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INVESTIGATION OF FINITE TEMPERATURE AND CONTINUUM
EFFECTS ON NUCLEAR EXCITATIONS

Herlik Wibowo, Ph.D.

Western Michigan University, 2020

The low-energy nuclear response at finite-temperature significantly affects the radiative
neutron capture reaction rates of the r-process nucleosynthesis. In order to address this
topic, the first part of this study focuses on the response of compound nuclei or nuclei
at finite temperature. The thermal nuclear response satisfies the Bethe-Salpeter equation
(BSE) with the static and dynamical kernels of different origins. While the origin of the
static kernel is the nearly instantaneous nucleon-meson interaction, the dynamical kernel is
induced by the coupling between nucleons and phonons. The presence of singularities in the
dynamical kernel makes the BSE unsolvable, however, a time projection technique known
for the zero-temperature case allows for constructing a hierarchy of feasible approximations.
In this study a temperature-dependent projection operator on the subspace of the imaginary
time was found to generalize the method to finite temperatures. The method named the
finite-temperature relativistic time blocking approximation (FT-RTBA), is implemented
numerically to calculate the multipole responses of medium-mass and heavy nuclei. This
study reveals common phenomena that occur for all thermal multipole responses: the
disappearance of the high-frequency collective motion at very high temperature and arising
prominent low-energy strength of thermal origin.

The inclusion of pairing correlations and continuum effects is essential for an accurate

microscopic description of the nuclear response of the exotic nuclei far from the valley of



beta-stability and close to the drip-lines. Therefore, the second part of this study aims to
extend the current zero-temperature nuclear response theory, which is based on the contact
effective interactions between nucleons and takes into account the pairing correlations within
the framework of the BCS approximation and exact coupling to the continuum. This
extension involves the application of the time-blocking approximation in the coordinate
space representation to incorporate the coupling between nucleons and phonons, which is
the leading-order mechanism of the fragmentation of the nuclear multipole responses at both

low- and high-frequency domains.
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Chapter 1
Introduction

The atomic nucleus plays a significant role in our understanding of the fundamental forces
of nature and the emergent phenomena that occur at various scales of physics [1]. It serves
as a 'laboratory’ for testing the standard model of particle physics via the weak interaction
processes, searching the new physics beyond the standard model, and studying the breaking
of fundamental symmetries. Besides its importance to particle physics, the electromagnetic
interaction between an atomic nucleus and electrons, and between atoms gives rise to the
complex structures of materials studied in condensed matter physics. Remarkably, the
knowledge about the nuclear structure, decays, and nuclear reactions have paved the way
for our understanding of the origin of elements via nucleosynthesis processes, the evolution
of stars, neutron stars, and the cataclysmic events, such as supernovas and neutron star
mergers.

Nuclear structure research aims to construct a comprehensive and unified framework that
describes all properties of nuclei, nucleonic matter, and interactions between nuclei [2]. In
the nuclear physics research, the choice of nuclear degrees of freedom depends on the energy
of the experimental probe. A high-energy probe resolves quark and gluon degrees of freedom,
whereas the more relevant constituents at low energies are protons and neutrons (collectively
called nucleons). The description of nuclei with nucleonic degrees of freedom requires detailed
knowledge of nucleon-nucleon (N N) interaction. The bare NN interaction can be considered
as an emergent interaction of quantum chromodynamics (QCD), which is the underlying
theory of quark-gluon dynamics. Although it is a challenging task to derive the bare NN
force directly from QCD, the analytical structure of bare NN force still can be studied and
formulated based on the known symmetry constraints (e.g., translational, rotational, isospin,
parity, time-reversal, and charge), both low- and high-energy NN scattering experiments,
and the meson theory. Some of the semi-phenomenological potentials that arise from

these considerations are the Hamada-Johnston potential [3], Reid hard-core and soft-core



potentials [4], the Bonn potential [5], the Argonne potential [6, 7], the Paris potential [§],
and the Nijmegen potential [9, 10, 11]. Alternatively, the nuclear force can also be studied
using the chiral perturbation theory [12] and lattice QCD calculation [13, 14, 15]. For a
concise review on the bare NN interaction, see Ref. [16]. While the bare NN interaction
can be used to describe the very light nuclei via ab initio calculations (e.g., Green’s Function
Monte Carlo (GFMC) [17, 18] and coupled-cluster [19, 20] methods), it has to be promoted to
effective NN interaction when dealing with the medium-mass and heavy nuclei. The reasons
are two-fold. First, the bare NN interaction contains either hard- or soft-repulsive core at
the short distance, making it too strong to be applied in the many-body methods. Second,
the nucleons do not feel the bare NN interaction inside the nucleus, which means that the
bare NN interaction is significantly modified in the presence of many nucleons. One way
to circumvent the strong repulsive core problem of the nuclear force is to use the effective
interaction obtained from the Brueckner G-matrix theory [21]. In this method, instead of the
bare nuclear force, one uses the so-called G-matrix, which takes into account the effects of
multiple scattering in nuclear medium and Pauli principle, to perform the nuclear structure
calculations. The G-matrix can be obtained by solving the Bethe-Goldstone equation. The
other way is to adopt the phenomenological effective NN potentials which contain fitting
parameters adjusted to the experimental data for nuclear matter and finite nuclei. The
examples of these forces are Skyrme forces [22, 23, 24, 25, 26] and Gogny force [27, 28]. The
Skyrme and Gogny density-dependent forces respectively have been used in the Hartree-
Fock (HF) [29] and Hartree-Fock-Bogoliubov (HFB) [30] calculations for spherical nuclei
with great success. The density-dependent Hartree-Fock (DDHF) models of Skyrme [29]
and Gogny [30] are the examples of the mean-field calculations based on the non-relativistic
energy density functional.

It has been known that the Fermi energies of the nucleons in nuclei are small compared
to the rest mass, making the relativistic effects seemingly unimportant for the low-energy
nuclear structure calculations. However, the relativistic version of the mean-field calculations
recently gains recognition for several reasons. First, the spin-orbit interaction finds its natural
explanation in terms of the scalar field S and vector field V' in the relativistic mean-field
(RMF) theory [31, 32, 33]. In the RMF theory, nucleons are depicted as Dirac particles
moving independently in the average fields, which consist of the scalar field S and vector
field V. In the relativistic meson-exchange theory, the attractive scalar field S and repulsive
vector field V' are derived mostly from an exchange of mesons with Lorentz scalar and vector
character, respectively. In nuclear physics, their typical values are S ~ —400 MeV and
V =~ 350 MeV. While the addition of these two fields gives the potential depth of roughly

—50 MeV and, thus, allows the non-relativistic kinematics, the subtraction of the scalar field



S from the vector field V' leads to the strong spin-orbit interaction between nucleons. Second,
the scalar density decreases as the small components of the Dirac spinors become important.
As the source of the attractive field S, its reduction reduces the attraction leading to the
stability of the nuclear system: the relativistic saturation mechanism [31, 32, 33]. In the
non-relativistic DDHF calculations for Skyrme and Gogny forces, this saturation is taken
care of by the strongly repulsive density-dependent terms. Third, the pseudo-spin symmetry
in nuclei can be explained as an immediate consequence of the nearly equal magnitude,
but with opposite signs, of the attractive scalar and repulsive vector fields [32, 34]. In the
relativistic meson-exchange theory, an additional density dependence originates from either
non-linear self-interactions between mesons or the density-dependent coupling constants. In
the relativistic point-coupling theory, one derives the covariant energy density functional
from the point-coupling effective interactions [35, 36, 37, 38], where the additional density
dependence can be introduced either by the density-dependent coupling constants or by
point-couplings of higher order. For a recent review on the types of the meson-exchange
and point-coupling effective interactions, the interested reader can refer to Ref. [39] and
references therein.

In order to describe the ground state properties of the open-shell nuclei, the relativistic
mean-field theory has to be extended to include pairing correlations. The pairing correlations
can be included in the relativistic mean-field theory via the constant gap approximation [31,
40]. However, since the experimental value of the gap parameter is taken from the odd-even
mass difference, this approximation fails when one deals with the exotic nuclei far from the
valley of beta-stability and close to the drip-lines. To gain a consistent relativistic treatment
of pairing correlations, Kucharek and Ring [31, 41] derived the relativistic extension of the
HFB (RHFB) theory: Dirac-Hartree-Fock-Bogoliubov (DHFB) equations. It was shown how
the pairing field originates from one-meson exchange potentials. However, applications in
nuclear matter demonstrated that an attempt to use the same force in the pp- and ph-
channel resulted in the strong w-repulsion at short distances leading to a large pairing gap.
Therefore, a proper force for pp-channel is needed. Some forces, e.g., contact force [42],
Bonn potential [43], and Gogny forces [44, 45], have been used for the interaction in the
pp-channel.

A giant resonance (GR) in an atomic nucleus is a broad resonance in the photo-absorption
or particle (electron, proton, etc.) scattering cross section observed typically in the energy
range between 10 and 30 MeV [46]. It is associated with predominantly vibrational motion,
originates from collective excitations of nucleons and exhausts a major part of the sum
rule. It can be characterized by three important parameters: centroid energy FE, width

I, and integral strength S. Isoscalar giant monopole resonance (ISGMR), also known as



breathing mode, occurs when a nucleus vibrates without changing its shape. The centroid
energy of this compression mode is directly related to the finite-nucleus incompressibility
K 4. Isoscalar giant quadrupole resonance (ISGQR) takes place when in-phase oscillations
of protons and neutrons cause the nucleus to change its shape back and forth according to a
cycle: spherical-prolate-spherical-oblate-spherical. The most studied isovector giant dipole
resonance (IVGDR) originates from the oscillations of protons against neutrons in the dipole
pattern. In the microscopic description, the ground-state GR (GR at zero temperature)
can be viewed as a result of the correlated multiparticle-multihole (npnh) excitations. The
total width of the GR comes from Landau damping, spreading, and escape widths. The
Landau damping width is caused by the coupling between correlated 1plh excitations and
uncorrelated ones, which have energies close to the excitation energy. The spreading width
comes from the coupling of the correlated 1plh excitations to 2p2h, 3p3h, and higher-order
configurations. Lastly, the escape width originates from the coupling of the correlated npnh
excitations to the continuum.

The relativistic mean-field theories mentioned so far mostly focused on the ground-
state properties of the nuclei all over the periodic table. To describe the excited states,
one derives the time-dependent relativistic mean-field (TDRMF) equations using the time-
dependent variational principle. The TDRMF equations have been applied to describe
giant resonances in nuclei [47, 48, 49]. A huge computational effort and the breaking of
rotational symmetries become the drawbacks of these TDRMEF calculations [50]. In the
limit of small amplitudes, one derives relativistic random phase approximation (RRPA) [51]
from the TDRMF equations. A realistic RRPA calculation can be performed by taking
into account: (1) the non-linear meson self-interaction terms [51, 52] and (2) antiparticle-
hole configurations in addition to the usual particle-hole configurations [51]. The latter is
necessary to ensure the current conservation and the decoupling of the spurious state [53].
The RRPA has been applied to the calculation of monopole and dipole compression modes
in nuclei [54], and isoscalar and isovector giant resonances in spherical nuclei [55]. The
natural extension of the RRPA to include pairing correlations is relativistic quasiparticle
random phase approximation (RQRPA). Analogous to the RRPA, the RQRPA is the small-
amplitude limit of the time-dependent relativistic Hartree-Bogoliubov (TDRHB) equations
[56]. The RHB+RQRPA approach has been applied, for instance, in the calculations of
multipole responses of 220 nucleus, where NL3 parametrization has been used for RMF
Lagrangian and Gogny D1S finite-range interaction for the pp-channel. The same approach
has been employed to investigate the evolution of low-lying isovector dipole strength in Tin
isotopes and N = 82 isotones [56].

The strength distribution of the giant resonances can be obtained either by diagonalizing



the R(Q)RPA equations or by solving the Bethe-Salpeter equation (BSE) for the response
function on an appropriate basis. There are some different methods to handle the continuum
states: the truncated harmonic oscillator basis [57], the Wood-Saxon basis with the box-
discretized continuum [58], and the exact Green’s function [59, 60, 61, 62]. However, to
reproduce the escape width of the giant resonances, one has to address the excitations to
continuum states, for which the most elegant way is to solve the BSE in the coordinate space
representation using the exact Green’s function method. Shlomo and Bertsch [63] pioneered
this exact treatment of the single-particle continuum states for non-relativistic RPA. Their
work was generalized to open-shell nuclei, where pairing correlations were included by means
of the BCS approximation, by Kamerdzhiev et al. [64] and by Hagino and Sagawa [65].
Matsuo [66] took a different approach to address pairing correlations by starting with the
time-dependent HFB formalism in the coordinate space representation from the beginning
and deriving the continuum quasiparticle response function using single-quasiparticle Green’s
functions defined in the static HFB basis. In the framework of relativistic point-coupling
theory, Daoutidis and Ring employed the relativistic single-particle Green’s function for the
exact treatment of the continuum states and derived the continuum RRPA [59]. They
extended their work to include the pairing correlations using the BCS approximation
and derived the continuum relativistic QRPA [60]. The relativistic single-particle Green’s
function technique has been also used by Yang, Cao, and Ma to obtain the continuum
relativistic QRPA in the framework of the relativistic meson-exchange theory [61, 62].

As mentioned before, to reproduce the spreading width of the GR and, hence, to obtain
an accurate description of the nuclear response, one needs to go beyond the R(Q)RPA.
The leading mechanism of the spreading width is known to be the particle-phonon, or
particle-vibration, coupling (PVC), however, the inclusion of the PVC requires quite a non-
trivial quantum-field-theoretical (QFT) effort. Time blocking approximation was initially
introduced in Ref. [67] as a non-perturbative approach to the nuclear response beyond RPA.
It utilizes a time projection technique within the Green’s function formalism to decouple the
configurations of the lowest complexity beyond 1plh, such as 1plh®phonon (particle-hole
pair coupled to a phonon), from the higher-order ones. As a result, the time projection
reduces the Bethe-Salpeter equation to a one-frequency variable equation. The method
was applied systematically in nuclear structure calculations as an extension of the Landau-
Migdal theory for non-superfluid nuclear systems [68] and later generalized for superfluid
ones [69, 70]. It has been supplemented by the subtraction procedure to avoid double
counting of the particle-vibration coupling in the frameworks based on phenomenological
mean fields or effective energy density functionals [70, 71]. Since then the time blocking

approximation is used consistently in non-relativistic [72, 73, 74, 75, 76] and relativistic



(77, 78, 79, 80, 81, 82, 83| nuclear structure calculations. The method has been improved
systematically to include time-reversed PVC loops as complex ground state correlations
(68, 69, 83] and higher-order configurations [84]. At zero temperature the inclusion of the
PVC effects in the time blocking approximation leads to a consistent refinement of the
calculated spectra in both neutral [79, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94] and charge-
exchange [81, 82, 83, 95, 96, 97] channels, as compared to the (Q)RPA approaches, due to
the spreading effects’.

The isovector giant dipole resonance in highly excited nuclei is mainly observed in heavy-
ion fusion reactions [46, 99]. In the Steinwedel-Jensen hydrodynamical model, the IVGDR
can be understood as a coherent oscillation of protons against neutrons in the dipole pattern.
The general features of the IVGDR built on the excited states can be summarized as follows
[99]: (i) The energy-weighted sum rule (EWSR) is independent of temperature 7" and spin
angular momentum J; (ii) The centroid energy can be parameterized as Fgpr = 18A~1/3 +
25A71/6 MeV and is independent of temperature 7" and spin angular momentum .J; (iii) The
width grows with temperature 7" and spin angular momentum .J.2

The temperature dependence of the high-energy part of the GDR above the neutron
emission threshold was extensively studied experimentally in the past [100, 101, 102, 103,
104, 105], see also a relatively recent review [106]. In later studies of the dipole response of
both ground and excited states of nuclear systems, a concentration of electric dipole strength
has been observed in the low-energy region [85], being most prominent in neutron-rich
nuclei. The distribution of E1 strength below the GDR region is usually classified as pygmy
dipole resonance (PDR), which, according to the Steinwedel-Jensen hydrodynamical model,
originates from the coherent oscillation of the neutron excess against the isospin-saturated
core. Some microscopic models also favor for a collective nature of the PDR which forms at a
sufficient amount of the excess neutrons [107, 108]. There are two important physical aspects
related to the study of the PDR. First, the structure of the PDR can significantly enhance
the neutron-capture reaction rates of rapid neutron-capture nucleosynthesis (or r-process)
(86, 87, 109, 110, 111], which is responsible for the formation of chemical elements heavier
than iron [112]. Second, the PDR can be related to the isovector components of effective
nuclear interactions and to the equation of state (EOS) of nuclear matter [107, 108]. The

total PDR strength can provide an experimental constraint on the neutron skin thickness

IThis paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

2This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)
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and, in turn, on the symmetry energy of the EOS, which is a key ingredient to study dense
astrophysical objects, such as neutron stars [85]3.

An accurate theoretical description of response of compound nuclei, or nuclei at finite
temperature, is an arduous task. In the past, the multipole response of hot nuclei has
been studied theoretically within several frameworks, such as finite-temperature random-
phase approximation (FT-RPA) using schematic models [113, 114, 115, 116, 117, 118] or
FT-RPA with separable forces for deformed rotating nuclei [119, 120]. Approaches beyond
FT-RPA include spreading mechanisms and are represented by the finite-temperature nuclear
field theory (NFT), which takes into account the coupling between nucleons and low-lying
vibrational modes [121, 122], the collision-integral approach [123, 124], and the quasiparticle-
phonon model (QPM), which operates by the phonon-phonon coupling, formulated as
thermofield dynamics [125]. On the other hand, phenomenological treatment of thermal
shape fluctuations and of the particle evaporation have enabled a good description of the
overall temperature evolution of the GDR [126, 127, 128, 129, 130]*.

The finite-temperature Hartree-Fock-Bogoliubov (FTHFB) equations were derived in
[131] and applied for solving the two-level model in [113]. The finite-temperature
quasiparticle random phase approximation (FT-QRPA) equations were derived based on
FTHFB theory and solved for a schematic model to calculate the GDR response of hot
spherical nuclei [132]. Shortly after that, the formalism was applied successfully to hot
rotating nuclei in [133]. The continuum FT-RPA [134] and FT-QRPA [135, 136] were
successfully applied to various calculations of dipole and quadrupole response of medium-
mass nuclei. Later it was realized that thermal continuum effects may play the major role in
explaining the enhancement of the low-energy dipole strength [137] observed in experiments
[138, 139, 140]. More recently, realistic self-consistent approaches in the framework of the
relativistic FT-RPA [141] and non-relativistic Skyrme FT-QRPA [142] became available for
systematic studies of atomic nuclei across the nuclear chart®.

In the first part of this Ph.D. work we focus on building a novel self-consistent microscopic
approach to the finite-temperature nuclear response which (i) is based on the high-
quality, effective meson-exchange interaction, (ii) takes into account spreading mechanism
microscopically, self-consistently and in a parameter-free manner, (iii) is numerically

stable and executable, and (iv) allows for systematic studies of both low- and high-

3This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

4This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

>This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)
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energy excitations and deexcitations of compound nuclei in a wide range of mass and
temperatures. For this purpose, we generalize the response theory developed since the late
2000s [77, 78, 79, 80] in the relativistic framework of quantum hadrodynamics for the case of
zero temperature. This approach is based on the covariant energy density functional with the
meson-nucleon interaction [31, 143] and applies the Green’s function formalism and the time
blocking approximation [67] for the time-dependent part of the nucleon-nucleon interaction
in the correlated medium. In the second part of this Ph.D. work, we attempt to extend
the zero-temperature nuclear response theory [60], which is based on the effective point-
coupling interaction [38], and takes into account pairing correlations within the framework
of the BCS approximation, PVC, and exact coupling to the continuum [59]. This extension
utilizes the time blocking approximation [70] to incorporate the particle-vibration coupling
as a microscopic mechanism to describe the spreading width of the nuclear multipole spectra
in both low- and high-energy domains.

This Ph.D. work is organized into two main parts, the first of which deals with the
construction of the finite-temperature nuclear response theory, and the second focuses on
the extension of the zero-temperature nuclear response theory. The first part of the present
work consists of three chapters. Chapter 2 provides an overview of the nuclear mean field at
finite temperature. Starting with the grand-canonical ensemble in Section 1.1, we review
the zero-temperature relativistic mean-field (RMF) theory of finite range in detail and
generalize it for finite temperature in Section 1.2. We discuss the solution of the finite-
temperature RMF equations with an emphasis on the iterative numerical procedure to solve
the equations. We dedicate Chapter 3 to give a great detailed account of the essential steps
to construct the finite-temperature relativistic time-blocking approximation (FT-RTBA).
Section 3.1 discusses the Matsubara Green’s function formalism to determine the finite-
temperature response function and, in turn, the finite-temperature strength function. The
essential steps to construct the energy-dependent mass operator and the dynamical induced
interaction is highlighted in Section 3.2. We introduce the concept of the time-blocking
approximation in the imaginary-time formalism in Section 3.3 and employ it in Section 3.4
to derive the particle-vibration coupling amplitude. The extraction of transition densities is
discussed in Section 3.5. In Chapter 4, we describe details of the numerical implementation of
the FT-RTBA and discuss the results of the calculations. The second part of the present work
consists of three chapters as well. In Chapter 5, we briefly overview the zero-temperature
RMEF theory of point-coupling and the BCS approximation. The main goal is to introduce
the particle-hole interaction in the coordinate-channel representation. In Chapter 6, we take
a different approach than the one done in Ref. [144] to derive the continuum relativistic

quasiparticle random phase approximation (CRQRPA). In Chapter 7, we briefly discuss the



crucial steps to incorporate the PVC effects in the CRQRPA. The conclusions and outlook

are presented in Chapter 8.



Chapter 2

Nuclear Mean Field at Finite

Temperature

Hot nuclei (highly excited compound nuclei) are the product of the fusion between a
target of heavy atomic nuclei and a heavy-ion projectile, which takes place for a long time
in the heavy-ion reactions. During this intermediate state, the mean field of the system gets
established soon, and the thermalization process of the excitation energy occurs among all
the single-particle degrees of freedom. Since the system achieves the thermal equilibrium in
a short time (&~ 10722 s), which is less than the typical time it takes to decay by particle
and vy-ray emissions (&~ 107! — 107 s), one can apply the concept of equilibrium statistical
mechanics to describe the compound nucleus in its intermediate state.

To define the nuclear temperature 7', one employs the microcanonical ensemble’s

10p\~"
TZ(E@E*) / =y

where E* is the excitation energy, and the density of levels p(A, E*) is given as

definition of temperature [99]

62\/ aFE*
VA4SE*’

according to the Bethe’s Fermi gas formula. Here, the level density parameter a =
A/k MeV™! k = 8 — 12 MeV, and A is the mass number [46]. Inserting (2.2) into (2.1)

yields
1 a 1
— = S 2.
T E*  E*’ (23)

where, for high excitation energy, the first term dominates leading to an approximate relation
E* ~ aT?.

p(A, E) ~ (2.2)

10



2.1 Grand Canonical Ensemble

The grand canonical ensemble represents all possible microstates of an open system
which allows the exchange of particles as well as energy with a reservoir. For these possible
microstates in equilibrium with the reservoir at a fixed temperature T" and chemical potential
i, the grand potential [131, 132, 145]

Q=FE-TS—uN (2.4)

is minimal. Introducing a positive definite density operator p, which is Hermitian (p" = p)
and has a unit trace (Trp = 1), one can express the average energy F, the average particle

number N, and the average entropy S as

E = Te(pH), (2.5)
N = Tr(pN), (2.6)
S = —kTr(plnp), (2.7)

where k is the Boltzmann’s constant. Here the symbol Tr represents a summation of all
diagonal elements of the matrix or matrices under the operation, and the summation includes
all possible numbers of particles of all kinds and all possible states of these particles. From
the last three equations and the constraint Tr p = 1, the minimization of the grand potential

() leads to the solution of the density operator p of the form

pA _ Z*lef(}{[f,uN)/kT’ 2.8
Z = Tr [e*H*“N)/’“T}, (2.9)

where Z is the grand partition function. The thermal average of an operator O then can be
defined as
(O) = Te(pO) = 2\ T [e*wwm/’”é} . (2.10)

Given the grand partition function Z, several thermodynamic quantities can be determined
as follows [145]:

Q = —kTlhZ=—PV, (2.11)
olnZ

E = — : 2.12
86 v ( )
In Z

N - o , (2.13)
0z BV

11



where z = e*/*T is the fugacity and 8 = 1/kT. For the rest of this chapter, we take the

value of the Boltzmann’s constant k = 1.

2.2 Finite-temperature Relativistic Mean-field Theory

We start with a relativistic covariant Lagrangian density . given by [31, 39, 146]
& = Lonceons T Limesons + Linteractions- (2.14)
The free nucleons are described by the Lagrangian density
Licteons = U (2)(17" 0, — M) ¥ (), (2.15)

where M is the mass of the nucleon, W(x) = ¥(r,t) is the nucleonic field, and the Einstein
summation convention is implied. The Greek indices, such as p = {0,1,2,3}, represent
the components in Minkowski space, where 0 indicates the time-like component and the
other denote the space-like components. The interactions between nucleons are mediated by
mesons and photon. The mesons are categorized according to their angular momentum J,
isospin 7', and parity P quantum numbers. Attractive interaction is provided by the isoscalar
scalar o-meson with the quantum numbers J =0, T'= 0, and P = +1. The w-meson is an
isoscalar vector meson (J =1, 7' =0, and P = —1) which causes repulsive interaction. The
isospin dependence of the nuclear force is the result of the exchange of the isovector vector
p-meson with the quantum numbers J =1, T'= 1, and P = —1. The photon is responsible
for the electromagnetic interaction between nucleons. The Lagrangian density .Zesons 1S

then given by

1 1/1
gmesons 5 (aMO'auO — mgoj) — 5 <§QMVQMV _ mi(«dy(«d“)
1 ]. — _’MV 9 " 1 IUJJ
-5 §RWR —m,pupt ) — ZF F., (2.16)

where m,, m,, and m, are the meson masses, the arrow denote isovectors, and the field

tensors are defined as

Qm O’ — W, (2.17)
R MY — ', (2.18)
P OHAY — ¥ AP (2.19)

12



Here o(z), w”(z), and g#(x) are the meson fields, and A*(x) is the photon field. The

interactions are described by the Lagrangian density
Lrnteractions = —VLooW — UThw, U — TIp, ¥ — VWA — U(o), (2.20)

where the vertices I',, I'* fg, and ['* takes the form
T, = Th— g, T = g7, TF =201 " 2.21
0 =90, Li=g90" T,=g7"7 TI¢=g(0+m)er". (2.21)

The quantities g,, g.,, and g, are the corresponding coupling constants for the mesons and
e is the unit of electric charge. The non-linear term U(o) describing the self-interaction

between the o-mesons reads [147]

1 1
U(o) = 920° + £ 30", (2.22)
3 4
with the additional parameters g and g3. The presence of this non-linear term is very crucial
to reproduce the experimental data on the nuclear matter incompressibility.

From the Euler-Lagrange equation,

0 0L 0L
— | ——= =0, 2.23
oz <8(8M\I’)> ov (2:23)

we obtain the time-dependent Dirac equation for the nucleonic fields:
[i7, 0" — M — L'y (1, 8)] U(r, t) = 0, (2.24)

where we have introduced the notations m = {0, w, p, e}, [, = {FU, e f’;, Fg‘}, and
¢m = {o, w*, p*, A*}. The corresponding Euler-Lagrange equation for the meson and

electromagnetic fields results in

O+ m2)o(e,t) = —(r, )T, U(r,t) - dzg’), (2.25)

(O +m2)wt(r,t) = W(r, ) T*U(r,1), (2.26)

(O +m2)ph(r,t) = T(r,t)[HU(r, 1), (2.27)

OA*(r,t) = U(r,t)[%U(r,t), (2.28)
where the d’Alembertian operator [ is defined as
92

0:=0,0" = prie V2, (2.29)
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and we have imposed the Lorenz gauge conditions:
owt(r,t) =0, Oup*(r,t)=0, and 09,A4"(r,t)=0. (2.30)

It is not a trivial task to obtain the exact solution of the time-dependent self-consistent
field equations (2.24)-(2.28). One then introduces the relativistic mean-field (RMF)
approximation to replace the meson field and electromagnetic field operators by their
expectation values in the nuclear ground state. As a result, the nucleons behave as non-
interacting particles moving in the classical meson and electromagnetic fields. The nucleonic

fields W(r,t) can be expanded in terms of single-particle spinors ¥y (r,t),
U(r,t) =Y dp(rt)a,  and  Uirt) = (rt)af, (2.31)
2 k

where the role of the operator @ (d;) is to create (annihilate) a fermion in a state k. The

operator a; and its Hermitian conjugate dL satisfy the fermion anti-commutation rules:
{a,a,} = s {aw.aw} = {a},al,} =0, (2.32)

where {A, B} = AB+ BA. In the no-sea approximation [148], the set of states k consists
of the occupied states |h) below Fermi level, unoccupied states |p) above Fermi level, and
the unoccupied states |a) in the Dirac sea with negative energies. At zero temperature, the

nuclear ground state |®) can be constructed as

@) =[] atl0) (2.33)

k

and it is normalized according to (®|®) = 1. Given the normalized nuclear ground state |®),

the single-particle density matrix pg, takes the form
pre = (@] x| P). (2.34)
The Hamiltonian operator H can be derived from the Lagrangian density £ via

- , [ 0g -
H:/dr[—a(aoq)(aoq) Z1, (2.35)

where ¢ = {VU, o, w", g, A*}. Inserting Eqgs. (2.14)-(2.20) into Eq. (2.35), we obtain the
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Hamiltonian operator:

where 3 =% and

- /al3r\11T {a-p+B(M+Tpdn)} ¥

/d?’r (6% + (Vo)* + m2o?]

o+ (V) (V) + mi' 7]

N = N = N = N =

—— —
Q.
HOJ
=Y
>t

Pr (404, + (VA" - (VA,)] + / 1 U(o), (2.36)

= B7.

Applying the expansion (2.31) to Hamiltonian operator (2.36), we obtain

A

H =

+

/ e S 6l 1) {o b+ B (M + Tné)} a(r, 1)ala
Lk

% / &’r [6% + (Vo)* + mio®]

3 [ el (9) - (V) + i)

5 [ @[+ (98- (95 4wl

% / d’r [AHA,A + (VA" . (VAM)] + / d*r U(o). (2.37)

Using the mean-field approximation for the meson and electromagnetic fields:

(D]pm|P) ~ fm (B|®) = by, (2.38)
=1
(D|pmalan| D)~ G (Plak ik P) = dmpr, (2.39)

we obtain the corresponding covariant energy density functional (CEDF):

Erwrlp, ¢] = (O|H|®)

+ %/d?’r (6% + (Vo)* + m2o?]

1
- §/d3r [t + (Vwh) - (Vw,) + mEww,]
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= 5 [ e[ 07 (a) wis)
-5 [ e[ v+ [Erve), )

where the trace symbol Tr here represents a sum over Dirac indices and an integral in the
coordinate space. In the static approximation, we assume the meson and electromagnetic

fields being time-independent, and the single-particle spinor 1% (r,t) takes the form:

Up(r,t) = @p(r)e e+, (2.41)

where ¢;, is the single-particle energy of the state k. Applying the static approximation to
the time-dependent Dirac equation (2.24), we obtain the time-independent Dirac equation

of the form:

~

hPor(r) = erpn(r). (2.42)
Here the Dirac Hamiltonian A is

W =—a-p+p [M+§(r)}, (2.43)
where $(r) is the static RMF mass operator (self-cnergy):

S(r) =Y Tpgm(r). (2.44)

Furthermore we assume: (1) the time-reversal symmetry of RMF, so that the current
densities are equal to zero and, therefore, the space-like components of the meson and
electromagnetic fields, i.e., w/(r), p?(r), and A’(r), vanish; (2) the isospin 73 is a good
quantum number, so that only the third component p3 of §° survives. Under these
assumptions, the static RMF mass operator consists of the scalar ENJS(r) and the vector
time-like £°(r) components, viz.

Ys(r) = goo(r), (2.45)

= 1
() = Blg.u’(r)+ 5(1 + 73)e A% (r) + g,m3p5(r) | - (2.46)
The Dirac Hamiltonian 2? then becomes
W =a-p+B(M+S(r))+ V(r), (2.47)
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where the scalar potential S(r) and the vector potential V (r) are

S@) = guolr)
V() = gule) + 5 (14 75)eAe) + gmypdr).

The scalar potential S(r) contributes to the effective Dirac mass

M* = M + S(r).

(2.50)

Applying the RMF and static approximations to the field equations (2.25)-(2.28), one finds

that the non-vanishing meson and electromagnetic fields satisfy the following equations:

(V2 £ m2) o) = —gopulr) — o),

(=V24+m2) () = gupu(r),

(=V2+m2) p(r) = gops(r),
—VQAO(I') = ep.(r),

2.51
2.52
2.53

)
)
)
2.54)

(
(
(
(

where the time-dependent counterparts of the scalar ps(r, t), baryon p,(r,t), isovector ps(r,t),

and charge p.(r,t) densities are given as
ps(r,t) = sz@k( Jope(r)e et
pu(r,t) = Zpeksok r)iy(r)elr e,

p3(r,t) = szkﬂﬂk (r)Tagpe ()"0,

—_

pe(r,t) = Zﬂewk S (14 73) @o(r)e’Cemeot,

[\D

At zero temperature, the single-particle density matrix py, satisfies

1,  for states |h) below the Fermi level,
Ptk = PrOke

0, otherwise.

The densities (2.55)-(2.58) then reduce to the static densities

17
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(2.56)

(2.57)

(2.58)

(2.59)

(2.60)



A
pu(r) = Y oh()en(r), (2.61)

ps(r) = > ph(r)mspi(r), (2.62)
pu(r) = Z@L(r)%(l—l—ﬁ;)g@k(r). (2.63)

/d3r [(Vo(r))® +mio’(r)]
/d?’r [(VW(r)) - (Vwo(r)) + mEw’ (r)wo(r)]

DN | —

Erarlp 6] = Tr [hP5] +

&P [(VP5(r)) - (Vpso(r) + m2p3ps0]

N~ N — N

—
=

F (VA () - (VA (r)) + / &r Uo(r)). (2.64)

To establish the finite-temperature generalization of the RMF theory, we make use of the
general procedures discussed in section 2.1. We first construct the grand potential €2, where
the CEDF now plays a role of the average energy E. Minimization of the grand potential {2

results in the single-particle density operator
p=2 temBnNIT, (2.65)
where the grand partition function £ is now given by
¥ =T [e*@D*W VT} . (2.66)
At finite temperature, the single-particle density matrix pge is
pre = Tr (ﬁd}dk> = (aay) = Selalay), (2.67)

where we have used the definition of the thermal average of an operator given by Eq. (2.10).

In the Dirac basis (2.42), the static Dirac Hamiltonian h? can be written as

WP =" epalan, (2.68)
k
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while the total particle number operator N is
N =" akay. (2.69)
k

After inserting the two last equations into Eq. (2.66), the grand partition function 2 takes
the form

2 =] 1+ ze=/"] (2.70)
k
and, using Eq. (2.13), the mean value of the operator N s

N = (afar) =Y ny. (2.71)
k k

where the Fermi-Dirac occupation number n; of the state k reads:

1

m(T) = e T) = =

(2.72)

The Fermi-Dirac occupation number ny(7") satisfies the constraint
> m(T) = A, (2.73)
k

where A is the total number of nucleons. From Eq. (2.71), the single-particle density matrix

pre at finite temperature now reads:
Pre = OgeNi, (2.74)
and the densities (2.55)-(2.58) reduce to the following set:
ps(r) = Y mPi(r)en(r), (2.75)
k
po(r) = D muph(t)pr(r), (2.76)
k
p3(r) = angpz(r)mgok(r), (2.77)
k

pu(r) = angolt(r)%(l—i-m)gok(r). (2.78)

In summary, the finite-temperature RMF (FT-RMF) equations comprise the time-
independent Dirac equation (2.42), with Dirac Hamiltonian hP is given by Eq. (2.47),
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and the field equations (2.51)-(2.54) for the meson and electromagnetic fields, if the meson-
nucleon system is in thermal equilibrium. The scalar and vector potentials are given by Eqs.
(2.48) and (2.49), respectively, and the finite-temperature densities are given by the formulas
(2.75)-(2.78), where the Fermi-Dirac occupation number n;(7") is given by Eq. (2.72).

2.3 Solution of the Finite-temperature RMF Equations

In the present work, we deal with spherical nuclei, which implies that the total angular
momentum is a good quantum number. For the spherically-symmetric nuclear system, the
set of quantum numbers k = {(k), my}, where (k) = {ng, jr, 7, Tk}, specifies the Dirac
spinor ¢ (r). Here the set of quantum numbers k consists of radial quantum number ny,
total angular momentum quantum number j;, and its z-component my, the parity m, and

the isospin 7. The Dirac spinor ¢y (r, s, t) takes the form [77]

f(k) (T)kajkmk (‘97 ¥, 5)

: X (1), (2.79)
Zg(k) (T)ngjkmk (97 ¥, S)

or(r,s,t) =

where we have included spin s and isospin ¢ coordinates. The quantum numbers ¢, and
(), are the orbital angular momentum of large and small components, respectively. Their

relations to the total angular momentum j; and parity 7 are given by

by=jr+ 3. by=ji— 3, for m,=(-1)"

e

I
—~

|
—_
~—
. .
=
+

7
X (2.80)
2

=
I
—~
|
—
~—
<
B
|

gk:jk—%, gk:jk—f—%, fOI‘ sz(—l)e

The functions fu(r) and g (r) represent the radial wave functions of large and small

components, respectively, and the spin-angular part 2;,,,(6, ¢, s) is defined as

(6, 0,8) = D (megmy | jm) Yo, (8, )X, (5)- (2.81)

msmy

Inserting Eq. (2.79) into Eq. (2.42), we obtain two coupled radial equations

—a + ?F(k) (r) —{ex + M = [V(r) = S(r)]} Gu(r) = 0, (2.82)
W) 551+ {er = M= V) + SO Fiolr) = 0. (29)
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where the new radial wave functions F{y)(r) and G()(r) are defined as

F G
(1) and  guy(r) = () , (2.84)
r r

foy(r) =

and the new quantum number ky takes the values k;, = F(jx+ %) for jp =l + % Introducing

the radial Dirac Hamiltonian operator

cn o [ M+V(r)+S(r) —4 4
() = ( 4y ~M +V(r) - S(r) ) ’ (285)

r

the coupled radial equations (2.82) and (2.83) can be written concisely as

. F, F
By [ O ) —g (Tl (2.56)
Gwy(r) Gy (r)
The FT-RMF equations are non-linear coupled equations, so that it is impossible to

obtain the analytical solutions. One then employs an iteration method to solve these coupled

equations self-consistently. The iteration procedure can be summarized as follows:

(1) For the initial iteration, the meson fields o(r), w(r), and p3(r) take the form of the
Woods-Saxon potential, and the photon field A°%(r) takes the form of the Coulomb
potential generated by Z protons. The radial Dirac Hamiltonian h? (r) is diagonalized
using the spherical harmonic oscillator basis to obtain the radial wave functions F{y)(r)
and G (r), and the single-particle energy ¢, of the state k. The corresponding Dirac
spinor @g(r, s,t) is constructed from Eqs. (2.79) and (2.84).

(2) For every single-particle energy ¢ and specific temperature 7', the occupation number
ng(T') can be computed according to Eq. (2.72), and the chemical potential p can be
determined by solving Eq. (2.73).

(3) From Egs. (2.75)-(2.78), the densities p,(r), p,(r), p3(r), and p.(r) can be computed

using the values of the occupation numbers ny(7") and the Dirac spinors gk (r, s,t).

(4) The obtained densities ps(r), p,(r), ps(r), and p.(r) now serve as inputs for the field
equations (2.51)-(2.54). The new meson fields o (r), w’(r), and p(r), and photon field

A%(r) can be determined by solving these field equations.

(5) The new fields o(r), w’(r), p(r), and A°(r) are inserted into the radial Dirac
Hamiltonian hP (r), and all procedures of the iteration are repeated until the condition

of convergence is achieved.
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Chapter 3

Finite-temperature Relativistic Time

Blocking Approximation

3.1 Finite-temperature Response Function

A nuclear excitation under a short-duration weak perturbation induced by an external
field V0 is described in terms of the strength function. At zero temperature, the strength
function S(w) is defined as [68]

S(w) = 3 (1P 0)6(w — ) — Gl V°10) P + )] (3.)

n>0
where w,, = F, — Ej is the excitation energy with respect to the ground state energy Fy. Here
the states |n) and energies E, are the exact eigenstates and eigenvalues of the many-body
Hamiltonian H specified by a set of quantum numbers n. An external field VOisa one-body

operator of the form:
00— S Vil 52

ks
which gives rise to the transition between the ground state |0) and excited state |n) with the

corresponding transition density pﬁ?kz defined as
e = (nlf, ax,|0) (3.3)
Praky = (n|ay, a1, )0). ,
Using Eqgs. (3.2) and (3.3) together with one definition of the delta function:

5(x) = lim L2

m ———-:
AS+0 T a2 + A2’

(3.4)
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the strength function S(w) can be expressed in terms of the response function R(w), defined

as (n — +0) [68]

3 Plisi Pk Pk Pk
Rklkz,k3k4(w> — < 2k1"Rak3 1k21"K3kq ) 7 (35)
= wHwy 1 w—w, +1in

via:

S(w) = 1 lim ImIl(w + iA), (3.6)

T A—+0

where the polarizability II(w + iA) is defined as the double convolution of the full response
function R(w) with the external field V:

Mw) = > Vir Riskokaks (@) Vi, (3.7)
kikoksky

Here the finite imaginary part A of the energy variable is the smearing parameter, which

accounts for the finite experimental resolution and missing microscopic effects.

At finite temperature, the strength function S (E) is defined as
=Y pl(fIVIDPO(E — Ef + E) = S4.(B), (3.8)
if

where f represents the set of final states and ¢ denotes the possible initial states distributed

with the probabilities:
o—FEi/T

J

The absorption strength function S, (F) is given by definition (3.8), whereas the emission
strength function S_(E) can be determined via the principle of detailed balance. The

emission strength function S_(F) takes the form

sz (FIVO)|?6(FE + E; — E;) = e PES (E), (3.10)

so that the strength function S(E) becomes

~ 1

S(E) = 1~ mr [S+(E) — S-(E)]
S(E) = H;—E/szi [|<f|V0T|i>|25(E—Ef+Ei)— [(FIVOIDPS(E + Ef — E)| .
if

(3.11)
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With the aid of Eq. (3.2) and the definition (3.4) of delta function, the finite-temperature

strength function S(E) can be expressed as

~ 1
1 . .
S(E) = [Jim —Im Y VL P, ko, (B +18) Vi, (3.13)

kikoksks

where we have defined the finite-temperature response function %y, i, sk, (E£) as (6 — +0)

4 E)=) pi
bt s (B) = D _p E+E;— E; +i6 E—E;+ E;+1i6

if

{ (flag, an,|8) (ilaf, aral ) (flag, anali) (il an, | f) } 31

In analogy to the case of zero temperature [68], the finite-temperature response function

Ry ky sk (Wn) 0 the spectral representation, defined as

Roro sk (W) =T By by (@n, €0), (3.15)
Y4

is the solution of the Bethe-Salpeter equation in the particle-hole (ph) channel:

Rrrky ks (Wn €0) = —Gahy (Wn + €0)Gon, (€0)
Y Gar Wn + ) Fhane(20)
kskekrks
x T Z Uiess ks (Ws €05 €0 ) Rk Joska (Wi E07), (3.16)

Z/

where ¢ is the exact one-body Matsubara Green’s function [149, 150, 151] and % is the
nucleon-nucleon interaction amplitude. Here, each subscript k represents all single-particle

quantum numbers. The Matsubara frequencies w,, €,, and ¢y are discrete and defined as
(149, 150, 151]

wy, = 2n7T, go=(20+ 1)nT, and ep = (20 + 1)7T, (3.17)

where n, ¢, and ¢ are integer. The interaction amplitude is given in terms of the mass

operator X as
0 ks
v = e 3.18
kiko,kska 5gk1k2 ( )

The mass operator X and the exact one-body temperature Green’s function ¢ are related
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by the Dyson equation:

gklk‘Q (88) = gk?lk’z (€Z> + Z gkolk3 (88)21’93]64 (8£)gk‘4k2 (86)7 (3 19)

kska

where ¢4° is the unperturbed one-body temperature Green’s function. According to the
general equation of motion (EOM) framework [152, 153, 154], the mass operator ¥ can be
decomposed into the energy-independent part i, which can be approximated by the static

RMF mass operator (2.44), and the energy-dependent part ¢, viz.,
Skohs (€6) = Sioks + Sy, (0). (3.20)

To eliminate the unperturbed one-body Matsubara Green’s function 4° from Eq. (3.19),

one introduces the thermal mean-field Green’s function & which satisfies the Dyson equation:

Gerra(20) = Doy (20) + DGR 1 (20) StarsGraa (20)- (3.21)

kaka

In the operator form, Eq. (3.21) can be arranged to give

Y= (99 (3.22)

Inserting Eqs. (3.20) and (3.22) into Eq. (3.19), we obtain the Dyson equation:

G =G +95°Y (3.23)
or
Gerks(€0) = Derka(€0) + O Dok (€0) S, (60 Ghahs (20)- (3.24)
ksky

In the spectral representation, the thermal mean-field Green’s function is defined as [150]

1

gAl;lkz(gZ) = 5k1k2g2;1 <€Z)7 gzcl <8£) - i€s — €y + M.

(3.25)
The mass operator ¢ describes the coupling between ph configuration and more complex

ones. In this work, we employ the particle-vibration coupling (PVC) model to approximate

the mass operator ¥¢. At zero temperature, the analytical form of the leading-order mass
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operator ¢ is given by [68, 155]

m(og)x m(ok,)

e _ k1 ks Ikoks 5 9
vk (€) Z P ——— L — +0, (3.26)

ks,m

where &, denotes the mean-field single-particle energy of state k, and m represents the
complete set of phonon quantum numbers with the corresponding phonon frequency w,.
At zero temperature, o is equal to +1 for particle states and —1 for hole states. The
diagrammatic representation of the mass operator ¢ for the two values of ¢ is given by

Figure 3.1. The phonon vertices g,::g;’“) are defined as

gzg;k) = Oy 41901y T (50,@7_192;21. (3.27)

Once the analytical form of the mass operator 3¢ is specified, a solution of the Dyson equation
(3.24) can be obtained.

g 1
Figure 3.1: Diagrammatic representation of the energy-dependent mass operator %€ for (a)
o = +1 and (b) 0 = —1 in the particle-vibration coupling model. Straight lines correspond

to one-fermion propagators and wiggly lines represent the phonon propagators. The empty
circles denote the particle-phonon coupling vertices [98].

Similar to the case of the mass operator, the interaction amplitude %, k, ksks (Wn, €0, E07)
consists of the energy-independent part % i,k and the energy-dependent part

%kelkg,kg,lm (Wn, 0, 0):
%k:lkz,kslm (Wn; €y, 5[!) = %klk;%k?,]% + %kik27k3k4 (wn, €v, 84/), (328)

The relation between the mean-field mass operator > and the mean-field interaction
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amplitude U is given by

— %
%k1k2,k3k4 = 5 k3k47 (329)
Pkiks

where p is the ground state density. At zero temperature, the analytical form of the

interaction amplitude U*® is given by [68, 155]

m(o)x _m(o)
O9kski kako

Ul§1k2,k3k4(wa g, 5/) = ; c_ ot O'(u]m — 25) . (330)
and satisfy the dynamical consistency condition
e e > de’ e n | / ~ /
ik (e tw) =25, (e) = i Z Ukaky ks (@5 €5€) | Grghy (€' + w) — Gy (€ )] ;
- sk
(3.31)

where G represents the mean-field Green’s function at zero temperature. The construction
of the mass operator ¢ and the interaction amplitude % ¢ for the case of finite temperature
will be discussed in Section 3.2.

We define the so-called correlated propagator Z¢(w,,e,) as a solution of the Bethe-

Salpeter equation (BSE) with only the dynamical interaction kernel:
K =—-GG +GGU K% (3.32)
From Eq. (3.32), the interaction amplitude % ¢ can be expressed as
U= (%) +97 g (3.33)
Equation (3.16) can be written as operator equation:
K=—-bGG+9G59UX, (3.34)

where the interaction amplitude % is given by Eq. (3.28). Inserting Eq. (3.33) into Eq.
(3.34), we obtain
R =R — RUR. (3.35)

Equation (3.35) implies that the full finite-temperature response function % can be obtained

once the analytical form of the function Z¢ is determined. To formulate the analytical form
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of #°, we first rewrite the Dyson equation (3.23) as

g l=qg e (3.36)

and multiply the BSE (3.32) with G494~ from the left to obtain

where

R =R — BW R, (3.37)
A = -99, (3.38)
W = We—Texe, (3.39)
We = U +G'v 0G0 (3.40)

In the imaginary-time 7 representation, Eqgs. (3.37)-(3.40) take the form:

where

%°(12,34)

we(12,34)

We(12, 34)

%°(12, 34)

%°(12,34)

~9(3,1)9(2,4), (3.41)
We(12,34) — (3, 1)5¢(2, 4), (3.42)
W°(12,34) + G 1(3,1)°(2,4) + 2°(3, 1)9 (2, 4), (3.43)

Z#°(12,34) — Z Z°(12,56)#°¢(56, 78)%° (78, 34)

5678

~4(3,1)9(2,4) + i{?(&s, 1)¥9(2,6)% (56, 78)%°(78, 34)

5678

i G(5,1)9(2,6)91(7,5)°(6, 8)%°(78, 34)

Z% (5,1)9(2,6)x°(7,5)%9(6,8)%°(78, 34)
5678
Zg (5,1)9(2,6)5°(7, 5) (6, 8)%°(78, 34), (3.44)
5678
1/T
Z > / drydry - - - . (3.45)
12.. kika...

Here each number index consists of a set of single-particle quantum numbers k, and
imaginary-time 7 with interval 0 < 7 < 1/7 [149, 150, 151}, viz., 1 = {k;,7n}. The
corresponding Feynman diagram for Eq. (3.44) is given by Figure 3.2.
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> > _— —>—C%: > g > O—> >
ZF
Re = - + U R + Re
2 4 G G ¢ J
\7_J e
+ R — R*
g ZC g E(’,

Figure 3.2: Diagrammatic representation of the Bethe-Salpeter equation for the correlated
propagator Z¢ given by Eq. (3.44) [98].

3.2 The Temperature-dependent Mass Operator and

Interaction Amplitude

In this section, we discuss the essential steps to construct the analytical form of the
energy-dependent mass operator X¢ and interaction amplitude % ¢ for the case of finite

temperature. We start with the definition of the finite-temperature phonon propagator in
energy representation [149, 150, 151]:

20, 1 1
.@m(afg — 85/) =

(ie’:‘g — i8@/)2 — w?n ’ie’:‘g — ’iEg/ — Wm

= > U

S , (3.46)
o—t1 1Epr — 1Ep — OWpm,

1€p — 1€p + Wy

where m specifies the complete set of phonon quantum numbers with the corresponding real

phonon frequency w,,. The analytical form of the mass operator X , (/) corresponding to
the Feynman diagram shown in Figure 3.1 reads

221162(8@) = _Tzzg?]/%(c?gl) Z g m(o)x _m(o)

. . Ikrks Ikoks
kg,m ¢ o—g1 B T Wy — OWm

_ Z Z i gﬁklgziﬁ’éz

1
o O Ep — Eky T [ 10 — 1Ep + Wiy

_ TZ Z ggzsgzkg

1
: L , (3.47)
fom O 1y — Efy + U 1Ep — 1EY — Wiy
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where the phonon vertices ¢™(®) are defined according to Eq. (3.27). The phonon vertices
g, are, in the leading approximation, related to the effective meson-exchange interaction
U via

Titks = O Unskoksks Py (3.48)

ksky
where pj, are the transition densities of the phonons. The summation over ¢' in Eq. (3.47)
can be transformed into a contour integral as demonstrated in Appendix A. We then obtain

the final expression of the mass operator Xj, ; (/) of the form:

N(wm T) +1-— n(ak T) (gk T) + N(wm T)
Ee — m* m ) 3) m* 39 )
ke (50) kz {gklksgk2k3 1€g — Epy + L — Wiy T Giska T i€p — €y + 1+ Wi |
3,M
(3.49)
where .

is the phonon occupation number with the energy w,, [149, 150, 151]. At this point, it is
instructive to take the limit 7" — 0 of Eq. (3.49) and compare the result with Eq. (3.26).
Before that, it is convenient to rewrite Eq. (3.26) as

iirks Iy iighs IRish
¢ = S A o — +0. 3.51
kl’l”(g) ,;1 8—§k3—wm+i(5+ Z;n € — Epy + Wy — 00’ + ( )

§k33’>8F 5~k33’§5F

In the limit 77 — 0 the phonon occupation number N(w,,,T) — 0, the energy difference
Eks — b — Eky, and the fermion occupation number n(ey,,T) goes to 1 (0) for &, < ep
(Exs > er). Applying this limit to the first term of the right-hand side (RHS) of Eq. (3.49)

gives

N(wm,T) + 1 —n(eg,, T) g 0+1-0
nglk‘g Ikoks . : - Z Jirks 9 Raks sz _ o

P, 1€p — €y + 1L — Wiy ko €ks — Wm
m Ek3’>8F
.\ w0411
Tkaks € —Ep, — W
kig.m k3 m
Epg<eF -0
m* m
Z g meT) +1- n(gkavT) . § : k1 k3 Ikoks (3 52)
k k k k = ) ’
~ 1k3JR2k3 de_gkg"‘/l_wm ko E —ECky — Wnm
o 5~k37>5F
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which is the first term of the RHS of Eq. (3.51). Similarly, it can be shown that the
application of the limit 7" — 0 to the second term of the RHS of Eq. (3.49) gives us the
second term of the RHS of Eq. (3.51). Therefore, we have obtained the correct limit 7" — 0
for the energy-dependent mass operator >¢ given by (3.49).

The interaction amplitude %, .x,(Wn,€r,€0) is specified by the finite-temperature

dynamical consistency condition:

Sk (et wn) = 55080 = T Y Uk kans @ €0,60) [Fhats (E0 + W) — Giaia (20,
ksky £

(3.53)

analogous to the zero-temperature case [68, 155]. It can be shown that the interaction

amplitude %5, r.x,(Wn, €0, €), which satisfies the condition (3.53), takes the form:

u,, = 921@92;21 gz;?;z;ggkg 354
k1k27k3k4<wn’55>5€’) - Z N Z (3.54)

10 — 1€y + Wi i€ — i€y — Wy
m m

which has obviously the correct T" — 0 limit.

3.3 Time Blocking Approximation in Imaginary-time

Formalism

As the equation (3.37) has the singular kernel, it cannot be solved directly in its present
form. The time-blocking approximation proposed originally in Ref. [67] for the case of
T = 0 and adopted for the relativistic framework in Refs. [77, 78] allows for a reduction of
the BSE to one-energy variable equation with the interaction kernel where the internal energy
variables can be integrated out separately. The main idea of the method is to introduce a
time projection operator into the integral part of the BSE for the correlated propagator Z°.
This operator acting between the uncorrelated mean-field propagator and the PVC processes
in the second term on the right-hand side of Eq. (3.37) brings it to a separable form with
respect to its two energy variables, see Ref. [68] for details. The analogous imaginary-time

projection operator for the finite temperature case would look as follows:
O(12,34) = 05,04, (0%, T11)0 (0%, T32); (3.55)

however, it turns out that at 7' > 0 it does not lead to a similar separable function in the
kernel of Eq. (3.37).
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In order to reach the desired separable form, we found that the imaginary-time projection

operator has to be modified as follows:

O(12,34T) = Joy,,—0y,0(0k,T01)0(0k, T32) [n(0k, Eky, T)0 (0%, T12)
+ n(o—]@gk’l? T)G(O_kQT]_Q)] ) (356)

i.e., it should contain an additional multiplier with the dependence on the diffuse Fermi-Dirac
distribution function, which turns to unity in the 7" = 0 limit at the condition oy, = —oy,.

Using the correct analytical expression of the imaginary-time projection operator
©(12,34;T), we construct an operator 2 of the form:

2(12,34) = 5%,%?% (3,1)97%2(2,4)6(04, 741)0(0, 32)
[n(ak1€k2, T)e(a'lem) =+ n(0k28k1 s T)Q(O'szlg)] s (357)

X

where o, = +1(—1) for particle (hole). Due to the presence of the Kronecker delta 4,

k1> Okg?

the non-vanishing combinations of (oy,, ox,) would be (+1, —1) and (—1,+1). A pair of state
{k1, ko} is assigned as a ph (hp) pair if the energy difference ey, — &y, is larger (smaller) than
zero. The thermal mean-field Green’s function for o, = +1 is defined as [149, 150, 151]

GV (3,1) = —Opypy[1 — nlen,, T)]e™ ™10 (1) (3.58)
and for o, = —1, it reads [149, 150, 151]:
G (3,1) = Sy pyn(eny, T)e™ Wm0 (— 1), (3.59)
In a concise form, the thermal mean-field Green’s function is given by
G1(3,1) = 0, Oy 1 — gy ey, T)e™ E1 M0 (g 1), (3.60)
For particle-hole channel, Eq. (3.57) gives
P"(12,34) = GV 3, 1)G0V(2,4)0(740)0(75) 1,0 (1) + (1 — 1y )0(721)], (3.61)
where we have introduced the shorthand notations:
1

e T) = T e (3.62)

1 e(er —1)/T 1

n(—&?kl,T) =1- nk1(363)

e (e —m/T 4 - eler—m/T 1 =1- elem—m/T 1 =
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Inserting Eqs. (3.58) and (3.59) into Eq. (3.61), we obtain

DP(12,34) = —Bpins O (1 — 1y )1, 0(731)0(742)0(741)6(732)
X [ng,0(m12) + (1 — nkl)Q(Tm)]ei[(%W)TSﬁ(Ekfﬂ)TQd
= Ok Ohighy (1 — Ty )0k [108,60/(731)0(742) 0(741) 0 (732) 0 (712)
+ (1- nkl)9(7-31)0(7—42)0(7—41)0(7—32)0<7—21)]6_[(€k1 I (kg )] (3.64)

The terms in the bracket can be evaluated using the identity:
6(7’13)0(7’12)9(7’23) = 0(7’12)&(7’23). (365)
Using the identity (3.65), Eq. (3.64) becomes

PP(12,34) = G Ohana (1 — 11 )10k, [0y 0 (740)0(731)0 (712
+ (1= ny )0(742)0(752)0 (721 ) e (81 1Tt o mp)m2al, (3.66)

We next introduce the 7-difference variables 731 = 73 — 71, 791 = 7o — 71, and T34 = T3 — Ty,
so that .@ph(12,34) = é,fflkg’kgm(Tgl,Tgl,ng;), and transform é”h(12,34) into its spectral

representation using the Fourier transformation:

_ /T (1)T p1)T _

ph _ ph

@klk%mm(wmge;ﬁe') = / / / d7'31d7'21d7'34-@k1k27k3k4(7'31,7'2177'34)
-1/TJ-1/T J-1)T

% ei(wn7—31+5£7_21+5(/7'34). (367)
Inserting Eq. (3.66) into Eq. (3.67), we obtain

D ks (@ €0,€0) = Oty Ohates (1 — €y + 1) Gk (€0 + W) iy (60) Gy (€0 + W) Gy (00).-

(3.68)

For a more detailed derivation, an interested reader can refer to Appendix B. For hole-particle

channel, Eq. (3.57) gives
2" (12,34) = GV(3, 1D)GHD(2,)0(112)0(725) [(1 — 1y )0(T21) + 1, 0(712)]. (3.69)
In the spectral representation, operator ghv (12, 34) takes the form:

D et (W €0, E0) = = Otk Orgia (1w — Eky + Eky)Giy (80 + W) Gy (€0) i (00 + Wi )Gy (201).
(3.70)
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In the concise form, the time-blocking operator takes the form

éklkg,kglu (Wn,e0,60) = Ony Ocrk, ,— 0y Ok Okiaka (iwn — €k, + 51@){%{1 (ee + wn)g@ (€0)

X @3(851 +wn>g7€4(€g/). (371)

After having defined the @—operator we are now ready to apply it to the BSE (3.37). We
first transform the BSE (3.37) into

R =K — BTR, (3.72)
where the amplitude I'® is defined as
T =W —WRW+WRWRW— - =W — W RT". (3.73)

By making the substitutions:

A — —9 and W — We (3.74)
in Eq. (3.73), where 2 is defined by Eq. (3.71), one obtains the new amplitude I, viz.,
[ =#°— W (-, (3.75)
where
WE(12,34) = WE(12,34) + WO™P(12, 34). (3.76)

Like in the zero-temperature case [68], we omit the term W™P(12,34) because it accounts
for a higher-order contribution as compared to W€ of (3.40). Using the new amplitude fe,
the Bethe-Salpeter equation (3.72) becomes

B — R°_ ZTeR°
_ BT
= B+ IWF*
% = KR+ IWT", (3.77)

where #° = —4%. In the T representation, (3.77) can be written as

%°(12,34) = —@(3,1)@7(2,4)+ié(12,56) [%6(56,78)+26(7, 5)9(6,8)
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+ GNT,5)¢(6, 8)] F°(78,34). (3.78)

Figure 3.3: Diagrammatic representation of the g* terms (a) BOURU R and (b)
BOU 6@02‘3{;:1,@0, which are included in the infinite sum (3.79). The similar fourth-order
diagrams for (¢) Z°U “%°U %" and (d) B°U K54 97" with the imaginary time 7 is
later than 7. The dashed line denotes the specific imaginary time 7.

A
A
4
A

A
\
A
®

«Q
AN

Figure 3.4: Diagrammatic representation of the imaginary-time ordered g¢* terms (a)
DU DUR° and (b) DUDSG ' %°. After making the substitution (3.74), the
g* terms BOU KUK and RUR°SG ' %° becomes (a) DU DUX" and (b)
DU DG~ %°. These imaginary-time ordered diagrams now enter the infinite sum (3.81).

Let us now discuss the physical meaning of the .@-operator by taking the operator

35



.@ph(IQ7 34) as an example. For this purpose, we first rewrite Z° of Eq. (3.37) as an infinite

Sum:
B = @0 _ @OWe%e
= B — W R+ RWTW R — - (3.79)
where
We=U+9G 5+ 59 —xexe. (3.80)

As a matter of illustration, let us consider the terms of %#¢ which are fourth-order in g,
such as Z°U %°U %" and Z°U %°S°G1%°. The diagrammatic representation of these
terms are shown in Figure 3.3 (a) and (b). However, since the intermediate imaginary-time
variables 7; (i = 5,...,8) can take any values between 0 and 1/T, it is possible that the
imaginary time 74 (75) is later than 77 (73), as shown in Figure 3.3 (¢) and (d). On the other

hand, the correlated propagator e is given as an infinite sum:

R = B+ IV G
= KB+ IWR + IWIWTR + -, (3.81)

where

We=U+4 10 + g1, (3.82)

Figure 3.4 shows the fourth-order diagrams for 9% IU%° and DU DG %" as a
comparison. The operator .@ph(567 78) contains the step functions 6(7g5) and 6(77), which
prohibit the imaginary time 74 (75) to be later than 77 (7g), as demonstrated in Figure 3.4
(a) and (b). This unique property of é—operator hence coins the name of our method,
i.e., finite-temperature relativistic time blocking approximation (FT-RTBA). The role of
operator .@ph(56, 78) is thus to eliminate the processes with the configuration more complex
than 1plh ® phonon ones. As a result, the types of diagram included in Eq. (3.81) are the
1plh and 1plh ® phonon ones.

3.4 Correlated Particle-hole Propagator

In this section, we derive the Bethe-Salpeter equation (BSE) for the single-frequency
correlated ph propagator @glk%mm(wn) from the BSE for the correlated propagator
ﬁglkz,k3k4(wn,eg,eg/) given by Eq. (3.78). The one-variable correlated propagator

R}, ky kshs (Wn) can be obtained from the correlated propagator 527;1 ko eska (Wn> €0, E¢r) Dy double
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summation:

‘@zlk‘mk‘gk4 (wn) = T2 Z Z ‘%zlk‘g,kgl’m (wﬂ? 857 é\Z,)' (383>

Lo

The Fourier transform of the correlated propagator 5?7@(12, 34),

~ 1 [yt , ~
iskabaks(Ons:20) = 2 / drsdragdrsgel@nmitematenm) goe (19 34) - (3.84)

/T
can be decomposed into four integrals:
1 [uUT ' _ _
Il = —é/ d7'31dT21d7'346Z(wnT31+€ZT21+€Z/T34)%(3,1)%(2,4), (385)
-7
1 T [UT ' -
I, = g / d7‘31d7‘21d7‘346l(w"731+8”21+EWT34)-@(12,56)%6(56,78)
5678 Y —1/T
X #°(78,34), (3.86)
1T YT . _ _
Iy = = / dr31drordTsge’rm eI 9 (12 56)52¢(7,5)4 (6, 8)
8 S /-1
X #°(78,34), (3.87)
1T [UT . - ~
Iy = —Z/ drs1dro drggel@nmiteranteems) 919 569717, 5)%°(6, 8)
8 S /1T
X %°(78,34). (3.88)

The integral I; is the Fourier transform of the finite-temperature free response function

2%°(12, 34), which is given by
~ 1 _ -
Rk jeghs (Wns €0, E0) = =700k es Oy D1 (Wi + £0)a(e0)- (3.89)

A more detailed derivation of @21 ko kska (Wns €, €r) 18 placed in Appendix C. The integral I

can be carried out as follows:

1 T 1/T 1/T 1/T
]2 = g E / dT31 €iw"7—31 / dT21 Bisle / d7'346i68/7—34

3 —i(an, Ts1+Bey T21 7,1 T56)
x T E e ! VY Dk kske (O s Bey s Yer)
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3 § : —i(ang T37+Beq 7+, T34)
T € k7kg,k3k4 (ang,a 6@37 7@%)

n3,03,03
- iwnTgl T3 _i(anl 7'51+'Y[/1 7'56)9 ( ﬁ
€ kiko,kske \Ony 51776’1)
5678 -1/ T n1,01,0}
3 § —i(Qny Tr5+Bey Tes+p1 T18) )y €
T € "2 2 %k5k6,k7k8 (an27 /8e27 72’2)
ng,lo,bh
3 i( +BegT87) v i(g0—Bey)
—i(ang T37+Bey T87) gpe i(eg—PBey )T21
T E e ilang 3 R ks sk (g, Bes, "}/gg) / dTore 1
n3,03,03 JouT _
2 Vv
:T(S%le
/T ‘
/ dT34eZ(€“' e )T
-1/T
A J

g

_2
*?5%/7’&/3

17 /T ( . ) ~
iwnT31 2 U Any T51T Yl T56
— g / dr3 e T g e ! 1 -@klkg,k5k6(&n1,5£77£’l)
5678 Y~

2
1/T nl’g/
3 —i(Qny T75+B0g Te5+7r T78)
T E e 2 2 ¢ kskg,kﬂcg (Qtnys Bess ’ng)
n27e27€2
2 E —i(omy Ta7+Bes T87) €
T € " 3 '%k)7kg,k3k4 (Oén?)’ /8637 ggl)
n3,f3
Z / T3 zwn‘rgl ei(anlﬁ —QngT3)
k5k6k7k8

EIDIDY / o

n1,04 na b2, n3,ls

1/T ) 1/T . /T
/ dTﬁeﬁ(*Wﬁ%)Tﬁ / ciT7efl(O‘"2+’y’“’/2ﬂn?ﬁ%ﬁ7 / dTgef(ﬂ‘/zwei‘)TS
0 0 0

J/
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0. 0.
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=50, .8 =T %, ,By.
o Pl el

-@klkz,ksk’s (anu €, Vet )OZ/keg,kG krks (an27 Bﬁza Ve, )'@liﬂfs,kalm (anga 6@37 56’)

T5 1/T
7 Z / drs etwnTa1 gi(an, T1—angT3) Z Z / drse” i(any —amny )75

T

kskekrks 11,13 n2,02,43 ~ _
1
:T‘S ni,ng
/T ~
—i(Qng —Qnq )T7 e
/ d7—76 (any —ang) @klkz,kske, (@nla €, 662)%1%1%71?7]68 (an27 /8527 ﬁfg)
0
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=70ng.n3
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T3 /T . : -

Wi T31 ,i0n, (T1 —T
- 9 Z / d7—316 e 2(n7ms) E: @k1k2,k5k6(an275€76£2)
kskekrks -1/T

X %kzkﬁ,k'ﬂcg (Oén2 ? /842 ) /843)%271438,/63](34 (O{n3 ? /843 ? 8@/)

9 ~ ~
]2 = T Z Z9k1k27k5k6(wn’EK’BZQ)%kika,k‘7kg<wn7B€27/833)'@]27,1{:8,]{:3]94((/‘)7175&3780)‘

kskekrks £2,03

n2,l2,03

(3.90)

The similar calculation procedures can be applied to the integrals I3 and I, to give

Is = T Z Z Okléakl,—mQ 5k1k555k2k565k6k58 (iwn — &k T gk?.)gz/’l (gg + wn)gz@ (65)

kskekrks (3

gk&s (543 + Wn)EZﬂ% (wn + gy )%27]687163]64 (wnv €55 gf’) (391>

X

and

_[4 = T Z Z Ukl 5a'kl » " Oko 5k7k5 5k1k5 5k2k6 (an - gkl + 8]?2)%’\];1 (E:Z + wn>g?];2 (E:Z)
kskekrks n3

gkﬁ (wnS ) Ezekg (wTLB )%127}68,]{:31434 (wﬂ? Wn3 ’ 8[ ) ‘ (392)

X

Combining %" with the integrals I, I3, and I yields the correlated propagator Z#° in
the spectral representation. After obtaining the analytical form of ,@,‘zl ko kska Wy €0, €01, We
perform the summation over the Matsubara frequencies wy, and wy according to Eq. (3.83)

to obtain the BSE for one-variable correlated propagator 9?7,?1 ko kisky (Wn) Of the form

] ol i F (1 T (2
'glilkz,kgkz; ((JJn) - '@]81 ko,kska (Wn) - Z %lglkg,kgkﬁ (wn) (I)](<:5)/€6,k7k8 (wn) + ®](€5)k§,k7kg (wn)
kskekrks

3 (&
+ (D](<35)]€67k7k‘8 ((JJ”)] %’Wkg,k’gk;; (wn) (393)

The first term @21 ko ksks (Wn) Of Eq. (3.93) is the uncorrelated propagator, which is given by

%21k27k3k4(wn) = T2ZZ‘@glkz,kgm(wngagf’)

l v
1 —~ ~
= —T5k1k35k2k4T2 zg: zg: 006, (Wn + €0) %k, (€0)
= Ok Okobs T Y Gy (wn + €)%k (1)
l
X’ (wn) = —5kk5kkTZ ! ! (3.94)
kikz,ksks " 1R TR 7 Z(wn + Eﬁ) - €k1 + ,u igf - €k’2 + /'L ‘
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The transformation of the summation over ¢ into a contour integral leads to

n<€k27 T) B n(8k17 T)

: (3.95)
Wh, — €k, + Eky

~ B
'%/ﬁ ko,kska (wn) - _5k1]€3 5k2]€4

Before deriving the analytical form of the amplitude &)(a}n), it is convenient to express

%°(12, 34) as
%°(12,34) = Y 9(12,56)T°(56,34). (3.96)
56

Its Fourier transform is given by

T

B 1 1T 1T 1T
e . tWnT31 1€¢T21 1€ )1 T34
Ttk ks (Wns €0, E0) = 3 E / drz ™" / drye / dT34e™

06 1/T 1/T 1/T
3 e
X @klkg,k5k6 (751, T21, 7'56)Tk5k6,k3k4 (7'35, 765, 7'34)

= E :501@1,—01@2 5k1k56k2k60k1 (iwn — €k 5k2)

kske
x T Z g?l;l (wn + 54)5%@ (55)%5 (wn + 652)%6 (€e)
Lo
X T’§5k6,]€3kj4 (wTIJ 8@27 6(’)' (397)

Accordingly, Z} 1., kar, (Wn) can be expressed as

£1k27k3]€4 (C()n) = T2 Z Z ‘%zlkg,kglu (wn7 &y, 83')

gp &y
= Z Ocy, ,—0ky Ok ks Okakes 01 (W, — Egy + €1y )T Z % (wn +¢0)
kske €
X Cij (EE)T2 Z Z g’% (wn + gfz)gka (852)T155k6,k3k4 (wm €ta; 55’)

fg Eypt
n(er,, T) —nlex,, T)
Wy, — €k t Eky

- § :6—%1 kg 5k1k56k2k60k1 (iwn — €k T €k2)

kskeg
x T Z Z g;s (wn + €£2>g?];6 (552)T§5k6,k3k4 (wna €ty 55/)
la €yt
‘%lilkz,kglm (wn) = 50’k17_0'k2 Ok [n(ek’m T) - n(gku T)]
x T Z Z Gy (Wn + €0)%h, (€0) T kig hghea (Wns €05 E01)- (3.98)
gy Eypt
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Inserting Eq.

I

X

X

(3.97) into Eq. (3.90), one obtains

Z T Z 50/91,*%2 6k1k5 6k2k6 Ok (iwn —Epy t ng)g?;ﬂ (wn + 8@)

kskek7ks la,l3

@2 (gg)gzs (wn + 6£2>g/\];6 (/BZQ)%kaﬁ,k7kg (wna ﬂfzu 6@3)‘@72%8&3@ (wnv ﬂfsv 84’)

2 . 2 g
Y " T b —or, ks Okakg O (i — Eky + k)G (Wi + €0)Ghs (20)
kskekrks L2435

Grs (Wi + 5626 (Bia) 2 g g (Wris Beas Bty

)~ Gor o OkrhoOhskro s (i — Exy + Eiy)
kokio

T Z g?l/w (wn + 653)5%68 (543 )g?];g (wﬂ + 554)@10 (554)Tl~cegk10,k3k4 (wm 5547 55/)

4y

> Gy ey OkiksOkke Gis (W + €0) %k, (€0) 0, (i — Exy + Eky)
kskekrks

T2 " G (wn + Bis)ro (B02) Uk o (Wns B By )Gk (wn + Bry) s (Brs)

L2,l3

Ok (iwn — &k t 6k8)50k7,—0k8T Z %7 (wn + 544)‘(%98 (654)
Ly

T]S7k:8,k3k4 (wTH B&U Eel)' (399)

Performing the summation over Matsubara frequencies ¢, and ¢, for integral I, yields

DR

&

gpr

= Z 6161765 §k2k6T Z g?l;l (wn + Sf)g?;w (5@)

kskek7ks e

= T2 G (W + B, )%k (Brs)

£a,03

X { - 50k5,—0k60k5 (an — ks + 8,‘66)

X %keskﬁ,kaS (wm Bfw Bﬁa)g;w (wn + 553)%8 (ﬁf?,)] O-k7(iwn — €k T 5/68)}

X 6Uk7 y " Okg T2 Z Z g?’/W (wn + ﬁé4)g?];8 (ﬁ£4)T1:7kg,k3k4 (wm 5547 55/)

54 Eypt

Nn(Eky, I') — nlek,, T’
- - Z |:_5k1k56k2k‘6 (k ) ( k ):|

iw, — € €
ks kg ks n = €k T Eky

— T2 oo (wn + Bes) e (Brs)

£2,03

X { - 6%5»—01@60-/% (iwn — ks + 51@6)

X %kef,kﬁ,k)7k8 (wm Bfw Bés)gé;w (wn + ﬂ&)@fs (543)] Ok (iwn — €k, T 5k8)}

41



X 6Uk:77_0'k8 T2 Z Z gZIJ{W (wn + /8&1)9;;8 (/354)T/S7k8,k3k4 (wﬂ? /354’ EK’)

Ly €y

N(Eky, I') — nlek,, T’
= - Z |:_5k21k56k2k6 ( .k ) ( b ):|

iw, — € €
kskekrks n = €k T Eky

_ T2 Z g?;% (wn + BZQ)gZ];G (ﬁb)

X { - (501@5,*0&6 Oks (an — Eks + €k
l2,l3

X %kesk‘g,k'rkg (wna Bﬂz 5 ﬁfs)gé;w (wn + 633)%8 (st)

Ok (wy, — €ky + Ekg)
Ok; [n<8k87 T) - n(gkw T)]

X 6%7,*%8 Okq [n(gkw T) - n(€k77 T)]T2 Z Z 5%;7 (wn + B€4>g?l;8 (ﬁ&)
Z4 Epr
X T s kska (Wn Bess €07)
~ ) ~
T2 Z Z 12 - = Z %211452,]?5’?6 (wn>¢§€5)k:6,k7k8 (wn)'%k7k;8,k;3k;4 (wn)a (3 100)
ST kskekrks

where we have used Egs. (3.95) and (3.98), and defined the first term of the particle-phonon

coupling amplitude &)klkz,kgm (wp) as

T (1 . 1)(1 .
®/(€1)k?2,k‘3k4 (wn) = _601@1,*0/@20161 (an —Ep t+ 8k2)Ale(cg),k:3k4 (wn>ak3 (an — €k t+ €k4>7 (3101>
where
fle) T > >
k1k27k3k4(w ) O'ks [n(5k47 T) - TL(gkgaT)] fze: " (w - ﬁ£2) & <ﬁ€2)
2,03
X U oy hsks W Beys By )Gs (W + Bey )%k (Bes). (3.102)

Inserting Eq. (3.97) into Eqs. (3.91) and (3.92), we obtain

Iy = Z 60’k17_0'k2 5k1/€56k2/€6%1 (wn + 54)%2 (55){ — Oks (iwn — €y T 8196)
kskekrks
X =T Z E%ﬂs (wn + 553)2271% (wn + Eﬁzs)ékaks%? (wn + 553)%8 (553)
L3
X Ok (iwn — &k + Ek’s) }60k77_0'k8T Z g~k’7 (wn + 664)%8 (554)
Ly
X T s kska (Wi €045 E0) (3.103)
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and

Iy = Z 6/€1k56/€2k6g?1;1 (wn + €5>gNk2 (85){ - 5%57*%6 Oks (iwn — &k + €k6)
kskekrks

=T Z g;fa (an )Zzgkg (an )6167/65?%;7 (wn + Wy )gNks (an, )]

n3

X Ok (iwn — &k + €k8) }50k7,0k8T Z %7 (wn + €f4)£%€8 (€€4>

£y
X T kg egha (W Eays E07). (3.104)

After performing the summation over Matsubara frequencies ¢, and ¢, for integrals I3 and

14, one obtains

N . _
TN NI = = Y Ry ke @) Pk ke (@) B s (W) (3.105)
g0 &y kskekrks
and
N . _
TN N1 = = 3 Ry koke @) P ke @) By (W), (3.106)
ee ey kskekrks

where the second and third terms of the particle-phonon coupling amplitude E)kl ko kaks (Wn)

are given as

Cf,(fl)k%kg),% (wn) = 0oy, —oky T (iwn — g, + 5;92)1451],(3,{%4 (Wn)Oks (i, — €y + 1) (3.107)
and
52?22,k3k4 (wp) = —50k17_0k20k1(iwn — &y F 6k2)A£€11},(i),k3k4 (wWn) oy (i, — €y +€1y)- (3.108)
Here we also have defined
AE’(“?’%“ (wn) = = Oks [N (ERy s T?— n(eky, T')] %: S%ﬂ (215 X, (o - 20,)
X OtgtsGs (Wn + €031k, (€0,) (3.109)
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and

T ~

A[l](3) n — E g n Ee n

k1k2 k3k4(w ) 0_k3 [n(6k4,T) _ n<€k37T>] k'2 (w 3) k2k4(w 3)
n3

X (5k3k1g?//€3 (wn + an)g;m (Wn3)- (3110)

After performing the Matsubara summations in each term of Ak1 ko kshs (Wn), ONE Obtains the

analytical form of the particle-phonon coupling amplitude <I>k1 ko kska (Wn )

T T(1 (2 3
Dby sk (Wn) = (I)él)hksl€4 (wn) + @él)k%ksm (wn) + (ID,(CI),{Q ks (Wn ) (3.111)
where
~ 0, — Ok
1 (o (o) 1
q)ggl)k:g,kgkq (UJn) = n(€k4 7’“_1‘) ko gk { Z 9k4k29k3k1 wm; T) + n(€k4, T)]
) 37
n(glﬂ ) T) - n(€k4 - wma
X A Ehay I
1wy — Wiy — Ehika + ng4k2gk3k1 w ) + n( k3 )]
n(e’ka — Wm, T) 527
% my T ]- - Ek. ,T
iy, + Wy, — Eksho ng1k3gk2k4 w ) + n( k3 )]
(W + €kg, T) — n(€gy, T’
X m> T 1 - £ 7T
Wy — Wy, — Eksko + ng1k3gk2k4 w ) + n( 4 )]
« Mo D) = nlom ton, 1) (3.112)
Wy, + W — Ekiky
= Oy, ok, Oky Okyk
2 o o 1Ykaky
Bk e (@n) = L Z g g [N (@, T) + 1 — n(ery, T)]
) 37

n(eky, T) — n(eks + wm, T’

X N(wm,T) +n(eg,, T
iWy, — Wiy, + Ekaks + Z gk5k39k5k1 ) + ( ks )]

ks,m

y n(5k4.,T) — n(eg; — Wi, T) }7 (3.113)

Wy + Wi + Ekgks

5%1 —0ky Ok 5k3k‘1

3 (3) _ mx _m
(Dklkg,k3k4 (wn) - n(5k47 T) . n(5k3> T) kz: {gk2k69k4k6 [N(wm’ T) + 1- n<6k‘67 T)]
6,1

n(wm + €k T) - n<5k’37 T)

X m Tm* N m7T ,T
iWn, + Wi — Ekske + gk6k2gk6k4[ (w ) + n(5k6 )]

o ek = wm T) = nlei, T) } 511
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and the energy differences ey,x; = €x, — €x,. Introducing the phonon vertex matrices

51:;027;14:31@4 5klk3gk4(nm) - gk1k3 5]{4]627 (3115)

the particle-phonon coupling amplitude &)kl ko kisks (Wn) can be expressed concisely as

J

~ Uk
_ Tky>— L MMNm mnm*
Dy kska (Wn) = (e T) (e E E Wmfklkz,k5k6 kska,kske
ka ke T k5 ke, m fim==1

y VOmeom, T) + nlerg, T)l[nEry — Nmtom, T) — nlers, T} (3.116)
Wy — €ks + Ekg — NMmWm

It can be verified that the hp components 5hp,h/p/(wn) of the particle-phonon coupling

amplitude can be obtained from the ph components Cfphm/h/ (wy) via

ZI;hp,h’ﬁ’ (wn) = ®;h7p’h/ (—Wn). (3.117)

After the analytical continuation to the real frequencies, the BSE for the correlated ph
propagator 9?,21 ko ksky (W) takes the form:

%lilkz,kglm() %klkz,km Z ‘@klkg,l%k@ )‘I)kske,kﬂcs(W)<%)§7k8,k3k4(w)a (3.118)

kskekrks

where the spectral representation of the uncorrelated propagator and the particle-phonon

coupling amplitude are respectively given by

n(st,T) - n(skl,T)
W — €y + Eky

%klkg,km( W) = — Ok Ohiphs (3.119)

and

J

Bispupaba () = — el A i
k1ka,kaka = ( T) — TSk, ko ks ke k3k4,k5k6
LSS n(ek,, T ) ki a1

o N Omwin, T) + nlers, D][n(ers = Nmwm, T) — nlers, )] (3.120)
W — Eky + Ekg — NImWm

Comparing Eq. (3.44) to Eq. (3.118), one should be able to highlight the merit of the
imaginary-time projection operator. As already mentioned before, one has to handle the
three-imaginary-time or, after doing a three-dimensional Fourier transform, three-energy
variable integrations to solve Eq. (3.44). Since the kernel #¢ consists of the energy-

dependent mass operator ¢ and interaction amplitude %€, which are singular, these
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integrations are simply impossible to be done numerically. In contrast to Eq. (3.44), Eq.
(3.118) no longer contains any energy integration with singular kernels. Instead, Eq. (3.118)
allows us to perform the summations over the mean-field single-particle states, which are
numerically feasible.

The full finite-temperature response function % now satisfies the Bethe-Salpeter

equation:
t%]<A'11€27'Ii'3k?4 (C(J) = %I(glkg,kgkq (W)
- Z '@](C)lka,k‘g,ka (w)[%l%k&k?ks + 5(I>k’5k67k‘7/€8 (w)]‘@kﬂ&k:skzx (w)v
kskek7ks
(3.121)

where the corrected particle-phonon coupling amplitude 55((@ is obtained directly from the

subtraction of itself at w = 0, viz.,

5P (w) = D(w) — (0). (3.122)

This subtraction procedure serves as a method to eliminate the double counting of the PVC
effects, which appears inevitably in calculations based on the effective residual interaction.
In the finite-temperature relativistic random phase approximation (FT-RRPA) response
formalism, i.c., Bq. (3.121) without 6®(w), the residual interaction is the kernel of the
corresponding BSE. In the FT-RTBA, in addition to the residual interaction JZ//V, the kernel
of BSE (3.121) also contains the contribution from the PVC amplitude ®(w).However, there
already exist the implicit static contribution &)(O) of the PVC amplitude to the residual
interaction @f/v, because it is adjusted to experimental data on finite nuclei. Therefore, the
subtraction procedure is necessary for solving the double counting problem, which arises
from the presence of static contribution &)(O) inside the residual interaction % (71, 77]. In
addition, the subtraction improves considerably the convergence of the PVC amplitude and,

in the case of the dipole response, also helps eliminate the spurious translational mode [71].

3.5 Strength Function and Transition Density

In order to calculate the strength function S(E), one normally starts from the Bethe-
Salpeter equation (3.121). After solving Eq. (3.121) for the finite-temperature response
function Z(w), one utilizes Eq. (3.12) to calculate the strength distribution. It is useful,
however, to start from a single convolution of Eq. (3.121) with external field V0. In fact,

a single convolution of the finite-temperature response function &% with external field Vo
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defines the density matrix variation dp, viz.,

6pklk2 Z%k1k‘2,k3k‘4 ‘/k;4k3 (3123)

kska

A single convolution of the uncorrelated propagator %" with external field V° yields the

uncorrelated density matrix variation

5pk1k2 Z%klkg,kgkzl ‘/k:4kg (3124)

ks
Accordingly, one can rewrite Eq. (3.121) in terms of dp(w) and §p°(w) as

6pklk2 (W) - 5p21k2 ((A))

- Z ‘%I(c)lkg,kg,kg (w)[%kskes,kvks + 5q)k5k6,k7k‘8 (w>]5pk7k8 (w) (3'125)
kskek7ks

and the spectral density S(FE) as

1
S(E) =—= lim Im» V% Spp, (E +iA). (3.126)

T A——+0
kiko

The advantage of expressing the spectral density S(F) in terms of density matrix variation

dp is that the transition density

Phi, = (Flaf, ax, |i) (3.127)

from the initial state |i) to final state |f) is connected to the spectral density S(E) at the

energy I/ = wy;. In the vicinity of wy;, the full response function is a simple pole of the form:

fix
7K E ~ L ks P 3.128
ksl )E%f_ Al (3.128)

Consequently, the imaginary part of the matrix element dpy, , (E +3A) in the vicinity of wy;
is given by

[0 py, p, (wps + i) Apkl,@ > i Vi, (3.129)
ksky
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and the spectral density S(wy;) takes the form:

2
1 .
— : fix 0
Slwpi) = — lim 2 Pieaks Viaks (3.130)
3Rk4
Combining the last two equations yields
fi 1 .

Pk = J o\ | 25y 0Pk (g 14 (3.131)

in analogy to the case of zero temperature [77]. This relation allows us to extract the
transition densities from a continuous strength distribution. To derive the normalization of
the transition densities, we start from Eq. (3.121) and rewrite it as an operator equation of
the form:

(Z°(w)™ + U + ®(w) — B(0)]Z(w) = 1. (3.132)

The derivative of Eq. (3.132) with respect to w leads to

ARk ks kisks (W) Z d(ﬁo);:lk ks (W)
—— = Rrey ko hsks (W) R horks hska (W)
dw he dw
dd w
+ Z ‘%klk%]%kﬁ (w>%k8()‘%k7ks,k3k4(w)' (3133>
kskekrks w

Inserting Eqgs. (3.119) and (3.128) into Eq. (3.133) yields the generalized normalization

condition

% d&)k ko, ksk (w) i
1= Z p£1k2 ‘/%61]62,]63]64 - % ,0£3k4, (3134)

k1koksky W=Wwfj

where the matrix element A%, k, kqk, is the finite-temperature random phase approximation
(FT-RPA) norm of the form:

5k1k36k2k4
n(ehy, T) = nler, T)

Nirka ksks = (3.135)

For the case where the the only interaction involved is the residual interaction 027/, the

derivative of CE(w) with respect to w vanishes and, hence, the generalized normalization
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condition (3.134) reduces to the usual FT-RPA normalization condition:

ol 2 = |pli]?
=1. 3.136
2 e ) (e T) (3.136)

The generalized normalization condition can be employed to investigate the relative
contributions of dominant ph and ph components that define the underlying structure, the

degree of collectivity, and PVC for a particular excited state at a specific temperature.

49



Chapter 4

Numerical Results

4.1 Numerical Details

In this section, we present realistic numerical calculations making use of the finite-

temperature relativistic time-blocking approximation (FT-RTBA) developed in Chapter 3.

We calculated the multipole strengths for even-even spherical nuclei **Ca, %Ni,

100,120,132 Sn
)

and 2°8Pb at various temperatures and investigated the evolution of these multipole strengths

with temperature. The general scheme of the calculations is given as follows [98]:

(i)

(iii)

We simultaneously solve the closed set of the RMF equations, i.e., Egs. (2.42), (2.51)-
(2.54), with the densities of Eqgs. (2.75)-(2.78) and the particle number constraint
(2.73) in a self-consistent way using the NL3 parameter set [156] of the nonlinear o
model. We discussed the iterative procedures for solving the closed set of the RMF
equations in Section 2.3. The solution of the closed set of the RMF equations is the
temperature-dependent single-particle basis in terms of the Dirac spinors g (r) and

the corresponding single-particle energies ey.

The obtained single-particle basis is utilized to solve the finite-temperature relativistic
random phase approximation (FT-RRPA) equations to obtain the phonon vertices g"
and frequencies w,,. Here the FT-RRPA equations are equivalent to Eq. (3.125)
without the corrected particle-phonon coupling amplitude (5213(0.1). Together with
the single-particle basis, the set of phonons forms the model space of 1plh®@phonon

configurations for the particle-phonon coupling amplitude Cf(w)

Finally, we solve Eq. (3.125) and compute the strength function being given by Eq.

(3.12) for the specific external field V};,. For the electric isoscalar monopole (E0) and
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quadrupole (E2) transitions, the external field V}?,, takes the forms [157]:

A
Voo =€ riYoo(n;) (4.1)
=1
and
A
Vo = ey riVau(my), (4.2)

respectively, where n is a unit vector in the spherical coordinates. The isovector electric
dipole (E1) transitions are associated with the external field V), of the form [98, 157]:

N
eN e
VB\/[ =1 E riYim(n;) — T E riYinm(n;), (4.3)
j i=1

which contains the correction for the center-of-mass motion. This whole scheme of the
calculations can be performed in the Dirac-space representation, which allows for direct
extraction of the transition densities, according to Eq. (3.131). A faster algorithm is,
however, to solve Eq. (3.118) in the basis of Dirac spinors and then the Bethe-Salpeter
equation

RB(w) = B (w) — B (W)U R (W) (4.4)

in the momentum-channel representation [78]. The momentum-channel representation
provides a more economical execution of the calculations that involve large masses and
high temperatures. The alternative algorithm implies the solution of Eq. (3.125) in
the Dirac basis. The coincidence of the two solutions in the different representations

serves as a validity test of our results.

In both calculation schemes, the particle-phonon coupling amplitude EIS(w) is computed
within the particle-hole (ph) energy window of 25 and 30 MeV around the Fermi surface.
It has been verified that a further increase of this window gives insignificant change to
the strength functions at the energies below the value of this window. To eliminate the
spurious translational mode completely, the particle-hole basis was fixed by the limits
eph < 300 MeV and e, > —1800 MeV with respect to the positive continuum. The values
of smearing parameter were set to be 500 keV for ¥¥Ca and ®®Ni nuclei, and 200 keV for
100,120,132Q and 2%®Pb to match approximately the typical continuum width of the peaks
of the strength distributions. The collective vibrations with quantum numbers of spin and
parity J™ = 2%, 37, 47, 57, 61 below the energy cutoff, which amounts to 15 and 20 MeV for

heavy and medium-mass nuclei, were included in the phonon space. An additional truncation
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condition was applied according to the values of the reduced transition probabilities B(EL)
of the corresponding electromagnetic transitions. For each J™, all modes with the values of
B(EL) less than 5% of the maximal one were neglected. It is assumed that keeping the same
truncation criteria for all temperature regimes guarantees a fair comparison of the calculated
strength distributions. At high temperatures, the number of phonons increases due to the
effect of thermal unblocking. In particular, at T~ 5-6 MeV, the average number of phonons
included in the phonon space becomes an order of magnitude larger than that at 7" = 0.
Finally, another truncation condition was made on the absolute values of the numerator of
Eq. (3.119): All particle-hole pairs with |n(ex,,T’) — n(ex,, T')| < 0.01 do not contribute to
the solution of the Bethe-Salpeter equation (3.121).

4.2 Thermal Mean-field Calculations for Compound

Nuclei!

The thermal RMF calculations of the excitation energy E* as a function of temperature
T for compound nuclei *¥Ca, ®Ni and '°%!32Sn are illustrated in Fig. 4.1. Technically,
as it follows from Chapter 2, the effect of finite temperature on the total energy of a
thermally excited nucleus is mainly induced by the change of the fermionic occupation
numbers from the values of zero and one at 7' = 0 to the Fermi-Dirac distribution (2.72).
The fermionic densities of Eqs. (2.75)-(2.78) change accordingly and, thus, affect the meson
and photon fields being the sources for Egs. (2.51)-(2.54). In turn, the changed meson fields
give the feedback on the nucleons, so that the thermodynamical equilibrium is achieved
through the self-consistent set of the thermal RMF equations. As the nucleons start to be
promoted to higher-energy orbits with the temperature increase, the total energy should grow
continuously and, in principle, the dependence E*(T") has to be parabolic, in accordance with
the non-interacting Fermi gas behavior. However, the discrete shell structure and especially
the presence of the large shell gaps right above the Fermi surface in the doubly magic nuclei
cause a flat behavior of the excitation energy until the temperature values become sufficient
to promote the nucleons over the shell gaps. This effect is clearly visible in Fig. 4.1 for
the doubly magic nuclei ¥Ca and 1°%!32Sn, while it is much smaller in ®*Ni which has an
open shell in the neutron subsystem. Otherwise, at 7' > 1 MeV the thermal RMF E*(T')
dependencies can be very well approximated by the parabolic fits providing the level density

parameters which are close to the empirical Fermi gas values a = A/k, where 8 < k < 12.

1Sections 4.2 is reprinted from Ref. [98], in accordance with American Physical Society (APS) copyright
policies (https://journals.aps.org/copyrightFAQ.html)
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Figure 4.1: The energies of the thermally excited nuclei *Ca, %Ni and 1°%!32Sn as functions
of temperature: RMF (blue circles) and parabolic fits (red curves) [98].

4.3 Isovector Dipole Resonance in **Ca, %Ni, and
100,120,132 g 2

The calculated temperature-dependent spectral densities S(w) for *®Ca, ®Ni and
100,120,132Qn) nuclei at various temperatures are shown in Figs. 4.2 and 4.3, respectively,
where we compare the evolution of the electric dipole spectral density within FT-RRPA
(left panels) and FT-RTBA (right panels). As the temperature increases, we observe the

following two major effects:

(i) The fragmentation of the dipole spectral density becomes stronger, so that the GDR

2Sections 4.3 is reprinted from Ref. [98], in accordance with American Physical Society (APS) copyright
policies (https://journals.aps.org/copyrightFAQ.html)
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undergoes a continuous broadening. The increased diffuseness of the Fermi surface
enhances significantly the amount of thermally unblocked states, especially the ones
above the Fermi energy ep, as shown schematically in Fig. 4.4. These states give
rise to the new transitions within the thermal particle-hole pairs I/)\fl, as follows from
the form of the uncorrelated propagator (3.95). The increasing amount of these
new pairs reinforces the Landau damping of the GDR. The spreading width of the
GDR determined by the PVC amplitude of Eq. (3.116) also increases because of the
increasing role of the new terms with 7n,, = —1, in addition to the terms with n,, = +1
which solely define the PVC at zero temperature. As these terms are associated with
the new poles, they enhance the spreading effects with the temperature growth, in
addition to the reinforced Landau damping. At high temperatures T~ 5 — 6 MeV,
when the low-energy phonons develop the new sort of collectivity, the coupling vertices
increase accordingly, which leads to a reinforcement of the spreading width of the
GDR. This is consistent with the experimental observations of the "disappearance” of
the high-frequency GDR at temperatures 7' > 6 MeV reported in the Ref. [106], while

these temperatures might be at the limits of existence of the considered atomic nuclei.

The formation and enhancement of the low-energy strength below the pygmy dipole
resonance. This enhancement occurs due to the new transitions within thermal f)?l
pairs with small energy differences. The number of these pairs increases with the
temperature growth in such a way that at high temperature 7' &~ 5-6 MeV the formation
of new collective low-energy modes becomes possible. Within our model, these new
low-energy modes are not strongly affected by PVC. The lack of fragmentation is due
to the fact that for the thermal f)Ti pairs with small energy differences the numerator
of Eq. (3.116) contains the factors n(eg, — Nmwm, T) —n(ex;, T') which are considerably
smaller than those for the regular T' = 0 ph pairs of states located on the different sides
with respect to the Fermi surface. Notice that the smallness of this factor for the }?)Tl
pairs is not compensated by the denominator n(ex,,T") — n(eg,, T') which is balanced
by the numerator of Eq. (3.95). The inclusion of the finite-temperature ground state
correlations (GSC) induced by the PVC in the particle-phonon coupling amplitude

5(w) may enforce the fragmentation of the low-energy peaks.

The trends are similar for the dipole strength in all considered nuclei shown in Figs. 4.2

and 4.3. The open-shell nuclei, such as %®Ni and ?°Sn, are superfluid below the critical

temperature, which is T, ~ 0.6A., where A, is the superfluid pairing gap. It takes the
values A, = 1.6 MeV and A, = 1.1 MeV for %Ni and '?°Sn, respectively, so that the

superfluidity already vanishes at T' = 1 MeV in these nuclei. As our approach does not
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Figure 4.2: Electric dipole spectral density in “®Ca and %Ni nuclei calculated within FT-
RRPA (left panels) and FT-RTBA (right panels) at various temperatures. The value of
smearing parameter A = 500 keV was adopted in both calculations [98].

take the superfluid pairing into account at 7' > 0, we can not track this effect continuously;
however, by comparing the strength distributions at 7' = 0 and 7" = 1 MeV for ®*Ni and
120Sn we can see how the disappearance of superfluidity influences the strength. In the
doubly magic nuclei the dipole strength shows almost no change when going from 7" = 0 to
T =1 MeV. This observation is consistent with the thermal RMF calculations displayed in
Fig. 4.1. As already discussed above, the presence of the large shell gaps in both neutron
and proton subsystems requires a certain value of temperature to promote the nucleons over
the shell gap. One can see that this temperature is T' ~ 0.75 — 1 MeV for the considered
closed-shell nuclei.

Notice that until now we discussed the microscopic spectral density S(E) without the
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Figure 4.3: Same as in Fig. 4.2 but for 1991201328y nyclei with the smearing parameter
A =200 keV [98].
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Figure 4.4: Emergence of thermally unblocked states below and above the Fermi energy
ep. Here ph stands for the thermally unblocked hole-hole (hh) and particle-particle (pp)
fermionic pairs with the non-zero values of the uncorrelated propagator (3.95) [98].
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Figure 4.5: The role of the exponential factor: strength function S(E) (solid curves) versus
spectral density S(E) (dashed curves) for the dipole strength in **Ca (left panel) and '2°Sn

(right panel) [98].
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Figure 4.6: Width and energy-weighted sum rule (EWSR) of the giant dipole resonance.
Left panel: Width of the giant dipole resonance in '2%132Sn as a function of temperature.
The experimental values from Refs. [158, 159, 160] are shown for 1?**Sn. Right panel: The
energy-weighted sum rule (EWSR) for 4Ca and *2Sn with respect to the TRK sum rule
98].

exponential factor 1/[1—exp(—E/T)], which is present in the strength function S(E) (3.12)
due to the detailed balance. This factor does not affect the GDR region at all temperatures
under study; however, at moderate to high temperatures it enhances noticeably the low-
energy strength, as illustrated in Fig. 4.5 for the dipole response of *Ca and '2°Sn. At
E = 0 this factor is singular while the spectral density is equal to zero, so that the total
strength function has, thus, a nontrivial limit at £ — 0. As one can see from Fig. 4.5,
this limit is finite except for the T" = 0 case when the strength function coincides with
the spectral density vanishing at £ — 0. In this work we focus mostly on the features
of the spectral density, which is the zero-temperature analog of the strength function, in
order to resolve clearly the details of the nuclear response at very low transition energies
E without concealing its fine features by the exponential factor. It can be easily included,
for instance, when experimental data on the low-energy response become available. The
important features are, in particular, the absence of the spurious translational mode and the
clear zero-energy limit of the spectral density.

The width and the energy weighted sum rules are the most important integral
characteristics of the GDR which are usually addressed in theoretical and experimental
studies. In particular, they help benchmarking the theoretical approaches because of their
almost model-independent character. The left panel of Fig. 4.6 illustrates the evolution
of GDR’s width I'(T) with temperature obtained in FT-RTBA for ?°Sn and '*2Sn nuclei
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Table 4.1: Widths of the giant dipole resonance in 2°Sn calculated by fitting the FT-RRPA
and FT-RTBA strengths with the Lorentz distribution within the energy interval 0 < E < 25
MeV [98].

T [MeV] 0 10 20 30 40
[ [MeV], FTI-RRPA 270 226 3.09 6.94 14.46
' [MeV], FT-RTBA 443 3.08 4.07 846 16.92

together with experimental data which are available only for 2°Sn. The theoretical widths
at T = 0 are taken from our previous calculations [77, 78], respectively. Because of the phase
transition in °Sn at T' < 1 MeV, I'(T') has a smaller value at T'= 1 MeV than at T = 0
as the disappearance of the superfluid pairing reduces the width. As already mentioned, the
thermal unblocking effects do not yet appear at 7' = 1 MeV in both ?°Sn and '32Sn because
of their specific shell structure. For the protons which form the Z = 50 closed shell and have
the next available orbitals only in the next major shell, 7' =1 MeV temperature is not yet
sufficient to promote them over the shell gap with a noticeable occupancy. In the neutron
subsystem, the situation in '*2Sn is similar while in 2°Sn the lowest available orbit is the
intruder 1h,; /5 state where particles get promoted relatively easily, but after this orbit there
is another shell gap. As a consequence, at T =1 MeV there is still no room for the [/)\fl pair
formation and, hence, for a noticeable thermal unblocking. Thus, our result can explain the
unexpectedly small GDR’s width at 7' = 1 MeV reported in Ref. [159], in contrast to the
thermal shape fluctuation calculations. After T'= 1 MeV in '32Sn and 7' = 2 MeV in 12°Sn
we obtain a fast increase of I'(T") because of the formation of the low-energy shoulder by 5};
pairs and due to a slow increase of the fragmentation of the high-energy peak emerging from
the finite-temperature effects in the PVC amplitude EI;(cu) As '32Sn is more neutron-rich
than '2°Sn, the respective strength in the low-energy shoulder of 32Sn is larger, which leads
to a larger overall width in 32Sn at temperatures above 1 MeV. The GDR’s widths for 7' > 3
MeV in ¥2Sn and for 7' > 4 MeV in 2°Sn are not presented because the standard procedure
based on the Lorentzian fit of the microscopic strength distribution fails in recognizing the
distribution as a single peak structure.

The overall agreement of FT-RTBA calculations with data for the GDR’s width in
120Sn is found very reasonable except for the temperatures around 2 MeV, possibly due to
deformation and shape fluctuation effects, which are not included in the present calculations.
Our results are also consistent with those of microscopic approach of Ref. [161], which are
available for the GDR energy region at 7' < 3 MeV, while in the entire range of temperatures
under study I'gpgr(T) shows a nearly quadratic dependence agreeing with the Fermi liquid
theory [162]. Table 4.1 shows a comparison of T'gpr(T) in '*°Sn calculated within FT-
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RRPA and FT-RTBA by fitting the corresponding strength distribution by the Lorentzian
within the energy interval 0 < E < 25 MeV. One can see that in both approaches, after
passing the minimum at 7" = 1 MeV because of the transition to the non-superfluid phase,
Lapr(T) grows quickly with temperature. The difference between the width computed in
the two models is about 1.0 — 1.7 MeV at low temperatures while it increases to ~ 2.5 MeV
at T' = 4 MeV. It can be concluded that the PVC contribution to the width evolution is
rather minor and the latter occurs mostly due to the reinforcement of the Landau damping
with the temperature growth. Indeed, we could observe from varying the boundaries of the
energy interval, where the fitting procedure is performed, that the amount of the low-energy
strength is very important for the value of the width.

The right panel of Fig. 4.6 shows the evolution of the energy-weighted sum rule for **Ca
and ¥2Sn nuclei calculated within FT-RRPA and FT-RTBA in the percentage with respect
to the Thomas-Reiche-Kuhn (TRK) sum rule. The EWSR at 7" > 0 can be calculated in
full analogy with the case of T'= 0 [132, 163]. In our approach, where the meson-exchange
interaction is velocity-dependent, already in RRPA and relativistic quasiparticle random
phase approximation (RQRPA) at T' = 0 we observe up to 40% enhancement of the TRK
sum rule within the energy regions which are typically studied in experiments [77, 78], in
agreement with data. In the resonant time-blocking approximation without the GSC of
the PVC type the EWSR should have exactly the same value as in RPA [69] with a little
violation when the subtraction procedure is performed [69, 70]. Typically, at 7' = 0 in
the subtraction-corrected RTBA we find a few percent less EWSR in finite energy intervals
below 25-30 MeV than in RRPA, but this difference decreases if we take larger intervals.
This is due to the fact that in RTBA the strength distributions are more spread and if cut,
leaves more strength outside the finite interval. A similar situation takes place at T > 0.
Fig. 4.6 (b) shows that the EWSR decreases slowly with the temperature growth because
the entire strength distribution moves down in energy. In both nuclei, the FT-RRPA and
FT-RTBA EWSR values practically meet at T' = 6 MeV when their high-energy tails become
less important.

To gain a better understanding of the formation and enhancement of the low-energy
strength, we have performed a more detailed investigation of the dipole strength in the
energy region £ < 10 MeV. The dipole strength in %Ni calculated at different temperatures
with a small value of the smearing parameter A = 20 keV is displayed in Fig. 4.7. In the
testing phase, these calculations were used to ensure positive definiteness of the spectral
density as it reflects a very delicate balance between the self-energy and exchange terms in
the PVC amplitude EIS(w) In particular, we found that consistency between 13?1 pairs involved

in self-energy and exchange terms is very important.
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Figure 4.7: The temperature evolution of the low-energy dipole spectral density in ®®Ni
calculated within FT-RTBA with the smearing parameter A = 20 keV [98].
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Table 4.2: Major contributions of neutron (n) and proton (p) ph and ph configurations to the strongest dipole states below 10

MeV in %Ni calculated within FT-RTBA for various temperatures [98].

T =0; £ =6.89 MeV

T=1MeV; E=716 MeV T =2MeV; E =770 MeV T =3 MeV; I = 3.49 MeV

10.3%
9.8%
7.1%
6.2%
6.1%
4.6%
1.0%
0.9%
0.9%
0.7%
0.4%
0.3%
0.2%
0.2%
0.2%
0.2%
0.1%

49.2%

(2p3/2 — 2d5/2> n
(25172 = 2p32) D
(1f7/2 — 199/2) D
(1f5/2 — 2d5/2) n
(1f7/2 — 199/2) n
(1f5/2 — 2d3/2) n
(2p1/2 — 2d3/2) n
(1d3/2 — 2]01/2) p
(1d3/2 — 2]03/2) p
(2p3j2 = 3s12) 1
(1fs5/2 = 3ds3/2) n
(25172 = 2p1/2) D
(2p3j2 — 3ds/2) 1
(1f5/2 — 3d5/2) n
(2p3j2 — 2d3s2) n
(1f7/2 = 2ds/2) p
(1f7/2 — 2d5/2) n

56.8%
4.4%
2.2%
1.4%
1.0%
0.9%
0.9%
0.7%
0.5%
0.3%
0.2%
0.1%

69.4%

(2p1/2 = 3512)
(1f7/2 - 199/2) n
(1f5/2 — 2ds/z) n
(Lfzr/2 = 1gg/2) p
(].f5/2 — 2d3/2) n
(2p3j2 — 3s172)
(2p1/2 — 2d3/2) n
(2p1/2 = 4512) 0
(2p3j2 = 2d5/2) 1
(1dsjs — 2ps)2) p
(1d3/2 — 2])1/2) p
(2p1/2 = 5512)

4.9% (1f5/2 — 2d5/2) n 31.1% (381/2 — 3]?3/2) n
3.2% (1f7/2 — ]_gg/g) n 15.7% (2d5/2 — 3p3/2) n
2.9% (2p3/2 — 2d5/2) n 0.1% (351/2 — 3p1/2) n
2.1% (1f5/2 — 2d3/2) n 0.01% (1f7/2 — 1g9/2) n
1.7% (1f7/2 — 199/2) p 0.01% (]_gg/g — 1h11/2> n
1.3% (2]?1/2 — 2d3/2) n
11% (25172 — 2p3/2)
0.9% (2p3j2 — 3s12) 1
0.2% (ldsj2 = 2p1s2) p
0.2% (1d3/2 — 2p3/2) D

( )

0.1% ].f5/2 — 3d3/2

18.6% 46.92%

T =4 MeV; EE=2.55MeV T =5 MeV; E =387 MeV

T =6 MeV; E = 3.63 MeV

66.1%
5.1%
0.7%
0.4%
0.1%

72.4%

(2f7/2 — 299/2) n
(3p1/2 — 3d3/2) n
(2f5/2 — 297/2) n
(2d3/2 — 3[)1/2) n
(197/2 — 2f5/2) n

61.9%
3.0%
0.4%
0.3%
0.2%
0.1%

65.9%

(29972 — 2h11/2) 0
(3f7/2 — 4d5/2) n
(297/2 — 3f5/2) n
(2d3/2 = 2f572) p
(].hll/g — 1i13/2) n
(3d3/2 — 2f5/2> n

21.2% (1i11/2 — 1j13/2) n
9.5%  (2ds/2 — 2f7/2) p
8.8% (1i13/2 — 1j15/2) n
3.2% (2d3/2 — 2f5/2) n
0.1% (299/2 — 3f7/2) n

42.8%




The FT-RTBA calculations presented in Fig. 4.7 resolve individual states in the low-
energy region showing the details of the evolution of the thermally emergent dipole strength.
In particular, one can trace how the major peak moves toward lower energies and its intensity
increases. The proton and neutron transition densities for the most prominent peak below
10 MeV are displayed for different temperature values in Fig. 4.8 for the neutron-rich ®*Ni
nucleus and for the neutron-deficient °°Sn nucleus. In the neutron-rich Ni nucleus proton
and neutron transition densities show in-phase oscillations inside the nucleus while neutron
oscillations become absolutely dominant outside for 0 < 7" < 5 MeV. At the temperature
T = 6 MeV protons and neutrons exhibit out of phase oscillation which resembles the well-
recognized pattern of the collective giant resonance. Indeed, as it is shown in Table 4.2
discussed below, the low-energy peak at 7' = 6 MeV has some features of collective nature.
The situation is quite similar in the neutron-deficient '°°Sn nucleus, which exhibits the in-
phase oscillations of protons and neutrons inside the nucleus, but with the dominance of
proton oscillations in the outer area. Analogously, at T'= 6 MeV one starts to distinguish a
GDR-like pattern of the out-of-phase oscillation in the low-lying state at £ = 3.25 MeV. We
also notice that at 3 < T < 6 MeV the oscillations extend to far distances from the nuclear
central region.

In order to have some more insights into the structure of the new low-energy states,
we have extracted the I/)\Fl compositions of the strongest low-energy states at various

temperatures. The quantities

PR el
ph nh(€h> T) - np(gpa T)

(4.5)

are given in Table 4.2 in percentage with respect to the FT-RTBA generalized normalization
condition of Eq. (3.134). In most of the cases, we omit contributions of less than 0.1%. The
bottom line shows the total percentage of pure ph and f)?l configurations, so that the deviation
of this number from 100% characterizes the degree of PVC, according to Eq. (3.134).

We start with the state at £ = 6.89 MeV at T = 0 which shows up as a slightly
neutron-dominant state with seven two-quasiparticle contributions bigger than 1%. This
state can be classified as a relatively collective one. At T = 1 MeV the ®Ni nucleus becomes
nonsuperfluid and one can see that the strongest low-energy state has a dominant particle-
hole configuration. For the £ = 7.70 MeV state at T = 2 MeV the major contribution comes
from the PVC as the particle-hole configurations sum up to 18.6% only. It is important to
emphasize that the considered peaks at T' < 2 MeV are dominated by the ph transitions of
nucleons across the Fermi surface, while at T > 3 MeV they are mainly composed of the

thermal f)?l transitions between the states above the Fermi energy. These states are mostly
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located in the continuum, which is discretized in the present calculations. Although a more
accurate continuum treatment is necessary to investigate the low-energy response at finite
temperatures [137], as the large number of the basis harmonic oscillator shells are taken into
account in this work, the discretized description of the continuum should be quite adequate.
Thus, we notice that at T" > 2 MeV the collectivity becomes destroyed by the thermal effects
until it reappears again at T' = 6.0 MeV. This temperature is, however, rather high and can

be close to the limiting temperature which terminates existence of the nucleus [106].

4.4 Isoscalar Monopole and Quadrupole Resonances in
68Ni

The study of the isoscalar monopole response (ISMR) is essential as the isoscalar giant
monopole resonance (ISGMR), which dominates the ISMR, is related to the finite-nucleus
incompressibility K 4. This relationship is described by the formula [108]

EISGMR — hQKA (4 6)
m(r?)’ ’
where ESSMR g the centroid of ISGMR, m is the nucleon mass, and (r?) is the mean-

square matter radius. The finite nucleus incompressibility K 4, in turn, can be related to the
incompressibility of infinite symmetric nuclear matter K, via the leptodermous expansion
[164]. The isoscalar monopole response in %Ni at various temperatures is shown in Fig.
4.9. At temperature T'= 2 MeV both FT-RRPA and FT-RTBA spectral densities show the
emergence of a new soft mode at £ ~ 5 MeV and it strengthens as the temperature increases.
At temperature T' = 3 MeV one also observes the appearance of another new soft mode at
E =~ 9 MeV. These two soft modes clearly manifests the effect of the thermal unblocking
mechanism. The effect of PVC can be seen from the strong fragmentation of ISGMR for
all temperatures. Another observation is the shift of the entire strength distribution toward
lower energies with the temperature increase. Respectively, the centroid energy decreases
as the temperature increases. According to Eq. (4.6), the decrease of the ISGMR centroid
energy means the decrease of the finite-nucleus incompressibility K 4.

At zero temperature, the isoscalar quadrupole response (ISQR) comprises the two main
structures of collective character: the pronounced low-energy 2% state and the broad
collective isoscalar giant quadrupole resonance (ISGQR) at high energy. The ISGQR is
closely related to the notion of the effective mass and, thus, provides a constraint on this

quantity. It can serve for the determination of the nuclear symmetry energy and neutron skin
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Figure 4.9: The isoscalar monopole response in %Ni as a function of temperature calculated
within FT-RRPA (top panel) and FT-RTBA (bottom panel) with the smearing parameter
A = 500 keV/
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Figure 4.10: The isoscalar quadrupole response in %Ni as a function of temperature
calculated within FT-RRPA (top panel) and FT-RTBA (bottom panel) with the smearing
parameter A = 500 keV.
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thickness and, in addition, shows some sensitivity to the nuclear matter incompressibility
[108]. The ISQR in ®Ni at various temperatures is shown in Fig. 4.10, where FT-RRPA
results (top panel) can be compared to those of FT-RTBA (bottom panel). At T'=1 MeV
both FT-RRPA and FT-RTBA strength distributions already demonstrate the formation
of new soft modes at the transition energies of ~ 1 MeV and ~ 4 MeV. As in the cases
of the dipole and monopole response, the enhancement of the low-energy spectral density
becomes stronger as the temperature increases due to the thermal unblocking mechanism.
The FT-RTBA high-energy peak remains strongly fragmented at all temperatures. The
vigorous enforcement of the PVC effects originates from the enhanced low-energy strengths
of the phonons of all multipolarities (those with J™ = 2% 37 4% 57 6T are included in
the calculations), as the new thermal phonon modes couple to the single-particle degrees
of freedom forming the additional 1plh ® phonon configurations, which enter the Zﬁ(w)
amplitude. The gradual fragmentation of the high-frequency peak and the enhancement
of the low-energy spectral density again lead to nearly disappearance of the high-frequency
ISGQR at high temperature, i.e., at T'=15 MeV.
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Chapter 5

Nuclear Mean Field with Point

Couplings and Pairing Correlations

5.1 Relativistic Mean-field Theory of Point Coupling

The relativistic mean-field (RMF) theory, which was discussed in Section 2.2, is a
phenomenological theory, where the nucleons are treated as quantum mechanical Dirac
particles moving independently in an average mean field produced by the exchange of
several classical meson fields between the nucleons themselves. In such a phenomenological
theory, the number of mesons is limited and the corresponding parameters—the meson masses
and coupling constants, and the nonlinear coupling parameters—are adjusted to some bulk
properties of a set of spherical nuclei [148]. This so-called RMF theory of finite range
(RMFT-FR) is able to quantitatively describe the ground-state properties of spherical and
deformed nuclei over the entire periodic table [31, 57]. As it was discussed in the previous
chapters, RMFT-FR can also serve as a good starting point for the quantum field theory
approaches, which go far beyond the mean-field approximation.

Alternatively to the finite-range interactions, for the low-energy nuclear phenomena, the
exchange of heavy mesons can be approximated by contact interactions (point couplings)
(see Fig. 5.1), that is the underlying assumption of the relativistic mean-field theory of
point coupling (RMFT-PC). In the relativistic point-coupling theory, the isoscalar-scalar
(0-), isoscalar-vector (w-), and isovector-vector (p-) meson exchange terms are replaced by
the corresponding contact interactions between the nucleons. The gradient or derivative
terms simulate the finite-range effects of the meson-exchange terms. The additional density-
dependent interactions, which account for the medium effects, are taken into account by

the density-dependent coupling constants in the two-body interactions (e.g., force DD-
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Figure 5.1: Diagrammatic representation of finite-range interactions and their corresponding
approximate point-coupling interactions.

PC1), or by many-body contact terms (e.g., force PC-F1). The advantage of the RMFT-
PC over the RMFT-FR is distinct. The numerical applications of RMFT-PC are more
straightforward since one no longer solves the Klein-Gordon equations for the mesons, and the
obtained particle-hole interaction has a channel structure and contains Dirac delta-function
in coordinate space. The later summarizes the main reason one shifts from the RMFT-FR to
the RMFT-PC when addressing the continuum effects. In the following section, we present
the detailed theoretical framework of the relativistic point-coupling theory with DD-PC1
parametrizations. The interested reader can find our detailed review on the RMFT-PC with

PC-F1 parameterizations in Appendix D.

5.1.1 DD-PC1 Force

We consider an effective Lagrangian of the form: [38]

2 = Wiy, — M)V — 5as(D)(TV)T) — sav (5) (T1"0) (T, )
ey ()T - (T, ) — 6s(0,T0) (@ T) — By 4,1, (5.1)

which now includes the isoscalar-scalar, isoscalar-vector, and isovector-vector four-fermion

interactions as well as the electromagnetic interaction. From the Euler-Lagrange equation

a%_ 0 { a’%]:o, (5.2)
ov  Ozk [9(0,7)
we obtain the equation of motion
(10, — B — 7~ Sy — ) — (M + Ss)]¥ =0, (5.3)
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where isoscalar-scalar, isoscalar-vector, and isovector-vector mass operators are respectively

given by
Y = as(p) (W) - 6s0(0P), (5.4)
1 —
S = av(p)t +ed—=, (5.5)
Sy = arv(p)(UTYD), (5.6)

2 = g { LD wy @) + 0 joj, 1 0O ey @)} (5

Here the nucleon four-current j* is defined as

G = Ul = put, (5.8)
where the four-velocity u* is
(1,v)
ut = 5.9
— (5.9

and the velocity v equals to zero in the rest-frame of the nuclear system. Accordingly, the
strength parameters o; (i = S, V, TV) depend on the density p = j*u,. Multiplying Eq.
(5.3) from the left by Dirac matrix 7%, one obtains

o = {viarw - ar - L2, @0 s 0
— Pt — By (T )y — 35 e, (B0 - (7, 0)
~ Bary ()T, ) - 7 — e @)}\IJ. (5.0
Making use of the stationary solution of the form
)= pu(r)e " *ay, (5.11)
k

one arrives at

0 - {ek—(a-erﬂM)—%ﬁaa;ﬁ(ﬁ) o (T0) (W) — () (F)
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1 aOév< )

_ 5 aOéTv( )

VY uaj" g — Bav (p) (W, ¥)y" ——6 Ve (UTAHW) - (U7, V)

— Bary(p) (P77, ) - T4 — efy @‘1’)}%(1‘)- (5.12)

Taking the expectation value of this result with respect to the nuclear ground state |®), one

obtains

0 - {ek (@ + 5) = 52V ) — (s
_ 15504V(Pv) ajocj V(r)]‘lj'(r)

Ipv Pl — Bav (pv)juv ()"

B %5 aag‘;f/p")]av(r) V() - Gurv () = Bagy (pv) iy - T
— Pey (r)}sok(r% (5.13)
where
ps(r) = (P[VVW|P) = Zwk r)io(r)e’ (D] afay| )
= an@k 1)k (r), (5.14)
!
p = ([pl®) = (P[Ty"T|P)u —%Z% r)y" o (r)e’ O (Dafa,| @)
= uuznk@(r)v“sﬁk(r) :u/ﬂv(r)a (5.15)
k
Jurv(r) = (Q[TF,TI®) = mp(r)Fyupk(r). (5.16)
K

In the rest frame of the nuclear system, where v = 0, only the time-like uy = 1 component

of the velocity four-vector survives, so that we can substitute p with py of the form

Pv = Uojv ank r)pr(r (5.17)

The dependence of the strength parameters «; (i = S, V, T'V) on the density py is given by

a;(pv) = a; + (b + cx)e™ (5.18)
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where x = py/psar- Here pgy denotes the nucleonic saturation density of symmetric nuclear

matter. The values of the parameters «; are tabulated in Table 5.1.

Table 5.1: The density-dependent coupling constants in the DD-PC1 parameterization [38,
39]. The coupling constants ary and cry are zero.

Parameter Value Dimension
as —10.0462 [fm?]
bs —9.1504 [fm?]
cs —6.4273 [fm?]
ds 1.3724
ay 5.9195 [fm?]
by 8.8637 [fm?]
dy 0.6584
bry 1.8360 [fm?]

dry 0.6400
Ss —0.815 [fm?]

A further simplification can be made by considering: (1) the time-reversal symmetry of

the mean field and (2) the isospin as a good quantum number. We thus obtain the Dirac

Hamiltonian h” of the form

where

ETV(F)

WP = a-p+B[M+S(r)] + V(r),

[as(py) + 65V?]ps(r),
Yr(r) + 2y (r) + 2y (r),

1 0as(pv) , 1day(py) , 1 dary(pv)
2 dpy ps(r) 2 Opy Py (r) 2 Opy pry (1),

av(pv)pv(r) + edoz (1= ),
ary(pv)prv(r).

The Hamiltonian H can be obtain from the Lagrangian (5.1) via

ﬁ[:/d%«{

0% —
W@o‘l’) + (0oV)

0L |, o<
D(3T)  O(DoA,)

(DA, — g} .
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An insertion of the Lagrangian .Z into the Hamiltonian H leads to

2

H = /di“r{qﬁ(a p+ MU+ lozs(ﬁ)(ﬁklf)(ﬁklf)

1 = — 1 o~ — —
o @ O)(T, ) + Jary(p)(TD) - (T7, )
1 — — — _ 1—
— 555[(80\11\11)(80\11\11) + (VUVU) - (VUVU)] + ely" A, Tg\l’}. (5.26)
Making use of the stationary solution of the form
r,t)= Z or(r)e ™ wa, ~ Ui(r 1) = ng}(r)e“%z (5.27)
k ¢

and taking the expectation value with respect to the nuclear ground state |®), we obtain the

covariant energy density functional (CEDF)

ERMF [;5’ A]

X

X

X

X

(| 1])
[ S el e b e D

/d3 (Plas(p)|®) Z‘Pk Y @, ) pus
wan(r,t)v son(nt)pnm
/d3 (Plav(p)|®) Zsok )7 " pe(r, t) pok

Z@L(r, £)7°7u8n (T, £) Prum

1

5/ r(®|ary(p)|®) Zwk DY T (1, 1) por

> e (e, ) Fyuen(r, t)pnm
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Defining

XY [Vl (7 %0 (x, )] pm

2

1—
+e [ @Sl S Al Do (5.28)
k¢

Te[0p(x)] = Y mipl(r) Opi(r), (5.29)

the CEDF (5.28) can be expressed as

ERMF[ﬁ? A]

_|_

+

+

[ #rrsiiap+ 500

— e — S~

d*r
d’r
dr
dr

d’r

—— S — —

dr's(r — ') Tr ﬁ(r)%aV[Tr p(r)] Tr p(r')

H5(r ) Tely 'y p(r)] [T )] Tely i p(x)]
¥5(r — ) T (0) oy [T ()] - Tel7(x)

Pr5(r — ) Ty ()] sy [Tr p(r)] - TPy (c)]

P8 — 1) Te (1)) 335V Ty ()]

+ e / d*r Tr [(yovu%Au(r)) ﬁ(r)] . (5.30)

One considers (1) the time-reversal symmetry of the mean field and (2) isospin is a good

quantum number. The CEDF Eryr[p, A] thus becomes

ERMF [167 A]

/ FrTr(a-p + M)

[ x| @ste - ) ) gas ) 1550

—— — —

2
dr'o(r — ') Tr ﬁ(r)%aV[Tr p(r)] Tr p(r')

r5(r ) Tey 'y ()] [T )] Tely ' p(r')]
1

Pr8(c — ') Telrsp(r)] Gy [T j(r)] - Trfrsp(r')

Pr5(r ) Tey Py )] S [T p(0)] - e (e
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o [ [ @s - x) T () 305V T ()
+ e/d3rTr [(1_273A0(r)> ﬁ(r)} , (5.31)

where we have used the identity v; = —* (i = 1,2, 3). Using the identity

%;’5(1')] =0(r)o(r —ry), (5.32)

55
one obtains

5ERMF
op(r1)

= (@ p+ BM)D 49" Zas oy (e1)) Tey “p(ra)]

19as(py(r1))
2 Opy(ri)
1 1 day (pv(r1))

+ 1(1)§av(pv(r1>> Tr /3(1‘1) + 5(9[)‘/—(1'1) Tr2 ﬁ(r1>1(1)

1 .
+ Tr P(rl)iaV(PV(rl))l(l) — 7%y (1)5041/(/)&/(1“1)) Tr[y"'p(r1)]

52 ) iy 10— Ty o) (v

1 ~
+ 1 gary (py () Telmp(ry)] +

TP + T a(rs) 5 as (o (1)

i(1)

laOZTV(PV(I‘l))
2 Opv(r1)

; 1 i .
Wy O S ary oy (r) ey rap ()]

TI'2 [7'3/3(1‘1)] 1(1)

+ ()] garv(pv(e))r)
laOéTV(PV(h))

2 Opv(ry)
i oA 1 i
= Tl Y mp(rn)] Gary (v (r)y "y Or

1 . . 1
n 70(1)5(;Svf Tr[y"p(r1)] + TF[VOP(H)E%V%OH)

1) 2
1—m73 e 1 1—73\ .
— [ & T ! .
i [ 2 } 47r/ Y K 2 )”“)]’ (533)

where one has used the expression of the Coulomb field Ay(r) of the form

Te*[y 'y 7 ()] 1)

v — 1|’ 2

A(r) = i / gy L) po(r) = ango,t(r)l — (). (5.34)
k

Second variational derivative of Eryr[p, A] with respect to p(r) results in the particle-hole
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(ph) interaction VP1(1,2) of the form

S ) oo
VP2 = e
= " Dlas(py(r1)) + 6576 (ry — 12)7"?
by | 1%as(pv(ry)) day (py(r1))
+ 1w §Wp3(rl) + 2wpv(r1) + av(pv(r1))
i L8av(py(r1)) 2 (1)) 10y (pv(r1)) 5 (r1) [6(r; — r2)1®

r
2 opp(r) VYT 0k ) Y
(2)

+ i ary (pv(rn))d(r: — 12)7

— Oy Day (py (r1))d(r1 = 15)7"7

- 70% 75 oy (py (11))3(r1 = 12)7 Py B 7

- %W s(r1)d(r; —ry)1?®

+ 1(1)%%(“)5(1‘1 —12)7"?

+ Tél)—aag‘;‘(/p(‘;f;l))PTV(T1)5(Y1 —15)1%®

+ 1(1)%%‘/(“)5(“ —ra)7”
el o

Analogous to the force PC-F1 (c.f. Appendix D), the particle-hole interaction V?2(1,2) can

be brought to the so-called channel form

VPR(1,2) / 2dr/ ' 2dr’ ZQ Pvee (r,7)QIP ('), (no Coulomb term)

(5.36)

where the the effective interactions vey (r,7’) = v (r)0(r — 1’) are now tabulated in Table
5.2.

Before continuing to the next subsection to discuss how the Coulomb interaction will be
included in the channels, let us summarize the essential results from the current subsection.

The single-particle basis {¢k(r), €x } is defined according to

ilD@k(r) = expr(r),
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with the Dirac Hamiltonian h? ,
hP =a-p+ BIM + S(r)] + V(r). (5.37)

In the parametrization DD-PC1, the scalar potential S(r) and vector potential V' (r) contains
the strength parameters o; (i = S, V, TV), which depends on the density py (Eq. (5.18)
and Table 5.1). These potentials take the form

S(r) = las(pv) +85VZ]ps(r),
V(r) = Xg(r)+2Zy(r) + X (r),

Salr) = 3OS ey 4 L0 gy JOOTARY) g,

2 Opv 2" opy 1V 2" opy TV
1
Yy(r) = CYV(PV)PV(T)+€AO§(1—73%
Yrv(r) = apv(pv)prv(r),

and densities

ps(r) = > @y (r)en(r),
pr(r) = > npph(r)ex(r),
k

Table 5.2: The effective interactions v.»(r) for the DD-PC1 parameterization. Here F[py| =
avlpv] + 204 [pvipv + 307 [pv]pd and aspv] = ou(py(r)), where i = S, V, TV. The first
and second derivative of a;(py(r)) with respect to py(r) are denoted as o/[py]| and o”[py],
respectively. The structure of channel ¢ can be found in Table D.2 of Appendix D.

Channel ¢
1 2 3,4 5 6 7,8
1 Ozg[pv] + 55V2 X Oéig[pg/]ps 0 0 0 0
© sslpv]ps + Flov
Sl2 | ablales USRI e 0
= +arvlevlery
2|34 0 0 —avlpv] 0 0 0
O 5 0 0 0 0 0 0
6 0 arylpv]pry 0 0 arvpy] 0
7,8 0 0 0 0 0 —OéTv[,Ov]
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prv(r) = an@(r)ﬁﬁo%@k(r)-
k
The particle-hole interaction VP(1,2) is also given by

V(1 / 2dr/ ' 2dr’ ZQ P)vee (r,7)QIP (), (no Coulomb term)

where the interaction wv..(r,r’) is not completely diagonal in the coordinate-channel
representation, i.e., Ve (r,7’) = v (r)o(r — r’). The multi-channel effective interactions
Ve (r) are tabulated in Table 5.2.

5.1.2 Treatment of the Coulomb Interaction in the Coordinate-

channel Representation

We now turn our attention to the Coulomb term

Ba + TB)} " vo(ry, Ta) {%(1 + Tg)} ? (5.38)

with the Coulomb potential

L(
Y, 5.39
ve(ry, re) = 4W‘r1_r2| ;)MLZ w6 (r1,m2) Y (02) Y (), (5.39)
where
L el
ve(ri,re) = 0L+ 1,0+ (5.40)
>

Here r— and r- denote smaller (larger) of r; and 5. The Coulomb term (5.38) breaks the

isospin symmetry and can be decomposed according to

1 (2
1 1 1
{5(1 + 7'3)} vo(ry, T2) {5(1 + 7'3)} = Z?}o(ﬂ, ry)[1W1® 4107 (2) + 7'351)1(2) + 73(1)7352)].

(5.41)

Making use of the expansion of the Dirac delta-function (D.72), one can expand the Coulomb

potential in the form

ve(ry, ra) /d3 /dgr’ ve(r,r')o(ry — r)o(r' — ra)
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Table 5.3: The Coulomb interactions v<, (r, ') for each channel.

Channel ¢

1 2 34 5 6 7,8

10 0 0 0 0 0

©l 200 Ui, 00 0 uin 0
g 3,410 0 =vf 0 0 65 1
250 0 0o 0 0 0
Ol 6 |0 Lot 0 0 +uf 0

16 “L,L’ 16~ L,L’
7810 0 =0, 0 0 V5 1

o(ry —r)d(r' — 7‘2)'

= [ [ S e Vass, ()Y, (o)

o T 7’79
(5.42)
Using this expansion and the identity
1
Z/Y'u'yu = 14x4, (5'43)
the Coulomb term (5.38) reads
] M ) @
[ (1+ 7‘3)} vo(ry, ro) {5(1 + 7‘3)}
d(ry — 1) d(r' —rg)
2 *
/ / ! dr 16210( ') o s Yo, (01) Y7, (n2)
LMy,
X M(Uru(2) © 101 4107 4 71 4 D7), (5.44)

The last equation can be expressed in terms of the channels ¢ defined in Table D.2, viz.

Buw)}mw(m,rz) B(lw)} =Y [ [ QP Q2 )
(5.45)

where the Coulomb effective interactions v&, (r,r’) = s=v%,,(r, ) are now tabulated in Table
5.3.
Since the Coulomb term (5.38) has a similar channel structure as the non-Coulomb terms

in the particle-hole interaction VP(1,2), the particle-hole interaction VP2(1,2) can take a

78



generic form:
VPR(1,2) :/ r2dr/ ' 2dr! g QW (1) (r, r’)QI,(z)(T'), (5.46)
0 0 o

where the particle-hole effective interaction vfg} (r,7") now includes the Coulomb effective
c

cc!

interaction v, (r,r’) as well.

5.2 The BCS Theory

The inclusion of pairing correlations plays an essential role in giving a better description
of structure phenomena in open-shell and deformed nuclei. The inclusion of the pairing
correlations can be done in a self-consistent way in the framework of the relativistic Hartree-
Fock-Bogoliubov (RHFB) theory [31, 41, 143]. For the case of not very loosely-bound nuclei
with the Fermi level below the continuum, the treatment of pairing correlations using the
Bardeen-Cooper-Schrieffer (BCS) approximation is considered sufficient. In this work, we
will deal with the so-called like-particle pairing, i.e., either proton-proton (pp) or neutron-
neutron (nn) pairing, and neglect the proton-neutron (pn) pairing. In the following we
present the theoretical description of the BCS approximation to the superfluid pairing

correlations.

5.2.1 The BCS Wave Function

Consider a pairing Hamiltonian H which contains the single-particle term and the pairing

interaction term, viz.

H=> ealiy— Y GubDlPy. (5.47)

k kk'>0

The pair-creation operator ]3,1,
(5.48)

creates a pair of nucleons, one in a single-particle state |k) = |jm) and another in a time-
reversed state |k) = (—1)7""|j — m). The corresponding pair-annihilation operator P is
defined as

Py = agay = (—1Y "™ _mijm. (5.49)

The pairing strength G determines the transition amplitude of a nucleon pair from the

state |k') and the time-reversed state |k’) to the state |k) and the time-reversed state |k). In
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the simplest case one assumes the pairing strength Gy is a constant G, and the Hamiltonian

H becomes

H = ) eaala,—G > Plby. (5.50)
k

kE'>0

In the BCS model, the trial wave function is the ground state |[BCS) of the form:

[ee]

IBCS) = [ [(w + veafal)|-), (5.51)

k>0

where |—) stands for the bare vacuum defined according to
agl—) =0 and az|—) =0. (5.52)

The parameters u; and vy, are taken to be real and one also defines uj = ux and v = —vy.
The normalization of the BCS state, (BCS|BCS) = 1, leads to

up +vi = 1. (5.53)

The state |[BCS) is a vacuum state with respect to the quasi-particle operators dy, i.e.,

ax|BCS) =0 (5.54)
for all k. The quasi-particle creation (annihilation) operators & (éy) are connected to the
particle creation (annihilation) operators a. () via the Bogoliubov-Valatin transformations:

&l = wal — iy 5.55
k kG — UrQg, ( . )
al = wal + vpar, (5.56)
Gr = wyly — vpal, (5.57)
Gp = updy + vpd). (5.58)

The quasi-particle operators dy, o?,t satisfy the following commutation relations:
{ap,al} = Oy {amaw}=0; {al,al}=0 (5.59)

for all k. The inverse Bogoliubov-Valatin transformations are then given by

al = wupal + vpag, (5.60)
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uRly, + Uk@t (561)

dk = L
ap = upQy — vpdy. (5.63)

The average particle number N serves as the constraint

N = Y [+l =2> 1f=> 1} (5.64)

k>0 k>0 k

From Egs. (5.64) and (5.53), we can interpret v? as the probability of a pair state (k, k) to
be occupied, and, therefore, u2 is the probability of the pair state (k,k) to remain empty.
The trial wave function |BCS) does not conserve the particle number. This follows from the
definition (5.51), where the wave function is a superposition of components with different
numbers of fermionic pairs. Being a quantum mechanical operator, the particle number
fluctuates around its average value, so that the mean square fluctuations of the particle
number (AN)? are quantified by

(AN)? = (BCS|N?[BCS) — (BCS|N[BCS)” = 4> " uzn}. (5.65)

k>0

5.2.2 The BCS Equations

As the trial wave function |BCS) does not conserve the particle number, the variational

condition becomes

§(BCS|(H — AN)|BCS) = 0, (5.66)

where A is the chemical potential. Using Eq. (5.53), the variational condition (5.66) can be

rewritten as

(0 du D

= (= + == ) (BCS|(H — AN)|BCS). .
0 (8vk+3vk8uk)<cs|( AN)[BCS) (5.67)

The expectation value of (H — AN) in the state [BCS) is, therefore, given by

2
(BCS|H — AN|BCS) = ) 2 (ek —A— %,3) v — G(Zukvk>

(5.68)

X
)
=
Bl
|
=
S
Bl
|
)
VR
<
Bl
<
B
~_
. N
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where the mean-field pairing contribution to the single-particle energy, i.e., —Guvz/2, is
neglected due to its smallness (see the discussion in Appendix G of Ref. [165]). Inserting
Eq. (5.68) into Eq. (5.67), one obtains

0 = 4E2v; — 4E20? + A% (5.69)
where the quasiparticle energy Fj is

E? = (e,— A2+ A?
Er = V(= MN2+A2>0 (5.70)

and the gap parameter A is defined as

k>0
Solving Eq. (5.69), one obtains
1 le—A
AR T 72
w=5%3 o (5.72)

To determine the sign in v7, one considers the case with no pairing, i.e., A = 0. In this limit,
one should have By = |ex — A|, (e — A\) = —|ex — A|, v} = 1, and u? = 0 for the occupied

states below the Fermi energy. This limit can be achieved if one chooses

1 Y
ﬁzé{y—% } (5.73)

and, therefore, using Eq. (5.53), one also obtains

1 Gk—)\

Inserting the explicit forms of u3 and v} into Eq. (5.71) yields the famous gap equation:

1
1:G§:ﬂi, (5.75)

k>0

that allows finding the value of the pairing gap. The unrestricted sum over k in Eqgs. (5.71)
and (5.75) results in a divergence. This is an artifact of using a non-realistic constant pairing
interaction strength. To avoid this situation, one has to introduce a cut-off energy or a fixed

pairing window FE), around the Fermi surface, so that any state with energy higher than E,
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has the occupation probability v = 0. In addition, one can also introduces an additional

factor [166]:
-1
fo= {1 + exp (WT_E”)} , (5.76)

where the parameter p here determines the smoothness of the cut-off. With the additional

factor fy, the gap equation (5.75) now reads:

1
1=G) fegp (5.77)
k>0 k

Equations (5.70), (5.73), (5.74), and (5.77) constitute the BCS equations with the constraints

related to the proton (neutron)-quasiparticle number N™ (NV):
N™ =Y v}, (5.78)
2

These equations are valid for protons and neutrons separately. In the active pairing space
(inside the pairing window), the BCS pairing correlations modify the four nucleonic densities
pi(r) (i =295, V, TS, TV) by the replacement

S = YR (5.79)
k k

This modification will affect the scalar potential S(r) and vector potential V'(r), and, in turn,
the single-particle basis. Therefore, one solves the BCS equations with the constraint (5.78)
together with the self-consistent mean-field equations to obtain the correct single-particle
basis, chemical potential A, quasiparticle energies Ej, the pairing strength G, the pairing
gap A, and the BCS occupation numbers v?. This is the general feature of the RMF+BCS

model.

5.2.3 The Matrix Elements of One-body Operators

Consider a one-body operator Q in the second quantization representation:

Q= Z<k’|Q|k,>dL&k/ = Z Qi iy (5.80)

kk' kk'
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Using the inverse Bogoliubov-Valatin transformations (5.60) and (5.61), the one-body

operator () can be expressed as

1 )
— QO + Z Qk‘k’akak” 5 Z ( 2.2/0[1]; k’ ‘l— Qk’kak"ak‘> (581)
kk' k!
where
Q" = ) Quvi=> {Qm+ Qu}vi, (5.82)
k k>0
pe = Qurtguy — Qprup vy, (5.83)
= Qurwvy — Qurtn v, (5.84)
e = Qektrwur — Qg Urun. (5.85)

In the case of time-reversal invariance [T FT]1 = (=1)SF, where S = 0 for time-even
operators, i.e., scalar and time-like components of vector fields, and S = 1 for time-odd

operators, i.e., space-like components of the vector fields, one has (c.f. Appendix E)

A

(AIED) = (~1)SW|Fl)  and  (alFlv) = —(~1)° (7| Flu). (5.86)

Using these relations, one can rewrite Eqs. (5.82)-(5.85) in terms of the factors &2, and 77,

f,fk/ = ukuk/—(—l)svkvk/, (587)
Ngw = W + (—1) v, (5.88)
as follows:
Q" = ZQkk (14 (=1)%] v, (5.89)
k>0
e = Qs (5.90)
o= T Qs (5.91)
Ve = Qe (5.92)

This form of the one-body operators will be used in the following formalism.
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Chapter 6

Continuum Relativistic Quasiparticle

Random Phase Approximation

It is well-known that the phenomena of giant resonances (GRs) can be understood
microscopically as a result of the collective nuclear excitations. The random phase
approximation (RPA) is the simplest theory to describe the collective nuclear excitations.
It starts by assuming the existence of a correlated ground state, and describes the collective
excitations, which are caused by a weak external field, as a coherent superposition of particle-
hole excitations from this correlated ground state. In the presence of pairing correlations, one
has to extend the RPA formalism to the quasiparticle RPA (QRPA) formalism. In the QRPA
formalism, it is the two-quasiparticle and two-quasi-hole pairs that form the transitions from
the correlated ground state. The QRPA equations can be formulated in several ways. In
the first section of this Chapter, we derive the QRPA equations in configuration space using
the equation of motion method, following Ref. [21]. This formulation, however, does not
include accurately the continuum effects, but instead, these effects are included implicitly
via the so-called discretized continuum. In realistic calculations, however, because of the
inevitable basis truncations, such a treatment of the continuum has limited accuracy and,
thus, is not sufficient for the light and loosely-bound nuclear systems. To formulate the
Bethe-Salpeter equation (BSE) for particle-hole response functions in the framework of the
continuum relativistic QRPA, we employ the particle-hole VP%(1,2) and particle-particle Vep
interactions, which were defined in Section 5.1 and Section 5.2, respectively. We work out the
detail procedures to obtain the BSE in the coordinate space representation for particle-hole

and particle-particle channels in Section 6.2 and Section 6.3, respectively.
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6.1 The Quasiparticle Random Phase Approximation
(QRPA) Equations

Consider a set of exact eigenstates |v) of the nuclear Hamiltonian H satisfying the
Schrodinger equation
Hlv) = E,|v) (6.1)

with the corresponding exact eigenvalues F,. The excitation operators Ql, QV are defined
in such a way that Ql creates the excited state |v), where v > 0, when acting on the nuclear

ground state |0), whereas Q, causes the state |0) to vanish, viz.

v) =Qi0) and  Q,0) = 0. (6.2)

It is possible for the operator Qj, to take the form

A

Qb = w){0l. (6.3)

Using the definition (6.3) of operator @}, the action of commutator [H, Q1] on the state |0)

gives the equation of motion
[H,Q1]10) = (B, — Eo)[v), (6.4)

where Ej is the ground state energy. Multiplying Eq. (6.4) from the left with the variation
50, and closing it with the state |0), one obtains

(0l6Qw. [H, QII0) = (B, — Eo){0[[6Q., Q)] 0). (6.5)

In the quasiparticle random phase approximation (QRPA), the operator Ql is the simplest

phonon creation operator, which is built from the pairs quasiparticle operators, viz.

A 1 v oAt v oA oA
Ql = 5 Z(pr/ajjoz;, Y Q). (6.6)

p<p’

The indices (p, q¢) and the prime indices (p', ¢') are used to label the quasiparticle basis. The
interchange between p and p’ in Eq. (6.6) gives

1 o
- _Z %O‘p)—gz( XppQ ;a; + Y0 ay),

p<p’ p<p’
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which implies the anti-symmetric property of the amplitudes X, and Y, i.e.,
X;/p/ — _X}I’)j/p and }/;;3/ — _}/;Jlfp (67)
The QRPA ground state |QRPA) can be identified by the vacuum condition (6.2)
Q.,|QRPA) = 0. (6.8)

Using the QRPA ground state |QRPA) as an approximation to the nuclear ground state |0)
in Eq. (6.5), one obtains

(QRPA|[0Q... [H, Qf]]|QRPA) = Q,(QRPA|[0Q,, Q}]|QRPA), (6.9)

where 2, = (E, — Ej) is the phonon energy. Since the phonon creation operator consists
of two amplitudes X, and Y, the corresponding variation 6QV\QRPA> has two terms,
ie., d;d;, |QRPA)SX Y, and &,y d,|QRPA)JY,. As they are associated with the independent

variations, one obtains the two sets of equations for each amplitude, namely,
(QRPA[[a}al,, [H, QI]I|QRPA) = Q,(QRPA|[afal,, QF]|QRPA) (6.10)

and
(QRPA|[dy 6y, [H, QF]]|QRPA) = Q, (QRPA| [y, Q1| QRPA). (6.11)

To derive the QRPA equations from Eqgs. (6.10) and (6.11), one applies the quasi-boson
approximation by assuming that the correlated ground state |QRPA) does not differ very
much from the Hartree-Fock-Bogoliubov (HFB) ground state |HFB). Here it is convenient to

introduce two-quasiparticle creation operator lA)Lp, and two-quasiparticle annihilation operator

~

bpp’ )

b, =alal, and by = dyd,. (6.12)

Applying the quasi-boson approximation, one obtains the three expectation values
(QRPA|[by, bl JJQRPA),  (QRPA|[by, bey]|QRPA), and (QRPAJ[D! .0 ]IQRPA) as

follows:

<QRPAHBPP/7 qu,]]QRPA> ~ <HFBHBppH l;:f,q'”HFB> = 5qp(5q’p’ - 5qp’5q’p’ (6'13)
<QRPA‘ [bpp/a bqq’] ’QRPA> ~ <HFB‘ [bpp/a bqq’] ’HFB> =0, (6'14>
(QRPA|[b! b JIQRPA) ~ (HFBJ[b! 0 J|HFB) = 0. (6.15)
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With the aid of Egs. (6.13), (6.14), and (6.15), Egs. (6.10) and (6.11) become the so-called

QRPA equations
QX =

QY =

where the matrix elements A,

App’qq’ = <HFB|[6‘p@pv [H

and

Bpp’qq’ =

The complex conjugate of these two matrix elements are

A*

and

B*

In the quasiparticle representation, the Hamiltonian H can be expressed as

apz + E
40 A
+ Z HP1P2P3P4 P1 P2 p3 p4

ap4+ Z

pip2 p1

H = H°+) H)a

p1p2

P1p2p3pP4

31 A
+ Z Hp1p2p3p4 p1 p2 ps

p1p2p3p4

1 22
+ Z_l Z Hp1p2p3p4 p1 P2

p1p2p3p4

Making use of the expression (6.22), one obtains

App’ qq

B

pp’qq’

ZAppqq’X +Z or'aq Y

14
2 : ppqq’Xq § :App qq’ qq’

.o are defined as

—(HFB[dy ay, [I:L (g g ]| HFB).

ilal,, [H, Ggd,))|HFB)

pp'aq’ T

T [H, 4l [HFB).

pr'ad

p1ip2 pl pz

Qpy Oty Oy Oy

P1p2p3p4 P4

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)



In the canonical basis, i.e., the basis that diagonalizes the normal one-body density matrix,

the matrix elements of QRPA matrices A and B are given by

Apwor = (Er + Ep)0pepre + uptiprgue Vi + opvpveoe Vi -
+ ukUgUk/Ug/VkI;—},lE,e + uk/Ug/’Uk;Ung%M,
— wpupvpv VR, — upuooe Voo (6.25)
Bkk/ggl = —ukuk/wwV Lk 0 UkUkIUgUelvg,kk, + ukvk'ufvf'vkgk/gl
+ Ukuk/UgUZ/Vk,K,M ukvk’véué’%g/kvg — vkuk/uevgka,eke, (626)
Accordingly, the QRPA equations in the canonical basis take the form
QI,X]:k/ = Z Akk/gg/X&/ + Z Bkklalyzzl, (627)
o<t o<
QY = — Z Biegow Xop — Z AlroeYeor- (6.28)
o<t o<t

The indices (k, ) and the prime indices (k',¢') will be used to indicate the canonical basis

throughout this chapter.

6.2 The Particle-hole Response Function Formalism
for Continuum Relativistic QRPA

As discussed in Section 5.1, the particle-hole interaction VP%(1,2) takes the form

By, 25) / / 7 2dy! ZQ(” Ph QI () (6.29)

in the coordinate representation. By means of the Dirac spinor

Fﬂk (T)ijfkmk (nv U)

1
r,ot)=-

] X3 () (6.30)
one defines the particle-hole interaction Vkilfk, , in configuration space as

v, = / dr, / Ay o (01)h (22 VP (1, 20 pre () e ()

- Z/drr /dr’ P2 Qi (r)oi (r, ) Qi (1), (6.31)
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where the matrix elements Q5,,(r) and QS (1) are given b
kk 7 g y

Qilr) = / dry ol (1) QO () o (a1)

o(r—r
= /d3P1 E E 90;2(1"17‘717151)—( = 1)’YD®TJLSM(H1)UIJ’1 ® (T70) 0.,
1

’ ’
t1ty 01,01

X (pk'<r17 0-17 t/l)

O(r—r
_ / 2 dry / i 3% ¢;<r1,al,t1><711>% & Tozsar(n)ors

/ ’ r
tity 01,0

& (TTO)tlt’l or(r1, 07, 1))

= /dn1 Z Z 90;1(7“, ny,01,4)7p ® TJLSM(H1)0103 ® (TTO)tlt’l

’ ’
ti1t] 01,07

X QO (’f’, n, 0—17 tll) (632)

and

) = Qui(r)
— /de o (22) QI (1) pu(2)

, o(r' —r
= /d3r2 Z Z @Z’(Ié? 02, t2)(T22)7D’ ® T}’L’S’M’ (n2)o-2o'é &® (TT/O)tgté

/ /
t2t2 02,0,

X 905(1‘2, Uév tl2)

S(r" —ry)
= /7’3 dr2/dn2 Z Z SOZ/(Pza 027152)7%' ® T}’L’S’M’(n2)020§
tzt’z Ug,Ué

X (TTo)tQt; @e(ra, 0y, th)

= /dn2 Z Z 901; (7”/, ng, 02, t2)'YD’ X T}/L/S/M/(HQ)JQU'Q & (TTO)tgt’Q

/ ’
taty 02,05

X ng(’r'/,l’lg,O'é,t/Q>. (633)

For computational convenience, one wants to avoid the denominator 1/r? (1/r?) in the
matrix element Q% (r) (Q5;(r')), which originates from the Dirac spinor ¢y(r,0,t). To

achieve this purpose, one introduces the Dirac spinor

Fﬁk (T)ijekmk (Il, g)

Vi(r,o,t) =

X1 (£), (6.34)
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so that the particle-hole interaction Vk%c, , now reads
Vk%lflw = Z/ dT/ dr' Q. (1)v5 (7" r )Qw( ), (6.35)
where the matrix elements Qf,,(r) and Q5 (r’) are

(1) = /dn1z Z Ul (r,ng, 00, t)70 ® Trzsn (1) e; @ (T70)nt,

t1, t’ o1 0'1
X ‘Ifk/(’f’ nl,al,tl), (636)
Qi (r) = /dnz DD UL na, 00, t0) 70 @ T prgrags (02) 00y @ (Tr0)ia
to, t’ o2 0'2
X Wy(r',ng, ah, th). (6.37)

The use of symbol W,(r,o,t) to indicate the Dirac spinor without the denominator 1/r?
should not be confused with the fermionic field ¥(r,t). The radial functions F, (r) and

G, () satisfy the normalization condition

| arlB P + 1G] = 1. (6.39)
Making use of Egs. (6.35) and (5.86), one obtains

Ao = (Ex + Ew)0re0prer
¥ Ej/‘dy/ v’ e QG (P v )y Q5 (), (6.39)

Buw = X [ dr [ ar n Q)i 051 ) (6.40)

cc!

The corresponding complex conjugate of these matrix elements are

AZk’M’ — Ek; + Ek’ 6]%5144/
+ Z/ dr/ dr' nj Qi ()0 (Tr)nzz'QM( ), (6.41)

By = Z/ d’”/ dr' Wkk'Qk/k() (7“ T)UMQM( ). (6.42)
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Inserting Eqs. (6.39)-(6.42) into Eqgs. (6.27) and (6.28) yields

[w — By — Ep] X ZZ/ dr/ dr' Q5 (1) v (r, ")

<t cc!
x| i X + Q5 (i Yo (643
and
ot Bt Bl = =33 [T [T gttt
<l ec!
X [Qw( )HZE’YM’—*’QMI( )We/Xee/} (6.44)
Defining
o<t o<t

one obtains

0 = [Ek + Ek/ — UJ]ka/

+ ZZ/ dr/ dr' Qg ()i v (r, 7' ) T (1), (6.46)

<l cec!

+ ZZ/ dr/ dr' Qg ()b (ry ) T (1), (6.47)

<l cec!

These equations lead to the QRPA dispersion relation [167]

O—Z/ dr{ =) ,,/—Z/ dr R (" r,w)vP (,ﬂ)}yc’(r'), (6.48)

where the reduced free response function R%(r, 7, w) is defined as

, Qcﬁ/(r)ns ,Qc’_l(r/)nS// ; ( )?7 IQQ'I (7./)775’//
ROcc r T/, W) = kk kk' =Lk kk' k k kk' =L'k kk . 6.49
( ) ];{ w—Ek—Ek/ W+Ek+Ek/ ( )
Defining
W (1! w) = 0(r — 1')e — Z/ dr" RO (7, 7" w)vbr, (7" 1), (6.50)
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the reduced response function R (r,7’,w) is determined via [167]

R (1,77, w) :/ dr”Z(WCO//)_l(r,r”,w)ROCHCl(r”,r',w), (6.51)

0 c/l

which leads to the Bethe-Salpeter equation in the coordinate-channel representation:

R (r,1'w) = R™(r,r',w)

+ Z/o drl/o dry R (1, r1, w)vPh (11, 72) R (ra,77, w).

ci1c2

(6.52)

The reduced free response function R (r, ', w) being given by Eq. (6.49) has the following

spectral decomposition

_ (') — Z { - (1) Qi (" )ik B i’fk(r)??fk/ Q%%O”)W}fk/ } ' (6.53)

Zap k! W — Ek - Ek/ w + Ek + Ek’

Here the subscript 2qp indicates that the transitions occur between two quasiparticle states
inside the pairing active space. In the present work, which applies the BCS approach for
the pairing correlations, the pairing active space refers to the bound states with the single-
particle energy ¢, < 0. Under this assumption, the reduced free response function must
include the excitations between the quasiparticle states and continuum states (¢ > 0),
which are treated as pure particle states. Following Ref. [65], one starts with reduced free

response function (6.49) but without the restriction k < k', viz.

RO (1) = 3 o (M) Qi (M) Qi ()i Qi (7 )i
T w—FE, — E w—+ B, + By

kK’

- > v ()0 Qi () (—1)5+5 b (M) Qi (7)1
Lk’ W_Ek?—Ek;’ W+Ek+Ek/ ’

(6.54)

Let k be the pure particle states, which are denoted by index ¢ and have the BCS occupation
number v? = 0. We also substitute the quasiparticle index k" with k. Accordingly, the
multiplicative factor 73,15, now reduces to the BCS occupation number v? > 0. Since there

is no pairing interaction outside the pairing active space, the Bogoliubov energy FE; reduces
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to E; = ¢; — A. The reduced free response function (6.54) now becomes

w—Ek—i-)\—ez —w—FE,+X—¢

R(Jcc (r, . W) Z Z{ le (T’/) +(_1)S+S’ QZE(T) zcl/c(T/) } (6.55)

or

o . 1 A
RY(r,1,w) = Zk:vi{%lQ*(r)w_EﬁA_ﬁDZi:|2><Z|Q (r)Ik)

+ <—1>S+S’<k|éc*<r>_w_E:H_,;DZ|i><z’\@d<r'>\k>}, (6:50)

since the single-particle energies ¢; are the eigenvalues of the Dirac Hamiltonian hP. Using
the completeness relation » . |i)(i| =1 —)_,, |k')(K’|, one obtains

R (10! w) = Zv (k| QN (M) [G(w — By + A) + (=15 G(—w — Ej, + N)]Q° ()| k)

- )9 z;;/<r’>{v,%

k<k'

(_1)S+S’ B 1
U}—<Ek+€k/—/\) W‘f—(Ek—f—Ek/—i—A)

}, (6.57)

where the single-particle relativistic Green’s function operators G (E) reads

1 (_1)S+S’

+ v
Uk [w—(Ek/—i-ek—)\) w+(Ek/+ek—)\)

A 1
G(E) = ———.
E —hP

(6.58)

The first term of Eq. (6.57) is the reduced non-spectral free response function,

Rim(rr') = 3 kkQ0) { G = B+ X) + (-0 G(—w = B+ X) Q7 (k)

= v} [ dxy | day Ul(2) QW (r)S Glay, 950 — B 4 N)
Soot e [ e vitan o]
(=D Gan, s —w — By A)}Q D (1YW (5). (6.59)

It includes the transitions from the quasiparticle states (bound states) to the pure particle
states (both bound and continuum states). The second term of Eq. (6.57) is called the
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correction term,

ROCC (7” ! w) _ Z c* (7’) c (7”/) U2 (_1)S+S/ B 1
corr kK’ kk! k w — (Ek + € — )\) w + (Ek + € + /\)

k<k’

1 (_1)S+S’
+ vp — 6.60
Uk [w—(Ek/—i-ek—)\) w+(Ek/+ek—>\) ( )

This term emerges from the completeness relation and eliminates the double counting that

occurs in the transitions between two bound states.
Following Ref. [168] the relativistic single-particle Green’s function G(xy,z9; E) takes

the form

G(SCl, T2, E) =

g\
=

i “F”ﬁk (Tl; E)ijgkmk (nh 01) Xin, (tl) %
Gy (115 E) ., (1, 01)
L) (g (02, 02) P25, (i B) =i, (12,02) 27, (r3: B) )

X Jrelemg
(6.61)

Nl %

for ri < ry, and
1 E Q m )
G(xl,IQ;E) _ Z T17 ) bk k(nl 0-1) X%Tk(Tq) %

x x;kuz)(ijfkmgnz,az)f:k(rz;E) i (n3,02)G7, (i B) )
(6.62)

for 71 > ry. The two radial functions F,, (r; E) and G, (r; E') are the large and the small

components of the radial Dirac spinor |u,, (r)), viz.

Fup(r; B
u, ( E)) = | 13 E) : (6.63)
iG,. (1, E)
so that the spinor |u,, (r; £')) is the solution of the radial Dirac equation
(B — Iy () |uw, (5 E)) = 0, (6.64)

where the radial Dirac Hamiltonian A2 (r) is

. 1% S —i (=& 4 £

b (r) = .(73 +50) (e %) . (6.65)

i(L+m) —2M 4+ V(r)— S(r)
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The solution |u,, (r; F)) is regular at the origin. The radial Dirac spinor |wy, (r; E)),

P, (r E
(Wi (s £)) = | (7 B) , (6.66)
12, (1 E)
is the irregular solution of the radial Dirac equation
(E — hE (r)Jw,, (r; E)) = 0. (6.67)

At a large distance (r — 00), it represents an outgoing wave for £ > 0 and, for £ < 0, a
wave function, which decreases exponentially. Multiplying Eq. (6.64) by (w, (r; )| and Eq.
(6.67) by (uy, (r; E)| from the left, and taking the difference between the two, one obtains

the expression for the Wronskian W, viz.

_ | PR E) Fu(r E)

W - *
Qm(r; E) G, (rE

= P (11 E)Gy, (r; E) — 25, (r; E)F,,(r; E) = constant,
(6.68)

where the constant is usually taken to be 1.

The potentials V' (r) + S(r) and V(r) — S(r) can be considered as a constant, i.e., V(r) +
S(r) =~V + S and V(r) — S(r) & V — S, near the origin. From the radial Dirac equation
(6.64) one then obtains the following two coupled radial differential equations for Fj, (r; E)
and Gy, (r; E):

0 = (E—V —58)F(r)+ <dii - %) Gy (1), (6.69)
0 = (BE4+2M -V +5)G,, (r) — (d% + %) F, (r). (6.70)

Solving Eq. (6.70) for Gy, (r), one obtains the relation between the upper and the lower

components:

. 1 d R
Cr(1) = 5537 7S ($+7) Fy (r). (6.71)

Inserting this result into Eq. (6.69) yields the equation for the upper component:

d (7") _ /ﬁ?k(lik + 1)

L () + ¢’ Fy,(r) =0, (6.72)

where ¢ = (E -V = S)(E+2M -V +5) >0 for E >V + S. The quantum number xj
takes the values kp = F(jr + %) for j., = 0, £ % Since ki (kr + 1) = €. (¢ + 1) for each value
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of kg, Eq. (6.72) can be written as

d2ng (T) _ gk;(gk + 1)
dr?

Fy (1) + ¢*F,, (r) = 0. (6.73)

By substitution of the variable x := gr and the ansatz Fy, (1) = rE, (), the radial equation
(6.73) becomes ) )
dQng (33') 2 ngk (l‘) 4 |:

= gk(gk + 1) ~
dz? Tz dz

which has four possible solutions: spherical Bessel functions jg, (x), spherical Neumann

) +ing, (z) and h{ (z) =
héi)*(x) [169]. These four solutions (fy, (x) = jo, (), 1, (x), h (m)) satisfy the recurrence
relations: [170]

functions ny, (), and the spherical Hankel functions hfk (x) = jgk (x

fo(z) = ( d(i )fék() (6.75)

for(z) = (i+£k+1>ﬁk<x). (6.76)

dx T

Since the ny, (z) are singular at the origin, the correct solution is ng (x) = jg, (x) and, hence,
Fy (r) = rjs,(qr). Inserting this result into Eq. (6.71) and making use of the recurrence

relation (6.75), one obtains for the lower component

Gy (r) = —E_T‘/_Srjgk (qr) (6.77)

for ki = —(lp +1) = —{.. For the case of kj, = {4 = {}, + 1, one obtains
E-V-§ .
G (r) = +Trjgk(qr). (6.78)

Therefore, the analytical solution of Eq. (6.64) for £ >V + S is

|ty (13 E)) =7 < n Ej‘;(fi” ) . (6.79)

Teel @ Il (qr)

In the limit of r — 0 the spinor |u,, (r; E)) reduces to [59]

(qr)‘k

20 +1)!
|uf€k (7" — O’ E>> =T K_kEEV]iJ; )(qr)zk . (680)

skl @ (2f,+1)
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To obtain the irregular solution of Eq. (6.67), one needs to consider two energy domains,
ie., F<0and E > 0. For £ > 0 two radial functions &, (r; E) and 2, (r; E) satisty the

two coupled radial differential equations:

0 = (E-V—8)2,(r)+ (dii - %) 2,.(r), (6.81)
0 = (E+2M —V +8)2,,(r) — (d% + %) P, (r), (6.82)

which are similar to Egs. (6.69) and (6.70). The requirement that the solution of Eq. (6.67)

for EZ > 0 being an outgoing wave at large distance leads to

WY (qr
[w,, (r; E > 0)) = gqr ( “—’“'i(z(l))(qr) > : (6.83)

K E+2M Zk

where, in the limit of » — oo it reduces to [59]

1 ,

|wg, (r = oo} E > 0)) = ( il i ) e, (6.84)
ki E+M

Here one has also considered that the potentials V' (r) + S(r) and V (r) — S(r) approach zero

at a large distance to obtain the numerator of spinor |wy, (r; £ > 0)). For £ < 0 Egs. (6.81)

and (6.82) yields
EP,(r)  ke(kr+1)

_ 2 _
02 o Pn(r) = K P (r) =0, (6.85)
together with
1 d R

where K = (V+ S — E)(E—V 4+ S+ 2M) > 0. The substitution = Kr and the ansatz
P, (r) = xP, (r) bring Eq. (6.85) to the form

d «%Z,;(x) + %dc@é;(l‘) B {1 I w} D (2), (6.87)

T2

where one has used the relation (k4 1) = £, (¢x +1). The solution of this equation, which

has the correct limit at a large distance, is given by

~ 2
P () =\ = Firo(a) = by, ), (6.58)
and, therefore, Py, (r) = Kr - ky (Kr). Here ky, (z) is the modified spherical Bessel function
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and the function K, (z) is known as the modified Bessel function [169]. The modified spherical

Bessel function ky, () satisfy the following recurrence relations: [169]

kopa(z) = ( d g’“) ke, (), (6.89)

dx
ko_1(z) = — (d% + g’“; 1) ko, (). (6.90)

For each value of k; Eq. (6.86) gives

Ko @), (6.91)

26" = 5o

Therefore, one arrives at the spinor |wy, (r; E < 0)) of the form

lw,, (r; B < 0)) = Kr < ’jfk(frgK | ) . (6.92)

Et2M
Finally, the spinor |w,, (r; E < 0)) reduces to [59]
1 -K
|w, (r — 00} E < 0)) = . e " (6.93)
~ E+2M

at a large distance (r — o0). The complete reduced free response function hence reads

Roccl(r, rw) = ROee (r,r' w) + ROCC'(r, rw) — ROee (r,r' w). (6.94)

cont 2qp corr

The detailed calculation of the reduced matrix element of the free response R (1,77, w) is

given in Appendix G.

6.3 Pairing Interactions and Particle-particle Channels

As discussed in Section 5.2, the particle-particle interaction VPP can be approximated by

the following Hamiltonian:

VPP — (3 Z P;LPIW (6.95)

k1,k2>0

where the pair-creation operator P,Il and the pair-annihilation operator P;Q are defined as

Pl =af, A; (6.96)
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and

sz = CL,;.ZCL]€2 .

(6.97)

With the aid of the inverse Bogoliubov transformations (5.60)-(5.63), the matrix element of

VPP g given by

Vit = —G Y (kIBLIK) (B0

k1,k2>0

= -G Y  (BCS|a,P af,[BCS)(BCS|ay Py, [BCS)

k1,k2>0
= XOkkOeer,

(6.98)

where the strength parameter y is related to the gap parameter A and the pairing strength

G via Y = —A?/G. Retaining only the particle-particle channel, the matrix elements of

QRPA matrices A and B now read

Aprrer = (Ex + By )Oredpre + X Z SiwEinSiv€iv
d=t

and

d ecd od ¢d
By = XE Sierr e S e

d==+

where

Orpr
+ kk +
Spw = ——= and &g = upup F Uk

V2

The QRPA eigenvalue equations now become

w—Ey— Bu)Xew = XD Sl > Stk [ Xow + Yar),

d==+ o<t
—[w + Ek + Ek/]Ykk/ - X Z Slcclklglcclk’ Z Sgle/ége/ [X[[’ + }/Zgl].
d==+ o<t

Defining

T =" Sip&l[Xew + Yoo,
o<t

one arrives at the dispersion relation

0= Z {(5dd/ - Rgd/(w)x} T,

d=%

100

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)

(6.105)



where the free response function RE? (w) reads

/ 1 1
R (w S4,8% ¢ @ - . 6.106
1; kk' Ckk fkk kk [w _E.—Ey w4+ E,+ Ep ( )

The particle-particle response function R (w) satisfies the Bethe-Salpeter equation

R (w) = RI (w Z R (W) xR (w). (6.107)
dll

Using the Wigner-Eckart theorem (see Appendix F), the particle-particle free response

function reads

! 1 ! !
Rgd (w) = Z —S(dkk’)SEikk’)ggkk’)gglkk’) L}

iz 1 O — Ew — Ewy  w+ Egy + Eg)

(6.108)

/. 1
Séikk/) = Ik + 5 5(kk’)‘ (6109)

Here the bracketed indices (kk') = {jk,lk,ji,lrr} of a one-body operator refer to its

where

corresponding reduced matrix element.

6.4 Strength Function

In the canonical basis, which coincides with the Dirac-BCS basis, the strength function
S(w) can be obtained from the particle-hole response function R(w) via the well-known
relation

1
S(w) = - Algrio Im 2 F Rygroe (w + 1A) Fyp, (6.110)

where Fj; are the matrix elements of the one-body external field. The matrix elements Fj

can be expressed in terms of the matrix elements Qf,,(r) as
Fuw = €eey / dr fF (r) Q5. (1), (6.111)
. 0

where cp is the channel index of the external field and e, is the corresponding effective
charge. An external field for a specific mode of collective excitation is characterized by the
channel index cp, which comprises a set of quantum numbers: total angular momentum

J, parity m, total orbital angular momentum L, spin .S, and isospin 1. The external field
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Table 6.1: The list of channels c¢p and their corresponding effective charges e..,.

Channel cp J| m | L|T]| f*(r)| Channel ¢ | e,
Isoscalar Monopole (ISM) [0 |+ |0 | 0 r? 2 1
Isoscalar Quadrupole (ISQ) [ 2 |+ |2 | 0 r? 2 1

N—-Z

Isovector Dipole (IVD) 1| —]1]1 r é .

with channel cp will act only on a certain channel ¢ of the particle-hole interaction. The
list of S = 0 channels ¢y := (J, m, L, T') and their corresponding effective charges e, are
tabulated in Table 6.1.

Let us now make a connection between the particle-hole response function Rpee(w)
and the particle-hole reduced response function RCCI(T, r’,w) in the coordinate-channel
representation. The particle-hole response function Ry (w) satisfies the Bethe-Salpeter

equation in the Dirac-BCS basis:

Ripror (W) = Ry (@) + Y Rippary @)V Ritater (). (6.112)
k1kolyl2

Inserting Eq. (6.35) into the Bethe-Salpeter equation (6.112), we obtain

Rywoe(w) = Rppgr(w)
+ Z/ dTl/ dry Z Rkk’klfl lezl(rl) clcg(rlvTQ)Qk2€2<T2>RI€2f2M'( w).

c1c2 k1katl142

(6.113)

Multiplying the last equation with the matrix element Q¢ (r) from the left and Q, (1) from

the right, and performing the summation over the indices (kk'¢¢") lead to

Z Q5 (1) Ry (w) Q5 (1)

kk'et!
C
= Z o (1) R () Qi (1 +Z/ dTl/ drs Z Qi (1) Ripny e, (W) Qi (11)
Kk et c1ea Kk b1
/
xRt (r1,r) Y O (ra) Rigryer (w) Q5 ().

kolo 00!
(6.114)

Comparing the last equation and Eq. (6.52) one establishes the relationship between
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the particle-hole response function Ry (w) in the Dirac-BCS basis and the particle-hole

. / . . . .
reduced response function R (r,r’,w) in the coordinate-channel representation, viz.

R (r,1,w) = Z Q5 (1) Ry (w) Q5 (7). (6.115)

kk'ee’

Similarly, one can also define the particle-hole reduced free response function R (r,r’,w)

as
ROCC 7” 7“ UJ Z Qk‘k" Rkklgzl( )Qg;/('r/) (6116)

k! 00!
Using Eqs. (6.111) and (6.115), the strength function S°F(w) for a specific excitation mode

can be written as

1
SF(w) = —— lim ImZeCCFeC/CF dr dr’fCF(r)
0 0

x> Q% (r) Ruvew (w + i) Q5 (') o7 (1)

kk'ee’

1 & & /
= —— lim Im CeepClep / dr/ dr’ch (T’)RCC (7,7 7”/, W+ iA)fCF (7")‘
cc’ 0 0

T A—+0

(6.117)

Instead of solving Eq. (6.52), it is beneficial to solve the Bethe-Salpeter equation for the
particle-hole response in terms of the density matrix variation dp¢ (r,w), which, in the

coordinate-channel representation, has the form
dpe,. (r,w) / dr’ Zec ep R (o1 w) fF (). (6.118)
The integral equation for this density matrix variation, as it follows from Eq. (6.52), becomes

opS, (r,w) = 6p% (r,w —I—Z/ drl/ dry R (r, 1, w)vPr, (r1,12)8p% (re,w). (6.119)

c1c2

Accordingly, the strength function S (w) is determined via the relation

S (w) = ! lim ImZeCCF/ dr f(r) dpe, (r,w +iA). (6.120)

T A—+0 0

Thereby, the problem of solving the relativistic QRPA with the point-coupling interaction is

formulated completely in the coordinate-channel representation. This allows for calculations
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of nuclear response that take into account coupling to the single-particle continuum exactly.
This is very important for calculating the nuclear multipole responses in light and loosely-
bound nuclear systems. The numerical realization of the relativistic continuum QRPA
has been done in Refs. [60, 144], where the results for the isoscalar giant monopole
resonance and isovector giant dipole resonance for Sn isotopes were presented. The numerical
calculations demonstrated reasonable agreement with the experimental data [171, 172, 173].
The continuum QRPA calculations also assessed the impact of the continuum effects on the
low-lying pygmy dipole resonance (PDR) strengths in Tin isotopes. Now the task is to add
the particle-vibration coupling to the relativistic continuum QRPA, as discussed in the first
part of this dissertation, first at zero temperature, but eventually at 7" > 0. This will allow
one to describe the spreading width of the high-frequency giant resonances and to resolve
the fine structure of the PDR on equal footing with the continuum effects. The essential

steps to perform this task are outlined in the next Chapter.
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Chapter 7

Further Developments: The Inclusion
of PVC Effects in the CRQRPA

The inclusion of the continuum effects in the relativistic QRPA has provided a better
description of the strength distribution for spherical nuclei in both low-energy and high-
energy domains. The continuum relativistic QRPA (CRQRPA) is designed to reproduce
the escape width of the giant resonances (GRs) and to describe better the low-lying pygmy
dipole resonance (PDR) in heavy spherical nuclei [59, 144]. However, one cannot describe
the spreading width of GRs without taking into account the coupling between the correlated
one-particle-one-hole (1p1lh) excitations via the particle-vibration coupling mechanism. Here

we outline the necessary steps to incorporate the PVC effects into the CRQRPA as follows:
1. Extract the phonon transition densities from the RCQRPA strength functions.
2. Verify the QRPA normalization condition numerically.
3. Calculate the particle-phonon coupling amplitude.
4. Construct the full response function in the coordinate space representation.

This program has been implemented in Ref. [70], however, relatively simple Woods-Saxon
mean field and phenomenological Landau-Migdal effective interaction were used in the
numerical implementation of this approach. The current developments are designed for
implementations based on a more advanced relativistic self-consistent density-dependent
forces. Because of the time constraints, only steps 1 and 2 were completed, and the remaining
steps are to be done in the near future. We dedicate the next sections of this Chapter to

explaining and introducing the essential formulas for steps 1 and 2.
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7.1 Extraction of the Phonon Transition Densities

In what follows, we demonstrate how to extract the phonon transition densities of a
specific multipolarity cp = J™. We start with Eq. (6.119) instead of (6.52). From the Eq.
(6.119), one obtains the density matrix variation dp¢ (7, w). The density matrix variation

dp¢,.(r,w) relates to the phonon transition density py¢ (r) via [77]
A
—————Imdpf_(r,§2"), (7.1)

where ()” is the energy of the excited state v measured from the ground state energy E,. We
have investigated the accuracy of this formula at the pole w = €, by performing numerical
calculations. We first note that the transition probability can be calculated in the coordinate-

channel representation as

2
Bupl@) = | cune [ dr gt ()77 (0) (72)
- 0
for arbitrary w. For arbitrary w, we have defined
C : A C
Pop(ryw) = lim [ —————Imdp; (r,w). (7.3)

A=+0 \[ S (w)

Accordingly, the strength function S°F(w) can be expressed in terms of the transition

probability B., (w) as

ST(w) = lim Bep (@)

AS+0 wA (7.4)

We have calculated the values of S°F (w) numerically for a specific range of w and compared

Table 7.1: Comparison between the isovector dipole (IVD) strengths S™VP)(w) and SEQZD) (w)
at the poles w = Q, for **O nucleus computed with the smearing parameter A = 200 keV.

Q Mev] | STPI(Q,) [e2fm?/MeV] | STVP)(Q,) [e*fm?/MeV], A = 200 keV
1670 | 6.5827898218804730 6.5827898218804712
18.50 0.68623455819759616 0.68623455819759593
19.90 0.20005132846979362 0.20005132846979365
23.10 0.17192296026764683 0.17192296026764683
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the results to those of available code (S%

“F(w)) Ref. [60, 144]. We found that they are indeed
the same at the pole w = Q, (see Table 7.1).

7.2 Numerical Verification of the QRPA Normalization

Condition

We start with the QRPA equations written in the form

Q, — Ep — Ew] Xy Z Z/ d?“/ dr' Qi (r nkk"vcc (T )

<! ec!

x [Qw( )nez'Xw+Qm( 0 Yo (7.5)

and

[Q + Ek + Ek/ Ykk’ = - ZZ/ d?“/ dT Qk/k nkk’vcc’(r T)

< ec!

X [Qm( )Y + Qg (r )Wme] (7.6)

in the canonical basis. These are the equations (6.43) and (6.44) from the previous chapter
with w = €0,. Let us now define the radial components of the phonon transition densities
p%(r) as

PCV(T) Z [Qw( )UZ/XEVZ' + Q?@(ﬂﬁ?ﬂ'nﬂ . (7-7)

<t

Using this definition, we can write the QRPA equations (7.5) and (7.6) as

v o ph dv 1
Xy = o —Ek—Ek/Z/ dr/ dr' Q5 (r)ng vl (r, ) p (1), (7.8)

v 1 c h v
Vi, = 0. 1L 1 E» ;/0 dr/o dr’ Q,—C,k(r)nfk/vfc,(r, M p (r'). (7.9)

The QRPA normalization condition reads

1
7 2 Xl = vl =1, (7.10)
k<k'

where the factor § originates from Eq. (6.6). Inserting Egs. (7.8) and (7.9) into Eq. (7.10)
and making use of Egs. (G.22) and (G.23) (c.f. Appendix G) yields the reduced QRPA
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normalization

1 1 . ,
12 T Kl = Wi T =1, (7.11)

where

|Xé’kk,)|2 = 0 —F Bl ZZ/ drl/ drl/ d?"g/ drl

C1C2 cicy

01,0, 5M M [ Aern .
9171 Odn My { (;k/)<r1>n&k/>chC2(r1, ry)p® (r2)}

2J;1 +1
x {Qiﬁzz/)<r;>nfkmvc& CATELCA)S (7.12)
Vil = GrE BT 23 / aro [“ar [T [Ca
(1) QIO f g 1y ()0 ()
2+ 1\ M) e,
x L Qi Doyl (0, )2 () } (7.13)

Since the phonon transition densities p®(r) can be calculated numerically using Eq. (7.1),

the numerical calculation of the reduced QRPA normalization is feasible.
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Chapter 8
Conclusions and Outlook

The first part of this Ph.D. work focuses on a finite-temperature extension of the
nuclear response theory beyond the relativistic RPA. Starting from the Lagrangian density
of quantum hadrodynamics (QHD), the static residual interaction, which consists of the
finite-range meson exchange between nucleons, is formulated. To calculate the dynamical,
or induced, interaction, which contains coupling between nucleons and phonons, we
generalized the time-blocking method developed previously for the zero-temperature case
to the imaginary-time (Matsubara) formalism. In this generalization, we have shown that
the temperature-dependent projection operator containing Fermi-Dirac occupation numbers
gives rise to the soft blocking in the imaginary-time domain, replacing the sharp time blocking
that occurs at zero temperature. The proposed soft-blocking technique, when applied to the
Matsubara two-fermion propagators, results in the imaginary-time ordered diagrams. As
a consequence, it reduces the Bethe-Salpeter equation for the nuclear response to a single
frequency variable equation and well-defined analytical properties of the resulting response
functions, such as locality and unitarity.

The method named finite-temperature relativistic time-blocking approximation (FT-
RTBA) was implemented on the base of QHD using the NL3 parametrization. We
investigated the temperature dependence of the dipole response in medium-light **Ca,
%Ni, and medium-heavy 1901201328y nuclei. The obtained results are consistent with the
existing experimental data on the GDR’s width and with the result of Landau’s theory
for the temperature dependence of the GDR’s width. The calculations extended to high
temperatures explain the critical phenomenon of the disappearance of the GDR and suggest
that the collective motion may reappear at low frequencies in the high-temperature regime.
In addition to the dipole response, we also analyzed other multipoles, in particular, the
isoscalar monopole and quadrupole responses in the %Ni nucleus. We found that the

disappearance of the high-frequency collective motion at very high temperature and arising
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prominent low-energy strength of thermal origin is a common phenomenon for all multipole
responses. An accurate description of the low-lying strength, especially at the r-process
temperature conditions, requires further improvement of the current version of FT-RTBA,
such as the inclusion of the continuum effects and ground-state correlations associated with
the PVC. The former is partly addressed in the second part of this dissertation, and the
latter will be considered in the future work.

The first part of this Ph.D. work has resulted in four publications in peer-review journals:
Physical Review Letters (PRL) [174], Physical Review C (PRC) [98], European Physical
Journal A [157], and Physics Letters B [175]. The PRL paper briefly highlighted the essential
formulas of the FT-RTBA and discussed the temperature dependence of dipole spectra
in the even-even nuclei ¥*Ca and 10% 1201328y A comprehensive analytical and numerical
study within the FT-RTBA can be found in the PRC paper. In addition to the isovector
dipole resonance in *8Ca and 190 120: 132Gy nuclei, the PRC paper discussed the temperature
dependence of the isovector dipole response in ®*Ni nucleus. The temperature dependence of
monopole and quadrupole response in *8Ca nucleus was discussed in our publication in the
European Physical Journal A. The PLB paper addressed the proton-neutron nuclear response
in the framework of FT-RTBA. It discussed the temperature dependence of the Gamow-
Teller and spin dipole resonances in the closed-shell nuclei ¥Ca, ™Ni, and '32Sn, as well as
their broader impacts for the associated beta decay rates and lifetimes of ®Ni and !32Sn in
hot astrophysical environments. Our results have also been disseminated in terms of oral
presentations in two international conferences held by the American Physical Society (APS)
Division of Nuclear Physics (DNP): 2017 Fall Meeting and 2019 April Meeting. In addition
to the oral presentations, we presented our results in the form of a poster presentation in
the Nuclear Structure 2018 conference.

In the second part of this Ph.D. work, we focus on the improvement of the continuum
relativistic quasiparticle random phase approximation (CRQRPA) to incorporate the
particle-vibration coupling effects. In an attempt to fully understand the CRQRPA, we
work out in detail an alternative derivation of the CRQRPA equations starting from the non-
relativistic QRPA equations in the canonical basis, in order to reconstruct and clarify the
details of Ref. [60]. We demonstrated via numerical calculations that the phonon transition
densities can be extracted directly from the phonon strength functions with high accuracy.
We formulated a feasible formula to calculate the QRPA normalization condition numerically.
The future work will address calculations of the particle-phonon coupling amplitude, and, in

turn, the full response function in the coordinate space representation.
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Appendix A

Summation Over the Matsubara

Frequencies

In this Appendix, we evaluate the first summation over ¢ of Eq. (3.47), i.e.,

1 1
Ty - — . (A1)
o 10— Eky + pigg — 1€y + Wiy

The fermion occupation number

1
/ —
n(f 7T> - 6(5/_”‘)/T + 1 (AQ)
has poles along the line of Re[¢'] = p given by
v = 1€y + U, (A3)

where ey = (2¢' + 1)nT and ¢ = 0,£1,4£2,.... We expand the exponential term in the

denominator of (A.2) in the vicinity of £ and obtain

T
§ =&

n(¢,T)=— (A.4)

Let us consider the contour integral

i ag’ 1 L n(€ T), (A5)

2Mi € — exg i — €+ w0

where the contour C' is defined according to Figure A.1. Inserting Eq. (A.4) into Eq. (A.5)

and using the residue theorem, it can be shown that Eq. (A.1) can be converted into the
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contour integral (A.5), viz.,

1 1 B e’ 1 1 ,
Tyl &= n(E. 7). (A6)

Eks + Wi — i€y + Wi o 2mi & —epytep — &+ Wi +

AIm[E]

+§

N

Q

*--0--0--

S

Figure A.1: Integration contours C' and C” in the complex &'-plane.

Contour C' now deforms into contour C’, which consists of contours C, Cy, and I". The
contours C; and Cy enclose the poles e, and icy + w,, + u, respectively (see Figure A.1).

Accordingly, Eq. (A.6) then consists of three integrals:

TZ 1 B 7{ g’ 1 (&, 7)
zezl—ekdjtuzsz e +wm o 2miE — e, & —iep —wy —

/gg 1 n(,7)
ey ——

[ 1 meD)

oy 2miE — ey § —igg —wym —
n / ¢’ 1 n(&,7T)
Co 27-”'5/ — Eks g/ — 180 — Wi — M

(A7)
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The first integration along the contour I" approaches zero as I' goes to infinity. Using the

residue theorem for the second and the third integrals, we thus obtain

1 1 T ) m ,T
Ty - —— = - new, D) et wntn )| -y g
o e — €y T 1€ — 1y + Wiy €hy — 18— Wm — U 160+ Wy + b — Epy

The numerator n(ic; + wy, + u, T) can be identified as

1 1
- 1 4+ elieetwm+n—p)/T - 1 — ewm/T

= —N(wn,T), (A.9)

n(ice + wm + 1, T)

where N(wy,,T') is phonon occupation number with energy w,,. Therefore, (A.8) becomes

- 1€y — €k + 1€ — 1€¢ + Wy 1€p — €y + 1L+ Wiy . '
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Appendix B

Imaginary-time Projection Operator

for Particle-hole Channel

In the 7 representation, the .@v—operator for particle-hole channel, @ph(ll 34), is given by

P(12,34) = g Oaia (1 — 101 )10ty [0y 0 (720)0(731)0(712)
+ (1= 14, )0(7a2) 0 (732) 0 (71 ) Je~ (Era T ks =) me] (B.1)

Introducing the 7-difference variables 731 = 73 — 7, 791 = T™» — 71, and 734 = 73 — T4, the

Fourier transformation of ZP"(12,34) = é,fsz kaks (7315 T21, T34) TEads:

T YT 1T _
ph
/ / / d7'31d7'21d7'34@k1k2,k3k4(7'31, T21, 7'34)

7 ph _
‘@]ﬂ ko,kska (wﬂ? €¢; 64/) -
1/T 1/T 1/T

X

eiwnTa1+erm21+epT34)
- [1 + 127 (BQ)
where
I = —OkiksOhoky [l — nm]ﬂé /dTgldeldT34€(w”_E’“1+€"'2)T31e(i‘gf—a’“2+“ml
« e<i85/—5k2+u)7—349(’7'31)9(7’31 _ 7-34)9(7—12)’ (B3)
Iy = —OkksOhokal — 1y )ty /dT:ndTglclm,z;e(iw"_a’“lJr%)Ti‘le(ia‘v’_s’“2 M
« 6(i€l/—€k2+lt)7’340(7—21)0(7—31 — Ty — 7-34)Q(7—31 — 7-21)_ (B.4)

We start by evaluating the term I;. Normally, 73; has range —1/T < 73; < 1/T. Because

there is a theta function 6(73;), the limit of integration with respect to 731 is 0 < 757 < 1/7.
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Similarly, the theta function 6(713) = 6(—721) constraints the limit of integration with respect
to m91 to be —1/T < 151 < 0. To determine the limit of integration with respect to 734, we
consider the theta function 0(73; — 734). The theta function (73, — 734) constraints the limit
of integration with respect to 734 to be —1/T < 734 — 131 < 0 or —1/T 4+ 731 < T34 < T31.

The theta functions 6(731), 6(712), and 0(73; — 734) are expressed as

oo da e*iaﬂ}l

0 = — 1 — B.
(7s1) nlgl+ o 2mia+an (B.5)
00 dﬁ etB721
O(rs) = O(—7a1) = — li ap e " B.
(712) (=) = — lim, /_ i B+ if (B.6)
> —iy(T31—734)
9(7’31 — 7'34) = — lim ve - (B?)

5—0t J_ 2mi v+

Using these expressions and the consideration pertaining to the integral limits, I; becomes

*©d 1 > d 1
I, = 5k1k35k2k4[1—nk1]ni2 lim lim lim/ a / b

n—0t £=0+ §—0+ OO%OH‘W —oo%ﬁ""ig

> d7 1 0 (ieg+if—eky +1)T21 VT (iwn —ta—iy—€g, +Ek, )T31
— dmoe 2 dr3e\™n 1€k
0

X ; -
Coo 2miy +10 g

y / 31 d7'34€(i€£/+m_6k2+u)7—34‘ (B8)
71/T+T31

The result of the integration with respect to 734 is

/‘ 31 d7_34e(isgx+’i'yfsk2+,u)734 — - : 1 e(is£/+i'yfsk2+p)731 [1 + ef(i'yfstJr,u)/T] )
—1/T+731 1y + 1Y — Epy + 1
(B.9)

The next integration with respect to 73; gives

1/T 731
/ dele(lwn—la—W—Ekl+€k2)T31 / d7'34e(l€‘5' +iY—Eky +1) T34
0 — 1/T+T31

_ 1 1 [1 4 e (r=es /7]

_ié?e/ + 1Y — Egy + Wy, F iy — i — g, T
x  [emtote=m/T 4 q] (B.10)

The last integration with respect to 7 gives

0
/ dTme(iseriﬁfsszru)Tm — : 1 [1 + e*(iB*EkQJrH)/T] ) (B.ll)
—1T teg+if8 —ep, +
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Inserting these results into the term I, we obtain

“da 1 1
I = =0k Okory |1 — 2 i —
! bk Okaka |1 = T, ngéL oo 2T+ N Wy, +iEp — G0 — £y +
% [e—(ia—f—akl —p)/T + 1} lim /OO ﬁ 1 1 [1 + 6—(iﬁ—ak2+u)/T]
=0t J_ o 2mi B+ i€ iep + i — e, + 1
X lim di 1 — - . 1 |:]_ + 6_(i7_5k2+l‘)/T:|
50t J_ oo 2miy + 0 icy + 1Y — Egy + 1
“da 1 1
= 0k ks Okoks|l — 2 i —
Y0k ks k2k4[ nkl]nkQ nl)ré’l_,'_ - i o -+ 27705 — W, — Ep — Z‘(Ekl _ ,u)
i B , < ds 1 1 —(if—
X [e (iaten, —p)/T 1} lim ala [1 4B 6k2+u)/T}
¢—0t J_ o 2mi B+ i€ B+ e+ i(er, — 1)
< d 1 1 ,
x lim [ L= _ [1+4 e~ (r—=kat)/T] | (B.12)
50t J_oo 2miy + 10y + ep + (g, — 1)
The integration with respect to [ is given by
fm [ 981 1 e tenmmr — ___+ 1
e=0+ | o 2mi B+ i€ B+ ep+ien, — 1) 1€¢ — Epy + 4 Ny
(B.13)
The integration with respect to v is given by
im [ ﬁ 1 ‘ 1 [1 4 e~ 72k +/7] _‘; 1
50t J_ oo 2miy + 00y + e + i(ER, — 1) 10 — Ey + 14 Mgy
(B.14)

The integration with respect to « is given by

lim d—a L 1 [6—(ia+€k1—u)/T + 1}
n—=0+ J_oo 2mi v +in o — wy, — ep — i, — )
) 1

= - ' . (B.15)

ilep +wp) —ep +pl—nyg
Inserting Eqs. (B.13), (B.14), and (B.15) into Eq. (B.12), we obtain
1
(B.16)

I =600 . . . .
P Rk e ey + ) [iee + wn) — ek, + 1) (ige — exy + 1)

After evaluating the term [;, we continue to evaluate the term ;. The theta function
0(721) constraints the integration limit of 751 to be 0 < 751 < 1/T. The theta function

0(731 — T21) determines the integration limit of 73; to be 0 < 731 — 791 < 1/T or 791 < 731 <
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791 + 1/T. The last theta function, i.e., 8(731 — 791 — 734), gives the integration limit of 734
as —1/T S T34 — (T31 — 7'21> S 0 or —1/T + (7'31 - T21) S T34 S 731 — T21- Slmllarly, we also

express each of theta function as

© da et
0 = — 1l — B.1
(721) ng(% /_Oo 27t o +in’ (B.17)
0 —iB(131—T21)
9(7’31 - 7'21) = — lim —Be—, <B18)

=0t J_oo 2w B +i€

00 dfy e~ V(731 —T21—734)

9(7’31 — T21 — 7'34) = — hm (Blg)

§—0t J_ 2_7TZ v+ i

Using these expressions and the integral limits discussion above, the term I, can be written

as

* da 1 * 45 1
L = OkykyOraka[l — iy *ng, lim lim i — —
e = Sundnlt = o Iy i i [ L [

S 1/T
y / d_fy 1 | / (g elice—iartibin—er, )7
Coo 2Ty + 10 o

To1+1/T ) o T31—T21 ) )
% / dTgle(%wnﬂBﬂvft‘kl +ery )31 / d7'34e(wf’ iy —Eky H1) T34 (B.20)
™1 —1/T+(131—721)

The integration with respect to 734 gives

T31—T21 ' ' 1 ' '
/ d7—346(28el+w—5k2 +u)Tsa eliey +iv—ery +1)(T31-721)
—1/T+(731—721) O S

X [14 e e tm/T] (B.21)

Inserting this result into the term I, we obtain

* da 1 * 48 1
I = OkukyOkaka[l — gy )*ru, lim lim i — —
¢ = Sudonll ol i i iy [ ot [

y / dy 1 1 [1 4 e~ (r=os /7]
oo 2Ty 0 i€y + 1Y — Egy + [
1/T S T21+1/T o
% / dTme(zsz—zae,—m—i—Zﬁ)Tm / d7-316(1wn+155’—1ﬁ_5k1+”)T31, (B.22)
0 T21

Now integration with respect to 73, gives

o1 _iwn—l—i€gl — i —cp, + 1
X [14 e e —w/T) (B.23)

T21+1/T R 1 N
/ dTgle(Zw"+z€£/_Zﬁ_ekl—i_u)ml o e(lwn+15£/_746—5k1+#)721
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and integration with respect to 19, gives

1/T T214+1/T
/ dele(isg—ise/ —ia+if3)T21 / dTgle(iwn—l-isz/ —iﬁ—{ikl +p)T31
0

T21

_ 1 1 [1 + e—(ioz—i—skl—,u)/T}
Wy + i€y — 1 — €, + Wiw, +1gp — i — €, +
X [14 e @Prem—m/T] (B.24)

Using the results of the integration, the term I, can be written as

Iy = 0k ks Okoka[1 — 1y 1oy
. “ da 1 1
X lim — - -
n=0t J_oo 2mia+in o — wy, — e —i(eg, — 1)

[1 + e—(ia+5k1_ﬂ)/Tj|

x lim / ﬁ 1 , 1 : [1 +6—(iﬁ+€k1—u)/T]
§=0t J_oo 2mi B+ i€ B —wy —ep — (g, — 1)
> d 1 1 A
X lim i [1+4 ek t)/T) | (B.25)

50t | 2miy + 146y + o + ien, — )

The integration with respect to v gives

50t J_ oo 2miy + 00y + ep + i(ER, — 1) 1E¢ — Eky + 14 Ny
(B.26)
The integration with respect to 8 gives
lim ~ ﬁ 1 1 [1 + e (#Bten, —M)/T]
§—0t J_oo 2mi B+ i€ B —wy —ep — (g, — 1)
' 1
_ ! (B.27)

i(wn+6g/) — &k +u1—nk1'

The last integral with respect to a gives

i [ e L L [1 4 e (iober, /7]
n=0t J_ oo 2mia+in o — wy, — e —i(eg, — 1)
1 1
= . B.28
i(€g+wn)—€kl +,U1—nk1 ( )
Inserting Eqs. (B.26), (B.27), and (B.28) into Eq. (B.25), we obtain
1
. (B.29)

L = —0ik0
2 Fiks Ohaka (teg — €ky + p)[i(wn + €0r) — €k, + plfi(er + wn) — €k, + Y
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Inserting the terms I; and Iy into the expression of @ng(wn, £¢,€p), We obtain

élpél,% (wm €, 55/) = 6k1k35k2k4 (iwn — &k + €k2>§k1 (55 + wn)§k2 (85)@63 (65’ + wn>§k4 (55')' L
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Appendix C

Derivation of Finite-temperature Free

Response Function

In the 7 representation, the finite-temperature free response function 9?%12, 34) is defined

as
Z°(12,34) = Y~ Z°77) (12, 34), (C.1)
01,02
where
R0 (12,34) = —F7(3,1)97(2,4), 12 = +1,-1. (C2)

The Matsubara’s Green functions 41 (3,1) and 9°2(2,4) are defined as

GEVB1) = =0kl — (e, — p. T)]e 1 9™10(ry)

= _5k1k3 [1 - nkl]e_(skl _#)T318(7—31)7 (CS>
{2(_1)(37 1) = Gppn(en — M,T)e_(&‘kl_H)TSIQ(—T?)I)

— 5k1k3nk1 e_(gkl —M)T316(_7-31)7 (04)
g(+1)(274) = iy |1 — nlep, — M,T)]e_(ﬁkg_ﬂ)7249<7—24)

= _5k2k4[1 - nk2]67(6k2iu)7—249(7—24)7 (C5)
g?’(fl)(274) — (5k2k4n(€kz — M7T)ei(€kziﬂ)7'249<_7-24)

= 5k2k4nk267(6k27u)7—246(_7—24)' (06)

The notion of particle (hole) is given for 0 = +1(—1). Each time 7;, where ¢ = 1,2,3,4, is
defined to have an interval 0 < 7; < 1/T, where T' > 0 is temperature. Therefore, each time

difference 7,; = 7, — 7; has an interval —1/7" < 7;; < 1/T. The spectral representation of
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RO1:72) (12, 34) = @,81(2,:;,14 (731, T21, T34) is defined via the Fourier transformation:

- 1 [UT ' 1/T ' 1T '
‘%kl(;cr;:2§1)<34(wn785754’) = §/ dTglelwnTm/ dT21€152T21/ d7_346154/7'34

YT YT 1T
X %252;25114(73177217734), (C.7)
where w, = 2nnT, ¢ = (20 + V7T, ¢ = (20 + )77, and n = ( = ¢! =

-, —2,—1,0,1,2,---. Inserting Eq.(C.2) into Eq.(C.7), one obtains

~%,g4(wmgg,gg,) = —é /11/; dT31dTQld7'346i(wn7'31+64721+se/7'34)g7(+1)(37 1)g(+1)(2, 1),
(C.8)
@%’24(%,5[,5@/) = —% /11/; dTgld721dr34ei(wn731+e,_;721+se,734)g7(+1)(37 1)547(—1)(27 1),
(C.9)
@§§§4(wn,ag,g@) = —% / 11/; 71 droydirgyelnm+eemtenn) (-1 (3 )G+ (2, 4),
(C.10)
~?§g4(wn,55755/) = —% /_11/; d7'31d7-21d7—34ei(wn7'31+€gT21+€£/T34)g?/(*1)(37 1)52(71)@’4).
(C.11)
Inserting Eq.(C.3) and Eq.(C.5) into Eq.(C.8), we obtain
=0 1 T 4
Rty bty Wy €0 E0) = —§5k1k35k2k4[1 — ng, [T — ng,] /_1/T dra e
X /l/T dry e /1/T dryee e (0 —1)T8
—1/T —1T
X e Er A=) (1 V0 (1) 4 gy — Tyy). (C.12)

9?,8%2,,93“ (wWn, €r,€¢) contains two theta functions, i.e., O(731) and 0(7124) = (791 + T34 — 731).
The theta function 6(73;) constrains the interval of 73; to be 0 < 733 < 1/T. Due to the
presence of 0(7y4), To4 and, hence, the linear combination 751 + 734 — 731 have an interval from
0 to 1/T. We choose To1 to have an interval 731 — 734 < 791 < 731 — 734 + 1/T" and determine
the interval of 734 to be —1/T" < 734 < 1/T. Under these considerations, Eq.(C.12) becomes

1

T '
86k1k36k2k4 [1 - nkl] [1 — nk2] / delelwnTm
0

70pp _
%kj ko,kska (wﬂ? €¢; 6@/) -
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T31—734+1/T . 1/T '
X / dTQlemm/ d7’34615@/T‘”’4e_(e’ﬂ_“)731
—1T

% 6—(ak2—u)(721+734—731)g(7—31)9(7—21 + T34 — 7-31), (C.13)

T31—T34

Next, we apply the integration representations of 6(731) and 0(7a; + 734 — 731):

o) d —iQT3]
8(7’31) = — hm _Oé.e -
n—0t+ J_o 2mi v +im

* dp e~ 1B(T214+734—731)

0 _ SRR P @
(721 + 734 = 731) eor | 2mi B tiE

to Eq.(C.13) and obtain

~ 1 * da 1
Opp o . .
%/i‘lkZ,k‘BkA <w”7 e, 85') - _§6k1k36k2k4[1 - nkl][l - nkz] nlig{r gllg{r . %a tin
00 1/T
% / ﬁ 1 d7_3le(iwn—ia+i,3—ak1 +Ek2)7'31
—00 2mi ﬁ + 25 0
/T ) ) 731—T34+1/T o
% / d7_346(zeé/—zﬁ—ek2 +u)T34 / dTme(zse—zB—ekQ +u)T21 )
-1/T T31—T34
(C.14)
We first evaluate the integration with respect to 751 as follows:
7'31*T34+1/T 1 T31—T34+1/T
/ dT21€(i€Z_iB_5k2+N)T21 — - y €(i€e—iﬂ—€k2+ﬂ)7'21
T31—T34 L& — 2/8 ~ ke + H T31—T34
— 1 eliee—iB—ery 1) (131 -734)
160 — 10 — gy + 1
X [_6*(i[3+€k2*u)/T _ 1]
T31—734+1/T o 1 o
/ dele(zee—zﬁ—akQ-l—M)Tm = —- : e(lag—lﬁ—6k2+u)(7'31—7'34)
T31—T34 &9 — Zﬁ — €&k, T U
X (e @ m/T 4] (C.15)
Inserting this into Eq.(C.14), we obtain
~ 1 * da 1
Opp o . .
Alplieoze) = g lt =l =) i o [ 5o
/ 4 _1 L [ et =/T 4 1]
—oo 2T B i dgg — i —Ex, +

1T 1T .
% / dTgle(iwan—ia—akl+u)7-31 / d7'3461(5”_52)734- (0'16)
0 -1/T
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The integration with respect to 734 gives

1T ' 9
/ dryse o= = Z g, (C.17)
—17 T

and the integration with respect to 73; gives

1T
/ d,]_gle(iwn—&—iag—ia—akl+u)7'31 — 1 [e—(ia—i-akl—p)/T + 1] )
0 Wy + 160 — 10 — €, + 14
(C.18)
Inserting these results into Eq.(C.16), we obtain
~ 1 * da 1
0 .
‘@1524((*]”755755/) = _E(Sﬂ/dklksdbh[l - nkl][l - nkz] nlir(r)h - %a +in
Wy, + 18 — 1 — €, + U
>~ d 1 1
X lim —5 —- ,
¢=0t J_oo 2mi B+ 1€ iep — i — g, + 1
x e FteRemm/T 4] (C.19)
The integration with respect to a gives
Ioz = 1im d_Oé 1 — - ’ 1 |:6—(ia+5kl—u)/T 4 1:|
=0t J_oo 2Tl o 4 1n iwy, +igp — 100 — €y +
1 1
= —- (C.20)
i(wn +6e0) — ey +p 1 —ng,
and the integration with respect to § gives
< d 1 1 :
[/3 = lim _B —_ : [67(1[3+5k27u)/T + 1}
¢=0t J_ o 2mi B4 il igp —if — ek, + 1
1 1
= —- . (C.21)
1€¢ — €k, + 01 — npy
Inserting these results into Eq.(C.19), we obtain
~ 1 ~ ~
%35%4(00”, Ev, Eg/) = _ﬁéﬁé’5k1k35kgk4gk1 (wn + Eﬁ)gkg (Sg). (C.22)
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Inserting Eq.(C.3) and Eq.(C.6) into Eq.(C.9), we obtain

. 1 1T 1T
Op WnT: LEQT:
‘%kﬂcz k3kq (wm €t 5£/) = _5k17€35k2k4[1 - nk1]n/€2 drg e’ dTo1 €™

’ 8 —1T —1/T

Wos
% / dT34ei€g/T34e*(6k1 —)7T31 o~ (eky —h) (T21+734—T31)
T

X O(731)0(T31 — T21 — T34)- (C.23)

@,ngz,km (W, €0, €p) contains two theta functions, i.e., 6(731) and 0(—794) = O[—(791 + T34 —
731)]. The theta function #(73;) constrains the interval of 73; to be 0 < 737 < 1/T. Due
to the presence of §(—y4), T4 and, hence, the linear combination 79 + 734 — 731 have an
interval from —1/7 to 0. We choose 79; to have an interval 731 — 734 — 1/T < 791 < 731 — T34
and determine the interval of 734 to be —1/T to 1/T. Under these considerations, Eq.(C.23)

becomes

~0nh 1 T . T31—T34 .
P _ Wwn, 1€
‘@k ko,ksk (wn, ¢, 55’) - _5k1k35k2k4[1 - nkl]nk2 drz e’ dTy ™!
1R2,R3Rk4 8
0 731—734—1/T
1T
% / d7-346i€z/‘r34 e~ (Ery =731 o= (Ehy =) (214734 —751)
1T
X 0(731)0(731 — To1 — T3a). (C.24)

Next, we apply the integration representations of 6(731) and 0(73; — 791 — T34):

[ee} d —iaT3]
9(7’31) = — lim _Oé.e -
n—0+ J_o 2T v + i

o0 dﬂ €*i5(731*T217734)

(T3 — oy — — e
(731 = 721 = 734) enor | omi BtiE

to Eq.(C.24) and obtain

éﬁph (W &y 56’) = 1519 ko2 Ok ke [1 — Ny ]nk lim Lim - d—a 1
kle,k3k4 ny 9 8 1R3 2R4 1 2 77_>0+ f—)O"’ - 271'2 o —I— ’”7

00 1/T
" / ﬁ 1 ' gy elm—iaiB—ck +ery)man
00 271 ﬁ + Zé- 0

1/T ) ) T31—T34 ] )
X / d7-34€(18€/ +Zﬁ_5k2 +M)T34 / d7—216(15Z+25_5k2 +M)T21 .

1/T T31—T734—1/T

(C.25)
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We first evaluate the integration with respect to 7»; as follows:

T31—T34 X . 1 . . T31—T34
/ dT21e(zaz+z6—€k2+u)TQ1 = - : e(lge+zﬁ—gk2+u)721
’T31—7’34—1/T 1€y —+ Z/B — 5k2 -+ IU/ T31—7'34—1/T
= 1 elicetif—epy 1) (T31—734)
teg+18 —ep, + 1
X [1+ e WPmeme /T (C.26)
Inserting this into Eq.(C.25), we obtain
7 1 < da 1
Oph o . .
Pl 2.20) = Ghonion1 =l Y i [ o
X / % 1 1 [ef(iﬂfstJru)/T + 1}
oo 2mi B+ 1€ i + 1B — €, + 1

1/T 1/T
x / drryy el e o ) / dryeCo—s0m . (C.27)
0 -1/T

The integration with respect to 734 gives

1/T ) 2
/ . dT34€Z(€g/_5Z)7'34 — T(;M, (C.28)
~1

and the integration with respect to 73; gives

1/T 1
/ dT31€(iwn+iagfia75k1+u)731 — [ef(iaJrsklf,u)/T + 1] ]
0 Wy + 160 — 100 — €, + 14
(C.29)
Inserting these results into Eq.(C.27), we obtain
—0ph 1
Pietha koha O €6,60) = = 5000 Oy Okaka [1 — iy [Ty
) * da 1 1
X lim — — - . .
=0t J oo 2Tl o + 1N iwy, + 180 — i — €, + [
X [6_(ia+5k1 -1)/T + 1:| lim / ﬁ 1 .
e=0t ) 2mi B+ i€
1 [e—(iﬂ—skﬁu)/T + 1} ) (C.30)

teg + 108 —ep, + 14
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The integration with respect to a gives

[ T A — [ tiote /T 4]
=0t J_oo 2 o i iwy, +igp — e — € + [
1 1
= —- (C.31)
i(wn +e0) — €y + 1 —nyy
and the integration with respect to g gives
o= tm [ L 1 [0t/ T 1]
£-0t J_ oo 2mi B+ 1€ ieg + i — e, + 1
1 1
= - - - (C.32)
1Ep — Eky T M Ny
Inserting these results into Eq.(C.30), we obtain
~ 1 - -
R s (Wn €0 E0) = = 7000 Ok Oy Gy (W + €0)%k, (€0). (C.33)
Inserting Eq.(C.4) and Eq.(C.5) into Eq.(C.10), we obtain
. 1 1T . 1T '
‘%k1£2,k3k4 (wm €, 85/) = §5k1k35k2k4nk1[1 - nkQ] / d7—3161wn7—31 / dTQlelsle
—1T 1T
1T
% / drs et ™ e~ ek =131 o= (Eky =) (T21+734—731)
—1T
X 0(—731)0(T21 + T3a — T31). (C.34)

@,S?,fz,kgm (wn, €¢, ) contains two theta functions, i.e., O(—731) and 0(724) = 0(T91 + T34 — 731).
The theta function 6(—73;) constrains the interval of 731 to be —1/T < 131 < 0. Due to the
presence of 0(7y4), To4 and, hence, the linear combination 751 + 734 — 731 have an interval from
0 to 1/T. We choose To; to have an interval 731 — 734 < 791 < 731 — 734 + 1/T" and determine
the interval of 734 to be —1/T to 1/T. Under these considerations, Eq.(C.34) becomes

1

o 0 T31*7'34+1/T
54 _ LW T: 1EPT:
Ry et (Wns €0,€0) = < O0kiky Okipha Ty [1 — Ty drs€™" 731 dTo €1
1k2,kska 8
-1/T T31—7T34

1T
% / dry4e0 ™1 e~ (Er ~1)T81 o= (ky — ) (T21 4734 —731)
T

X O(=731)0(T21 + T34 — 1) (C.35)
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Next, we apply the integration representations of (—73;) and (721 + 734 — 731):

o] d 1QT31
0(—7'31) = — lim _Oé c -
n—0t+ J_o 2mi v 4 im

00 dﬁ e~ 1B(r21+734—731)

0 _ — i i
(721 + 731 — 7s1) ehor |__omi Byt

to Eq.(C.35) and obtain

égh,f kak (wn,&?g,Egl) = 15k1k35k2k4nk1[1 — nkz] lim lim h d_Oé L -
12,k 8 n—0+ =0+ J_ o 2mi o +im

0o 0
y / ﬁ 1 . gy eliwntiatiB—er, +2,)Ts1
oo 20 B+ 1€ J_qr

1/T ' ' T31—734+1/T ‘ '
% / d7_34e(lsel —if—Eky +11)T34 / d7_21€(zsefzﬁf€k2 +p)T21 )

1/T T31—T34
(C.36)
We first evaluate the integration with respect to 77 as follows:
T31—T3a+1/T o 1 o T31—T34+1/T
/ d7_21€(15¢71/3’7€k2+,u)7'21 _ : : e(zsgfz,@fstJru)‘rgl
Ta1—T34 €9 — Zﬁ — Eko + Hw T31—T34
_ 1 e(iag—iﬂ—€k2+u)(7'31—7'34)
isé_i/B_Ekz +u
X [—emte /T _q]
- _ 1 eliee—iB—epy +11)(T31-734)
i&g—iﬁ—&kQ—i—#
x e (PFer /T 4] (C.37)
Inserting this into Eq.(C.36), we obtain
~ 1 * da 1
th - - . . . et
‘%k1k2,k3k4 <wn7 2 55’) - 85k1k35k2k4nk1 [1 nkz] nli%lJr gli%{k L 2miatn
/oo ﬁ 1 _ | 1 [e~(iB+er—m/T 4 1]
oo 2mi Bl igy — il — €y, + 1

0 1/T
% / dTgle(iwn+i€z+ia—€k1+M)7'31 / d7_346i(€e/—€z)T34‘ (C.38)
1T 1T

The integration with respect to 734 gives

1/T ] 2
/ d7_34€1(831782)7'34 — T(SM/ (C39>

1/T
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and the integration with respect to 73; gives

0
/ d,]_gle(iwn—i-iag—kia—akl +u)TI1 1 [e—(ia—akl +u)/T + 1] )
T Wy, +igp +ia — e, +

(C.40)

Inserting these results into Eq.(C.38), we obtain

~ 1 * da 1
Ok .
K134 (Wns €0, 60) = —E(Sw'fsklksfskzkmkl[l — M) nlgg+ Smiot
X - : 1 [e—(ia—am /T 4 1}
Wy, + 180 + 10 — €, +
x  lim dp 1 ! [emtFtere=m/T 4 1]

£—0+ ,MQ_m,8+i£ieg—iﬁ—ek2+u

(C.A41)
The integration with respect to a gives
I, = lim d—& ! — - . 1 [e~tiaertm/T 4 1]
=0t J_oo 2mt o + 1 iwy, +iep + i — € + [
1 1
= — — (C.42)
i(wn +e0) — €1+ pny,
and the integration with respect to § gives
o= tm [ 1 1 [~ +s—/T 1]
=0t J_ o 2mi B+ i€ iep —iff — g, + 11
1 1
= — . (C.43)
1€¢ — €y, + 01 — npy
Inserting these results into Eq.(C.41), we obtain
~ 1 ~ ~
%]S?lfg,kglm (wﬂ? €, 85/) = _Eéeeléklkg(sk‘g/mgk‘l (wn + eé)gkg (5£) . (044)
Inserting Eq.(C.4) and Eq.(C.6) into Eq.(C.11), we obtain
. 1 1/T ) 1/T )
]8?]?2,]63]{?4 (wn? €e, 55/) = __5k1k35k2k4nk1nk2 / dT3leMn731 / dTQleZEZTQI
8 -1/T -1/T
1T
% / d7_34€i6517'346—(€k1 —H)7'31€_(5k2 —p)(T21+7T34—7T31)
1T
X 0(=T731)0(731 — To1 — T34). (C.45)
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ot kaks (Wn, €0, €p) contains two theta functions, i.e., 0(—7sy) and 6(—T7a4) = 0= (721 + 754 —

731)]. The theta function 6(—73;) constrains the interval of 73, to be —1/7" < 731 < 0. Due
to the presence of §(—Ty4), T4 and, hence, the linear combination 79 + 734 — 73; have an
interval from —1/7 to 0. We choose 79; to have an interval 731 — 734 — 1/T < 791 < 731 — T34
and determine the interval of 734 to be —1/7 to 1/T. Under these considerations, Eq.(C.45)

becomes

~ ok 1 0 ) T31—T34 )
WInT: 1EYT:
ov ko ks (Wns €0, E07) = —§5k1k35k2k4”k1nk2/ drge’r 31/ drye™ ™
-1/T T31—734—1/T

1T
% / dTg4e0 34 e~ (Eky =731 o= (Ehy =) (21 +734—731)
—-1/T

X O(=731)0(T31 — T21 — T34)- (C.46)
Next, we apply the integration representations of 6(—731) and (731 — To1 — T34):

[ee] d QT3]
9(—7'31) = — lim _Oé ¢ -
=0t J_o 2mi o 41

0o dﬁ e~ 1B(m31—T21—734)

O(T31 — To1 + T34) = _gl_if(% i EENT:

to Eq.(C.46) and obtain

R ) L S, lm lim [ 221
Wn, Epy Epr =  — =0k 1k3Okok, i, N, 1IN 11111 b -
k1ko,k3ka \*¥1 <65 ] 1k3Ykaka k1 T0ko =0t e—0t | o o+ in

e 0
/ % 1 : d,]_gle(iwn—l—ia—i/a’—akl+€k2)7’31
—eo 2mi B 48 g7

yr —_— N
% / d7-34e(1€g'+15—6k2+u)‘r34/ d7-21€(7452+15—5k2+ﬂ)721‘

X

/T 731—734—1/T
(C.47)
We first evaluate the integration with respect to 751 as follows:
317734 1 T31—T34
/ dT2le(isz+iﬁ—ak2+u)7—21 = - : 6(7;54+i/3_5k2+#)7—21
s1-m34=1/T iee+1f —ep + p T31—T34—1/T
— 1 6(i5£+i5—6k2+u)(731—7'34)
teg + 10 — e, + 10
X |:€_(i6_5k2+ﬂ)/T + 1:| . (048)
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Inserting this into Eq.(C.47), we obtain

~ 1 “da 1 < dps 1
Ohh _ : )
buka hoks (Wn €6 €0) = = G 0kiky Oy Ty My i Titn,  miatan /_OO it i
" 1 [ 8=k /T 4 1]
teg + 10 —ep, + 1
0 1T
X / dT31€(iw"+i€HmE’“lJr“)TSl/ dT34€i(€‘/7E‘)T34. (C.49)
-1/T -1/T
The integration with respect to 734 gives
1T
i(epr—€¢)T34 2
dr3ae" T = —0pp (050)
—l/T T
and the integration with respect to 73; gives
0 1
/ d,]_gle(iwn—i-iag—i-ia—akl+u)'r31 _ [e—(ia—akl—&-p)/T + 1] )
T Wy 4160 + 100 — €f, +
(C.51)
Inserting these results into Eq.(C.49), we obtain
~ 1 ) “ da 1
e kska (Wns E0,E0) = —E562/5k1k35k2k4nk1nk2 nlg(g miati
X 1 [e_(ia_gkl +w)/T 1]
Wy + 160 + 100 — €, + 1
x  lim / ﬁ ! e —— ! [e(B=er T/ T 4 1]
£=0+ J_oo 2mi B+ 1€ e + 1P — e, + 1
(C.52)
The integration with respect to a gives
I, = lim d_Oé‘ 1 _ : 1 [e—(ia—€k1+u)/T + 1]
=0t J_oo 2mL o +in iwy, +iep + i — € + [
1 1
- — (C.53)
i(wn +€0) — €k, + Ny
and the integration with respect to g gives
< d 1 1 ,
I,B = hm _ﬁ —— ‘ [e—(lﬁ—5k2+u)/T + 1:|
£-0t J_oo 2mi B+ 1€ ieg + i — e, + 1
1 1
= — (C.54)

iEg — Ey + U N,
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Inserting these results into Eq.(C.52), we obtain

- 1 _ _
]9;?]?2,]63]&1 (wn? €e; 55’) = _E655’5k1k35k2k4gk1 (wn + 55)%2 (55)' (055)

Finally, the Fourier transform of full finite temperature free response function 9370(12, 34) is
given by

~ 1 - -

%Sle,k3k4(wn,€z,aef) = —T5M5k1k35k2k4gkl (wn + é?z)%@ (é‘e)- n
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Appendix D

PC-F1 Force

The relativistic point-coupling Lagrangian density £ is built from the point couplings

of the general type [37]

(ﬁﬁTF\P) ) ﬁ'r € {177-1‘}7 I S {177H7757/757M70NV}’ (D1>

where W is the Dirac spinor field of the nucleon, 7; (i = 1,2, 3) are the isospin Pauli matrices,
and I represents one of the 4 x4 Dirac matrices. Following Ref. [37], we consider the following

four-fermion vertices:

isoscalar-scalar:  (UW)?
isoscalar-vector: (W, ) (Uy*0),
isovector-scalar:

isovector-vector:

and their corresponding gradient couplings 0, (---)0”(---). From these ingredients, we start

with the Lagrangian density .Z of the form
L = Lo P phot . pler | pem, (D.2)
Here ¢ is the Lagrangian density for free nucleons:
L = U(iv,0" — M)U. (D.3)
The interaction between nucleons is described by the four-fermion point-coupling terms:

2 = Las(T)(TV) — Jay (T, 0)([T)
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—, . 1 T = T =
— —aps(VTV) - (VTV) — éozTV(\I/T%\IJ) (UTHR)), (D.4)

the higher order terms:

L = BT — s () — v [Ty, ) (T, (D5)

which is responsible for the medium effects, and the derivative terms:

plder — —%(55(&,@‘11)(8”@\1/) — %5‘/(&/@7#\1})(6”@7“‘11)

— %5”(8”@?\11) (0"UFY) — %5Tv(aﬁ?wp) (" UTAD) (D.6)

simulating the finite-range effects. The electromagnetic interaction between protons is
described by

_1 1
L = —e AU (L Ty — Fu F™, (D.7)

where A, is the four-vector potential and the electromagnetic field strength tensor F*¥ is
defined as
Fr = orAY — 9" Ar. (D.8)

The value of 73 is +1(—1) for proton (neutron). The set of nine coupling constants for the
nonlinear point-coupling effective interaction PC-F1 is shown in Table D.1. In the PC-F1

parameterization, the coupling constants arg and dpg are zero.

Table D.1: The set of coupling constants in the PC-F1 parameterization [37].

Coupling Constant Value Dimension
ags —3.83577 x 1074 [MeV 2]
Bs 7.68567 x 1071 [MeV—2]
Vs —2.90443 x 10717 | [MeV ™8]
Js —4.18530 x 10710 | [MeV ]
ay 2.59333 x 10~ [MeV—2]
04% —3.87900 x 10718 | [MeV 8]
0% —1.19210 x 10719 | [MeV~
ary 3.46770 x 107° [MeV—2]
oy —4.20000 x 10711 | [MeV™]

From the Euler-Lagrange equation

0L 0 0%
- — | =0, D.9
ov  Oxt (8((‘9#\1/)) (D-9)
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we obtain the Dirac equation of motion for the nucleonic fields:

0 = {0 = M) = as(TW) - av (T W)y, — ars(TFY) - 7 - ary(TF"V) - 73,
_ _ o |
— Bs(W0)? = 95(TT)° — 30 [(T7. ) (T 0)]|(Ty"¥)y, — ez (1+ 70"
+ 850(TD) + Sy 0Ty T) vy + 07sO(TFY) - 7 + 7y O(TFOD) - f%}xp. (D.10)

The multiplication of Eq.(D.10) with 3 = +°, the application of the expansion

U(r,t) =) er(r)e " *ay (D.11)

to Eq. (D.10), and the mean-field approximation lead to
0 = {o—(a-p+BM) - Bas(®[TU[D) - fay (©[Tr Do),
— Bars(®[UTV|D) - 7 — Sagy (P|UTH*U|D) - T, — BBs(P|(VT)?|D)

— Brs(@|(TV)’[®) — yy (B[ U [(Ty, W) (U™ T)]| D)y,
— evoAu%(l + 73)7" + 65 BL(P WD) + Sy By, O[Ty T| D)

+ orsf7 - DUR[TFT(D) + Sry f7va - D(B[TFW(D) foy(r). (D.12)

Introducing the following density and currents:

ps(r) = D m@n(r)pn(r) = (Q[TY]P), (D.13)
Jv(r) = zk:nksok(r)v“sok(r)E@I%“‘PI@, (D.14)
jrs(r) = ink@k(r)ﬁpk(r)z(‘DIW?‘I’I@% (D.15)
Jry(r) = ;nk@k(r)ﬂ“wk(r)E@IEF’V“‘I’!‘I’% (D.16)

Eq.(D.12) becomes

aon(t) = {a-p+BM + Blasps(r) + Bsph(r) +5pb(r) + 55V 2ps(r)
+ arsT jrs(r) + 6rs7 - Virs(r)] + Blav.jt(r)
A O)dva(0)3 () + SV () + enuAML (1 + 7)
T+ arv T Fi (1) + oy - ()] (). (D.17)
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Assuming the time-reversal symmetry of the mean field and the isospin 73 is a good quantum

number, the currents j%(r), jrg(r), and j% (r) respectively become local densities:
pr(r) = D mpe(r)y’err) = > npel(r)pn(r), (D.18)
k k
prs(r) = Y np@i(r)Tsen(r), (D.19)
i

prv(r) = an@k(r)rg,’yogpk. (D.20)

Equation (D.17) then becomes the time-independent Dirac equation for nucleon:

cwprlr) = {opot BM 4 Blasps(r) + Bsph(r) + rsb(c) + 5V ps(r)

+ marsprs(r) + 13005 V2 prs(v)] + [avpy (r) + v i (r)

+ Sy Vi (r) + eAO%(l + 73) + T3y prv(r) + 73(5TVV2pTV(r)]}<pk(r)
expr(r) = hPpu(r), (D.21)

where the Dirac Hamiltonian AP is
WP = o -p+ BIM+ S(r)] + V(). (D.22)

Here the scalar potential S(r) consists of the isoscalar-scalar Yg(r) and isovector-scalar

Yrs(r) self-energies, viz.

S(r) = ¥s(r) + mErs(r), (D.23)
Ns(r) = agps(r) + Bspe(r) +vsp5(r) + 65V ps(r), (D.24)
Yrs(r) = (ars+ orsV?)prs(r). (D.25)

The vector potential V' (r) is also decomposed into two self-energy terms, viz.
V(r) = Zy(r) + v (r), (D.26)

where the isoscalar-vector ¥y (r) and isovector-vector Y7y (r) self-energies respectively are

given by

Sy(r) = avpy(r) + vy () + 0vVipy (r) +eA (1 + 13), (D.27)
ETV (I‘) = (OéTV + 5TVV2)PTV<r)o (D28)
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From the Lagrangian density, we can obtain the total Hamiltonian H via

i ., [ ocC o oL

Insertion of Eqgs. (D.2)-(D.7) into the expression of total Hamiltonian H leads to

A

1 - 1 — _
- / Pr{ Wl o pt MY+ Jas(T0) W) + Sav(T,0)(T0)
J — | - 1 —
+ 50@5(\11?\1/) (7Y + §aTV(w%xp) (U + gﬁs(wf)?’

b s + (T ) (T

_ %55[@@@)(@0@) L (VT - (VTD)]

_ %M(aﬁ%\y)(aowtqf) + (VT ) - (VT

L[0T - (VTR + (VTR - (VI

1 _ __ _ _
= SO0, Y) - (TFW) + (VI W) - (VI )] |

1 . —
— §/d3r [AJAj + (VAH) . (VAM)} —i—/di)’r\I/F’e‘Au\Il. (D.30)
Using the mean-field approximation, the energy density functional reads:

Epwr[p, 4] = (O|H|®)

= /d3r{ Zw;(r,t)(a P+ BM)Y(r, 1) por
+ 561521/% I‘t 07»/}6 PEkZ¢T I‘t O¢n( )an

1

i §avz¢k(1‘, )7 e (T, pzkzw )Y P (T, 1) e

1
+ §aTS Z% ’Y wa pfk’ Z@DT 7 Twn )pnm

1
- gawak £ Tyt (r, t) por - Zw* ) T (1, 1)

n %ﬁsZwk 07 (e, ) 3 UL ()

Z ¢T %’q t)Pgp

X
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X

X

75 Z U, )7 e(r, £) p Z O, (0,07 4 (1, 8) pram
Z w}x )7°q(x, ) pgp Z w* )75 (r, ) s

7\/2% )Y e (r, 1) pon Zl/ﬁ )77 (x, £) P

Z W( 7 ’Ya% pqp Z W a% )Psr
555 Z aowk 7 w@ p@k Z anT fYOwn )pnm
305 IV ULe 1t e SV 5,07 (e Dl

1
§5V Z 301/1;C 7 %W Pek Z 301/)T 707“1%( )an

3 DIV ke, 3 el s - 3 ITH 11020 Dl
éémz O D07, Dl - SO P (2, D]
%5”2 [V, 7 7o (r, )l pae - [V, (0, )07 (X, )] prm
%&FV% Otk (x, )y Tye(r, )] pu Z O, (0, 1) 707" P (X, £)] pm
%mZ[w};(r,t PO, Dl - 3 IV (6, 0307140 . )
Z% T A, t)Pék} - —/d3 [AJ'Aj + (VA" - (VA

(D.31)

The first variational derivative of Eryr[p, A] with respect to p gives the matrix element

D __
Hab_

5ERMF [167 A]

5pba

/d%‘{d}l(l‘, t)[a P+ 5M]wb(r7 ) + O‘SZN( )7 pS( >wb(r7 t)
ayv il (v, )7 58 (0, D)y (r, £) + arsyl (v, )77 - Jrs(r, )y (r, t)
aTV¢T(
Vsl (x,t

0T - iy (2, 00 (e, 1) + Bl (v, )7 05 (x, )y (r, 1)
)7 05 (r, ) (r,8) + Wl (v, 0)70758 (v, E)jva(r, )33 (r, 1)t (r, 1)
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— 05000, (r, )by (r, )0 ps (x, 1) — 65 [V, (x, )by (r, 1)] - Vps(r, t)

— Oy O, (r, )yt (r, )50 (x, 1) — Sy [V, (x, )by (x, )] - Vil (r, )

— Ors000, (r, )7y (x, 1) - O frs(x, 1) — ors[V P, (v, )7 (x, )] - Virs(r, 1)

— Oy 00, (r, )Pyt (r, 1) - Ol (v, 1) = Oy [V, (x, ) Py,uthu(r, 1)] - Vil (x, 1)

+ U LA D) |, (D.32)

where the charge density pg(r,t) and the current densities ji(r,t), jrs(r,t), and 7% (r, )

are
ps(r,t) = Y (0, )0n(r, ) pum (D.33)
e t) = gﬁm(r,t)v"wn(rﬁpnm; (D.34)
Jrs(rit) = §Em<r,t>wn(r,t>pnm; (D.35)
iy (r,t) = gﬁm(r,t)f'y“wn(nt)pnm- (D.36)

The static approximation
Va(r,t) = pu(r)e ! (D.37)

and the single-particle density matrix
Pab = na(saby (D38)

where n, is the single-particle occupation numbers, lead to the time-independent charge

density and current densities:

o)) = 3 gy (F1 (), (D.39)
jy(r) = inm%(r)v’iwm(m, (D.40)
Trs(e) = 3 () (). (D.41)
() = énm%(r)ﬁ“wm(r)' (D.42)

Accordingly, the matrix element HE reduces to the matrix element of the Dirac Hamiltonian
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[ el

+ o+ o+

+

/d3 {%0 (r)[ee - p + BM]ipy(r) + g0l (1) ps (x)ipn(r)

vl (0)727,.56 (1) es(r) + arsel (177 - jrs(r)es(r)

ary el (r)7"7 - Vit (1) @u(r) + Bsh (r)7° o (r) oy (x)

Y525 (1)7° % (r)0n(r) + W el (1) 1074 () jva(r) i (1) s(r)
0s[VP,(r)pu(r)] - Vps(r) — ov[VB,(r)vups(r)] - Vi (r)
015V B, (r)Tpu(r)] - Virs(r) — o7y [VE,(r)Pyupn(r)] - V iy (r)

Pulr) T Ain(v) . (D.43)

The integrals involving the V can be transformed as follows:

[ Vet Vost) = - [ @, 6V s (D.44)

[ Ve ) Vit = - [P T nam. 005
[ Ve 0] Vi) = - [ Ep,m7 Vistat), 040
[ Ve ] Vi@ = - [ @, Vi oae. )

The matrix element of the operator hP then becomes

/ dr ol (1)hP gy (x)

/ Prolr){ (e p+ BM) + as)’ps(r) + avy ™t (x)

ars?’7 - jrs(r) + arvy 7 - it (x) + Bs7 o3 (r)

157"P5(x) + W0Vt (1) jva (1) (r) + 657 V2ps(r)

vy Y. V2t (x) + 6757°F - V2jrs(r)

Sy T, - VZJ#V(I') + ’yOFgA”}gob(r) (D.48)

+ o+ o+ o+

and the Dirac Hamiltonian A is given by

W = (e p+ BM) +9°s(r) + 7 S0 (1) +1°7 - Srs(r) + 77y, Sy (1),

(D.49)
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where

Ns(r) = agps(r) + Bspe(r) +vsp3(r) + 05 V2ps(r), (D.50)
Sh(r) = avil(r) + il (v)jva(r)jp(r) + 6y V2l (r) + THA,, (D.51)
Srs(r) = argjirs(r) + 6rsV2irs(r), (D.52)

Shy = arviiy () + 6rv Vi (r). (D.53)

Assuming the time-reversal symmetry of the mean field and the nucleon single-particle states
do not mix isospin, the current densities (D.40)-(D.42) reduce to local densities py (r), prs(r),
and pry(r). Under these assumptions, we, therefore, obtain the Dirac Hamiltonian hD given
by Eq. (D.22).

Using the static approximation and the single-particle density matrix pg = ngdeg, the

energy density functional Fryg[p, A] becomes
Bunlp ) = [ Pr3 o melwep+ A
+ /d3 /d?”znksok r)7 r(r) 56 (r — v ans@m )7 P (')
+ / dr / dSr’anwk(r)vowwk(r)75(r—r’)znmwk(r’)vov“s@m(r’)
+ /d3 /d3 ’ank 1)y sn(r) — =0 (r — 1’ ansom ') T3 (1)
ey d%’ansok(r)vofgvusok(r)Ta(r ~v)
x ansom )7 757" o (1)

’
+ =Bs | &Pr [ &P | P ngel (r)7 or(r)d(r — 1)
> ol ()7 ()5 (1 = 1) > npel (1)1, (x")

m

1
+ 175/d3r/d3r'/d3r”/d3r”’ang0£(r)w0gok(r)5(r—r’)
k

X ansom )7 0m (t)3(" = 1) o) ()7 0, (x")S (2" — x)
p

X

X Znssﬁs (r")7 s (x")
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1 ! " " ,
+ ZVV / d3r/d3r /d3r /d3r Z "W;(F)WOW%(r)é(r o )
k
Z Nl (27 7 o ()8 (x' — 1) Z nngL(r")fyofyaz/)p(r”)é(r” —1")
" p

X

xS im0 e ()

# [ [ @SB a3 ) D mnBuleen)
ey KM LT R S SE S
+ / d’r / d3r'zk:nk@(r)wk(r)%amv%(r—r');nm%(r’)wm(r')
+ / dr / d3r'Znk@(r)fgmpk(r)%mv?(s(r_r')

< Y ) onl) + [ > melen S (1 m)er Ao(r)pur)

1 3 0
_ 5/d r(VAY) - (VA). (D.54)

The zeroth component A%(r) of electromagnetic field satisfies the Poison equation

— V2A%(r) = ep.(r), (D.55)

where the electric charge density p.(r) is

and its solution is given by

Z N (r 1 + 73) ¢ (r) (D.56)
opy = & [ oy Pt)
A’(r) = gy /d r Fl (D.57)
Accordingly, the last integral on Eq. (D.54) can be expressed as
1 1
-5 / Pr(VA) - (VA) = — / PrV - [APV A+ / PrAV? A,
=

= 1/d3rAOepc( )
_ = 3 3./ /
o L K s
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_ __/d3 /d3 ’anapk 1+73)90k( )

2

e 1
x 4W|r_r,|2n NG+ men().  (D5)

The insertion of Egs. (D.57) and (D.58) on Eq. (D.54) leads to

Ernrlp, A

+

X

X

X

[ xS e v+ 300
/d3 /dS’ank r)y pn(r) =0 (r — 1’ anwm )7 (r')
/d3 /d‘””ans@k r)y upn(r) —-0(r — 1’ anwm )70 o (')
[ [ Xk;nksoarwofswk(r)Ta(r 1) 0 @)
/ « /

/dgr/d3r angal(r)v%%gpk(r)%é(r —1')
ansom r')70737" 0 (1)
1 / !/ /
gﬁg/d3r/d3r /d3r ;nsz(r)'yogpk(r)é(r—r)
> ol ()7 ()5 = 1) > npel (1)1 0, (x")
m p
1 / /! u /
Z—ng/d?’r/d?’r /d3r /d3r zk:nkgol(r)vogok(r)é(r—r)
D b () o (x)8 (" = 1") Y nyeh (1)1 0, (x5 (" — 1)
m p
> nepl () (r)
;NV/d3r/d3r’/d?’r”/d3r”’anwl(r)vowwk(r)é(r—r’)

K
ansom )7 om (X)5(x = 1) Y il ()7 Yathy ()5 (2" — )

p

Znssos (x5 (x")
/ iy / i Z mBu(r) () 505V (r — ') ; B () o (1)
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/ — 1 / — / /
b [ [ Y neen ) ;R 1) Y mpa ) e ()
k m
+ /dgr/d3r'zk:nkak(r)ngok(r)%(STgVQé(r—r');nm@m(r’)ﬁ,gpm(r')
/ — 1 /
+ /dgr/d?’r Znkgpk(r)fg%gok(r)§5TVV25(I'—r)
ansom )37 o (r /d3 /d3 ’ank 1+Tg)90k( )

Z T @), (T 1+Tg)wm( ) (D.59)

X

47r |r — r’|
Let us define Tr[@p(r)] as

Tr[Op(r) Z npl (r (D.60)

and its first functional derivative with respect to p(r) as

~

Tr[0p(r)] = O5(r —1'). (D.61)

op(r')
Using these definitions, the first functional derivative of Eryr with respect to p(r) reads

d Ermr
op(ry)

= (a-p+M)Y +ag / Bry"Ws(r; — r) e[y p(r)]
+ ay / d*ry" Dy Vs (ry — 1) Tr[r v p(r)]

+ OzTS/d:Sr’yo(l)T?El)d(rl — 1) Tr[y"735(r)]

+ ar [ d?’mO“%é%g”a(rl 1) ey 7y ()]

4 B [ [ @5 - ) T w)lste — ) o)

+ fyg/d?’ /d3 ’/dgr” 0§ (r; — 1) Tr[y°p(r)]

x O(r—r1 Trvp I‘—T)TT[VP( Nl

+ ’Yv/dg /d3 //d3r// 01)’}/(1)5 rl —I‘) Tr[vov“ﬁ(r)]

0. an

X 8(r — 1) Tr[ y,p(x)]o(r" — ") Tr[y°y* p(x")]
+ /d3r70(1)§5sv25(r1 —1) Tr[y°p(r)]
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+

Fr I ()] 5350 (x — 1))

dPry" Al 25 vV23(ry — 1) Trly"y"p(r)]

Pr T35 ()]0 V5 (r — 1) )
d3r70(1)7§1)%5T5V25(r1 — 1) Tr[7 73p(r)]

d’r Tr['yorg)ﬁ(r)]lgTSV?g(r — )Y

Py o0 S0 T80 — 1) Tely iy ()]

0(1) (1) (1)

— S S S

1
d’r Tr[y ' 757,p (x) | 500y V2o (r —11)y

/ 2

/d3rTr {%(I—I—Tg)ﬁ(r)} o 1 {1(1+¢3)] v (D.62)

AT |r — 14

1 Wez
[pum]

A |ry —r|

ISH
o

Tr {%(1 + Tg)ﬁ(r)}

N — N~

The second functional derivative of Eryr[p, A] with respect to p(r) gives the particle-hole

interaction:
VP(1,2)
Since
”YO ,yo
’YO%

+ o+ o+ o+ A

52ERMF
3p(r1)0p(r2)
V'Ol + 28sps(r1) + 3ysps(r1) + 65V]0(ry — ra)y"®
VDY Dy + 3yvpi(r1) + 6y V2a(ry — 12)[°®7)]
70(1)%(1)][04\/ + 3P (r1) + v V2o (r) — 1) [y oe )71(2)]
70(1) X T:)El)] lars + 5TSV2]5(F1 - 1‘2)[70(2) ® T?EQ)]
PO © 75y Wy + 5y VI8 — 1) @ 75770
70 @ 7y Mlary + v VA8(r — 1)1 @ 74(2)7'¢)

B(Hﬁ)}mi 1 {1(1+73)](2). (D.63)

47 |I‘1 — I'2|

(1 0><1 0>:<1 0>:1®1’ (D64)
0 -1 0 -1 01

1 0 0 o; . 0 g; . '
(0 —1><—0i 0)(01- 0)75@0“ (D-65)




- 1 0 0 —o0; 0 -—o0;
0.1 ) 7
— = = —v5 ® 0y, D.66
7 (0—1)(01- 0 ) (—ai 0 ) 5 ( )

the particle-hole interaction VP"(1,2) then becomes

VP1,2) = {1’ ®@1®1}W]as + 28sps(r1) + 37sp5(r1) + 65 V26 (11 — 12)

x {Y®121}@
+ {1®@1@1}Yay + 3ywpi(r) + 6y V3]o(r —r){1®1® 1}
— {s®0 o1}V ay + 3yp%(r1) + 6 V]d(r1 — o) {75 @ 0y ® 1}
+ (Y’ @1@n}Vars +6rsVo(r — 1) {7’ @ 1 @ 73}
+ {11275}V +0rv Vs —r){1®1® n}?
— {1 @0 ntVary + oryV2s(r1 — 12) {75 ® 0; @ 73}
) M2 1 1 )
+ [5(1 + 73)} P F— [5(1 + 73)] : (D.67)

The scalar product between two Pauli matrices, viz.

oMol = Z oMol (D.68)

1=T,Y,2

can be expressed in terms of the spherical Pauli matrices ogpg, i.e.,

1 _ 1 ,
0p0 = ]_, O1(4+1) = —E[O’x -+ ZO'y], 010 = Oy, O1(-1) = E[UI — ’LO'y], (D69)
as
1) (2 1 2
oMo® =3 (~1)Msoly ol (D.70)
Mg

Using the definition of the spherical Pauli matrices, we can rewrite the particle-hole

interaction VP2(1,2) as

VP(1,2) = {7°® 000 ® 1}V [as + 28sps(r1) + 3yspa(rs) + 6sV2](ry — 1)
{+" ® g0 ® 1}
+ {1® 000 @ 1Y V0ay + 3y p2(r1) 4+ 6y V(1 — r2){1 ® 09 @ 1}
= D> ()M @ o1 @ 1} Vfay + 39w (r1) + 6y V23(r1 — 12)

Mg
x {5 ® oyng) @1}
+ {70 & 0o & 73}(1)[CYTS + 5TSV2]5(I“1 - 1‘2){70 & 0o & Ts}(z)
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+ {1® 000 @ 73} V[ary + 60y V]0(r1 — r2){1 @ 009 © 73}
- Z(_l)MS{% X o1Mmg @ 7'3}(1)[CYTV + 5TVV2]5(I‘1 —T9)

Ms
@) 1 1) e2 1 1 (2)
_ —(1 — | =(1 (D.71
X {7V @ 01—mg) @ T3+ {2( +7'3)} oy E— {2( +T3)] ( )
The expansion of Dirac delta function
(5(7“1 — ’I"Q) %
O(r1 — 1) = == Yiar, ()Y, () (D.72)
T2
LM,
results in the term
1 1 2 (2
Z Z (_1)MSUS9A)43YL(A)4L : Ug()_MS)YLJ(wl (D.73)

Mg LM,
for S =0 and S = 1. This term can be expressed in terms of the coupling between spherical

spin and harmonics,

[USYL]JM = Z <LMLSM5|JM>YLMLO'SMS, (D74)

Mp Mg

as

1 1 2 (2 1 2
DD (D)Mo Vi, 0wy Vi, = D losYilyilosYlliy

Mg LMy, LIM
(D.75)
The particle-hole interaction VP(1,2) now becomes
o(r1—r
vi2) = T S 006 oy @ 1O + 28s0s(r) + Brspdie) + 5V
2 pm
x {1 @ [ooYilom © 1}
ori—r
b M) S gVl © 10l + 3w (1) + 6V
"2
X {]_ X [JOYL]JM & 1}T(2)
o(r1—r
b M) S o Vil 0 110 [y — By (1) — 6,97
"2
x {7 ® o1 Y] © 11T
or1—r
* % > 1 @ looYilom @ 7} Vlars + rs V]
2 M
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X {VO ® [ooYL] v @ 7'3}“2)

S —
+ o —r) Z {1®[00Yz]sn @ 7Y V]ary + 67v V7]
nr2
x {1® [ooYz]sm @ 13}@
Sl —
+ o — ) Z {vs @ [01Yz] s @ 3}V [—ary — 0y V7]
2w
1 M2 4 o @)
X {’}/5 & [01YL]JM & Tg}T(2) + |:§(1 + 7'3)‘| 47Tm |: (1 + 7'3):| . (D76)

For the case of spherical nuclei the total angular momentum J = L + S is a good quantum
number. When S = 0, there is only a single value of L = J for a specific value of J. On the
other hand, there are three possible values of L =J—1,J,J+1 for S = 1. We assign S =0
to a scalar and time-like vector and S = 1 to a space-like vector. Then the possible values

of L for each value of S are

(D.77)

I J, for § =0,
)l J£1, for S=1.

Together with two possible values of T" = 0,1, we end up with eight possible combinations

(channels ¢) of quantum numbers S, L, and T', which are listed in Table D.2.

Table D.2: The list of channels ¢ = (D, S, L, J, M,T).

c|D|S L T Yo & [JsYL]JM(X)TTO
1SS0 J 0] %®oeYr|imw®1
2|1V 0 J 0 1® P70}2JJﬂ4'Q§ 1
3| VI1|J=1]0]| w@[oYi]imw®1
4 VI]1]|J+1|0] meeY)mel
50810 J 1| v®[ooYL]lim @73
6|V 0 J 1 ].Q@[OOYl]JA{Q§73
TIVI1[J=1]1] %®[01YLlinu®Ts
8|V I[1|J+1]1]| 1®[01Y]im® 73

Apart from the Coulomb interaction, the particle-hole interaction VP%(1,2) takes the

form:

VPh(1,2) Z Ty (r FT (no Coulomb term), (D.78)

179

where the vertices

L. =9 ®[osYL]sm @ Tro (D.79)
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consist of matrix vp of the types:

1 0 10 01
%:<0—1)’ 12(0 1)’ 75:<1 0)’ (D-80)

the coupling [0sY7 | n between spin S and angular momentum L, and the isospin matrices
Tro of the types:
Too = 1, Ti0 = 73- (D-81)

Using the identity

/0°° 2,00 =) O(r — T"’)vm/(r) _ Mvw,(rl), (D.82)

rry TrTro rTo

the particle-hole interaction (D.78) thus becomes

R B S

0 rTro

Y T
= / err/ T/QdT/Zle)(T)UCCI(T, r')QL@) (r'), (D.83)
0 0 cc!

where vew (7, 7") = (1) d(r — r') and the single-particle operator Q((;l)(r) is defined as

or—r ofr—r
Q) = w0 6 ey 2, @ ol (D.84)
1 1

The effective interactions v.(r) are summarized in Table D.3 and the Laplacian operator V?

takes the form:

g L2fe0) Hiry

2 Or or 72
9F LI+
_ _Eg __>—r2 (D.85)
B 10 ,0 L(L+1)-2 D.86
R (D£6)

At this stage one can summarize the important results of this subsection as follows.
Starting from the Lagrangian density . (Eq. (D.2)) with the nonlinear point-coupling
interactions PC-F1 (see Table D.1), one can derive the time-independent Dirac equation for

nucleon
iLDSOk(r) = eppr(r), (D.87)
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Table D.3: The effective interactions v.(r) for each channel.

Character ve(r)

Scalar as + 2Bsps(r) + 3ysps(r) + 05V?
Timelike vector ay + 3y pi(r) + 0y V2
Spacelike vector —ay — 3ywpi(r) — 0y V2

Isoscalar arg + opgV?
Timelike isovector apy + 0y V2
Spacelike isovector —agpy — Oy V2

where the Dirac Hamiltonian A” reads
WP =a-p+B[M+ S(r) + V(r).
Here the scalar potential S(r) and vector potential V'(r) are given by
S(r) = Xg(r)+ mXrs(r), V(r) = Zy(r) + Xy (r),
with the self-energies ¥;(r) (i = S, V, T'S, TV) are

) = asps(r) + Bsps(r) +vsp5(r) +05Vps(r),

r) = (ars+0rsV?)prs(r),
) = avpv(r) + e (r) + 0vVipy(r) + eA’ (1 + 73),
) = (arv + orvV?)prv(r).

In obtaining the Dirac equation (D.87), one has made use of the mean-field approximation,
and assumed the time-reversal symmetry of the mean field and the isospin 73 is a good

quantum number. Together with the various densities p;(r) (i =S, V, T'S, TV):
ps(r) = an@k(r)%(r),
k
pr(®) = > npk(r)ex(r),
i
prs(r) = an@k(r)ﬁ%%(r)a
k

prv(r) = Y mp(r)msy er(r),
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and the zeroth component A°(r) of electromagnetic field:

0 _ € 3./ pC<I‘/)
A (r)ﬂ/drh‘—r’\’ ancpk (1 + 73)pp(r),

Dirac equation (D.87) can be solved in a self-consistent way to obtain the single-particle
basis, which consists of the Dirac spinors ¢ (r) and single-particle energies €. Apart from the

Coulomb interaction, the particle-hole interaction VP®(1,2) has a multi-channel structure:

VPR(1,2) / er/ r2dr! ZQ ) (1, T)QT(Q)( ",

cc’

where the single-particle operator Q((;l)(r) is defined according to Eq. (D.84) and Table D.2.
The interaction matrix elements v (r,7”") are diagonal in the channel and radial coordinate
representations, i.e., Ve (7, 7") = v.(7)ded(r — 1'), where the effective interactions v.(r) are

given in Table D.3.
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Appendix E

Time-reversal Transformation

The time-reversal operator 7 is defined as [176]
T =UK, (E.1)

where K is a complex conjugate operator and Uis a unitary operator. The action of operator

T on a single-particle state |7m) with angular momentum quantum numbers (j, m) defines

time-conjugate state [jm) as
gm) = Tjm) = (=1)""|j —m). (E.2)

We summarize the properties of operator T as follows:

A. The time-reversal operator 7T is an anti-linear operator since the inner product of two
time-conjugate states satisfies:
alp) = (uldUv) = Culvs) = (plv) = (vlw). (E.3)

~~
=1

=
I
I

B. The Hermitian conjugate of operator T is its own inverse:
T = KUk = KK =1 or 71=71. (B.4)
C. For fermions (with half-integer j), operator T satisfies:

T2jm) = (=177 F1j = m) = (~1P (=1 jm) = (=1)%|jm} or T2= 1.
(E.5)
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The time-reversal transformation of a one-body operator F' is [165]

(7’1F?jT:(—1fﬁy (E.6)

where S = 0 for time-even operators, i.e., scalar and time-like parts of vectors, and S = 1 for

time-odd operators, i.e., space-like components of the vector fields. Accordingly, the matrix

element (fi|F'|7) can be evaluated as follows:

(alFI)

(Bl F1w)

Similarly, one also obtains

(alFlv) =

(
(
{
(
= (|7 Fp)
(
(
(
(=

37y (by defining (7|F = (7])

T

|
ylvy*  (by property A of operator T)
|y

/)

T

1T77)

V|T_1FTTT_1|M>
v|T VT )
o (T70T) )
1S (vl ). (E7)

K| KUK)
Kv|UKUK|~)
v[T?ly)  (by the definition of operator 7

ﬂ> §> §>

()

@7 1)
draally
~(\ TP T )
| (T ET) 1)

(~1)5(|Fl). (E8)
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Appendix F

Some Useful Formulas From The
Quantum Theory of Angular

Momentum

F.1 Clebsch-Gordan Coefficients

The state vectors |yjijajm) are given in terms of the state vectors |yjimijams) by the

unitary transformation

[V1g2gm) = Z [vgimajama) (Gimajameljijagm). (F.1)

m1,(mz2)

The additional quantum numbers < clearly are not included in the coefficients
(jimajamal|jijegjm). These coefficients are known as vector-coupling, Wigner, or
Clebsch-Gordan (C-G) coefficients. The pair j,m are determined by j; and js

according to the vector addition rules:

J o= htdnntie—Li+j—2 |51 —Jo| + 1|51 — j2 (F.2)

Since m is fixed by 7 and m = my + msg, my is determined by m; and m. This is the reason
mo is written in parentheses in the summation symbol. The Clebsch-Gordan coefficients

are zero unless the vector addition rules are satisfied.
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The inverse transformation is

[yjimajama) = Z [vi1d2dm) (Grjedm|jrma jama), (F.4)
J

where the coefficients (j;jojm|jimijams) are the complex conjugates of the corresponding

coefficients (j1mqjoma|j1jajm):
(Jrjejm|jimyijame) = (jimaijama|jijzjm)”. (F.5)

The summation is over j only because m is fixed by the fixed values of m; and msy. The
Clebsch-Gordan coefficients are often abbreviated by (jimyjams|jm) and (jm|jimijams).

The Clebsch-Gordan coefficients are usually taken to be real:
(gmljimajama) = (jimajama|im). (F.6)

The orthogonality relations of the Clebsch-Gordan coefficients are

> (G jamb | jm) (frmagamaim) = S, Ompma (F.7)
j
> Gimagama|i'm') (Grmagamalim) = 5i0mm. (F.8)
m1,(mz)

Setting j' = j and m’ = m, the last equation gives orthonormality relation

> [Gimagamaljm)|* = 1. (£.9)

mi,(ma2)

The symmetry properties of Clebsch-Gordan coefficients are given as follows:

1. The cyclic exchange of the type 123 — 213 introduces the phase (—1)71 772773,
(rmagamaljsms) = (=1)"F275 (jymyjima |jams). (F.10)

2. The cyclic exchange of the type 123 — 3(—2)1 introduces the phase (—1)7177%™2 and

a multiplication factor.

2j3+1
2j1+1

(jimajamaljzms) = (—1)71 78 +m: (Jamsjz(—ma)|j1ma). (F.11)

3. The cyclic exchange of the type 123 — (—2)31 gives the phase (—1)”27™2 and a
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multiplication factor.

. ‘ ) ams 273+ 1, . ‘
<]1m1]2m2|33m3> = (—1)]2+ ? ﬁ@ﬂ—mﬂjsmﬂjlmﬁ- (F-12)

4. The reverse of the signs of all three m’s gives the phase (—1)71727Js,
(Jimagamaljams) = (=1)7 79275 (jy (=my) jo(—ma)|gs(—ms)). (F.13)

F.2 3-5 Symbol and the Wigner-Eckart Theorem

The 3-j symbol of Wigner is defined as

Ji J2 U3 (—1)fr—d2mms . o
= ——————(j1imyjam —m3)). F.14
<m1 My ms > s 1 1 (Jimajama|jijzgs(—ms)) ( )
The symmetry properties of 3-j symbol are given as follows:

1. The numerical value of a 3-j symbol remains unchanged under an even permutation.

(]1 J2 J3>:(j2 J3 ]1>:<J3 J1 ]2>. (F.15)
myp Mo Mg mo M3z M ms3 M1 Mo

2. The odd permutation gives multiplication factor of (—1)71172+Js,

i (0B ds (i s\ B
my Mg Mg mo My Mg my M3z Mo

_ J3 J2 N (F.16)

ms3 Mo 1M ‘ ‘

3. The reverse of the signs of all three m’s introduces multiplication factor of (—1)7t+72%Js,

JiJ2 s — (—1)iriztis s (F.17)
mp Mo Mg —ha Ty —m3

The orthogonality relations of 3-5 symbol are

Z(2j3+1)< i J2 s ) ( JuJ2 s ) S S - (F.18)

! !
: my My m m, ms m
J3,m3 1 2 3 1 2 3
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J1 J2 J3 J1 Jo Js 1
5. (P9
Z ( my my Mg ) ( my my mh ) 2j3 4 1 73T (F-19)

mi,(ma2)

Some useful formula for calculating 3-7 symbol are

J J 0\  (-1/M™
(M SR I (F.20)
JoJ 1\ sy M
(M o) = Y VeI D)+ 1)J (F2)
JooJ LY e 20 = M)(J+ M)
(M M1 1] - (=1) \/ (2J +2)(2J +1)2J (-22)
( i J2 s — 0, if my+me# —ms. (F.23)

The Wigner-Eckart Theorem can be stated as follows:

Let T f be a spherical tensor operator. The projection quantum numbers
dependence of the matrix element (v'j'm/ |Tj|7jm) is solely contained in the
Clebsch-Gordan coefficient.

) . g k)
it K iy (qyi-m I (=m)|S'
(' | T3 [vgm) = (=1) ST

Here, the matrix element (v/j'||T%||yj) is called the ”double-barred” or “reduced”

51T ||v4).- (F.24)

matrix element. Instead of Eq. (F.24), one often uses the following statement of the

Wigner-Eckart theorem:

-/

. ~ . i ! ] k ] . = .
(Y m Ty |yjm) = (=1) , N 3). (F.25)
q m

—m

F.3 Spin Angular Tensor Operator

The spin-angular tensor operator 1T;rs) are defined as

TJLSM(H)0102 = Z<LmSM|JM>YLm(n) (JSH)U1027 (F26)

mp

where n = r/r, Y,,(n) are spherical harmonics functions, and g, are the spherical spin

Pauli matrices. Here, m, u, and M have values
m = —L,---,L;
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noo= _5775’7
M = mbp=—J -, J (F.27)

For S =0 and S = 1, the spherical spin Pauli matrices are given by

10
o0 = (0 1)7 (F.28)

1 0
o1 = 0,= , F.29
(1) -

1 , 1 0 2
O1+1) = _E(%+wy):_ﬁ L (F.30)

1 . 1 00
Oi—1) = E(aw —ioy) = E ( 5 0 ) . (F.31)

The components of spherical spin Pauli matrices can be written compactly as

Oz —01 H

<0—5u>m:¢2<2s+1><—1>%-“(% : S>, (F.32)

where 01,05 = £3. Inserting S = 0 and S = 1, one can reproduce (F.28)-(F.31). Since the
Clecbsch-Gordan coefficients are real, (F.32) suggests that the spherical spin Pauli matrices

are also real. The spherical spin Pauli matrices satisfy orthogonality relation:
Lo
§Tl“(051m(752u2) = 65152(5M1M2' (F33)
The orthogonality relation of the spherical harmonics functions Y7,,(n) is
/dn ng(n)YL/m/(Il) = 5LL’5mm’~ (F34)

Applying (F.33) and (F.34), we obtain the orthogonality relation for the spin-angular tensor

operator Typsy(n):

1
5 Tr / dn T}1L15'1M1 (n)TJQLQSQMQ (l’l) = 5J1J25M1M25L1L255'152' (F35)

The completeness relations of the spin-angular tensor operator are

2J+1
A

Z Tl s () Tyrsu(n) = (F.36)
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1 *
) Z TJLSM(n)U1U2TJLSM(n/>UﬂU§ = 6(n - n/)éow’l(scrzaé' (F'37)
JLSM

From (F.26), we obtain

T}LSM(n>UIO'2 = Z<JM|LmSM>YL*m(n)(Ugu)G102

my
Thpsanoes = D (M) LmSL YL, (0)(0h,)orr,
mp
= Z(LmSu!J(—M)>Yfm(n)(afg#)0102 (C-G coefficients are real)
mi
Thusioan@oes = (L7703 (L M) (=) Yim) (0) (05, )02

(F.38)

where we have used the fourth symmetry property of the C-G coefficients and the symmetry

property of the spherical harmonics functions:
Vi () = (~1)™Y7,,(n). (F.39)

We can evaluate (ULM)UIU2 as follows:

(UL;L)UIOQ = (USN);le
1 11 g\’
= V2SSt (-2 2 2
gy —02 W
1 1 L g
= V2SSt (-2 2 2
gy —02 U
1 1.1 i 15
= VERSTD(-L -l 2
—01 02 —UM
1 11 1 1
= VABSFD(-F T (-yEES s (2 2 O
Oy —01 —U
1 1 1
— VRS T D)(-1)2 —m( 2 3 0 )
O —01 —U
1 1 1 S
= (25+1)( 1) —01( 1)—# 2 2
Oy —01 —U
(Ogu)ﬂldz = (_1)_u(05(ﬁu))0102- (F40)
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Introducing the notation m' = —m = —L,--- | Land ¢/ = —p = —9,--- , 5, (F.38) becomes
ThosuMooy = (=157 (L(=m)S(=)|J(=M)) (1) #Y i) (0) (05— )0

= (=DM Y (L Sp! | (= M) (=1) MY (0) (0510 )

m”LL/
=1
Tl o (Wore, = (=) MT g 00510, (F.41)

This is one of the symmetry properties of spin angular tensor operators. Another symmetry

property of Tyrsp(n) is

1
Trsn (W) gyoy = (—1)5T27F 27021 0 (1) oy (o). (F.42)

Introducing a tensor spherical harmonics

Qjopmy (n,0) = Z <€m€%m8|jm>Y€me (n>X%ms (0), (F.43)
me,Ms

the matrix element of spin angular tensor operator Ty sy (n),,0, is defined as

(Geleme|Trpsa| e lemp) = /anijgkmk n,01)T L0 (M) 516,82, 6,m,, (D, 02).

0102

(F.44)
Using the Wigner-Eckart theorem, one obtains

g J g

<jk€kmk’TJLSM‘jk/£k/mk/> = (—1)jk*mk (
— TN M My

) (el Tres||jele),  (F.45)

where the reduced matrix element (jilk||TsLs||jr lr) reads

(Gl Trrs| jrlrr)
[1+ (—1)FHhthe) (1) 2 \/W + D(2L +1)(2jx + 1)(2w + 1)
47

1
2

y (jk i J){(J L S>+ S(S+1)(J L S)
11 00 0 JUJ+\1 0 -1
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X [ = Gi) (25 + 1) + (= 1) 5 by — i) (24 + 1)]}- (F.46)

Using the symmetry property (F.41) and the Wigner-Eckart theorem, the matrix element
(jkzﬁk/mkf|T}L5M|jk€kmk> can be written as

(_1)L+S+J—M<

(e b | T g ldielemm) - = Tl | Trns—an | Jeleme)

_ <—1>L+S+J—M<—1>jk,_mk,< g jk)

— T —-M my

X (wle||Trrs||ikle)
— (=) M (g i g J gk
— My M My
X (el | Trrs|julr)- (F.47)

Using the identity (jrlixme|Trrsn|jrlemi) = (jkxﬂk/mk/|T}L5M|jk€kmk)* and the fact that
the reduced matrix element (ji.lx||T1s||jxCr) is real, one can prove the following symmetry
property:

Gl | Tyrsr ) = (=125 (=1 =3k (Gl || Ty s | i) (F.48)

Applying this result to Eq. (F.47), one obtains

. ) . ] J 1.0
(i Cormu | T syl elumy) = <—1>ﬂk'-ﬂk<—1>L+S+J<—1>”“"”’“"M( . . )
— M M mys

X

<jk’€k’ ’ |TJLS’ ’]k€k>

| SN |
- <—1>W'v< e )@kekunwmwk». (F.49)
— Ik k'

171



Appendix G

Reduced Matrix Elements of the
Particle-hole Free Response Function
in the Continuum Relativistic QRPA

Using the definition of the Dirac spinor:

Ffik (T)ijfkmk (1’1, 0)

Ye(r,o,t) =
HEo =1 e 9, (n,0)

] X3 (1) (G.1)
the matrix element Qf,, (r) given by Eq. (6.36) now reads:

(1)

(k| Q°(r)|K)

= /dn1 Z Z Wl (r,ny,00,t)70 ® Trrsm(n1)oy0r @ (Tr0)e
tlti 01,01

X \Ilk/(’f’, nl,a’l,t'l),

B /dnl Z Z X*lrk <t1) ( Q;kg’“m’“ (nho-l)F:’“ (T> _iQ;kgkmk (n1,01)sz <T) )
tlti 01,01 2

Ffﬁ)k/ (T)ij/fk/mk/ (n17 0/1)

iGHk’ (T>ij,[7k/mk, (nl’ Ji)

X1 ()

2Tk/

X Yp ® TJLSM<n1>ala’l ® (TTO)tlt/l (

Quw(r) = ZX*%Tk(tl)(TTO)tltﬁX%Tk/<t/1)

t1t3

x / a3 (G, (0 EL (1) 2, (m1.01)G (1))

!
01,07

(1) m (01, 07) ) | (G.2)

X QRXT ( ) " n;,o
n oot
YD JLSM\M1 o107 iGnk/(T)Szjkr&/mk'( 1,01)
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Let us define an isospin charge qgospin as

qgospin = Z X*l‘rk (tl) (TTO)mt’lX%Tk, (tll) (G3>

2
tlti

There are two operators 7rg, i.e., 790 = 1 and 79 = 73, which are diagonal. Since

X; (tl) = 52517%7 (G4>

=T

the isospin charge gf,;, takes the form

qgospin = Z 57517'k (TT0>t1t’1 5t’17k/ - (TTO)TkaéTka/7 (G5)

tlti

which implies the condition 7, = 73. There are two values of 7y, i.e., +1/2 for neutrons and

-1/2 for protons. For the case of isoscalar (7990 = 1), we obtain

Qiosospin = (7—00)+1/2,+1/2 =1 (G6)
for neutron and
qiosospin = (TOO)—I/Q,—l/Z =1 (G?)

for proton. For the case of isovector (119 = 73), we obtain

qilsospin = (7-10)+1/2,+1/2 =1 (Gg)

for neutron and

Qilsospin = (7—10)71/2,71/2 =-1 (Gg)

for proton. Therefore, neutrons always have the isospin charge 41, whereas protons have
the isospin charge +1 (—1) for isoscalar (isovector) case.

It is worthwhile to work out the matrix elements Qf,,(r) for specific channels. Let us
begin with channel ¢ = 1. Channel ¢ = 1 has the Dirac matrix vp = 4, spin angular tensor
TJLSM(n)(m,/1 = ([UOYJ]JM)O-IO-/l, and qiosospin = 1 for protons and neutrons. For ¢ = 1, the

matrix element Qy,,(r) takes the form

Quu(r) = F:k(T)Fnk/(T)/dnl Z Qg (01, 01)([00Y 5] 501) 0107 iyt (01, 01)

!
01,01
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— GI ()G, (1) / dng Y o (0,00)([00Y5) )01y 2y, (01, 01)

Fy (r)Fe,, (1) Grleme|[00Y ]| grr i)
- sz(T)Gnk/(7’)<jkgkmk|[UOYJ]JMkagkfmk')- (G.10)

By the Wigner-Eckart theorem, the matrix element Qj,,(r) reads

Qik/(r)—(—l)jkm’“< e e )Q%km(r), (G.11)

— My M My

where the reduced matrix element Q%kk/)(r) is given by

Quuwn(r) = Fy (r)Fe, (r) GrlilllooY ] sl e i)
— G5 (1)Gr, (1) Gl [00Y ] i O - (G.12)

For channel ¢ = 2, one still has an isospin charge qgospin = 1 and the spin angular tensor

TrLsm(0)gy0r = ([00Y1]101)0107, €xcept that vp = 14x4. For channel ¢ = 2, one obtains

sz:(—l)jk—mk( et j) 2 (1), (G.13)

—my M V%

where the reduced matrix element Q%kk,)('r) is given by

Gy (1) = Fr (1), (1) Galil lloo Yol sl s )
+ G ()G, (1) Gl [00Y ) 5| O ) (G.14)

For channel ¢ = 3 with an isospin charge ..., = 1, the spin angular tensor Tjpga(10),,01 =

([01Y7-1]s0) o0, and the Dirac matrix yp = 75, the matrix element Q3 (r) reads

Qik/(T)Z(—l)j’“_m’“< et jkl) (o (1) (G.15)

— My M My

where the reduced matrix element Q?kk/)(r) takes the form

Qi (r) = —iGy (1) Fry, () Gilil [o1 Yo -1 i )
+ A (1) Gy, (1) Gl [0 Yr—1) | ) (G.16)
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Therefore, a matrix element Qf,,(r) for a specific channel ¢ has a generic form:

— T M My

sz,<r>=<—1>fk-mk< Jeo S )Qw) (G.17)

where kak,)(r) is the corresponding reduced matrix element, which has included the isospin
charge qi,.;, implicitly.

The matrix element Q57 (r') is given by

() = /dnzzZ‘I’LI(T'>H2702>152)7D'®T}/LIS/M/(H2)W;®(TT0)t2tg

/ /
to,ty 02,05

X Wi(r',my, 09, 1))

= Grospin / dny Z Oty (2, 02) L (1) =i 5 (0, 05) G (1) )

o9, 02

X

oy ()00 (112, 73) > | (G.18)

i
’}/D’ ® T 1TrQr /(nl)g ol .
PRSI G (1), (02, 03)

With the aid of Eq. (F.49), one can deduce

w0 jlo— M, J S Jw ¢ x !
(') = (=1) ( ‘ - ) (kk’)() (G.19)

—my M ! %
where, for example, the reduced matrix element Q¢ (k) (') takes the form

Qb (') = F:k,(T/)F (") Gl oY) ool | Crr)
- nk, (r)Gr, r/)<jkgk"[UOYJ’]J”’jk/le’>- (G.20)

for channel ¢ = 1.

The reduced spectral free response function given by Eq. (6.53) reads

cx S O S’ c* S O S’
RY (r, 1! w) = Z Qe (1) L ()10 _ o )k L, ()11 . (G.21)
ap k! W — Ek — Ek’ w + Ek + Ek’

The numerator of the first term on the right-hand side can be evaluated using the Wigner-

Eckart theorem and the definition of time-conjugate state (E.2) as follows:

Cck e —M 1) =M Jk J jk' Ck
w(r) = (=1) (—1)% k( ) ey (1)

—Mmy M — My
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—Mmy M — My

Z Qkk’ kk:’ ) = Z (_1)2jk72mk (_1>2jk/72mk/1 ng’)(T)Q&k/)(T/)

N 7\
Vv Vv
M, Myr M, Myr ] el

" g J g w J e
—my, M —myy —my, M —my

- Z Je e gk J e
— M M — My —Mmy M’ — Mg

c i —m e — Mgt Jk J' Jw c
) = (L (1) ( >Q(“‘”(r,)

M, Mgt
X Qkk’( )Q(kk’< r')
05700 " ~ex c !
> QR = = Qi ()L (), (G.22)

My, Mys

Similarly, the numerator of the second term on the right-hand side can be evaluated as

follows:

o) = —(=1)°Qg,(r)  (by Eq. (E.8))

+m I —m -]k '] jk/ cx
= —(=1)5(=1)stme(—1 )ik ( M ) ey (1)
my M My

Sir) = —<—1>S<—1>2fk< e J) (e (r)

myp M’ My

| N
> QBN = (17 YT <—1>4fk< - ;)(ﬂ Y )

() = —(—1)5'(—1)2”( s >Q€;ck’)(r)

N—— \ My my My
My, My M, Myr ]
X Qka')(r)kak/)( r)
/5 /(5 / !
_ S+5 077 OMM /
= (=1 ST+l (o) (1) Qo (7). (G.23)

Therefore, the reduced spectral free response function now can be written as

c S’ c S’
R (r ! @) = Z Z i ( kk’)QkE'( U B (T )n(kk’)Qk/k( r')n M (kk)
o w = Ew = Eg) w+ By + Eg)

(k<k") my,mys

C

07700 Z (kk’)(r)n?};k’) (kk’)(r,)ngck’)

27+1 A, 1+ b
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1 (_1)S+S’
- (G.24)

Analogous to the reduced spectral free response function Rgg;’ (r,7’,w), the reduced free

response function R% (r, 7', w) defined by Eq. (6.60) now reads

corr

077 0Mnr (o (1) ?;sk’)(rl)
ROCC —
conr (7 7,) 207 +1 > 0

(k<K’)
(_1)S+S’ 1
X {’U(Qk,)
1 (_1>S+S’
+ vd, — . (G.25
(k) [w — (E'(k/) + €k — )\) w + (E(;C/) + €k — )\) ( )

To evaluate the reduced non-spectral free response function R, (r, 1/, w),

w — (E(k) + €y — )\) w + (E(k) + €y + /\)
cont

Rggﬁt(r rw) = Zvi/dxl/dxg \I/L(xl)le)T(r){G(xl,xQ;w — Ex+ )
k
+ (—1)5 G (21, 95 —w — Ej + A)}Qﬁ?)w)wk(ggz), (G.26)
one needs to evaluate the integral
/ da, / dwy Ul (21) QD ()G (a1, 20; E) QD (1) Wy (). (G.27)

Here the relativistic single-particle Green’s function G(x1, z9; E) takes the form (W = 1):

‘Fff ’ T ;E Q / 1My n 70-
G(xl,asg;E) _ Z ( i k (( 1‘ ) Tt Lt g, ( 1 1) ) X%rk,(tl)
1% Kt

E)ij/gk/mk/ (nl’ 0-1)

X3, (t2) < Y vy, (02,09) P (ro; B) =i - (13,00) 27 (12 E) >,

X
3
v

Tt Lt s
(G.28)
for r1 < ry, and
G(x17I27 Z ) G (n170-1) X3 5Tt (tl)
K’ Kk’ (r]" ) 7 ’Zk’mk’ (nl? 01)
X Xi.,,(t2) ( O vy, (2, 02) FL (ros B) - =¥ (09, 09)Gr (ra; E) ) ;
(G.29)
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for r1 > 9. Let us evaluate the integral (G.27) for the case of r; < ry. Inserting Eq. (G.28)
into Eq. (G.27) yields

/ d“”/ diry U (21) QT (r)G (w1, w05 B)QE () Wi (2) ZMW b (5 E),

where the matrix elements MS, (r; E) and M, (r'; E) are respectively defined as

- YO /
Mkk/( ) = /d3 Z Z\If r1a0—17tl ( ) ( ) < Z‘.}g—fikl ((7;1" ) jklﬂk,mk,(nh(fl/) )
% 1 )

o1 0'1 t1, t, E)ijlﬁk/mk/ (n17 0-1)

X Xy (1) (G.30)

and

¢ (' B) = /dSrQZZXlw

0'20'2 to, t/
X < Q;fk/fk/mk/ (n27 UZ)L@EM (TQ; E) _iQ;k’gk’mk’ (n27 02)£:k’ (TQ; E) )
x QY (1) Wy (ra, ah, 1h). (G.31)

Making use of Eq. (G.1) and the definition of the one-body operator ng(r),

S(r—r1)

rTr1

oMt(r) = 75 @ Tl sar (1) oror (T70)is1, (G.32)

one arrives at

Mkk’( ) = qlsospln/dnl Z Jkekmk nl?al)F (T) _iQ;kékmk(nho—l)G:k(T) )

g1 0'1

F,, (r1; E)Q; (ny,07)

1 K.t 1 1l rmoyr 1,

X V(D) ® T}LSM(nl)Uwi . § ) I 1,
Zgﬁk/ (rl? E)ij/ék/mk/ (nl? Ul)

) Xy (81). (G.33)

As before, the Wigner-Eckart theorem suggests that one can write the matrix element

./\/lkk, (r; E) in a generic form:

M (r; )=(—1)j’“’mk’< ot jk) (o (75 ), (G.34)

— MMy M mg
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where, for example, the reduced matrix element J\/lf};,k) (r; E) takes the form

Mby(rs E) = F (1) Fe,, (r; B) G lie||[00Y ]| xle)
— G5 (1)Gr,, (r; B) (ol || [00Y ) 5500 (G.35)

for ¢ = 1. Similarly, the application of the Wigner-Eckart theorem to the matrix element

/ .
Cr(r’; E) results in

. g gk
n(r B 1)% ~ !
Cr(r E) = (—1) ( S M

) M (15 E), (G.36)

where the reduced matrix element /\/lf;g, p (s E) reads

My (s B) = Z; (' B)YE,, (') (G bl [00Y 7)1 i)

— 25 (" E)G () Gl o0 Yo ]| iks) (G.37)
for ¢ = 1. Therefore, the reduced non-spectral free response function Rggfllt(r, ' w) takes
the form

v J W J
Rggfm(r tr CL)) — Z 'U Z )2-7k’ ka/ jk jk jk jk
k) ey \ W M my —my M my
X {M?};/k)(r;w — By + M k'k)(T'/;W — By +A)
070007 o
2] + 1 Z U?k){M(k’k)<r?w — By + MMy (0 — Egy + A)
%

Occ!

/ / /
for r < r’. For r > 1/, the response R, (r,r',w) reads

e 077 OMM/ o
R (rr' w) = EVAEE E Uy {Mk’k)( — Ly + )‘>Nk’k (r'iw — Egy + A)
(k,K")

(D)5 Ny (5 —w = By + NNy (1 —w — By + A)}’ (G.39)

where the expression for the matrix elements N, (r; £) and /\/'(‘j,;,k) (r'; E)) can be derived
from Egs. (G.30) and (G.31) by interchanging (F,G) and (£, 2).
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