
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Dissertations Graduate College 

12-2019 

Scalable Algorithms and Hybrid Parallelization Strategies for Scalable Algorithms and Hybrid Parallelization Strategies for 

Multivariate Integration with ParAdapt and CUDA Multivariate Integration with ParAdapt and CUDA 

Omofolakunmi Elizabeth Olagbemi 
Western Michigan University, oeogunlesi@yahoo.com 

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Olagbemi, Omofolakunmi Elizabeth, "Scalable Algorithms and Hybrid Parallelization Strategies for 
Multivariate Integration with ParAdapt and CUDA" (2019). Dissertations. 3524. 
https://scholarworks.wmich.edu/dissertations/3524 

This Dissertation-Open Access is brought to you for free 
and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Dissertations by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3524?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


Scalable Algorithms and Hybrid Parallelization Strategies for Multivariate
Integration with ParAdapt and CUDA

by

Omofolakunmi Elizabeth Olagbemi

A dissertation submitted to the Graduate College
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Computer Science
Western Michigan University

December 2019

Doctoral Committee:

Elise H. de Doncker, Ph.D., Chair
John A. Kapenga, Ph.D.,
Joseph W. McKean, Ph.D.,



Copyright by
Omofolakunmi Elizabeth Olagbemi

2019



ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my supervisor, Dr. Elise de Doncker for

the invaluable support, guidance and mentoring she provided to me all through the disser-

tation process. Her insights, encouragement and great patience have been very instrumental

in assisting me with achieving this goal of successfully completing my PhD program. It has

been an honor and a privilege to have her as my supervisor.

I would also like to express my appreciation to the other members of my dissertation

committee - Dr. John Kapenga and Dr. Joseph McKean - for their suggestions, their

feedback on my work and their support.

My mother has always been a great support and source of encouragement to me, and this

has continued through the process of working on my dissertation. No sacrifice is too great

for her to make to provide whatever assistance she anticipates I might need. I am deeply

grateful to her.

My husband and two sons have walked this road with me and have provided much-needed

support and encouragement along the way. I am very thankful to them and for them.

Last but by no means least, I am eternally grateful to God for seeing me through this

process, for bringing it to a successful completion, and for helping me to keep going even in

the midst of discouragement when progress in the research was slow and at times seemed to

remain at a standstill.

Omofolakunmi Elizabeth Olagbemi

ii



Scalable Algorithms and Hybrid Parallelization Strategies for Multivariate
Integration with ParAdapt and CUDA

Omofolakunmi Elizabeth Olagbemi, Ph.D.

Western Michigan University, 2019

The evaluation of numerical integrals finds applications in fields such as High Energy

Physics, Bayesian Statistics, Stochastic Geometry, Molecular Modeling and Medical Physics.

The erratic behavior of some integrands due to singularities, peaks, or ridges in the integra-

tion region suggests the need for reliable algorithms and software that not only provide an

estimation of the integral with a level of accuracy acceptable to the user, but also perform this

task in a timely manner. We developed ParAdapt, a numerical integration software based

on a classic global adaptive strategy, which employs Graphical Processing Units (GPUs) in

providing integral evaluations. Specifically, ParAdapt applies adaptive region partitioning

strategies developed for efficient integration and mapping to GPUs. The resulting methods

render the framework of the classic global adaptive scheme suitable for general functions in

moderate dimensions, say 10 to 25. The algorithms presented have been determined to be

scalable as evidenced by speedup values in the double and triple digits up to very large num-

bers of subdivisions. An analysis of the various partitioning and parallelization strategies is

given.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Automatic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. ParAdapt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Numerical Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Monte Carlo (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2. Quasi-Monte Carlo (QMC) . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3. Methods based on Interpolatory Cubature Rules . . . . . . . . . . . . 7

2.2. Adaptive Integration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Local Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Global Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3. Global Strategy versus Local Strategy . . . . . . . . . . . . . . . . . 13

2.2.4. Adaptive Approach in this Study . . . . . . . . . . . . . . . . . . . . 14

2.3. Integration Rules in ParAdapt . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



Table of Contents—Continued

2.4. ADAPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5. The ParInt Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Subdivision Strategies used in ParAdapt . . . . . . . . . . . . . . . . . . . 22

3.2. Parallelization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1. GPU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2. Simultaneous Reductions . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1. GPU Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. GPU Kernel Call Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1. Sample Problem 1 (discontinuous partial derivatives) . . . . . . . . . 32

4.3.2. Sample Problem 2 (corner singularity) . . . . . . . . . . . . . . . . . 36

4.3.3. Sample Problem 3 - Linear Model (peak singularity) . . . . . . . . . . 39

4.3.4. Sample Problem 4 - Feynman Loop Integral (boundary singularity) . 42

5. DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



LIST OF TABLES

2.1 Number of Evaluation Points for Selected Dimension (10 to 25) . . . . . . . . . . . . . 17

3.1 Indices of Points and Regions Assigned to GPU Threads for Multiple (4) Regions Passed
to the GPU Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Comparison of NVIDIA’s Tesla K20 and K40 GPU Accelerator Cards [43] . . . . . . . 29
4.2 ParAdapt adaptive integration results in dimension d = 14 for the integral of 1/d(

∑d
i=1 |4xi−

2|) over the unit cube Cd, d = 14 (with exact result equal to 1), showing integration results
and corresponding speedups obtained for five combinations of threadsPerBlock (tpb) and
blocksPerGrid (bpg) for maximum evaluations set to 50M (50 million). . . . . . . . . . 30

4.3 ParAdapt adaptive integration results in 10 dimensions for 2R and 4R with the three
subdivision strategies 4R0, 4R1, and 4R2. The results, error estimates and times (in sec-
onds) are presented for maximum evaluations set at 100M (100 million), 1B and 5B, with
corresponding speedups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 ParAdapt adaptive integration results in 14 dimensions for 2R, 4R0, 4R1, and 4R2 were
obtained with 128 threadsPerBlock and blocksPerGrid according to (4.1). The results,
error estimates and times (in seconds) are given for maximum evaluations set at 100M

(100 million), 1B and 5B with corresponding speedups. . . . . . . . . . . . . . . . . 34
4.5 ParAdapt adaptive integration 4R2 results for 15, 17, 19, 20, 21, 22, 24 and 25 dimensions.

The results, error estimates and times (in seconds) are shown for maximum evaluations of
100M (100 million), 1B and 5B, with corresponding speedups. . . . . . . . . . . . . . 36

4.6 ParAdapt Sample 2 2R and 4R2 results are presented in 10D for 100M , 500M , 5B, 10B

and 12B evaluations with a loop of hundred iterations in the function. ParAdapt results
were obtained with 128 threadsPerBlock and blocksPerGrid according to (4.1) for all parallel
runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 ParAdapt Sample 2 2R and 4R2 results are presented in 14D for 100M , 500M , 5B, 10B,
12B and 25B evaluations with a loop of hundred iterations in the function. ParAdapt
results were obtained with 128 threadsPerBlock and blocksPerGrid according to (4.1) for
all parallel runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 ParAdapt Sample 2 2R and 4R2 results (without a loop in the function) are presented
in 14D for 100M , 500M , 5B, 10B, 12B and 25B evaluations. ParAdapt results were
obtained using 128 threadsPerBlock and blocksPerGrid according to (4.1) for all parallel runs. 38

4.9 ParAdapt 4R2 results for I(1) using half-widths of 5.0, 5.3, 5.5, and 6.0. The results,
error estimates and times (in seconds) are listed for maximum evaluations of 500M (500
million), 1B and 5B, with results for 8B and 10B shown for higher half-width values. . . 41

v



List of Tables—Continued

4.10 ParAdapt 2R results are compared with ParInt results and results from Evans and
Swartz for Example 1 over 10D truncated domain, centered at mode with half-width = 5.
ParAdapt results are displayed for 500M and 1B evaluations while ParInt results were
obtained using 64 or 128 MPI processes, allowing 2B evaluations using 64 procs. and 25B

evaluations using 128 procs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.11 ParAdapt adaptive integration 2R, 8R3 and 16R4 results are shown for 200M , 500M ,

1B, 5B, 10B and 12B evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



LIST OF FIGURES

1.1 Automatic multivariate integration black box . . . . . . . . . . . . . . . . . . 2

2.1 Global adaptive integration meta-algorithm . . . . . . . . . . . . . . . . . . 12
2.2 Snapshot of computations (subregion evaluations in the 3D unit cube) for the

integral of (2.8) [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Execution times for 2R, 4R0, 4R1, and 4R2 from Table 4.3 (integral in 10
dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Execution times for 2R, 4R0, 4R1, and 4R2 (integral in 14 dimensions) . . . 35

vii



LIST OF ABBREVIATIONS

CS Computer Science

ParInt Parallel Integration

HPC High Performance Computing

GPU Graphical Processing Unit

MPI Message Passing Interface

viii



CHAPTER 1

INTRODUCTION

The evaluation of numerical integrals finds applications in many fields including high

energy physics [1]–[4] (for modeling of particle interactions), Bayesian statistics [5], compu-

tational chemistry, medicine [6], [7] (for example, in the computation of radiation doses for

cancer treatment), stochastic geometry, computer graphics/visualization [8]–[11] and behav-

ioral psychology [12]. The importance of the accuracy of results obtained and the timeliness

of computing the results of integrals is evident and therefore is of paramount importance

in these fields. This therefore provides an area of research that is heavily patronized by

researchers, and several numerical integration software applications are available for public

use.

The nature of the integration process is such that the number of evaluation (sample)

points increases exponentially with the number of dimensions. In this dissertation, the com-

puting power of GPUs (Graphical Processing Units) is harnessed to speed up the evaluations

while still achieving accuracy levels that compare favorably with those found in the litera-

ture. Results for sample integrals are presented in Chapter 4. These are derived from "real

world" applications, or implemented in a manner that simulates real world problems. The

resulting integral estimates and speedup values achieved are given.

Our numerical integration software solution, ParAdapt, from which the results in this

dissertation were obtained, is derived from ADAPT by Alan Genz [13]. Chapter 2 includes an

outline of ADAPT and its subroutines. Comparisons were made with another multivariate

integration software ParInt [14].

1



1.1. Automatic Integration

ADAPT as well as its predecessor HALF by P. van Dooren and L. de Ridder [15], its

successors including DCUHRE [16], [17], and the parallel multivariate integration package

ParInt [14] adhere to the paradigm of automatic integration.

As illustrated in Fig. 1.1, automatic multivariate integration can be represented as a black

box to which the user supplies an integrand function f , the requested accuracy or tolerated

error and a region D over which the integral is to be evaluated. An integral approximation

Q ≈ I =
∫
D
f(~x)d~x (1.1)

and an error estimate E are determined. The computation aims to satisfy an error criterion

such as

|Q− I| ≤ E ≤ maxεa, εr|I| (1.2)

where the parameters εa and εr are user-specified absolute and relative error tolerances.

Figure 1.1: Automatic multivariate integration black box

In order to ensure that the function evaluations do not continue indefinitely, the user

can specify a limit on the number of function evaluations. It is possible that for a given

integral, the limit is reached and yet a result that falls within the given tolerated error may

2



not have been obtained. This could be due to the nature of the integral itself (perhaps due to

integrand singularities, peaks, ridges or discontinuities in the integration region), the effect

of round-off errors, the limits on machine precision, or a combination of these [14].

1.2. ParAdapt

With integrals requiring hundreds of millions or more function evaluations (which could

run into hours or weeks of program execution time) for results of acceptable accuracy to

be obtained, a parallel integration program becomes a necessity to significantly reduce the

execution time. While other parallel implementations of numerical integration algorithms

exist, ParAdapt, which like ADAPT applies the adaptive strategy, is a parallel multivariate

numerical integration solution that harnesses the superior power of GPUs for the parallel

execution. ParAdapt utilizes a set of subroutines from the ADAPT code (see Chapter 2)

to generate the points and weights for the integration rule, which are then utilized in a

CUDA [18] kernel to integrate over the subregions as they are generated. A number of sub-

division strategies were tested in ParAdapt and compared for efficiency and accuracy of the

results. The GPU kernel is able to evaluate varying numbers of subregions simultaneously:

1, 2, 4, 8, 16 subregions (where currently the number of subregions passed to the kernel

must be a power of 2). The parallelization strategy is designed so that, even though many

threads work together in evaluating multiple subregions simultaneously, the contributions for

each individual subregion are eventually combined, separately from those of other subregions

that were evaluated on the GPU at the same time. In the host code, the subregions must

be stored on the priority queue with their pertinent information concerning location, results

and error estimates in order to allow for subsequent retrieval. The strategies employed in

ParAdapt are described in greater detail in Chapter 3 of this dissertation.

3



1.3. Statement of the Problem

Applications in various fields require the computation of integrals in increasing dimen-

sions, to address the need for the current levels of complexity in sophisticated models. Adap-

tive integration methods have traditionally allowed considerable flexibility with regard to

the integrand behavior. However, in practice, this applicability is restricted to dimensions

through, say 12. This is due to the large number of regions needed to partition a multivariate

domain effectively, and to the exponential increase of the number of points in the integration

rule used locally over each subregion.

In this research, we aim to devise an approach to increase the upper threshold on the

dimension for adaptive algorithms, by harnessing the power of GPUs for the computational-

intensive local integrations. The method should scale (with sustained speedup) over very

large numbers of subdivisions, required for real-world applications.

1.4. Structure of the Dissertation

The content of the next four chapters of this dissertation is laid out as follows. Chapter

2 briefly reviews alternative approaches to numerical integration, provides a more in-depth

description of the adaptive approach, and compares the local adaptive strategy to the global

approach (which is used in ParAdapt). It also provides details concerning the integration

rule in ParAdapt. The subdivision and parallelization strategies with GPU mappings and

reductions are detailed in chapter 3. Chapter 4 presents results obtained for sample problems

with speedup values achieved in ParAdapt using the strategies developed, and compares the

results for a Bayesian integral application and a Feynman loop integral with other published

results. The material in Chapters 3 and 4 have been submitted for publication. Chapter 5

gives concluding remarks and discusses future work that flows from this dissertation.

4



CHAPTER 2

LITERATURE REVIEW

2.1. Numerical Integration Methods

Several approaches exist for the numerical computation of integrals, with, as might be

expected, multi-dimensional integrals requiring more complex and sophisticated algorithms

due to the increased number of dimensions. Some of these approaches are: Monte Carlo,

quasi-Monte Carlo, non-adaptive, and adaptive cubature methods. Unless otherwise stated,

the integration will be over the d-dimensional unit cube Cd,:

Cd = {~x = (x1, x2, . . . , xd) | 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d} (2.1)

2.1.1. Monte Carlo (MC)

In this section we consider the one-dimensional integral:

I =
∫ 1

0
f(x)dx (2.2)

although similar properties hold for multiple dimensions. The Monte Carlo integration ap-

proach approximates the integral I by

Qnf = 1
n

n∑
i=1

f(xi) (2.3)

5



where each xi represents a random value (drawn from a uniform distribution) in the interval

[0,1], and n is the number of sample points. In order to simulate the random selection of

points required in the Monte Carlo method, a pseudo-random number generator is used.

Increasing the number of points n leads to convergence of the Monte Carlo integral ap-

proximation under general conditions. The Central Limit Theorem shows that the rate of

convergence obtained with Monte Carlo is O(σ(f)/
√
n) as n → ∞, where σ(f) represents

the standard deviation of f . This indicates that the rate of convergence of the Monte Carlo

method is not dependent on the dimension of the integral; therefore, a similar level of accu-

racy can be expected for integrals with similar standard deviation, irrespective of the number

of dimensions. Note that the definition of the variance imposes that f is square integrable;

however, this is not required for convergence (in probability) of MC [19]. MC is well-suited

to high dimensions but has a slow rate of convergence [20].

2.1.2. Quasi-Monte Carlo (QMC)

The Quasi-Monte Carlo approach is similar to Monte Carlo except that in this case,

instead of using a set of points selected randomly in the estimation of the integral, a low-

discrepancy sequence or equidistributed sequence of points is used. From empirical results,

the quasi-Monte Carlo approach achieves a convergence rate of O(1/n) for many (fairly

smooth) integrand types and is therefore well-suited to high dimensions for these classes of

integrands [20].

6



2.1.3. Methods based on Interpolatory Cubature Rules

Interpolatory cubature rules [21] can be represented by the formula of approximate inte-

gration

Qmf =
∫ b

a
k(x)f(x)dx ≈

m∑
i=1

wif(xi) (2.4)

such that an exact result can be obtained for all multivariate polynomials up to degree p (i.e.,

Ip = Qmp for all polynomials of degree p). The number m of points in the rule is dependent

on the formula used and generally increases rapidly as the number of dimensions and desired

degree p increases. The points at which the integrand is evaluated (i.e., x1, x2, ..., xm)) are

fixed and distinct, and lie in the interval [a, b], where a and b are predetermined. For our

purposes in this study, as all integration is over the d−dimensional unit cube, all points lie

in the interval [0,1].

The weights (wis) in the formula can be determined using either of two approaches, both

of which produce the same set of weights. The first approach is to interpolate to the function

f(x) at the given m points by a polynomial of degree p − 1 (which is solved exactly by a

rule of degree p). Then the polynomial is integrated and expressed in the form of (2.4).

Alternatively, the constants w1, w2, ..., wm can be selected in such a way that the error

E(f) =
∫ b

a
k(x)f(x)dx−

m∑
i=1

wif(xi) (2.5)

is zero for f(x) = 1, x, x2, ..., xm−1. The values of the wis are determined by solving a system

of equations in f(x) [19]. A proof showing that these two approaches yield the same set of

weights, along with further details on the determination of the weights, is provided in [19].

Following from the definition in (2.4), the expectation is that integration methods based

7



on interpolatory cubature rules will be most efficient when applied to functions that can be

approximated by low degree polynomials. The definition also suggests that these methods

are better suited to integrals in low to moderate dimensions. Schürer, in [20], gives a list

of cubature rules in Table 1 of the article. One of the rules included is the degree 7 rule

by Genz and Malik [22], which is used in ADAPT and, by extension, in ParAdapt. Also

listed in the table are the orders of magnitude of the number of points in each rule, with

Genz and Malik’s degree 7 rule of order O(2d). Another category of data listed in the table

is the sum of the absolute values of the weights wi used in computing the formula shown

in (2.4). This sum equates to 1 where the weights in the corresponding rule are all positive,

and increases in value for rules with negative weights. The value of this sum can be used to

rate the quality of a specific rule.

The number of points for any given rule is fixed for a dimension d. Interpolatory cubature

rule-based methods therefore split the integration region into k subregions, each of which is

evaluated at m points giving rise to a total of km points. Two integration methods apply

this region partitioning approach, albeit in different ways: non-adaptive and adaptive [20].

Empirical tests performed using Genz’s package for testing multidimensional integration

routines [23] indicate that cubature rule-based algorithms (like the adaptive and non-adaptive

methods) can produce results with higher accuracy than the quasi-Monte Carlo approach

for up to 100 dimensions [20].

2.1.3.1. Non-adaptive cubature methods. In the non-adaptive approach, the integral

is evaluated using a fixed set of points, which is independent of the nature of the integrand.

Specifically, the integration region is split into k subregions of equal width and volume, in a

predetermined manner. For example, a region can be split d d
√
ke or b d

√
kc times along each

8



coordinate axis. Applying a scaled version of Qm to each subregion and accumulating results

from all subregions yields an approximation to the integral [20].

2.1.3.2. Adaptive methods. Like the non-adaptive approach, the adaptive approach in-

volves approximating a given integral using a fixed set of points, and splitting or partitioning

of one or more regions may be required if the accuracy of the approximation is unsatisfac-

tory. The difference between the two approaches arises from how the region subdivisions

are performed. In the adaptive approach, the subdivision pattern (or order of performing

the subdivisions) varies from one integral to the other, as the choice as to which subregion

and how to subdivide is determined by the areas in the domain where the integral is most

"difficult" to integrate.

Adaptive methods utilize a combination of integration rules in providing an approxima-

tion to an integral as well as an estimate of the absolute error in the result. To obtain an

estimate of the error, the common approach is to use two (or more) interpolatory rules (where

a rule can be seen as a predetermined set of points within the integration region, where the

integrand will be evaluated). When a subdivision is performed, the predetermined set of

points is scaled to the subregion. Assuming two rules are used in the error estimation, these

can be expressed as:

Q(1)f =
m(1)∑
i=1

w
(1)
j f(x(1)

i ) and

Q(2)f =
m(2)∑
i=1

w
(2)
j f(x(2)

i ) (2.6)

where degree Q(1) > degree Q(2). In this scenario, Q(1), being of a higher degree, will be used

9



to approximate the integral while the error estimate Ef can be computed as |Q(1)f −Q(2)f |.

With the rule Q(2) being of a lower degree (and consequently m(2) being smaller than m(1)),

the additional computations required to estimate the error may come at a small additional

cost. In some cases, the points used in the error estimation process are a subset of those

used in approximating the integral: these are referred to as embedded rules. Where this is

the case, no additional integrand evaluations are required to estimate the integral since a

subset of evaluations for the integral approximation is used in the error estimation [20].

2.2. Adaptive Integration Strategies

A number of adaptive strategies exist [24] but two major strategies are the local and

the global adaptive strategies. Other strategies include the adaptive scheme of O’Hara and

Smith [25] and the Cranley-Patterson Scheme [26]. Of the two major strategies used (local

and global), the local strategy was the one first used for adaptive integration. It is described

in detail in numerical analysis texts such as those by Forsythe et al. [27], Shampine and

Allen [28], and in Davis and Rabinowitz [19].

2.2.1. Local Adaptive Strategy

In the local strategy, the result Q(∆0) and error estimate E(∆0) are computed over the

given integration region ∆0. If the accuracy at this point is acceptable given the user’s

required tolerated error, then the program terminates. Otherwise, the initial region is subdi-

vided into p subregions, ∆11, ..., ∆1p, which are then stored on a list L in some predetermined

order. This is now stage 1 of the strategy. At stage n, some subregions on the list L are

yet to be evaluated. At this stage, the value of the integral and its error estimate have been

computed over those subregions that have satisfied the error criterion, which may be of the

10



form

E(∆) ≤ εa
vol(∆)
vol(∆0) , (2.7)

where εa is the user-specified absolute accuracy, and the required accuracy over ∆ is εa mul-

tiplied with the fraction of the region volume to the volume of the given region ∆0. Each

subregion that satisfies the error criterion is discarded and is no longer available. While sub-

regions exist on list L and neither the maximum number of stages nor the maximum number

of function evaluations have been reached, a subregion ∆ is selected from L according to

some criterion and deleted from L, and Q(∆) and E(∆) are evaluated. If E(∆) is satis-

factory, Q(∆) and E(∆) are added to the running integral and error estimate, respectively.

Otherwise, ∆ is subdivided into p subregions, which are then added to the list L in some

order. This process is repeated until one of the following conditions is met: the list L is

empty (for a successful computation), the maximum number of stages has been attained, or

the maximum number of function evaluations has been reached [19].

2.2.2. Global Adaptive Strategy

The global adaptive strategy has some similarities with the local approach. The initial

region is the domain ∆0. The tolerated error ε can be absolute or relative, or a combination

of both. At the beginning, Q(∆0) and E(∆0) are both evaluated. If E(∆0) ≤ εa or E(∆0) ≤

εr|Q(∆0)|, then the desired accuracy has been obtained and the integration process termi-

nates. It also terminates if the maximum number of integrand evaluations has been reached

at this point. If neither of those conditions has been met, the initial region ∆0 is subdivided

into p subregions, ∆11, ..., ∆1p, and the global integral Q = Σp
i=1Q(∆i) and error estimate

E = Σp
i=1E(∆i) are computed. A test is performed to determine if one of the termination

11



criteria has been met, for the accuracy, ΣE(∆1i) ≤ εa or ΣE(∆1i) ≤ εr|ΣQ(∆1i)|, or with

respect to the maximum evaluations. If either condition is satisfied, the integration termi-

nates. Otherwise, the subregion with the highest error estimate is subdivided, and Q(∆)

and E(∆) are computed for each of the new subregions.

The sums Q and E are updated, and the termination criteria are tested. The process

repeats until a termination criterion is satisfied, i.e., the requested accuracy has been achieved

(success) or the limit on the allowed number of function evaluations (or allowed number of

subregions) has been reached. The result and error estimates are returned in addition to an

error flag indicating that either the program terminated successfully or that it terminated

abnormally and failed to reach the required error tolerance [19].

A meta-algorithm for global adaptive integration is depicted in Fig. 2.1 (see, e.g., [20],

[29], [30]).

Evaluate initial region and update results
Initialize priority queue with initial region
while (evaluation limit not reached and estimated error too large)

Retrieve region from priority queue
Split region
Evaluate new subregions and update results
Insert new subregions into priority queue

Figure 2.1: Global adaptive integration meta-algorithm

Global adaptive algorithms are used, e.g., in Quadpack [31] (for 1D integration) and in

the parallel multivariate integration package ParInt [14]. Both also include non-adaptive

(QMC based) algorithms. Other integration packages include Cubpack [32] and Cuba [33].

As an example, consider the function

f(x, y, z) = x−0.2y−0.2z−0.2(x+ y + z)−0.2 (2.8)

12



which is singular at x = y = z = 0. On integrating this function, over the 3-dimensional

unit cube, Fig. 2.2 shows how the global adaptive algorithm, through repeated subdivisions,

concentrates the integration efforts on subregions in the integration domain that present

the most difficulty. The colors in Fig. 2.2 correspond to the estimated error over the subre-

gions, green (low) to red (high), showing the difficult regions at the faces of the cube, and

intensifying near the axes and the origin.

Figure 2.2: Snapshot of computations (subregion evaluations in the 3D unit
cube) for the integral of (2.8) [10]

2.2.3. Global Strategy versus Local Strategy

One of the advantages of the global strategy over the local is that the former always

returns an approximation to the integral, even if the required error tolerance specified by the

user has not been met. The local strategy on the other hand may not return an approximation

to the integral over the entire region if one of the terminating criteria has been met before

all sub-intervals on the list L have been evaluated. However, in the global strategy, since all

subregions are typically retained (and not discarded after evaluation as is done in the local

13



strategy), much computer storage is required to store all the subregions and their respective

results and error estimates. This may no longer be as much of a problem since computers

now have significantly more storage capacities than was previously the case.

The global strategy requires a priority queue data structure to store the subregions. In

one of the earlier globally adaptive algorithms, by van Dooren and de Ridder [15], a list

was used to store all the subregions in decreasing order of their respective absolute error

estimates. This requires a re-ordering of the subregions anytime new subregions are added

to the list, which, as the number of subregions increases, significantly increases the execution

time. Following recommendations by Malcolm and Simpson [34], Genz and Malik improved

upon this by using a heap instead of a list for storage of the subregions [22]. The worst case

complexity for sorting a list of length n is of the order O(n2), compared to order O(n log n)

for a heap. Even though the time for reordering a heap (of order O(log n)) both when

subregions are added and when a subregion is removed from the heap could be significant

as the number of subregions increases, the choice of the heap is a significant improvement

over the list option.

2.2.4. Adaptive Approach in this Study

The majority of the results presented in this thesis were obtained using ParAdapt. The

global adaptive approach is used in ADAPT and retained in ParAdapt. While sequential

adaptive strategies are generally considered effective for integral dimensions through about

10 or 12, it is our goal to move this threshold up considerably.

Interpolatory cubature rules were discussed in an earlier section. The next section pro-

vides more in-depth details of the integration rules used in ParAdapt.

14



2.3. Integration Rules in ParAdapt

An integration rule is of polynomial degree p if it provides an exact result for all monomials

xk1
1 x

k2
2 ...x

kn
n where Σki ≤ p and fails to provide an exact result for at least one monomial of

degree p+ 1. See the surveys by Cools [35], [36]. A large body of work has been devoted to

the construction of optimal cubature rules for various multi-dimensional regions, with the

goal to use a minimum number of evaluations points for a given polynomial degree.

ParAdapt, derived from ADAPT [13], utilizes a degree 7 rule for approximating the

integral, and two degree 5 and one degree 3 comparison rules for error estimation and for

computing the fourth order divided differences (which are used to determine the next di-

mension(s) to be subdivided). The basic rule for ADAPT (as described in [22]) is of the

form:

BF = w1F (0, 0, ..., 0) + w2
∑

F (λ2, 0, 0, ..., 0) + w3
∑

F (λ3, 0, 0, ..., 0)

+ w4
∑

F (λ4, λ4, 0, 0, ..., 0) + w5
∑

F (λ5, λ5, ..., λ5)
(2.9)

All sums in the basic rule form are fully symmetric over all permutations of coordinates,

including sign changes. Standard techniques described by Stroud [21] were used to find the

parameters wi and λi (for values of i ranging from 1 to 5) that make BF a degree seven rule.

Genz and Malik in [22] provide a detailed overview of how the parameters are determined.

The fully symmetric basic rule BF was first introduced by Genz and Malik in [22],

and is based on the rule used for the adaptive algorithm HALF by van Dooren and de

Ridder [15]. A definition of a "fully symmetric rule" was provided by Bernsten et al. in [16]

as follows: "A rule for the cube [−1, 1]n is fully symmetric if, whenever the rule contains a

point x = (x1, x2, ..., xn) with associated weight w, it contains all points that can be generated

15



from x by permutations and/or sign changes of the coordinates with the same associated

weight." An in-depth review of fully symmetric integration rules was given by Genz and Malik

in [37]. Implemented in the integration program DCUHRE, Berntsen et al. [16] explain how

the integration rules are used in the integral approximation, with null rules used for the error

estimation. They give a table that shows rule options in DCUHRE where each value of the

user-specified parameter "key" indicates a different set of fully symmetric integration rules

to be applied. The available keys in DCUHRE [16] are options from 0 to 4 (with 0 being the

default key value). The sets of rules for keys 3 (of degree 9) and 4 (of degree 7) are based

on the work of Genz and Malik in [37]. Berntsen et al. [16] include a table that shows the

resulting number of evaluation points for dimensions from 2 to 10 for the rules, based on

that work. The rules from [16] are also used for the adaptive integration in ParInt (see the

user manual via the "documentation" link in [14]).

ADAPT provides three possible sets of rules from which one option is selected based

on the number of dimensions of the integral. The first set of rules is for a one-dimensional

integral. The second (of degree 7) is for adaptive integration in dimensions from 2 to 11; in

our work, this is extended to 25 dimensions. The third set of rules in ADAPT is for higher

dimensions (with significantly fewer points). In this study, ParAdapt uses the second

(degree 7) rule, which evaluates the integrand function at

N = 2d + (2 ∗ d ∗ (d+ 2)) + 1 (2.10)

points where "d" is the dimension. Table 2.1 shows the number of points N used in selected

dimensions from 10 to 25.

16



Table 2.1: Number of Evaluation Points for Selected Dimension (10 to 25)

Dimensions Number of points

10 1265
14 16833
15 33279
17 131719
19 525087
20 1049457
21 2098119
22 4195361
24 16778465
25 33555783

2.4. ADAPT

ADAPT, available online at [13], is a sequential numerical integration software by Alan

Genz [22]. It was written as a Fortran subroutine for the numerical integration of a vector

function over a hyper-rectangular region and is based on the global adaptive integration

strategy in the subroutine HALF by P. van Dooren and L. de Ridder [15]. We translated the

Fortran version of ADAPT to C using the f2c program [38] and ParAdapt was developed

from the C version of ADAPT. We implemented integration over the subregions in one

CUDA kernel, and the new subdivision strategies are described in Chapter 3.

ADAPT comprises the following subroutines: adapt, bsinit, rulnrm, adbase, basrul, ful-

sum, differ and trestr.

• adapt: is called by "main" from which it receives the values of the parameters and the

main (work) array to store the subregion data resulting from the adaptive integration.

17



adapt is a driver for adbase which it calls after initializing variables and dividing up

the work array for storage of different groups of data.

• bsinit: computes or determines the basic integration rule points and weights for a

degree 7 rule, two degree 5 comparison rules and one degree 3 comparison rule. It also

initializes the symmetric sum parameters.

• rulnrm: is called by the bsinit subroutine. It computes the orthonormalized null rules.

• adbase: is the main adaptive integration subroutine. It calls differ to determine in

which coordinate direction to perform the subdivision, determines the resulting sub-

regions, which are then passed to subroutine basrul for computation of the integral

approximations and the corresponding absolute error estimates over each of the subre-

gions. When adbase subsequently passes the subregions to the heap routine trestr, the

absolute error estimates are used for inserting the subregions into the heap. Following

this, adbase checks for termination using two criteria. First, if the total error estimate

over all the regions falls below the user’s tolerated error, the program terminates, re-

turning the total integral and error estimate. However, if the total error estimate is

still larger than the tolerated error, adbase checks whether the accumulated number of

function evaluations at that point has exceeded the maximum specified by the user.

If it has, the program returns the current integral and absolute error estimates to

the user, with an error code indicating that the maximum evaluations set by the user

precludes the program from continuing until the total error estimate falls below the

tolerated error, and terminates. If neither of the conditions for termination is met, the

subregion with the highest error estimate is removed from the heap, passed to differ,

and subdivided in the direction perpendicular to the direction indicated by differ, and

18



the process outlined above repeats until one or the other of the termination conditions

is met.

• basrul: performs the basic rule integration and error estimation over the subregions

passed to it (from adbase) using values returned from a call to fulsum.

• fulsum: computes fully symmetric basic rule sums that are used by basrul.

• differ: computes fourth order divided differences for all coordinate directions on the

region passed to it and returns the direction with the highest fourth order divided

difference. This provides an indication of the level of difficulty of the integrand function

in a given direction, and the behavior to be expected after possible subdivision without

actually performing the subdivisions and the integration over the subregions. The

subdivision is subsequently performed perpendicularly to the direction with the highest

fourth order divided difference.

• trestr: maintains a max-heap (priority queue), keyed by the absolute error estimate,

in which the subregions generated from the initial region are stored. The subregion

with the highest error estimate is at the root of the heap and will always be the

one to be removed if it is determined that yet another subdivision is required. After

the subregion at the root of the heap is removed, a "heapify" procedure is performed

to ensure that the heap property is maintained (i.e., the error estimate at any node

equals or exceeds that of its children nodes, so that the subregion with the highest

error estimate will be at the root of the heap).

• main: allocates the required memory, sets the integration parameters, calls adapt to

begin the integration, and prints the result, error estimate and error code, which is

19



based on how the integration terminated. The user supplies a main program to call

adapt, and the integrand specification in f :

• f : defines the integrand function. If any transformations are required to handle inte-

grand difficulties such as singularities, in the integration region, they are part of this

function.

2.5. The ParInt Software

Some results in Chapter 4 were compared with results from ParInt (PARallel INTe-

gration), a software package for automatic multivariate integration using a user-specified

number of processors. ParInt also served as a yardstick against which to assess the ac-

curacy of our results for some of the problems presented. The software was developed by

a group of faculty members and Computer Science students at WMU, led by Dr. Elise de

Doncker. The project was funded through National Science Foundation (NSF) grants 1 2.

ParInt, which is layered over MPI (Message Passing Interface), is used for integration

over hyper-rectangular and simplex regions. The integration is done using one of a number

of algorithms available in the software package. A global adaptive region-subdivision algo-

rithm (see 2.1) repeatedly subdivides the regions with higher error estimates and evaluates

the integrand until either the limit on the number of function evaluations has been reached

or the estimated error falls below the user-specified tolerated error. The adaptive algorithm

in ParInt, which is the preferred option for integrals in low to moderate dimensions, is

implemented with load-balancing to ensure optimal and efficient use of the worker processes.

Other (non-adaptive) integration options available in ParInt are quasi-Monte Carlo (QMC)
1NSF ACI-0000442
2NSF Award 1126438

20



and Monte Carlo (MC) methods.The QMC method is typically used for fairly smooth func-

tions possibly in higher dimensions, while the MC method is suitable for integrals of an

erratic integrand function or a high dimension, or both. Like the adaptive method, both

QMC and MC are implemented with load balancing [39].

21



CHAPTER 3

METHODOLOGY

3.1. Subdivision Strategies used in ParAdapt

The global adaptive strategy of Fig. 2.1 produces (local) integral and error estimates over

each subregion and maintains a total integral and error estimate over the entire domain. A

priority queue such as a max-heap keyed with the local error estimates allows selecting the

region with the largest error estimate to be subdivided next; its subregions are evaluated

and inserted into the heap. The adaptive partitioning succeeds in creating hot-spots in the

vicinity of singularities and other irregular integrand behavior.

Apart from the region selection, important components of the (hyper-rectangular) par-

titioning strategy involve: into how many subregions and in which directions to subdivide.

While HALF and ADAPT use region bisections, subdivisions into more than two subregions

at a time may seem promising to partition regions more effectively in higher dimensions.

In ADAPT, subroutine differ computes fourth order divided differences of the integrand

function in all coordinate directions over a given subregion. These are used to assign a

relative degree of difficulty to the coordinate directions, so that the largest divided difference

designates the most difficult direction, and the next subdivision of the region is destined to

be perpendicular to this direction.

ADAPT applies its main rule (of polynomial degree of accuracy 7) and three comparison

rules (for error estimation) over each subregion. The number of points (N) used for the local

integration is exponential with respect to the integral dimension (d): N = 2d+2d(d+2)+1.

(see (2.10)).

22



Table 2.1 lists the number of points used for a range of dimensions. It can be seen that,

e.g., a 10-dimensional integration uses 1265 points per subregion. Thus utilizing, say, a K20

GPU (with 2496 cores) for a single region evaluation would be an under-utilization of the

device. ParAdapt can apply one of several subdivision strategies to generate two (2R),

four (4R), eight (8R) or sixteen (16R) subregions, which are then passed to the GPU kernel

to be evaluated simultaneously. For 4R, three different subdivision strategies are outlined

subsequently, followed by explanations of the subdivision strategies for 8R and 16R.

4R0 (subdivision into four regions in the same coordinate direction): In this strategy, the

region is subdivided into four regions in the same direction, corresponding to the value of the

variable divaxn, which is returned from a call to differ. The region to be subdivided is passed

to differ as one of the parameters and differ computes fourth order divided differences to

determine the direction with the largest fourth divided difference. That direction is stored in

the return variable divaxn. The program then uses the value of divaxn to divide the region

(in the divaxn direction) into four subregions of equal volume.

4R1 (three subdivisions based on two calls to differ): Three subdivisions are performed

successively, following two calls to differ. The direction in which the first subdivision is

done is determined by the divaxn value returned from the first call to differ ; the resulting

subregions are both subdivided in the divaxn direction returned by the second call to differ.

4R2 (three subdivisions based on one differ call and the second largest fourth divided

difference): In this subdivision strategy, the first subdivision is performed based on the

divaxn value returned from the call to differ. In the same call, the program determines the

coordinate direction of the second largest fourth difference, and the second subdivision is

performed in that direction (in each of the two subregions).

8R3 is an extension of 4R2, with eight subregions resulting from one differ call and the

largest, second and third largest fourth divided differences. 16R4 is an extension of 8R3

23



where fifteen subdivisions are performed based on one differ call, the largest, second and

third largest fourth differences, and a fourth direction chosen in a round robin fashion.

3.2. Parallelization Strategies

3.2.1. GPU Mapping

After subregions have been generated by dividing a region as outlined above, the resulting

subregions are passed simultaneously to the GPU kernel to be evaluated. The evaluation

process yields the results (including information to estimate the error) over the individual

subregions. The error estimates for the subregions are used later to insert the regions in their

proper positions in the heap. The GPU kernel must ensure that the results for each individual

region are kept separate from those of other subregions, even when multiple subregions are

passed to the kernel simultaneously to be processed in parallel by many threads in multiple

blocks.

Since multiple subregions are sent to the kernel simultaneously, keeping the results of all

these subregions separate while they are being processed by multiple threads across multiple

blocks presents a challenge. Let us consider the scenario in which four subregions are passed

to the kernel simultaneously for a specific integral. In the GPU kernel, the total number of

rule evaluation points will be the product of the number of points in the integration rule

with the number of subregions to be processed simultaneously. It should be noted that the

same set of integration points is used, scaled to each particular subregion. In the kernel,

each thread (with ID tid) is assigned a point index computed as

pointId = btid/numRegionsc (3.1)

24



where numRegions is the number of subregions passed simultaneously to the kernel. The

index of the region to be processed by the thread is determined as

regionIndex = tid− pointId ∗ numRegions (3.2)

The resulting assignments of point and region indices to threads are shown in Table 3.1 for

400 evaluation points in four regions. The divisions in Table 3.1 are to be interpreted as

integer divisions.

Table 3.1: Indices of Points and Regions Assigned to GPU Threads for Multiple (4)
Regions Passed to the GPU Kernel

Tid Point Index Region Index

btid/numRegionsc tid− pointId ∗ numRegions

0 0/4 = 0 0− 0 ∗ 4 = 0
1 1/4 = 0 1− 0 ∗ 4 = 1
2 2/4 = 0 2− 0 ∗ 4 = 2
3 3/4 = 0 3− 0 ∗ 4 = 3
4 4/4 = 1 4− 1 ∗ 4 = 0
5 5/4 = 1 5− 1 ∗ 4 = 1
6 1 2
7 1 3
8 8/4 = 2 8− 2 ∗ 4 = 0

. . . . . . . . .

392 392/4 = 98 392− 98 ∗ 4 = 0
393 98 1
394 98 2
395 98 3
396 99 0
397 99 1
398 99 2
399 99 3

25



Each thread accumulates the results and intermediate error estimate values of the specific

subregion assigned to it. The kernel uses four arrays shared among the threads in each block.

The first array contains contributions to the integration rule sum, which need to be summed

to yield the integral approximation. The other three arrays have contributions to values

needed for the comparison rules to determine the error estimation over the subregions.

3.2.2. Simultaneous Reductions

After the computations are completed by all threads, a reduction is performed on the

GPU to accumulate results shared across a block into numRegions (= 4 in this case) threads

in the block. The reduction and synchronization of the threads is done in the kernel along

the lines of [40], but extended here to achieve numRegions reductions simultaneously. An

explanation of this procedure follows, where we keep numRegions = 4.

A GPU block can be visualized as a single row partitioned into a number threadsPerBlock

of cells which represent the threads within the block. These cells will have indices from 0 to

threadsPerBlock −1.We assume that the first subregion with index 0 is processed by threads

0, 4, 8, ..., the second subregion is processed by threads 1, 5, 9, ..., the third subregion by

threads 2, 6, 10, ..., and the fourth subregion by threads 3, 7, 11, ... As a result of the

reduction process, all the results in threads 0, 4, 8, ... are accumulated into thread 0, those

in the threads 1, 5, 9, ... are accumulated into the thread 1, and so on. These values are

shared across the block to allow the reduction, which takes log2(threadsPerBlock) stages

(where threadsPerBlock is a power of 2). There are blocksPerGrid blocks, each of which

ends up with the partial sum (over its threads) for each of the numRegion (= 4 in this case)

subregions on the GPUs. The array of blocksPerGrid ∗ numRegions partial sums is then

returned by the kernel to the CPU, which performs the summation over the blocksPerGrid

rows to determine the approximation for each of the regions (0, 1, ...numRegions −1).

26



The parallel computation thus ends with four sets of results for each of the subregions.

One is the integral approximation and the remaining three are for the comparison integrals

used on the CPU to complete the computation of the absolute error estimate.

27



CHAPTER 4

RESULTS AND ANALYSIS

The results presented in this chapter were obtained using ParAdapt, utilizing the sub-

division and parallelization strategies described in Chapter 3. Two clusters were used due

to limitations related to the integral dimension for some of the problems presented. Details

of the clusters and GPUs used are outlined subsequently.

4.1. GPU Specifications

All programs evaluating integrals through dimension 14 were executed on the thor cluster

at the Center for High Performance Computing and Big Data [41] in the Department of

Computer Science at Western Michigan University (WMU). The cluster has twenty-two

compute nodes, with 15 NVIDIA Tesla (Kepler) K20 GPU accelerator cards (on a subset

of the nodes). The Tesla K20 has a Video Random Access Memory (VRAM) capacity of

4.8GB, which is insufficient for our implementation in dimensions higher than 14, mainly

because of the memory required to store the points for the integration rule as well as the

different categories of weights for the computation of the results and error estimates over

the subregions. For higher dimensions, we used the cluster made available through Penguin

Computing®On-Demand™(POD™) HPC-as-a-service [42]. The cluster on POD has Tesla

K40 GPU accelerator cards, an enhanced version of the K20 cards. The K40 has a VRAM

capacity of 12GB. Programs for evaluating integrals in up to 25 dimensions were executed

on the POD cluster. A comparison of some of the features of the K20 and the K40 is shown

in Table 4.1.

28



Table 4.1: Comparison of NVIDIA’s Tesla K20 and K40 GPU Accelerator
Cards [43]

Tesla K20 Tesla K40

Number of cores 2496 2880
VRAM 4.8GB 12GB
Architecture Kepler Kepler
Core Clock 706MHz 745MHz
Memory Clock 5.2GHz GDDRS 6GHz GDDRS
Boost Clock(s) NA 810MHz, 875MHz
Memory Bus Width 320-bit 384-bit

4.2. GPU Kernel Call Parameters

Two of the special parameters specified in a kernel call are the number of threads in

each block used in the computations (threadsPerBlock) and the number of blocks per grid

(blocksPerGrid). At the preliminary stages of obtaining the results presented in this chapter,

various combinations of threadsPerBlock and blocksPerGrid were used, and their results were

compared, including:

• 128 threadsPerBlock and 32 blocksPerGrid

• 128 threadsPerBlock and 64 blocksPerGrid

• 256 threadsPerBlock and 32 blocksPerGrid

• 256 threadsPerBlock and 64 blocksPerGrid

• 512 threadsPerBlock and 32 blocksPerGrid

For example, some results comparing these combinations for a 14-dimensional problem

are presented in Table 4.2. For this problem, the option with 128 threadsPerBlock and

29



Table 4.2: ParAdapt adaptive integration results in dimension d = 14 for the inte-
gral of 1/d(

∑d
i=1 |4xi − 2|) over the unit cube Cd, d = 14 (with exact result equal to

1), showing integration results and corresponding speedups obtained for five combi-
nations of threadsPerBlock (tpb) and blocksPerGrid (bpg) for maximum evaluations

set to 50M (50 million).

1 region at a time 2 regions at a time 4 regions at a time
Res. Ea Time Speedup Res. Ea Time Speedup Res. Ea Time Speedup

(s) (s) (s)

128tpb, 32bpg 0.987435 1.112E-02 5.1 56 0.987435 1.112E-02 4.7 62 0.969533 2.696E-02 4.4 66
128tpb, 64bpg 0.987435 1.112E-02 3.4 83 0.987435 1.112E-02 3.2 89 0.969533 2.696E-02 2.9 101
256tpb, 32bpg 0.987435 1.112E-02 4.2 67 0.987435 1.112E-02 3.6 83 0.969533 2.696E-02 3.0 96
256tpb, 64bpg 0.987435 1.112E-02 4.7 60 0.987435 1.112E-02 3.9 74 0.969533 2.696E-02 3.4 85
512tpb, 32bpg 0.987435 1.112E-02 4.7 59 0.987435 1.112E-02 4.0 73 0.969533 2.696E-02 3.4 86

64 blocksPerGrid gave the highest speedups. Better choices generally depend on the work

needed for each integrand evaluation and on the number of points evaluated at once on

the GPU. The latter depends on the number of points (N) in the rule (per region) and the

number of regions evaluated at the same time (regionsAtOnce). Unless otherwise stated, the

results are obtained using:

threadsPerBlock = 128

blocksPerGrid = min(64, (regionsAtOnce ∗N + threadsPerBlock − 1)/threadsPerBlock)

(4.1)

This divides the total number of points (regionsAtOnce * N) over blocksPerGrid blocks with

threadsPerBlock threads in each block (see also [44]).

Results presented in Table 4.2 are in 3 categories: those obtained when only 1 subregion

is sent to the GPU each time to be evaluated, results when 2 subregions are sent to the GPU

to be evaluated simultaneously, and finally results when 4 subregions are sent simultaneously.

The integral is 1
d

∫
Cd

∑d
i=1 |4xi− 2|d~x with d = 14. The integrand function for this problem is

very fine-grained, i.e., the work involved in each integrand evaluation is very small. Therefore

30



the implementation of the integrand is made to loop 100 times to simulate a more complex

integrand (i.e., a real-world problem). Processing one or two regions at a time mimics

the sequential strategy. A simple subdivision strategy was used in obtaining the results in

Table 4.2, but results from more suitable strategies (with respect to maintaining the accuracy)

will be given later in this chapter.

4.3. Results and Analysis

In this section, results are presented for four sample integrals on GPUs using ParAdapt.

The third and fourth sample problems are real-world problems arising in Bayesian statistics

and High Energy Physics respectively. The first two are used to illustrate the behavior

for types of integrand functions that are known to be difficult for numerical integration in

general: discontinuous derivatives and integrand singularities. Since, for problems 1 and 2,

the integrands take very little time to evaluate at each point, we implement them with a

real-world flavor by putting a loop around their evaluation that iterates a fixed number of

times (set to 100 iterations).

Chapter 3 provides a detailed description of the subdivision strategies employed in

ParAdapt. Results from sending two subregions at once to the GPU for evaluation (2R)

are compared with four (4R0, 4R1, 4R2), eight (8R3) and sixteen (16R4) regions being sent

simultaneously. The 8R, 16R and some of the 4R results were obtained using the compila-

tion flag: -arch=sm_35. As stated in the CUDA Toolkit Documentation website [45], this

command line option "specifies the name of the class of NVIDIA virtual GPU architecture

for which the CUDA input files must be compiled". It provides some functional capabilities

such as Kepler support and unified memory programming support - inherited from its pre-

decessors (sm_30 and sm_32 ) - and in addition provides dynamic parallelism support [45]

(which we are not using). For our use, the -arch=sm_35 command-line compilation flag

31



gives the same results as without the flag, while in some instances it gave a better speedup.

Specifically, the 4R results for sample problems 1, 2 and 4 were obtained using that compi-

lation flag. It was not used for sample problem 3. The results for sample problems 1 to 3

were also presented in Olagbemi and de Doncker [30].

4.3.1. Sample Problem 1 (discontinuous partial derivatives)

The first integral is of the form:

I1 =
∫
Cd
f1(~x) d~x = 6

5d

∫
Cd

d∑
i=1
|3xi − 1| d~x (4.2)

where d denotes the number of dimensions. The exact result of the integral is 1.

To simulate a more difficult problem, the function in the integrand implementation is

made to loop 100 times, with each loop fully computing an estimation of the integrand at

the given point.

Table 4.3: ParAdapt adaptive integration results in 10 dimensions for 2R and 4R
with the three subdivision strategies 4R0, 4R1, and 4R2. The results, error estimates
and times (in seconds) are presented for maximum evaluations set at 100M (100

million), 1B and 5B, with corresponding speedups.

100M 1B 5B
Res. Ea Time Res. Ea Time Res. Ea Time Speedup

(s) (s) (s)

2R 1.000807 1.192E-03 18.1 1.000205 3.026E-04 183.1 1.000053 7.774E-05 921.7 29
4R0 1.003063 4.521E-03 10.8 1.001368 2.019E-03 107.6 1.000564 8.327E-04 542.8 49
4R1 1.000668 9.859E-04 18.9 1.000164 2.421E-04 189.3 1.000041 6.045E-05 983.1 28
4R2 1.000742 1.095E-03 10.8 1.000190 2.810E-04 130.2 1.000056 8.264E-05 544.9 50

According to Table 4.3, the more accurate results are obtained by 4R1. This follows from

the fact that there are two calls to differ for the three subdivisions performed. The first

subdivision is performed in the divaxn dimension returned from the first differ call, and the

32



Figure 4.1: Execution times for 2R, 4R0, 4R1, and 4R2 from Table 4.3 (integral
in 10 dimensions)

last two subdivisions in the divaxn direction determined in the second differ call (and thus

the subdivisions are based on the dimensions with the highest fourth differences). However,

as can be seen from the speedup values, this accuracy comes at a cost, due mainly to the

second differ call. 4R1 has the lowest speedup of all four sets of results. 4R0 employs the

simplest approach and as such does the least work of all three 4R strategies. Even though

this strategy has the second highest speedup, its accuracy is the lowest of all four sets of

results. 4R2 attempts to strike a compromise between 4R0 and 4R1 by using divaxn for the

first subdivision (as is done by the other two 4R strategies), after which it uses secondMax

(the dimension with the second largest fourth difference, computed in the same call to differ

that determines the value of divaxn) for the last two subdivisions. Its result, though not as

accurate as 4R1, is reasonably close to it, and is also more accurate than 4R0. In this case,

it has the best speedup of all four sets of results.

It is also worth noting that for the four sets of results, the time in seconds increases

approximately with the factor with which the number of evaluations increases; for example,

for 2R, the time for 100M evaluations is 19.2s and it can be seen that when the number

33



of evaluations increases by a factor of 10 to 1B, the time also increases by approximately

that factor (19.2 ∗ 10 ≈ 193). This indicates that the amount of work done in the GPU

computations dominates the program execution. The speedups achieved also indicate good

scalability of the parallel implementation of the program (with respect to the total work

done). The graph in Figure 4.1 is a pictorial representation of the execution times for the

four strategies given in Table 4.3.

The results for the integral of (4.2) in 14 dimensions are presented in Table 4.4 along

with the corresponding graph showing execution times for the various strategies.

Table 4.4: ParAdapt adaptive integration results in 14 dimensions for 2R, 4R0,
4R1, and 4R2 were obtained with 128 threadsPerBlock and blocksPerGrid according
to (4.1). The results, error estimates and times (in seconds) are given for maximum
evaluations set at 100M (100 million), 1B and 5B with corresponding speedups.

100M 1B 5B
Res. Ea Time Res. Ea Time Res. Ea Time Speedup

(s) (s) (s)

2R 1.004506 7.044E-03 7.3 1.002664 4.164E-03 73.2 1.001956 3.058E-03 365.7 91
4R0 1.006949 1.086E-02 5.7 1.005745 8.979E-03 56.6 1.004788 7.483E-03 283.0 117
4R1 1.004127 6.450E-03 6.8 1.002557 3.997E-03 67.7 1.001792 2.801E-03 347.5 99
4R2 1.004157 6.498E-03 5.5 1.002632 4.114E-03 58.0 1.001851 2.894E-03 290.4 123

The accuracy of the results for all four strategies is less for the 14-dimensional integral

than the lower-dimensional one in 10 dimensions. Note that for the same maximum num-

ber of function evaluations, the execution times for the 14-dimensional (14D) integral are

significantly less than those for the 10D integral. This is due to the fact that the number

of evaluations per region is higher as the dimension increases, and thus the total number

of regions processed is lower in dimension 14. This also indicates that a larger maximum

number of evaluations is justified in higher dimensions. Indeed, the function evaluations are

performed in a massively parallel way in our application. The speedup for 4R2, the most

efficient strategy of the four when considering both the accuracy and execution time, is as

34



Figure 4.2: Execution times for 2R, 4R0, 4R1, and 4R2 (integral in
14 dimensions)

high as 123. The lower accuracy and execution times seen (with a fixed maximum number of

evaluations) for the 14D program when compared with the 10D program are due mainly to

the fact that the number of evaluation points in the integration rule increases exponentially

as the dimension increases (see (2.1). Since one of the terminating criteria is that the pro-

gram terminates when the maximum number of evaluations has been reached, programs for

integrals in higher dimensions reach or exceed this maximum limit with fewer subdivisions

than in lower dimensions. It should be pointed out that the actual error generally depends

on the dimension (dimensional effect [19]).

Results for the integral of (4.2) in 15 to 25 dimensions are listed in Table 4.5 using the 4R2

subdivision strategy, as that strategy gives the best combination of accuracy and efficiency

in this case.

From the results in Table 4.5, for reasons given earlier, the accuracy degrades for the

same number of function evaluations as the number of dimensions increases (including the

dimensional effect, and fewer subdivisions being possible because of the limit on the allowed

number of function evaluations). The time increases because of the exponential increase in

35



Table 4.5: ParAdapt adaptive integration 4R2 results for 15, 17, 19, 20, 21, 22,
24 and 25 dimensions. The results, error estimates and times (in seconds) are shown
for maximum evaluations of 100M (100 million), 1B and 5B, with corresponding

speedups.

100M 1B 5B
Res. Ea Time Res. Ea Time Res. Ea Time Speedup

(s) (s) (s)

15D 1.005361 8.373E-03 5.2 1.003500 5.468E-03 52.1 1.002528 3.949E-03 260.4 107
17D 1.007125 1.270E-02 5.4 1.005406 9.633E-03 53.3 1.004274 7.617E-03 267.1 117
19D 1.008506 1.822E-02 6.4 1.006932 1.485E-02 63.5 1.005910 1.266E-02 317.6 106
20D 1.008991 2.134E-02 6.3 1.007632 1.812E-02 62.0 1.006560 1.557E-02 308.9 116
21D 1.009625 2.555E-02 7.1 1.008212 2.180E-02 69.4 1.007286 1.934E-02 343.5 104
22D 1.010015 2.987E-02 7.9 1.008786 2.620E-02 75.3 1.007815 2.331E-02 372.8 97
24D 1.010744 4.037E-02 12.5 1.009742 3.660E-02 82.4 1.008906 3.346E-02 405.2 89
25D 1.010955 4.592E-02 15.5 - - - - - - 73

the number of points (see (2.1)) used by the rule (see Chapter 2). Values for 1B and 5B

could not be obtained for 25D as the program timed out, which is likely due to the high

number of evaluation points in the integration rule for 25D (> 33.5M).

4.3.2. Sample Problem 2 (corner singularity)

ParAdapt is applied to approximate the integral in (4.3), which has an integrand sin-

gularity at the origin. The integral is of the form:

I2 =
∫
Cd

1
(∑d−1

i=0 xi)2 (4.3)

where d is the number of dimensions in the integral.

2R and 4R2 results are presented for the integral in 10 and 14 dimensions. Table 4.6

lists results for the 10-dimensional integral. The function in the integrand implementation

is made to loop a hundred times to simulate a real world problem. Table 4.7 gives similar

results but for the 14-dimensional integral, also with a loop of a hundred iterations in the

36



function definition. Table 4.8 presents results, also for the 14-dimensional integral, in which

the function does not loop. The -arch flag was used in the compilation for these integrals.

Speedup values for lower numbers of evaluations are included in the tables, but not those for

higher evaluations as the sequential program would run for too long. Furthermore, the two

speedup results recorded for each category of results give a good indication of the speedup

values that can be expected for the higher numbers of evaluations.

Table 4.6: ParAdapt Sample 2 2R and 4R2 results are presented in 10D for 100M ,
500M , 5B, 10B and 12B evaluations with a loop of hundred iterations in the func-
tion. ParAdapt results were obtained with 128 threadsPerBlock and blocksPerGrid

according to (4.1) for all parallel runs.

2R 4R2
Evals. Res. Ea Time Speedup Res. Ea Time Speedup

(s) (s)

100M 0.044832353651 1.975E-07 13.4 22.0 0.044832351763 1.626E-07 9.3 43.1
500M 0.044832347091 6.828E-08 66.3 22.2 0.044832346599 5.499E-08 48.4 41.8

5B 0.044832345212 1.691E-08 716.2 - 0.044832345138 1.438E-08 627.5 -
10B 0.044832345057 1.188E-08 1,366.7 - 0.044832345013 1.016E-08 1,394.0 -
12B 0.044832345031 1.087E-08 1,641.8 - 0.044832344992 9.281E-09 1,616.9 -

From the results for 10D in Table 4.6, the 4R2 strategy yields the more accurate results

based on the lower error estimate values, and further achieves higher speedups, almost double

those of 2R. Both sets of results for this sample problem, as shown in the corresponding

tables, are consistent up to the respective error estimates with results obtained by ParInt

using large numbers of evaluations.

The 14D results in Table 4.7 are consistent with those of Table 4.6 in that the 4R2 strategy

outperforms 2R in terms of both accuracy and execution time. Even though speedup values

for 4R2 are not up to double those of 2R as was the case for the 10D integral, they are still

much higher.

Table 4.8 gives results for the integration without a loop in the implementation of the

function. In this scenario, the 2R strategy outperforms the 4R2 in terms of execution time

37



Table 4.7: ParAdapt Sample 2 2R and 4R2 results are presented in 14D for 100M ,
500M , 5B, 10B, 12B and 25B evaluations with a loop of hundred iterations in the
function. ParAdapt results were obtained with 128 threadsPerBlock and blocksPer-

Grid according to (4.1) for all parallel runs.

2R 4R2
Evals. Res. Ea Time Speedup Res. Ea Time Speedup

(s) (s)

100M 0.022067923724 4.283E-07 6.0 69.7 0.022067916221 1.718E-07 5.4 91.9
500M 0.022067892909 1.859E-07 29.9 69.8 0.022067890589 1.672E-07 27.2 92.2

5B 0.022067881617 9.052E-08 299.7 - 0.022067880791 8.202E-08 299.4 -
10B 0.022067879822 7.204E-08 597.9 - 0.022067879212 6.531E-08 792.7 -
12B 0.022067879416 6.802E-08 962.5 - 0.022067878816 6.111E-08 951.2 -
25B 0.022067878074 5.247E-08 2,640.4 - 0.022067877630 4.676E-08 1,440.0 -

Table 4.8: ParAdapt Sample 2 2R and 4R2 results (without a loop in the func-
tion) are presented in 14D for 100M , 500M , 5B, 10B, 12B and 25B evaluations.
ParAdapt results were obtained using 128 threadsPerBlock and blocksPerGrid ac-

cording to (4.1) for all parallel runs.

2R 4R2
Evals. Res. Ea Time Speedup Res. Ea Time Speedup

(s) (s)

100M 0.022067923724 4.283E-07 0.6 30.3 0.022067916221 3.718E-07 1.2 15.3
500M 0.022067892909 1.859E-07 3.1 30.0 0.022067890589 1.672E-07 6.2 15.3

5B 0.022067881617 9.052E-08 31.2 - 0.022067880791 8.202E-08 61.8 -
10B 0.022067879822 7.240E-08 62.4 - 0.022067879212 6.531E-08 123.6 -
12B 0.022067879416 6.802E-08 75.1 - 0.022067878816 6.111E-08 93.3 -
25B 0.022067878074 5.247E-08 156.8 - 0.022067877630 4.676E-08 308.1 -

with speedup values about double those of 4R2. However, in terms of accuracy, the error

estimates for 4R2 are consistently lower than those for 2R. Without the loop, the work to be

done in each integrand evaluation is very fine-grained. This decreases the GPU performance,

which in turn affects the performance of both strategies, with the 4R2 strategy seeing a larger

decline in speedup values. A significant increase in the work, achieved by including a loop,

results in the 4R2 strategy producing a better speedup than 2R, as can be seen from the

results in Table 4.7. The results for this sample problem, as shown in the corresponding

tables, are consistent up to the respective error estimates with results obtained by ParInt

38



using large numbers of evaluations in long double precision.

It is also noted in Table 4.8 that one of the timing values obtained for 4R2 is not consistent

with timing results obtained for other numbers of evaluations. Specifically, the time for 12B

evaluations is less than the time for 10B evaluations. This may be due to a different course

of the adaptive strategy, which may lead to uncovering important regions unexpectedly.

4.3.3. Sample Problem 3 - Linear Model (peak singularity)

This integral derives from the field of Bayesian Statistics and was presented with results

by Evans and Swartz in [46]. In [5], de Doncker and Almulihi compared their results for

this integral using the ParInt software with those from Evans and Swartz. This section

compares results obtained by ParAdapt with those of Evans et al. and de Doncker et al.

The integral takes the form:

I(w) =
∫
Rk
w(θ)f(θ)dθ, (4.4)

where w : Rk → R and f : Rk → R+; f represents the common part, which in Bayesian

statistics refers to the product of the likelihood and the prior. Choosing the approximation

technique to be used very much depends on the common part, hence the form of the integral

presented.

The simulated data from [46] flows from the observed response value y specified as follows:

y = Xβ+σz, where y ∈ R45 and X ∈ R45×9. Here xij = 1 for i and j satisfying 5(j−1)+1 ≤

i ≤ 5j, and 0 otherwise.

39



The integration variables for the function f(θ), which is specified in 10 dimensions, are

θi = β for values of i satisfying 1 ≤ i ≤ 9, and θ10 = log σ, and f(θ) is given by

f(θ) = e−9nθ10
9∏
i=1

n∏
i=1

gλ(
yij − θi
eθ10

) (4.5)

with

gλ(z) =
Γ(λ+2

2 )
Γ(1

2)Γ(λ2 )
(1 + z2

λ− 2)−λ+1
2

1√
λ− 2

(4.6)

where λ = 3 and n = 5.

The integrand function has a peak located at the mode θ̂. The integration region with the

mode at the center is truncated using a half-width of 5 (i.e., the integration domain becomes

a cube of width 10 in each coordinate direction). From experimental results, the choice of the

half-width can significantly affect the results obtained. as shown in Table 4.9. Half-width

values 5.0, 5.3, 5.5 and 6.0 were used with the 2R and 4R2 subdivision strategies. From

that comparison, a half-width of 5.0 gives good results (and is also used by [5]). Subsequent

results presented here for this Sample Problem are therefore based on a half-width of 5.0.

The absolute error tolerance is set to 0 due to the small values of the results for the

integral I(1) (of the order of 10−22), while the relative error tolerance is set to 10−12 to allow

the program to continue running till the maximum number of evaluations has been exceeded.

The integrand function fw in (4.4) is comprised of f and w where f is specified as f(θ)

in (4.5) and w = w(θ) = θ1, θ2, θ4, θ10, θ
2
1, θ

2
2, θ

2
4, θ

2
10. Results obtained for the integral of fw

using ParAdapt with the 2R subdivision strategy are shown in Table 4.10. The results

and error estimates in the table for θi and θ2
i are scaled using the result for I(1) (i.e., with

w = 1), and compared with results from ParInt in [5] (Table 1 in that article) and results

for R(θi) and R(θ2
i ) from Evans and Swartz in [46] (Tables 2, 3, 4, 5, 6).

40



Table 4.9: ParAdapt 4R2 results for I(1) using half-widths of 5.0, 5.3, 5.5, and 6.0.
The results, error estimates and times (in seconds) are listed for maximum evaluations
of 500M (500 million), 1B and 5B, with results for 8B and 10B shown for higher

half-width values.

2R 4R2
Evals. Res. Ea Time Res. Ea Time

(s) (s)
Halfwidth = 5.0

500M 1.29762E-22 6.25E-25 57.3 1.27667E-22 6.67E-25 30.8
1B 1.29791E-22 3.97E-25 114.5 1.28387E-22 4.05E-25 61.6
5B 1.29990E-22 1.50E-25 572.3 1.29536E-22 1.48E-25 306.2

Halfwidth = 5.3

500M 1.30312E-22 8.00E-25 57.3 1.20309E-22 9.82E-25 30.8
1B 1.30027E-22 4.53E-25 114.6 1.28880E-22 5.78E-25 61.5
5B 1.30322E-22 1.81E-25 608.3 1.30554E-22 1.98E-25 307.3

Halfwidth = 5.5

500M 1.30967E-22 1.16E-24 57.3 1.18141E-22 1.07E-24 30.8
1B 1.30315E-22 5.78E-25 114.1 1.18915E-22 5.35E-25 61.4
5B 1.30257E-22 1.91E-25 759.4 1.30495E-22 1.83E-25 477.0
8B 1.30386E-22 1.45E-25 1,215.5 1.30524E-22 1.36E-25 776.9
10B 1.30447E-22 1.27E-25 1,465.6 1.30537E-22 1.18E-25 881.0

Halfwidth = 6.0

500M 1.30900E-22 1.17E-24 57.6 1.30528E-22 9.95E-25 31.1
1B 1.30633E-22 5.77E-25 114.3 1.30043E-22 5.01E-25 62.0
5B 1.30410E-22 1.79E-25 720.2 1.30485E-22 1.65E-25 438.6
58 1.30442E-22 1.32E-25 1,137.7 1.30482E-22 1.21E-25 601.0

10B 1.30459E-22 1.14E-25 1,304.8 1.30479E-22 1.04E-25 841.1

The ParAdapt results generally compare favorably with those from both ParInt and

Evans et al., with a significantly lower number of function evaluations than ParInt. For

these tests ParAdapt achieved speedups of around 27.5 (2R) and 51 (4R2). The ParInt

results were obtained using 64 or 128 MPI processes [47] on four cluster nodes, allowing 2B

41



Table 4.10: ParAdapt 2R results are compared with ParInt results and results
from Evans and Swartz for Example 1 over 10D truncated domain, centered at mode
with half-width = 5. ParAdapt results are displayed for 500M and 1B evaluations
while ParInt results were obtained using 64 or 128 MPI processes, allowing 2B

evaluations using 64 procs. and 25B evaluations using 128 procs.

2R, 500M evals. 2R, 1B evals. 2B, 64 procs. 25B, 128 procs. E&S E&S
R̂ R

w Res. Ea Time Res. Ea Time Res. Ea Time Res. Ea Time Subr. Exact
(s) (s) (s) (s) Ad.

1 1.2976 6.26E-25 57.3 1.2979 3.97E-25 114.5 1.317 3.6E-24 95.7 1.3065 2.7E-25 592.3 1.31
×10−22 ×10−22 ×10−22 ×10−22 ×10−22

θ1 2.043 9.91E-03 57.6 2.043 6.25E-03 115.1 2.043 5.5E-02 95.7 2.0428 4.2E-03 591.9 2.040 2.043
θ2 0.0947 1.19E-03 57.6 0.0949 8.05E-04 114.8 0.0957 3.8E-03 95.2 0.09473 3.4E-04 591.5 0.094 0.095
θ4 0.0182 1.04E-03 57.2 0.01821 6.76E-04 114.7 0.0170 3.9E-03 95.4 0.01801 3.3E-04 592.0 0.017 0.018
θ10 -0.0749 1.26E-03 57.3 -0.07498 7.51E-04 114.7 -0.0738 8.4E-03 95.8 -0.07290 6.5E-04 593.7 -0.102 -0.073
θ2

1 4.264 2.07E-02 57.2 4.265 1.30E-02 114.9 4.261 1.12E-01 95.7 4.2636 8.8E-03 593.4 4.237 4.263
θ2

2 0.0806 4.91E-04 56.9 0.0807 3.14E-04 115.1 0.0788 1.3E-03 95.8 0.08074 1.6E-04 593.3 0.068 0.081
θ2

4 0.06838 4.32E-04 57.3 0.06867 2.88E-04 114.3 0.0677 1.0E-03 95.7 0.06906 1.1E-04 592.5 0.055 0.069
θ2

10 0.03201 4.29E-04 57.2 0.0321 2.57E-04 114.1 0.0320 1.6E-03 96.1 0.03269 1.2E-04 593.5 0.032 0.033

evaluations using 64 procs. and 25B evaluations using 128 procs.

4.3.4. Sample Problem 4 - Feynman Loop Integral (boundary singularity)

This application of multivariate integration using ParAdapt is from the field of Compu-

tational Physics, specifically Feynman loop integrals, which provide higher-order corrections

that enable accurate predictions of the cross-section for particles interactions. We will com-

pute a 10-dimensional Feynman loop integral from [48], written in the form:

IL,N = (−1)NΓ(N − vL

2 )
∫
CN

N∏
j=1

dxjδ(1−
∑

xj)
CN−v(L+1)/2

(D − i%C)N−vL/2 (4.7)

where L is the number of loops in the Feynman diagram, N is the number of internal lines,

and C and D are homogeneous polynomials in x1, ..., xN . The factor % ensures that the

denominator does not evaluate to zero, while the space-time dimension v = 4. Eliminating

the δ function results in the integral of (4.8), which is expressed over the d-dimensional unit

42



simplex (d = N − 1), Sd = {x ∈ Cd | 0 ≤ ∑d
j=1 xj ≤ 1},

IL,N = (−1)NΓ(N − vL

2 )
∫
SN−1

CN−v(L+1)/2

(D − i%C)N−vL/2dx (4.8)

In the ParAdapt code, specifically in the function with the integral definition, two

transformations are applied to the integral: the first transformation converts the integration

domain from the unit simplex to the unit cube (since ParAdapt is not designed to compute

integrals over a simplex), while the second transformation, Sidi’s sinm transformation [49],

[50], is used to handle singularities at the boundaries of the integration domain to make the

numerical integration easier. Preliminary results obtained with and without Sidi’s transfor-

mation showed that the integration without the transformation, even at significantly higher

values of function evaluations, resulted in significantly lower accuracy.

A result for the integral is given as 35.1 in [51]. Results obtained from ParInt for the

same integral are given in [48] (in Table 3 of that paper). ParAdapt integration results are

presented in Table 4.11.

Table 4.11: ParAdapt adaptive integration 2R, 8R3 and 16R4 results are shown
for 200M , 500M , 1B, 5B, 10B and 12B evaluations.

2R 8R3 16R4
Evals. Res. Ea Time Res. Ea Time Res. Ea Time

(s) (s) (s)

200M 35.1053 1.574E+00 17.0 35.1331 1.940E+00 5.6 35.5057 3.084E+00 3.7
500M 35.1690 9.880E-01 40.4 35.2478 1.199E+00 13.6 35.2835 1.973E+00 8.7

1B 35.2320 6.779E-01 79.8 35.2886 8.161E-01 27.1 35.2432 1.382E+00 17.0
5B 35.3118 2.642E-01 424.4 35.3094 3.158E-01 130.8 35.2618 5.827E-01 85.6
10B 35.3097 1.771E-01 753.9 35.3071 2.100E-01 260.9 35.2786 3.915E-01 164.1
12B 35.3078 1.598E-01 916.9 35.3046 1.888E-01 304.3 35.2817 3.520E-01 195.8

From the results in Table 4.11, the 2R strategy yields the more accurate results based on

the absolute error estimates. A speedup value of 27.7 was obtained for 2R with maximum

43



evaluations set at 500M . The results produced by the 8R3 subdivision strategy were reason-

ably close to those from the 2R strategy but with higher absolute error estimates than 2R for

corresponding maximum evaluations. However, the execution times for 8R3 are significantly

less than those for 2R for similar error estimates (irrespective of the number of evaluations),

and a significantly higher speedup of 173.8 was achieved for 8R3 with 500M evaluations. The

16R4 strategy achieves a speedup of 130.7 at 500M evaluations and has even lower execution

times than the 8R3 strategy. The absolute error estimates are higher than those for both 2R

and 8R3, but as can also be seen for the other two strategies, there is convergence with the

absolute error estimates decreasing as the maximum function evaluations increase.

44



CHAPTER 5

DISCUSSION AND CONCLUSION

Results from ParAdapt, our solution for multivariate numerical integration on GPUs

(using the adaptive strategy), have been presented in this dissertation. The adaptive algo-

rithm is particularly effective because as the subregions become smaller in size (following

subdivisions), the points in the integration rule achieve more coverage of the integration

region, resulting in improved accuracy. The adaptive partitioning creates hot spots and

succeeds in concentrating the integration efforts in the vicinity of singularities and other

irregular integrand behavior.

One of the main over-arching goals of this research, as addressed in the problem statement

in Chapter 1, was to increase the upper threshold on the integral dimension for the adaptive

algorithm, by about 10 to 12. Historically, the adaptive strategy has been used in the

approximation of integrals of low to moderate dimension (say, 10 to 12). Our solution

ParAdapt stores the points and weights on the GPU and, in higher dimensions, the memory

usage for storage of required array values is significant. However, results included for the

first sample problem in Chapter 4 show that ParAdapt was able to successfully provide

approximations to an integral with dimension as high as 24. This goal was therefore achieved,

and ParAdapt actually doubles the value of the upper threshold on the dimension.

The GPU mapping and the simultaneous reductions of the results for multiple regions

on the GPU form important building blocks in the ParAdapt methods. These may be

applicable to different parallel applications.

ParAdapt execution times for each of the sample problems presented, for varying num-

bers of evaluations, point to the scalability of the algorithms as the total work increases:

45



the increase in the execution time from a specific of number of evaluations to another was

found to be proportional to the corresponding increase of the number of evaluations. This

indicates that the work on the GPU dominated the computation throughout a large number

of subdivisions.

The results of the sample problems in Chapter 4 illustrate that ParAdapt handles

various types of integration difficulties as a general purpose solution. These include singular

behavior in the interior of the domain (Sample 1), corner singularity (Sample 2), peak

(Sample 3) and boundary singularities (Sample 4).

Sample 4 is a problem that is well-suited for integration by lattice rules after a transfor-

mation that alleviates the boundary singularities. However, the Bayesian integral of Sample

3 cannot be treated by a lattice rule, in view of the large peak of the integrand in the domain.

ParInt handles Sample 3, but using significant resources (MPI on 64 or 128 processes).

The ParAdapt results compare favorably with those of ParInt with respect to accuracy

and time.

It is our goal to implement further refinements in ParAdapt to improve memory usage,

accuracy of results, and program efficiency (in terms of execution time). Details of future

work planned are included in the next section.

5.1. Future Work

As was mentioned earlier, memory usage becomes significant as the integral dimension

increases. Currently, all points and weights are stored on the GPU to be utilized in the

integrand evaluations and in the error estimation process. The integration rules used in

ParAdapt are fully symmetrical [37] and we are considering the possibility of generating

the symmetrical sets on the GPU rather than storing them on the device. The effects of this

on the execution time will be assessed after implementation of this enhancement. Further

46



with respect to the integration rule, so far we used ADAPT and its degree 7 rule because of

simplicity. It would be possible to incorporate the degree 9 rule of DCUHRE even though

it uses more points.

A feature of CUDA that may be considered for future developments is "dynamic par-

allelism" [52], [53], referring to a scenario in which a parent CUDA kernel can call a child

CUDA kernel and, without any involvement from the CPU, consume the output from the

child kernel.

Another feature of CUDA that we are considering exploring is "unified memory" [54],

[55]. From the documentation provided by NVIDIA, it appears that the gains in execution

time in ParAdapt may not be significant in our current environment. However, it may be

worth exploring for porting to new GPUs communicating over a fast bus.

47



BIBLIOGRAPHY

[1] E. de Doncker, F. Yuasa, K. Kato, T. Ishikawa, J. Kapenga, and O. Olagbemi, “Reg-
ularization with numerical extrapolation for finite and uv-divergent multi-loop in-
tegrals”, Computer Physics Communications, vol. 224, pp. 164–185, 2018. [Online].
Available: \\https://doi.org/10.1016/j.cpc.2017.11.001.

[2] O. E. Olagbemi, E. de Doncker, and F. Yuasa, “Workshop on large scale computational
physics - LSCP 2016”, Procedia Computer Science, vol. 80, pp. 1416–1417, 2016.

[3] K. Kato, E. de Doncker, T. Ishikawa, J. Kapenga, O. Olagbemi, and F. Yuasa, “High
performance and increased precision techniques for Feynman loop integrals”, J. Physics:
Conf. Series (JPCS), IOP Series, vol. 762, 2016, 012070,
iopscience.iop.org/article/10.1088/1742-6596/762/1/012070.

[4] E. de Doncker, F. Yuasa, J. Kapenga, and O. Olagbemi, “Scalable software for multi-
variate integration on hybrid platforms”, vol. 640, 2015,
doi:10.1088/1742-6596/640/1/012062.

[5] E de Doncker and A. Almulihi, “Adaptive task partitioning for Bayesian applications”,
in 2016 International Conference on Computational Science and Computational Intel-
ligence (CSCI), 2016, pp. 572 –577. [Online]. Available: https://ieeexplore.ieee.
org/document/7881407.

[6] H. S. Li, J. F. Dempsey, and H. E. Romeijin, “A Fourier analysis on the optimal grid
size for discrete proton beam dose calculation”, Med. Phys., vol. 33, no. 9, pp. 3508–
3518, 2006.

[7] S. Li, E. de Doncker, K. Kaugars, and H. Li, “A fast integration method and its
application in a medical physics problem”, Springer Lecture Notes in Computer Science
(LNCS), vol. 3984, pp. 789–797, 2006.

[8] S. Li, K. Kaugars, and E. de Doncker, “Grid based numerical integration and visu-
alization”, in International Conference of Computational Intelligence and Multimedia
Applications (ICCIMA), CDROM Proceedings, 2005.

[9] ——, “Distributed adaptive multivariate function visualization”, International Journal
of Computational Intelligence and Applications (IJCIA), vol. 6, no. 2, pp. 273–288,
2006.

[10] S. Li, “Online support for multivariate integration”, PhD thesis, Western Michigan
University, 2005.

[11] J. Li and E. de Doncker, “Dynamic visualization of computations on the internet”, in
Lecture Notes in Computer Science, vol. 1593, Springer-Verlag, 1999, pp. 360–369.

[12] K. Mullen, D. M. Ennis, E. de Doncker, and J. A. Kapenga, “Multivariate models for
the triangular and duo-trio methods”, Biometrics, vol. 44, pp. 1169–1175, 1988.

48

\\ https://doi.org/10.1016/j.cpc.2017.11.001
https://ieeexplore.ieee.org/document/7881407
https://ieeexplore.ieee.org/document/7881407


[13] A. C. Genz, Adapt. [Online]. Available: http://http://www.math.wsu.edu/faculty/
genz/software/fort77/adapt.f, (accessed: 08.01.2019).

[14] R Zanny, E de Doncker, K Kaugars, and L Cucos, PARINT 1.2 user’s manual,
2002. [Online]. Available: https://cs.wmich.edu/parint/, (accessed: 09.07.2019).

[15] P. van Dooren and L. de Ridder, “An adaptive algorithm for numerical integration
over an n-dimensional rectangular region: Algorithm 006”, Journal of Computational
and Applied Mathematics, vol. 2, no. 3, pp. 207–217, 1976. [Online]. Available: https:
//doi.org/10.1016/0771-050X(76)90005-X.

[16] J. Berntsen, T. O. Espelid, and A. C. Genz, “An adaptive algorithm for the approxi-
mate calculation of multiple integrals”, ACM Transactions on Mathematical Software,
vol. 17, no. 4, pp. 437–451, 1991. [Online]. Available: https://dl.acm.org/citation.
cfm?doid=210232.210233.

[17] J. Berntsen, T. O. Espelid, and A. Genz, “Algorithm 698: DCUHRE-an adaptive mul-
tidimensional integration routine for a vector of integrals”, ACM Trans. Math. Softw.,
vol. 17, pp. 452–456, 1991, http: //www.sci.wsu.edu/math/faculty/genz/homepage.

[18] NVIDIA, Nvidia high performance computing - CUDA zone. [Online]. Available: https:
//developer.nvidia.com/cuda-zone, (accessed: 08.31.2019).

[19] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration. Orlando, Florida:
Academic Press, Inc., 1984.

[20] R. Schürer, “A comparison between (quasi-)monte carlo and cubature rule based meth-
ods for solving high-dimensional integration problems”, Mathematics and Computer in
Simulation, vol. 62, pp. 509–517, 3-6 2003. [Online]. Available: https://doi.org/10.
1016/S0378-4754(02)00250-1.

[21] A. H. Stroud, Approximate Calculation of Multiple Integrals. Englewood Cliffs, New
Jersey: Prentice Hall, 1971.

[22] A. C. Genz and A. A. Malik, “Remarks on algorithm 006: An adaptive algorithm for
numerical integration over an n-dimensional rectangular region”, Journal of Computa-
tional and Applied Mathematics, vol. 6, no. 4, pp. 295–302, 1980. [Online]. Available:
https://doi.org/10.1016/0771-050X(80)90039-X.

[23] A. Genz, “Testing multidimensional integration routines”, in Tools, Methods and Lan-
guages for Scientific and Engineering Computation, 1984, pp. 81–94.

[24] H. D. Shapiro, “Increasing robustness in global adaptive quadrature through inter-
val selection heuristics”, ACM Transactions on Mathematical Software, vol. 10, no. 2,
pp. 117–139, 1984.

[25] H. O’Hara and F. J. Smith, “The evaluation of definite integrals by interval subdivi-
sion”, The Computer Journal, vol. 12, no. 2, pp. 179–182, 1969. [Online]. Available:
https://doi.org/10.1093/comjnl/12.2.179.

49

http://http://www.math.wsu.edu/faculty/genz/software/fort77/adapt.f
http://http://www.math.wsu.edu/faculty/genz/software/fort77/adapt.f
https://cs.wmich.edu/parint/
https://doi.org/10.1016/0771-050X(76)90005-X
https://doi.org/10.1016/0771-050X(76)90005-X
https://dl.acm.org/citation.cfm?doid=210232.210233
https://dl.acm.org/citation.cfm?doid=210232.210233
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://doi.org/10.1016/S0378-4754(02)00250-1
https://doi.org/10.1016/S0378-4754(02)00250-1
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1093/comjnl/12.2.179


[26] R. Cranley and T. N. L. Patterson, “On the automatic numerical evaluation of definite
integrals”, The Computer Journal, vol. 14, no. 2, pp. 189–198, 1971. [Online]. Available:
https://doi.org/10.1093/comjnl/14.2.189.

[27] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations. Englewood Cliffs, New Jersey: Prentice-Hall, 1977.

[28] L. F. Shampine and J. R. C. Allen, Numerical Computing: An Introduction. Philadel-
phia: Saunders, 1973.

[29] E. de Doncker, F. Yuasa, K. Kato, T. Ishikawa, J. Kapenga, and O. Olagbemi, “Reg-
ularization with numerical extrapolation for finite and UV-divergent multi-loop inte-
grals”, Computer Physics Communications, vol. 224, pp. 164–185, 2018,
https://doi.org/10.1016/j.cpc.2017.11.001.

[30] O. Olagbemi and E. de Doncker, Scalable algorithms for multivariate integration with
paradapt and CUDA (accepted).

[31] R. Piessens, E. de Doncker, C. W. Überhuber, and D. K. Kahaner, QUADPACK, A
Subroutine Package for Automatic Integration, ser. Springer Series in Computational
Mathematics. Springer-Verlag, 1983, vol. 1.

[32] R. Cools and A. Haegemans, “Algorithm 824:Cubpack: A package for automatic cuba-
ture, framework description”, ACM Transactions on Mathematical Software, vol. 29,
no. 3, pp. 287–296, 2003.

[33] T. Hahn, “Cuba - a library for multidimensional numerical integration”, Computer
Physics Communications, vol. 176, pp. 712–713, 2007,
https://doi.org/10.1016/j.cpc.2007.03.006.

[34] M. A. Malcolm and R. B. Simpson, “Local versus global strategies for adaptive quadra-
ture”, ACM Transactions on Mathematical Software, vol. 1, no. 2, pp. 129–146, 1975.
[Online]. Available: https://dl.acm.org/citation.cfm?doid=355637.355640.

[35] R. Cools and P. Rabinowitz, “Monomial cubature rules since ’stroud‘: A compilation”,
J. Comp. Appl. Math., vol. 48, pp. 309–326, 1993.

[36] R. Cools, “Monomial cubature rules since ’stroud‘: A compilation - part 2”, J. Comp.
Appl. Math., vol. 112, pp. 21–27, 1999.

[37] A. C. Genz and A. A. Malik, “An imbedded family of fully symmetric numerical
integration rules”, SIAM Journal on Numerical Analysis, vol. 20, no. 3, pp. 580–588,
1980. [Online]. Available: https://www.jstor.org/stable/2157273.

[38] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, A Fortran-to-C Con-
verter. [Online]. Available: https://www.netlib.org/f2c/, (accessed: 08.02.2019).

[39] E de Doncker, K Kaugars, L Cucos, and R Zanny, “Current status of the parint package
for parallel multivariate integration”, in Proceedings of Computational Particle Physics
Symposium (CPP 2001), 2002, pp. 110 –119.

50

https://doi.org/10.1093/comjnl/14.2.189
https://dl.acm.org/citation.cfm?doid=355637.355640
https://www.jstor.org/stable/2157273
https://www.netlib.org/f2c/


[40] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Pearson, 2010.

[41] Center for high performance computing and big data. [Online]. Available: https://cs.
wmich.edu/hpcs/, (accessed: 08.08.2019).

[42] Penguin Computing, Expanding access to full-performance HPC through the cloud. [On-
line]. Available: https://www.penguincomputing.com/pod-hpc-cloud/, (accessed:
08.08.2019).

[43] NVIDIA Tesla family specification comparison. [Online]. Available: https://www.
anandtech.com/show/7521/nvidia-launches-tesla-k40, (accessed: 08.08.2019).

[44] J. Sanders and E. Kandrot, CUDA by Example. Boston, Massachusetts: Pearson Edu-
cation, 2010.

[45] CUDA toolkit documentation. [Online]. Available: https://docs.nvidia.com/cuda/
cuda- compiler- driver- nvcc/index.html#nvcc- command- options, (accessed:
09.07.2019).

[46] M. Evans and T Swartz, “Methods for approximating integrals in statistics with special
emphasis on bayesian integration problems”, Statistical Science, vol. 10, no. 3, pp. 254–
272, 1995. [Online]. Available: https://projecteuclid.org/euclid.ss/1177009938.

[47] MPI, http://www-unix.mcs.anl.gov/mpi/index.html.
[48] E de Doncker, F Yuasa, and A Almulihi, “Efficient GPU integration for multi-loop

Feynman diagrams with massless internal lines”, in Springer Lecture Notes in Com-
puter Science, Springer, (To appear) 2019.

[49] A. Sidi, “A new variable transformation for numerical integration”, in International
Series of Numerical Mathematics, vol. 112, Birkhäuser, Basel, 1993, pp. 359–373. [On-
line]. Available: https://doi.org/10.1007/978-3-0348-6338-4_27.

[50] ——, “Extension of a class of periodizing transformations for numerical integration”,
Mathematics of Computation, vol. 75, no. 253, pp. 327–343, 1995. [Online]. Available:
https://projecteuclid.org/euclid.ss/1177009938.

[51] T. Binoth and G. Heinrich, “Numerical evaluation of multi-loop integrals by sector
decomposition”, Nucl. Phys. B, vol. 680, p. 375, 2004, hep-ph/0305234v1.

[52] Dynamic parallelism in CUDA. [Online]. Available: http://developer.download.
nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_
in_CUDA.pdf, (accessed: 10.19.2019).

[53] CUDA dynamic parallelism API and principles. [Online]. Available: https://devblogs.
nvidia.com/cuda-dynamic-parallelism-api-principles/, (accessed: 10.19.2019).

[54] Unified memory in CUDA 6. [Online]. Available: https://devblogs.nvidia.com/
unified-memory-in-cuda-6/, (accessed: 10.19.2019).

51

https://cs.wmich.edu/hpcs/
https://cs.wmich.edu/hpcs/
https://www.penguincomputing.com/pod-hpc-cloud/
https://www.anandtech.com/show/7521/nvidia-launches-tesla-k40
https://www.anandtech.com/show/7521/nvidia-launches-tesla-k40
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#nvcc-command-options
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#nvcc-command-options
https://projecteuclid.org/euclid.ss/1177009938
https://doi.org/10.1007/978-3-0348-6338-4_27
https://projecteuclid.org/euclid.ss/1177009938
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelism_in_CUDA.pdf
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/


[55] Unified memory for CUDA beginners. [Online]. Available: https://devblogs.nvidia.
com/unified-memory-cuda-beginners/, (accessed: 10.19.2019).

52

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/

	Scalable Algorithms and Hybrid Parallelization Strategies for Multivariate Integration with ParAdapt and CUDA
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Automatic Integration
	ParAdapt
	Statement of the Problem
	Structure of the Dissertation

	LITERATURE REVIEW
	Numerical Integration Methods
	Monte Carlo (MC)
	Quasi-Monte Carlo (QMC)
	Methods based on Interpolatory Cubature Rules

	Adaptive Integration Strategies
	Local Adaptive Strategy
	Global Adaptive Strategy
	Global Strategy versus Local Strategy
	Adaptive Approach in this Study

	Integration Rules in ParAdapt
	ADAPT
	The ParInt Software

	METHODOLOGY
	Subdivision Strategies used in ParAdapt
	Parallelization Strategies
	GPU Mapping
	Simultaneous Reductions


	RESULTS AND ANALYSIS
	GPU Specifications
	GPU Kernel Call Parameters
	Results and Analysis
	Sample Problem 1 (discontinuous partial derivatives)
	Sample Problem 2 (corner singularity)
	Sample Problem 3 - Linear Model (peak singularity)
	Sample Problem 4 - Feynman Loop Integral (boundary singularity)


	DISCUSSION AND CONCLUSION
	Future Work

	BIBLIOGRAPHY

