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ON CODES OVER RINGS: THE MACWILLIAMS EXTENSION THEOREM AND THE
MACWILLIAMS IDENTITIES

Noha Abdelghany, Ph.D.

Western Michigan University, 2020

The MacWilliams extension theorem for code equivalence and the MacWilliams identi-

ties for weight enumerators of a code and its dual code are two of the most important results

in classical coding theory. In this thesis, we study how much these two results could be

extended to codes over more general alphabets, beyond finite fields. In particular, we study

the MacWilliams extension theorem and the MacWilliams identities for codes over rings and

modules equipped with general weight functions.
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Chapter 1

INTRODUCTION

Codes over rings started being of interest to many researchers since the appearance of [9],

where it was shown that the binary nonlinear codes known as Kerdock and Preparata codes

are actually dual codes when viewed as codes over Z4. The study of codes over rings, and

later codes over modules, led to an interest in studying the validity of the two classical

MacWilliams results for codes over rings and modules. Namely, the MacWilliams extension

theorem for code equivalence and the MacWilliams identities for weight enumerators of a

code and its dual code. In this thesis, we present the results of our research into the validity

of these two classical results for codes over rings and modules. We give an introduction and

a brief outline of this thesis in the following.

In 1962, MacWilliams proved that any Hamming weight isometry between two codes

over a finite field extends to a monomial transformation of the ambient space [13]. The

theorem is known now as the MacWilliams extension theorem. Around the early nineties,

coding theorists became interested in codes over finite rings and, later, finite modules. This

gave rise to the natural question of whether the MacWilliams extension theorem is valid over

rings for Hamming weight and, later, for general weight functions. For an alphabet A and a

weight function w, A is said to have the extension property with respect to w if every linear

w-isometry between two codes extends to a monomial transformation of the ambient space.
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Over the past 20 years, many sufficient conditions and a few necessary conditions were found

for the extension property to hold for various alphabets and weight functions.

In 1999, Wood showed that finite Frobenius rings have the extension property with

respect to the Hamming weight [17]. In fact, the class of Frobenius rings characterizes finite

rings that have the extension property [18]. In 2004, Greferath et al. proved that finite

Frobenius bimodules have the extension property with respect to both Hamming weight and

the homogeneous weight [8]. With respect to Lee weights, see Definition 4.1.4, it was shown

that Zm has the extension property when m is a prime power [12] and then it was proved

for any positive integer m in [4].

In Chapter 3 we develop a tool that can be used to examine the extension property,

following the development in [21]. A general weight function w of the alphabet module A is

just any complex-valued function on A. Due to the lack of the algebraic structure of w, it

is hard to decide if the extension property holds for w. In our development of monoid-ring

tools, we view the weight w as linear map from R to FpAq as defined in section 3.2.1. We

then study the matrix representation W of w, and as it turns out, the nonsingularity of an

induced matrix ĎW is a sufficient condition for the extension property.

The second part of this thesis studies the MacWilliams identities. The MacWilliams

identities give a relation between the Hamming weight enumerator of a linear code and the

Hamming weight enumerator of its dual. For a linear code C over a finite field Fq, the

MacWilliams identities are given by hweCKpX, Y q “
1
|C| hweCpX ` pq ´ 1qY,X ´ Y q, where

hwe refers to the Hamming weight enumerator [13]. The question we are interested in is

whether there is some version of the MacWilliams identities for other alphabets and other

weight functions. In 1999, Wood showed that the MacWilliams identities are valid for both

additive codes and linear codes over finite Frobenius rings with respect to the Hamming

weight [17].

Turning our attention to Lee weights over Zm, the Lee weight and the Hamming weight

are equal when m “ 2 and m “ 3, thus the MacWilliams identities are valid in those cases.

For codes over Z4, it is known from [9] that the Lee weight enumerator of a linear code C
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over Z4 and its dual are related by lweCKpX, Y q “
1
|C| lweCpX `Y,X ´Y q. For m ě 5, it was

shown by Tang et al that the change of variables X ÞÑ X ` pq ´ 1qY and Y ÞÑ X ´ Y does

not give a version of the MacWilliams identities for any prime power q|m [16]. This leaves

open the possibility of other changes of variables that might give a relation between the Lee

weight enumerators of a code and its dual.

In Chapter 4, we show the nonexistence of a MacWilliams operator for Lee weights over

Zm, m ě 5, by showing the existence of two codes C1 and C2 that have equal Lee weight

enumerators but the dual codes CK1 and CK2 have different Lee weight enumerators.
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Chapter 2

Preliminaries

This chapter is dedicated to introduce the necessary notions and terminology from classical

coding theory and ring theory that will be needed for the rest of this thesis. Throughout

this chapter, R is a finite ring with 1 and A is a left R-module thought of as the alphabet.

2.1 Linear Codes

We start with the classical definition of codes over finite fields, and we will work our way

up to codes over rings and modules. For the following, we assume that A “ R “ F, a finite

field.

Definition 2.1.1. A code C of length n over F is a subset of Fn. If C is a k-dimensional

vector subspace of Fn, then C is called an rn, ks-linear code.

An element of a code C is called a codeword. The field F is referred to as the alphabet

for the code C. A linear code is most-commonly realized in two ways, namely a generator

matrix and a parity check matrix.

Definition 2.1.2. Let C be an rn, ks-linear code over F.
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• A generator matrix G of C is a k ˆ n matrix whose rows span C. In other words,

C “ tmG : m P Fku.

• A parity check matrix H is a pk ´ nq ˆ n matrix whose rows annihilate C. In other

words, C is the right null space of the parity check matrix H.

C “ tc P Fn : HcT “ 0u.

Oftentimes the generator matrix is used for encoding. The space Fk is thought of as

the space of all messages, where a message m P Fk is encoded by m ÞÑ mG to the codeword

mG in the code C.

If the alphabet of a code is the binary field F2, then the code is called a binary code.

Example 2.1.3. Let H be the [7,4]-binary code defined by the following generator matrix

G “

»

—

—

—

—

—

—

–

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This code is known as the Hamming code. A parity check matrix for H is given by

H “

»

—

—

—

–

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

fi

ffi

ffi

ffi

fl

.

If we think of the r7, 3s-linear code S generated by the matrix H, then S will have G as its

parity check matrix. The code S is known as the simplex code. The codes H and S are dual

codes as defined in the following.
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Definition 2.1.4. The dual code CK of a code C of length n is given by

CK “ tpx1, . . . , xnq P Fn :
ÿ

xici “ 0, for all c P Cu.

The following lemma summarizes the main properties of dual codes.

Lemma 2.1.5. Let C be a code of length n over F. Then

• CK is a linear code over F.

• pCKqK “ C.

• If C is an rn, ks-linear code, then |CK| ¨ |C| “ |F|n. Equivalently, dim CK “ n´ k.

The most common notion of weight in classical coding theory is the Hamming weight.

Definition 2.1.6. For a vector x “ px1, . . . , xnq in Fn, the Hamming weight of x is defined

to be the number of nonzero entires in x. That is hpxq “ |ti : xi ‰ 0u|.

Oftentimes the weight functions are used to define a distance function of the ambient

space. For instance, the Hamming distance between x and y in Fn is defined by dhpx, yq “

hpx´yq. One of the most essential parameters of a code is its minimum weight, it determines

the error-detecting and the error-correcting capacities of the code.

Definition 2.1.7. Let C be an rn, ks-linear code. Then the minimum Hamming weight

d “ minthpcq : c P C, c ‰ 0u. In this case, C is said to be an rn, k, ds-linear code.

Example 2.1.8. Let H be the r7, 4s-binary Hamming code defined in Example 2.1.3. The

list of codewords of H is given by

H “ t0000000, 1000011, 0100101, 0010110, 0001111, 1100110,

1010101, 1001100, 0110011, 0101010, 0011001, 1110000,

1101001, 1011010, 0111100, 1111111u.
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It is easy to see that the minimum nonzero weight of H is 3, therefore H is a r7, 4, 3s-linear

code.

Example 2.1.9. Let G12 be the r12, 6s-linear code over F3, the finite field of order 3, with a

generator matrix

G “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 ´1 ´1 1

0 0 1 0 0 0 1 1 0 1 ´1 ´1

0 0 0 1 0 0 1 ´1 1 0 1 ´1

0 0 0 0 1 0 1 ´1 ´1 1 0 1

0 0 0 0 0 1 1 1 ´1 ´1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

With some calculations, one can show that the minimum weight of G12 is 6. The code G12 is

called the r12, 6, 6s Golay code. This example is found in [11].

Recall A is a left R-module. Here is how we view codes over modules.

Definition 2.1.10. A code C of length n over A is a subset of An. If C is a left submodule

of An, then C is called a left linear code.

2.2 Code Equivalence

In this section we present the different ways to view two codes as being equivalent. There are

multiple ways of viewing code equivalence, some of them are more general than others. To

understand the relation between the different notions of equivalence, we will define some of

them here and refer to Chapter 3 for our full study of the MacWilliams extension theorem.

Unlike vector spaces with no extra structure, the notion of equivalence of linear codes

requires more than two codes to have the same dimension. One of the most important

parameters of a linear code comes from the weight considered. So in order to talk about

equivalence of linear codes we need to fix both the alphabet and the weight function.
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Remark 2.2.1. For any left R-linear homomorphism f : A Ñ B between two left R-

modules, we write inputs on the left. That is, for x P A we denote the image of x under f

as xf instead of fpxq. One of the reasons for this notation is that the R-linearity then is

expressible is the associative property: prxqf “ rpxfq for all r P R and x P A.

Recall A is a left R-module. We think of A as the alphabet. Notice that A admits

a right module structure under the ring EndRpAq of all endomorphisms on A. Indeed, for

a P A and φ P EndRpAq, aφ “the image of a under φ, defines a right scalar multiplication

of EndRpAq on A. Therefore we have that A is an R,EndRpAq-bimodule. Let UpRq be the

group of units of R and GLRpAq the group of units of EndRpAq, that is GLRpAq is the group

of left R-automorphisms on A. This implies that the group UpRq acts on A on the left and

GLRpAq acts on A on the right.

Here is what we mean by a weight function.

Definition 2.2.2. A weight w on the alphabet A is a complex-valued function w : A Ñ C

on A.

Every weight function on A extends to a weight function on An by wpx1, . . . , xnq “
ř

iwpxiq for all x P An.

For a weight w we define what we call left and right symmetry groups of w as follows.

Definition 2.2.3. The left and right symmetry groups of a weight w : AÑ C are given by

Gltpwq “ tu P UpRq : wpuaq “ wpaq, all a P Au,

Grtpwq “ tτ P GLRpAq : wpaτq “ wpaq, all a P Au.

Let C1 and C2 be two left linear codes of length n over A and let w be a weight on A.

In the following we define several different notions of code-equivalence.

A linear map f : C1 Ñ C2 is said to be a w-isometry if f is an isomorphism preserving

the weight w. That is wpcfq “ wpcq for all c P C1.

8



Definition 2.2.4. Two codes C1 and C2 are said to be w-isometric if there is a w-isometry

f : C1 Ñ C2.

An automorphism T : An Ñ An is called a monomial transformation if there are a

permutation σ on n elements, and τ1, . . . , τn P GLRpAq such that

pa1, . . . , anqT “ paσp1qτ1, . . . , aσpnqτnq.

If τ1, . . . , τn are elements of some subgroup G of GLRpAq, then T is said to be a G-monomial

transformation.

Definition 2.2.5. Two codes C1 and C2 are said to be G-monomially equivalent if there is

a G-monomial transformation T with C1T “ C2.

Definition 2.2.6. Two codes C1 and C2 are said to be permutationally equivalent if there

is a t1u-monomial transformation T with C1T “ C2. That is, all the τ ’s appearing in the

definiton of T are in fact the identity element.

Note that T |C1 is a w-isometry, provided T is a Grt-monomial transformation. That is,

two codes are w-isometric if they are Grt-monomially equivalent. The converse is not always

true. The converse is true for codes over finite fields equipped with the Hamming weight.

This result is known as the MacWilliams extension theorem, refer to Section 3.1.

2.3 The Character Module

In this section, we define the character module, and we introduce Pontryagin’s duality functor

for modules. For more details, see Section 3 in [17]. Recall that A is a finite left R-module,

in particular, A is a finite abelian group.

Definition 2.3.1. For any abelian group A, a character π on A is defined to be a group

homomorphism π : A Ñ Cˆ, where Cˆ is the multiplicative group of non-zero complex

numbers.

9



We let pA denote the collection of all characters on A.

Lemma 2.3.2. The collection pA of all characters on A is an abelian group under pointwise

multiplication. If A is a left R-module, then pA is a right R-module.

Proof. Notice that pA is the collection of all group homomorphisms from A to Cˆ. In other

words, pA “ HomZpA,Cˆq. Since Cˆ is an abelian group under multiplication, then so is

HomZpA,Cˆq under pointwise multiplication.

Let π P pA and r P R. The right scalar multiplication of π and r is denoted by πr and

is defined by

πrpaq “ πpraq, all a P A.

It is easy to see that this indeed defines a right R-module structure on pA.

Remark 2.3.3. Since the operation on the abelian group pA is “multiplication”, and since it

is known that exponentiation is distributive over multiplication, it is convenient to write the

right scalar multiplication on pA in exponential form. That is, the right scalar multiplication

of π P pA and r P R is expressed as πr instead πr. In this case, the distribution of the

scalar multiplication on the group operation of pA is written as pτπqr “ τ rπr instead of

pτπqr “ τrπr.

Lemma 2.3.4. For a finite abelian group A, the following hold.

•
ř

πP pA πpaq “

$

&

%

|A|, if a “ 0

0, if a ‰ 0
.

•
ř

aPA πpaq “

$

&

%

|A|, if π “ 1

0, if π ‰ 1
.

Proof. It is clear that
ř

πP pA πp0q “
ř

πP pA 1 “ |A|. Now let a ‰ 0 be an element of A, then

there is τ P pA such that τpaq ‰ 1, see [14, page 61]. Using the group structure on pA we get:

ÿ

πP pA

πpaq “
ÿ

πP pA

pτπqpaq “ τpaq
ÿ

πP pA

πpaq.

10



Since τpaq ‰ 1 then we must have
ř

πP pA πpaq “ 0. The second part is proved similarly.

Corollary 2.3.5. Let S be a right submodule of the character module pA. For s P A,

ÿ

πPS

πpsq “

$

&

%

|S|, s P pA : Sq

0, otherwise
,

where pA : Sq “ ta P A : πpaq “ 1, all π P Su.

Let R-mod denote the category of all finite left R-modules and mod-R denote the

category of all finite right R-modules. The construction pA is in fact functorial, and it

is known as the Pontryagin duality functor. The following lemma summarizes the main

properties of this functor on the objects. A detailed study of this functor is found in [17].

Lemma 2.3.6. The duality functor p : R-mod é mod-R is a contravariant functor satisfying

the following, for any left (right) R-module B:

1. B and pB are isomorphic as groups. In particular, | pB| “ |B|.

2.
p

pB – B as left (right) R-modules.

3. pB is an pEndRpBq, Rq-bimodule. (pR,EndRpBqq-bimodule).

4. If B is an R-bimodule, then so is pB.

The duality functor acts on the morphisms in the following way. For any φ in HomRpB,Cq,

where B and C are left R-modules, there is an induced homomorphism pφ in HomRp pC, pBq of

right R-modules given by the following diagram. For α P pC, pφpαq is given by

B
φ //

pφpαq &&

C

α
��

Cˆ

That is, pφpαq “ α ˝ φ.

11



Lemma 2.3.7. Let B and C be left R-modules with φ P HomRpB,Cq. Then

im pφ “ p pB : kerφq,

where p pB : kerφq “ tπ P pB : πpbq “ 1, for all b P kerφu.

Proof. Let τ P p pB : kerφq. Then τpbq “ 1 for all b P kerφ. This means that kerφ Ď ker τ ,

and so τ factors through B{ kerφ – imφ. That is, there is σ : imφ Ñ Cˆ making the

following diagram commute.

B
τ //

φ
��

Cˆ

imφ

σ

77

Notice that σ is a character on imφ. We would like to extend σ to a character on the whole

module C. This can be done by making use of the following exact sequence.

0 Ñ imφÑ C Ñ C{ imφÑ 0.

The duality functor is an exact contravariant functor, see [17, Remark 3.3]. Therefore, we

get the induced exact sequence

0 Ð yimφÐ pC Ð {C{ imφÐ 0.

The map yimφ Ð pC is surjective and σ belongs to yimφ, therefore σ extends to a

homomorphism σ̄ on C. Since σ “ σ̄ on imφ, then τ “ σ ˝φ “ σ̄ ˝φ which, by the definition

of pφ, says that τ “ pφpσ̄q. This shows that τ P im pφ and so p pB : kerφq Ď im pφ.

Conversely, if τ P im pφ, then τ “ pφpσq for some σ in pC. For b P kerφ,

τpbq “ pφpσqpbq “ σpφpbqq “ σp0q “ 1.

This shows τ P p pB : kerφq.

12



In the following we shift our attention to R-bimodules. We define the following.

Definition 2.3.8. Let B be an R-bimodule and r P R. Define λr to be the left scalar

multiplication by r on B. That is, λr : B Ñ B with λrpbq “ rb, for all b P B. In the case

when B “ pR, we will use the notation λrpπq “
rπ, all π in B. Similarly, ρr is the right scalar

multiplication on B. Remark 2.3.3 explains our choice of notation.

We will not distinguish λr and ρr for different R-bimodules, it should be clear from con-

text which module is being considered. The following lemma shows how scalar multiplication

is affected by the duality functor.

Lemma 2.3.9. For r P R, we have

pλr “ ρr and pρr “ λr.

Proof. Let B be an R-bimodule and r P R. Then for π P pB and b P B,

ppρrpπqq pbq “ π ˝ ρrpbq “ πpbrq “ rπpbq “ pλrpπqqpbq.

This shows that pρr “ λr. The other equality is proven in a similar fashion.

Lemma 2.3.10. Let A denote the character bimodule pR. Then EndRpARq – R as rings.

Proof. Define

Λ : RÑ EndRpARq

by Λprq “ λr. It is clear that Λ is a ring homomorphism. Let r P ker Λ. Then we have

rπ is the trivial character for all π in A, this implies that 1 “ rπp1q “ πprq, all π P A. It

follows that
ř

πPA πprq “ |A|, and hence r must be zero by Lemma 2.3.4. This shows that Λ

is injective.

Suppose that φ P EndRpARq. We consider the character module R
pA of AR. The

endomorphism φ on AR induces an endomorphism pφ on R
pA. Up to the natural isomorphism

R – pA, pφ is a left R-endomorphism on R. And so pφ is a right multiplication ρs by s, for
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some s P R. Noting that
p

pφ “ φ, it follows that φ “ pρs. Lemma 2.3.9 then implies that

φ “ λs. This implies that Λ is surjective, and hence a ring isomorphism.

Recall that UpRq denotes the group of units in R. The following follows immediately

form Lemma 2.3.10.

Corollary 2.3.11. Let A “ pR. Then UpRq – GLRpARq as groups.

2.4 Frobenius Rings and Frobenius Bimodules

In this section we present the necessary notions of Frobenius rings and Frobenius bimodules.

For a detailed presentation of this class of rings, refer to [17].

Although there is a general definition of Frobenius rings that is applicable to infinite

rings, there is a simpler definition in the finite case. The following definition is usually

expressed as a theorem when the full general definition is considered, see [17, Theorem 3.10].

Definition 2.4.1. A finite Frobenius bimodule A is an pR,Rq-bimodule such that RA – R
pR

and AR – pRR. A finite Frobenius ring is a finite ring that is a Frobenius bimodule over

itself.

Lemma 2.4.2. For a Frobenius R-bimodule A we have

R
pA – RR and pAR – RR.

Proof. By dualizing the definition of a Frobenius bimodule and using Lemma 2.3.6.

Definition 2.4.3. A left R-module B is a cyclic R-module generated by b P B, if

B “ trb : r P Ru.

Similarly, if B is a right R-module with B “ tbr : r P Ru, then B is a cyclic right R-module.
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We know that RR and RR are cyclic R-modules, indeed, both RR and RR are generated

by 1. Therefore by the above lemma, both R
pA and pAR are cyclic modules. A generator for

R
pA is called a left generating character and a generator for pAR is called a right generating

character for A.

Lemma 2.4.4. Let A be the character bimodule pR. Then the character χ in pA defined by

χpπq “ πp´1q, all π P A

is both a left and right generating character for A.

Proof. We show that χ is a left generating character for A. The other side is proven similarly.

Note that, by Lemma 2.3.6, we have that pA – R as bimodules. Therefore, it suffices to show

that R is isomorphic to Rχ, the left submodule generated by χ in pA. Define

Ψ : RÑ Rχ

r ÞÑ rχ

It is clear that Ψ is a group homomorphism and is surjective. Let r be an element of ker Ψ.

Then we have that rχpπq “ 1, for all π in A. That is, χpπrq “ πrp´1q “ πp´rq “ 1 for

all π in A. It follows that
ř

πPA πp´rq “ |A|, and hence r must be zero by Lemma 2.3.4.

Therefore Ψ is an isomorphism.

2.5 Multiplicity Functions

In this section we define and study multiplicity functions which are another way to describe

linear codes. Fix an alphabet A, which is a left R-module, and a weight w. And let Glt and

Grt be the left and right symmetry groups for the weight w.

Let M be a left R-module thought of as the message space of the code. First we need

to define what is known as parametrized codes.

15



Definition 2.5.1. A parametrized code of length n is defined by the pair pM,Λq, where M

is a finite left R-module and Λ : M Ñ An is a homomorphism of left R modules.

Notice that if pM,Λq is a parametrized code then the image C “MΛ of Λ is a classical

linear code of length n over A.

Remark 2.5.2. Recall that HomRpM,Anq ” HomRpM,Aqn. That means that Λ P HomRpM,Anq

can be viewed as Λ “ pλ1, . . . , λnq in HomRpM,Aqn.

Example 2.5.3. Let A “ R “ F be a finite field. Suppose that C is an rn, ks-linear code

over F with a generator matrix G. Let M “ Fk be the k-dimensional vector space over F.

Define Λ : M Ñ Fn by mΛ “ mG. This defines a parametrized code pM,Λq over F. We

have

C “ tmG : m P Fku “MΛ.

The columns of the matrix G are really the same as the functionals λ1, . . . , λn. Indeed, if Gi

denotes the ith column of the matrix G, then mGi “ mλi, for 1 ď i ď n.

The right symmetry group Grt acts on the right on HomRpM,Aq the collection of all

functionals by the following. For φ P Grt and λ P HomRpM,Aq, λφ is defined by mpλφq “

pmλqφ for all m PM . Let O7 denote the orbit space HomRpM,Aq{Grt of the above action.

Definition 2.5.4. A multiplicity function η is a function η : O7 Ñ N with ηporbp0qq “ 0.

Let F0pO7,Nq denote the collection of all multiplicity functions.

For a fixed message space M , there is a one-to-one a correspondence between the collec-

tion all multiplicity functions F0pO7,Nq and the collections of all classes of monomially equiv-

alent parametrized codes. Starting with a parametrized code pM,Λq, with Λ “ pλ1, . . . , λnq,

define a multiplicity function η to count the number of functionals λi’s in each orbit. That

is ηporbpρqq “ |ti : λi P orbpρqu|. Conversely, for a multiplicity function η P F0pO7,Nq, we

choose Λ “ pλ1, . . . , λnq such that ηporbpρqq “ |ti : λi P orbpρqu|, this Λ is well defined up to

a monomial transformation.
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From now until the end of the section, we will only consider classes of monomially

equivalent codes, so we use multiplicity functions to refer to them.

Let η be a multiplicity function with a corresponding parametrized code pM,Λq. The

codeword corresponding to a message word m PM is x “ mΛ. The weight of x is given by:

wpxq “
ÿ

wpxiq “
ÿ

wpmλiq “
ÿ

orbpλqPO7
wpmλqηpλq.

Notice that the above expression does not depend on the choice of λ, it only depends on the

multiplicity function η. The list of weights of the codewords of the code C “ MΛ is then

given by the map m ÞÑ
ř

orbpλqPO7 wpmλqηpλq. This is what we refer to as the W mapping.

We consider the space F0pO7,Qq instead to make use of the fact that it is a vector space

over Q.

Definition 2.5.5. The W mapping is given by

W : F0pO7,Qq Ñ F0pM,Qq

η ÞÑ

»

–m ÞÑ
ÿ

orbpλqPO7
wpmλqηpλq

fi

fl .

Where F0pM,Qq “ tf : M Ñ Q : fp0q “ 0u.

Lemma 2.5.6. The W map is a linear Q-homomorphism.

Proof. For q P Q and η1, η2 P F0pM,Qq, we have

W pη1 ` qη2qpmq “
ÿ

orbpλqPO7
wpmλqpη1 ` qη2qpλq

“
ÿ

orbpλqPO7
wpmλqη1pλq ` q

ÿ

orbpλqPO7
wpmλqη2pλq “ W pη1qpmq ` qW pη2qpmq,

for all m PM .

Notice that the left symmetry group Glt acts on M on the left, as M is a left R-module.
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Let O denote the orbit space GltzM . It is easy to see that W pηq is invariant under the above

action. Let F pO,Qq denote the space of invariant functions f : M Ñ Q under the action

GltzM . And let F0pO,Qq be defined by F0pO,Qq “ tf P F pO,Qq : fporbp0qq “ 0u. Then

the W mapping can be thought of as W : F0pO7,Qq Ñ F0pO,Qq.

The mapping W is used as a way to find a sufficient condition for the extension property

to be satisfied as shown in the following theorem.

Theorem 2.5.7 (Theorem 7.2, [19]). For an alphabet A, if the mapping W : F0pO7,Qq Ñ

F0pO,Qq is injective for every finite R-module M , then the alphabet A has the extension

property with respect to the weight w.

The notions defined in this section will be used to describe codes in Chapter 4.
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Chapter 3

The Extension Theorem for Weight

Functions over Frobenius Bimodules

The main two notions of code equivalence are w-isometries and monomial equivalence. The

first notion of equivalence, w-isometries, is intrinsic. Two codes C1 and C2 are said to be

w-isometric if there is a weight-preserving linear isomorphism f sending C1 to C2. The second

notion of equivalence, monomial equivalence, is extrinsic. Two codes C1 and C2 are said to be

monomially equivalent if there is a monomial transformation T on the ambient space sending

C1 to C2. The MacWilliams extension theorem shows that these two notions of equivalence

are the same for linear codes over finite fields with respect to Hamming weights. We say

that finite fields equipped with the Hamming weight have the extension property [19]. In

general, an alphabet A is said to have the extension property with respect to a weight w if

every w-isometry extends to a monomial transformation, see Definition 3.1.1.

The main result in this chapter is to give a characterization for a general weight function

to have the extension property over the Frobenius bimodule pR. We presented the essential

properties of the Frobenius bimodule in section 2.3. Throughout this chapter R is a finite

ring with 1 and A is a finite left R-module.
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3.1 The Extension Theorem and the Extension Prop-

erty

There are several notions of code equivalence as we saw in Section 2.2. In this section we

cover the main results regarding the extension theorem. Recall that for a weight w, the

restriction T |C1 of a Grt-monomial transformation produces a w-isometry. That implies that

every pair of Grt-monomially equivalent codes are w-isometric. The converse is known as

the extension property.

Definition 3.1.1. Let A be a left R-module and w a weight function on A. A is said to

have the extension property with respect to w if every w-isometry between two linear codes

extends to a Grt-monomial transformation of the ambient space An.

It was shown in [13] that finite fields have the extension property with respect to the

Hamming weight. The result is known as the MacWilliams extension theorem.

Theorem 3.1.2 (The MacWilliams Extension Theorem). Every Hamming weight isometry

f of linear codes over a finite field F extends to a monomial transformation T on the ambient

space Fn.

In 1999, Wood showed that finite Frobenius rings have the extension property with

respect to the Hamming weight [17]. In fact, the class of Frobenius rings characterizes finite

rings that have the extension property [18]. In 2004, Greferath et al. proved that finite

Frobenius bimodules have the extension property with respect to both Hamming weight and

the homogeneous weight [8]. With respect to Lee weights, see Definition 4.1.4, it was shown

that Zm has the extension property when m is a prime power [12] and then it was proved

for any positive integer m in [4].

Over the past several years, many sufficient conditions and a few necessary conditions

were found for the extension property to hold for various alphabets and weight functions. In

this chapter we give sufficient conditions for the Frobenius bimodule to have the extension
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property with respect to a general weight function. Sufficient conditions for the extension

property over Frobenius bimodules with respect to weights of maximal symmetry were given

in [6].

Theorem 3.1.3. [6, Theorem 4.4] Suppose A is a Frobenius bimodule over R with a gener-

ating character χ and w is a bi-invariant weight on A. If w satisfies

ÿ

aPS

wpaqχpaq ‰ 0, for all nonzero submodules S Ď A,

then w has the extension property.

This result is recovered using monoid-ring tools in Corollary 3.3.5.

3.2 Monoid-Ring Approach

In this section we follow the general setup and notations from [21]. Recall that R is a finite

ring with 1. Let R “ F pR,Cq be the complex vector space of all complex-valued functions

on R. We make R into a ring by defining addition to be pointwise, and multiplication is

given by

αβprq “
ÿ

st“r

αpsqβptq, for α, β P R and r P R.

In fact, R is naturally isomorphic the complex monoid ring of the monoid pR, ¨q with elements

thought of as complex-valued functions instead of complex formal sums. It is clear that R

is also a complex algebra with dimension |R|. We think of the natural basis of R as terurPR,

where erpsq is 1 when s “ r and is zero otherwise.

A similar construction is done for the alphabet A. Let FpAq “ F pA,Cq be the complex

vector space of all complex-valued functions on A. As a complex vector space, FpAq has

natural basis tδauaPA, where δapbq is 1 when b “ a and is zero otherwise. The left R-module

structure on A induces a right R-module structure on FpAq, as follows. The following two

results generalize Lemmas 13, 14 and 19 in [7].
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Lemma 3.2.1. FpAq is a right R-module under the following scalar multiplication

pwαqpaq “
ÿ

rPR

wpraqαprq, for w P FpAq, α P R, and a P A.

Proof. We verify one of the right scalar multiplication axioms. Let α, β P R and w P FpAq.

Then

pwpαβqqpaq “
ÿ

rPR

wpraqpαβqprq

“
ÿ

rPR

wpraq
ÿ

st“r

αpsqβptq

“
ÿ

s,tPR

wpstaqαpsqβptq

“
ÿ

tPR

˜

ÿ

sPR

wpstaqαpsq

¸

βptq

“
ÿ

tPR

pwαqptaqβptq “ ppwαqβqpaq.

This shows that wpαβq “ pwαqβ. The rest of the axioms can be proved in a similar fashion.

If w in FpAq is thought of as a weight function, then wα can also be thought of as a

weight function, for all α P R.

Proposition 3.2.2. Suppose f : C1 Ñ C2 is a w-isometry. Then f is a wα-isometry for any

α P R.

Proof. For x P C1,

wαpxfq “
ÿ

rPR

wprpxfqqαprq “
ÿ

rPR

wpprxqfqαprq “
ÿ

rPR

wpprxqqαprq “ wαpxq.
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3.2.1 The W Matrix

Let w P FpAq be an arbitrary but fixed element. We think of w as a weight function on

the alphabet A. The right R-module structure on FpAq defines a map FpAq ˆRÑ FpAq.

By fixing w P FpAq, we obtain a homomorphism of right R-modules (also denoted by w)

w : R Ñ FpAq given by wpαq “ wα, all α P R. We will refer to this homomorphism w as

left multiplication by w.

It is clear that the left multiplication by w is a C-linear homomorphism. Using the

natural bases mentioned above for R and FpAq, we can find the matrix representation of w.

In fact, we have

wperqpπq “ werpπq “
ÿ

sPR

wpsπqerpsq “ wprπq.

That is, wer “
ř

πPAwp
rπqδπ, all r in R. Therefore, the matrix representation of w under

the natural bases is given by pwprπqqπPA,rPR. As simple as this matrix representation seems

to be, it does not reflect much of the structures of A and R and their interrelation. In the

following we will use a different basis for FpAq that will give a nice block structure for the

matrix representation of w.

Definition 3.2.3. (Fourier Transform) Let B be a finite abelian group, and f a complex-

valued function on B. The Fourier Transform pf of f is a complex-valued function on pB

defined by

pfpπq “
ÿ

bPB

fpbqπpbq, all π P pB.

From now until the end of this chapter, we take A “ pR to be the character bimodule

pR. In this case, we get the following nice isomorphism between R and FpAq as shown in

[21, Theorem 4.3.].

Theorem 3.2.4. Let A “ pR. The Fourier transform p: R Ñ FpAq mapping α to pα is an

isomorphism of complex vector spaces.

Proof. It is clear that the Fourier transform defines a linear homomorphism of complex vector
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space. The inverse Fourier transform q is given, for w P FpAq and r P R, by

qwprq “
1

|R|

ÿ

πPA

wpπqπp´rq.

This shows that the Fourier transform is in fact an isomorphism.

Corollary 3.2.5. tpesusPR forms a basis for FpAq, where pes “
ř

πPA πpsqδπ.

Recall that we fixed w P FpAq and that A “ pR. We calculate the matrix representation

W of the map w with respect to the bases terurPR for R and tpesusPR for FpAq. Recall that

λr is the left scalar multiplication by r in A, as defined in Lemma 2.3.10. Since λr is a right

R-module homomorphism of A, we have that both kerλr and imλr are right submodules of

A.

Fix r P R. Using the inverse Fourier transform formula, it is easy to find that δπ “

1
|R|

ř

sPR πp´sqpes. The column indexed by er in the matrix representation W of w is then

given by:

wer “
ÿ

πPA

wprπqδπ

“
ÿ

πPA

wprπq

˜

1

|R|

ÿ

sPR

πp´sqpes

¸

“
1

|R|

ÿ

sPR

˜

ÿ

πPA

wprπqπp´sq

¸

pes

“
1

|R|

ÿ

sPR

¨

˝

ÿ

πPimλr

wpπq
ÿ

τPλ´1
r pπq

τp´sq

˛

‚

pes.

For π P imλr and r P R, let τr,π denote an element in λ´1r pπq, that is λrpτr,πq “ π. Since
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λ´1r pπq is a coset of kerλr, we have λ´1r pπq “ τr,π kerλr. Thus, by Corollary 2.3.5, we get

wer “
1

|R|

ÿ

sPR

¨

˝

ÿ

πPimλr

wpπq
ÿ

τPλ´1
r pπq

τp´sq

˛

‚

pes

“
1

|R|

ÿ

sPR

˜

ÿ

πPimλr

wpπq
ÿ

τPkerλr

τr,πp´sqτp´sq

¸

pes

“
1

|R|

ÿ

sPR

˜

ÿ

πPimλr

wpπqτr,πp´sq
ÿ

τPkerλr

τp´sq

¸

pes

“
| kerλr|

|R|

ÿ

sPpR:kerλrq

˜

ÿ

πPimλr

wpπqτr,πp´sq

¸

pes.

It follows that the ppes, erq-entry in the matrix representation of W is given by:

W
pes,er “

$

&

%

| kerλr|
|R|

ř

πPimλr
wpπqτr,πp´sq, s P pR : kerλrq

0, otherwise
. (3.1)

It seems that the entries W
pes,er might depend on the choice of τr,π. We shall show that the

expression of W
pes,er is in fact independent of the choice of τr,π in λ´1r pπq.

Lemma 3.2.6. For r P R, the left ideal pR : kerλrq is the left principal ideal generated by r.

Proof. Recall that pA “ R, hence, by Lemma 2.3.7, im pλr “ pR : kerλrq.

By Lemma 2.3.9, we know that pλr is the right multiplication ρr by r on R. This implies

that im pλr “ im ρr “ Rr, hence the result follows.

Corollary 3.2.7. Let r, s P R. Then, Rr “ Rs if and only if kerλr “ kerλs.

Lemma 3.2.8. Let r P R and s P pR : kerλrq. The expression
ř

πPimλr
wpπqτr,πp´sq is

independent of the choice of τr,π in λ´1r pπq.

Proof. Since λ´1r pπq is the coset τr,π kerλr of kerλr, any other choice of τr,π in λ´1r pπq has

the form τr,πσ, with σ P kerλr. Plugging this into equation 3.1, we get an additional factor

of σp´sq, where s P pR : kerλrq. But σp´sq “ 1, so expressions agree.
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The following is a restatement of [17, Proposition 5.1].

Proposition 3.2.9. Let r, s P R. Then UpRqr “ UpRqs if and only if Rr “ Rs.

Corollary 3.2.10. Let r, s P R. Then, kerλr “ kerλs if and only if r “ us, for some

u P UpRq.

Proof. Suppose that kerλr “ kerλs. By Lemma 3.2.6,

Rr “ pR : kerλrq “ pR : kerλsq “ Rs.

By Proposition 3.2.9, this implies that r “ us for some u P UpRq.

Conversely, suppose that r “ us for some u P UpRq. If π P kerλs, then

rπ “ usπ “ u
p
sπq “ u

1 “ 1.

This shows that π P kerλr. Similarly we get the other inclusion, and hence kerλr “ kerλs.

3.2.2 Total Ordering on R

In this section, we define an ordering on the ring R to get a block upper triangular form for

the matrix W . Note that the collection P “ tRrurPR of principal left ideals of R is partially

ordered with respect to set inclusion. We extend the above partial order to a total ordering

on the collection P . Now we use this to define a total ordering on R as follows: we replace

each principal left ideal Rr by an interval consisting of the elements in the coset UpRqr in

some order. Not that this interval does not depend on the choice of the generator r of Rr,

see Proposition 3.2.9. Our choice of total ordering then satisfies the following conditions.

Definition 3.2.11. We choose a total ordering pR,ăq on R satisfying the following two

properties:
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1. If Rr is a proper subideal of Rs, then r ă s.

2. If r ă s and Rr “ Rs, then for all t in the interval rr, ss we must have Rr “ Rt “ Rs.

We then have that 0 ă r all r ‰ 0, and that the greatest element is a unit.

Notice that the group of units UpRq acts on R by left multiplication. Let UpRqzR “

tOmu
t´1
m“0 denote the orbit space of this action. We choose a fixed representative tm for the

orbit Om by tm “ minOm. By our choice of the order on R, every orbit corresponds to an

interval all of whose elements generate the same left ideal, that is Rtm “ Rr for all r P Om.

Also, by Corollary 3.2.7, kerλtm “ kerλr, for all r P Om. Finally, we choose to order the

orbits to be compatible with the ordering on R, that is, for m1 ă m2, we have r ă s for all

r P Om1 and s P Om2 .

Lemma 3.2.12. For 0 ď m ă t, the set of generators Om of Rtm is given by

Om “ Rtm ´
m´1
ď

j“0

Rtj.

Proof. Suppose that s P Rtm and s R Rtj, all 0 ď j ă m, then we have Rs ď Rtm. If

Rs “ Rtm, then by Proposition 3.2.9, s is a unit multiple of tm, hence s P Om. If Rs ă Rtm,

then by definition s ă tm. Let k be such that Rs “ Rtk. By our choice of total ordering we

have that k ă m, and so s R Rtk, a contradiction.

Conversely, suppose that s P Om. If s P Rtj, for some 0 ď j ă m, then we get that

Rtm ă Rtj, since s is a generator of Rtm. By definition, we get that tm ă tj which contradicts

the fact that j ă m. Therefore, s R Rtj, for 0 ď j ă m and the result follows.

We use the total ordering on R to order the bases terurPR of R and tpesusPR of FpAq in

the obvious way. That is, r ă s if and only if er ă es if and only if per ă pes.

Theorem 3.2.13. Using the ordered bases terurPR of R and tpesusPR of FpAq, the matrix

representation of W is a block upper triangular matrix with t diagonal blocks given by:

Dm “ pWpes,erqsPOm,rPOm
, for 0 ď m ă t.
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Proof. Let m ą j. We need to show that W
pes,er “ 0, for s P Om and r P Oj. Since j ă m

and s P Om, then by Lemma 3.2.12 s R Rtj. That is, s R pR : kerλrq and so the coefficient

of pes in the expansion of Wer equals to zero. Therefore W
pes,er “ 0 as desired.

3.2.3 Factorization of R and FpAq

.

We follow the results in [21, Section 5] in this subsection. We define the following

invariant subspaces of R and FpAq. Recall that A “ pR.

Definition 3.2.14. Let H be a subgroup of UpRq and K a subgroup of GLRpAq. Define

HR “ tα P R : αphrq “ αprq, for all h P H, r P Ru,

FpAqH “ tw P FpAq : wphaq “ wpaq, for all h P H, a P Au,

KFpAq “ tw P FpAq : wpaφq “ wpaq, for all φ P K, a P Au.

Lemma 3.2.15. Let H be a subgroup of UpRq. The set HR is a right ideal of R. In fact,

HR is a direct summand of R with a complement HY defined by

HY “ tα P R :
ÿ

hPH

αphrq “ 0, for all r P Ru.

Proof. It is clear that HR is closed under addition. Let α P HR and β P R. Then

αβphrq “
ÿ

st“hr

αpsqβptq “
ÿ

hs1t“hr

αphs1qβptq “
ÿ

s1t“r

αps1qβptq “ αβprq.

This shows that αβ P HR. Now we show that HY is also a right ideal of R. Let γ P HY and

β P R. Then

ÿ

hPH

γβphrq “
ÿ

hPH

ÿ

st“hr

γpsqβptq “
ÿ

s1t“r

˜

ÿ

hPH

γphs1q

¸

βptq “ 0.
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This shows that γβ P HY . Now we show that R “ HR ‘ HY . Suppose that α P R. Define

ᾱ to be the average of α on the orbits of H in R. That is, ᾱprq “ 1
|H|

ř

hPH αphrq, all r P R.

It is clear then that ᾱ is an element of HR. Also, α ´ ᾱ belongs to HY . Indeed,

ÿ

hPH

pαphrq ´ ᾱphrqq “
ÿ

hPH

˜

αphrq ´
1

|H|

ÿ

gPH

αpghrq

¸

“
ÿ

hPH

˜

αphrq ´
1

|H|

ÿ

gPH

αpgrq

¸

“
ÿ

hPH

αphrq ´
ÿ

gPH

αpgrq “ 0.

This shows that R “ HR` HY . And it is clear that the sum is in fact a direct sum.

Fix a weight w P FpAq, and note that w P GrtFpAq X FpAqGlt . Consider the factor-

izations R “ GltR ‘ GltY and R “ GrtR ‘ GrtY , where Glt and Grt are the left and right

symmetry groups of w. We will find bases for R that are compatible with the above fac-

torizations. Let GltzR “ tPiuk´1i“0 be the orbit space when Glt acts on R on the left, and

GrtzR “ tQju
l´1
j“0 be the orbit space when Grt acts on R on the left. Since both Glt and Grt

are subgroups of UpRq, then both tPiuk´1i“0 and tQju
l´1
j“0 are refinements of tOmu

t´1
m“0, and so

we choose to order them accordingly, as shown in the following chart.

Rr s

P0

r s

P1, . . . ,Pk1
r s

Pk1`1, . . . ,Pk2
. . . . . .

r s

Pkt´2`1, . . . ,Pk´1

O0 O1 O2 Ot´1

(3.2)

Similarly,
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Rr s

Q0

r s

Q1, . . . ,Ql1

r s

Ql1`1, . . . ,Ql2
. . . . . .

r s

Qlt´2`1, . . . ,Ql´1

O0 O1 O2 Ot´1

(3.3)

Notice that O0 “ P0 “ Q0 “ t0u. Using the ordering on R from Definition 3.2.11, let

ri “ minPi be a fixed representative for Pi, and sj “ minQj be a fixed representative for

Qj. Define

fi “
1

|Pi|
ÿ

rPPi

er, for all 0 ď i ă k,

gj “
ÿ

sPQj

es, for all 0 ď j ă l.

Lemma 3.2.16. The sets tfiu
k´1
i“0 and tgju

l´1
i“0 form bases for the spaces GltR and GrtR,

respectively.

Proof. It is easy to see that tfiu
k´1
i“0 is indeed a linearly independent subset of GltR. For any

α P GltR, α is constant on each orbit in the orbit space tPiuk´1i“0 . Therefore, α is written

as α “
řk´1
i“0 αpriqfi. This shows that tfiu

k´1
i“0 is a basis for GltR. The other part is shown

similarly.

Proposition 3.2.17. The Fourier transform ˆ : GrtR Ñ GrtFpAq is an isomorphism of

complex vector spaces.

Proof. Consider a basis element fi in GrtR, we show that f̂i is an element of GrtFpAq. Let

h P Grt,

f̂ipπ
h
q “

ÿ

rPR

fiprqπ
h
prq “

ÿ

rPR

fiprqπphrq

“
ÿ

sPR

fiph
´1sqπpsq “

ÿ

sPR

fipsqπpsq “ f̂ipπq.

This shows that f̂i is an element of GrtFpAq. Conversely, we show that the inverse Fourier
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transform maps GrtFpAq to GrtR. Let f P GrtFpAq and h P Grt, we have

qfphrq “
1

|R|

ÿ

πPA

fpπqπp´hrq “
1

|R|

ÿ

πPA

fpπqπhp´rq

“
1

|R|

ÿ

σPA

fpσh
´1

qσp´rq “
1

|R|

ÿ

σPA

fpσqσp´rq “ qfprq.

This shows that qf is an element of GrtR.

Corollary 3.2.18. The set tpgj “
ř

sPQj
pesu

l´1
j“0 forms a basis for GrtFpAq.

Proof. Follows directly from Lemma 3.2.16 and Proposition 3.2.17.

Now we extend tfiu
k´1
i“0 to a basis for the space R using the factorization R “ GltR‘GltY .

Let tfk, . . . , f|R|´1u be a basis for GltY . Then tfiu
|R|´1
i“0 is a basis for R that is compatible

with the above factorization. Similarly, we extend the basis tpgju
l´1
j“0 to tpgju

|R|´1
j“0 a basis for

the whole space FpAq.

Lemma 3.2.19. Under the map w : RÑ FpAq, we have wGltY “ 0 and wR Ă GrtFpAq.

Proof. Let α P GltY . Since w P FpAqGlt , then for π P A we have

wαpπq “
ÿ

rPR

wprπqαprq

“
1

|Glt|

ÿ

rPR

ÿ

hPGlt

wphrπqαprq

“
1

|Glt|

ÿ

hPGlt

ÿ

sPR

wpsπqαph´1sq

“
ÿ

sPR

wpsπq

˜

1

|Glt|

ÿ

hPGlt

αph´1sq

¸

“ 0

since h P Glt and α P GltY . This shows that wGltY “ 0.

Let α P R, h P Grt and π P A. Then

wαpπhq “
ÿ

rPR

wprπhqαprq “
ÿ

rPR

wprπqαprq “ wαpπq.
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Therefore we indeed have wR Ă GrtFpAq.

In the following we show that the entry W
pes,er depends only on the orbits of r and s

under the appropriate actions.

Theorem 3.2.20. Let r and s be elements of R such that r P Pi and s P Qj. Then

W
pes,er “ W

pesj ,eri
.

Proof. Since s P Qj “ orbpsjq, then s “ usj for some u P Grt. It is clear s P pR : kerλrq if

and only if sj P pR : kerλrq. If s, sj R pR : kerλrq, then W
pes,er “ W

pesj ,er
“ 0, by equation 3.1.

Otherwise, suppose that s, sj P pR : kerλrq, then by Lemma 3.2.6 sj “ tr for some t P R, so

we have s “ usj “ utr. Therefore, by the right symmetry of w and by the fact that imλr is

a right submodule,

|R|

| kerλr|
W

pe´s,er “
ÿ

πPimλr

wpπqτr,πpsq

“
ÿ

πPimλr

wpπqτr,πputrq “
ÿ

πPimλr

wpπqrτr,πputq

“
ÿ

πPimλr

wpπqπputq “
ÿ

πPimλr

wpπqπuptq

“
ÿ

ρPimλr

wpρu
´1

qρptq “
ÿ

ρPimλr

wpρqρptq

“
ÿ

ρPimλr

wpρqτr,ρptrq “
ÿ

ρPimλr

wpρqτr,ρpsjq “
|R|

| kerλr|
W

pe´sj
,er .

Similarly, since r P Pi “ orbpriq, then r “ uri for some u P Glt. Suppose that

s P pR : kerλrq “ pR : kerλriq. It is clear that imλr “ u imλri and that | kerλr| “ | kerλri |,

therefore

|R|

| kerλr|
W

pe´s,er “
ÿ

πPimλr

wpπqτr,πpsq “
ÿ

πPu imλri

wpπqτr,πpsq “
ÿ

ρPimλri

wpuρqτr,πpsq.
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Notice that, if π “ uρ, then any τ P λ´1r pπq is an element of λ´1ri pρq as well. In fact

riτ “ u´1rτ “ u´1

p
rτq “ u´1

π “ ρ.

Therefore τr,π P λ
´1
ri
pρq. Thus, by Lemma 3.2.8 and left symmetry of w, we have

|R|

| kerλr|
W

pe´s,er “
ÿ

ρPimλri

wpuρqτr,πpsq “
ÿ

ρPimλri

wpρqτri,ρpsq “
|R|

| kerλri |
W

pe´s,eri

This shows that W
pes,er “ W

pesj ,eri
.

Theorem 3.2.21. Under the bases tfiu
|R|´1
i“0 and tĝju

|R|´1
j“0 , the matrix representation W 2 of

w is given by

W 2
“

»

—

—

—

—

–

´

Wêsj ,eri

¯

0ďiăk
0ďjăl

0

0 0

fi

ffi

ffi

ffi

ffi

fl

Proof. By Lemma 3.2.19, wfi “ 0, for i ě k. Also, wfi P
GrtFpAq, therefore wfi is written

as a linear combination of tpgju
l´1
j“0 as follows.

wfi “
1

|Pi|
ÿ

rPPi

wer “
1

|Pi|
ÿ

rPPi

ÿ

sPR

W
pes,erpes

“
1

|Pi|
ÿ

sPR

ÿ

rPPi

W
pes,erpes “

1

|Pi|
ÿ

sPR

|Pi|Wpes,eri
pes

“

l
ÿ

j“0

ÿ

sPQj

W
pes,eri

pes “
l
ÿ

j“0

W
pesj ,eri

ÿ

sPQj

pes “
l
ÿ

j“0

W
pesj ,eri

pgj, (3.4)

as desired.

Corollary 3.2.22. The left multiplication by w reduces to a map w̄ : GltRÑ GrtFpAq.

Recall that tOmu
t´1
m“0 is the orbit space of the left action of UpRq on R. Let tm be a

fixed representative of the orbit Om chosen by tm “ minOm, for 0 ď m ă t.

Theorem 3.2.23. Under the bases tfiu
k´1
i“0 and tpgju

l´1
j“0, the matrix representation W of the
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induced w : GltRÑ GrtFpAq is an l ˆ k matrix given by

W
pgj ,fi “ W

pesj ,eri
, for 0 ď i ă k and 0 ď j ă l.

Moreover, ĎW is a block upper triangular matrix with t diagonal blocks given by

W
pgj ,fi “

| kerλtm |

|R|

ÿ

πPtmA

wpvπqχpπuq, where

u P GltzUpRq{Stabptmq, v P GrtzUpRq{Stabptmq, for 0 ď m ď t ´ 1, and χ is the generating

character from Lemma 2.4.4.

Proof. Let 0 ď m ď t´ 1. Refer to charts 3.2 and 3.3, we have that Om “ Pkm´1`1 Y ¨ ¨ ¨ Y

Pkm “ Qlm´1`1 Y ¨ ¨ ¨ Y Qlm . Let km ` 1 ď i ď km`1 and lm ` 1 ď j ď lm`1. The entry

W
pgj ,fi “ W

pesj ,eri
, by equation 3.4. Therefore, the matrix W is a block upper triangular

matrix by Theorem 3.2.13.

Let ri, sj P Om, then ri “ utm and sj “ vtm for some u, v P UpRq. We would like

to understand the restrictions that we can put on u and v to guarantee a unique way of

describing each entry in the matrix. Notice that u and v need to only be considered up to

Stabptmq, the stabilizer of tm under the action UpRqzR. That is, if ri “ utm “ u1tm, then

uStabptmq “ u1Stabptmq, hence u “ u1 in the quotient UpRq{Stabptmq. Similarly for v. Also,

if u1 P Glt, then u1utm “ u1ri is an element of Pi which represents the same basis element

fi. Hence u is only considered up to the quotient GltzUpRq. That is, u can be thought of

as an element in the double quotient GltzUpRq{Stabptmq. Similarly v P GrtzUpRq{Stabptmq.

Notice that sj “ vu´1ri, and that | kerλri | “ | kerλtm | by Corollary 3.2.10. Also σ P imλtm
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if and only if uσ P imλri . By (3.1), we have

|R|

| kerλtm |
W

pgj ,fi “
|R|

| kerλri |
W

pesj ,eri
“

ÿ

πPimλri

wpπqτriπp´sjq “
ÿ

σPimλtm

wpuσqτri,uσp´vu
´1riq

“
ÿ

σPimλtm

wpuσqriτri,uσp´vu
´1
q “

ÿ

σPimλtm

wpuσquσp´vu´1q

“
ÿ

σPimλtm

wpuσqσp´vq “
ÿ

σPimλtm

wpuσqσvp´1q “
ÿ

σPimλtm

wpuσqχpσvq.

Now, suppose that w has maximal symmetry, that is Grt “ Glt “ UpRq. In this case ev-

ery block of the matrix W described above is in fact a 1ˆ1 block, as both GrtzUpRq{Stabptmq

and GltzUpRq{Stabptmq reduce to one element. Also, minPm “ minQm “ minOm “ tm, for

1 ď m ă t.

Theorem 3.2.24. Let w have maximal symmetry. Then ĎW is a tˆt upper triangular matrix

with diagonal entries

ĎW
pgm,fm “

| kerλtm |

|R|

ÿ

πPimλtm

wpπqχpπq, for 0 ď m ă t, where tm “ minOm,

where χ is the generating character for the Frobenius bimodule A.

Proof. Since minPm “ minQm “ minOm “ tm, then u “ v “ 1 from the proof of Theorem

3.2.23. Using Theorem 3.2.23 with u “ v “ 1 we get

ĎW
pgm,fm “

| kerλtm |

|R|

ÿ

πPimλtm

wpπqχpπq.

Corollary 3.2.25. Let w have maximal symmetry. Then determinant ĎW is given by

detĎW “

t´1
ź

m“0

˜

| kerλtm |

|R|

ÿ

πPimλtm

wpπqχpπq

¸

, where tm “ minOm.
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3.3 The Extension Property

In this section we use symmetrized weight compositions to prove our main result about the

extension property. Let’s first recall the definition of symmetrized weight compositions on

an alphabet module A.

Definition 3.3.1. Let Grt Ď GLRpAq be a subgroup of the group GLRpAq of all R-

automorphisms on A. The symmetrized weight composition is a function swc : AnˆA{Grt Ñ

N defined by

swcapxq “ |ti : xi P orbpaqu|, all x P An, orbpaq P A{Grt

The following result is Theorem 13 in [5].

Theorem 3.3.2. Let A be a Frobenius bimodule over a finite ring R. Then A has the

extension property with respect to the symmetrized weight composition.

We use that fact that the symmetrized weight composition has the extension property

over Frobenius bimodules, in particular over A “ pR, to show the following.

Theorem 3.3.3. If W has a zero left null space, then w has the extension property.

Proof. Let f : C1 Ñ C2 be a w-isometry of left linear codes C1, C2 Ď An. Our goal is to show

that f extends to a monomial transformation on the ambient space An.

Fix x P C1. Then swcpxq can be thought of as a function from A to C that is constant

on the right Grt-orbits on A, that is swcpxq is a weight function on A with right symmetry

group Grt, hence swcpxq P GrtFpAq.

Since ĎW is the matrix representation of the map w̄ : GltRÑ GrtFpAq and since ĎW has

zero left null space, then the map sw is surjective. Indeed, the dimension of im sw plus the left

nullity of ĎW is equal to the dimension of GrtFpAq, but since W has a zero left null space,

then dimpim swq “ dimpGrtFpAqq and hence sw is surjective. Therefore, there is α in GltR

such that w̄pαq “ wα “ swcpxq. By Proposition 3.2.2, f is a swcpxq-isometry. By Theorem

3.3.2, f extends to a Grt-monomial transformation of An.
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The following is a our main theorem for this chapter. It follows directly from Theorem

3.3.3.

Theorem 3.3.4. Let A “ pR. If each of the diagonal blocks

W
pgj ,fi “

| kerλtm |

|R|

ÿ

πPtmA

wpvπqχpπuq, where

u P GltzUpRq{Stabptmq and v P GrtzUpRq{Stabptmq, for 0 ď m ď t ´ 1, has zero left null

space, then w has the extension property.

Corollary 3.3.5. Let w have maximal right symmetry. Suppose that

ÿ

πPrA

wpπqχpπq ‰ 0, for all r P R.

Then w has the extension property.

Proof. By Theorem 3.2.24, detĎW ‰ 0 and thus ĎW has a zero left null space. Hence w has

the extension property, by Theorem 3.3.3.
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Chapter 4

Failure of the MacWilliams Identities

The MacWilliams identities give a relation between the Hamming weight enumerator of a

linear code and the Hamming weight enumerator of its dual. The MacWilliams identities are

valid for linear codes over a finite Frobenius ring of size q with respect to the Hamming weight

[17]. We are interested in the question of whether there is some version of the MacWilliams

identities for other alphabets and other weight functions. In this chapter we focus on the

Lee weight over Zm, the integers modulo m.

4.1 Preliminaries

We need the following definitions and terminology.

Definition 4.1.1. Let R be a finite ring with 1. The Hamming weight h : R Ñ N on R is

defined by hprq “ 1 for all nonzero r P R and hp0q “ 0. The Hamming weight extends to

vectors x “ px1, . . . , xnq P R
n by hpxq “

řn
i“1 hpxiq.

The Hamming weight enumerator is defined by the following.

Definition 4.1.2. The Hamming weight enumerator for a code C Ă Rn over R is an element

38



in the polynomial ring CrX, Y s given by

hweCpX, Y q “
ÿ

cPC
Xn´hpcqY hpcq.

Recall the definition of a dual code, Definition 2.1.4. MacWilliams showed in [13]

that there is a relation between the Hamming weight enumerator of a linear code and the

Hamming weight enumerator of its dual. These relations are known as the MacWilliams

identities.

Theorem 4.1.3 (MacWilliams Identities). For a linear code C over a finite field Fq, the

Hamming weight enumerator of CK is given by

hweCKpX, Y q “
1

|C|
hweCpX ` pq ´ 1qY,X ´ Y q,

The same statement of the MacWilliams identities is valid for linear codes over a finite

Frobenius ring of size q with respect to the Hamming weight [17]. We are interested in the

question of whether there is some version of the MacWilliams identities for Lee weight over

Zm.

Recall that a linear code C of length n over Zm is a submodule of Znm. Vectors v P Znm
have the form v “ pv1, . . . , vnq. The dual code CK of C in Znm is defined by CK “ tv P Znm :
řn
i“1 vici “ 0, for all c P Cu.

Definition 4.1.4. The Lee weight is defined on Zm by lmpiq “ |i|, the ordinary absolute

value on Z, where Zm is thought of as Zm “ ti P Z : ´m{2 ă i ď m{2u.

The Lee weight essentially measures the distance from zero when the elements of Zm
are represented on a circle as shown below.
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0

1

2

m ´ 1

Example 4.1.5. The Lee weight over Z6 is given by:

l6 : Z6 Ñ N

´2 ÞÑ 2

´1 ÞÑ 1

0 ÞÑ 0

1 ÞÑ 1

2 ÞÑ 2

3 ÞÑ 3

We will write just lpiq when m is obvious from context. For vectors v P Znm, define

lpvq “
řn
i“1 lpviq. For a linear code C of length n over Zm, the maximum Lee weight in C is

ntm{2u.

Definition 4.1.6. The Lee weight enumerator of a code C Ă Znm is an element in the

polynomial ring CrX, Y s given by

lweCpX, Y q “
ÿ

cPC
Xntm

2
u´lpcqY lpcq.

Let AipCq denote the number of codewords of Lee weight i in C, that is, AipCq “ |tc P

C : lpcq “ iu|, for 0 ď i ď ntm{2u. The Lee weight enumerator of C can then be rewritten as

lweCpX, Y q “

ntm{2u
ÿ

i“0

AipCqXntm
2

u´iY i.
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Our main goal in this chapter is to study the existence of the MacWilliams identities

over Zm with respect to the Lee weight. The Lee weight and the Hamming weight are equal

when m “ 2 or m “ 3; thus the MacWilliams identities for Lee weight are valid in those

cases. For codes over Z4, we have the following theorem.

Theorem 4.1.7 ([9]). The Lee weight enumerator of a linear code C over Z4 and the Lee

weight enumerator of its dual are related:

lweCKpX, Y q “
1

|C|
lweCpX ` Y,X ´ Y q.

4.2 Main Theorem and a Proof Outline

For m ě 5, it was shown in [16] that the change of variables X ÞÑ X ` pq ´ 1qY and

Y ÞÑ X ´ Y does not give a version of the MacWilliams identities for any prime power q

with q|m . The main result of this chapter is that there is no well-defined relation between

the Lee weight enumerators of a code and its dual for m ě 5. Specifically, we prove the

following

Theorem 4.2.1 (Theorem 1.1,[1]). Suppose m ě 5. There exist linear codes C1, C2 over Zm
satisfying lweC1 “ lweC2 and lweCK1 ‰ lweCK2 .

Let LCpZmq denote the collection of all linear codes over Zm, and let K: LCpZmq Ñ

LCpZmq denote the map sending a linear code C to its dual code CK. Then Theorem 4.2.1

says that it is impossible to find a well-defined map making the following diagram commute.

LCpZmq K //

lwe
��

LCpZmq

lwe
��

CrX, Y s ? // CrX, Y s

Corollary 4.2.2. There is not any type of MacWilliams identities relating the Lee weight

enumerators of linear codes and their dual codes over Zm, for m ě 5.
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Here is an outline of the proof of Theorem 4.2.1, which will also serve as a guide to the

rest of this chapter. Explicit examples of linear codes C1, C2 over Zm satisfying lweC1 “ lweC2

and lweCK1 ‰ lweCK2 are constructed: in an ad hoc fashion for m “ 5, 6, 8, 9 (in Section 4.3),

and in a systematic fashion for all primes p ě 7 (in Section 4.4).

To handle other values of m ě 5, which necessarily are integer multiples of the preceding

cases, in Section 4.5 we analyze the relationship between a linear code C Ď Znm and the

linear code aC Ď Znam defined by scalar multiplying each codeword of C by a. In particular,

Lemma 4.5.1 shows that lweC determines lweaC, so that lweC1 “ lweC2 will imply lweaC1 “

lweaC2 , which is Corollary 4.5.2. On the other hand, Lemma 4.5.3 allows us to compare

the number of codewords of sufficiently small weight in CK and paCqK. Consequently, if

lweCK1 ‰ lweCK2 because the number of codewords of a sufficiently small weight differ, then the

same will be true for paC1qK and paC2qK, so that lwepaC1qK ‰ lwepaC2qK , which is Corollary 4.5.4.

4.3 Examples for Small Values of m

In the following we will present examples of pairs of codes C1, C2 with lweC1 “ lweC2 and

lweCK1 ‰ lweCK2 over Zm, for m “ 5, 6, 8, 9.

Example 4.3.1. Let m “ 5. We will describe the codes using multiplicity functions from

Section 2.5. Our codes are of dimension 2, the multiplicity functions η1, η2 : Z2
5{t˘1u Ñ N

are given by the following table.

Z2
5{t˘1u 0 0 1 1 1 1 1 2 2 2 2 2

1 2 ´2 ´1 0 1 2 ´2 ´1 0 1 2

Multiplicity η1 5 5 5 5 10 5 5 5 5 10 5 5

Multiplicity η2 9 6 8 5 9 8 5 5 2 6 5 2

Let G1 and G2 be generator matrices corresponding to the multiplicity functions η1 and

η2. Let C1 and C2 be the codes generated by G1 and G2.
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The Lee weight enumerators of C1 and C2 are given by

lweC1pX, Y q “ lweC2pX, Y q “ X140
` 4X65Y 75

` 20X50Y 90.

But lweCK1 ‰ lweCK2 . In fact, A2pCK1 q “ 380 and A2pCK2 q “ 400. The counts for A2 are obtained

as follows. A dual codeword of Lee weight 2 has either one nonzero entry of the form ˘2 or

two nonzero entries of the form ˘1,˘1. There are no dual codewords of the first type (i.e.,

a single ˘2) because there are no zero columns in G1 or G2. Dual codewords of the second

type (i.e., two ˘1s) must occur with opposite signs, because no column type is annihilated

by 2 and no two column types sum to zero. The only dual codewords of the second type

arise by subtracting, in either order, columns of the same type. Thus

A2pCKi q “ 2
ÿ

η

ˆ

η

2

˙

“

$

’

&

’

%

380, i “ 1,

400, i “ 2,

where the sum is over the multiplicities η given in the table.

Example 4.3.2. Let m “ 6. Consider the codes C1 and C2 generated by

G1 “ r1 1 1 1s, G2 “ r1 1 3 3s.

Then C1 and C2 are given by

C1 “ tp0, 0, 0, 0q, p1, 1, 1, 1q, p2, 2, 2, 2q, p3, 3, 3, 3q, p4, 4, 4, 4q, p5, 5, 5, 5qu,

C2 “ tp0, 0, 0, 0q, p1, 1, 3, 3q, p2, 2, 0, 0q, p3, 3, 3, 3q, p4, 4, 0, 0q, p5, 5, 3, 3qu.

Then lweC1pX, Y q “ lweC2pX, Y q “ X12 ` 2X8Y 4 ` 2X4Y 8 ` Y 12.

We show that lweCK1 ‰ lweCK2 by showing that A2pCK1 q ‰ A2pCK2 q. As we saw in Exam-

ple 4.3.1, a dual codeword of weight 2 either contains a single nonzero entry of ˘2 or two

nonzero entries of ˘1. For C1, since none of the columns of G1 is annihilated by ˘2, then

all the codewords of weight 2 in CK1 contain two nonzero entries of ˘1. It is easy to see that
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if the two nonzero entries of such a codeword are equal, both equal to 1 or both equal to

´1, then that codeword does not annihilate G1. But if one entry is 1 and the other is ´1

then that codeword does indeed annihilate G1. There are 4 ¨ 3 “ 12 such vectors of length

4. Thus A2pCK1 q “ 12.

For CK2 , the third and the fourth columns of G2 are annihilated by ˘2, therefore the

four codewords p0, 0,˘2, 0q, p0, 0, 0,˘2q are elements of CK2 . Also, adding or subtracting the

last two columns of G2 gives the zero column, therefore the four codewords p0, 0,˘1,˘1q are

all elements of CK2 . Finally, since the first two columns of G2 are identical, then we get that

p1,´1, 0, 0q, p´1, 1, 0, 0q are codewords in CK2 . Thus A2pCK2 q “ 10, and lweCK1 ‰ lweCK2 .

The following example is due the referee of [20, Example 5.5] and also appeared in [15].

Example 4.3.3. Let m “ 8. Consider the codes C1 and C2 generated by

G1 “ r1 1 2s, G2 “ r1 3 4s.

We get lweC1pX, Y q “ lweC2pX, Y q “ X12 ` 2X8Y 4 ` 5X4Y 8.

We show that lweCK1 ‰ lweCK2 by showing that CK1 and CK2 have different numbers of

codewords of weight 3. Suppose that c “ pc1, c2, c3q has weight 3. Then c is an element of

CK1 if and only if G1c
T “ 0, i.e., c1 ` c2 ` 2c3 “ 0. Since lpcq “ 3, the entries c1, c2, and c3

can have values from t0,˘1,˘2,˘3u only. It is straight forward to find that the solutions of

c1 ` c2 ` 2c3 “ 0 with those restrictions are

tp´1,´1, 1q, p1, 1,´1q, p2, 0,´1q, p2,´1, 0q, p´2, 0, 1q, p´2, 1, 0qu.

Thus A3pCK1 q “ 6. Similarly, we find that the codewords of weight 3 in CK2 are

tp1, 1, 1q, p´1,´1,´1q, p´1,´1, 1q, p1, 1,´1qu.

Thus A3pCK2 q “ 4. This shows that A3pCK1 q ‰ A3pCK2 q and hence lweCK1 ‰ lweCK2 .
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Example 4.3.4. Let m “ 9. Define the multiplicity functions η1, η2 : Z9{t˘1u Ñ N by

η1 : Z9{t˘1u Ñ N, η2 : Z9{t˘1u Ñ N

0 ÞÑ 0 0 ÞÑ 7

1 ÞÑ 33 1 ÞÑ 9

2 ÞÑ 24 2 ÞÑ 81

3 ÞÑ 70 3 ÞÑ 0

4 ÞÑ 6 4 ÞÑ 36

Let G1 and G2 be generator matrices corresponding to the multiplicity functions η1 and η2.

Let C1 and C2 be the codes generated by G1 and G2. Then lweC1 “ lweC2 , but lweCK1 ‰ lweCK2 .

In fact,

lweC1pX, Y q “ lweC2pX, Y q “ X532
` 2X343Y 189

` 2X217Y 315
` 4X154Y 378.

Because of the 0 entries in G2, CK2 contains codewords of weight 1, while CK1 does not. That

is, A1pCK1 q ‰ A1pCK2 q.

4.4 Prime Modulus p, p ě 7

In this section we construct examples C1 and C2 with lweC1 “ lweC2 and lweCK1 ‰ lweCK2 over

the integers modulo a prime p, p ě 7.

Fix a prime p, with p ě 7. Let t “ pp´1q{2. Let Zˆp denote the set of nonzero elements

of Zp; Zˆp is a group under multiplication, and t˘1u forms a subgroup. Let H denote the

quotient group Zˆp {t˘1u, and let q be the canonical quotient map q : Zˆp Ñ Zˆp {t˘1u. We

choose the positive representative for each element in H, so we identify the elements of H

with the set t1, 2, . . . , tu.

Remark 4.4.1. Under the above identification, the quotient map q equals the Lee weight

map l : Zˆp Ñ t1, 2, . . . , tu.
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The codes considered in this section are 1-dimensional. We fix η1, η2 : Zˆp {t˘1u Ñ N

defined by η1p1q “ 0 and η1piq “ t for all 2 ď i ď t, η2p1q “ 2pt´ 1q and η2piq “ t´ 2 for all

2 ď i ď t. Let G1 and G2 be generator matrices corresponding to η1 and η2. In particular,

the matrix G1 has size 1ˆ ptpt´ 1qq, consisting of t entries of each i in t2, . . . , tu. That is

G1 “ r2 . . . 2 3 . . . 3 . . . t . . . ts,

where every number is repeated t times. And G2 is the matrix of size 1ˆptpt´1qq, consisting

of 2pt´ 1q entries of 1 and t´ 2 entries of each i in t2, . . . , tu. That is,

G2 “
r

2pt´1q´times
hkkikkj

1 . . . 1

pt´2q´times
hkkikkj

2 . . . 2

pt´2q´times
hkkikkj

3 . . . 3 . . .

pt´2q´times
hkkikkj

t . . . t s

Let C1 and C2 be the codes generated by G1 and G2.

Lemma 4.4.2. For the linear codes given above, lweC1 “ lweC2, with a common weight

distribution given by

A0 “ 1 and A
tp

tpt`1q
2

´iq
“ 2, for 1 ď i ď t.

Proof. Let i be in t1, . . . , tu. As an element of the group H, we have that iH “ H “

t1, 2, . . . , tu. Let ˚ denote multiplication in H. In the following we reindex summations by

using the fact that multiplying by a group element is a permutation of H. For G1,

lpiG1q “

t
ÿ

j“2

lpijqt “ t

˜

ÿ

jPH

i ˚ j ´ i ˚ 1

¸

“ t

˜

t
ÿ

k“1

k ´ i

¸

“ t

ˆ

tpt` 1q

2
´ i

˙

.

Since lpiGq “ lp´iGq over Zm, then we get that A
tp

tpt`1q
2

´iq
pC1q “ 2 for i in t1, . . . , tu. For

G2,
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lpiG2q “ 2pt´ 1q lpiq `
t
ÿ

j“2

pt´ 2q lpijq

“ 2pt´ 1qi` pt´ 2q

˜

t
ÿ

k“1

k ´ i

¸

“ 2pt´ 1qi` pt´ 2q

ˆ

tpt` 1q

2
´ i

˙

“ t

ˆ

pt´ 2qpt` 1q

2
` i

˙

,

for all 1 ď i ď t. Therefore, A0 “ 1 and A
tp
pt´2qpt`1q

2
`iq

“ 2, for 1 ď i ď t. Consider the

substitution i “ t` 1´ j, then we have 1 ď j ď t, and

t

ˆ

pt´ 2qpt` 1q

2
` i

˙

“ t

ˆ

pt´ 2qpt` 1q

2
` t` 1´ j

˙

“ t

ˆ

tpt` 1q

2
´ j

˙

This shows that we indeed have A0pC2q “ 1 and A
tp

tpt`1q
2

´iq
pC2q “ 2, for 1 ď i ď t, as

desired.

Now we show that lweCK1 ‰ lweCK2 by showing that the number of codewords of weight

three in CK1 does not equal the number of codewords of weight three in CK2 . We will study

the cases when p ” 1 mod 4 and when p ” 3 mod 4 separately.

4.4.1 Primes Congruent to 1 Modulo 4

In this subsection p ” 1 mod 4. That is, t “ pp ´ 1q{2 is an even number, and so t{2 is an

integer. Suppose that C is a code generated by G of size 1 ˆ n with no zero columns. The

types of columns are t1, 2, . . . , tu. Let ai denote the number of columns in G whose entry

is i, for i P t1, 2, . . . , tu. There are, up to a sign, five possible types of codewords in CK of

weight 3. Since C does not contain zero columns, a codeword with a single 3 or ´3 will not

appear in CK. So only four types are considered here, each in a separate sub-subsection. We
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will count the number of codewords in CK of each of the four types and then apply the count

to CK1 and CK2 .

A 1 and a ´2

Let c be a codeword in CK with a 1 and a ´2. Let rxs denote a column in G whose entry

is x. Suppose that 1 corresponds to column rxs and ´2 corresponds to column rys in the

generator matrix, so that GcT “ x´ 2y. Since C has no zero columns, then 1 ď x, y ď t and

so ´p2t ´ 1q ď x ´ 2y ď t ´ 2. This implies that the only way to have x ´ 2y ” 0 mod p is

to have x ´ 2y “ 0. This forces x to be even. So if x “ 2i, then y “ i and the number of

ways that this happens is a2iai. Therefore, the number of such codewords in CK is

t{2
ÿ

i“1

a2iai.

Therefore, the count for CK1 , given that a1 “ 0 and ai “ t for all 2 ď i ď t, is:

t{2
ÿ

i“1

a2iai “

t{2
ÿ

i“2

t2 “
t2pt´ 2q

2
.

And, the count for CK2 , given that a1 “ 2pt´ 1q and ai “ t´ 2 for all 2 ď i ď t, is:

t{2
ÿ

i“1

a2iai “ 2pt´ 1qpt´ 2q `

t{2
ÿ

i“2

pt´ 2q2

“ 2pt´ 1qpt´ 2q `

ˆ

t

2
´ 1

˙

pt´ 2q2

“
pt´ 2q

2

`

4pt´ 1q ` pt´ 2q2
˘

“
t2pt´ 2q

2
.
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A 1 and a 2

Let c be a codeword in CK with a 1 and a 2. Suppose that 1 corresponds to column rxs and 2

corresponds to column rys in the generator matrix, that is GcT “ x` 2y. Since 1 ď x, y ď t,

then 3 ď x ` 2y ď 3t. This implies that the only way to have x ` 2y ” 0 mod p is to have

x`2y “ p “ 2t`1. This implies that x is an odd number. So if x “ 2i`1, then y “ t´i and

the number of ways that this happens is a2i`1at´i. Therefore, the number of such codewords

in CK is
pt´2q{2
ÿ

i“0

a2i`1at´i.

Thus, the count for CK1 is:

pt´2q{2
ÿ

i“0

a2i`1at´i “

pt´2q{2
ÿ

i“1

t2 “
t2pt´ 2q

2
.

And, the count for CK2 is:

pt´2q{2
ÿ

i“0

a2i`1at´i “ 2pt´ 1qpt´ 2q `

pt´2q{2
ÿ

i“1

pt´ 2q2 “
t2pt´ 2q

2
.

A 1 and two ´1’s

Let c be a codeword in CK with a 1 and two ´1’s. Suppose that 1 corresponds to column

rxs and the ´1’s correspond to columns rys and rzs in the generator matrix, so that GcT “

x´ y ´ z. Since 1´ 2t ď x´ y ´ z ď t´ 2, then the only way to have x´ y ´ z ” 0 mod p

is to have x ´ y ´ z “ 0 and so x “ y ` z. So, if x “ 2i is even, then the possibilities for

y and z are y “ j and z “ 2i ´ j for 1 ď j ď i. Similarly, if x “ 2i ` 1, then y “ j and

z “ 2i` 1´ j for 1 ď j ď i. Therefore, the number of such codewords in CK is

t{2
ÿ

i“1

a2i

˜

i´1
ÿ

j“1

aja2i´j `

ˆ

ai
2

˙

¸

`

pt´2q{2
ÿ

i“1

a2i`1

˜

i
ÿ

j“1

aja2i`1´j

¸

.
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Therefore, the count for CK1 is:

t{2
ÿ

i“2

t

˜

i´1
ÿ

j“2

t2 `
tpt´ 1q

2

¸

`

pt´2q{2
ÿ

i“1

t

˜

i
ÿ

j“2

t2

¸

“

t{2
ÿ

i“2

t

ˆ

pi´ 2qt2 `
tpt´ 1q

2

˙

`

pt´2q{2
ÿ

i“1

t
`

t2pi´ 1q
˘

“
t2pt´ 2qpt2 ´ 3t´ 1q

4
.

And, the count for CK2 is:

First part:

t{2
ÿ

i“1

a2i

˜

i´1
ÿ

j“1

aja2i´j `

ˆ

ai
2

˙

¸

“a2

ˆ

a1
2

˙

`

t{2
ÿ

i“2

a2i

˜

a1a2i´1 `
i´1
ÿ

j“2

aja2i´j `

ˆ

ai
2

˙

¸

“pt´ 2q
p2t´ 2qp2t´ 3q

2

`

t{2
ÿ

i“2

˜

2pt´ 1qpt´ 2q2 `
i´1
ÿ

j“2

pt´ 2q3 `
pt´ 2q2pt´ 3q

2

¸

“
t2pt´ 2qpt2 ´ 2q

8
.

Second part:

pt´2q{2
ÿ

i“1

a2i`1

˜

a1a2i`1´1 `
i
ÿ

j“2

aja2i`1´j

¸

“

pt´2q{2
ÿ

i“1

pt´ 2q
`

2pt´ 1qpt´ 2q ` pt´ 2q2pi´ 1q
˘

“
tpt´ 2q3pt` 2q

8
.
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Adding the two parts together, the total count for CK2 for this type is:

t2pt´ 2qpt2 ´ 2q

8
`
tpt´ 2q3pt` 2q

8
“
tpt´ 2qpt3 ´ t2 ´ 3t` 4q

4
.

Three 1’s

Let c be a codeword in CK with three 1’s. Suppose that the ones correspond to columns

rxs, rys and rzs. Now since 3 ď x` y ` z ď 3t, the only way for GcT to be 0 mod p is when

x` y ` z “ p. Since 3 - p, then x, y, z cannot all be equal. Therefore, we have two cases.

First we consider the case when two of x, y and z are the same. Assume that y “ z.

Then x is odd, and when x “ 2i`1, y “ z “ t´ i. Therefore, the number of such codewords

in CK is
pt´2q{2
ÿ

i“0

a2i`1

ˆ

at´i
2

˙

.

Thus, the count for CK1 is:

pt´2q{2
ÿ

i“1

t2pt´ 1q

2
“

1

4
t2pt´ 1qpt´ 2q.

And, the count for CK2 is:

2pt´ 1q
pt´ 2qpt´ 3q

2
`

pt´2q{2
ÿ

i“1

pt´ 2q2pt´ 3q

2
“

1

4
t2pt´ 2qpt´ 3q.

Let M be the number of ways p can be written as a sum of three distinct integers

between 1 and t. Notice that 1 will never appear in such a partition. Indeed, if a partition

contains 1, then the sum of the other two parts is 2t, this means that the other two parts

are each equal to t, and so the parts are not distinct. Therefore, this situation accounts for

Mt3 codewords in CK1 and Mpt ´ 2q3 codewords in CK2 . To find M , we need the following

definition and proposition.

Definition 4.4.3. For two integers n ą k, Qpn, kq denotes the number of ways to write n
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as a sum of k distinct positive integers.

Then by [2, p. 116] and [10, p. 45], we have the following.

Proposition 4.4.4. For p ą 3, Qpp, 3q is given by

Qpp, 3q “
“

pp´ 3q2{12
‰

,

where r s is the nearest integer function.

Since our range for partitions is from 1 to t, we need to subtract the partitions when

t`1, t`2, . . . , p´2 appear in the partition. But p´ i appears Qpi, 2q times, for i “ 2, . . . , t.

By [2, p. 116], Qpi, 2q “ tpi´ 1q{2u.

t
ÿ

i“2

Qpi, 2q “
t
ÿ

i“2

Z

i´ 1

2

^

.

Notice that tk{2u “ pk{2q ´ p1{2q for positive odd k, and tk{2u “ k{2 for even k. Since the

interval 1 ď i´ 1 ď t´ 1 contains t{2 positive odd integers, then

t
ÿ

i“2

Z

i´ 1

2

^

“

˜

t
ÿ

i“2

i´ 1

2

¸

´
t

4
.

Therefore,

t
ÿ

i“2

Qpi, 2q “

˜

t
ÿ

i“2

i´ 1

2

¸

´
t

4
“

˜

t´1
ÿ

i“1

i

2

¸

´
t

4

“
tpt´ 1q

4
´
t

4
“

1

4
tpt´ 2q,
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and

M “ Qpp, 3q ´
t
ÿ

i“2

Qpi, 2q

“

„

pp´ 3q2

12



´
1

4
tpt´ 2q

“

„

p2t´ 2q2

12



´
1

4
tpt´ 2q

“

„

pt´ 1q2

3



´
1

4
tpt´ 2q.

Recall rpt´ 1q2{3s is the nearest integer function. Since pt ´ 1q2 is an integer, then the

possible values for rpt´ 1q2{3s are pt´1q2{3 , ppt´1q2`1q{3 or ppt´1q2´1q{3. This implies

that the possible values for M are:

1

12
pt2 ´ 2t` 4q,

1

12
pt2 ´ 2t` 8q, or

1

12
tpt´ 2q. (4.1)

Recall that A3pCKi q is the number of codewords of weight 3 in CKi for i “ 1, 2. Remember,

we need to double our count in each type to account for the negatives of our types. Therefore,

A3pCK1 q “ 2

ˆ

2 ¨
pt´ 2qt2

2
`
t2pt´ 2qpt2 ´ 3t´ 1q

4
`
t2pt´ 1qpt´ 2q

4
`Mt3

˙

“
1

2
t2pt´ 2q

`

t2 ´ 2t` 2
˘

` 2Mt3.

For A3pCK2 q, the count is

A3pCK2 q “ 2

ˆ

2 ¨
pt´ 2qt2

2
`
tpt´ 2qpt3 ´ t2 ´ 3t` 4q

4

`
t2pt´ 2qpt´ 3q

4
`Mpt´ 2q3

˙

“
1

2
tpt´ 2qpt` 2qpt2 ´ 2t` 2q ` 2Mpt´ 2q3.
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Therefore, A3pCK1 q “ A3pCK2 q if and only if

0 “
1

2
t2pt´ 2q

`

t2 ´ 2t` 2
˘

´
1

2
tpt´ 2qpt` 2qpt2 ´ 2t` 2q

` 2Mt3 ´ 2Mpt´ 2q3

“´ tpt´ 2qpt2 ´ 2t` 2q `Mp12t2 ´ 24t` 16q.

It follows that A3pCK1 q “ A3pCK2 q if and only if

M “
tpt´ 2qpt2 ´ 2t` 2q

12t2 ´ 24t` 16
.

This expression clearly does not match any of the formulas forM from equation 4.1. Nonethe-

less, the above expression and the earlier formulas may yield the same value for M for certain

values of t. The values of t on which the expression ppt2 ´ 2t` 2qpt´ 2qtq{p12t2 ´ 24t` 16q

agrees with the first two formulas in equation 4.1 are not integers. But, the expression

ppt2´ 2t` 2qpt´ 2qtq{p12t2´ 24t` 16q agrees with tpt´ 2q{12, the third formula from equa-

tion 4.1, when t “ 0 and t “ 2. Notice that t “ 2 when p “ 5. This means that A3pCK1 q

and A3pCK2 q are in fact equal when p “ 5, so that this construction does not provide a coun-

terexample in the case p “ 5. Otherwise, for p ě 13, we indeed have A3pCK1 q ‰ A3pCK2 q, and

therefore lweCK1 ‰ lweCK2 for all p ” 1 mod 4, p ě 13.

4.4.2 Primes Congruent to 3 Modulo 4

In this subsection p ” 3 mod 4. Then t “ pp´ 1q{2 is an odd number. We will use the same

setup from the previous subsection. In most of the cases, the only differences are the upper

limits of the summations.
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A 1 and a ´2

To have x´ 2y “ 0, x must be even. So if x “ 2i, then y “ i, and the number of ways that

this happens is a2iai. Therefore, the number of such codewords in CK is

pt´1q{2
ÿ

i“1

a2iai.

Therefore, the count for CK1 , given that a1 “ 0 and ai “ t for all 2 ď i ď t, is:

pt´1q{2
ÿ

i“1

a2iai “

pt´1q{2
ÿ

i“2

t2 “ t2
ˆ

t´ 1

2
´ 1

˙

“
t2pt´ 3q

2
.

And, the count for CK2 , given that a1 “ 2pt´ 1q and ai “ pt´ 2q for all 2 ď i ď t, is:

pt´1q{2
ÿ

i“1

a2iai “ 2pt´ 1qpt´ 2q `

pt´1q{2
ÿ

i“2

pt´ 2q2

“
pt´ 2qpt2 ´ t` 2q

2
.

A 1 and a 2

To have x`2y “ p “ 2t`1, x must be odd. So if x “ 2i`1, then y “ t´ i, and the number

of ways that this happens is a2i`1at´i. Therefore, the number of such codewords in CK is

pt´1q{2
ÿ

i“0

a2i`1at´i.

Thus, the count for CK1 is:

pt´1q{2
ÿ

i“0

a2i`1at´i “

pt´1q{2
ÿ

i“1

t2 “
t2pt´ 1q

2
.
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And, the count for CK2 is:

pt´1q{2
ÿ

i“0

a2i`1at´i “ 2pt´ 1qpt´ 2q `

pt´1q{2
ÿ

i“1

pt´ 2q2

“
pt´ 1qpt´ 2qpt` 2q

2
.

A 1 and two ´1’s

We need to solve x “ y ` z. If x “ 2i is even, then the possibilities for y and z are y “ j

and z “ 2i ´ j for 1 ď j ď i. Similarly, if x “ 2i ` 1, then y “ j and z “ 2i ` 1 ´ j for

1 ď j ď i. Therefore, the number of such codewords in CK is

pt´1q{2
ÿ

i“1

a2i

˜

i´1
ÿ

j“1

aja2i´j `

ˆ

ai
2

˙

¸

`

pt´1q{2
ÿ

i“1

a2i`1

˜

i
ÿ

j“1

aja2i`1´j

¸

.

Therefore, the count for CK1 is:

pt´1q{2
ÿ

i“2

t

˜

i´1
ÿ

j“2

t2 `
tpt´ 1q

2

¸

`

pt´1q{2
ÿ

i“1

t

˜

i
ÿ

j“2

t2

¸

“

pt´1q{2
ÿ

i“2

t

ˆ

pi´ 2qt2 `
tpt´ 1q

2

˙

`

pt´1q{2
ÿ

i“1

t
`

t2pi´ 1q
˘

“
t2pt´ 3qpt2 ´ 2t´ 1q

4
.

And, the count for CK2 is:
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First part:

pt´1q{2
ÿ

i“1

a2i

˜

i´1
ÿ

j“1

aja2i´j `

ˆ

ai
2

˙

¸

“a2

ˆ

a1
2

˙

`

pt´1q{2
ÿ

i“2

a2i

˜

a1a2i´1 `
i´1
ÿ

j“2

aja2i´j `

ˆ

ai
2

˙

¸

“pt´ 2q
p2t´ 2qp2t´ 3q

2

`

pt´1q{2
ÿ

i“2

˜

2pt´ 1qpt´ 2q2 `
i´1
ÿ

j“2

pt´ 2q3 `
pt´ 2q2pt´ 3q

2

¸

“
tpt´ 1qpt´ 2qpt2 ´ t` 2q

8
.

Second part:

pt´1q{2
ÿ

i“1

a2i`1

˜

a1a2i`1´1 `
i
ÿ

j“2

aja2i`1´j

¸

“

pt´1q{2
ÿ

i“1

pt´ 2q
`

2pt´ 1qpt´ 2q ` pt´ 2q2pi´ 1q
˘

“
pt´ 1qpt´ 2q2pt2 ` 3t´ 2q

8
.

Adding the two parts together, the total count for CK2 for this type is:

pt´ 2qpt` 2qpt´ 1q3

4
.

Three 1’s

We consider the same two cases as in paragraph 4.4.1. First we consider the case when two

of x, y and z are the same. Assume that y “ z. Then x must be odd, and when x “ 2i` 1,
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y “ z “ t´ i. Therefore, the number of such codewords in CK is

pt´1q{2
ÿ

i“0

a2i`1

ˆ

at´i
2

˙

.

Thus, the count for CK1 is:
pt´1q{2
ÿ

i“1

t2pt´ 1q

2
“

1

4
t2pt´ 1q2.

And, the count for CK2 is:

2pt´ 1q
pt´ 2qpt´ 3q

2
`

pt´1q{2
ÿ

i“1

pt´ 2q2pt´ 3q

2

“
1

4
pt´ 1qpt´ 2qpt´ 3qpt` 2q.

Recall M is the number of ways p can be written as a sum of three distinct integers

between 1 and t. Notice that 1 will never appear in such a partition. This case accounts for

Mt3 codewords in CK1 and Mpt´ 2q3 codewords in CK2 .

We know that M “ Qpp, 3q´
řt
i“2Qpi, 2q “ Qpp, 3q´

řt
i“2tpi´1q{2u. Since 1 ď i´1 ď

t´ 1 and there are pt´ 1q{2 odd numbers in the interval r1, t´ 1s, then

t
ÿ

i“2

Z

i´ 1

2

^

“

t
ÿ

i“2

i´ 1

2
´
t´ 1

4

“
tpt´ 1q

4
´
t´ 1

4
“
pt´ 1q2

4
.

Hence,

M “

„

pt´ 1q2

3



´
1

4
pt´ 1q2.

The possible values for rpt´ 1q2{3s are pt´ 1q2{3 , ppt´ 1q2 ` 1q{3 or ppt´ 1q2 ´ 1q{3. This
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implies that the possible values for M are:

1

12
pt´ 1q2,

1

12
pt2 ´ 2t` 5q, or

1

12
pt2 ´ 2t´ 3q. (4.2)

Here are the total counts of codewords of weight 3 in CK1 and CK2 .

A3pCK1 q “ 2

ˆ

pt´ 3qt2

2
`
pt´ 1qt2

2
`
t2pt´ 3qpt2 ´ 2t´ 1q

4

`
t2pt´ 1q2

4
`Mt3

˙

“
t2pt´ 1qpt2 ´ 3t` 4q

2
` 2Mt3.

And,

A3pCK2 q “ 2

ˆ

pt´ 2qpt2 ´ t` 2q

2
`
pt´ 1qpt´ 2qpt` 2q

2

`
pt´ 2qpt` 2qpt´ 1q3

4

`
pt´ 1qpt´ 2qpt´ 3qpt` 2q

4
`Mpt´ 2q3

˙

“
pt´ 2qpt4 ´ t2 ` 4q

2
` 2Mpt´ 2q3.

Therefore, A3pCK1 q “ A3pCK2 q if and only if

0 “
t2pt´ 1qpt2 ´ 3t` 4q

2
´
pt´ 2qpt4 ´ t2 ` 4q

2
` 2Mt3 ´ 2Mpt´ 2q3

“ ´t4 ` 4t3 ´ 3t2 ´ 2t` 4`Mp12t2 ´ 24t` 16q.

It follows that A3pCK1 q “ A3pCK2 q if and only if

M “
t4 ´ 4t3 ` 3t2 ` 2t´ 4

12t2 ´ 24t` 16
.
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This expression clearly does not match any of the formulas for M from equation 4.2.

Moreover, the only integers at which the expression pt4´ 4t3` 3t2` 2t´ 4q{p12t2´ 24t` 16q

agrees with any of the formulas in equation 4.2 are t “ 0 and t “ 2. These are not possible

values for t when p ” 3 mod 4. Hence, for p ě 7, we indeed have A3pCK1 q ‰ A3pCK2 q, and

therefore lweCK1 ‰ lweCK2 for all p ” 3 mod 4, p ě 7.

We summarize the results for primes p ě 7.

Proposition 4.4.5. For each prime p ě 7, there exist linear codes C1 and C2 over Zp with

lweC1 “ lweC2 and A3pCK1 q ‰ A3pCK2 q.

4.5 Propagation of Examples and Proof of the Main

Theorem

We would like to say that if C1 and C2 give an example with lweC1 “ lweC2 and lweCK1 ‰ lweCK2

over Zm, then aC1 and aC2 provide a corresponding example over Zam, for any positive integer

a. Although the previous statement is not true in that generality, a weaker version is true

and is sufficient to cover all integers m ě 5. We need the following construction.

Let C be a linear code over Zm. For any positive integer a, define aC to be the code

over Zam given by

aC “ tpac1, . . . , acnq P Znam : pc1, . . . , cnq P Cu.

Lemma 4.5.1. Let C be a linear code of length n over Zm and a be a positive integer. Then

the weight distribution of the code aC is given in terms of the weight distribution of C as

follows.

AqpaCq “

$

’

&

’

%

0, a - q,

Aq{apCq, a | q,

for all 0 ď q ď tam{2un.

Proof. Let c P C. Assume all entries of c satisfy ´m{2 ă ci ď m{2, for all i. This implies
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that ´am{2 ă aci ď am{2 for all entries of ac P aC. Therefore

lampacq “
n
ÿ

i“1

|aci| “ a
n
ÿ

i“1

|ci| “ a lmpcq.

Notice that the map C Ñ aC, with c ÞÑ ac, is a bijection. Therefore the result follows.

Corollary 4.5.2. Let C1 and C2 be linear codes of length n over Zm and a be a positive

integer. If lweC1 “ lweC2, then lweaC1 “ lweaC2.

The next result examines the count of low weight codewords in dual codes of the form

paCqK.

Lemma 4.5.3. Let C be a linear code of length n over Zm. Suppose that a and b are

integers with 1 ď a ď b. Then AqppaCqKq “ AqppbCqKq for q ă am{2. In particular,

AqpCKq “ AqppbCqKq for q ă m{2.

Proof. Recall that we view Zam “ ti : ´am{2 ă i ď am{2u, and similarly for Zbm. Notice

that a vector y in Znam can then be thought of as a vector in Znbm with the same entries and

the same Lee weight. Conversely, for z P Znbm, under the hypothesis that lpzq ă am{2, we

can view z as a vector in Znam with the same entries and the same Lee weight. In other

words, for 0 ď q ă am{2, the sets ty P Znam : lpyq “ qu and tz P Znbm : lpzq “ qu are equal, if

we ignore the modulus and think of the elements as just integer vectors.

Now let 0 ď q ă am{2 and let y be such that ´am{2 ă yi ă am{2 with
řn
i“1 |yi| “ q,

i.e., lampyq “ lbmpyq “ q. We then have the following list of equivalent statements:

• y P paCqK

•
řn
i“1 yipaciq ” 0 mod am, for all c P C

• am|p
řn
i“1 yipaciqq, for all c P C

• m|p
řn
i“1 yiciq, for all c P C
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• bm|p
řn
i“1 yipbciqq, for all c P C

• y P pbCqK

This shows that AqpaCqK “ AqpbCqK.

Corollary 4.5.4. Let C1 and C2 be linear codes of length n over Zm. Let b and q positive

integers with q ă m{2. If AqpCK1 q ‰ AqpCK2 q, then AqppbC1qKq ‰ AqppbC2qKq.

Proof of Theorem 4.2.1. Suppose that m ě 5. We will consider cases based on minimal

factors of m that are also greater than or equal to 5. For instance, if m is not divisible by

any prime p, p ě 5, then m is divisible only by powers of 2 and powers of 3, say m “ 2r3s.

The smallest such numbers 2r3s that are themselves greater than or equal to 5 are 6, 8 and

9, as seen in the following diagram.

r

s

m “ 8

m “ 9

m “ 6

Sections 4.3 and 4.4 provided examples of linear codes C1, C2 over Zm satisfying lweC1 “

lweC2 and AqpCK1 q ‰ AqpCK2 q for the cases m “ 5, 6, 8, 9 and m “ p prime, p ě 7. To extend

these examples from Zm to Zam we need to verify that the numbers m and q satisfy the

hypotheses of Corollary 4.5.4. We summarize the various cases in the following chart:

m 5 6 8 9 p, p ě 7

q : AqpCK1 q ‰ AqpCK2 q 2 2 3 1 3
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Since q ă m{2 in all of these cases, Corollary 4.5.4 implies that the examples provided in

Sections 4.3 and 4.4 yield examples with lweaC1 “ lweaC2 and lweaCK1 ‰ lweaCK2 over Zam for

any positive integer a. Since any m ě 5 is necessarily a multiple of m “ 5, 6, 8, 9 or m “ p

prime, p ě 7, the result follows.
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Chapter 5

Conclusion and Future Work

Chapter 3 of this thesis covered much of what is known about the MacWilliams extension

theorem. Studying sufficient and necessary conditions for the extension property has been

an ongoing project by some researchers for several years. Although many classical and

important results have been proven for the extension property, there are still many classes

of alphabets and weight functions for which the validity of the extension property is still

unknown. We plan to continue working on this project.

In Chapter 4 we showed that there is no valid version of the MacWilliams identities over

Zm with respect to the Lee weight, for m ě 5. It is natural to consider the same problem

for other weights on Zm, specifically the Euclidean weight and the homogeneous weight.

The Euclidean weight e is defined on Zm by epaq “ lpaq2 for a P Zm. The Euclidean

weight coincides with the Lee weight and the Hamming weight over Z2 and Z3, thus the

MacWilliams identities hold for the Euclidean weight enumerator in these cases. The fol-

lowing example from [1] shows the failure of the MacWilliams identities for the Euclidean

weight enumerator over Z4.
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Example 5.0.1. Let m “ 4. Let

G1 “

»

–

0 0 1 1 1 1 1 1 1 1 2 2

1 1 0 0 1 1 2 2 3 3 1 1

fi

fl ,

G2 “

»

–

0 0 1 1 1 1 2 2 0 0 2 0

1 1 0 0 0 0 1 1 2 2 2 0

fi

fl .

Then eweC1pX, Y q “ eweC2pX, Y q “ X48 ` 12X32Y 16 ` 3X16Y 32 and eweCK1 ‰ eweCK2 . In

fact A1pCK1 q ‰ A1pCK2 q; because of the zero column in G2, there are codewords of Euclidean

weight 1 in CK2 but not in CK1 .

The homogeneous weight over Zm was defined by Constantinescu and Heise [3]. We will

not give the general definition here; rather we simply state the values of the homogeneous

weight for specific m as needed. For m “ p, a prime, the homogeneous weight on Zp is just

a scaled version of the Hamming weight. For m “ 4, the homogeneous weight equals the

Lee weight. In those cases, the MacWilliams identities hold.

Here are two examples, also in [1], where the MacWilliams identities fail for the homo-

geneous weight enumerator.

Example 5.0.2. Let m “ 6. The homogeneous weight w has the following values

a 0 1 2 3 4 5

wpaq 0 1 3 4 3 1
.

Set

G1 “

”

1 1 1
ı

, G2 “

”

1 3 3
ı

.

Then howeC1pX, Y q “ howeC2pX, Y q “ X12 ` 2X9Y 3 ` 2X3Y 9 ` Y 12, but A2pCK1 q “ 6 and

A2pCK2 q “ 4.

Example 5.0.3. This example is due to the referee of [20, Example 5.6]. Let m “ 8, and
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use the following values for w:

a 0 1 2 3 4 5 6 7

wpaq 0 1 1 1 2 1 1 1
.

Set

G1 “

”

1 1 4
ı

, G2 “

»

–

2 2 4

0 4 0

fi

fl .

Then howeC1pX, Y q “ howeC2pX, Y q “ X6`2X4Y 2`5X2Y 4, but A2pCK1 q “ 7 and A2pCK2 q “

23.

To our knowledge, the validity of the MacWilliams identities for the Euclidean weight

enumerator or the homogeneous weight enumerator over Zm is still open in general. Except

for the cases described above where the MacWilliams identities are known to hold, we expect

the identities to fail.
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