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 Identifying shallow (near-surface) groundwater in arid and hyper-arid areas has 

significant societal benefits, yet it is a costly operation when traditional methods 

(geophysics and drilling) are applied over large domains. In this study, we developed 

and successfully applied methodologies that rely heavily on readily available temporal, 

visible and near-infrared, radar, and thermal remote sensing data sets and field data, as 

well as statistical approaches to map the distribution of shallow (1–5 m deep) 

groundwater occurrences in Al Qunfudah Province, Saudi Arabia and to identify the 

factors controlling their development. A four-fold approach was adopted: (1) 

constructing a digital database to host relevant geologic, hydrogeologic, topographic, 

land use, climatic, and remote sensing data sets; (2) identifying the distribution of areas 

characterized by shallow groundwater levels; (3) developing conceptual and statistical 

models to map the distribution of shallow groundwater occurrences; and (4) 

constructing artificial neural network (ANN) and multivariate regression (MR) models 

to map the distribution of shallow groundwater, test the models over areas of known 

depth to groundwater (area of Al Qunfudah city and surroundings: 294 km2), and apply 



the better of the two models to map the shallow groundwater occurrences across the 

entire Al Qunfudah Province (area: 4680 km2). Findings include: (1) high performance 

for the ANN (92%) and MR (88%) models in predicting the distribution of shallow 

groundwater using temporal-derived remote sensing products (e.g., Normalized 

Difference Vegetation Index [NDVI], radar backscatter coefficient, precipitation, and 

brightness temperature) and field data (depth to water table); (2) areas witnessing 

shallow groundwater levels show high NDVI (mean and standard deviation [STD]), 

radar backscatter coefficient values (mean and STD), and low brightness temperature 

(mean and STD) compared to their surroundings; (3) correlations of temporal 

groundwater levels and satellite-based precipitation suggest that the observed (2017–

2019) rise in groundwater levels is related to an increase in precipitation in these years 

compared to the previous three years (2014–2016); and (4) the adopted methodologies 

are reliable, cost-effective, and could potentially be applied to identify shallow 

groundwater along the Red Sea Hills and in similar settings worldwide. 
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CHAPTER 1 

INTRODUCTION 

 
Groundwater accounts for 30.1% of the world’s fresh water supplies (Peter H. 

Gleick, 1993). A number of natural factors (e.g., precipitation, evaporation, 

temperature, climate change, and aquifer properties) and anthropogenic factors (e.g., 

irrigation, water diversion projects, and construction of dams) affect groundwater 

levels, its availability and its quality (Bob, et al., 2015). In arid and semi-arid region, 

during wet climatic periods, fluvial systems and drainage networks develop, underlying 

aquifers recharge, rising groundwater tables discharge in lowlands and depressions, 

runoff and sediment load increase, and interactions between surface runoff and 

groundwater flow systems intensify. The opposite happens in dry periods, where runoff 

is reduced, surface drainage patterns dry up, aquifer recharge is reduced and localized, 

groundwater tables are lowered, and groundwater discharge decreases in lowlands 

(Abotalib et al., 2016). Declining groundwater levels could be related to anthropogenic 

factors as well, especially in areas where fossil aquifers have been mined excessively 

for land reclamation purposes (Motagh et al. 2007).Examples include the Mega Aquifer 

System (MAS) in the Arabian Peninsula (e.g., Hoetzl et al., 1978; Jado and Zötl 1984; 

Sultan et al., 2014), the Nubian Aquifer System in northeastern Africa (Mohamed et al. 

2017), the North Western Sahara Aquifer System in north western Africa, the Great 

Artesian Basin in eastern Australia (Mohamed et al. 2017), and the aquifer system in 

northeast Iran near the city of Mashhad (Motagh et al., 2007). On the other hand, there  
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has been reports of rising groundwater levels in many other parts of the arid world. 

These reported occurrences of rising groundwater were found to be largely local in 

distribution and have been attributed to lack of organized discharge systems, leakages 

from water supply systems or from cesspools (Abu Rizaiza and Hasan, 1989), and 

excessive infiltration from precipitation or irrigation (e.g., Bayumi et al., 2003).  

The identification of areas witnessing this phenomena has been traditionally 

accomplished by collecting head data from monitoring wells or by conducting near-

surface geophysical methods such as electrical resistivity and ground penetrating radar, 

where groundwater is detected by its high conductivity and high dielectric constant 

compared to its surroundings (e.g., Omolaiye et al., 2011; Zawawi et al, 2014; Essam 

et al, 2019). Likewise, remote sensing techniques have been utilized to map shallow 

groundwater in discharge areas, yet the majority of these investigations focused on the 

use of one or two remotely acquired data sets (e.g., Hoffmann, 2005; Tweed et al, 2007; 

Donohue et al, 2009). For example, discharge areas and shallow groundwater were 

identified in Western Australia using tone variations in surface reflectance properties 

portrayed in Landsat Thematic Mapper (TM) false color composites and variations in 

surface roughness (Salama et al. 1994). Discharge areas were also identified from the 

high Normalized Difference Vegetation Index (NDVI) values over natural vegetation 

in the arid Ejina area in China (Huang et al, 2019; Jin et al., 2011) and from thermal 

satellite imagery given that groundwater discharge has contrasting heat signature 

compared to the surroundings areas (e.g., Anderson, 2005; Pfister et al., 2010; Schuetz 

and Weiler, 2011). 
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Our approach is different from the earlier attempts in two major ways: (1) we 

developed remote sensing-based methodologies that utilize a large number of remote 

sensing data sets (e.g., Moderate Resolution Imaging Spectroradiometer [MODIS] 

NDVI and Land Surface Temperature [LST], radar backscatter coefficient [RBC] from 

Sentinel-1, Soil moisture and Ocean Salinity [SMOS] measurements, Global 

Precipitation Measurement [GPM] and Tropical Rainfall Measuring Mission [TRMM] 

estimates) in conjunction with hydrogeologic information (e.g., depth to water table 

[DTW]), and (2) we developed statistical models that relate the observed shallow 

groundwater occurrences over areas where field data is available to the remotely 

acquired observations and use these models to predict the distribution of shallow 

groundwater elsewhere. The developed models are used to identify areas of shallow 

groundwater and to assist in the identification of the factor(s) controlling the observed 

rise in groundwater levels. We use Al Qunfudah city and the surrounding coastal plain 

in Southwest Saudi Arabia as our test site. 

In this thesis, I applied an integrated approach (remote sensing, Geographic 

Information Systems (GIS), hydrogeology, field investigations and statistical 

modeling) to identify and map the distribution of shallow groundwater occurrences, 

and also to investigate the factor(s) controlling these phenomena across the study area. 

Chapter 2 describes the geologic, hydrogeologic setting of the investigated area. 

Chapter 3 focuses on the methodology. This includes the following tasks: (1) construct 

a digital database (GIS) to host relevant geologic, hydrogeologic, topographic, land  
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use, climatic, and remote sensing data sets, (2) develop and test a conceptual model  

that explains the observed spatial and temporal correlations between the individual 

variables and the target variable (shallow groundwater), and (3) construct and validate 

statistical models to map shallow groundwater occurrences using statistical models 

(e.g.; Multivariate Linear Regression and Artificial Neural Network). Discussion and 

results are given in Chapter 4 and a summary and conclusion in Chapter 5. 
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CHAPTER 2 
 

GEOLOGIC, HYDROGEOLOGIC AND CLIMATIC SETTING 
 
 
 

2.1 Introduction 
 

 
In many of the arid and semi-arid regions worldwide, groundwater resources 

are the sole sources for fresh water supplies. Some of these valuable resources are found 

at shallow depths (few meters) and others at intermediate depths (say 100 to 500 m), or 

at deep depths (>500 m).  Naturally, the shallower the groundwater, the more the cost-

effective their use can be. Thus, locating these shallow water resources, especially those 

that occur over extensive areas could have societal benefits. On the other hand, shallow 

groundwater could have adverse effects as well. Rising groundwater, especially in 

urban areas could adversely affect the stability of buildings and structures. It could also 

produce adverse health impacts as well. In these cases, identifying the causes of 

observed rise in groundwater levels is important to mitigate this phenomena, when and 

where it occurs.            

 

           2.2 Geologic, Hydrogeologic, and Climatic Setting of the Investigated Area 

The Red Sea Hills crop out along the Red Sea coastal plain and are composed 

largely of Neoproterozoic (550–900 Ma) volcano-sedimentary rock units of the 

Arabian–Nubian Shield in Egypt, Sudan, Ethiopia, and the Kingdom of Saudi Arabia 

(Sultan et al. 1990; Stern and Kroner 1993). The crystalline basement are 

unconformably overlain by thick sequences of sedimentary formations ranging in age  
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from Cambrian to Recent. The basement rocks are represented by metamorphosed 

volcanic and sedimentary rock associations of late Proterozoic age (Prinz, 1984). 

During the Miocene, northwest- trending extensional faults related to the Red Sea 

rifting developed and locally extrusion of basalt flows occurred in areas proximal to 

the Red Sea escarpment. Within the coastal plain, Quaternary coastal sediments and 

wadi alluvium covered the down-dropped basement complex (Prinz, 1984). 

Along the eastern and western margins of the Red Sea Hills, watersheds collect 

precipitation from the adjoining Red Sea Hills and channel the collected runoff toward 

the Red Sea and its coastal plain as surface runoff and/or groundwater flow. As the 

runoff reaches the gently dipping coastal plain, it slows down, and deposits its sediment 

load. The alluvial aquifers flooring the channel networks are fed by infiltration from 

the runoff and by groundwater flow from the fractured basement aquifers within the  

Red Sea Hills (Sultan, 2008). The study area (Al Qunfudah Province) is located within 

the eastern coastal plain of the Red Sea in southwest Saudi Arabia and is part of the 

Asir mountainous region, which runs parallel to the Red Sea (Fig.1). The Asir region 

receives the highest average annual precipitation (AAP) in the Kingdom of Saudi 

Arabia (400 to 700 mm yr−1) (Sulaiman et al, 2018) (Fig.2). A number of cities are 

located within the Red Sea coastal plain, one of them is the major city of Al Qunfudah 

(area: 294 km2) within the study area, with a population exceeding 300,000. This city 

is apparently built along one of the main channels draining a large (2,299 km2) 

watershed, the Ganunah watershed (Fig.1b). The main channels are subject to flooding  
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during high precipitation events (Bayumi et al, 2000) and are often the sites of 

organized agricultural development. The city of Al Qufudah is developed on alluvial 

fan deposits, where there is a 1 to 2% elevation gradient of the ground surface that 

increases from sea level to more than 100 m above mean sea level (a.m.s.l) within 5 to 

10 km east of the Red Sea coastline (Fig.4). 

Climatic conditions are necessary ingredients for any surface or groundwater 

resources evaluation study. The study area characterized by a semi-arid climate with 

occasional high intensity rainfall and rare floods leading to occasional large amount of 

surface water and subsequent groundwater recharge (El-Khatib, 1980). In the study 

area, precipitation over the adjacent Red Sea Hills is collected as surface runoff in the 

main channels which discharge in coastal plain and recharge the underlying thick 

aquifer systems. 
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Figure 1. Location of the study area. (a) Map of the Arabian Peninsula showing the 
location of the study area, Al Qunfudah Province (outlined by red polygon) in 

southwest Saudi Arabia, (b) Extent of Al Qunfudah city, Al Qunfudah Province, Hali, 
Yabah, Ganunah Al ahsabah and Doga watersheds, and; (c) Zoomed-in view of Al 

Qunfudah city, location of monitoring wells, location of wells from which DTW were 
measured, and labelled location of selected wells used to test our conceptual model. 
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Figure 2. Average annual precipitation (AAP; 1998–2018) extracted from TRMM. 
(3-hourly_3B42 v7, spatial resolution: 0.25°x 0.25°) and GPM (IMERG Final 

Precipitation L3 0.5-hourly, spatial resolution: 0.1° x 0.1°0 V05) showing the highest 
regional rainfall in the southwestern part of the Arabian Peninsula including Al 

Qunfudah Province  
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Figure 3. Average annual precipitation (AAP; 2014–2018) extracted from GPM. 
(IMERG Final Precipitation L3 0.5-hourly, spatial resolution: 0.1° x 0.1°0 V05) 

showing the average rainfall in Al Qunfudah Province. 
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Figure 4. Slope image map of Al Qunfudah Province. Extracted from digital 
elevation model (DEM) using the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER). 
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CHAPTER 3 

METHODOLOGY 

3.1 Methods 
 

 
 We accomplished the goals described earlier, the identification of areas 

experiencing shallow groundwater and their controlling factor(s), by developing 

multivariate regression and Artificial Neural Networks statistical models over Al 

Qunfudah city and surrounding where field observations (depth to water table) are 

available. An inventory was compiled for reported (by the Saudi Geological Survey) 

occurrences of areas witnessing shallow groundwater levels in the coastal zone of Al 

Qunfudah. The statistical relationships relate the field observations to remotely 

acquired datasets. The adopted procedures involved four major steps: (1) construct a 

digital database (GIS) to host relevant geologic, hydrogeologic, topographic, land use, 

climatic, and remote sensing datasets; (2) develop and test a conceptual model that 

explains the observed spatial and temporal correlations between the individual 

variables and the target variable (shallow groundwater); (3) construct and validate 

statistical models to map the distribution of shallow groundwater occurrences using 

multivariate regression and artificial neural networks over Al Qunfudah city and 

surroundings; and (4) use the optimum statistical model to map the distribution of 

shallow groundwater occurrences across the entire Al Qunfudah Province (Fig.5). In 

the development of the conceptual model, we examined whether remotely acquired 

observations over areas characterized by shallow groundwater are different from those  
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acquired over deep wells. We also examined whether there are larger variations in these 

variables over shallow, compared to deep, groundwater areas. The remote sensing data  

included Normalized Different Vegetation Index (NDVI), Land Surface Temperature 

(LST), Soil Moisture Ocean Salinity (SMOS), Global Precipitation Measurement 

(GPM), Sentinel-1A Radar Backscattering Coefficient (RBC). 
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Figure 5. Four-step workflow for mapping the distribution of 

shallow groundwater. 
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3.2 Construct a digital database (GIS) to host relevant datasets   

 

The first step involved the generation of a GIS to host all relevant datasets that 

could be used for the identification of areas of shallow groundwater and the factors 

controlling this phenomenon. These include the temporal and spatial remote sensing 

products and field datasets. This step involved collecting field data (e.g., DTW; number 

of wells: 125) and downloading and processing temporal visible and near-infrared 

(VNIR), thermal, radar, precipitation (GPM), and SMOS data sets to compute LST, 

NDVI, soil moisture, precipitation, and RBC. In this section we also explain the 

response of the selected remote sensing measurements in areas of shallow groundwater. 

 

3.2.1 Identify depth to water (DTW) as target data 

 

 The Saudi Geological Survey (SGS) conducted an intensive drilling project, 

where 125 wells were drilled in year 2016 (FIG.4). Following the completion of the 

drilling project for the wells, the depth to water table was measured for each well during 

a period of few weeks in the months of October, and November.  We classified the 

wells into two groups, shallow wells (≤ 5m) and deep wells (>5m).  In the construction 

of the statistical models, the depth to water table was used as the target variable. 

Temporal measurements for the water table was available for a limited number of wells 

(13 wells), in all of which, a rise (1 to 2m) in groundwater level was reported in years  
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2017 to 2019 (Fig.5). Figure 4 shows the rise in groundwater levels in five of these 

wells over the past three years.
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Figure 6. Location map of Al Qunfudah city. Showing the distribution of the drilled 
wells and field shots for my team members during our field trips (1 to 8) of drilling 

wells to investigate the depth to water table. 
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Table 1. Annual Monitoring wells for 13 wells located in the study are, measured for the year of 
2017, 2018 and 2019 by the minestry of water and agricultural in Al Qunfuday city.  
 

Well Name 
Depth to water  in 

2017 
Depth to water in 

2018 
Depth to water in 

2019 

QN-010 15 15 14 

Q-15 20 20 19 

QM-011 18 16 16 

QN-027 17 16 15 

QN-010 15 15 14 

Q-06 18 17 16 

Q-003 17 17 14 

QN-009 17 16 15 

Q-008 20 20 19 

QM-007 20 20 18 

Q-01 18 17 16 

Q-13 15 15 14 

QN-005 18 17 17 
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 Figure 7.   Monitoring wells showing the rise in groundwater levels. The locations of these wells 
are plotted on (Fig. 1a.) 
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             3.2.2 Downloading and processing of remote sensing datasets 

 

(a) Input remote sensing data: Normalized Difference Vegetation Index  

   The Normalized Difference Vegetation Index NDVI data product (spatial 

resolution: 250m) acquired by the National Aeronautics and Space Administration 

(NASA) MODIS satellite was utilized in this study. The data was downloaded from the 

NASA’s Vegetation Index processing website (https://modis.gsfc.nasa.gov/). The 

MODIS vegetation index images are produced on 16-days intervals at multiple spatial 

resolutions; they provide consistent spatial and temporal comparisons of vegetation 

canopy greenness, leaf area, and chlorophyll and canopy structure. The ArcGIS Marine 

Geospatial Ecology Tools (MGET, https://mgel.env.duke.edu/mget/) was used to 

convert HDF format to GeoTiff format. The MODIS NDVI data has been used in a 

broad range of research activities, such as drought monitoring, global vegetation 

variation, agricultural and hydrologic modelling (Caccamo et al. 2011; le Maire et al. 

2011; Lunetta et al. 2006). In arid and semi-arid areas, climate change and water 

availability are vital factors affecting vegetation dynamics (Eamus et al. 2006; 

Naumburg et al. 2005).In arid and semi-arid environments, water table depth is reported 

to be an important factor affecting the vegetation cover (Jin et al. 2011; Lv et al. 2013). 

In the shallow, but not in the deep wells, the root zones of vegetation do not reach the 

water table. Studies have shown that in the arid regions, the root zones of the natural 

vegetation reach up to the depth of 2 to 7m (Allison and Hughes, 1982; Canadell, 1996; 

and Nippert and Knapp, 2007). 
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The DTW and NDVI relationship was investigated; an average NDVI image and 

a standard deviation image was extracted over each of investigated wells by averaging 

the NDVI values from images acquired over the period 2015-2018. We averaged 

multiple NDVI images to capture the vegetative density of each pixel throughout the 

investigated period instead of using a single NDVI image that may represent spatial 

vegetation variations relative to a specific season of that year. If the vegetation was 

supported by shallow groundwater, we expect higher NDVI values and higher 

variations in NDVI values. These variations are represented by higher standard 

deviation (STD) values in response to seasonal and inter-annual fluctuations in 

groundwater levels. Over areas characterized by deep groundwater levels, vegetation 

will be absent since the roots will not reach the groundwater table and will not be 

affected by fluctuations in water levels. 

 

(b) Input remote sensing data: Land Surface Temperature (kelvin)     

The Land Surface Temperature (LST) (Kelvin) data product 8 daily (spatial 

resolution: 1000m) acquired by NASA’s MODIS Aqua satellite was utilized. The data 

was downloaded from the LST processing website (https://modis.gsfc.nasa.gov/) that 

provides an option for periodical data download for specified regions via a free data 

subscription service. The ArcGIS toolbox Marine Geospatial Ecology Tools (MGET) 

was used to convert HDF format to geotiff format. LST has been extensively used in 

multiple research disciplines such as global climate, agriculture, hydrology, ecology  
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(Carlson, T.N.; Gillies, R.R.; Perry, 1994; Xu, Y.; Shen, 2013), many of which have 

shown that vegetation intensity is inversely correlated with LST, where vegetation 

increases with decreasing LST (Deng, et al, 2018). An average LST image and a 

standard deviation image was extracted over each of investigated wells by averaging 

the LST values from images acquired over the period 2015-2018.  Over areas of 

shallow groundwater, we expect that the LST values to be low and vary in magnitude 

(i.e., low standard deviation) in response to seasonal and inter-annual fluctuations in 

groundwater levels and vice versa over areas with deep groundwater.   

 

(c) Input remote sensing data: Radar backscattering coefficients (dB)  

Sentinel-1 is a satellite mission of the European Space Agency (ESA) that uses 

synthetic aperture radar (SAR) operating in the C-band wavelength region (spatial 

resolution: 12m). Sentinel-1A radar Ground Range Detected (GRD) scenes were 

downloaded for ascending acquisition modes from the Sentinel Data 

(https://asf.alaska.edu). Ascending acquisition modes were selected due to the 

availability of scenes covering the study area. The following operations were 

conducted: radiometric calibration and calculation of radar backscatter coefficient (beta 

naught β0) in decibels (Raney et al., 1994; Small, 2011), speckle and temporal filtering, 

terrain flattening and geometric correction and co-registration. RBC has been found to 

be effective in monitoring hydrologic systems including seasonal patterns of flooding 

(Kasischke et al., 2003; Kim et al., 2014). Average and STD images were generated  
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from the temporal β0 images acquired over the investigation period (2015-2018). Over 

areas of shallow groundwater, we expect that the β0 values will be high and vary in 

magnitude (i.e., high STD) in response to seasonal and inter-annual fluctuations in 

groundwater levels and vice versa over areas with deep groundwater.    

   

(d) Input remote sensing data: Soil moisture and Ocean Salinity  

   ESA's Soil Moisture Ocean Salinity (SMOS) Earth Explorer mission is a radio 

telescope in orbit pointing towards the Earth. The Microwave Imaging Radiometer 

using Aperture Synthesis (MIRAS) radiometer on this mission picks up faint 

microwave emissions from Earth's surface to map levels of land soil moisture and ocean 

salinity.  SMOS monthly data (spatial resolution: 0.27° x 0.27°) for ascending 

acquisitions was downloaded from the Centre Aval de Traitement des Donnees SMOS 

(CATDS) website (https://www.catds.fr/Products/Available-products-from-CPDC) 

using FTP File-zilla software. The MGET package was used to extract soil moisture 

images from the netCDF format, re-project and export the output in GeoTiff format. 

An average and a STD image was generated from the SMOS images acquired over the 

investigation period (2015-2018). Over the areas of shallow groundwater, we expect 

the soil moisture values to be high and vary in magnitude (i.e., high STD) in response 

to seasonal and inter-annual fluctuations in groundwater levels and vice versa over 

areas with deep groundwater. 
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(e)  Input remote sensing data: Global Precipitation Measurement 

The Global Precipitation Measurement (GPM) mission is a network of satellites 

which provides global observations on the distribution and intensity of precipitation in 

the form of rain and snow. The GPM data is helping advance our understanding of 

Earth's water and energy cycle and is providing accurate and timely information of 

precipitation to address societal needs (Arthur et al, 2014). Precipitation is the driver 

of all hydrologic systems; an increase in precipitation increases runoff, surface water 

levels, groundwater infiltration and storage, and leads to a rise in water table (Gerla, 

1992; Vidon, 2001; Park et al, 2008). In this study, GPM (IMERG Final Precipitation 

L3 Half Hourly (spatial resolution: 0.1° x 0.1°) daily products were downloaded from 

the Global Precipitation measurement (GPM) website (https://pmm.nasa.gov/data-

access/downloads/gpm) using the FTP Filezilla software covering the period of 2015 

to 2018. With increased precipitation one should expect shallowing of DTW. 

 

3.3 Development and validation of a conceptual model for shallow groundwater 

    As described in the previous section, we expect to observe high NDVI, high 

radar backscatter, high soil moisture, and low LST and relatively large variations in 

each of these variables (except LST) over areas of shallow groundwater and vice versa 

over areas characterized by deep groundwater. Following the downloading and 

processing of the remote sensing products, we tested the merits of our conceptual model 

by: (1) applying statistical parameters (e.g., mean, maximum, minimum, STD) for all  

of the digital datasets using cell statistic tools in ArcGIS; and (2) generating time- 
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enabled mosaic datasets and plotting time series graphs (x-y plots for variables versus  

time) to examine the temporal change for all variables. Uniformly spaced grid points 

were used to extract the values from products of different resolutions, and subsequent 

processing was done on the same grid to achieve computational efficiency. The 

collected remote sensing products were later checked for consistency and significance.  

 

              Six locations were selected: three characterized by shallow groundwater levels 

(DTW: ≤5 m) and three by deep ground water levels (DTW >5 m) for the purpose of 

examining whether the areas characterized by shallow groundwater would have a 

response on one or more of the selected image types (e.g., NDVI, RBC, and LST 

images, as well as the STD of each of these images) that is different from that over 

areas of deep groundwater (Figures 5, 6, and 7). The locations for these six wells are 

shown in Figure 1c. Comparisons of the temporal (2009 to 2018) variations in NDVI 

values between the three shallow and the three deep groundwater wells are shown in 

Figure 5, and comparisons for the variations in LST for the same six wells over the 

same period are shown in Figure 6. The comparisons for the backscatter coefficient 

variations over a shorter time period (2015 to 2018) are given in Figure 7. The shorter 

temporal coverage is attributed to the period of operation of the Sentinel-1A mission 

and scene acquisition dates over the study area (launch date: 2014; first acquisition over 

study area: 2015). 
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Figure 8. Time series of NDVI. Derived from MODIS 16-daily imagery over three areas 

characterized by shallow groundwater and three other locations characterized by deep 

groundwater. 
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Figure 9. Time series of LST. Derived from MODIS 8-daily imagery over three areas characterized 

by shallow groundwater and three other locations characterized by deep groundwater.
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Figure 10. Time series of RBC. In decibel derived from Sentinel-1 over three areas characterized 

by shallow groundwater and three other locations characterized by deep groundwater.  
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3.4 Construction and validation of a statistical model to map shallow groundwater 
  occurrences        
 

(a) Screening of the variables  

   The first step for the construction of the statistical model was to identify the 

variables to be considered for model development and to determine the optimum 

combination of significant variables. The screening of variables was conducted using 

exploratory and stepwise regression. This step gives first-hand insights into the 

contribution of each variable to the dependent variable (DTW). Only the variables 

identified as being significant were considered for the statistical model.  

     We conducted exploratory and stepwise regression and investigated the p-

value and R-squared values to determine their significance. We experimented with 

normalized and non-normalized values to determine which of the two datasets provided 

the optimum results. During the process, we retained the variables with low p-value 

and high R-square values; these were considered as being of higher significance and as 

having a stronger ability to explain the variability of the dependent variable. Following 

the significance test, the variables were subjected to multicollinearity test using the 

Variance Inflation Factor (VIF) values (O’Brien, 2007). A variable with VIF higher 

than 7.5 was considered redundant with the second highest VIF and was omitted. This 

step was performed for all the redundant variables by dropping one variable at a time 

without reducing the overall performance of the model. The redundancy test was 

conducted iteratively to ensure that significant and non-redundant variables were not  
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eliminated. Our goal of this exercise was to obtain the highest overall R-squared value 

with a minimal number of significant variables. Only six variables (GPM, LST, NDVI, 

RBC, STD of LST and STD of NDVI) were shortlisted for further consideration as 

shown in Figure 9. The relative significance of each of the short-listed variables was 

accomplished using the normalized data set. 
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Figure 11.The significant satellite-based variables. Include mean precipitation (from GPM), the 

mean and standard deviation values of LST and NDVI (both from MODIS), and RBC (from 

Sentinel-1A), all of which were extracted throughout the study period (2015 to 2018). 
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(b) Identification of the optimum model  

Two statistical approaches, the Multivariate Linear Regression (MR) and 

Artificial Neural Networks (ANN), were adopted to model the relationships between 

the shortlisted input variables (NDVI, LST, RBC, GPM, STD of NDVI, and STD of 

LST ) and depth to water table (response variable. The training subset comprised 80% 

of the data points and was used to construct the model, whereas the remaining 20% 

were used to evaluate the performance of the models and were not used for model 

development. The same sets (training and testing datasets) were used for model 

development and validation of the MR and ANN models. 

 

(c) Multivariate linear regression   

 The MR method describes a multivariate linear relationship between one or 

more predictor variables and a response variable (Sahour, 2020). The model assumes 

that the magnitude of the dependent variable is represented by the sum total of all the 

contributions of the individual variables; any unexplained contribution is represented 

by a model bias or a constant. The regression line for n independent variables X1, X2, 

X3 ...., Xn can be expressed as follows:  

 

Y= (B0) + (B1*X1) ± (B2*X2) ± …… ± (BnXn), 
 

Where Y is the predicted value of the target variable, B0 is the model bias and 

B1 through Bn are individual model coefficients. Spatial Statistics extension in ArcGIS 

was used in this analysis.      
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(d) ANN model      

   

ANN utilizes algorithms to model the complex and non-linear relationships 

(Karlaftis and lahogianni, 2011; Huang 2009) among various factors controlling the 

response variable, in our case the DTW.  The ANN is based on connection of neurons, 

a process that is designed to replicate the functions of neurons in the nervous systems 

of organisms; they pass information between one another, a structure that enables 

ANNs to be trained and to learn complex interactions. A fitting neural-network module 

of MATLAB R2019 was utilized to detect shallow groundwater.  

 

 A simplified flowchart of our constructed ANN model is provided in Figure 

10. The hyperparameter that controls the model structure (e.g., number of layers, 

number of hidden neurons, and number of epochs) was set before the learning process 

was conducted. An error technique was applied to determine the optimal number of 

hyperparameters; this was accomplished by gradually adding the number until the 

predicted and observed values begin to mimic each other. The model performance was 

evaluated using the mean squared normalized error (MSE) performance function. The 

widely used backpropagation learning algorithm (Huang, 2009) in a fitting neural-

network modeling was applied and the number of hidden neurons was increased until  

the model performance plateaued at 16 neurons.  
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         3.5. Selection of the optimum model to map shallow groundwater across Al Qunfudah 
     Province  

  Following the development of the MR and ANN models, their performance 

was assessed and the model with the highest performance was used to map the 

distribution of shallow groundwater throughout the Al-Qunfudah Province. 
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Figure 12. Schematic diagram for the constructed Fitting ANN. Wij represents the 

weight term and the βij the bias term; these terms were assigned between the input 

layer i and the hidden layer j during the learning procedure; f is the transfer function, 

xi the input from input layer i, and yj the output related to the hidden layer j. 
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CHAPTER 4 
 

RESULTS AND DISCUSSION  

 

            4.1 Results 

Findings from the exploratory and stepwise regression investigations 

revealed that SMOS was redundant with RBC possibly because radar backscatter 

is controlled, at least in part, by SMOS (Karki et al, 2019). SMOS data sets were 

removed from further consideration and RBC was preferred over SMOS because 

of its higher spatial resolution. The STD of RBC was found to be less significant 

than the remaining variables and was dropped as well. The elimination of SMOS 

and STD of RBC did not affect the overall performance of the model. Out of 8 

variables under initial consideration, only 6 variables (LST, NDVI, RBC, GPM, 

STD of LST, and STD of NDVI) were shortlisted for model construction (Fig.8). 

The relative significance of each of the short-listed variable set is given (in 

percentage) in Table 1. LST was found to be the most significant variable 

(43.2%), whereas each of the remaining 5 variables accounted for 9 to 15% of the 

observed variations in the response variable.  

Each of the determining variables exhibited a unique response to the DTW 

as shown in Table 2. The table lists the MR coefficients for each variable in 

predicting DTW. The sign (±) in front of the coefficient for each selected variable 

indicates the nature (positive/negative) of the relationship between the variable in  
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question and the response. As expected, in areas experiencing shallow 

groundwater, soil moisture increases causing an increase in RBC and a decrease 

in LST and in its variability (STD of LST). One would also expect an increase in 

NDVI and in its standard deviation in areas characterized by shallow 

groundwater. This is true for the standard deviation of NDVI, but not for the mean 

of NDVI. One possible explanation for this discrepancy is the assumption that all 

the observed temporal and spatial variations in NDVI are caused by variations in 

the intensity of natural vegetation. While this assumption is true over much of the 

desert landscape, it does not necessarily apply over farmed areas where 

groundwater could be extracted from deep or shallow depths. Also, the vegetative 

cover over the desert landscape could remain dormant and dry for long periods, 

until one or more of the infrequent, but extensive precipitation events occur and 

cause the desert to green. Over these irrigated areas and during these sporadic 

precipitation events, the NDVI values could be high, yet the DTW is not 

necessarily shallow.  As expected, the MR and ANN yielded different levels of 

accuracies (Table 3) due to the inherent differences in these models (linear versus 

complex relationships).  
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Table 2. Selected variables and their relative significance (in percentage) from the MR 

model. 

          Variables  Relative Significant  

1       LST (mean)                                    43.2%   

2      NDVI (mean)                                    15.4%   

3      NDVI (STD)                                    11.0%   

4      LST (STD)                                    10.8%  

5      RBC (mean)                                    10.2%  

6        GPM                                     9.4%  
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              Table 3. Multivariate regression coefficients for each of the selected variables. 
 

          Variables                           Coefficients  

1       LST (mean) 2.30   

2      NDVI (mean) 42.99   

3      NDVI (STD) -53.86   

4      LST (STD) 4.19  

5      RBC (mean) -3.25  

6        GPM -2.02  
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As expected, the MR and ANN yielded different levels of accuracies (Table 3) 

due to the inherent differences in these models (linear versus complex relationships). 

Both models yielded high accuracy in predicting the target with a slight enhancement 

of the ANN (accuracy: 92%) over the MR model (accuracy: 88%). The prediction 

accuracy was based on the ability of the model to predict shallow (≤5 m) and deep 

groundwater (>5 m); six variables (LST, NDVI, RBC, GPM, STD of LST, STD of 

NDVI) were used by both models for prediction purposes. In both cases, inclusion of 

additional variables did not improve the model accuracy. We used the optimum model 

(ANN model) that was developed over Al Qunfudah city and surroundings (area: 294 

km2) to map shallow groundwater across the entire Al Qunfudah Province (area: 4680 

km2; Fig.10). The generated ANN model output (derived matrix) was utilized in an 

ArcGIS 10.6 platform for mapping the distribution of the shallow groundwater 

occurrences across the province.
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Table 4. ANN and MR models accuracies in predicting the testing data. The numbers in 

bold indicate correct prediction for each model.  

                                         Testing Datasets     well predicted      Not Predicted       Accuracy  
  
  
Artificial Neural Network                25                       23                             2                          92% 

 
Multivariate Regression                   25                       22                             3                          88% 
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         4.2 Discussion 

The prediction of depth to groundwater in our study area involves 

developing an understanding of the variables indicative of the presence of shallow 

groundwater and the complex interactions among these variables. A conceptual 

model was first developed that predicts areas with shallow groundwater indicated 

by high NDVI (mean and STD), RBC (mean and STD) and low LST (mean and 

STD) values compared to areas with deep groundwater. This model was tested 

visually over 13 locations and was then validated and refined using an exploratory 

stepwise regression analysis. Six of the eight variables were selected and two 

were omitted given their lower significance and/or redundancy. An MR model 

was developed to determine the level of variance each variable explains in the 

response variable and the nature of the relationship between shallow groundwater 

occurrences and the individual variables. 

 The MR model was used to determine the comparative significance of 

each variable towards the DTW. Although simplistic, this information provided 

first-hand insights into the contribution of each variable. These estimated 

contributions represent the minimum contribution of each variable and do not 

reflect the complex interaction among variables which could be significant in 

natural environments. Inspection of Table 1 reveals that the most significant 

(43.2%) variable is the LST (mean), whereas the remaining five variables have 

sub-equal significance (range: 9.2% to 15.4%). These include NDVI (mean and 

STD), RBC (mean), and Precipitation. Although SMOS data sets appeared to be  
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significant, it was redundant with RBC, and thus it was dropped. Similarly, the 

standard deviation of the RBC was dropped from the model because it did not 

enhance the model performance. This may be because radar backscatter is already 

explaining the variance present in dependent variable.  

 The MR model was used to infer the nature of relationship between the 

independent variable and the DTW. The information provided in Tables 2 can be 

used to interpret the nature of the relationship between the DTW and the 

individual variables. In simple terms, the mathematical sign (±) associated with 

each coefficient provides the information about the type of the response it offers 

to DTW. For example, areas of shallow groundwater (low DTW) are 

characterized by relatively low LST (mean, STD), high RBC (mean), high 

variation in NDVI (STD), and high precipitation compared to areas characterized 

by deep groundwater (high DTW). With the exception of the NDVI (mean), these 

observations are consistent with our conceptual model and with the visual 

inspection of the temporal variations over the 13 test wells (Figures 1c. and 4). 

The NDVI (mean) is showing a decrease in NDVI value in areas of shallow 

groundwater and vice versa for deep groundwater. This discrepancy is probably 

related to the fact that our procedure was not designed to differentiate between 

natural vegetation and irrigated farmlands. The former is indicative of shallow 

groundwater, whereas the latter does not necessarily indicate the presence of 

shallow groundwater in semi-desert environments.  
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        The ANN provided enhanced prediction over the MR model (Table 3) and 

thus, it was selected for mapping the distribution of shallow groundwater across 

Al Qunfudah Province. This is to be expected given that the ANN models can 

account for the variations in data distributions and patterns, and can even consider 

the smallest and less obvious fluctuations in data sets (Haykin, 1994; Govindaraju 

at el, 2010). 

To better understand the distribution of the shallow and deep groundwater 

across the study area, and their controlling factors, we created 3D renderings of 

the generated DTW (Fig.10a) and AAP (Fig.10b) each draped over the digital 

elevation model (DEM) that was extracted from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) image. Additional 3D 

renderings were generated for a slope image DEM (Fig.11a) and a natural color 

composite (Esri Digital Globe, 2019) map (Fig. 11b) each draped over the DEM. 

Inspection of Figures 10 and 11 reveal some general features. Shallow 

groundwater along the coastal plain in areas proximal to the coastline (width: 3 

to 5 km) and within the main valleys that collect runoff from precipitation over 

the Red Sea Hills. The most prominent of these main valleys is E-W trending 

Wadi Hali. The Wadi Hali catchment receives higher precipitation (AAP: 192 

mm/yr.) than those to the north (AAP: 152 mm/yr.) (Fig.10b). This could explain 

why Wadi Hali, but not wadis Ganunah, Al ahsabah has shallow groundwater. 

Not only do the southern highlands receive higher precipitation, but also the  
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general slope of their coastal plain is gentle (slope: 0 to 3°; average slope: 2.5°) 

comparted to the northern coastal plain areas (slope: 3 to > 6°; average slope: 6°; 

Fig.11a). The steeper the slope, the less the infiltration and the deeper the 

groundwater.  
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Figure 13. (a) 3D rendering of the ANN-generated DTW map for Al Qunfudah 

Province. Draped over the DEM (vertical exaggeration: 30), (b) Average annual 

precipitation (2014 to 2018) draped over DEM for the Al Qunfudah Province. 
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Figure 14. (a) 3D rendering of slope map for Al Qunfudah Province. Draped over 

DEM (vertical exaggeration: 30), (b) a natural color composite map generated from 

Esri Digital Globe draped over DEM for the Al Qunfudah Province.  
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We showed that the spatial variations in precipitation could explain at 

least in part the modeled variations in the DTW across Al Qunfudah Province, 

but it does not explain the observed rise in groundwater levels (Fig.4). Inspection 

of Table 4 shows that there has been an increase in the AAP over Al Qunfudah 

Province over the past three years (2017–2019: 162 mm/yr) compared to the 

preceding three years (2014–2016: 139 mm/yr). The table also shows that there 

has been a similar increase in the AAP over the watersheds draining into Al-

Qunfudah Province. In the years 2017–2019, the AAP was high (Hali watershed: 

192 mm; Yabah: 170 mm; Ganunah: 163 mm, Al ahsabah: 158 mm; Doga: 152 

mm) compared to the preceding three years (Hali: 171 mm; Yabah: 151 mm; 

Ganunah: 140 mm; Al ahsabah: 141 mm; and Doga: 127 mm). The increase in 

precipitation over Al-Qunfudah Province and over the watersheds that drain into 

the Province will lead to increased infiltration and recharge of the alluvial aquifers 

underlying the Al-Qunfudah coastal plain causing a rise in groundwater levels in 

these aquifers. Thus, the observed increase in groundwater levels over the past 

three years (Fig.4) is likely to be related to increased precipitation. 
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Table 5. AAP over Al Qunfudah Province and the watersheds feeding it during recent years 

(2017-2019) compared to the preceding three years (2014-2016).   
 
 
 

                                        AAP (2014-2016) mm                 AAP (2017-2019) mm  

Doga watershed 127                                      152   

Al ahsabah watershed 141                                      158   

Ganunah watershed 140                                       163   

Yabah watershed 151                                        170  

Hali watershed 171                                       192  

Al Qunfudah Province 139                                        162  
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          4.2 Limitations 

 

There are several limitations with the applied methodology. The 

developed models were developed for the coastal plain of the Al Qunfudah 

Province. Thus, it probably could potentially be applied to similar settings along 

the Red Sea Hills or elsewhere, but not to areas with different geologic and 

hydrologic settings (e.g., mountainous terrains). The number of training data was 

limited in our models. Like any other machine learning models, addition of more 

training data will significantly improve the predictability. Several of our remote 

sensing datasets data sets (e.g. RBC, DEM) are available at high-resolution (12 

to 30 m), whereas others (e.g., GPM; resolution: 0.1° x 0.1°) are very coarse. In 

other words, we had to combine high-resolution with low-resolution datasets, a 

process that reduces the accuracy of our statistical model predictions. During this 

exercise, the predictability of the model can be improved by providing the higher 

spatial resolution products especially for precipitation.  
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CHAPTER 5 

SUMMARY AND CONCLUSION 

 

In this study, we developed and successfully applied methodologies that 

rely heavily on readily available temporal, visible and near-infrared (VNIR), 

radar, and thermal remote sensing data sets and field data, and statistical 

approaches to map the distribution of shallow groundwater occurrences in Al 

Qunfudah Province (Saudi Arabia) and to identify the factors controlling their 

development.  

 

The study focused on developing statistical models to identify shallow 

groundwater occurrences over large areas using readily available remote sensing 

datasets. We used the coastal zone of Al Qunfudah Province, southwest Saudi 

Arabia as a test site. A conceptual model was developed over the Qunfudah city 

and its surroundings, where field data is available. The model predicts that areas 

characterized by shallow groundwater could have high NDVI (mean, STD), high 

RBS (mean, STD), and low LST (mean, STD) compared to areas with deep 

groundwater levels. 

 

A comprehensive spatio-temporal database was constructed, and the 

conceptual model was validated visually using field data (water levels in 13 wells)    

and remote sensing data over these wells.  
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We constructed an ANN and MR models to map the distribution of 

shallow groundwater occurrences in the AL-Qunfudah city and surroundings, 

tested the statistical models against field data, and selected the optimum model 

(ANN) to map the DTW across the entire Al-Qunfudah Province. The statistical 

models were constructed using a randomly selected training data sets (80% of the 

total), whereas the remaining data sets (20%) were used for testing purposes. Our 

findings indicated an enhanced performance for the ANN model (92%) over the 

MR (88%) in predicting the distribution of shallow groundwater.  

 

Temporal correlations of the groundwater levels and satellite-based 

precipitation suggest that there has been an increase in the AAP over Al Qunfudah 

Province over the past three years (2017-2019: 162 mm/yr) compared to the 

preceding three years (2014-2016: 139 mm/yr). 

 

Even though this project focuses on Al Qunfudah Province and its 

surrounding, the adopted approach can potentially be replicated over many parts 

of the arid world with similar climatic, geologic, and hydrologic setting. The 

applications of such technologies are cost-effective and could have significant 

societal benefits. These include, but are not limited to, locating additional fresh 

water supplies over extensive arid areas worldwide and addressing environmental  
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problems arising from rise in groundwater levels that may cause health problems 

to populations and properties (e.g., foundations, structures, etc.). 
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APPENDIX A. Remote sensing output of NDVI, LST, SMOS, and RBC  
 

1- Remote sensing data: output of NDVI throughout the study area covering period 
(2009 to 2018) extracted by using Cell statistic tools.  

A-  Mean of the NDVI  
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B- STD of the NDVI  
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C- Maximum of the NDVI  
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A-   Minimum of the NDVI  
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2- Remote sensing data: Output of LST throughout the study area covering period (2009 

to 2018) extracted by using Cell statistic tools. 

A- Mean of the LST  
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B- STD  of the LST 
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C- Maximum of the LST 
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D- Minimum of the LST 
 
 

 
 
 
 



70  

3- Remote sensing data: Output of radar backscattering coefficients RBC throughout the 

study area covering period (2015 to 2018) extracted by using Cell statistic tools. 

A- Mean of the RBC 
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B- STD of the RBC 
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C- Maximum of the RBC 
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D- Minimum of the RBC 
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4- Remote sensing data: Output of SMOS throughout the study area covering period 

(2010 to 2018) extracted by using Cell statistic tools. 

 

A- Mean of SMOS   
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B- STD of SMOS   
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C- Maximum of SMOS   
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D- Minimum of SMOS 
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APPENDIX B. Maps of the Study area 
 
 

A- Map of Al Qunfudah city and its surrounding 
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B-  The distribution of electric conductivity in groundwater   
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C- The distribution of the wells location in Al Qunfudah city and its surroundings. 
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APPENDIX C. Geological maps of Al Qunfudah Province provided by SGS 
 

A- Geological map for Al Qunfudah Province. 
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B- Geological map for Al Qunfudah City. 
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C- Structural  sketch map scale 1: 1 000 000 (Saudi Geological Survey) 
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