]; 

    counting2=counting2+1 

 

    P_vector=[PX_vector;PY_vector;PZ_vector]; 

    Cabs(J)=4*pi*norm(kvec)/sum(abs(E0.^2))*((imag(dot((conj(P_vector)), ... 

      conj(P_vector.*Inv_Alpha_vec)))-2/3*norm(kvec)^3*(norm(P_vector).^2))); 

    Cext(J)=4*pi*norm(kvec)/sum(abs(E0.^2))*imag(dot((E_vector),P_vector)); 

    Cscat(J)=Cext(J)-Cabs(J); 

    clear PX_vector PY_vector PZ_vector P_vector px py pz a_CM_Nps anr_Nps ... 

        aLDR_Nps  a_CM_Matrix anr_Matrix aLDR_Matrix Ex Ey Ez E_x E_y E_z ... 

        E_vector Exp_ikvec_rjk ikvec_rjk Inverse_Alpha 

end 



Appendix B-Continued 

180 
 

toc; 

C_ABS=gather(Cabs)/(pi*(r_eff^2));   % Transfering Data from GPU to CPU 

C_EXT=gather(Cext)/(pi*(r_eff^2));   % Transfering Data from GPU to CPU 

C_SCAT=gather(Cscat)/(pi*(r_eff^2)); % Transfering Data from GPU to CPU 

plot(Wavelength,C_EXT,Wavelength,C_ABS,Wavelength,C_SCAT)
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C. Calculating Electric Field Enhancement in Monomeric and Dimeric Structures Using 
‘E_field_Enhancement.m’ File. 

 

%HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH% 

% Calculating E-field enhancement in monomer and dimer structures 

% "GpuArray" will transfer data from CPU to GPU 

% "gather" will transfer data from GPU to CPU 

% if Nps_number=1,    Nps is spherical 

% if Nps_number=2,  Nps is ellipsoid, vertically oriented 

% if Nps_number=3,  Nps is Rod with caps, vertically oriented 

% if Nps_number=4,    Nps is Rectangular block, vertically oriented 

%MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM% 

clear all 

clc 

tic 

%%%%%%%%%%%%%%%%%%%%% Input Parameters %%%%%%%%%%%%%%%%%%%%%% 

Nps_number=1;      % refer to the commends from line 5 to 8 

Structure=2;            % Structure=1 will calculate E-field of monomer structure 

%Structure=2;        % Structure=2 will calculate E-field of dimer structure 

nb=1.34;                   % Refractive index of background medium 

n_core=1;                 % Refractive index of the matrix 

r_eff=20; 

d=2;                           % size of the each nanocube 

E0=[0 0 1];               % Incident electric field 

K0=[0 1 0];               % unit vector in direction of wave vector 

 

d_eff=2*r_eff; 

d_inter=0.2*d_eff; % inter-particle distance in dimer structure 

volume=4*pi/3*(r_eff^3); 

epsb=nb^2;         % Dielectric function of background medium 

 

%GGGGGGGGGGGGGGGGGGGGGGGG Optical constants of Gold GGGGGGGGGGGGGGGGGGGGGG% 

% To calculate Cext, Cabs, Cscat of the other metals their corresponding data should be entered 

hb_ev=6.58211951440*10^(-16); 

Wp=8.9*1.5186*(10^15);              % plasma frequency of Au 

L0=0.07/hb_ev;                                  % Collision freguency of Au in bulk medium 

Ap=0.5;                                                  % damping correction factor 

Vf=1.4*(10^6);                                    % Fermi Velocit
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% Lmax and corresponding refractive index of each 

Wavelength=544;           % Insert LSPR wavelength and corresponding n 

Re_n=0.4616; 

Im_n=2.3929; 

eps=(Re_n+1i*Im_n).^2; 

Re_eps=real(eps); 

Im_eps=imag(eps); 

 

%%%%%%%%%%%%%%% Obtaining Modified dielectric function %%%%%%%%%%%%%%%%%% 

r_np=r_eff*(10^(-9));                            % radius of nanoparticle 

W=2*pi*3*10^17./Wavelength;         % incident radiation frequency 

k=2*pi./Wavelength*nb;                       % wave vector of light in first layer 

L=L0+Ap*Vf/r_np;                                  % Modified damping frequency 

eps_nps=eps+(Wp^2)./(W.^2+1i*L0.*W)-(Wp.^2)./(W.^2+1i*W.*L); % Modified dielectric function 

ep_nps_eb=gpuArray(eps_nps./epsb);  % Ratio of metal-to-medium dielectric function 

 

% Finding dimension of the Rectangular block that NP is embedded inside it 

[Lx,Ly,Lz]= Nps_parameters(r_eff,Nps_number); 

 

% Finding coordinate of the dipoles inside the rectangular block  

[Max_x,Max_y,Max_z,N,Nx,Ny,Nz,r_block,X,Y,Z]=Coordinates(d,Lx,Ly,Lz, d_inter, Structure); 

 

%HH Finding index of the dipoles inside NPs and ingoring other elements HH% 

[Multiply_coeff]=INDEX_INSIDE_NP(X,Y,Z,N,Nps_number,Lx,Ly,Lz,Structure,d_inter); 

INDEX_IN=gpuArray(reshape(Multiply_coeff,[Nx,Ny,Nz])); 

INDEX_INSIDE=reshape(INDEX_IN,[N,1]); 

 

%Calculating RijRij-I3 and 3RijRij-I3 in interaction matrix A 

[rjkrjk1_I,rjkrjk2_I,rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I,rjkrjk31_I,rjkrjk32_I,... 

    rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,RJK]=RijRij(r_block); 

 

%Obtaining inverse of polarizibilty of each nanocube at different Lambda% 

eps_NP_eb=ep_nps_eb; 

kvec=k*K0; 

[Inverse_Alpha]=Polarizability(kvec,eps_NP_eb,INDEX_IN,d,E0); 

 

% Calculating Incident electric filed components  

[E_x,E_y,E_z,E_vector]=Incident_Field(r_block,kvec,INDEX_INSIDE,Nx,Ny,Nz,E0); 
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% Calculating six tensor blocks: Axx, Axy, Axz, Ayy, Ayz, Azz  

Exp_ikvec_rjk=exp(1i*norm(kvec)*RJK)./RJK; 

ikvec_rjk=(1i*norm(kvec)*RJK-1)./(RJK.^2);       % ikvec_rjk=(1i*norm(kvec)*rjk-1)/rjk^2 

 

[Axx,Axy,Axz,Ayy,Ayz,Azz]=Interaction_Matrix(kvec,Exp_ikvec_rjk,... 

    ikvec_rjk, rjkrjk1_I,rjkrjk2_I,rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I,... 

    rjkrjk31_I,rjkrjk32_I,rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,Nx,Ny,Nz); 

 

%Calculating FFT of six tensor blocks: Axx, Axy, Axz, Ayy, Ayz, Azz  

[FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ]=FFT_Interaction(Axx... 

    ,Axy,Axz,Ayy,Ayz,Azz,Nx,Ny,Nz); 

 

%Applying Biconjugate gradient as an iterative method to obtainPx,Py,PZ% 

[px,py,pz]=Biconjugate_Gradient(E_x,E_y,E_z,Nx,Ny,Nz,N,Inverse_Alpha,... 

    INDEX_IN,E_vector,FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ); 

 

clear FFT_AXX FFT_AXY FFT_AXZ FFT_AYY FFT_AYZ FFT_AZZ 

 

px=px.*INDEX_IN; 

py=py.*INDEX_IN; 

pz=pz.*INDEX_IN; 

PX_vector=reshape(px,[N,1]); 

PY_vector=reshape(py,[N,1]); 

PZ_vector=reshape(pz,[N,1]); 

P_vector=[PX_vector;PY_vector;PZ_vector]; 

clear  a_CM_Nps anr_Nps aLDR_Nps  a_CM_Matrix anr_Matrix aLDR_Matrix Ex Ey Ez E_x E_y E_z ... 

    E_vector Exp_ikvec_rjk ikvec_rjk Inverse_Alpha 

 

%EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE% 

%%%%%%%% E-field of the structure can be calculated in any plane %%%%%%%%% 

% For example I am calculating E-field in xz plane at y=0 

% The electric field outside of the NPs has been calculated 

dx=d; 

dy=d; 

dz=d; 

X1=-round(Max_x/dx):round(Max_x/dx); 

X_range=X1*dx; 

Z1=-round(Max_z/dz):round(Max_z/dz); 
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Z_range=Z1*dz; 

[X,Z]=meshgrid(X_range,Z_range); 

SIZE=size(X); 

N2=SIZE(1,1)*SIZE(1,2);   % Total number of nanocubes, inside NPs and outside region 

 

xx=(reshape(X,[N2,1])); 

yy=((0)*ones(N2,1)); 

zz=(reshape(Z,[N2,1])); 

r_cube=[xx yy zz];                 % Position of the each nanocubes inside and outside of the NPs boundary 

r_cube=gpuArray(r_cube); 

 

% Obtaining incident electric field at position of each dipole 

kr=kvec(1)*r_cube(:,1)+kvec(2)*r_cube(:,2)+kvec(3)*r_cube(:,3); 

expikr=exp(1i*kr); 

Ex_incident=gpuArray(E0(1)*expikr); 

Ey_incident=gpuArray(E0(2)*expikr); 

Ez_incident=gpuArray(E0(3)*expikr); 

 

r_blockGpu=gpuArray(r_block); % Position of each nanocubes inside NPs 

 

% Calculating total E-field at each cubes  

[Ex_total,Ey_total,Ez_total]=E_total(N2,r_blockGpu,r_cube,PX_vector,PY_vector,PZ_vector,xx,yy,zz,… 

…Nps_number,Lx,Ly,Lz,d,kvec,d_inter,Structure,Ex_incident,Ey_incident,Ez_incident); 

 

E_total=sqrt(Ex_total.*(Ex_total)+Ey_total.*(Ey_total)+Ez_total.*(Ez_total)); 

E_t=abs(reshape(E_total,[SIZE(1,1),SIZE(1,2)])); 

I=E_t.^2; 

 

% Transfering data from GPU to CPU 

X=gather(X); 

Z=gatehr(Z); 

E_t=gather(E_t); 

I=gather(I); 

 

% Surface plot of the electric field  

surf(X,Z,E_t,'EdgeColor','none','LineStyle','none','FaceLighting','phong'); 

axis equal 

hold on
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D. Discrete Dipole Approximation Formalism 

D.1. Calculating Parameters of the NP. 
 

% PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP% 

% Finding dimension of the Rectangular block that NP is embedded inside it 

function [Lx,Ly,Lz]= Nps_parameters(r_eff,Nps_number) 

 

if Nps_number==1       % Nps is Sphere 

    d_eff=2*r_eff;     % Effective diameter 

    Lx=d_eff; 

    Ly=d_eff; 

    Lz=d_eff; 

 

elseif Nps_number==2   % Nps is Ellipsoid 

    ARyx=1;                             %Ratio of y-axis to to x-axis 

    ARzx=2;                             %Ratio of z-axis to to x-axis 

    d_eff=2*r_eff; 

    a=((1/(ARyx*ARzx))^(1/3))*r_eff;    % Semi- minor axis in x- direction 

    b=ARyx*a;                           % Semi- minor axis in y- direction 

    c=ARzx*a;                           % Semi- major axis in z- direction 

    Lx=2*a; 

    Ly=2*b; 

    Lz=2*c; 

 

elseif Nps_number==3  % Np is a rod with caps 

    volume=4*pi/3*(r_eff^3); 

    AR=2;         % Aspect Ratio: ratio of the long axis to short one 

    r=(volume/(pi*(2*(AR-1)+4/3)))^(1/3); % Raduis of the Rod 

    diameter=2*r;                         % Diameter of the Rod 

    higth=AR*diameter;                    % Higth of the Rod 

    Lx=diameter; 

    Ly=diameter; 

    Lz=higth; 

 

else           %Np is a rectangular block 

    volume=4*pi/3*(r_eff^3); 

    AR1=1;                          % aspect ratio or ratio of b to a 

    AR2=2;                          % aspect ratio or ratio of c to a
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    a=(volume/(AR1*AR2))^(1/3);     % First side of rectangular block 

    b=AR1*a;                        % Second side of rectangular block 

    c=AR2*a;                        % Third side of rectangular block 

    Lx=a; 

    Ly=b; 

    Lz=c; 

end 

end
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D.2. Obtaining Coordinates of the Dipoles. 
 
%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK% 

function [Max_x,Max_y,Max_z,N,Nx,Ny,Nz,r_block,X,Y,Z]=Coordinates(d,Lx,Ly,Lz,... 

                                                         d_inter,Structure) 

dx=d; 

dy=d; 

dz=d; 

 

if Structure==1 % Monomeric structure 

    Max_x=Lx; 

    Max_y=Ly; 

    Max_z=Lz; 

else                        % Dimeric Structure 

    % For nanoparticles with head-tail orientation in z-direction 

    Max_x=Lx; 

    Max_y=Ly; 

    Max_z=2*Lz+d_inter; 

end 

%%%%%%%% Obtaining Coordinates of nanocubs or nanocells within NPS %%%%%%%% 

ix=-round(Max_x/(2*dx)):round(Max_x/(2*dx)); 

iy=-round(Max_y/(2*dy)):round(Max_y/(2*dy)); 

iz=-round(Max_z/(2*dz)):round(Max_z/(2*dz)); 

[y,x,z]=meshgrid(iy,ix,iz); 

Nx=length(ix);                   % Number of the dipoles in the x-direction 

Ny=length(iy);                   % Number of the dipoles in the y-direction 

Nz=length(iz);                   % Number of the dipoles in the z-direction 

 

N=Nx*Ny*Nz; 

 

X=gpuArray((reshape(x,[N,1]))*dx); % X-coordinates of the dipoles 

Y=gpuArray((reshape(y,[N,1]))*dy); % Y-coordinates of the dipoles 

Z=gpuArray((reshape(z,[N,1]))*dz); % Z-coordinates of the dipoles 

 

r_block=[X Y Z];                % Position of the each dipoles inside rectangular block 

 

end
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D.3. Obtaining Index of the Nanocubes That Are Located Inside the NP. 
 

%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII% 
function[Multiply_coeff]=INDEX_INSIDE_NP(X,Y,Z,N,Nps_number,Lx,Ly,Lz,Structure,d_inter) 

 

if Structure==1 % Monomer structure 

    X0=0; % d_inter is the distance from surface of first Np to surface of second one 

    Y0=0; 

    Z0=0; 

 

    if Nps_number==1         % NPs are sphere 

        Index_in=find((sqrt((X-X0).^2+(Y-Y0).^2+(Z-Z0).^2)<=(Lx/2)));   % Index of cubes inside NP 

 

    elseif Nps_number==2 %NPs are ellipsoid, head-tail orientation in z-direction 

        Index_in=find((sqrt((X-X0).^2/((Lx/2)^2)+(Y-Y0).^2/((Ly/2)^2)+... 

            (Z-Z0).^2/((Lz/2)^2))<=1));                                                                        % Index of cubes inside NP 

 

 

    elseif Nps_number==3     %NPs are Rod with caps, vertically oriented 

        Index_in=find((sqrt((X-X0).^2+(Y-Y0).^2+(abs(Z-Z0)-Lz/2+Lx/2).^2)<=(Lx/2)... 

            & abs(Z-Z0)>(Lz/2-Lx/2))|((sqrt((X-X0).^2+(Y-Y0).^2)<=(Lx/2))... 

            &abs(Z-Z0)<=(Lz/2-Lx/2)));                                                                         % Index of cubes inside NP 

 

    elseif Nps_number==4 %NPs are Rectangular block, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((abs(X-X0)<=Lx/2 & abs(Y-Y0)<=Ly/2 & abs(Z-Z0)<=Lz/2)); 

    end 

     

else          % Dimer, structure=2 

    X10=0; % d_inter is the distance from surface of first Np to surface of second one 

    Y10=0; 

    Z10=-(d_inter/2+Lz/2); 

    X20=0; 

    Y20=0; 

    Z20=(d_inter/2+Lz/2); 

 

    if Nps_number==1         % NPs are sphere 

        % Index of cubes inside NP 

        Index_in=find((sqrt((X-X10).^2+(Y-Y10).^2+(Z-Z10).^2)<=(Lx/2))|...
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            (sqrt((X-X20).^2+(Y-Y20).^2+(Z-Z20).^2)<=(Lx/2))); 

 

    elseif Nps_number==2     %NPs are ellipsoid and have head to tail orientation in z-direction 

        % Index of cubes inside NP 

        Index_in=find((sqrt((X-X10).^2/((Lx/2)^2)+(Y-Y10).^2/((Ly/2)^2)+... 

            (Z-Z10).^2/((Lz/2)^2))<=1)|(sqrt((X-X20).^2/((Lx/2)^2)+... 

            (Y-Y20).^2/((Ly/2)^2)+(Z-Z20).^2/((Lz/2)^2))<=1)); 

 

    elseif Nps_number==3     %NPs are Rod with caps, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((sqrt((X-X10).^2+(Y-Y10).^2+(abs(Z-Z10)-Lz/2+Lx/2).^2)... 

            <=(Lx/2)& abs(Z-Z10)>(Lz/2-Lx/2))|... 

            ((sqrt((X-X10).^2+(Y-Y10).^2)<=(Lx/2))&abs(Z-Z10)<=(Lz/2-Lx/2))|... 

            (sqrt((X-X20).^2+(Y-Y20).^2+(abs(Z-Z20)-Lz/2+Lx/2).^2)<=(Lx/2)... 

            & abs(Z-Z20)>(Lz/2-Lx/2))|((sqrt((X-X20).^2+(Y-Y20).^2)<=(Lx/2))... 

            &abs(Z-Z20)<=(Lz/2-Lx/2))); 

 

    elseif Nps_number==4 %NPs are Rectangular block, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((abs(X-X10)<=Lx/2 & abs(Y-Y10)<=Ly/2 & abs(Z-Z10)<=Lz/2)|... 

            (abs(X-X20)<=Lx/2 & abs(Y-Y20)<=Ly/2 & abs(Z-Z20)<=Lz/2)); 

 

    end 

end 

Multiply_coeff=zeros(N,1); 

% Considering dipoles inside the Np and ignoring contribution of the other terms 

Multiply_coeff(Index_in,1)=1; 

end
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D.4. Obtaining Distance between Dipole i and Dipole j in Interaction Matrix A. 
 

%RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR% 

%Calculating RijRij-I3 and 3RijRij-I3 in interaction matrix A 

function [rjkrjk1_I,rjkrjk2_I,rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I,rjkrjk31_I,... 

    rjkrjk32_I,rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,RJK]=RijRij(r_block) 

 

rkj1=r_block(1,1)-r_block(:,1); 

rkj2=r_block(1,2)-r_block(:,2); 

rkj3=r_block(1,3)-r_block(:,3); 

 

rk_to_rj=[rkj1  rkj2  rkj3]; 

rk_to_rj(1,:)=1;                % in order to scape from NAN Error 

RJK=sqrt(rk_to_rj(:,1).^2+rk_to_rj(:,2).^2+rk_to_rj(:,3).^2); 

rjkrjk=[rkj1./RJK  rkj2./RJK  rkj3./RJK]; 

 

rjkrjk1_I=rjkrjk(:,1).*rjkrjk(:,1)-1; 

rjkrjk2_I=rjkrjk(:,1).*rjkrjk(:,2); 

rjkrjk3_I=rjkrjk(:,1).*rjkrjk(:,3); 

rjkrjk4_I=rjkrjk(:,2).*rjkrjk(:,2)-1; 

rjkrjk5_I=rjkrjk(:,2).*rjkrjk(:,3); 

rjkrjk6_I=rjkrjk(:,3).*rjkrjk(:,3)-1; 

 

rjkrjk31_I=3*rjkrjk(:,1).*rjkrjk(:,1)-1; 

rjkrjk32_I=3*rjkrjk(:,1).*rjkrjk(:,2); 

rjkrjk33_I=3*rjkrjk(:,1).*rjkrjk(:,3); 

rjkrjk34_I=3*rjkrjk(:,2).*rjkrjk(:,2)-1; 

rjkrjk35_I=3*rjkrjk(:,2).*rjkrjk(:,3); 

rjkrjk36_I=3*rjkrjk(:,3).*rjkrjk(:,3)-1; 

 

rjkrjk1_I(1,1)=0; 

rjkrjk2_I(1,1)=0; 

rjkrjk3_I(1,1)=0; 

rjkrjk4_I(1,1)=0; 

rjkrjk5_I(1,1)=0; 

rjkrjk6_I(1,1)=0; 

rjkrjk31_I(1,1)=0; 

rjkrjk32_I(1,1)=0;
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rjkrjk33_I(1,1)=0; 

rjkrjk34_I(1,1)=0; 

rjkrjk35_I(1,1)=0; 

rjkrjk36_I(1,1)=0; 

end
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D.5. ‘Polarizability.m’ File Will Calculate the Polarizability of each Nanocube Inside the NP. 
 

%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP% 
%Obtaining inverse of polarizibilty of each nanocube at different Lambda% 

function [Inverse_Alpha]=Polarizability(kvec,eps_NP_eb,INDEX_IN,d,E0) 

k0 = 2*pi; 

b1 = -1.891531; 

b2 = 0.1648469; 

b3 = -1.7700004; 

dcube = d^3; 

a_hat = kvec/norm(kvec); 

e_hat = E0/norm(E0); 

S = 0; 

 

for j = 1:3 

    S = S + (a_hat(j)*e_hat(j))^2; 

end 

 

a_CM =3*dcube/(4*pi)*(eps_NP_eb - 1)./(eps_NP_eb + 2); % Clausius-Mossotti 

anr=a_CM./(1 + (a_CM/dcube).*(b1+eps_NP_eb*b2+eps_NP_eb*b3*S)*((norm(kvec)*d)^2)); 

aLDR=gpuArray(anr./(1-2/3*1i*(anr/dcube)*((norm(kvec)*d)^3))); 

Inverse_Alpha=1/aLDR*INDEX_IN; 

end
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D.6. Calculating Incident Electric Field at the Position of each Dipole. 
 

%EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE% 
% Calculating Incident electric filed components  

function [E_x,E_y,E_z,E_vector]=Incident_Field(r_block,kvec,INDEX_INSIDE,Nx,Ny,Nz,E0) 

kr=kvec(1)*r_block(:,1)+kvec(2)*r_block(:,2)+kvec(3)*r_block(:,3); 

expikr=exp(1i*kr); 

Ex=gpuArray(E0(1)*expikr).*INDEX_INSIDE; 

Ey=gpuArray(E0(2)*expikr).*INDEX_INSIDE; 

Ez=gpuArray(E0(3)*expikr).*INDEX_INSIDE; 

 

E_x=reshape(Ex,[Nx,Ny,Nz]); 

E_y=reshape(Ey,[Nx,Ny,Nz]); 

E_z=reshape(Ez,[Nx,Ny,Nz]); 

E_vector=[Ex;Ey;Ez]; 

end
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D.7. Computing Six Tensor Blocks of the Interaction matrix. 
 

%MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM% 
% Calculating six tensor blocks: Axx, Axy, Axz, Ayy, Ayz and Azz  

function [Axx,Axy,Axz,Ayy,Ayz,Azz]=Interaction_Matrix(kvec,Exp_ikvec_rjk,ikvec_rjk, rjkrjk1_I,rjkrjk2_I,… 

rjkrjk3_I,rjkrjk4_I,rjkrjk5_I,rjkrjk6_I, rjkrjk31_I,rjkrjk32_I,rjkrjk33_I,rjkrjk34_I,rjkrjk35_I,rjkrjk36_I,Nx,Ny,Nz) 

 

A1=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk1_I+ ikvec_rjk.*rjkrjk31_I)); 

Axx=reshape(A1,[Nx,Ny,Nz]); 

Axx(1,1,1)=0; 

clear A1 

A2=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk2_I+ ikvec_rjk.*rjkrjk32_I)); 

Axy=reshape(A2,[Nx,Ny,Nz]); 

Axy(1,1,1)=0; 

clear A2 

A3=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk3_I+ ikvec_rjk.*rjkrjk33_I)); 

Axz=reshape(A3,[Nx,Ny,Nz]); 

Axz(1,1,1)=0; 

clear A3 

A4=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk4_I+ ikvec_rjk.*rjkrjk34_I)); 

Ayy=reshape(A4,[Nx,Ny,Nz]); 

Ayy(1,1,1)=0; 

clear A4 

A5=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk5_I+ ikvec_rjk.*rjkrjk35_I)); 

Ayz=reshape(A5,[Nx,Ny,Nz]); 

Ayz(1,1,1)=0; 

clear A5 

A6=gpuArray(Exp_ikvec_rjk.*((norm(kvec)^2)*rjkrjk6_I+ ikvec_rjk.*rjkrjk36_I)); 

Azz=reshape(A6,[Nx,Ny,Nz]); 

Azz(1,1,1)=0; 

clear A6  Exp_ikvec_rjk 

end
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D.8. Calculating FFT of the Six Tensor Blocks of the Interaction Matrix. 
 

%AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA% 

function [FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ]=FFT_Interaction(Axx... 

    ,Axy,Axz,Ayy,Ayz,Azz,Nx,Ny,Nz) 

AXX=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

AXY=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

AXZ=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

AYY=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

AYZ=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

AZZ=gpuArray(zeros(2*Nx-1,2*Ny-1,2*Nz-1)); 

 

AXX(1:Nx,1:Ny,1:Nz)=Axx; 

AXY(1:Nx,1:Ny,1:Nz)=Axy; 

AXZ(1:Nx,1:Ny,1:Nz)=Axz; 

AYY(1:Nx,1:Ny,1:Nz)=Ayy; 

AYZ(1:Nx,1:Ny,1:Nz)=Ayz; 

AZZ(1:Nx,1:Ny,1:Nz)=Azz; 

% Calculating FFT of 6 tensor blocks of the interaction matrix in x-direction%% 

%%%%% X-DFT  

AXX(Nx+1:2*Nx-1,1:Ny,1:Nz)=Axx(Nx:-1:2,1:Ny,1:Nz); 

clear Axx 

AXY(Nx+1:2*Nx-1,1:Ny,1:Nz)=-Axy(Nx:-1:2,1:Ny,1:Nz); 

clear Axy 

AXZ(Nx+1:2*Nx-1,1:Ny,1:Nz)=-Axz(Nx:-1:2,1:Ny,1:Nz); 

clear Axz 

AYY(Nx+1:2*Nx-1,1:Ny,1:Nz)=Ayy(Nx:-1:2,1:Ny,1:Nz); 

clear Ayy 

AYZ(Nx+1:2*Nx-1,1:Ny,1:Nz)=Ayz(Nx:-1:2,1:Ny,1:Nz); 

clear Ayz 

AZZ(Nx+1:2*Nx-1,1:Ny,1:Nz)=Azz(Nx:-1:2,1:Ny,1:Nz); 

clear Azz 

AXX(:,1:Ny,1:Nz)=fft(AXX(:,1:Ny,1:Nz)); 

AXY(:,1:Ny,1:Nz)=fft(AXY(:,1:Ny,1:Nz)); 

AXZ(:,1:Ny,1:Nz)=fft(AXZ(:,1:Ny,1:Nz)); 

AYY(:,1:Ny,1:Nz)=fft(AYY(:,1:Ny,1:Nz)); 

AYZ(:,1:Ny,1:Nz)=fft(AYZ(:,1:Ny,1:Nz)); 

AZZ(:,1:Ny,1:Nz)=fft(AZZ(:,1:Ny,1:Nz));
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% Calculating FFT of 6 tensor blocks of the interaction matrix in y-direction%% 

%%%%% Y- DFT  

AXX(:,Ny+1:2*Ny-1,1:Nz)=AXX(:,Ny:-1:2,1:Nz); 

 

AXY(:,Ny+1:2*Ny-1,1:Nz)=-AXY(:,Ny:-1:2,1:Nz); 

AXZ(:,Ny+1:2*Ny-1,1:Nz)=AXZ(:,Ny:-1:2,1:Nz); 

AYY(:,Ny+1:2*Ny-1,1:Nz)=AYY(:,Ny:-1:2,1:Nz); 

AYZ(:,Ny+1:2*Ny-1,1:Nz)=-AYZ(:,Ny:-1:2,1:Nz); 

AZZ(:,Ny+1:2*Ny-1,1:Nz)=AZZ(:,Ny:-1:2,1:Nz); 

 

AXX=fft(AXX(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

AXY=fft(AXY(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

AXZ=fft(AXZ(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

AYY=fft(AYY(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

AYZ=fft(AYZ(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

AZZ=fft(AZZ(:,:,1:Nz),[],2); % Calculating FFT in y-direction 

% Calculating FFT of 6 tensor blocks of the interaction matrix in z-direction% 

%%%%%  Z- DFT 

AXX(:,:,Nz+1:2*Nz-1)=AXX(:,:,Nz:-1:2); 

AXY(:,:,Nz+1:2*Nz-1)=AXY(:,:,Nz:-1:2); 

AXZ(:,:,Nz+1:2*Nz-1)=-AXZ(:,:,Nz:-1:2); 

AYY(:,:,Nz+1:2*Nz-1)=AYY(:,:,Nz:-1:2); 

AYZ(:,:,Nz+1:2*Nz-1)=-AYZ(:,:,Nz:-1:2); 

AZZ(:,:,Nz+1:2*Nz-1)=AZZ(:,:,Nz:-1:2); 

 

FFT_AXX=fft(AXX,[],3); % Calculating FFT in z-direction 

clear AXX 

FFT_AXY=fft(AXY,[],3); % Calculating FFT in z-direction 

clear AXY 

FFT_AXZ=fft(AXZ,[],3); % Calculating FFT in z-direction 

clear AXZ 

FFT_AYY=fft(AYY,[],3); % Calculating FFT in z-direction 

clear AYY 

FFT_AYZ=fft(AYZ,[],3); % Calculating FFT in z-direction 

clear AYZ 

FFT_AZZ=fft(AZZ,[],3); % Calculating FFT in z-direction 

clear AZZ 

end
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D.9. Iterative Method (BCG) to Compute Matrix-Vector Multiplication. 
 

%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII% 

%Applying Biconjugate gradient as an iterative method to obtainPx,Py,PZ% 

function [px,py,pz]=Biconjugate_Gradient(E_x,E_y,E_z,Nx,Ny,Nz,N,Inverse_Alpha,... 

    INDEX_IN,E_vector,FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ) 

% Initial amounts of the PX, PY and PZ % 

px=0; 

py=0; 

pz=0; 

Apkx=0; 

Apky=0; 

Apkz=0; 

rkx=(E_x-Apkx); 

rky=(E_y-Apky); 

rkz=(E_z-Apkz); 

%%%%%%%%%%%% qk=rk; 

qkx=rkx; 

qky=rky; 

qkz=rkz; 

%%%%%%%%%%% qk_bar=conj(qk); 

Error=1; 

counting=0; 

%CCCCCCCCCCCCCCCCC Applying complex conjugate gradient CCCCCCCCCCCCCCC% 

while Error>0.002 

    %%%%% Performing inverse FFT to obtain matrix-vector multiplication%%%% 

    [Aqkx,Aqky,Aqkz]=Inverse_FFT(qkx,qky,qkz,Nx,Ny,Nz,INDEX_IN,Inverse_Alpha,... 

              FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ); 

 

    %%%%%%%%%%%%%% alphak=(rk')*rk/(qk'*Aqk) 

    rkx_vector=reshape(rkx,[N,1]); 

    rky_vector=reshape(rky,[N,1]); 

    rkz_vector=reshape(rkz,[N,1]); 

 

    Aqkx_vector=reshape(Aqkx,[N,1]); 

    Aqky_vector=reshape(Aqky,[N,1]); 

    Aqkz_vector=reshape(Aqkz,[N,1]);
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    qkx_vector=reshape(qkx,[N,1]); 

    qky_vector=reshape(qky,[N,1]); 

    qkz_vector=reshape(qkz,[N,1]); 

 

    alphak=(transpose(rkx_vector)*rkx_vector+transpose(rky_vector)*rky_vector... 

        +transpose(rkz_vector)*rkz_vector)/(transpose(qkx_vector)*Aqkx_vector... 

        +transpose(qky_vector)*Aqky_vector+transpose(qkz_vector)*Aqkz_vector); 

 

    clear Aqkx_vector Aqky_vector Aqkz_vector  

 

    % Pk=Pk+alphak*qk 

    rk0x=rkx; 

    clear rkx 

    rk0y=rky; 

    clear rky 

    rk0z=rkz; 

    clear rkz 

 

    rk0x_vector=rkx_vector; 

    clear rkx_vector 

    rk0y_vector=rky_vector; 

    clear rky_vector 

    rk0z_vector=rkz_vector; 

    clear rkz_vector 

 

    rkx=rk0x-alphak*Aqkx; 

    clear rk0x Aqkx 

    rky=rk0y-alphak*Aqky; 

    clear rk0y Aqky 

    rkz=rk0z-alphak*Aqkz; 

    clear rk0z Aqkz 

 

    rkx_vector=reshape(rkx,[N,1]); 

    rky_vector=reshape(rky,[N,1]); 

    rkz_vector=reshape(rkz,[N,1]); 

 

    px=(px+alphak*qkx).*INDEX_IN; 

    py=(py+alphak*qky).*INDEX_IN; 
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    pz=(pz+alphak*qkz).*INDEX_IN; 

 

    rk_vector=[rkx_vector;rky_vector;rkz_vector]; 

    Error=norm(rk_vector)/norm(E_vector); 

    clear rk_vector 

 

    % betak=rk_bar'*rk/(rk0_bar'*rk0) 

    betak=(transpose(rkx_vector)*rkx_vector+transpose(rky_vector)*rky_vector... 

        +transpose(rkz_vector)*rkz_vector)/(transpose(rk0x_vector)*rk0x_vector... 

        +transpose(rk0y_vector)*rk0y_vector+transpose(rk0z_vector)*rk0z_vector); 

    clear rkx_vector rky_vector rkz_vector rk0x_vector rk0y_vector rk0z_vector 

     

    % qk=rk+betak*qk; 

    % qk_bar=rk_bar+conj(betak)*qk_bar; 

    qkx=(rkx+betak*qkx).*INDEX_IN; 

    qky=(rky+betak*qky).*INDEX_IN; 

    qkz=(rkz+betak*qkz).*INDEX_IN; 

 

    counting=counting+1; 

end 

end
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D.10. Computing Inverse FFT to Obtain Matrix-Vector Multiplication Result. 
 

%FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF% 
%%%%% Performing inverse FFT to obtain matrix-vector multiplication%%%% 

function [Aqkx,Aqky,Aqkz]=Inverse_FFT(qkx,qky,qkz,Nx,Ny,Nz,INDEX_IN,Inverse_Alpha,... 

              FFT_AXX,FFT_AXY,FFT_AXZ,FFT_AYY,FFT_AYZ,FFT_AZZ) 

%Aqk=A*qk; 

% Calculating FFT in y-direction for px (qx), py (qy), and pz (qz) 

FFT_qkx_Y=fft(qkx,2*Ny-1,2); 

FFT_qky_Y=fft(qky,2*Ny-1,2); % Calculating FFT in y direction 

FFT_qkz_Y=fft(qkz,2*Ny-1,2); % Calculating FFT in y direction 

 

% Calculating FFT in x-direction for px (qx), py (qy), and pz (qz) 

FFT_qkx_x=fft(FFT_qkx_Y,2*Nx-1,1); 

clear FFT_qkx_Y 

FFT_qky_x=fft(FFT_qky_Y,2*Nx-1,1); 

clear FFT_qky_Y 

FFT_qkz_x=fft(FFT_qkz_Y,2*Nx-1,1); 

clear FFT_qkz_Y 

 

% Computing FFT in z-direction for px (qx), py (qy), and pz (qz) 

FFT_qkx_z=fft(FFT_qkx_x,2*Nz-1,3);% Calculating FFT in Z direction 

clear FFT_qkx_x 

FFT_qky_z=fft(FFT_qky_x,2*Nz-1,3);% Calculating FFT in Z direction 

clear FFT_qky_x 

FFT_qkz_z=fft(FFT_qkz_x,2*Nz-1,3);% Calculating FFT in Z direction 

clear FFT_qkz_x 

 

% Performing matrix-vector elementwise multiplication in Fourier domain% 

FFT_APX=FFT_AXX.*FFT_qkx_z+FFT_AXY.*FFT_qky_z+FFT_AXZ.*FFT_qkz_z; 

FFT_APY=FFT_AXY.*FFT_qkx_z+FFT_AYY.*FFT_qky_z+FFT_AYZ.*FFT_qkz_z; 

FFT_APZ=FFT_AXZ.*FFT_qkx_z+FFT_AYZ.*FFT_qky_z+FFT_AZZ.*FFT_qkz_z; 

clear FFT_qkx_z FFT_qky_z FFT_qkz_z 

% Performing ifft in z-direction % 

IFFT_APX_Z=ifft(FFT_APX,[],3);% Calculating IFFT in Z direction 

clear FFT_APX 

IFFT_APY_Z=ifft(FFT_APY,[],3);% Calculating IFFT in Z direction 

clear FFT_APY
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IFFT_APZ_Z=ifft(FFT_APZ,[],3);% Calculating IFFT in Z direction 

clear FFT_APZ 

 

% Performing ifft in x-direction % 

IFFT_APX_X=ifft(IFFT_APX_Z(1:2*Nx-1,1:2*Ny-1,1:Nz)); 

clear IFFT_APX_Z 

IFFT_APY_X=ifft(IFFT_APY_Z(1:2*Nx-1,1:2*Ny-1,1:Nz)); 

clear IFFT_APY_Z 

IFFT_APZ_X=ifft(IFFT_APZ_Z(1:2*Nx-1,1:2*Ny-1,1:Nz)); 

clear IFFT_APZ_Z 

% Performing ifft in y-direction % 

IFFT_APX=ifft(IFFT_APX_X(1:Nx,1:2*Ny-1,1:Nz),[],2); 

clear IFFT_APX_X 

 

IFFT_APY=ifft(IFFT_APY_X(1:Nx,1:2*Ny-1,1:Nz),[],2); 

clear IFFT_APY_X 

IFFT_APZ=ifft(IFFT_APZ_X(1:Nx,1:2*Ny-1,1:Nz),[],2); 

clear IFFT_APZ_X 

 

Aqkx=IFFT_APX(1:Nx,1:Ny,1:Nz).*INDEX_IN+Inverse_Alpha.*qkx.*INDEX_IN; 

clear IFFT_APX 

Aqky=IFFT_APY(1:Nx,1:Ny,1:Nz).*INDEX_IN+Inverse_Alpha.*qky.*INDEX_IN; 

clear IFFT_APY 

Aqkz=IFFT_APZ(1:Nx,1:Ny,1:Nz).*INDEX_IN+Inverse_Alpha.*qkz.*INDEX_IN; 

clear IFFT_APZ 

 

end
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D.11. E_total.m File to Calculate the Total Electric Field. 
 

%EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE% 

%Finding total E_field at each nanocubes 

function [Ex_total,Ey_total,Ez_total]=E_total(N2,r_blockGpu,r_cube,PX_vector,... 

    PY_vector,PZ_vector,xx,yy,zz,Nps_number,Lx,Ly,Lz,d,kvec,d_inter,Structure,... 

    Ex_incident,Ey_incident,Ez_incident) 

for m=1:N2 

    rij=r_cube(m,:)-r_blockGpu; 

    %     Nan_Zero_rij=find(rij(:,1)~=0 | rij(:,2)~=0 | rij(:,3)~=0); 

    Nan_Zero_rij=find(sqrt(rij(:,1).^2+rij(:,2).^2+rij(:,3).^2)>=(2*d)); 

    if length(Nan_Zero_rij)<length(rij) 

        Zero_rij=find(sqrt(rij(:,1).^2+rij(:,2).^2+rij(:,3).^2)<(2*d));  % finding index of rij=0 

        rij(Zero_rij,:)=1;                                                                                         % in order to evade NAN error 

    end 

 

    r_norm=sqrt(rij(:,1).^2+rij(:,2).^2+rij(:,3).^2); 

    r_hat=rij./r_norm;                                  % Unit vector in the direction of the r 

 

    rhat1_I=r_hat(:,1).*r_hat(:,1)-1; 

    rhat2_I=r_hat(:,1).*r_hat(:,2); 

    rhat3_I=r_hat(:,1).*r_hat(:,3); 

    rhat4_I=r_hat(:,2).*r_hat(:,2)-1; 

    rhat5_I=r_hat(:,2).*r_hat(:,3); 

    rhat6_I=r_hat(:,3).*r_hat(:,3)-1; 

 

    rhat31_I=3*r_hat(:,1).*r_hat(:,1)-1; 

    rhat32_I=3*r_hat(:,1).*r_hat(:,2); 

    rhat33_I=3*r_hat(:,1).*r_hat(:,3); 

    rhat34_I=3*r_hat(:,2).*r_hat(:,2)-1; 

    rhat35_I=3*r_hat(:,2).*r_hat(:,3); 

    rhat36_I=3*r_hat(:,3).*r_hat(:,3)-1; 

 

    Exp_ikvec_r=exp(1i*norm(kvec)*r_norm)./r_norm; 

    ikvec_rjk=(1i*norm(kvec)*r_norm-1)./(r_norm.^2);   % ikvec_rjk=(1i*norm(kvec)*rjk-1)/rjk^2 

    Axx=Exp_ikvec_r.*((norm(kvec)^2)*rhat1_I+ ikvec_rjk.*rhat31_I); 

    Axy=Exp_ikvec_r.*((norm(kvec)^2)*rhat2_I+ ikvec_rjk.*rhat32_I); 

    Axz=Exp_ikvec_r.*((norm(kvec)^2)*rhat3_I+ ikvec_rjk.*rhat33_I);
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    Ayy=Exp_ikvec_r.*((norm(kvec)^2)*rhat4_I+ ikvec_rjk.*rhat34_I); 

    Ayz=Exp_ikvec_r.*((norm(kvec)^2)*rhat5_I+ ikvec_rjk.*rhat35_I); 

    Azz=Exp_ikvec_r.*((norm(kvec)^2)*rhat6_I+ ikvec_rjk.*rhat36_I); 

    Ex_sc=Axx.*PX_vector+Axy.*PY_vector+Axz.*PZ_vector; 

 

 

    Ey_sc=Axy.*PX_vector+Ayy.*PY_vector+Ayz.*PZ_vector; 

    Ez_sc=Axz.*PX_vector+Ayz.*PY_vector+Azz.*PZ_vector; 

 

    clear Axx Axy Axz Ayy Ayz Azz rhat1_I rhat2_I rhat3_I rhat4_I rhat5_I rhat6_I ... 

       rhat31_I rhat32_I rhat33_I rhat34_I rhat35_I rhat36_I 

 

    if length(Nan_Zero_rij)<length(rij) 

        Ex_sc(Zero_rij)=0; 

        Ey_sc(Zero_rij)=0; 

        Ez_sc(Zero_rij)=0; 

    end 

    Ex_scat(m,1)=sum(Ex_sc); 

    Ey_scat(m,1)=sum(Ey_sc); 

    Ez_scat(m,1)=sum(Ez_sc); 

    clear Ex_sc Ey_sc Ez_sc 

end 

toc 

 

% excluding the contribuation of the dipoles inside the NPs 

[Outside_Index]=Excluding_NPs(xx,yy,zz,N2,Nps_number,Lx,Ly,Lz,d_inter,Structure); 

Ex_total=(Ex_incident+Ex_scat).*Outside_Index; 

Ey_total=(Ey_incident+Ey_scat).*Outside_Index; 

Ez_total=(Ez_incident+Ez_scat).*Outside_Index; 

end
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D.12 Excluding Contribution of the Nanocubes Which Are Located Outside the 
Nanoparticle(s) using Excluding_NPs.m file.  
 

%DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD% 
% Finding index of the dipoles outside of the NPs and excluding inside NPs 

Function [Outside_Index]=Excluding_NPs(xx,yy,zz,N2,Nps_number,Lx,Ly,Lz,d_inter,Structure) 

 

if Structure==1 % Monomer structure 

    X0=0; % d_inter is the distance from surface of first Np to surface of second one 

    Y0=0; 

    Z0=0; 

 

    if Nps_number==1         % NPs are sphere 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X0).^2+(yy-Y0).^2+(zz-Z0).^2)<=(Lx/2))); 

 

    elseif Nps_number==2 %NPs are ellipsoid, head-tail orientation in z-direction 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X0).^2/((Lx/2)^2)+(yy-Y0).^2/((Ly/2)^2)+... 

            (zz-Z0).^2/((Lz/2)^2))<=1)); 

    elseif Nps_number==3     %NPs are Rod with caps, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X0).^2+(yy-Y0).^2+(abs(zz-Z0)- 

            Lz/2+Lx/2).^2)<=(Lx/2)... 

            & abs(zz-Z0)>(Lz/2-Lx/2))|((sqrt((xx-X0).^2+(yy-Y0).^2)<=(Lx/2))... 

            &abs(zz-Z0)<=(Lz/2-Lx/2))); 

 

    elseif Nps_number==4 %NPs are Rectangular block, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((abs(xx-X0)<=Lx/2 & abs(yy-Y0)<=Ly/2 & abs(zz-Z0)<=Lz/2)); 

    end 

 

else % Dimer, structure=2 

    X10=0; % d_inter is the distance from surface of first Np to surface of second one 

    Y10=0; 

    Z10=-(d_inter/2+Lz/2); 

    X20=0; 

    Y20=0; 

    Z20=(d_inter/2+Lz/2);
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    if Nps_number==1         % NPs are sphere 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X10).^2+(yy-Y10).^2+(zz-Z10).^2)<=(Lx/2))|... 

            (sqrt((xx-X20).^2+(yy-Y20).^2+(zz-Z20).^2)<=(Lx/2))); 

 

    elseif Nps_number==2 %NPs are ellipsoid, head-tail orientation in z-direction 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X10).^2/((Lx/2)^2)+(yy-Y10).^2/((Ly/2)^2)+... 

            (zz-Z10).^2/((Lz/2)^2))<=1)|(sqrt((xx-X20).^2/((Lx/2)^2)+... 

            (yy-Y20).^2/((Ly/2)^2)+(zz-Z20).^2/((Lz/2)^2))<=1)); 

 

    elseif Nps_number==3     %NPs are Rod with caps, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((sqrt((xx-X10).^2+(yy-Y10).^2+(abs(zz-Z10)-  

             Lz/2+Lx/2).^2)<=(Lx/2)... 

            & abs(zz-Z10)>(Lz/2-Lx/2))|((sqrt((xx-X10).^2+(yy-Y10).^2)<=(Lx/2))... 

            &abs(zz-Z10)<=(Lz/2-Lx/2))|... 

            (sqrt((xx-X20).^2+(yy-Y20).^2+(abs(zz-Z20)-Lz/2+Lx/2).^2)<=(Lx/2)... 

            & abs(zz-Z20)>(Lz/2-Lx/2))|((sqrt((xx-X20).^2+(yy-Y20).^2)<=(Lx/2))... 

            &abs(zz-Z20)<=(Lz/2-Lx/2))); 

 

    elseif Nps_number==4 %NPs are Rectangular block, vertically oriented 

        % Index of cubes inside NP 

        Index_in=find((abs(xx-X10)<=Lx/2 & abs(yy-Y10)<=Ly/2 & abs(zz-Z10)<=Lz/2)|... 

            (abs(xx-X20)<=Lx/2 & abs(yy-Y20)<=Ly/2 & abs(zz-Z20)<=Lz/2)); 

    end 

end 

Multiply_Nps=zeros(N2,1); 

Multiply_Nps(Index_in,1)=1; 

 

Mult=ones(N2,1); 

Outside_Index=Mult-Multiply_Nps; 

clear Multiply_Nps Index_in Multiply_coeff 

end 
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