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ON CODES OVER RINGS: THE MACWILLIAMS EXTENSION THEOREM AND THE
MACWILLIAMS IDENTITIES

Noha Abdelghany, Ph.D.

Western Michigan University, 2020

The MacWilliams extension theorem for code equivalence and the MacWilliams identi-
ties for weight enumerators of a code and its dual code are two of the most important results
in classical coding theory. In this thesis, we study how much these two results could be
extended to codes over more general alphabets, beyond finite fields. In particular, we study
the MacWilliams extension theorem and the MacWilliams identities for codes over rings and

modules equipped with general weight functions.
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Chapter 1

INTRODUCTION

Codes over rings started being of interest to many researchers since the appearance of [9],
where it was shown that the binary nonlinear codes known as Kerdock and Preparata codes
are actually dual codes when viewed as codes over Z,. The study of codes over rings, and
later codes over modules, led to an interest in studying the validity of the two classical
MacWilliams results for codes over rings and modules. Namely, the MacWilliams extension
theorem for code equivalence and the MacWilliams identities for weight enumerators of a
code and its dual code. In this thesis, we present the results of our research into the validity
of these two classical results for codes over rings and modules. We give an introduction and

a brief outline of this thesis in the following.

In 1962, MacWilliams proved that any Hamming weight isometry between two codes
over a finite field extends to a monomial transformation of the ambient space [13]. The
theorem is known now as the MacWilliams extension theorem. Around the early nineties,
coding theorists became interested in codes over finite rings and, later, finite modules. This
gave rise to the natural question of whether the MacWilliams extension theorem is valid over
rings for Hamming weight and, later, for general weight functions. For an alphabet A and a
weight function w, A is said to have the extension property with respect to w if every linear

w-isometry between two codes extends to a monomial transformation of the ambient space.



Over the past 20 years, many sufficient conditions and a few necessary conditions were found

for the extension property to hold for various alphabets and weight functions.

In 1999, Wood showed that finite Frobenius rings have the extension property with
respect to the Hamming weight [I7]. In fact, the class of Frobenius rings characterizes finite
rings that have the extension property [I8]. In 2004, Greferath et al. proved that finite
Frobenius bimodules have the extension property with respect to both Hamming weight and
the homogeneous weight [§]. With respect to Lee weights, see Definition , it was shown
that Z,, has the extension property when m is a prime power [I2] and then it was proved

for any positive integer m in [4].

In Chapter 3] we develop a tool that can be used to examine the extension property,
following the development in [2I]. A general weight function w of the alphabet module A is
just any complex-valued function on A. Due to the lack of the algebraic structure of w, it
is hard to decide if the extension property holds for w. In our development of monoid-ring
tools, we view the weight w as linear map from R to F(A) as defined in section . We
then study the matrix representation W of w, and as it turns out, the nonsingularity of an

induced matrix W is a sufficient condition for the extension property.

The second part of this thesis studies the MacWilliams identities. The MacWilliams
identities give a relation between the Hamming weight enumerator of a linear code and the
Hamming weight enumerator of its dual. For a linear code C over a finite field IF,, the
MacWilliams identities are given by hweyi (X,Y) = ﬁ hwee(X + (¢ — 1)Y, X —Y), where
hwe refers to the Hamming weight enumerator [I3]. The question we are interested in is
whether there is some version of the MacWilliams identities for other alphabets and other
weight functions. In 1999, Wood showed that the MacWilliams identities are valid for both

additive codes and linear codes over finite Frobenius rings with respect to the Hamming

weight [17].

Turning our attention to Lee weights over Z,,, the Lee weight and the Hamming weight
are equal when m = 2 and m = 3, thus the MacWilliams identities are valid in those cases.

For codes over Zy, it is known from [9] that the Lee weight enumerator of a linear code C



over Z, and its dual are related by lwee (X, Y) = ﬁ lwee(X +Y, X —Y). For m > 5, it was
shown by Tang et al that the change of variables X — X + (¢ —1)Y and Y — X — Y does
not give a version of the MacWilliams identities for any prime power g|m [16]. This leaves
open the possibility of other changes of variables that might give a relation between the Lee

weight enumerators of a code and its dual.

In Chapter [4], we show the nonexistence of a MacWilliams operator for Lee weights over
Zpm, m = 5, by showing the existence of two codes C; and C, that have equal Lee weight

enumerators but the dual codes Ci- and C5- have different Lee weight enumerators.



Chapter 2

Preliminaries

This chapter is dedicated to introduce the necessary notions and terminology from classical
coding theory and ring theory that will be needed for the rest of this thesis. Throughout
this chapter, R is a finite ring with 1 and A is a left R-module thought of as the alphabet.

2.1 Linear Codes

We start with the classical definition of codes over finite fields, and we will work our way
up to codes over rings and modules. For the following, we assume that A = R = F, a finite

field.

Definition 2.1.1. A code C of length n over F is a subset of F". If C is a k-dimensional

vector subspace of F", then C is called an [n, k]-linear code.

An element of a code C is called a codeword. The field F is referred to as the alphabet
for the code C. A linear code is most-commonly realized in two ways, namely a generator

matrix and a parity check matrix.

Definition 2.1.2. Let C be an [n, k]-linear code over F.



e A generator matrix GG of C is a k x n matrix whose rows span C. In other words,

C = {mG :meF*}.

e A parity check matrix H is a (kK — n) x n matrix whose rows annihilate C. In other

words, C is the right null space of the parity check matrix H.

C={ceF":Hc" =0}.

Oftentimes the generator matrix is used for encoding. The space F* is thought of as
the space of all messages, where a message m € F¥ is encoded by m — mG to the codeword

mG in the code C.

If the alphabet of a code is the binary field 5, then the code is called a binary code.

Example 2.1.3. Let ‘H be the [7,4]-binary code defined by the following generator matrix

[a)

—
o = o o
—_ o o o
S Y
=
—_ O =

This code is known as the Hamming code. A parity check matrix for # is given by

0001111
H=(0110011
1010101

If we think of the [7, 3]-linear code S generated by the matrix H, then S will have G as its
parity check matrix. The code § is known as the simplex code. The codes H and S are dual

codes as defined in the following.



Definition 2.1.4. The dual code C* of a code C of length n is given by

ct = {($1,~~,$n)€FRIZ$iCz‘ =0, for all ce C}.

The following lemma summarizes the main properties of dual codes.

Lemma 2.1.5. Let C be a code of length n over F. Then

e Ct is a linear code over F.
e (CHt =C.

e IfC is an [n, k]-linear code, then |C*|-|C| = |F|". Equivalently, dimC*+ = n — k.

The most common notion of weight in classical coding theory is the Hamming weight.

Definition 2.1.6. For a vector x = (z1,...,x,) in F", the Hamming weight of z is defined

to be the number of nonzero entires in x. That is H(x) = |{i : z; # 0}].

Oftentimes the weight functions are used to define a distance function of the ambient
space. For instance, the Hamming distance between x and y in F" is defined by dy(z,y) =
H(x—y). One of the most essential parameters of a code is its minimum weight, it determines

the error-detecting and the error-correcting capacities of the code.

Definition 2.1.7. Let C be an [n, k]-linear code. Then the minimum Hamming weight

d = min{H(c) : c€ C,c # 0}. In this case, C is said to be an [n, k, d]-linear code.

Example 2.1.8. Let H be the [7,4]-binary Hamming code defined in Example [2.1.3] The
list of codewords of H is given by

H = {0000000, 1000011,0100101,0010110,0001111, 1100110,
1010101, 1001100, 0110011, 0101010, 0011001, 1110000,

1101001, 1011010,0111100, 1111111}



It is easy to see that the minimum nonzero weight of H is 3, therefore H is a [7,4, 3]-linear

code.

Example 2.1.9. Let Gj5 be the [12, 6]-linear code over Fj, the finite field of order 3, with a

generator matrix

16000000 1 1 1 1 1
co1ro00001 0 1 -1 -1 1
o coo1o0o0o01 1 0 1 -1 -1
cooo1o0o01-1 1 0 1 -1
coooo0o1o01 -1 -1 1 0 1
coooo0oo011 1 -1 -1 1 0

With some calculations, one can show that the minimum weight of Gy, is 6. The code G5 is

called the [12,6,6] Golay code. This example is found in [11].

Recall A is a left R-module. Here is how we view codes over modules.

Definition 2.1.10. A code C of length n over A is a subset of A™. If C is a left submodule
of A" then C is called a left linear code.

2.2 Code Equivalence

In this section we present the different ways to view two codes as being equivalent. There are
multiple ways of viewing code equivalence, some of them are more general than others. To
understand the relation between the different notions of equivalence, we will define some of

them here and refer to Chapter [3| for our full study of the MacWilliams extension theorem.

Unlike vector spaces with no extra structure, the notion of equivalence of linear codes
requires more than two codes to have the same dimension. One of the most important
parameters of a linear code comes from the weight considered. So in order to talk about

equivalence of linear codes we need to fix both the alphabet and the weight function.

7



Remark 2.2.1. For any left R-linear homomorphism f : A — B between two left R-
modules, we write inputs on the left. That is, for x € A we denote the image of x under f
as xf instead of f(x). One of the reasons for this notation is that the R-linearity then is

expressible is the associative property: (rz)f = r(zf) for all r € R and = € A.

Recall A is a left R-module. We think of A as the alphabet. Notice that A admits
a right module structure under the ring Endg(A) of all endomorphisms on A. Indeed, for
a € A and ¢ € Endgr(A), ap =the image of a under ¢, defines a right scalar multiplication
of Endgr(A) on A. Therefore we have that A is an R, Endg(A)-bimodule. Let U(R) be the
group of units of R and GLg(A) the group of units of Endg(A), that is GLg(A) is the group
of left R-automorphisms on A. This implies that the group U(R) acts on A on the left and
GLg(A) acts on A on the right.

Here is what we mean by a weight function.

Definition 2.2.2. A weight w on the alphabet A is a complex-valued function w : A — C
on A.

Every weight function on A extends to a weight function on A" by w(zy,...,x,) =

> w(x;) for all x e A™,
For a weight w we define what we call left and right symmetry groups of w as follows.
Definition 2.2.3. The left and right symmetry groups of a weight w : A — C are given by
Gu(w) ={uel(R) : w(ua) = w(a), all a e A},

Gri(w) = {1 € GLg(A) : w(ar) = w(a), all a € A}.

Let C; and Cs be two left linear codes of length n over A and let w be a weight on A.

In the following we define several different notions of code-equivalence.

A linear map f : C; — Cq is said to be a w-isometry if f is an isomorphism preserving

the weight w. That is w(cf) = w(c) for all c € C;.

8



Definition 2.2.4. Two codes C; and Cy are said to be w-isometric if there is a w-isometry

f:C1—>CQ.

An automorphism T : A" — A" is called a monomial transformation if there are a

permutation o on n elements, and 7q,...,7, € GLg(A) such that

(a1, a0)T = (Ae)T1, - - -, Go(n)Th)-

If 7,...,7, are elements of some subgroup G of GLg(A), then T is said to be a G-monomial

transformation.

Definition 2.2.5. Two codes C; and C, are said to be G-monomially equivalent if there is

a G-monomial transformation T with C;T = C,.

Definition 2.2.6. Two codes C; and C, are said to be permutationally equivalent if there
is a {1}-monomial transformation 7" with C;T = Cy. That is, all the 7’s appearing in the

definiton of T" are in fact the identity element.

Note that T'|¢, is a w-isometry, provided T is a G,-monomial transformation. That is,
two codes are w-isometric if they are G,;-monomially equivalent. The converse is not always
true. The converse is true for codes over finite fields equipped with the Hamming weight.

This result is known as the MacWilliams extension theorem, refer to Section

2.3 The Character Module

In this section, we define the character module, and we introduce Pontryagin’s duality functor
for modules. For more details, see Section 3 in [I7]. Recall that A is a finite left R-module,

in particular, A is a finite abelian group.

Definition 2.3.1. For any abelian group A, a character m on A is defined to be a group
homomorphism 7 : A — C*, where C* is the multiplicative group of non-zero complex

numbers.



We let A denote the collection of all characters on A.

Lemma 2.3.2. The collection A of all characters on A is an abelian group under pointwise

multiplication. If A is a left R-module, then Aisa right R-module.

Proof. Notice that A is the collection of all group homomorphisms from A to C*. In other
words, A= Homyz(A,C*). Since C* is an abelian group under multiplication, then so is

Homy (A, C*) under pointwise multiplication.

Let 7€ A and r € R. The right scalar multiplication of 7 and r is denoted by #" and
is defined by
7"(a) = 7(ra), all a € A.

It is easy to see that this indeed defines a right R-module structure on A. O

Remark 2.3.3. Since the operation on the abelian group Ais “multiplication”, and since it
is known that exponentiation is distributive over multiplication, it is convenient to write the
right scalar multiplication on Ain exponential form. That is, the right scalar multiplication
of e Aand r € R is expressed as n" instead mr. In this case, the distribution of the
scalar multiplication on the group operation of A is written as (tm)" = 7"7" instead of

(tm)r = Tror.

Lemma 2.3.4. For a finite abelian group A, the following hold.

|Al, if a=0
o 2ream(a) = , :

0, if a#0

A, if m=1
e ZaeAﬂ_(a) = )

0, if m™#1

Proof. 1t is clear that Y, 2m(0) = >, 31 = |A]|. Now let a # 0 be an element of A, then

TEA

there is 7 € A such that 7(a) # 1, see [I4] page 61]. Using the group structure on A we get:



Since 7(a) # 1 then we must have >, _i7(a) = 0. The second part is proved similarly. [

Corollary 2.3.5. Let S be a right submodule of the character module A. Forse A,

1], se(A:S8)

D m(s) = :

nes 0, otherwise

where (A:S)={ac A:w(a) =1, all me S}.

Let R-mod denote the category of all finite left R-modules and mod-R denote the
category of all finite right R-modules. The construction A is in fact functorial, and it
is known as the Pontryagin duality functor. The following lemma summarizes the main

properties of this functor on the objects. A detailed study of this functor is found in [17].

Lemma 2.3.6. The duality functor”™ : R-mod = mod-R is a contravariant functor satisfying

the following, for any left (right) R-module B:

1. B and B are isomorphic as groups. In particular, \é\ = |B|.

~
~

2. B = B as left (right) R-modules.
3. B is an (Endg(B), R)-bimodule. (R, Endgp(B))-bimodule).
4. If B is an R-bimodule, then so is B.
The duality functor acts on the morphisms in the following way. For any ¢ in Homg(B, C'),

where B and C are left R-modules, there is an induced homomorphism <$ in HomR(CAY , E) of

right R-modules given by the following diagram. For o € C, qg(oz) is given by

That is, gg(a) =woo.

11



Lemma 2.3.7. Let B and C be left R-modules with ¢ € Homg(B,C). Then
im ¢ = (B : ker ¢),
where (B :ker ¢) = {me B :7(b) =1, for all be ker ¢}.

Proof. Let T € (é : ker ¢). Then 7(b) = 1 for all b € ker ¢. This means that ker ¢ < ker,
and so 7 factors through B/ker¢ =~ im¢. That is, there is ¢ : im¢ — C* making the

following diagram commute.

im ¢
Notice that ¢ is a character on im ¢. We would like to extend ¢ to a character on the whole

module C'. This can be done by making use of the following exact sequence.
0—>im¢ - C — C/im¢p — 0.

The duality functor is an exact contravariant functor, see [I7, Remark 3.3]. Therefore, we

get the induced exact sequence

0« im¢« C « C/ime « 0.

~

The map ia\gf) «— (C is surjective and o belongs to 1@7 therefore o extends to a
homomorphism & on C'. Since ¢ = ¢ on im ¢, then 7 = 0 0 ¢ = 5 0 ¢ which, by the definition

of ¢, says that 7 = gg(c’f). This shows that 7 € im ¢ and so (é : ker ¢) € im o.

Conversely, if 7 € im ¢, then 7 = $(U) for some o in C. For b € ker ¢,

This shows 7 € (é : ker ¢). O

12



In the following we shift our attention to R-bimodules. We define the following.

Definition 2.3.8. Let B be an R-bimodule and » € R. Define A, to be the left scalar
multiplication by r on B. That is, A, : B — B with \.(b) = rb, for all b € B. In the case
when B = R, we will use the notation Ar(m) =", all 7 in B. Similarly, p, is the right scalar

multiplication on B. Remark explains our choice of notation.

We will not distinguish A, and p, for different R-bimodules, it should be clear from con-
text which module is being considered. The following lemma shows how scalar multiplication

is affected by the duality functor.

Lemma 2.3.9. Forr € R, we have
S\T = p, and p, = A,
Proof. Let B be an R-bimodule and r € R. Then for 7 € Bandbe B,

(Pr(m)) (b) = 7 © pp(b) = m(br) = "m(b) = (Ae(7))(b)-

This shows that p, = A,.. The other equality is proven in a similar fashion. O]

Lemma 2.3.10. Let A denote the character bimodule R. Then Endr(Agr) = R as rings.

Proof. Define
A:R— EIldR(AR)

by A(r) = A.. It is clear that A is a ring homomorphism. Let r € ker A. Then we have
"7 is the trivial character for all w in A, this implies that 1 = "n(1) = n(r), all m € A. Tt
follows that >, _, m(r) = |A[, and hence r must be zero by Lemma [2.3.4] This shows that A

is injective.

Suppose that ¢ € Endg(Agr). We consider the character module Rﬁ of Agr. The
endomorphism ¢ on Ag induces an endomorphism gg on Rﬁ. Up to the natural isomorphism

R ~ ﬁ, ngS is a left R-endomorphism on R. And so gg is a right multiplication ps by s, for

13



some s € R. Noting that gg = ¢, it follows that ¢ = p,. Lemma [2.3.9 then implies that

¢ = A;. This implies that A is surjective, and hence a ring isomorphism. O

Recall that U(R) denotes the group of units in R. The following follows immediately
form Lemma 23100

Corollary 2.3.11. Let A = R. Then U(R) =~ GLgr(Ag) as groups.

2.4 Frobenius Rings and Frobenius Bimodules
In this section we present the necessary notions of Frobenius rings and Frobenius bimodules.
For a detailed presentation of this class of rings, refer to [17].

Although there is a general definition of Frobenius rings that is applicable to infinite
rings, there is a simpler definition in the finite case. The following definition is usually

expressed as a theorem when the full general definition is considered, see [I7, Theorem 3.10].

Definition 2.4.1. A finite Frobenius bimodule A is an (R, R)-bimodule such that zpA =~ R
and Ap = }AQR. A finite Frobenius ring is a finite ring that is a Frobenius bimodule over

itself.

Lemma 2.4.2. For a Frobenius R-bimodule A we have
RA\ = RR and A\R = RR.

Proof. By dualizing the definition of a Frobenius bimodule and using Lemma [2.3.6| O

Definition 2.4.3. A left R-module B is a cyclic R-module generated by b € B, if
B ={rb:re R}.
Similarly, if B is a right R-module with B = {br : r € R}, then B is a cyclic right R-module.

14



We know that Rg and rR are cyclic R-modules, indeed, both Rr and R are generated
by 1. Therefore by the above lemma, both R/Al and fAlR are cyclic modules. A generator for
Rﬁ is called a left generating character and a generator for /AlR is called a right generating

character for A.

Lemma 2.4.4. Let A be the character bimodule R. Then the character X in A defined by
X(m) =n(-1), allme A
1s both a left and right generating character for A.

Proof. We show that yx is a left generating character for A. The other side is proven similarly.
Note that, by Lemma we have that A ~ R as bimodules. Therefore, it suffices to show
that R is isomorphic to Ry, the left submodule generated by x in A. Define

U:R— Ry

Tl—)TX

It is clear that ¥ is a group homomorphism and is surjective. Let r be an element of ker W.
Then we have that "y(m) = 1, for all 7 in A. That is, x(7") = 7"(—=1) = «(—r) = 1 for
all 7 in A. It follows that Y, _, w(—r) = |A|, and hence r must be zero by Lemma [2.3.4]

Therefore W is an isomorphism. O

2.5 Multiplicity Functions

In this section we define and study multiplicity functions which are another way to describe
linear codes. Fix an alphabet A, which is a left R-module, and a weight w. And let G and
G, be the left and right symmetry groups for the weight w.

Let M be a left R-module thought of as the message space of the code. First we need

to define what is known as parametrized codes.

15



Definition 2.5.1. A parametrized code of length n is defined by the pair (M, A), where M

is a finite left R-module and A : M — A" is a homomorphism of left R modules.

Notice that if (M, A) is a parametrized code then the image C = MA of A is a classical

linear code of length n over A.

Remark 2.5.2. Recall that Hompg (M, A") = Homg(M, A)". That means that A € Homg (M, A™)
can be viewed as A = (Ay,..., \,) in Homg(M, A)™.

Example 2.5.3. Let A = R = F be a finite field. Suppose that C is an [n, k]-linear code
over F with a generator matrix G. Let M = F* be the k-dimensional vector space over F.
Define A : M — F™ by mA = mG. This defines a parametrized code (M, A) over F. We
have

C ={mG:meF*} = MA.

The columns of the matrix GG are really the same as the functionals Ay, ..., \,. Indeed, if G;

denotes the i column of the matrix G, then mG; = m)\;, for 1 <i < n.

The right symmetry group G,; acts on the right on Hompg(M, A) the collection of all
functionals by the following. For ¢ € G,; and A € Homg(M, A), A¢ is defined by m(A¢) =
(mA)¢ for all m € M. Let O denote the orbit space Hompg(M, A)/G,; of the above action.

Definition 2.5.4. A multiplicity function 7 is a function 1 : O — N with n(orb(0)) = 0.
Let Fy(O% N) denote the collection of all multiplicity functions.

For a fixed message space M, there is a one-to-one a correspondence between the collec-
tion all multiplicity functions Fy(O% N) and the collections of all classes of monomially equiv-
alent parametrized codes. Starting with a parametrized code (M, A), with A = (A\q,..., \,),
define a multiplicity function 7 to count the number of functionals \;’s in each orbit. That
is n(orb(p)) = |{i : A\; € orb(p)}|. Conversely, for a multiplicity function n € Fy(O% N), we
choose A = (Ay,..., A,) such that n(orb(p)) = [{i : \; € orb(p)}|, this A is well defined up to

a monomial transformation.
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From now until the end of the section, we will only consider classes of monomially

equivalent codes, so we use multiplicity functions to refer to them.

Let n be a multiplicity function with a corresponding parametrized code (M, A). The

codeword corresponding to a message word m € M is x = mA. The weight of x is given by:

w(z) = Y wlz) = > wmh) = Y wmd)n(A).

orb(\)eOt

Notice that the above expression does not depend on the choice of A, it only depends on the
multiplicity function 7. The list of weights of the codewords of the code C = MA is then
given by the map m — 3 co: w(mA)n(A). This is what we refer to as the IV mapping.
We consider the space Fy(OF, Q) instead to make use of the fact that it is a vector space

over Q.

Definition 2.5.5. The W mapping is given by
W FO(OﬁaQ) - FO(MvQ)

g [me 3 wmam)
orb(A\)eOt

Where Fo(M,Q) ={f: M — Q: f(0) = 0}.

Lemma 2.5.6. The W map is a linear Q-homomorphism.
Proof. For g€ Q and 1,19 € Fy(M,Q), we have

Wm+aqm)(m) = Y w(m)(n +qn)(N)
orb(\)eO*

= D wmNm(N) +q DL wmN)g(A) = W(n)(m) + qW () (m),

orb(\)e0! orb(\)e0!

for all me M. ]

Notice that the left symmetry group Gy acts on M on the left, as M is a left R-module.
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Let O denote the orbit space G\ M. It is easy to see that W (n) is invariant under the above
action. Let F(O,Q) denote the space of invariant functions f : M — Q under the action
Gu\M. And let Fy(O,Q) be defined by Fy(O,Q) = {f € F(O,Q) : f(orb(0)) = 0}. Then
the W mapping can be thought of as W : Fy(O%, Q) — F,(0, Q).

The mapping W is used as a way to find a sufficient condition for the extension property

to be satisfied as shown in the following theorem.

Theorem 2.5.7 (Theorem 7.2, [19]). For an alphabet A, if the mapping W : Fy(O% Q) —
Fo(O,Q) is injective for every finite R-module M, then the alphabet A has the extension
property with respect to the weight w.

The notions defined in this section will be used to describe codes in Chapter
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Chapter 3

The Extension Theorem for Weight

Functions over Frobenius Bimodules

The main two notions of code equivalence are w-isometries and monomial equivalence. The
first notion of equivalence, w-isometries, is intrinsic. Two codes C; and Cy are said to be
w-isometric if there is a weight-preserving linear isomorphism f sending C; to Cs. The second
notion of equivalence, monomial equivalence, is extrinsic. Two codes C; and Cy are said to be
monomially equivalent if there is a monomial transformation 7" on the ambient space sending
C; to C3. The MacWilliams extension theorem shows that these two notions of equivalence
are the same for linear codes over finite fields with respect to Hamming weights. We say
that finite fields equipped with the Hamming weight have the extension property [19]. In
general, an alphabet A is said to have the extension property with respect to a weight w if

every w-isometry extends to a monomial transformation, see Definition [3.1.1}]

The main result in this chapter is to give a characterization for a general weight function
to have the extension property over the Frobenius bimodule R. We presented the essential
properties of the Frobenius bimodule in section Throughout this chapter R is a finite

ring with 1 and A is a finite left R-module.
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3.1 The Extension Theorem and the Extension Prop-

erty

There are several notions of code equivalence as we saw in Section 2.2l In this section we
cover the main results regarding the extension theorem. Recall that for a weight w, the
restriction T|¢, of a G;-monomial transformation produces a w-isometry. That implies that
every pair of G,;-monomially equivalent codes are w-isometric. The converse is known as

the extension property.

Definition 3.1.1. Let A be a left R-module and w a weight function on A. A is said to
have the extension property with respect to w if every w-isometry between two linear codes

extends to a G,.-monomial transformation of the ambient space A™.

It was shown in [I3] that finite fields have the extension property with respect to the

Hamming weight. The result is known as the MacWilliams extension theorem.

Theorem 3.1.2 (The MacWilliams Extension Theorem). Fvery Hamming weight isometry
f of linear codes over a finite field F extends to a monomaial transformation T on the ambient

space F".

In 1999, Wood showed that finite Frobenius rings have the extension property with
respect to the Hamming weight [17]. In fact, the class of Frobenius rings characterizes finite
rings that have the extension property [18]. In 2004, Greferath et al. proved that finite
Frobenius bimodules have the extension property with respect to both Hamming weight and
the homogeneous weight [8]. With respect to Lee weights, see Definition m, it was shown
that Z,, has the extension property when m is a prime power [I12] and then it was proved

for any positive integer m in [4].

Over the past several years, many sufficient conditions and a few necessary conditions
were found for the extension property to hold for various alphabets and weight functions. In

this chapter we give sufficient conditions for the Frobenius bimodule to have the extension
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property with respect to a general weight function. Sufficient conditions for the extension
property over Frobenius bimodules with respect to weights of maximal symmetry were given

in [6].

Theorem 3.1.3. [0, Theorem 4.4] Suppose A is a Frobenius bimodule over R with a gener-

ating character x and w is a bi-invariant weight on A. If w satisfies

Z w(a)x(a) # 0, for all nonzero submodules S < A,

aesS

then w has the extension property.

This result is recovered using monoid-ring tools in Corollary [3.3.5]

3.2 Monoid-Ring Approach

In this section we follow the general setup and notations from [21]. Recall that R is a finite
ring with 1. Let R = F(R,C) be the complex vector space of all complex-valued functions
on R. We make R into a ring by defining addition to be pointwise, and multiplication is
given by

af(r) = Z a(s)B(t), for a, B € R and r € R.

st=r
In fact, R is naturally isomorphic the complex monoid ring of the monoid (R, -) with elements
thought of as complex-valued functions instead of complex formal sums. It is clear that R
is also a complex algebra with dimension |R|. We think of the natural basis of R as {e,},er,

where e,(s) is 1 when s = r and is zero otherwise.

A similar construction is done for the alphabet A. Let F(A) = F(A, C) be the complex
vector space of all complex-valued functions on A. As a complex vector space, F(A) has
natural basis {J,}aeca, where d,(b) is 1 when b = a and is zero otherwise. The left R-module
structure on A induces a right R-module structure on F(A), as follows. The following two

results generalize Lemmas 13, 14 and 19 in [7].
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Lemma 3.2.1. F(A) is a right R-module under the following scalar multiplication

(wa)(a) = Z w(ra)a(r), forwe F(A),ae R, and a € A.

reR

Proof. We verify one of the right scalar multiplication axioms. Let o, f € R and w € F(A).
Then

(w(ap))(a) = ) wlra)(af)(r)

- Z w(ra) Z a(s)B(t)

— Z w(sta)a(s)B(t)

— Z (Z w(sta)a(s)) B(t)

= Z(wa)(ta)ﬁ(t) = ((wa)B)(a).

This shows that w(af) = (wa)B. The rest of the axioms can be proved in a similar fashion.

]

If w in F(A) is thought of as a weight function, then wa can also be thought of as a

weight function, for all o € R.

Proposition 3.2.2. Suppose f : C; — Cy is a w-isometry. Then f is a wa-isometry for any

aeR.
Proof. For x € Cy,

wa(zf) = Y wlr(ef)a(r) = Y w((re) flalr) = Y w((rz))a(r) = wa(z). O

reR reR reR
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3.2.1 The W Matrix

Let w € F(A) be an arbitrary but fixed element. We think of w as a weight function on
the alphabet A. The right R-module structure on F(A) defines a map F(A) x R — F(A).
By fixing w € F(A), we obtain a homomorphism of right R-modules (also denoted by w)
w: R — F(A) given by w(a) = wa, all @ € R. We will refer to this homomorphism w as
left multiplication by w.

It is clear that the left multiplication by w is a C-linear homomorphism. Using the
natural bases mentioned above for R and F(A), we can find the matrix representation of w.

In fact, we have

w(e,)(m) = we,(w) = Y w(*m)ep(s) = w('m).

seR

That is, we, = >, _, w("7)éx, all r in R. Therefore, the matrix representation of w under
the natural bases is given by (w("7))rearer. As simple as this matrix representation seems
to be, it does not reflect much of the structures of A and R and their interrelation. In the
following we will use a different basis for F(A) that will give a nice block structure for the

matrix representation of w.

Definition 3.2.3. (Fourier Transform) Let B be a finite abelian group, and f a complex-
valued function on B. The Fourier Transform f of f is a complex-valued function on B

defined by
J?(W) = Z f(b)m(b), all e B.

beB

From now until the end of this chapter, we take A = R to be the character bimodule
R. In this case, we get the following nice isomorphism between R and F (A) as shown in

[21], Theorem 4.3.].

Theorem 3.2.4. Let A = R. The Fourier transform ~: R — F(A) mapping o to & is an

isomorphism of complex vector spaces.

Proof. 1t is clear that the Fourier transform defines a linear homomorphism of complex vector
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space. The inverse Fourier transform ~ is given, for w € F(A) and r € R, by

- 1
w(r) = I Z w(m)mw(—r).

TEA

This shows that the Fourier transform is in fact an isomorphism. O

Corollary 3.2.5. {€,}.cr forms a basis for F(A), where & = >, 4 7(S)0x.

Recall that we fixed w € F(A) and that A = R. We calculate the matrix representation
W of the map w with respect to the bases {e,},cg for R and {€,}sr for F(A). Recall that
A, is the left scalar multiplication by r in A, as defined in Lemma [2.3.10] Since A, is a right

R-module homomorphism of A, we have that both ker A\, and im A, are right submodules of

A.

Fix r € R. Using the inverse Fourier transform formula, it is easy to find that J, =
|—]1%‘ Y werT(—s)es. The column indexed by e, in the matrix representation W of w is then

given by:

we, = Z w( )0y

TEA

" L m(—s)e,
ST RS

TEA SER

1 ~
— @ 2 (Z w(rﬂ)ﬂ(—s)) €s

seR \mweA

1 ~
ol dw(m) ) () e

seR \ meim A, TeN L (7)

For 7 € im A, and 7 € R, let 7, denote an element in A, !(), that is A\.(7..) = 7. Since
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A () is a coset of ker A, we have A !(7) = 7, ker \,. Thus, by Corollary [2.3.5, we get

1 ~
weT:@Z 2 w(m) Z T(—3s) | €

seR \ mweim A, Te/\Zl(Tr)

:’_]{HZ Z w(T) Z Tr(—8)7 (=)

seR \mweim A\, Teker Ay >

—,—;Z S w(mna(-s) Y (=)

€s
seR \mw€im A\, T€ker A\,
ker A\ ~
— | R r Z ( 2 w(ﬁ)rm(—s)> Cs-
se(R:ker Ay.) \7€im A,

It follows that the (e, e,)-entry in the matrix representation of W is given by:

|kl|3§z|AT| Zweim)\r w(m) T (—s), se (R:ker),)

0, otherwise

Wa, e, = (3.1)

It seems that the entries W5, .. might depend on the choice of 7, .. We shall show that the

expression of Wz, ., is in fact independent of the choice of 7, in A (7).

Lemma 3.2.6. Forr € R, the left ideal (R : ker \,) is the left principal ideal generated by r.

Proof. Recall that A = R, hence, by Lemma im A, = (R : ker \,).

By Lemma , we know that XT is the right multiplication p, by r» on R. This implies

that im X,, = im p, = Rr, hence the result follows. O
Corollary 3.2.7. Letr,s € R. Then, Rr = Rs if and only if ker A\, = Kker A.

Lemma 3.2.8. Let r € R and s € (R : ker \,). The expression >, i\ w(7)Tpx(—5) is

independent of the choice of T, in A ().

Proof. Since M\ !(m) is the coset 7, ker A\, of ker \,, any other choice of 7, in A\ '(7) has
the form 7, 0, with o € ker A,. Plugging this into equation [3.1, we get an additional factor

of o(—s), where s € (R : ker \,.). But o(—s) = 1, so expressions agree. O
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The following is a restatement of [I7, Proposition 5.1].
Proposition 3.2.9. Let r,s € R. Then U(R)r = U(R)s if and only if Rr = Rs.
Corollary 3.2.10. Let r,s € R. Then, ker A\, = ker A\, if and only if r = us, for some
uelU(R).
Proof. Suppose that ker A\, = ker \;. By Lemma [3.2.6}

Rr = (R:ker)\,) = (R:ker\) = Rs.

By Proposition [3.2.9] this implies that r = us for some u € U(R).

Conversely, suppose that r = us for some u € U(R). If 7 € ker Ay, then
Tﬂ_:usﬂ_:u(sﬂ,) :Uﬂ — 1.

This shows that 7 € ker A\,.. Similarly we get the other inclusion, and hence ker A, = ker A;.

]

3.2.2 Total Ordering on R

In this section, we define an ordering on the ring R to get a block upper triangular form for
the matrix W. Note that the collection P = {Rr},cr of principal left ideals of R is partially
ordered with respect to set inclusion. We extend the above partial order to a total ordering
on the collection P. Now we use this to define a total ordering on R as follows: we replace
each principal left ideal Rr by an interval consisting of the elements in the coset U(R)r in
some order. Not that this interval does not depend on the choice of the generator r of Rr,

see Proposition [3.2.9. Our choice of total ordering then satisfies the following conditions.

Definition 3.2.11. We choose a total ordering (R, <) on R satisfying the following two

properties:
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1. If Rr is a proper subideal of Rs, then r < s.

2. If r < s and Rr = Rs, then for all ¢ in the interval [r, s| we must have Rr = Rt = Rs.

We then have that 0 < r all » # 0, and that the greatest element is a unit.

Notice that the group of units U(R) acts on R by left multiplication. Let U(R)\R =
{O,, )11, denote the orbit space of this action. We choose a fixed representative t,, for the
orbit O,, by t,, = min O,,. By our choice of the order on R, every orbit corresponds to an
interval all of whose elements generate the same left ideal, that is Rt,, = Rr for all r € O,,.
Also, by Corollary [3.2.7, ker \;,, = ker \,, for all r € O,,. Finally, we choose to order the
orbits to be compatible with the ordering on R, that is, for m; < msy, we have r < s for all

r € O, and s € O,,,.

Lemma 3.2.12. For 0 < m < t, the set of generators O,, of Rt,, is given by

Proof. Suppose that s € Rt,, and s ¢ Rt;, all 0 < j < m, then we have Rs < Rt,,. If
Rs = Rt,,, then by Proposition [3.2.9] s is a unit multiple of ¢,,, hence s € O,,. If Rs < Rt,,,
then by definition s < t,,. Let k be such that Rs = Rt;. By our choice of total ordering we

have that k£ < m, and so s ¢ Rt;, a contradiction.

Conversely, suppose that s € O,,. If s € Rt;, for some 0 < j < m, then we get that
Rt,, < Rt;, since s is a generator of Rt,,. By definition, we get that ¢,, < t; which contradicts

the fact that j < m. Therefore, s ¢ Rt;, for 0 < j < m and the result follows. n

We use the total ordering on R to order the bases {e,},cr of R and {€s}ser of F(A) in

the obvious way. That is, r < s if and only if e, < e, if and only if €, < é;.

Theorem 3.2.13. Using the ordered bases {e,},cr of R and {€s}ser of F(A), the matriz

representation of W is a block upper triangular matriz with t diagonal blocks given by:

Dy, = (We,e,) , for0 <m <t.

SEOm,reOp,
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Proof. Let m > j. We need to show that W ..
and s € Oy, then by Lemma [3.2.12] s ¢ Rt;. That is, s ¢ (R : ker \,) and so the coefficient

=0, for s € O,, and r € O;. Since j < m

of € in the expansion of We, equals to zero. Therefore W, .. = 0 as desired. O

3.2.3 Factorization of R and F(A)

We follow the results in [2I, Section 5] in this subsection. We define the following
invariant subspaces of R and F(A). Recall that A = R.

Definition 3.2.14. Let H be a subgroup of U(R) and K a subgroup of GLg(A). Define
AR ={aeR:a(hr) = a(r), for all he H,r € R},

F(AH = {we F(A) : w(ha) = w(a), for all he H,a e A},
KF(A) = {we F(A) : w(ap) = w(a), for all g € K,ae A}.
Lemma 3.2.15. Let H be a subgroup of U(R). The set B R is a right ideal of R. In fact,

HR is a direct summand of R with a complement 7Y defined by

HYz{ozeR:Zoz(hr)zO, for all r € R}.

heH

Proof. Tt is clear that R is closed under addition. Let o € #R and 8 € R. Then

aB(hr) = > a(s)B(t) = D ahs)Bt) = ) a(s)B(t) = aB(r).

st=hr hs't=hr s't=r

This shows that o3 € R. Now we show that Y is also a right ideal of R. Let v € Y and
£ e R. Then

S s =Y S A0 = 3] <zy<hsf>> P

heH heH st=hr s't=r \heH
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This shows that 73 € Y. Now we show that R = #R @ Y. Suppose that o € R. Define
@ to be the average of a on the orbits of H in R. That is, a(r) = |—11{| Dnepy (hr), all r e R.

It is clear then that & is an element of #R. Also, o — & belongs to Y. Indeed,

Z (a(hr) —a(hr)) = Z < (hr) ]H\ Z (ghr )
= Z <a(hr) ]H\ Z algr >

heH geH
= 2 a(hr) — Z a(gr) = 0.
heH geH
This shows that R = #R + 7Y . And it is clear that the sum is in fact a direct sum. m

Fix a weight w € F(A), and note that w € “*F(A) n F(A)%. Consider the factor-
izations R = C*R @ “Y and R = “*R @® Y, where G and G,; are the left and right
symmetry groups of w. We will find bases for R that are compatible with the above fac-
torizations. Let G;\R = {P;}*Z} be the orbit space when G}, acts on R on the left, and
G \R = {Qj}éj) be the orbit space when G,; acts on R on the left. Since both Glt and G4
are subgroups of U(R), then both {P;}=1 and {QJ o are refinements of {O,,}l-1) and so

we choose to order them accordingly, as shown in the following chart.

Oo O, O, O

—H H T : |

PO 7317 ) Pkl Pkl-‘rl) ) P’CQ Pktfg—i-lv ’ Pk—l (32>
Similarly,
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Oo O O, O

17T 1T 1 L ] R
[ TTL TT 1 L 1
QO Qla---agll Qll-‘rl)"'ang Qlt,2+1a"'7Ql—1

(3.3)

Notice that Oy = Py = Qo = {0}. Using the ordering on R from Definition [3.2.11] let
r; = minP; be a fixed representative for P;, and s; = min Q; be a fixed representative for

Q;. Define
1

fi=—
Pl

Zer, for all 0 < i < k,
reP;

gi= > e, forall0<j<lL.
SEQj

Lemma 3.2.16. The sets {fi}¥=3 and {g;}\=% form bases for the spaces ““R and R,

respectively.

Proof. Tt is easy to see that {f;}*_} is indeed a linearly independent subset of “*R. For any
o € “uR, o is constant on each orbit in the orbit space {P;}*=). Therefore, o is written
as a = Zf;ol a(r;) fi. This shows that {f;}F=; is a basis for ““R. The other part is shown

similarly. O
Proposition 3.2.17. The Fourier transform " : R — St F(A) is an isomorphism of

complex vector spaces.

Proof. Consider a basis element f; in “*R, we show that ﬁ is an element of “* F(A). Let

h e G,

fi(ﬂh) = Z filr)m(r) = Z fi(r)m(hr)

TeR reR
= Y fih T s)m(s) = ). fils)m(s) = film).

seER sER

This shows that f; is an element of ¢ F(A). Conversely, we show that the inverse Fourier

30



transform maps “tF(A) to “*R. Let f e “tF(A) and h € G4, we have

Zf - Zf

TrGA 7T€A
thl - Zf Jo(—r) = f(r).
O’GA O'EA
This shows that f is an element of R O

Corollary 3.2.18. The set {g; = >,,c0, @s}é;h forms a basis for “t F(A).
Proof. Follows directly from Lemma [3.2.16| and Proposition [3.2.17] O

Now we extend {f;}}=4 to a basis for the space R using the factorization R = “R@“Y .
Let {fx,..., fir-1} be a basis for “#Y. Then {fi}@_l is a basis for R that is compatible

|R|—

with the above factorization. Similarly, we extend the basis {g] o to {gj},2  a basis for

the whole space F(A).

Lemma 3.2.19. Under the map w: R — F(A), we have wY =0 and wR < “tF(A).
Proof. Let av€ Y. Since w € F(A)%, then for m € A we have

wa(r) = Z w(T)a(r)
PIPIRT

reR heGy:

PIITY

heG seR

— Z (‘ o Z a(h_ls)) =0

|G,t|

!Glt\

since h € Gy and « € Y. This shows that w&*Y = 0.

Let e R, he G,; and w € A. Then



Therefore we indeed have wR < %t F(A). O

In the following we show that the entry W3, .. depends only on the orbits of r and s

under the appropriate actions.

Theorem 3.2.20. Let r and s be elements of R such that r € P; and s € Q;. Then

Wé\sye'r = Wé\sj s€r;

Proof. Since s € Q; = orb(s;), then s = us; for some u € G,4. It is clear s € (R : ker \,) if
and only if s; € (R : ker \,). If 5,5, ¢ (R : ker \,), then W, = Wgsj e = 0, by equation .
Otherwise, suppose that s, s; € (R : ker A,), then by Lemma s; = tr for some t € R, so
we have s = us; = utr. Therefore, by the right symmetry of w and by the fact that im A, is

a right submodule,

Bl

W€ er — T
|keI‘)\T’ —8yCr ﬂ_e;)\ w(ﬂ->7—7 (8)
= > wmma(utr) = > w(m) 7 (ut)
TEIM \pr TEIM Ay
= Z w(m)m(ut) = Z w(m)m(t)
TEIM \pr TEIM \pr
|
= D wp" pt) = D wip)p(t)
pEImM Ay peEImM Ay
= Y Wt = Y W) = W
, i , P | ker \.| T
pEIM Ay pEIM Apr
Similarly, since r € P; = orb(r;), then r = wur; for some v € Gj. Suppose that

se (R:ker\,) = (R:ker\,). It is clear that im A\, = wim A, and that |ker \,| = | ker \,,

’

therefore

|—ka|AT|Wgs,er= > wmma(s) = Y, wmmnals) = Y5 w(*p)mals).

mEIm A\ mEUim /\Tz‘ pEIM )\Ti
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Notice that, if m = “p, then any 7 € A!(7) is an element of A\ '(p) as well. In fact

7‘1-7_ — uier — u’l (7‘7_) — u’lﬂ_ — p

Therefore 7, . € A '(p). Thus, by Lemma and left symmetry of w, we have

|R| |R|
W€ er — “ T = T = W€, er:
ot o] Vs >, wp)ma(s) = 5 w(p)ifs) R il
pEIM )\TZ. peim >"“i g
This shows that Wz, .. = Wgsj er - ]

Theorem 3.2.21. Under the bases {fi}yj;l and {gj}'ji‘gl, the matriz representation W? of

w s given by

(LL%%W&%)O<i<k 0

0sg<l

wW? =

Proof. By Lemma [3.2.19) wf; = 0, for i > k. Also, wf; € “tF(A), therefore wf; is written

as a linear combination of {g g] o as follows.
1 ~
b |7D PP SEZRW'ES"”&S
|73 | SEZ}:“;P We, e €5 = |73 | SEZ}:JP i[We, e, s
i 2 Weper s = Z We, er Y, 05 = i We., e 071 (3.4)
J=0s€Q; s€Q; 3=0
as desired. -

Corollary 3.2.22. The left multiplication by w reduces to a map w : ““R — “rt F(A).

Recall that {O,,}5 1, is the orbit space of the left action of U(R) on R. Let t,, be a

fixed representative of the orbit O,, chosen by t¢,, = min Q,,, for 0 < m < t.
Theorem 3.2.23. Under the bases {f;}}= and {g;}:_ i U, the matriz representation W of the
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induced W : “vR — t F(A) is an | x k matriz given by
Wi = We, ers Jor0<i<kand0<j <L,

Moreover, W is a block upper triangular matriz with t diagonal blocks given by

. ’ ker )\tm‘

Wit = Z w(m)x(7"), where

| | €t A
u e Gp\U(R)/Stab(t,,), v e G \U(R)/Stab(t,,), for 0 < m <t —1, and x is the generating
character from Lemma |2.4.4).

Proof. Let 0 < m <t — 1. Refer to charts [3.2] and we have that O, = Py, 11U U
Pr, = Q. s19---uQ . Let by, +1 <1< kpyand [, +1 < j < [,41. The entry
Wgﬁ £ = Wgsj er,» DY equation . Therefore, the matrix W is a block upper triangular
matrix by Theorem [3.2.13]

Let r;,8; € O, then r; = ut,, and s; = vt,, for some u,v € U(R). We would like
to understand the restrictions that we can put on u and v to guarantee a unique way of
describing each entry in the matrix. Notice that u and v need to only be considered up to
Stab(t,,), the stabilizer of ¢,, under the action U(R)\R. That is, if r; = ut,, = uit,,, then
uStab(t,,) = uyStab(t,,), hence u = u; in the quotient U (R)/Stab(t,,). Similarly for v. Also,
if u' € Gy, then v'ut,, = u'r; is an element of P; which represents the same basis element
fi- Hence u is only considered up to the quotient G;;\U(R). That is, u can be thought of
as an element in the double quotient G, \U(R)/Stab(t,,). Similarly v € G,,\U(R)/Stab(t,,).

Notice that s; = vu~'r;, and that |ker \,,| = |ker \;,, | by Corollary [3.2.10, Also ¢ € im ),
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if and only if “o € im A,,. By (3.1), we have

Rl o B

M = = S B nals) =Y 6~
| ker )\tm| 91 | ker >\r1| e weg)\ri " ! GEimZ)\tm e Z
- Z w( o) Ty, up(—vut) = Z w(o) o(—vu™")
o€im A, o€im ¢,
=Y wle—v) = Y wlo)t -1 = Y wloxe?). O
o€im A, o€im Ay, oeim A,

Now, suppose that w has maximal symmetry, that is G,; = G;; = U(R). In this case ev-
ery block of the matrix W described above is in fact a 1 x 1 block, as both G,,\U(R)/Stab(t,,)
and G \U(R)/Stab(t,,) reduce to one element. Also, minP,, = min Q,,, = min O,,, = t,,, for

l<m<t.
Theorem 3.2.24. Let w have mazimal symmetry. Then W is a t x t upper triangular matriz

with diagonal entries

— ker A\
Wi = % Z w(m)x(m), for 0 <m <t, wheret,, = minO,,,

Teim )‘tm
where x is the generating character for the Frobenius bimodule A.

Proof. Since min P,, = min Q,, = min Q,,, = t,,,, then u = v = 1 from the proof of Theorem

3.2.23] Using Theorem [3.2.23| with u = v = 1 we get

— | ker A\, |
Wﬁm,fmZTf > w(m)x(r). O

TEIM )‘im

Corollary 3.2.25. Let w have mazimal symmetry. Then determinant W is given by

t—1
— k
det W = (M Z w(w)x(w)) , where t, = min O,,.

TEIM )‘tm
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3.3 The Extension Property

In this section we use symmetrized weight compositions to prove our main result about the
extension property. Let’s first recall the definition of symmetrized weight compositions on

an alphabet module A.

Definition 3.3.1. Let G,; < GLRg(A) be a subgroup of the group GLg(A) of all R-
automorphisms on A. The symmetrized weight composition is a function swe : A" x A/G,; —
N defined by

sweg(z) = |{i : x; € orb(a)}|, all z € A" orb(a) € A/G,4

The following result is Theorem 13 in [5].

Theorem 3.3.2. Let A be a Frobenius bimodule over a finite ring R. Then A has the

extension property with respect to the symmetrized weight composition.

We use that fact that the symmetrized weight composition has the extension property

over Frobenius bimodules, in particular over A = }A%, to show the following.

Theorem 3.3.3. If W has a zero left null space, then w has the extension property.

Proof. Let f:Cy — Cy be a w-isometry of left linear codes Cy,Cy € A™. Our goal is to show

that f extends to a monomial transformation on the ambient space A™.

Fix x € C;. Then swc(z) can be thought of as a function from A to C that is constant
on the right G,,-orbits on A, that is swc(z) is a weight function on A with right symmetry
group G4, hence swe(z) € @t F(A).

Since W is the matrix representation of the map w : “#R — ¢t F(A) and since W has
zero left null space, then the map w is surjective. Indeed, the dimension of im w plus the left
nullity of W is equal to the dimension of &t F(A), but since W has a zero left null space,
then dim(imw) = dim(“*F(A)) and hence w is surjective. Therefore, there is a in “#R
such that w(a) = wa = swe(z). By Proposition [3.2.2] f is a swe(z)-isometry. By Theorem
[3.3.2] f extends to a G,;-monomial transformation of A™. O
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The following is a our main theorem for this chapter. It follows directly from Theorem

B.3.3
Theorem 3.3.4. Let A = R. If each of the diagonal blocks

. ’ ker )\tm‘

W§j7fi = R| Z w(*m)x(r"), where

€t A

u e Gp\U(R)/Stab(t,,) and v € G.,\U(R)/Stab(t,,), for 0 < m <t — 1, has zero left null

space, then w has the extension property.

Corollary 3.3.5. Let w have maximal right symmetry. Suppose that

Z w(m)x(m) #0, for allre R.

werA

Then w has the extension property.

Proof. By Theorem [3.2.24] det W # 0 and thus W has a zero left null space. Hence w has
the extension property, by Theorem (3.3.3] O
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Chapter 4

Failure of the MacWilliams Identities

The MacWilliams identities give a relation between the Hamming weight enumerator of a
linear code and the Hamming weight enumerator of its dual. The MacWilliams identities are
valid for linear codes over a finite Frobenius ring of size ¢ with respect to the Hamming weight
[17]. We are interested in the question of whether there is some version of the MacWilliams
identities for other alphabets and other weight functions. In this chapter we focus on the

Lee weight over Z,,, the integers modulo m.

4.1 Preliminaries

We need the following definitions and terminology.

Definition 4.1.1. Let R be a finite ring with 1. The Hamming weight H: R — N on R is
defined by H(r) = 1 for all nonzero r € R and H(0) = 0. The Hamming weight extends to

vectors = = (z1,...,x,) € R" by H(z) = >, H(x;).

The Hamming weight enumerator is defined by the following.

Definition 4.1.2. The Hamming weight enumerator for a code C < R" over R is an element
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in the polynomial ring C[X, Y] given by

hwee(X,Y) = ) Xm @y,

ceC

Recall the definition of a dual code, Definition [2.1.4 MacWilliams showed in [13]
that there is a relation between the Hamming weight enumerator of a linear code and the
Hamming weight enumerator of its dual. These relations are known as the MacWilliams

identities.

Theorem 4.1.3 (MacWilliams Identities). For a linear code C over a finite field F,, the
Hamming weight enumerator of C* is given by

1

hwecL(X, Y) = ’C|

hwee(X + (¢ —1)Y, X —Y),

The same statement of the MacWilliams identities is valid for linear codes over a finite
Frobenius ring of size ¢ with respect to the Hamming weight [I7]. We are interested in the

question of whether there is some version of the MacWilliams identities for Lee weight over

/.

Recall that a linear code C of length n over Z,, is a submodule of Z,. Vectors v € Z,
have the form v = (vy,...,v,). The dual code C* of C in Z" is defined by C* = {v e Z" :
D vie; =0, for all ce Cl.

Definition 4.1.4. The Lee weight is defined on Z,, by L,,(i) = |i|, the ordinary absolute

value on Z, where Z,, is thought of as Z,, = {i e Z : —m/2 <i < 'm/2}.

The Lee weight essentially measures the distance from zero when the elements of Z,,

are represented on a circle as shown below.
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Example 4.1.5. The Lee weight over Zg is given by:

Lg : Zg — N
—2—2

—1—1

We will write just L(i) when m is obvious from context. For vectors v € Z, define

L(v) = >,", L(v;). For a linear code C of length n over Z,,, the maximum Lee weight in C is
Definition 4.1.6. The Lee weight enumerator of a code C < Z, is an element in the

polynomial ring C[X, Y] given by

Iwee(X,Y) ZX” 3Ly L),
ceC

Let A;(C) denote the number of codewords of Lee weight i in C, that is, 4;(C) = |{c €

C : L(c) =i}, for 0 <i < n|m/2|. The Lee weight enumerator of C can then be rewritten as
nlm/2) o
Iwee(X,Y) = > A(C)X"5y7,
i=0
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Our main goal in this chapter is to study the existence of the MacWilliams identities
over Z,, with respect to the Lee weight. The Lee weight and the Hamming weight are equal
when m = 2 or m = 3; thus the MacWilliams identities for Lee weight are valid in those

cases. For codes over Z,, we have the following theorem.

Theorem 4.1.7 ([9]). The Lee weight enumerator of a linear code C over Z4 and the Lee
weight enumerator of its dual are related:

1

lwecL(X, Y) = |C|

Iwee(X +Y, X —Y).

4.2 Main Theorem and a Proof Outline

For m > 5, it was shown in [16] that the change of variables X — X + (¢ — 1)Y and
Y — X — Y does not give a version of the MacWilliams identities for any prime power ¢
with g/m . The main result of this chapter is that there is no well-defined relation between
the Lee weight enumerators of a code and its dual for m > 5. Specifically, we prove the

following

Theorem 4.2.1 (Theorem 1.1,[1]). Suppose m = 5. There exist linear codes Cy,Co over Z,

satisfying lwee, = lwee, and Iweer # lweey .

Let LC(Z,,) denote the collection of all linear codes over Z,,, and let L: LC(Z,,) —
LC(Z,,) denote the map sending a linear code C to its dual code C*. Then Theorem [4.2.1]

says that it is impossible to find a well-defined map making the following diagram commute.

LC(Zy,) —— LC(Zy,)

lwe l l lwe

C[X, Y] o L= C[X, Y]

Corollary 4.2.2. There is not any type of MacWilliams identities relating the Lee weight

enumerators of linear codes and their dual codes over Z.,,, for m = 5.
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Here is an outline of the proof of Theorem [£.2.1] which will also serve as a guide to the
rest of this chapter. Explicit examples of linear codes Cy, Cy over Z,, satisfying lwee, = lweg,
and lwegL # lwepy are constructed: in an ad hoc fashion for m = 5,6, 8,9 (in Section ,
and in a systematic fashion for all primes p > 7 (in Section .

To handle other values of m > 5, which necessarily are integer multiples of the preceding
cases, in Section we analyze the relationship between a linear code C < Z] and the
linear code aC < Z7,, defined by scalar multiplying each codeword of C by a. In particular,
Lemma [4.5.1| shows that lwec determines lwe,c, so that lwee, = lwee, will imply lwe,e, =
lwegye,, which is Corollary On the other hand, Lemma allows us to compare
the number of codewords of sufficiently small weight in C* and (aC)*. Consequently, if
lwepr # lwepr because the number of codewords of a sufficiently small weight differ, then the

same will be true for (aCy;)* and (aCs)*, so that Iwe (o)L # 1wWe(qe,) L, which is Corollary 4.5.4

4.3 Examples for Small Values of m

In the following we will present examples of pairs of codes Cy,Cy with lwee, = lwee, and

lwepr # lwepr over Zp, for m = 5,6,8,9.

Example 4.3.1. Let m = 5. We will describe the codes using multiplicity functions from
Section 2.5, Our codes are of dimension 2, the multiplicity functions ny, 7, : Z2/{+1} —» N
are given by the following table.

Z2{+1y o0 1 1 111 2 2 222
12 -2 -1 012 -2-1 012

Multiplicity ;; |5 5 5 5 10 55 5 5 10 5 5
Multiplicity 7, |9 6 & 5 98 5 5 2 6 5 2

Let GG; and G2 be generator matrices corresponding to the multiplicity functions n; and

12. Let C; and Cy be the codes generated by G and Gs.
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The Lee weight enumerators of C; and C, are given by

Iwee, (X,Y) = lwee, (X,Y) = X0 4 4X%y™ 4 20X50y%,

But Iwee. # lweey . In fact, Ay(CH) = 380 and A5(Cy) = 400. The counts for A, are obtained

as follows. A dual codeword of Lee weight 2 has either one nonzero entry of the form +2 or

two nonzero entries of the form +1,+1. There are no dual codewords of the first type (i.e.,

a single +2) because there are no zero columns in GG; or G3. Dual codewords of the second

type (i.e., two +1s) must occur with opposite signs, because no column type is annihilated

by 2 and no two column types sum to zero. The only dual codewords of the second type

arise by subtracting, in either order, columns of the same type. Thus

where the sum is over the multiplicities 7 given in the table.

Example 4.3.2. Let m = 6. Consider the codes C; and Cy generated by

Gi= 111 1], Go= [1 1 3 3].

Then C; and C, are given by

¢, ={(0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4),(5,5,5,5)},

C; = {(0,0,0,0),(1,1,3,3),(2,2,0,0),(3,3,3,3),(4,4,0,0), (5,5,3,3)}.

Then lwee, (X,Y) = lwee, (X,Y) = X2 + 2X8Y*4 + 2X1Y8 + V12,

We show that lwepr # lwegy by showing that Ay(CH) # Ay(Cy). As we saw in Exam-

ple a dual codeword of weight 2 either contains a single nonzero entry of +2 or two

nonzero entries of +£1. For C;, since none of the columns of (G; is annihilated by +2, then

all the codewords of weight 2 in Ci- contain two nonzero entries of +1. It is easy to see that
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if the two nonzero entries of such a codeword are equal, both equal to 1 or both equal to
—1, then that codeword does not annihilate G;. But if one entry is 1 and the other is —1
then that codeword does indeed annihilate GG;. There are 4 - 3 = 12 such vectors of length
4. Thus Ay(Ci) = 12.

For Ci, the third and the fourth columns of Gy are annihilated by +2, therefore the
four codewords (0,0, £2,0), (0,0,0, £2) are elements of C5-. Also, adding or subtracting the
last two columns of Gy gives the zero column, therefore the four codewords (0,0, +1, +1) are

all elements of Cy. Finally, since the first two columns of G are identical, then we get that

(1,-1,0,0),(—=1,1,0,0) are codewords in C5-. Thus Ay(Cy) = 10, and lwepr # lwegy.

The following example is due the referee of [20, Example 5.5] and also appeared in [15].

Example 4.3.3. Let m = 8. Consider the codes C; and Cy generated by
Gi=[1 1 2], Go= [1 3 4]

We get lwee, (X,Y) = lwee,(X,Y) = X2 +2X8Y* 4+ 5X4Y8.

We show that lwecr # lweer by showing that C{ and Ci have different numbers of
codewords of weight 3. Suppose that ¢ = (¢1, ¢z, c3) has weight 3. Then ¢ is an element of
C if and only if G1c? = 0, i.e., ¢; + ¢3 + 2¢3 = 0. Since L(c) = 3, the entries ¢;, ¢y, and c3
can have values from {0, +1, +2, +3} only. It is straight forward to find that the solutions of

c1 + ¢ + 2c3 = 0 with those restrictions are
{(-1,-1,1),(1,1,-1),(2,0,-1),(2,—1,0),(—2,0,1), (—2,1,0)}.
Thus A3(Ci) = 6. Similarly, we find that the codewords of weight 3 in Cy are
{(1,1,1),(-1,-1,-1),(-1,-1,1),(1,1,—-1)}.

Thus A3(Cy) = 4. This shows that A3(Ci) # A3(Cy) and hence lweer # lweey.
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Example 4.3.4. Let m = 9. Define the multiplicity functions 7y, 1, : Zg/{£1} — N by

m:Ze/{x1l} — N, ny:Ze/{+1} — N

0 —0 0 —7
1 33 1 -9
2 =24 2 —8l1
3 — 170 3 —0
4 —6 4 +— 36

Let G; and G5 be generator matrices corresponding to the multiplicity functions 7; and 7s.
Let C; and Cy be the codes generated by G and Go. Then lwee, = lwec,, but IWecli # lweCQL.

In fact,
Iwee, (X, Y) = lwee, (X, V) = X724 2X3Py1 4 o X217y 310 4 g X 11y 97,

Because of the 0 entries in Gy, C3- contains codewords of weight 1, while C{+ does not. That

iS7 Al(Cf_) # A1<C§)

4.4 Prime Modulus p, p > 7

In this section we construct examples C; and Cy with lwee, = Iwee, and lwepr # lwepr over

the integers modulo a prime p, p > 7.

Fix a prime p, with p > 7. Let t = (p—1)/2. Let Z) denote the set of nonzero elements
of Zy; Z) is a group under multiplication, and {+1} forms a subgroup. Let H denote the
quotient group Zy /{£1}, and let ¢ be the canonical quotient map q : Z; — Zx/{£1}. We
choose the positive representative for each element in H, so we identify the elements of H

with the set {1,2,...,t}.

Remark 4.4.1. Under the above identification, the quotient map ¢ equals the Lee weight
map L:Z) — {1,2,...,t},
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The codes considered in this section are 1-dimensional. We fix 1,7, : Z;/{£1} — N
defined by 7;(1) = 0 and ny(i) =t for all 2 <7 < t, no(1) = 2(t — 1) and ny(z) =t — 2 for all
2 <1 <t. Let Gy and G5 be generator matrices corresponding to 7; and 7,. In particular,

the matrix G has size 1 x (¢(t — 1)), consisting of ¢ entries of each 7 in {2,...,t}. That is

Gi=1[2...2 3..3 ... t.. .1

where every number is repeated ¢ times. And Gy is the matrix of size 1 x (t(t—1)), consisting

of 2(t — 1) entries of 1 and ¢ — 2 entries of each 7 in {2,...,¢}. That is,

2(t—1)—times (t—2)—times (t—2)—times (t—2)—times
= — — — —
G [ 1...1 2...2 3...3 ... toot ]

Let C; and Cy be the codes generated by G7 and Gb.

Lemma 4.4.2. For the linear codes given above, lwee, = lwec,, with a common weight

distribution given by
Ag =1 and At(t(t+1)7i) =2, forl <i<t.
2

Proof. Let i be in {1,...,t}. As an element of the group H, we have that iH = H =
{1,2,...,t}. Let = denote multiplication in H. In the following we reindex summations by

using the fact that multiplying by a group element is a permutation of H. For Gy,

L(iGl)=ZL(’L’j)t=t<Zi*j—i*1>

jeH

() -o(tg ).

Since L(iG) = L(—iG) over Z,,, then we get that At(M_Z) (Cy) =2foriin {1,...,t}. For
G27
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t
L(iGy) = 2(t — 1)L Zt—Z (i)

=2(t—-1)i+ (t—2) (Zt: )
:2(t—1)i+(t—2)(< . )—i>

:t<(t—2)2(t+1)+i>’

for all 1 < ¢ < t. Therefore, Ag = 1 and At((t72)(t+1)+i> =2, for 1 < i < t. Consider the
2
substitution ¢ =t + 1 — j, then we have 1 < 7 <, and

t(%ﬂ)_t(w

:t<t(t;1) —j)

This shows that we indeed have Ay(C2) = 1 and At(mﬂ.) (Cy) = 2, forl < i < t, as
2

+t+1—j>

desired. []

Now we show that lwecl # Iwepr by showing that the number of codewords of weight
three in C{- does not equal the number of codewords of weight three in C5-. We will study

the cases when p = 1 mod 4 and when p = 3 mod 4 separately.

4.4.1 Primes Congruent to 1 Modulo 4

In this subsection p = 1 mod 4. That is, t = (p — 1)/2 is an even number, and so t/2 is an
integer. Suppose that C is a code generated by G of size 1 x n with no zero columns. The
types of columns are {1,2,...,t}. Let a; denote the number of columns in G whose entry
is 4, for i € {1,2,...,t}. There are, up to a sign, five possible types of codewords in C* of
weight 3. Since C does not contain zero columns, a codeword with a single 3 or —3 will not

appear in C*. So only four types are considered here, each in a separate sub-subsection. We
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will count the number of codewords in C* of each of the four types and then apply the count

to Ci and Cy .

Aland a -2

Let ¢ be a codeword in C* with a 1 and a —2. Let [z] denote a column in G whose entry
is z. Suppose that 1 corresponds to column [z] and —2 corresponds to column [y] in the
generator matrix, so that Ge!' = 2 — 2y. Since C has no zero columns, then 1 < z,y <t and
so —(2t — 1) < z — 2y < t — 2. This implies that the only way to have z — 2y = 0 mod p is
to have x — 2y = 0. This forces x to be even. So if x = 2¢, then y = ¢ and the number of

ways that this happens is as;a;. Therefore, the number of such codewords in C* is

Therefore, the count for Ci-, given that a; = 0 and a; =t for all 2 < i < t, is:

t/2 t/2

Zamal = ZtQ _ )

i=1
And, the count for C3, given that a; = 2(t — 1) and a; =t — 2 for all 2 < i < ¢, is:
t/2 t/2

Dlagia; = 2(t — 1)(t — 2 +Zt—

=1

- (4t —1)+ (t—2)%)
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Alanda?

Let ¢ be a codeword in C* with a 1 and a 2. Suppose that 1 corresponds to column [z] and 2
corresponds to column [y] in the generator matrix, that is Ge! = z 4+ 2y. Since 1 < z,y < t,
then 3 < x + 2y < 3t. This implies that the only way to have z + 2y = 0 mod p is to have
x+2y = p = 2t+1. This implies that x is an odd number. So if x = 2i+ 1, then y = t—¢ and
the number of ways that this happens is ag;y1a;—;. Therefore, the number of such codewords

in Ct is
(t—2)/2

)
Z A2i+10¢—;-
i=0

Thus, the count for Ci is:

2t —2
A2i+1Q¢—; t? = ( )
1=0 i=1 2
And, the count for C2l is:
(t-2)/2 (t-2)/2 )
t°(t — 2
Z Agip10i—; = 2(t = 1)(t — 2) + (t—2)? = %
1=0 i=1

A 1 and two —1’s

Let ¢ be a codeword in C*+ with a 1 and two —1’s. Suppose that 1 corresponds to column
[z] and the —1’s correspond to columns [y] and [z] in the generator matrix, so that Gc! =
r—y—=z Since 1 =2t <z —y— 2z <t— 2, then the only way to have x+ —y — 2 = 0 mod p
is to have  —y — 2z = 0 and so © = y + 2. So, if x = 2¢ is even, then the possibilities for
yand z are y = j and z = 20 — j for 1 < 5 < 4. Similarly, if x = 2i + 1, then y = j and

2z =2i4+1—j for 1 <j <i. Therefore, the number of such codewords in C* is

t/2 i—1 . (t—2)/2 i
Q2; (Z a;a2i—j + (21)) + Z a2i+1 (2 aja2i+1—j> .
i—1 =1 i=1 j=1

1=
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Therefore, the count for Ci- is:

5 =) )

t/2 B (t—2)/2
=t ((i —2)* + Q) + > t(t(i-1)

=2 =1
2t —2)(t* =3t —1)
1 :

And, the count for Cy is:

First part:

t/2 —
Z(lgl <Za]a2Z j+ < >>
=1 Jj=1
t/2 i—1 @
< > a9, (alagz 1+ 2 Cljazi,j —+ (2z)>
=2 7j=2

(2t — 2)(2t — 3)

~(t—2) ;
t/2 i—1 2
+Z (2 (t—1)(t—2)7+ > (t—2)%+ (t_z);t_?’))
(t—2)( —2)
5 .

Second part:

(t—2)/2 i
a2iy1 | Q102411 + Z a;A2i4+1—j

(t-2)/2
= Y (=22t - Dt -2) + (-2~ 1)
-2+ 2)
R
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Adding the two parts together, the total count for C3- for this type is:

Pt —2)(t?—2)  tt—2>%t+2) t(t—2)(t> 1> -3t +4)
8 " 8 B 4 '

Three 1’s

Let ¢ be a codeword in C* with three 1’s. Suppose that the ones correspond to columns
[z], [y] and [z]. Now since 3 < x + y + z < 3t, the only way for Ge¢” to be 0 mod p is when

x +y+ 2z =p. Since 31p, then x,y, z cannot all be equal. Therefore, we have two cases.

First we consider the case when two of z,y and z are the same. Assume that y = z.

Then z is odd, and when x = 2¢+ 1, y = 2 = t —i. Therefore, the number of such codewords

in Ct is o)
t—2)/2
Z/ o Qg
rar 2i+1 2 .

Thus, the count for Ci- is

CAP -1 1,
g —— = t-1-2)

.

And, the count for Cy is

(t—2)/2
(t — 2 1

Z =3 _ —£2(t—2)(t — 3).

i=1 4

2t — 1)@_; +

Let M be the number of ways p can be written as a sum of three distinct integers
between 1 and t. Notice that 1 will never appear in such a partition. Indeed, if a partition
contains 1, then the sum of the other two parts is 2¢, this means that the other two parts
are each equal to ¢, and so the parts are not distinct. Therefore, this situation accounts for
Mt? codewords in Ci and M (t — 2)? codewords in Ci-. To find M, we need the following

definition and proposition.

Definition 4.4.3. For two integers n > k, Q(n, k) denotes the number of ways to write n
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as a sum of k distinct positive integers.

Then by [2, p. 116] and [I0, p. 45], we have the following,.

Proposition 4.4.4. For p > 3, Q(p, 3) is given by

Q(p.3) = [(p—3)*/12]

where [ | is the nearest integer function.

Since our range for partitions is from 1 to ¢, we need to subtract the partitions when
t+1,t4+2,...,p—2 appear in the partition. But p —i appears Q(i,2) times, for i = 2,...,t.

Yo - 3|5

1=2 2

Notice that |k/2] = (k/2) — (1/2) for positive odd k, and |k/2] = k/2 for even k. Since the

interval 1 <i— 1<t — 1 contains ¢/2 positive odd integers, then

Therefore,




and

_ :(p123> ]—it(t—2)
2t—2)21 1

T ]_Zt<t_2)

= _(t_31> ]—%t(t—Q)

Recall [(t —1)?/3] is the nearest integer function. Since (¢ — 1)? is an integer, then the
possible values for [(t — 1)?/3] are (t —1)%/3, ((t—1)>+1)/3 or ((t—1)?>—1)/3. This implies
that the possible values for M are:

1 1 1
— (2 =2t +4), —(t*? =2t —t(t —2). 4.1

Recall that A3(C;h) is the number of codewords of weight 3 in C;i- for i = 1,2. Remember,

we need to double our count in each type to account for the negatives of our types. Therefore,

(t —22)t2 N t2(t — 2)(tz —3t—1) N 2t —1)(t—2)

As3(C) =2 (2 : + Mt3>

1
= 5t?(t —2) (t* — 2t + 2) + 2M¢°.

For A3(Cy), the count is

A3(Cy) =2 (2 Az _22)’52 L =2 —4152 — 3t +4)
N 2t — 24)(75 - 3) M 2)3)

= %t(t —2)(t +2)(* — 2t + 2) + 2M (¢ — 2)°.
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Therefore, A3(Ci) = A3(Cy) if and only if

1 1
0 =§t2(t —2) (=2t +2) — 5zf(t —2)(t +2)(t* — 2t + 2)
+2Mt* —2M (t — 2)*

= —t(t —2)(t* — 2t + 2) + M(12t* — 24t + 16).

It follows that A3(Ci) = A3(Cy) if and only if

t(t —2)(t* — 2t + 2)

M =
1262 — 24t + 16

This expression clearly does not match any of the formulas for M from equation[4.1} Nonethe-
less, the above expression and the earlier formulas may yield the same value for M for certain
values of t. The values of ¢ on which the expression ((t* — 2t + 2)(t — 2)t)/(12t* — 24t + 16)
agrees with the first two formulas in equation {4.1] are not integers. But, the expression
(2 — 2t + 2)(t — 2)t)/(12t* — 24t + 16) agrees with ¢(t — 2)/12, the third formula from equa-
tion , when t = 0 and t = 2. Notice that t = 2 when p = 5. This means that A3(C{)
and A3(Cy) are in fact equal when p = 5, so that this construction does not provide a coun-
terexample in the case p = 5. Otherwise, for p > 13, we indeed have A3(Ci) # A3(Cy), and

therefore Iwepr # lweey for all p=1mod 4, p > 13.

4.4.2 Primes Congruent to 3 Modulo 4

In this subsection p = 3 mod 4. Then ¢t = (p —1)/2 is an odd number. We will use the same
setup from the previous subsection. In most of the cases, the only differences are the upper

limits of the summations.

o4



Aland a -2

To have x — 2y = 0, x must be even. So if = 2i, then y = 4, and the number of ways that

this happens is ag;a;. Therefore, the number of such codewords in C* is

(t—1)/2

Z ag;A;.

Therefore, the count for Ci-, given that a; = 0 and a; = t for all 2 < i < t, is:

(t—1)/2 (t—1)/2
1 t(t—3)
2 2
E QoG = E t" =t (——1) 5 .

And, the count for Cy, given that a; = 2(t — 1) and a; = (t —2) for all 2 < i <

(t—1)/2 (t=1)/2
D oama; =20t-1)(t—-2)+ > (t—2)
i=1 =2
_(t=2)(P—t+2)
_ 5 '

Aland a?

t, is:

To have x +2y = p = 2t + 1, x must be odd. So if z = 2i + 1, then y = ¢ — ¢, and the number

of ways that this happens is as;1a;—;. Therefore, the number of such codewords in C* is

(t—1)/2
Z A2i+1Q—;-

=0

.

Thus, the count for Ci- is

(t=1)/2 —1)/2
Z A2i4+10t—; = Z t2t_1).

=0

.
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And, the count for Ci is:

(t=1)/2 (t—1)/2
Z A9;410¢—; = Q(t - 1)(t - 2) + (t - 2)2
1=0 i=1
(t—1)(t—2)(t+2)
2

A 1 and two —1’s

We need to solve x = y + z. If x = 2i is even, then the possibilities for y and z are y = j
and z = 20 — 7 for 1 < j < 4. Similarly, if x = 2i + 1, then y = j and z = 2 + 1 — 5 for

1 < j <i. Therefore, the number of such codewords in C* is

(t=1)/2 i—1 o (t—1)/2 i
Z a2; (Z a;Qoi—j + (5)) + Z A2i4+1 (Z aja2i+1—j> .

i=1 j=1 i=1 j=1

Therefore, the count for Ci- is:

t=1/2  [fi-1 (t—1)/2 i
t(t—1)
[ D+ + AN
' ( 2 ) ' (] 2 >

i=2 j=2 i=1 —
(t—1)/2 (t—1)/2
tt—1
= tO%QW+( »+ t(t*(i—1))
=2 2 =1
Pt =3)(tP -2t —1)
a 4

And, the count for Cy is:
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First part:

(t-1)/2 i—1 o
)

a (t—1)/2 i—1 a;
=Qa9 < 9 > + ; a9; (alagi_l + 322 AjQ2;—j + (2 ))
-2 (2t — 2)2(2t —3)
(t—1)/2 i—1 2
. (2(t S -2+ Y-+ 0 2)2“ - 3)>

t(t — D(t—2)(t*—t+2)
2 :

Second part:

(t=1)/2 i
241 | Q1025411 + Z a;Q2i4+1—j
i=1 j=2

= ) (=2 (2t -1t -2)+ (t -2 - D)

(t—1)(t —2)*(¢* + 3t — 2)
3 :

Adding the two parts together, the total count for C5- for this type is:

(t—2)t+2)(t—-1)
1 .

Three 1’s

We consider the same two cases as in paragraph [4.4.1} First we consider the case when two

of z,y and z are the same. Assume that y = z. Then x must be odd, and when x = 2i + 1,
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y = z = t — i. Therefore, the number of such codewords in C* is

t—1)/2
(Z)/ ) (a)
2i+1 .
1=0 2

Thus, the count for Ci is:
(t-1

)/2 49
-1 1, >
- _2(t-1)%
D e}

~

And, the count for Ci is:

Covs_ay D2 o
2(1&—1)%+ >, (t 2)2(t 3)

=}L(t (=2t —3)(t+2).

Recall M is the number of ways p can be written as a sum of three distinct integers
between 1 and ¢t. Notice that 1 will never appear in such a partition. This case accounts for

M#t? codewords in Ci- and M (t — 2)3 codewords in Cy .

We know that M = Q(p,3)—>_, Q(i,2) = Q(p,3) =X _,|(i—1)/2|. Since 1 <i—1 <
t — 1 and there are (t — 1)/2 odd numbers in the interval [1,¢ — 1], then

1=2

L li—1 -1 t—1
2{ 2 J:Z 2 4
1

Hence,

M= [@} _ %l(t e

The possible values for [(t — 1)?/3] are (t —1)?/3 , ((t —1)2 +1)/3 or ((t — 1) — 1)/3. This
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implies that the possible values for M are:

1 1 1
—(t—=1)>% —(t*—2t+5 —(t> — 2t — 3).

Here are the total counts of codewords of weight 3 in Ci- and Cy-.

A(Ch) =2 ((t —23)t2 G —21)152 G 3)@; 1)
M +Mt3)
Spatn 1>(i —3E) o,
And,
A(Ch) = 2 ((t—2)(t22—t+2) N (t— 1)(75;2)(754—2)
(t—2)(t +2)(t — 1)
L= 1)(75—42)4(75—3)(t+2) +M(t2)3)

_ (= 2)@42_ P+ on— 20

Therefore, A3(Ci) = A3(Cy) if and only if

2t —1)(t2 =3t +4 t—2)(t*—t2+ 4
oo oD@l (DD oy g gy

= —t* + 487 — 3t7 — 2t + 4 + M(12t* — 24t + 16).

It follows that A3(Ci) = A3(Cy) if and only if

th— 43+ 32+ 2t — 4
1212 — 24t + 16

M =
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This expression clearly does not match any of the formulas for M from equation [4.2]
Moreover, the only integers at which the expression (t* — 4t® + 3t? + 2t — 4) /(12t* — 24t + 16)
agrees with any of the formulas in equation are t = 0 and t = 2. These are not possible
values for ¢t when p = 3 mod 4. Hence, for p > 7, we indeed have A3(Cit) # A3(Cy), and

therefore Iwegtr # lweey for all p=3mod 4, p > 7.

We summarize the results for primes p > 7.

Proposition 4.4.5. For each prime p = 7, there exist linear codes C; and Cy over Z, with

lwecl = IWGC2 and Ag(Cf‘) #* Ag(Cé‘)

4.5 Propagation of Examples and Proof of the Main

Theorem

We would like to say that if C; and C; give an example with lwee, = lwee, and lwepr # Iwegs
over Z,,, then aC; and aCs provide a corresponding example over Z,,,, for any positive integer
a. Although the previous statement is not true in that generality, a weaker version is true

and is sufficient to cover all integers m > 5. We need the following construction.

Let C be a linear code over Z,,. For any positive integer a, define aC to be the code
over Zgm given by

aC = {(acy,...,ac,) € Zy,., : (c1,...,¢,) € C}.

Lemma 4.5.1. Let C be a linear code of length n over Z,, and a be a positive integer. Then
the weight distribution of the code aC is given in terms of the weight distribution of C as

follows.

0, afq,
Aq/a(c)u a ‘ q,

for all 0 < q < |am/2|n.

Proof. Let c € C. Assume all entries of ¢ satisfy —m/2 < ¢; < m/2, for all . This implies
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that —am/2 < ac; < am/2 for all entries of ac € aC. Therefore

n n
Lom(ac) = Z lac;| = aZ leil = aLy(c).
1 i—1

i=
Notice that the map C — aC, with ¢ — ac, is a bijection. Therefore the result follows. [

Corollary 4.5.2. Let C; and Cy be linear codes of length n over Z,, and a be a positive

integer. If lwee, = lwee,, then lweye, = lwege, .

The next result examines the count of low weight codewords in dual codes of the form

(aC)*.

Lemma 4.5.3. Let C be a linear code of length n over Z,,. Suppose that a and b are
integers with 1 < a < b. Then A,((aC)t) = A, ((bC)*) for ¢ < am/2. In particular,
4,(€4) = A((BC)*) for g < m/2.

Proof. Recall that we view Z,,, = {i : —am/2 < i < am/2}, and similarly for Zy,,. Notice
that a vector y in Z[,, can then be thought of as a vector in Z;  with the same entries and

the same Lee weight. Conversely, for z € Z} .

under the hypothesis that L(z) < am/2, we
can view z as a vector in Z! =~ with the same entries and the same Lee weight. In other
words, for 0 < ¢ < am/2, the sets {y € Z.. : L(y) = ¢} and {z € Z}' : L(z) = ¢} are equal, if

we ignore the modulus and think of the elements as just integer vectors.

Now let 0 < ¢ < am/2 and let y be such that —am/2 < y; < am/2 with >} | |u:| = q,

i.e., Lam(¥) = Lym(y) = ¢. We then have the following list of equivalent statements:

y € (aC)*

Z?zl y;(ac;) = 0 mod am, for all ce C

am|(X7, vi(ac;)), for all ce C

m\(Z?:l yic;), forall ce C
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o bm|(X vi(be;)), forall ce C

e ye (bC)*

This shows that A,(aC)*t = A,(bC)" . O

Corollary 4.5.4. Let C; and Cy be linear codes of length n over Z,,. Let b and q positive
integers with ¢ < m/2. If A,(CT) # A,(Cy), then A ((bCy)t) # A, ((bC)1).

Proof of Theorem[{.2.1. Suppose that m > 5. We will consider cases based on minimal
factors of m that are also greater than or equal to 5. For instance, if m is not divisible by
any prime p, p = 5, then m is divisible only by powers of 2 and powers of 3, say m = 2"3°.
The smallest such numbers 2"3° that are themselves greater than or equal to 5 are 6, 8 and

9, as seen in the following diagram.

Sections [4.3] and [4.4] provided examples of linear codes Cy,Cy over Z,, satisfying lwee, =
lwee, and A,(C{) # A,(Cy) for the cases m = 5,6,8,9 and m = p prime, p > 7. To extend
these examples from 7Z,, to Z,, we need to verify that the numbers m and ¢ satisfy the

hypotheses of Corollary [4.5.4, We summarize the various cases in the following chart:

m 5 6 89 pp=7
q:A,CT) #A,Cy) 2 2 3 1 3
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Since ¢ < m/2 in all of these cases, Corollary implies that the examples provided in
Sections 1.3 and [1.4] yield examples with Iweqc, = lweqe, and Iwe,ep # lweyey over Zqn, for
any positive integer a. Since any m > 5 is necessarily a multiple of m = 5,6,8,9 or m = p

prime, p = 7, the result follows. O
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Chapter 5

Conclusion and Future Work

Chapter |3| of this thesis covered much of what is known about the MacWilliams extension
theorem. Studying sufficient and necessary conditions for the extension property has been
an ongoing project by some researchers for several years. Although many classical and
important results have been proven for the extension property, there are still many classes
of alphabets and weight functions for which the validity of the extension property is still

unknown. We plan to continue working on this project.

In Chapter 4| we showed that there is no valid version of the MacWilliams identities over
Z., with respect to the Lee weight, for m > 5. It is natural to consider the same problem

for other weights on 7Z,,, specifically the Euclidean weight and the homogeneous weight.

The Euclidean weight E is defined on Z,, by E(a) = L(a)? for a € Z,,. The Euclidean
weight coincides with the Lee weight and the Hamming weight over Z, and Zs, thus the
MacWilliams identities hold for the Euclidean weight enumerator in these cases. The fol-
lowing example from [I] shows the failure of the MacWilliams identities for the Euclidean

weight enumerator over Z,.
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Example 5.0.1. Let m = 4. Let

001111111122
G1: ’

110011223311

0011112200220
Gy =

110000112220

Then ewe, (X,Y) = ewe,(X,Y) = X* + 12X?Y10 43XV and ewepr # eweer. In
fact A;(Cit) # A1(Cy); because of the zero column in Gy, there are codewords of Euclidean

weight 1 in C5 but not in Ci-.

The homogeneous weight over Z,, was defined by Constantinescu and Heise [3]. We will
not give the general definition here; rather we simply state the values of the homogeneous
weight for specific m as needed. For m = p, a prime, the homogeneous weight on Z, is just
a scaled version of the Hamming weight. For m = 4, the homogeneous weight equals the

Lee weight. In those cases, the MacWilliams identities hold.

Here are two examples, also in [I], where the MacWilliams identities fail for the homo-

geneous weight enumerator.

Example 5.0.2. Let m = 6. The homogeneous weight W has the following values

a‘012345
w(a)‘013431'

Set
Gi=[111] G=|133]

Then howec, (X,Y) = howee, (X,Y) = X2 +2X9Y3 + 2X3Y? + Y2 but A5(C{) = 6 and
Ay(CY) = 4.

Example 5.0.3. This example is due to the referee of [20, Example 5.6]. Let m = 8, and
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use the following values for w:

a‘01234567
w(a)‘01112111'

Set
2 2 4

G1=[114], Gy = 04 0

Then howec, (X,Y) = howee,(X,Y) = X6 +2X4Y2+5X2Y* but Ay(Cit) = 7 and Ay(Cy) =
23.

To our knowledge, the validity of the MacWilliams identities for the Euclidean weight
enumerator or the homogeneous weight enumerator over 7Z,, is still open in general. Except
for the cases described above where the MacWilliams identities are known to hold, we expect

the identities to fail.
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