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INVESTIGATION OF FINITE TEMPERATURE AND CONTINUUM
EFFECTS ON NUCLEAR EXCITATIONS

Herlik Wibowo, Ph.D.

Western Michigan University, 2020

The low-energy nuclear response at finite-temperature significantly affects the radiative

neutron capture reaction rates of the r-process nucleosynthesis. In order to address this

topic, the first part of this study focuses on the response of compound nuclei or nuclei

at finite temperature. The thermal nuclear response satisfies the Bethe-Salpeter equation

(BSE) with the static and dynamical kernels of different origins. While the origin of the

static kernel is the nearly instantaneous nucleon-meson interaction, the dynamical kernel is

induced by the coupling between nucleons and phonons. The presence of singularities in the

dynamical kernel makes the BSE unsolvable, however, a time projection technique known

for the zero-temperature case allows for constructing a hierarchy of feasible approximations.

In this study a temperature-dependent projection operator on the subspace of the imaginary

time was found to generalize the method to finite temperatures. The method named the

finite-temperature relativistic time blocking approximation (FT-RTBA), is implemented

numerically to calculate the multipole responses of medium-mass and heavy nuclei. This

study reveals common phenomena that occur for all thermal multipole responses: the

disappearance of the high-frequency collective motion at very high temperature and arising

prominent low-energy strength of thermal origin.

The inclusion of pairing correlations and continuum effects is essential for an accurate

microscopic description of the nuclear response of the exotic nuclei far from the valley of



beta-stability and close to the drip-lines. Therefore, the second part of this study aims to

extend the current zero-temperature nuclear response theory, which is based on the contact

effective interactions between nucleons and takes into account the pairing correlations within

the framework of the BCS approximation and exact coupling to the continuum. This

extension involves the application of the time-blocking approximation in the coordinate

space representation to incorporate the coupling between nucleons and phonons, which is

the leading-order mechanism of the fragmentation of the nuclear multipole responses at both

low- and high-frequency domains.
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Chapter 1

Introduction

The atomic nucleus plays a significant role in our understanding of the fundamental forces
of nature and the emergent phenomena that occur at various scales of physics [1]. It serves
as a ’laboratory’ for testing the standard model of particle physics via the weak interaction
processes, searching the new physics beyond the standard model, and studying the breaking
of fundamental symmetries. Besides its importance to particle physics, the electromagnetic
interaction between an atomic nucleus and electrons, and between atoms gives rise to the
complex structures of materials studied in condensed matter physics. Remarkably, the
knowledge about the nuclear structure, decays, and nuclear reactions have paved the way
for our understanding of the origin of elements via nucleosynthesis processes, the evolution
of stars, neutron stars, and the cataclysmic events, such as supernovas and neutron star
mergers.

Nuclear structure research aims to construct a comprehensive and unified framework that
describes all properties of nuclei, nucleonic matter, and interactions between nuclei [2]. In
the nuclear physics research, the choice of nuclear degrees of freedom depends on the energy
of the experimental probe. A high-energy probe resolves quark and gluon degrees of freedom,
whereas the more relevant constituents at low energies are protons and neutrons (collectively
called nucleons). The description of nuclei with nucleonic degrees of freedom requires detailed
knowledge of nucleon-nucleon (NN) interaction. The bare NN interaction can be considered
as an emergent interaction of quantum chromodynamics (QCD), which is the underlying
theory of quark-gluon dynamics. Although it is a challenging task to derive the bare NN
force directly from QCD, the analytical structure of bare NN force still can be studied and
formulated based on the known symmetry constraints (e.g., translational, rotational, isospin,
parity, time-reversal, and charge), both low- and high-energy NN scattering experiments,
and the meson theory. Some of the semi-phenomenological potentials that arise from
these considerations are the Hamada-Johnston potential [3], Reid hard-core and soft-core
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potentials [4], the Bonn potential [5], the Argonne potential [6, 7], the Paris potential [8],
and the Nijmegen potential [9, 10, 11]. Alternatively, the nuclear force can also be studied
using the chiral perturbation theory [12] and lattice QCD calculation [13, 14, 15]. For a
concise review on the bare NN interaction, see Ref. [16]. While the bare NN interaction
can be used to describe the very light nuclei via ab initio calculations (e.g., Green’s Function
Monte Carlo (GFMC) [17, 18] and coupled-cluster [19, 20] methods), it has to be promoted to
effective NN interaction when dealing with the medium-mass and heavy nuclei. The reasons
are two-fold. First, the bare NN interaction contains either hard- or soft-repulsive core at
the short distance, making it too strong to be applied in the many-body methods. Second,
the nucleons do not feel the bare NN interaction inside the nucleus, which means that the
bare NN interaction is significantly modified in the presence of many nucleons. One way
to circumvent the strong repulsive core problem of the nuclear force is to use the effective
interaction obtained from the Brueckner G-matrix theory [21]. In this method, instead of the
bare nuclear force, one uses the so-called G-matrix, which takes into account the effects of
multiple scattering in nuclear medium and Pauli principle, to perform the nuclear structure
calculations. The G-matrix can be obtained by solving the Bethe-Goldstone equation. The
other way is to adopt the phenomenological effective NN potentials which contain fitting
parameters adjusted to the experimental data for nuclear matter and finite nuclei. The
examples of these forces are Skyrme forces [22, 23, 24, 25, 26] and Gogny force [27, 28]. The
Skyrme and Gogny density-dependent forces respectively have been used in the Hartree-
Fock (HF) [29] and Hartree-Fock-Bogoliubov (HFB) [30] calculations for spherical nuclei
with great success. The density-dependent Hartree-Fock (DDHF) models of Skyrme [29]
and Gogny [30] are the examples of the mean-field calculations based on the non-relativistic
energy density functional.

It has been known that the Fermi energies of the nucleons in nuclei are small compared
to the rest mass, making the relativistic effects seemingly unimportant for the low-energy
nuclear structure calculations. However, the relativistic version of the mean-field calculations
recently gains recognition for several reasons. First, the spin-orbit interaction finds its natural
explanation in terms of the scalar field S and vector field V in the relativistic mean-field
(RMF) theory [31, 32, 33]. In the RMF theory, nucleons are depicted as Dirac particles
moving independently in the average fields, which consist of the scalar field S and vector
field V . In the relativistic meson-exchange theory, the attractive scalar field S and repulsive
vector field V are derived mostly from an exchange of mesons with Lorentz scalar and vector
character, respectively. In nuclear physics, their typical values are S ≈ −400 MeV and
V ≈ 350 MeV. While the addition of these two fields gives the potential depth of roughly
−50 MeV and, thus, allows the non-relativistic kinematics, the subtraction of the scalar field
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S from the vector field V leads to the strong spin-orbit interaction between nucleons. Second,
the scalar density decreases as the small components of the Dirac spinors become important.
As the source of the attractive field S, its reduction reduces the attraction leading to the
stability of the nuclear system: the relativistic saturation mechanism [31, 32, 33]. In the
non-relativistic DDHF calculations for Skyrme and Gogny forces, this saturation is taken
care of by the strongly repulsive density-dependent terms. Third, the pseudo-spin symmetry
in nuclei can be explained as an immediate consequence of the nearly equal magnitude,
but with opposite signs, of the attractive scalar and repulsive vector fields [32, 34]. In the
relativistic meson-exchange theory, an additional density dependence originates from either
non-linear self-interactions between mesons or the density-dependent coupling constants. In
the relativistic point-coupling theory, one derives the covariant energy density functional
from the point-coupling effective interactions [35, 36, 37, 38], where the additional density
dependence can be introduced either by the density-dependent coupling constants or by
point-couplings of higher order. For a recent review on the types of the meson-exchange
and point-coupling effective interactions, the interested reader can refer to Ref. [39] and
references therein.

In order to describe the ground state properties of the open-shell nuclei, the relativistic
mean-field theory has to be extended to include pairing correlations. The pairing correlations
can be included in the relativistic mean-field theory via the constant gap approximation [31,
40]. However, since the experimental value of the gap parameter is taken from the odd-even
mass difference, this approximation fails when one deals with the exotic nuclei far from the
valley of beta-stability and close to the drip-lines. To gain a consistent relativistic treatment
of pairing correlations, Kucharek and Ring [31, 41] derived the relativistic extension of the
HFB (RHFB) theory: Dirac-Hartree-Fock-Bogoliubov (DHFB) equations. It was shown how
the pairing field originates from one-meson exchange potentials. However, applications in
nuclear matter demonstrated that an attempt to use the same force in the pp- and ph-
channel resulted in the strong ω-repulsion at short distances leading to a large pairing gap.
Therefore, a proper force for pp-channel is needed. Some forces, e.g., contact force [42],
Bonn potential [43], and Gogny forces [44, 45], have been used for the interaction in the
pp-channel.

A giant resonance (GR) in an atomic nucleus is a broad resonance in the photo-absorption
or particle (electron, proton, etc.) scattering cross section observed typically in the energy
range between 10 and 30 MeV [46]. It is associated with predominantly vibrational motion,
originates from collective excitations of nucleons and exhausts a major part of the sum
rule. It can be characterized by three important parameters: centroid energy E, width
Γ, and integral strength S. Isoscalar giant monopole resonance (ISGMR), also known as
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breathing mode, occurs when a nucleus vibrates without changing its shape. The centroid
energy of this compression mode is directly related to the finite-nucleus incompressibility
KA. Isoscalar giant quadrupole resonance (ISGQR) takes place when in-phase oscillations
of protons and neutrons cause the nucleus to change its shape back and forth according to a
cycle: spherical-prolate-spherical-oblate-spherical. The most studied isovector giant dipole
resonance (IVGDR) originates from the oscillations of protons against neutrons in the dipole
pattern. In the microscopic description, the ground-state GR (GR at zero temperature)
can be viewed as a result of the correlated multiparticle-multihole (npnh) excitations. The
total width of the GR comes from Landau damping, spreading, and escape widths. The
Landau damping width is caused by the coupling between correlated 1p1h excitations and
uncorrelated ones, which have energies close to the excitation energy. The spreading width
comes from the coupling of the correlated 1p1h excitations to 2p2h, 3p3h, and higher-order
configurations. Lastly, the escape width originates from the coupling of the correlated npnh
excitations to the continuum.

The relativistic mean-field theories mentioned so far mostly focused on the ground-
state properties of the nuclei all over the periodic table. To describe the excited states,
one derives the time-dependent relativistic mean-field (TDRMF) equations using the time-
dependent variational principle. The TDRMF equations have been applied to describe
giant resonances in nuclei [47, 48, 49]. A huge computational effort and the breaking of
rotational symmetries become the drawbacks of these TDRMF calculations [50]. In the
limit of small amplitudes, one derives relativistic random phase approximation (RRPA) [51]
from the TDRMF equations. A realistic RRPA calculation can be performed by taking
into account: (1) the non-linear meson self-interaction terms [51, 52] and (2) antiparticle-
hole configurations in addition to the usual particle-hole configurations [51]. The latter is
necessary to ensure the current conservation and the decoupling of the spurious state [53].
The RRPA has been applied to the calculation of monopole and dipole compression modes
in nuclei [54], and isoscalar and isovector giant resonances in spherical nuclei [55]. The
natural extension of the RRPA to include pairing correlations is relativistic quasiparticle
random phase approximation (RQRPA). Analogous to the RRPA, the RQRPA is the small-
amplitude limit of the time-dependent relativistic Hartree-Bogoliubov (TDRHB) equations
[56]. The RHB+RQRPA approach has been applied, for instance, in the calculations of
multipole responses of 22O nucleus, where NL3 parametrization has been used for RMF
Lagrangian and Gogny D1S finite-range interaction for the pp-channel. The same approach
has been employed to investigate the evolution of low-lying isovector dipole strength in Tin
isotopes and N = 82 isotones [56].

The strength distribution of the giant resonances can be obtained either by diagonalizing
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the R(Q)RPA equations or by solving the Bethe-Salpeter equation (BSE) for the response
function on an appropriate basis. There are some different methods to handle the continuum
states: the truncated harmonic oscillator basis [57], the Wood-Saxon basis with the box-
discretized continuum [58], and the exact Green’s function [59, 60, 61, 62]. However, to
reproduce the escape width of the giant resonances, one has to address the excitations to
continuum states, for which the most elegant way is to solve the BSE in the coordinate space
representation using the exact Green’s function method. Shlomo and Bertsch [63] pioneered
this exact treatment of the single-particle continuum states for non-relativistic RPA. Their
work was generalized to open-shell nuclei, where pairing correlations were included by means
of the BCS approximation, by Kamerdzhiev et al. [64] and by Hagino and Sagawa [65].
Matsuo [66] took a different approach to address pairing correlations by starting with the
time-dependent HFB formalism in the coordinate space representation from the beginning
and deriving the continuum quasiparticle response function using single-quasiparticle Green’s
functions defined in the static HFB basis. In the framework of relativistic point-coupling
theory, Daoutidis and Ring employed the relativistic single-particle Green’s function for the
exact treatment of the continuum states and derived the continuum RRPA [59]. They
extended their work to include the pairing correlations using the BCS approximation
and derived the continuum relativistic QRPA [60]. The relativistic single-particle Green’s
function technique has been also used by Yang, Cao, and Ma to obtain the continuum
relativistic QRPA in the framework of the relativistic meson-exchange theory [61, 62].

As mentioned before, to reproduce the spreading width of the GR and, hence, to obtain
an accurate description of the nuclear response, one needs to go beyond the R(Q)RPA.
The leading mechanism of the spreading width is known to be the particle-phonon, or
particle-vibration, coupling (PVC), however, the inclusion of the PVC requires quite a non-
trivial quantum-field-theoretical (QFT) effort. Time blocking approximation was initially
introduced in Ref. [67] as a non-perturbative approach to the nuclear response beyond RPA.
It utilizes a time projection technique within the Green’s function formalism to decouple the
configurations of the lowest complexity beyond 1p1h, such as 1p1h⊗phonon (particle-hole
pair coupled to a phonon), from the higher-order ones. As a result, the time projection
reduces the Bethe-Salpeter equation to a one-frequency variable equation. The method
was applied systematically in nuclear structure calculations as an extension of the Landau-
Migdal theory for non-superfluid nuclear systems [68] and later generalized for superfluid
ones [69, 70]. It has been supplemented by the subtraction procedure to avoid double
counting of the particle-vibration coupling in the frameworks based on phenomenological
mean fields or effective energy density functionals [70, 71]. Since then the time blocking
approximation is used consistently in non-relativistic [72, 73, 74, 75, 76] and relativistic
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[77, 78, 79, 80, 81, 82, 83] nuclear structure calculations. The method has been improved
systematically to include time-reversed PVC loops as complex ground state correlations
[68, 69, 83] and higher-order configurations [84]. At zero temperature the inclusion of the
PVC effects in the time blocking approximation leads to a consistent refinement of the
calculated spectra in both neutral [79, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94] and charge-
exchange [81, 82, 83, 95, 96, 97] channels, as compared to the (Q)RPA approaches, due to
the spreading effects1.

The isovector giant dipole resonance in highly excited nuclei is mainly observed in heavy-
ion fusion reactions [46, 99]. In the Steinwedel-Jensen hydrodynamical model, the IVGDR
can be understood as a coherent oscillation of protons against neutrons in the dipole pattern.
The general features of the IVGDR built on the excited states can be summarized as follows
[99]: (i) The energy-weighted sum rule (EWSR) is independent of temperature T and spin
angular momentum J ; (ii) The centroid energy can be parameterized as EGDR = 18A−1/3 +

25A−1/6 MeV and is independent of temperature T and spin angular momentum J ; (iii) The
width grows with temperature T and spin angular momentum J .2

The temperature dependence of the high-energy part of the GDR above the neutron
emission threshold was extensively studied experimentally in the past [100, 101, 102, 103,
104, 105], see also a relatively recent review [106]. In later studies of the dipole response of
both ground and excited states of nuclear systems, a concentration of electric dipole strength
has been observed in the low-energy region [85], being most prominent in neutron-rich
nuclei. The distribution of E1 strength below the GDR region is usually classified as pygmy
dipole resonance (PDR), which, according to the Steinwedel-Jensen hydrodynamical model,
originates from the coherent oscillation of the neutron excess against the isospin-saturated
core. Some microscopic models also favor for a collective nature of the PDR which forms at a
sufficient amount of the excess neutrons [107, 108]. There are two important physical aspects
related to the study of the PDR. First, the structure of the PDR can significantly enhance
the neutron-capture reaction rates of rapid neutron-capture nucleosynthesis (or r-process)
[86, 87, 109, 110, 111], which is responsible for the formation of chemical elements heavier
than iron [112]. Second, the PDR can be related to the isovector components of effective
nuclear interactions and to the equation of state (EOS) of nuclear matter [107, 108]. The
total PDR strength can provide an experimental constraint on the neutron skin thickness

1This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

2This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)
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and, in turn, on the symmetry energy of the EOS, which is a key ingredient to study dense
astrophysical objects, such as neutron stars [85]3.

An accurate theoretical description of response of compound nuclei, or nuclei at finite
temperature, is an arduous task. In the past, the multipole response of hot nuclei has
been studied theoretically within several frameworks, such as finite-temperature random-
phase approximation (FT-RPA) using schematic models [113, 114, 115, 116, 117, 118] or
FT-RPA with separable forces for deformed rotating nuclei [119, 120]. Approaches beyond
FT-RPA include spreading mechanisms and are represented by the finite-temperature nuclear
field theory (NFT), which takes into account the coupling between nucleons and low-lying
vibrational modes [121, 122], the collision-integral approach [123, 124], and the quasiparticle-
phonon model (QPM), which operates by the phonon-phonon coupling, formulated as
thermofield dynamics [125]. On the other hand, phenomenological treatment of thermal
shape fluctuations and of the particle evaporation have enabled a good description of the
overall temperature evolution of the GDR [126, 127, 128, 129, 130]4.

The finite-temperature Hartree-Fock-Bogoliubov (FTHFB) equations were derived in
[131] and applied for solving the two-level model in [113]. The finite-temperature
quasiparticle random phase approximation (FT-QRPA) equations were derived based on
FTHFB theory and solved for a schematic model to calculate the GDR response of hot
spherical nuclei [132]. Shortly after that, the formalism was applied successfully to hot
rotating nuclei in [133]. The continuum FT-RPA [134] and FT-QRPA [135, 136] were
successfully applied to various calculations of dipole and quadrupole response of medium-
mass nuclei. Later it was realized that thermal continuum effects may play the major role in
explaining the enhancement of the low-energy dipole strength [137] observed in experiments
[138, 139, 140]. More recently, realistic self-consistent approaches in the framework of the
relativistic FT-RPA [141] and non-relativistic Skyrme FT-QRPA [142] became available for
systematic studies of atomic nuclei across the nuclear chart5.

In the first part of this Ph.D. work we focus on building a novel self-consistent microscopic
approach to the finite-temperature nuclear response which (i) is based on the high-
quality, effective meson-exchange interaction, (ii) takes into account spreading mechanism
microscopically, self-consistently and in a parameter-free manner, (iii) is numerically
stable and executable, and (iv) allows for systematic studies of both low- and high-

3This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

4This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)

5This paragraph is reprinted from Ref. [98], in accordance with with American Physical Society (APS)
copyright policies (https://journals.aps.org/copyrightFAQ.html)
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energy excitations and deexcitations of compound nuclei in a wide range of mass and
temperatures. For this purpose, we generalize the response theory developed since the late
2000s [77, 78, 79, 80] in the relativistic framework of quantum hadrodynamics for the case of
zero temperature. This approach is based on the covariant energy density functional with the
meson-nucleon interaction [31, 143] and applies the Green’s function formalism and the time
blocking approximation [67] for the time-dependent part of the nucleon-nucleon interaction
in the correlated medium. In the second part of this Ph.D. work, we attempt to extend
the zero-temperature nuclear response theory [60], which is based on the effective point-
coupling interaction [38], and takes into account pairing correlations within the framework
of the BCS approximation, PVC, and exact coupling to the continuum [59]. This extension
utilizes the time blocking approximation [70] to incorporate the particle-vibration coupling
as a microscopic mechanism to describe the spreading width of the nuclear multipole spectra
in both low- and high-energy domains.

This Ph.D. work is organized into two main parts, the first of which deals with the
construction of the finite-temperature nuclear response theory, and the second focuses on
the extension of the zero-temperature nuclear response theory. The first part of the present
work consists of three chapters. Chapter 2 provides an overview of the nuclear mean field at
finite temperature. Starting with the grand-canonical ensemble in Section 1.1, we review
the zero-temperature relativistic mean-field (RMF) theory of finite range in detail and
generalize it for finite temperature in Section 1.2. We discuss the solution of the finite-
temperature RMF equations with an emphasis on the iterative numerical procedure to solve
the equations. We dedicate Chapter 3 to give a great detailed account of the essential steps
to construct the finite-temperature relativistic time-blocking approximation (FT-RTBA).
Section 3.1 discusses the Matsubara Green’s function formalism to determine the finite-
temperature response function and, in turn, the finite-temperature strength function. The
essential steps to construct the energy-dependent mass operator and the dynamical induced
interaction is highlighted in Section 3.2. We introduce the concept of the time-blocking
approximation in the imaginary-time formalism in Section 3.3 and employ it in Section 3.4
to derive the particle-vibration coupling amplitude. The extraction of transition densities is
discussed in Section 3.5. In Chapter 4, we describe details of the numerical implementation of
the FT-RTBA and discuss the results of the calculations. The second part of the present work
consists of three chapters as well. In Chapter 5, we briefly overview the zero-temperature
RMF theory of point-coupling and the BCS approximation. The main goal is to introduce
the particle-hole interaction in the coordinate-channel representation. In Chapter 6, we take
a different approach than the one done in Ref. [144] to derive the continuum relativistic
quasiparticle random phase approximation (CRQRPA). In Chapter 7, we briefly discuss the

8



crucial steps to incorporate the PVC effects in the CRQRPA. The conclusions and outlook
are presented in Chapter 8.
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Chapter 2

Nuclear Mean Field at Finite
Temperature

Hot nuclei (highly excited compound nuclei) are the product of the fusion between a
target of heavy atomic nuclei and a heavy-ion projectile, which takes place for a long time
in the heavy-ion reactions. During this intermediate state, the mean field of the system gets
established soon, and the thermalization process of the excitation energy occurs among all
the single-particle degrees of freedom. Since the system achieves the thermal equilibrium in
a short time (≈ 10−22 s), which is less than the typical time it takes to decay by particle
and γ-ray emissions (≈ 10−19 − 10−9 s), one can apply the concept of equilibrium statistical
mechanics to describe the compound nucleus in its intermediate state.

To define the nuclear temperature T , one employs the microcanonical ensemble’s
definition of temperature [99]

T =

(
1

ρ

∂ρ

∂E∗

)−1

, (2.1)

where E∗ is the excitation energy, and the density of levels ρ(A,E∗) is given as

ρ(A,E∗) ≈ e2
√
aE∗

√
48E∗

, (2.2)

according to the Bethe’s Fermi gas formula. Here, the level density parameter a ≈
A/k MeV−1, k = 8 − 12 MeV, and A is the mass number [46]. Inserting (2.2) into (2.1)
yields

1

T
=

√
a

E∗ −
1

E∗ , (2.3)

where, for high excitation energy, the first term dominates leading to an approximate relation
E∗ ≈ aT 2.
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2.1 Grand Canonical Ensemble
The grand canonical ensemble represents all possible microstates of an open system

which allows the exchange of particles as well as energy with a reservoir. For these possible
microstates in equilibrium with the reservoir at a fixed temperature T and chemical potential
µ, the grand potential [131, 132, 145]

Ω = E − TS − µN (2.4)

is minimal. Introducing a positive definite density operator ρ̂, which is Hermitian (ρ̂† = ρ̂)
and has a unit trace (Tr ρ̂ = 1), one can express the average energy E, the average particle
number N , and the average entropy S as

E = Tr(ρ̂Ĥ), (2.5)
N = Tr(ρ̂N̂), (2.6)
S = −kTr(ρ̂ ln ρ̂), (2.7)

where k is the Boltzmann’s constant. Here the symbol Tr represents a summation of all
diagonal elements of the matrix or matrices under the operation, and the summation includes
all possible numbers of particles of all kinds and all possible states of these particles. From
the last three equations and the constraint Tr ρ̂ = 1, the minimization of the grand potential
Ω leads to the solution of the density operator ρ̂ of the form

ρ̂ = Z−1e−(Ĥ−µN̂)/kT , (2.8)
Z = Tr

[
e−(Ĥ−µN̂)/kT

]
, (2.9)

where Z is the grand partition function. The thermal average of an operator Ô then can be
defined as

⟨Ô⟩ = Tr(ρ̂Ô) = Z−1Tr
[
e−(Ĥ−µN̂)/kT Ô

]
. (2.10)

Given the grand partition function Z, several thermodynamic quantities can be determined
as follows [145]:

Ω = −kT lnZ = −PV, (2.11)

E = − ∂ lnZ

∂β

∣∣∣∣
z,V

, (2.12)

N = z
∂ lnZ

∂z

∣∣∣∣
β,V

, (2.13)
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where z = eµ/kT is the fugacity and β = 1/kT . For the rest of this chapter, we take the
value of the Boltzmann’s constant k = 1.

2.2 Finite-temperature Relativistic Mean-field Theory
We start with a relativistic covariant Lagrangian density L given by [31, 39, 146]

L = Lnucleons + Lmesons + Linteractions. (2.14)

The free nucleons are described by the Lagrangian density

Lnucleons = Ψ(x)(iγµ∂µ −M)Ψ(x), (2.15)

where M is the mass of the nucleon, Ψ(x) ≡ Ψ(r, t) is the nucleonic field, and the Einstein
summation convention is implied. The Greek indices, such as µ = {0, 1, 2, 3}, represent
the components in Minkowski space, where 0 indicates the time-like component and the
other denote the space-like components. The interactions between nucleons are mediated by
mesons and photon. The mesons are categorized according to their angular momentum J ,
isospin T , and parity P quantum numbers. Attractive interaction is provided by the isoscalar
scalar σ-meson with the quantum numbers J = 0, T = 0, and P = +1. The ω-meson is an
isoscalar vector meson (J = 1, T = 0, and P = −1) which causes repulsive interaction. The
isospin dependence of the nuclear force is the result of the exchange of the isovector vector
ρ-meson with the quantum numbers J = 1, T = 1, and P = −1. The photon is responsible
for the electromagnetic interaction between nucleons. The Lagrangian density Lmesons is
then given by

Lmesons =
1

2

(
∂µσ∂µσ −m2

σσ
2
)
− 1

2

(
1

2
ΩµνΩ

µν −m2
ωωµω

µ

)
− 1

2

(
1

2
R⃗µνR⃗

µν −m2
ρρ⃗µρ⃗

µ

)
− 1

4
F µνFµν , (2.16)

where mσ, mω, and mρ are the meson masses, the arrow denote isovectors, and the field
tensors are defined as

Ωµν = ∂µων − ∂νωµ, (2.17)
R⃗µν = ∂µρ⃗ ν − ∂ν ρ⃗ µ, (2.18)
F µν = ∂µAν − ∂νAµ. (2.19)
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Here σ(x), ωµ(x), and ρ⃗ µ(x) are the meson fields, and Aµ(x) is the photon field. The
interactions are described by the Lagrangian density

Linteractions = −ΨΓσσΨ−ΨΓµ
ωωµΨ−ΨΓ⃗µ

ρ ρ⃗µΨ−ΨΓµ
eAµΨ− U(σ), (2.20)

where the vertices Γσ, Γµ
ω, Γ⃗µ

ρ , and Γµ
e takes the form

Γσ = gσ, Γµ
ω = gωγ

µ, Γ⃗µ
ρ = gργ

µτ⃗ , Γµ
e =

1

2
(1 + τ3)eγ

µ. (2.21)

The quantities gσ, gω, and gρ are the corresponding coupling constants for the mesons and
e is the unit of electric charge. The non-linear term U(σ) describing the self-interaction
between the σ-mesons reads [147]

U(σ) =
1

3
g2σ

3 +
1

4
g3σ

4, (2.22)

with the additional parameters g2 and g3. The presence of this non-linear term is very crucial
to reproduce the experimental data on the nuclear matter incompressibility.

From the Euler-Lagrange equation,

∂

∂xµ

(
∂L

∂(∂µΨ)

)
− ∂L

∂Ψ
= 0, (2.23)

we obtain the time-dependent Dirac equation for the nucleonic fields:

[iγµ∂
µ −M − Γmϕm(r, t)] Ψ(r, t) = 0, (2.24)

where we have introduced the notations m = {σ, ω, ρ, e}, Γm =
{
Γσ, Γ

µ
ω, Γ⃗

µ
ρ , Γ

µ
e

}
, and

ϕm = {σ, ωµ, ρ⃗ µ, Aµ}. The corresponding Euler-Lagrange equation for the meson and
electromagnetic fields results in

(�+m2
σ)σ(r, t) = −Ψ(r, t)ΓσΨ(r, t)− dU(σ)

dσ
, (2.25)

(�+m2
ω)ω

µ(r, t) = Ψ(r, t)Γµ
ωΨ(r, t), (2.26)

(�+m2
ρ)ρ⃗

µ(r, t) = Ψ(r, t)Γ⃗µ
ρΨ(r, t), (2.27)

�Aµ(r, t) = Ψ(r, t)Γµ
eΨ(r, t), (2.28)

where the d’Alembertian operator � is defined as

� := ∂µ∂
µ =

∂2

∂t2
−∇2, (2.29)
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and we have imposed the Lorenz gauge conditions:

∂µω
µ(r, t) = 0, ∂µρ⃗

µ(r, t) = 0, and ∂µA
µ(r, t) = 0. (2.30)

It is not a trivial task to obtain the exact solution of the time-dependent self-consistent
field equations (2.24)-(2.28). One then introduces the relativistic mean-field (RMF)
approximation to replace the meson field and electromagnetic field operators by their
expectation values in the nuclear ground state. As a result, the nucleons behave as non-
interacting particles moving in the classical meson and electromagnetic fields. The nucleonic
fields Ψ(r, t) can be expanded in terms of single-particle spinors ψk(r, t),

Ψ(r, t) =
∑
k

ψk(r, t)âk and Ψ†(r, t) =
∑
k

ψ†
k(r, t)â

†
k, (2.31)

where the role of the operator â†k (âk) is to create (annihilate) a fermion in a state k. The
operator âk and its Hermitian conjugate â†k satisfy the fermion anti-commutation rules:

{âk, â†k′} = δkk′ ; {âk, âk′} = {â†k, â
†
k′} = 0, (2.32)

where {Â, B̂} ≡ ÂB̂+ B̂Â. In the no-sea approximation [148], the set of states k consists
of the occupied states |h⟩ below Fermi level, unoccupied states |p⟩ above Fermi level, and
the unoccupied states |α⟩ in the Dirac sea with negative energies. At zero temperature, the
nuclear ground state |Φ⟩ can be constructed as

|Φ⟩ =
∏
k

â†k|0⟩ (2.33)

and it is normalized according to ⟨Φ|Φ⟩ = 1. Given the normalized nuclear ground state |Φ⟩,
the single-particle density matrix ρkℓ takes the form

ρkℓ = ⟨Φ|â†ℓâk|Φ⟩. (2.34)

The Hamiltonian operator Ĥ can be derived from the Lagrangian density L via

Ĥ =

∫
d3r
[
∂L

∂(∂0q)
(∂0q)−L

]
, (2.35)

where q = {Ψ, σ, ωµ, ρ⃗µ, Aµ}. Inserting Eqs. (2.14)-(2.20) into Eq. (2.35), we obtain the
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Hamiltonian operator:

Ĥ =

∫
d3rΨ† {α · p + β (M + Γmϕm)}Ψ

+
1

2

∫
d3r
[
σ̇2 + (∇σ)2 +m2

σσ
2
]

− 1

2

∫
d3r
[
ω̇µω̇µ + (∇ωµ) · (∇ωµ) +m2

ωω
µωµ

]
− 1

2

∫
d3r
[
˙⃗ρµ ˙⃗ρµ + (∇ρ⃗µ) · (∇ρ⃗µ) +m2

ρρ⃗
µρ⃗µ

]
− 1

2

∫
d3r
[
ȦµȦµ + (∇Aµ) · (∇Aµ)

]
+

∫
d3r U(σ), (2.36)

where β = γ0 and α = βγ.
Applying the expansion (2.31) to Hamiltonian operator (2.36), we obtain

Ĥ =

∫
d3r
∑
ℓk

ψ†
ℓ(r, t) {α · p + β (M + Γmϕm)}ψk(r, t)â†ℓâk

+
1

2

∫
d3r
[
σ̇2 + (∇σ)2 +m2

σσ
2
]

− 1

2

∫
d3r
[
ω̇µω̇µ + (∇ωµ) · (∇ωµ) +m2

ωω
µωµ

]
− 1

2

∫
d3r
[
˙⃗ρµ ˙⃗ρµ + (∇ρ⃗µ) · (∇ρ⃗µ) +m2

ρρ⃗
µρ⃗µ

]
− 1

2

∫
d3r
[
ȦµȦµ + (∇Aµ) · (∇Aµ)

]
+

∫
d3r U(σ). (2.37)

Using the mean-field approximation for the meson and electromagnetic fields:

⟨Φ|ϕm|Φ⟩ ≈ ϕm ⟨Φ|Φ⟩︸ ︷︷ ︸
=1

= ϕm, (2.38)

⟨Φ|ϕmâ
†
k′ âk|Φ⟩ ≈ ϕm⟨Φ|â†k′ âk|Φ⟩ = ϕmρkk′ , (2.39)

we obtain the corresponding covariant energy density functional (CEDF):

ERMF[ρ̂, ϕ] = ⟨Φ|Ĥ|Φ⟩

= Tr [(α · p + βM + βΓmϕm)ρ̂]

+
1

2

∫
d3r
[
σ̇2 + (∇σ)2 +m2

σσ
2
]

− 1

2

∫
d3r
[
ω̇µω̇µ + (∇ωµ) · (∇ωµ) +m2

ωω
µωµ

]
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− 1

2

∫
d3r
[
˙⃗ρµ ˙⃗ρµ + (∇ρ⃗µ) · (∇ρ⃗µ) +m2

ρρ⃗
µρ⃗µ

]
− 1

2

∫
d3r
[
ȦµȦµ + (∇Aµ) · (∇Aµ)

]
+

∫
d3r U(σ), (2.40)

where the trace symbol Tr here represents a sum over Dirac indices and an integral in the
coordinate space. In the static approximation, we assume the meson and electromagnetic
fields being time-independent, and the single-particle spinor ψk(r, t) takes the form:

ψk(r, t) = φk(r)e−iεkt, (2.41)

where εk is the single-particle energy of the state k. Applying the static approximation to
the time-dependent Dirac equation (2.24), we obtain the time-independent Dirac equation
of the form:

ĥDφk(r) = εkφk(r). (2.42)

Here the Dirac Hamiltonian ĥD is

ĥD = α · p + β
[
M + Σ̃(r)

]
, (2.43)

where Σ̃(r) is the static RMF mass operator (self-energy):

Σ̃(r) =
∑
m

Γmϕm(r). (2.44)

Furthermore we assume: (1) the time-reversal symmetry of RMF, so that the current
densities are equal to zero and, therefore, the space-like components of the meson and
electromagnetic fields, i.e., ωj(r), ρ⃗ j(r), and Aj(r), vanish; (2) the isospin τ3 is a good
quantum number, so that only the third component ρ03 of ρ⃗ 0 survives. Under these
assumptions, the static RMF mass operator consists of the scalar Σ̃s(r) and the vector
time-like Σ̃0(r) components, viz.

Σ̃s(r) = gσσ(r), (2.45)

Σ̃0(r) = β

[
gωω

0(r) + 1

2
(1 + τ3)eA

0(r) + gρτ3ρ
0
3(r)

]
. (2.46)

The Dirac Hamiltonian ĥD then becomes

ĥD = α · p + β(M + S(r)) + V (r), (2.47)
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where the scalar potential S(r) and the vector potential V (r) are

S(r) = gσσ(r), (2.48)

V (r) = gωω
0(r) + 1

2
(1 + τ3)eA

0(r) + gρτ3ρ
0
3(r). (2.49)

The scalar potential S(r) contributes to the effective Dirac mass

M∗ =M + S(r). (2.50)

Applying the RMF and static approximations to the field equations (2.25)-(2.28), one finds
that the non-vanishing meson and electromagnetic fields satisfy the following equations:

(
−∇2 +m2

σ

)
σ(r) = −gσρs(r)−

dU(σ)

dσ
, (2.51)(

−∇2 +m2
ω

)
ω0(r) = gωρv(r), (2.52)(

−∇2 +m2
ρ

)
ρ03(r) = gρρ3(r), (2.53)

−∇2A0(r) = eρc(r), (2.54)

where the time-dependent counterparts of the scalar ρs(r, t), baryon ρv(r, t), isovector ρ3(r, t),
and charge ρc(r, t) densities are given as

ρs(r, t) =
∑
kℓ

ρℓkφk(r)φℓ(r)ei(εk−εℓ)t, (2.55)

ρv(r, t) =
∑
kℓ

ρℓkφ
†
k(r)φℓ(r)ei(εk−εℓ)t, (2.56)

ρ3(r, t) =
∑
kℓ

ρℓkφ
†
k(r)τ3φℓ(r)ei(εk−εℓ)t, (2.57)

ρc(r, t) =
∑
kℓ

ρℓkφ
†
k(r)

1

2
(1 + τ3)φℓ(r)ei(εk−εℓ)t. (2.58)

At zero temperature, the single-particle density matrix ρℓk satisfies

ρℓk = ρkδkℓ

{
1, for states |h⟩ below the Fermi level,

0, otherwise.
(2.59)

The densities (2.55)-(2.58) then reduce to the static densities

ρs(r) =
A∑

k=1

φk(r)φk(r), (2.60)
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ρv(r) =
A∑

k=1

φ†
k(r)φk(r), (2.61)

ρ3(r) =
A∑

k=1

φ†
k(r)τ3φk(r), (2.62)

ρc(r) =
A∑

k=1

φ†
k(r)

1

2
(1 + τ3)φk(r). (2.63)

Accordingly, the CEDF (2.40) now becomes

ERMF[ρ̂, ϕ] = Tr
[
ĥDρ̂

]
+

1

2

∫
d3r
[
(∇σ(r))2 +m2

σσ
2(r)

]
− 1

2

∫
d3r
[
(∇ω0(r)) · (∇ω0(r)) +m2

ωω
0(r)ω0(r)

]
− 1

2

∫
d3r
[
(∇ρ03(r)) · (∇ρ30(r)) +m2

ρρ
0
3ρ30

]
− 1

2

∫
d3r (∇A0(r)) · (∇A0(r)) +

∫
d3r U(σ(r)). (2.64)

To establish the finite-temperature generalization of the RMF theory, we make use of the
general procedures discussed in section 2.1. We first construct the grand potential Ω, where
the CEDF now plays a role of the average energy E. Minimization of the grand potential Ω
results in the single-particle density operator

ρ̂ = Z −1e−(ĥD−µN̂ )/T , (2.65)

where the grand partition function Z is now given by

Z = Tr
[
e−(ĥD−µN̂ )/T

]
. (2.66)

At finite temperature, the single-particle density matrix ρkℓ is

ρkℓ = Tr
(
ρ̂â†ℓâk

)
= ⟨â†ℓâk⟩ = δkℓ⟨â†kâk⟩, (2.67)

where we have used the definition of the thermal average of an operator given by Eq. (2.10).
In the Dirac basis (2.42), the static Dirac Hamiltonian ĥD can be written as

ĥD =
∑
k

εkâ
†
kâk, (2.68)
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while the total particle number operator ˆN is

ˆN =
∑
k

â†kâk. (2.69)

After inserting the two last equations into Eq. (2.66), the grand partition function Z takes
the form

Z =
∏
k

[
1 + ze−εk/T

]
(2.70)

and, using Eq. (2.13), the mean value of the operator ˆN is

N =
∑
k

⟨â†kâk⟩ =
∑
k

nk, (2.71)

where the Fermi-Dirac occupation number nk of the state k reads:

nk(T ) = n(εk, T ) =
1

1 + e(εk−µ)/T
. (2.72)

The Fermi-Dirac occupation number nk(T ) satisfies the constraint∑
k

nk(T ) = A, (2.73)

where A is the total number of nucleons. From Eq. (2.71), the single-particle density matrix
ρkℓ at finite temperature now reads:

ρkℓ = δkℓnk, (2.74)

and the densities (2.55)-(2.58) reduce to the following set:

ρs(r) =
∑
k

nkφk(r)φk(r), (2.75)

ρv(r) =
∑
k

nkφ
†
k(r)φk(r), (2.76)

ρ3(r) =
∑
k

nkφ
†
k(r)τ3φk(r), (2.77)

ρc(r) =
∑
k

nkφ
†
k(r)

1

2
(1 + τ3)φk(r). (2.78)

In summary, the finite-temperature RMF (FT-RMF) equations comprise the time-
independent Dirac equation (2.42), with Dirac Hamiltonian ĥD is given by Eq. (2.47),
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and the field equations (2.51)-(2.54) for the meson and electromagnetic fields, if the meson-
nucleon system is in thermal equilibrium. The scalar and vector potentials are given by Eqs.
(2.48) and (2.49), respectively, and the finite-temperature densities are given by the formulas
(2.75)-(2.78), where the Fermi-Dirac occupation number nk(T ) is given by Eq. (2.72).

2.3 Solution of the Finite-temperature RMF Equations
In the present work, we deal with spherical nuclei, which implies that the total angular

momentum is a good quantum number. For the spherically-symmetric nuclear system, the
set of quantum numbers k = {(k),mk}, where (k) = {nk, jk, πk, τk}, specifies the Dirac
spinor φk(r). Here the set of quantum numbers k consists of radial quantum number nk,
total angular momentum quantum number jk and its z-component mk, the parity πk and
the isospin τk. The Dirac spinor φk(r, s, t) takes the form [77]

φk(r, s, t) =
[
f(k)(r)Ωℓkjkmk

(θ, φ, s)

ig(k)(r)Ωℓ̃kjkmk
(θ, φ, s)

]
χτk(t), (2.79)

where we have included spin s and isospin t coordinates. The quantum numbers ℓk and
ℓ̃k are the orbital angular momentum of large and small components, respectively. Their
relations to the total angular momentum jk and parity πk are given by

ℓk = jk +
1
2
, ℓ̃k = jk − 1

2
, for πk = (−1)ℓk = (−1)jk+

1
2 ;

ℓk = jk − 1
2
, ℓ̃k = jk +

1
2
, for πk = (−1)ℓk = (−1)jk−

1
2 .

(2.80)

The functions f(k)(r) and g(k)(r) represent the radial wave functions of large and small
components, respectively, and the spin-angular part Ωℓjm(θ, φ, s) is defined as

Ωℓjm(θ, φ, s) =
∑
msmℓ

⟨ℓmℓ
1
2
ms|jm⟩Yℓmℓ

(θ, φ)χms(s). (2.81)

Inserting Eq. (2.79) into Eq. (2.42), we obtain two coupled radial equations

dF(k)(r)

dr
+
κk
r
F(k)(r)− {εk +M − [V (r)− S(r)]}G(k)(r) = 0, (2.82)

dG(k)(r)

dr
− κk

r
G(k)(r) + {εk −M − [V (r) + S(r)]}F(k)(r) = 0, (2.83)
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where the new radial wave functions F(k)(r) and G(k)(r) are defined as

f(k)(r) =
F(k)(r)

r
and g(k)(r) =

G(k)(r)

r
, (2.84)

and the new quantum number κk takes the values κk = ∓(jk+ 1
2
) for jk = ℓk± 1

2
. Introducing

the radial Dirac Hamiltonian operator

ĥD(k)(r) ≡

(
M + V (r) + S(r) − d

dr
+ κk

r
d
dr

+ κk

r
−M + V (r)− S(r)

)
, (2.85)

the coupled radial equations (2.82) and (2.83) can be written concisely as

ĥD(k)(r)

(
F(k)(r)

G(k)(r)

)
= εk

(
F(k)(r)

G(k)(r)

)
. (2.86)

The FT-RMF equations are non-linear coupled equations, so that it is impossible to
obtain the analytical solutions. One then employs an iteration method to solve these coupled
equations self-consistently. The iteration procedure can be summarized as follows:

(1) For the initial iteration, the meson fields σ(r), ω0(r), and ρ03(r) take the form of the
Woods-Saxon potential, and the photon field A0(r) takes the form of the Coulomb
potential generated by Z protons. The radial Dirac Hamiltonian ĥD(r) is diagonalized
using the spherical harmonic oscillator basis to obtain the radial wave functions F(k)(r)

and G(k)(r), and the single-particle energy εk of the state k. The corresponding Dirac
spinor φk(r, s, t) is constructed from Eqs. (2.79) and (2.84).

(2) For every single-particle energy εk and specific temperature T , the occupation number
nk(T ) can be computed according to Eq. (2.72), and the chemical potential µ can be
determined by solving Eq. (2.73).

(3) From Eqs. (2.75)-(2.78), the densities ρs(r), ρv(r), ρ3(r), and ρc(r) can be computed
using the values of the occupation numbers nk(T ) and the Dirac spinors φk(r, s, t).

(4) The obtained densities ρs(r), ρv(r), ρ3(r), and ρc(r) now serve as inputs for the field
equations (2.51)-(2.54). The new meson fields σ(r), ω0(r), and ρ03(r), and photon field
A0(r) can be determined by solving these field equations.

(5) The new fields σ(r), ω0(r), ρ03(r), and A0(r) are inserted into the radial Dirac
Hamiltonian ĥD(r), and all procedures of the iteration are repeated until the condition
of convergence is achieved.
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Chapter 3

Finite-temperature Relativistic Time
Blocking Approximation

3.1 Finite-temperature Response Function
A nuclear excitation under a short-duration weak perturbation induced by an external

field V̂ 0 is described in terms of the strength function. At zero temperature, the strength
function S(ω) is defined as [68]

S(ω) =
∑
n>0

[
|⟨n|V̂ 0†|0⟩|2δ(ω − ωn)− |⟨n|V̂ 0|0⟩|2δ(ω + ωn)

]
, (3.1)

where ωn = En−E0 is the excitation energy with respect to the ground state energy E0. Here
the states |n⟩ and energies En are the exact eigenstates and eigenvalues of the many-body
Hamiltonian Ĥ specified by a set of quantum numbers n. An external field V̂ 0 is a one-body
operator of the form:

V̂ 0 =
∑
k1k2

V 0
k1k2

â†k1 âk2 , (3.2)

which gives rise to the transition between the ground state |0⟩ and excited state |n⟩ with the
corresponding transition density ρn0k1k2 defined as

ρn0k1k2 = ⟨n|â
†
k1
âk2 |0⟩. (3.3)

Using Eqs. (3.2) and (3.3) together with one definition of the delta function:

δ(x) = lim
∆→+0

1

π

∆

x2 +∆2
, (3.4)
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the strength function S(ω) can be expressed in terms of the response function R(ω), defined
as (η → +0) [68]

Rk1k2,k3k4(ω) =
∑
n>0

(
ρn0∗k2k1

ρn0k4k3
ω + ωn + iη

−
ρn0k1k2ρ

n0∗
k3k4

ω − ωn + iη

)
, (3.5)

via:
S(ω) =

1

π
lim

∆→+0
ImΠ(ω + i∆), (3.6)

where the polarizability Π(ω + i∆) is defined as the double convolution of the full response
function R(ω) with the external field V̂ 0:

Π(ω) =
∑

k1k2k3k4

V 0∗
k2k1

Rk1k2,k3k4(ω)V
0
k4k3

. (3.7)

Here the finite imaginary part ∆ of the energy variable is the smearing parameter, which
accounts for the finite experimental resolution and missing microscopic effects.

At finite temperature, the strength function S̃(E) is defined as

S̃(E) =
∑
if

pi|⟨f |V̂ 0†|i⟩|2δ(E − Ef + Ei) ≡ S+(E), (3.8)

where f represents the set of final states and i denotes the possible initial states distributed
with the probabilities:

pi =
e−Ei/T∑
j e

−Ej/T
. (3.9)

The absorption strength function S+(E) is given by definition (3.8), whereas the emission
strength function S−(E) can be determined via the principle of detailed balance. The
emission strength function S−(E) takes the form

S−(E) =
∑
if

pi|⟨f |V̂ 0|i⟩|2δ(E + Ef − Ei) = e−βES+(E), (3.10)

so that the strength function S̃(E) becomes

S̃(E) =
1

1− e−E/T
[S+(E)− S−(E)]

S̃(E) =
1

1− e−E/T

∑
if

pi

[
|⟨f |V̂ 0†|i⟩|2δ(E − Ef + Ei)− |⟨f |V̂ 0|i⟩|2δ(E + Ef − Ei)

]
.

(3.11)
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With the aid of Eq. (3.2) and the definition (3.4) of delta function, the finite-temperature
strength function S̃(E) can be expressed as

S̃(E) =
1

1− e−E/T
S(E), (3.12)

S(E) = lim
∆→+0

1

π
Im

∑
k1k2k3k4

V 0∗
k2k1

Rk1k2,k3k4(E + i∆)V 0
k4k3

, (3.13)

where we have defined the finite-temperature response function Rk1k2,k3k4(E) as (δ → +0)

Rk1k2,k3k4(E) =
∑
if

pi

{
⟨f |â†k4 âk3 |i⟩⟨i|â

†
k1
âk2|f⟩

E + Ef − Ei + iδ
−
⟨f |â†k1 âk2|i⟩⟨i|â

†
k4
âk3|f⟩

E − Ef + Ei + iδ

}
. (3.14)

In analogy to the case of zero temperature [68], the finite-temperature response function
Rk1k2,k3k4(ωn) in the spectral representation, defined as

Rk1k2,k3k4(ωn) := T
∑
ℓ

Rk1k2,k3k4(ωn, εℓ), (3.15)

is the solution of the Bethe-Salpeter equation in the particle-hole (ph) channel:

Rk1k2,k3k4(ωn, εℓ) = −Gk3k1(ωn + εℓ)Gk2k4(εℓ)

+
∑

k5k6k7k8

Gk5k1(ωn + εℓ)Gk2k6(εℓ)

× T
∑
ℓ′

Uk5k6,k7k8(ωn, εℓ, εℓ′)Rk7k8,k3k4(ωn, εℓ′), (3.16)

where G is the exact one-body Matsubara Green’s function [149, 150, 151] and U is the
nucleon-nucleon interaction amplitude. Here, each subscript k represents all single-particle
quantum numbers. The Matsubara frequencies ωn, εℓ, and εℓ′ are discrete and defined as
[149, 150, 151]

ωn = 2nπT, εℓ = (2ℓ+ 1)πT, and εℓ′ = (2ℓ′ + 1)πT, (3.17)

where n, ℓ, and ℓ′ are integer. The interaction amplitude is given in terms of the mass
operator Σ as

Uk1k2,k3k4 =
δΣk3k4

δGk1k2

. (3.18)

The mass operator Σ and the exact one-body temperature Green’s function G are related
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by the Dyson equation:

Gk1k2(εℓ) = G 0
k1k2

(εℓ) +
∑
k3k4

G 0
k1k3

(εℓ)Σk3k4(εℓ)Gk4k2(εℓ), (3.19)

where G 0 is the unperturbed one-body temperature Green’s function. According to the
general equation of motion (EOM) framework [152, 153, 154], the mass operator Σ can be
decomposed into the energy-independent part Σ̃, which can be approximated by the static
RMF mass operator (2.44), and the energy-dependent part Σe, viz.,

Σk3k4(εℓ) = Σ̃k3k4 + Σe
k3k4

(εℓ). (3.20)

To eliminate the unperturbed one-body Matsubara Green’s function G 0 from Eq. (3.19),
one introduces the thermal mean-field Green’s function G̃ which satisfies the Dyson equation:

G̃k1k2(εℓ) = G 0
k1k2

(εℓ) +
∑
k3k4

G 0
k1k3

(εℓ)Σ̃k3k4G̃k4k2(εℓ). (3.21)

In the operator form, Eq. (3.21) can be arranged to give

Σ̃ = (G 0)−1 − G̃ −1. (3.22)

Inserting Eqs. (3.20) and (3.22) into Eq. (3.19), we obtain the Dyson equation:

G = G̃ + G̃ΣeG (3.23)

or
Gk1k2(εℓ) = G̃k1k2(εℓ) +

∑
k3k4

G̃k1k3(εℓ)Σ
e
k3k4

(εℓ)Gk4k2(εℓ). (3.24)

In the spectral representation, the thermal mean-field Green’s function is defined as [150]

G̃k1k2(εℓ) = δk1k2G̃k1(εℓ), G̃k1(εℓ) =
1

iεℓ − εk1 + µ
. (3.25)

The mass operator Σe describes the coupling between ph configuration and more complex
ones. In this work, we employ the particle-vibration coupling (PVC) model to approximate
the mass operator Σe. At zero temperature, the analytical form of the leading-order mass
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operator Σe is given by [68, 155]

Σe
k1k2

(ε) =
∑
k3,m

g
m(σk3

)∗
k1k3

g
m(σk3

)

k2k3

ε− ε̃k3 − σk3(ωm − iδ)
, δ → +0, (3.26)

where ε̃k denotes the mean-field single-particle energy of state k, and m represents the
complete set of phonon quantum numbers with the corresponding phonon frequency ωm.
At zero temperature, σk is equal to +1 for particle states and −1 for hole states. The
diagrammatic representation of the mass operator Σe for the two values of σ is given by
Figure 3.1. The phonon vertices gm(σk)

k1k2
are defined as

g
m(σk)
k1k2

= δσk,+1g
m
k1k2

+ δσk,−1g
m∗
k2k1

. (3.27)

Once the analytical form of the mass operator Σe is specified, a solution of the Dyson equation
(3.24) can be obtained.

g g†

2 3 1

(a)

g†2

3

1g

(b)

Figure 3.1: Diagrammatic representation of the energy-dependent mass operator Σe for (a)
σ = +1 and (b) σ = −1 in the particle-vibration coupling model. Straight lines correspond
to one-fermion propagators and wiggly lines represent the phonon propagators. The empty
circles denote the particle-phonon coupling vertices [98].

Similar to the case of the mass operator, the interaction amplitude Uk1k2,k3k4(ωn, εℓ, εℓ′)

consists of the energy-independent part Ũk1k2,k3k4 and the energy-dependent part
U e

k1k2,k3k4
(ωn, εℓ, εℓ′):

Uk1k2,k3k4(ωn, εℓ, εℓ′) = Ũk1k2,k3k4 + U e
k1k2,k3k4

(ωn, εℓ, εℓ′). (3.28)

The relation between the mean-field mass operator Σ̃ and the mean-field interaction
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amplitude Ũ is given by

Ũk1k2,k3k4 =
δΣ̃k3k4

δρk1k2
, (3.29)

where ρ is the ground state density. At zero temperature, the analytical form of the
interaction amplitude U e is given by [68, 155]

U e
k1k2,k3k4

(ω, ε, ε′) =
∑
σ,m

σg
m(σ)∗
k3k1

g
m(σ)
k4k2

ε− ε′ + σ(ωm − iδ)
. (3.30)

and satisfy the dynamical consistency condition

Σe
k1k2

(ε+ ω)− Σe
k1k2

(ε) =

∫ ∞

−∞

dε′

2πi

∑
k3k4

U e
k2k1,k4k3

(ω, ε, ε′)
[
G̃k3k4(ε

′ + ω)− G̃k3k4(ε
′)
]
,

(3.31)

where G̃ represents the mean-field Green’s function at zero temperature. The construction
of the mass operator Σe and the interaction amplitude U e for the case of finite temperature
will be discussed in Section 3.2.

We define the so-called correlated propagator Re(ωn, εℓ) as a solution of the Bethe-
Salpeter equation (BSE) with only the dynamical interaction kernel:

Re = −G G + G G U eRe. (3.32)

From Eq. (3.32), the interaction amplitude U e can be expressed as

U e = (Re)−1 + G −1G −1. (3.33)

Equation (3.16) can be written as operator equation:

R = −G G + G G U R, (3.34)

where the interaction amplitude U is given by Eq. (3.28). Inserting Eq. (3.33) into Eq.
(3.34), we obtain

R = Re −ReŨ R. (3.35)

Equation (3.35) implies that the full finite-temperature response function R can be obtained
once the analytical form of the function Re is determined. To formulate the analytical form

27



of Re, we first rewrite the Dyson equation (3.23) as

G −1 = G̃ −1 − Σe (3.36)

and multiply the BSE (3.32) with G̃ G̃ G −1G −1 from the left to obtain

Re = R̃0 − R̃0W eRe, (3.37)

where

R̃0 = −G̃ G̃ , (3.38)
W e = W e − ΣeΣe, (3.39)
W e = U e + G̃ −1Σe + ΣeG̃ −1. (3.40)

In the imaginary-time τ representation, Eqs. (3.37)-(3.40) take the form:

R̃0(12, 34) = −G̃ (3, 1)G̃ (2, 4), (3.41)
W e(12, 34) = W e(12, 34)− Σe(3, 1)Σe(2, 4), (3.42)
W e(12, 34) = U e(12, 34) + G̃ −1(3, 1)Σe(2, 4) + Σe(3, 1)G̃ −1(2, 4), (3.43)

Re(12, 34) = R̃0(12, 34)−
τ∑

5678

R̃0(12, 56)W e(56, 78)Re(78, 34)

Re(12, 34) = −G̃ (3, 1)G̃ (2, 4) +
τ∑

5678

G̃ (5, 1)G̃ (2, 6)U e(56, 78)Re(78, 34)

+
τ∑

5678

G̃ (5, 1)G̃ (2, 6)G̃ −1(7, 5)Σe(6, 8)Re(78, 34)

+
τ∑

5678

G̃ (5, 1)G̃ (2, 6)Σe(7, 5)G̃ −1(6, 8)Re(78, 34)

−
τ∑

5678

G̃ (5, 1)G̃ (2, 6)Σe(7, 5)Σe(6, 8)Re(78, 34), (3.44)

where
τ∑

12..

=
∑
k1k2...

∫ 1/T

0

dτ1dτ2 · · · . (3.45)

Here each number index consists of a set of single-particle quantum numbers k, and
imaginary-time τ with interval 0 ≤ τ ≤ 1/T [149, 150, 151], viz., 1 := {k1, τ1}. The
corresponding Feynman diagram for Eq. (3.44) is given by Figure 3.2.
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Re = − + Re

1

2

3

4

+

˜G

˜G

˜G

˜G

U e Re

˜G

˜G

Σe

˜G−1

+ Re

˜G

˜G Σe

˜G−1

− Re

˜G

˜G Σe

Σe

Figure 3.2: Diagrammatic representation of the Bethe-Salpeter equation for the correlated
propagator Re given by Eq. (3.44) [98].

3.2 The Temperature-dependent Mass Operator and
Interaction Amplitude

In this section, we discuss the essential steps to construct the analytical form of the
energy-dependent mass operator Σe and interaction amplitude U e for the case of finite
temperature. We start with the definition of the finite-temperature phonon propagator in
energy representation [149, 150, 151]:

Dm(εℓ − εℓ′) =
2ωm

(iεℓ − iεℓ′)2 − ω2
m

=
1

iεℓ − iεℓ′ − ωm

− 1

iεℓ − iεℓ′ + ωm

=
∑
σ=±1

σ

iεℓ′ − iεℓ − σωm

, (3.46)

where m specifies the complete set of phonon quantum numbers with the corresponding real
phonon frequency ωm. The analytical form of the mass operator Σe

k1k2
(εℓ) corresponding to

the Feynman diagram shown in Figure 3.1 reads

Σe
k1k2

(εℓ) = −T
∑
k3,m

∑
ℓ′

G̃k3(εℓ′)
∑
σ=±1

σ

iεℓ − iεℓ′ − σωm

g
m(σ)∗
k1k3

g
m(σ)
k2k3

= T
∑
k3,m

∑
ℓ′

1

iεℓ′ − εk3 + µ

gmk3k1g
m∗
k3k2

iεℓ − iεℓ′ + ωm

− T
∑
k3,m

∑
ℓ′

1

iεℓ′ − εk3 + µ

gm∗
k1k3

gmk2k3
iεℓ − iεℓ′ − ωm

, (3.47)
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where the phonon vertices gm(σ) are defined according to Eq. (3.27). The phonon vertices
gmk1k2 are, in the leading approximation, related to the effective meson-exchange interaction
Ũ via

gmk1k2 =
∑
k3k4

Ũk1k2,k3k4ρ
m
k3k4

, (3.48)

where ρmk3k4 are the transition densities of the phonons. The summation over ℓ′ in Eq. (3.47)
can be transformed into a contour integral as demonstrated in Appendix A. We then obtain
the final expression of the mass operator Σe

k1k2
(εℓ) of the form:

Σe
k1k2

(εℓ) =
∑
k3,m

{
gm∗
k1k3

gmk2k3
N(ωm, T ) + 1− n(εk3 , T )

iεℓ − εk3 + µ− ωm

+ gmk3k1g
m∗
k3k2

n(εk3 , T ) +N(ωm, T )

iεℓ − εk3 + µ+ ωm

}
,

(3.49)

where
N(ωm, T ) =

1

eωm/T − 1
(3.50)

is the phonon occupation number with the energy ωm [149, 150, 151]. At this point, it is
instructive to take the limit T → 0 of Eq. (3.49) and compare the result with Eq. (3.26).
Before that, it is convenient to rewrite Eq. (3.26) as

Σe
k1,k2

(ε) =
∑
k3,m

ε̃k3>εF

gm∗
k1k3

gmk2k3
ε− ε̃k3 − ωm + iδ

+
∑
k3,m

ε̃k3≤εF

gmk3k1g
m∗
k3k2

ε− ε̃k3 + ωm − iδ
, δ → +0. (3.51)

In the limit T → 0 the phonon occupation number N(ωm, T ) → 0, the energy difference
εk3 − µ → ε̃k3 , and the fermion occupation number n(εk3 , T ) goes to 1 (0) for ε̃k3 ≤ εF

(ε̃k3 > εF ). Applying this limit to the first term of the right-hand side (RHS) of Eq. (3.49)
gives

∑
k3,m

gm∗
k1k3

gmk2k3
N(ωm, T ) + 1− n(εk3 , T )

iεℓ − εk3 + µ− ωm

→
∑
k3,m

ε̃k3>εF

gm∗
k1k3

gmk2k3
0 + 1− 0

ε− ε̃k3 − ωm

+
∑
k3,m

ε̃k3≤εF

gmk2k3
0 + 1− 1

ε− ε̃k3 − ωm︸ ︷︷ ︸
=0∑

k3,m

gm∗
k1k3

gmk2k3
N(ωm, T ) + 1− n(εk3 , T )

iεℓ − εk3 + µ− ωm

→
∑
k3,m

ε̃k3>εF

gm∗
k1k3

gmk2k3
ε− ε̃k3 − ωm

, (3.52)
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which is the first term of the RHS of Eq. (3.51). Similarly, it can be shown that the
application of the limit T → 0 to the second term of the RHS of Eq. (3.49) gives us the
second term of the RHS of Eq. (3.51). Therefore, we have obtained the correct limit T → 0

for the energy-dependent mass operator Σe given by (3.49).
The interaction amplitude U e

k1k2,k3k4
(ωn, εℓ, εℓ′) is specified by the finite-temperature

dynamical consistency condition:

Σe
k1k2

(εℓ + ωn)− Σe
k1k2

(εℓ) = T
∑
k3k4

∑
ℓ′

U e
k2k1,k4k3

(ωn, εℓ, εℓ′)[G̃k3k4(εℓ′ + ωn)− G̃k3k4(εℓ′)],

(3.53)

analogous to the zero-temperature case [68, 155]. It can be shown that the interaction
amplitude U e

k1k2,k3k4
(ωn, εℓ, εℓ′), which satisfies the condition (3.53), takes the form:

U e
k1k2,k3k4

(ωn, εℓ, εℓ′) =
∑
m

gmk4k2g
m∗
k3k1

iεℓ − iεℓ′ + ωm

−
∑
m

gm∗
k2k4

gmk1k3
iεℓ − iεℓ′ − ωm

, (3.54)

which has obviously the correct T → 0 limit.

3.3 Time Blocking Approximation in Imaginary-time
Formalism

As the equation (3.37) has the singular kernel, it cannot be solved directly in its present
form. The time-blocking approximation proposed originally in Ref. [67] for the case of
T = 0 and adopted for the relativistic framework in Refs. [77, 78] allows for a reduction of
the BSE to one-energy variable equation with the interaction kernel where the internal energy
variables can be integrated out separately. The main idea of the method is to introduce a
time projection operator into the integral part of the BSE for the correlated propagator Re.
This operator acting between the uncorrelated mean-field propagator and the PVC processes
in the second term on the right-hand side of Eq. (3.37) brings it to a separable form with
respect to its two energy variables, see Ref. [68] for details. The analogous imaginary-time
projection operator for the finite temperature case would look as follows:

Θ(12, 34) = δσk1
,−σk2

θ(σk1τ41)θ(σk1τ32); (3.55)

however, it turns out that at T > 0 it does not lead to a similar separable function in the
kernel of Eq. (3.37).
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In order to reach the desired separable form, we found that the imaginary-time projection
operator has to be modified as follows:

Θ(12, 34;T ) = δσk1
,−σk2

θ(σk1τ41)θ(σk1τ32) [n(σk1εk2 , T )θ(σk1τ12)

+ n(σk2εk1 , T )θ(σk2τ12)] , (3.56)

i.e., it should contain an additional multiplier with the dependence on the diffuse Fermi-Dirac
distribution function, which turns to unity in the T = 0 limit at the condition σk1 = −σk2 .

Using the correct analytical expression of the imaginary-time projection operator
Θ(12, 34;T ), we construct an operator D̃ of the form:

D̃(12, 34) = δσk1
,−σk2

G̃ σk1 (3, 1)G̃ σk2 (2, 4)θ(σk1τ41)θ(σk1τ32)

× [n(σk1εk2 , T )θ(σk1τ12) + n(σk2εk1 , T )θ(σk2τ12)] , (3.57)

where σk = +1(−1) for particle (hole). Due to the presence of the Kronecker delta δσk1
,−σk2

,
the non-vanishing combinations of (σk1 , σk2) would be (+1,−1) and (−1,+1). A pair of state
{k1, k2} is assigned as a ph (hp) pair if the energy difference εk1−εk2 is larger (smaller) than
zero. The thermal mean-field Green’s function for σk = +1 is defined as [149, 150, 151]

G̃ (+1)(3, 1) = −δk1k3 [1− n(εk1 , T )]e−(εk1−µ)τ31θ(τ31) (3.58)

and for σk = −1, it reads [149, 150, 151]:

G̃ (−1)(3, 1) = δk1k3n(εk1 , T )e
−(εk1−µ)τ31θ(−τ31). (3.59)

In a concise form, the thermal mean-field Green’s function is given by

G̃ σk1 (3, 1) = −σk1δk1k3n(−σk1εk1 , T )e−(εk1−µ)τ31θ(σk1τ31). (3.60)

For particle-hole channel, Eq. (3.57) gives

D̃ph(12, 34) = G̃ (+1)(3, 1)G̃ (−1)(2, 4)θ(τ41)θ(τ32)[nk2θ(τ12) + (1− nk1)θ(τ21)], (3.61)

where we have introduced the shorthand notations:

n(εk1 , T ) =
1

e(εk1−µ)/T + 1
≡ nk1 , (3.62)

n(−εk1 , T ) =
1

e−(εk1−µ)/T + 1
=

e(εk1−µ)/T

e(εk1−µ)/T + 1
= 1− 1

e(εk1−µ)/T + 1
≡ 1− nk1 .(3.63)

32



Inserting Eqs. (3.58) and (3.59) into Eq. (3.61), we obtain

D̃ph(12, 34) = −δk1k3δk2k4(1− nk1)nk2θ(τ31)θ(τ42)θ(τ41)θ(τ32)

× [nk2θ(τ12) + (1− nk1)θ(τ21)]e
−[(εk1−µ)τ31+(εk2−µ)τ24]

= −δk1k3δk2k4(1− nk1)nk2 [nk2θ(τ31)θ(τ42)θ(τ41)θ(τ32)θ(τ12)

+ (1− nk1)θ(τ31)θ(τ42)θ(τ41)θ(τ32)θ(τ21)]e
−[(εk1−µ)τ31+(εk2−µ)τ24]. (3.64)

The terms in the bracket can be evaluated using the identity:

θ(τ13)θ(τ12)θ(τ23) = θ(τ12)θ(τ23). (3.65)

Using the identity (3.65), Eq. (3.64) becomes

D̃ph(12, 34) = −δk1k3δk2k4(1− nk1)nk2 [nk2θ(τ41)θ(τ31)θ(τ12)

+ (1− nk1)θ(τ42)θ(τ32)θ(τ21)]e
−[(εk1−µ)τ31+(εk2−µ)τ24]. (3.66)

We next introduce the τ -difference variables τ31 = τ3 − τ1, τ21 = τ2 − τ1, and τ34 = τ3 − τ4,
so that D̃ph(12, 34) ≡ D̃ph

k1k2,k3k4
(τ31, τ21, τ34), and transform D̃ph(12, 34) into its spectral

representation using the Fourier transformation:

D̃ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =

∫ 1/T

−1/T

∫ 1/T

−1/T

∫ 1/T

−1/T

dτ31dτ21dτ34D̃
ph
k1k2,k3k4

(τ31, τ21, τ34)

× ei(ωnτ31+εℓτ21+εℓ′τ34). (3.67)

Inserting Eq. (3.66) into Eq. (3.67), we obtain

D̃ph
k1k2,k3k4

(ωn, εℓ, εℓ′) = δk1k3δk2k4(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)G̃k3(εℓ′ + ωn)G̃k4(εℓ′).

(3.68)

For a more detailed derivation, an interested reader can refer to Appendix B. For hole-particle
channel, Eq. (3.57) gives

D̃hp(12, 34) = G̃ (−1)(3, 1)G̃ (+1)(2, 4)θ(τ14)θ(τ23)[(1− nk2)θ(τ21) + nk1θ(τ12)]. (3.69)

In the spectral representation, operator D̃hp(12, 34) takes the form:

D̃hp
k1k2,k3k4

(ωn, εℓ, εℓ′) = −δk1k3δk2k4(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)G̃k3(εℓ′ + ωn)G̃k4(εℓ′).

(3.70)
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In the concise form, the time-blocking operator takes the form

D̃k1k2,k3k4(ωn, εℓ, εℓ′) = σk1δσk1
,−σk2

δk1k3δk2k4(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)

× G̃k3(εℓ′ + ωn)G̃k4(εℓ′). (3.71)

After having defined the D̃-operator we are now ready to apply it to the BSE (3.37). We
first transform the BSE (3.37) into

Re = R̃0 − R̃0ΓeR̃0, (3.72)

where the amplitude Γe is defined as

Γe = W e −W eR̃0W e + W eR̃0W eR̃0W e − · · · = W e −W eR̃0Γe. (3.73)

By making the substitutions:

R̃0 → −D̃ and W e → W̃ e (3.74)

in Eq. (3.73), where D̃ is defined by Eq. (3.71), one obtains the new amplitude Γ̃e, viz.,

Γ̃e = W̃ e − W̃ e(−D̃)Γ̃e, (3.75)

where
W̃ e(12, 34) = W e(12, 34) +W comp(12, 34). (3.76)

Like in the zero-temperature case [68], we omit the term W comp(12, 34) because it accounts
for a higher-order contribution as compared to W e of (3.40). Using the new amplitude Γ̃e,
the Bethe-Salpeter equation (3.72) becomes

R̃e = R̃0 − R̃0Γ̃eR̃0

= R̃0 − R̃0W̃ eR̃e

= R̃0 + D̃W̃ eR̃e

R̃e = R̃0 + D̃W eR̃e, (3.77)

where R̃0 = −G̃ G̃ . In the τ representation, (3.77) can be written as

R̃e(12, 34) = −G̃ (3, 1)G̃ (2, 4) +
τ∑

5678

D̃(12, 56)
[
U e(56, 78) + Σe(7, 5)G̃ −1(6, 8)
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+ G̃ −1(7, 5)Σe(6, 8)
]
R̃e(78, 34). (3.78)
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Figure 3.3: Diagrammatic representation of the g4 terms (a) R̃0U eR̃0U eR̃0 and (b)
R̃0U eR̃0ΣeG̃ −1R̃0, which are included in the infinite sum (3.79). The similar fourth-order
diagrams for (c) R̃0U eR̃0U eR̃0 and (d) R̃0U eR̃0ΣeG̃ −1R̃0 with the imaginary time τ6 is
later than τ7. The dashed line denotes the specific imaginary time τ .

⇓
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Figure 3.4: Diagrammatic representation of the imaginary-time ordered g4 terms (a)
D̃U eD̃U eR̃0 and (b) D̃U eD̃ΣeG̃ −1R̃0. After making the substitution (3.74), the
g4 terms R̃0U eR̃0U eR̃0 and R̃0U eR̃0ΣeG̃ −1R̃0 becomes (a) D̃U eD̃U eR̃0 and (b)
D̃U eD̃ΣeG̃ −1R̃0. These imaginary-time ordered diagrams now enter the infinite sum (3.81).

Let us now discuss the physical meaning of the D̃-operator by taking the operator
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D̃ph(12, 34) as an example. For this purpose, we first rewrite Re of Eq. (3.37) as an infinite
sum:

Re = R̃0 − R̃0W eRe

= R̃0 − R̃0W eR̃0 + R̃0W eR̃0W eR̃0 − · · · , (3.79)

where
W e = U e + G̃ −1Σe + ΣeG̃ −1 − ΣeΣe. (3.80)

As a matter of illustration, let us consider the terms of Re which are fourth-order in g,
such as R̃0U eR̃0U eR̃0 and R̃0U eR̃0ΣeG̃ −1R̃0. The diagrammatic representation of these
terms are shown in Figure 3.3 (a) and (b). However, since the intermediate imaginary-time
variables τi (i = 5, ..., 8) can take any values between 0 and 1/T , it is possible that the
imaginary time τ6 (τ5) is later than τ7 (τ8), as shown in Figure 3.3 (c) and (d). On the other
hand, the correlated propagator R̃e is given as an infinite sum:

R̃e = R̃0 + D̃W eR̃e

= R̃0 + D̃W eR̃0 + D̃W eD̃W eR̃0 + · · · , (3.81)

where
W e = U e + G̃ −1Σe + ΣeG̃ −1. (3.82)

Figure 3.4 shows the fourth-order diagrams for D̃U eD̃U eR̃0 and D̃U eD̃ΣeG̃ −1R̃0 as a
comparison. The operator D̃ph(56, 78) contains the step functions θ(τ85) and θ(τ76), which
prohibit the imaginary time τ6 (τ5) to be later than τ7 (τ8), as demonstrated in Figure 3.4
(a) and (b). This unique property of D̃-operator hence coins the name of our method,
i.e., finite-temperature relativistic time blocking approximation (FT-RTBA). The role of
operator D̃ph(56, 78) is thus to eliminate the processes with the configuration more complex
than 1p1h⊗ phonon ones. As a result, the types of diagram included in Eq. (3.81) are the
1p1h and 1p1h⊗ phonon ones.

3.4 Correlated Particle-hole Propagator
In this section, we derive the Bethe-Salpeter equation (BSE) for the single-frequency

correlated ph propagator R̃e
k1k2,k3k4

(ωn) from the BSE for the correlated propagator
R̃e

k1k2,k3k4
(ωn, εℓ, εℓ′) given by Eq. (3.78). The one-variable correlated propagator

R̃e
k1k2,k3k4

(ωn) can be obtained from the correlated propagator R̃e
k1k2,k3k4

(ωn, εℓ, εℓ′) by double
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summation:
R̃e

k1k2,k3k4
(ωn) = T 2

∑
ℓ

∑
ℓ′

R̃e
k1k2,k3k4

(ωn, εℓ, εℓ′). (3.83)

The Fourier transform of the correlated propagator R̃e(12, 34),

R̃e
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)R̃e(12, 34), (3.84)

can be decomposed into four integrals:

I1 = −1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)G̃ (3, 1)G̃ (2, 4), (3.85)

I2 =
1

8

τ∑
5678

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)D̃(12, 56)U e(56, 78)

× R̃e(78, 34), (3.86)

I3 =
1

8

τ∑
5678

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)D̃(12, 56)Σe(7, 5)G̃ −1(6, 8)

× R̃e(78, 34), (3.87)

I4 =
1

8

τ∑
5678

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)D̃(12, 56)G̃ −1(7, 5)Σe(6, 8)

× R̃e(78, 34). (3.88)

The integral I1 is the Fourier transform of the finite-temperature free response function
R̃0(12, 34), which is given by

R̃0
k1k2,k3k4

(ωn, εℓ, εℓ′) = −
1

T
δℓ′ℓδk1k3δk2k4G̃1(ωn + εℓ)G̃2(εℓ). (3.89)

A more detailed derivation of R̃0
k1k2,k3k4

(ωn, εℓ, εℓ′) is placed in Appendix C. The integral I2
can be carried out as follows:

I2 =
1

8

τ∑
5678

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

∫ 1/T

−1/T

dτ34e
iεℓ′τ34

× T 3
∑

n1,ℓ1,ℓ′1

e
−i(αn1τ51+βℓ1

τ21+γℓ′1
τ56)D̃k1k2,k5k6(αn1 , βℓ1 , γℓ′1)

× T 3
∑

n2,ℓ2,ℓ′2

e−i(αn2τ75+βℓ2
τ65+γℓ′τ78)U e

k5k6,k7k8
(αn2 , βℓ2 , γℓ′2)
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× T 3
∑

n3,ℓ3,ℓ′3

e
−i(αn3τ37+βℓ3

τ87+γℓ′3
τ34)R̃e

k7k8,k3k4
(αn3 , βℓ3 , γℓ′3)

=
1

8

τ∑
5678

∫ 1/T

−1/T

dτ31e
iωnτ31T 3

∑
n1,ℓ1,ℓ′1

e
−i(αn1τ51+γℓ′1

τ56)D̃k1k2,k5k6(αn1 , βℓ1 , γℓ′1)

× T 3
∑

n2,ℓ2,ℓ′2

e−i(αn2τ75+βℓ2
τ65+γℓ′τ78)U e

k5k6,k7k8
(αn2 , βℓ2 , γℓ′2)

× T 3
∑

n3,ℓ3,ℓ′3

e−i(αn3τ37+βℓ3
τ87)R̃e

k7k8,k3k4
(αn3 , βℓ3 , γℓ′3)

∫ 1/T

−1/T

dτ21e
i(εℓ−βℓ1

)τ21︸ ︷︷ ︸
= 2

T
δεℓ,βℓ1

×
∫ 1/T

−1/T

dτ34e
i(εℓ′−γℓ′3

)τ34

︸ ︷︷ ︸
= 2

T
δεℓ′ ,γℓ′3

=
1

2

τ∑
5678

∫ 1/T

−1/T

dτ31e
iωnτ31T 2

∑
n1,ℓ′1

e
−i(αn1τ51+γℓ′1

τ56)D̃k1k2,k5k6(αn1 , εℓ, γℓ′1)

× T 3
∑

n2,ℓ2,ℓ′2

e−i(αn2τ75+βℓ2
τ65+γℓ′τ78)U e

k5k6,k7k8
(αn2 , βℓ2 , γℓ′2)

× T 2
∑
n3,ℓ3

e−i(αn3τ37+βℓ3
τ87)R̃e

k7k8,k3k4
(αn3 , βℓ3 , εℓ′)

=
1

2

∑
k5k6k7k8

∫ 1/T

−1/T

dτ31e
iωnτ31ei(αn1τ1−αn3τ3)

× T 7
∑
n1,ℓ′1

∑
n2,ℓ2,ℓ′2

∑
n3,ℓ3

∫ 1/T

0

dτ5e
−i(αn1+γℓ′1

−αn2−βℓ2
)τ5

×
∫ 1/T

0

dτ6e
−i(−γℓ′1

+βℓ2
)τ6︸ ︷︷ ︸

= 1
T
δγ

ℓ′1
,βℓ2

∫ 1/T

0

dτ7e
−i(αn2+γℓ′2

−αn3−βℓ3
)τ7

∫ 1/T

0

dτ8e
−(−γℓ′2

+βℓ3
)τ8︸ ︷︷ ︸

= 1
T
δγ

ℓ′2
,βℓ3

× D̃k1k2,k5k6(αn1 , εℓ, γℓ′1)U
e
k5k6,k7k8

(αn2 , βℓ2 , γℓ′2)R̃
e
k7k8,k3k4

(αn3 , βℓ3 , εℓ′)

=
T 5

2

∑
k5k6k7k8

∫ 1/T

−1/T

dτ31e
iωnτ31ei(αn1τ1−αn3τ3)

∑
n1,n3

∑
n2,ℓ2,ℓ3

∫ 1/T

0

dτ5e
−i(αn1−αn2 )τ5︸ ︷︷ ︸

= 1
T
δn1,n2

×
∫ 1/T

0

dτ7e
−i(αn2−αn3 )τ7︸ ︷︷ ︸

= 1
T
δn2,n3

D̃k1k2,k5k6(αn1 , εℓ, βℓ2)U
e
k5k6,k7k8

(αn2 , βℓ2 , βℓ3)

× R̃e
k7k8,k3k4

(αn3 , βℓ3 , εℓ′)
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=
T 3

2

∑
k5k6k7k8

∫ 1/T

−1/T

dτ31e
iωnτ31eiαn2 (τ1−τ3)

∑
n2,ℓ2,ℓ3

D̃k1k2,k5k6(αn2 , εℓ, βℓ2)

× U e
k5k6,k7k8

(αn2 , βℓ2 , βℓ3)R̃
e
k7k8,k3k4

(αn3 , βℓ3 , εℓ′)

I2 = T 2
∑

k5k6k7k8

∑
ℓ2,ℓ3

D̃k1k2,k5k6(ωn, εℓ, βℓ2)U
e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)R̃
e
k7k8,k3k4

(ωn, βℓ3 , εℓ′).

(3.90)

The similar calculation procedures can be applied to the integrals I3 and I4 to give

I3 = T
∑

k5k6k7k8

∑
ℓ3

σk1δσk1
,−σk2

δk1k5δk2k6δk6k8(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)

× G̃k5(εℓ3 + ωn)Σ
e
k7k5

(ωn + εℓ3)R̃
e
k7k8,k3k4

(ωn, εℓ3 , εℓ′) (3.91)

and

I4 = T
∑

k5k6k7k8

∑
n3

σk1δσk1
,−σk2

δk7k5δk1k5δk2k6(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)

× G̃k6(ωn3)Σ
e
k6k8

(ωn3)R̃
e
k7k8,k3k4

(ωn, ωn3 , εℓ′). (3.92)

Combining R̃0 with the integrals I2, I3, and I4 yields the correlated propagator R̃e in
the spectral representation. After obtaining the analytical form of R̃e

k1k2,k3k4
(ωn, εℓ, εℓ′), we

perform the summation over the Matsubara frequencies ωℓ and ωℓ′ according to Eq. (3.83)
to obtain the BSE for one-variable correlated propagator R̃e

k1k2,k3k4
(ωn) of the form

R̃e
k1k2,k3k4

(ωn) = R̃0
k1k2,k3k4

(ωn)−
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ωn)
[
Φ̃

(1)
k5k6,k7k8

(ωn) + Φ̃
(2)
k5k6,k7k8

(ωn)

+ Φ̃
(3)
k5k6,k7k8

(ωn)
]
R̃e

k7k8,k3k4
(ωn). (3.93)

The first term R̃0
k1k2,k3k4

(ωn) of Eq. (3.93) is the uncorrelated propagator, which is given by

R̃0
k1k2,k3k4

(ωn) = T 2
∑
ℓ

∑
ℓ′

R̃0
k1k2,k3k4

(ωn, εℓ, εℓ′)

= − 1

T
δk1k3δk2k4T

2
∑
ℓ

∑
ℓ′

δℓ′ℓG̃k1(ωn + εℓ)G̃k2(εℓ)

= −δk1k3δk2k4T
∑
ℓ

G̃k1(ωn + εℓ)G̃k2(εℓ)

R̃0
k1k2,k3k4

(ωn) = −δk1k3δk2k4T
∑
ℓ

1

i(ωn + εℓ)− εk1 + µ

1

iεℓ − εk2 + µ
. (3.94)
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The transformation of the summation over ℓ into a contour integral leads to

R̃0
k1k2,k3k4

(ωn) = −δk1k3δk2k4
n(εk2 , T )− n(εk1 , T )
iωn − εk1 + εk2

. (3.95)

Before deriving the analytical form of the amplitude Φ̃(ωn), it is convenient to express
R̃e(12, 34) as

R̃e(12, 34) =
τ∑
56

D̃(12, 56)T e(56, 34). (3.96)

Its Fourier transform is given by

R̃e
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8

τ∑
56

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

∫ 1/T

−1/T

dτ34e
iεℓ′τ34

× D̃k1k2,k5k6(τ51, τ21, τ56)T
e
k5k6,k3k4

(τ35, τ65, τ34)

=
∑
k5k6

δσk1
,−σk2

δk1k5δk2k6σk1(iωn − εk1 + εk2)

× T
∑
ℓ2

G̃k1(ωn + εℓ)G̃k2(εℓ)G̃k5(ωn + εℓ2)G̃k6(εℓ2)

× T e
k5k6,k3k4

(ωn, εℓ2 , εℓ′). (3.97)

Accordingly, R̃e
k1k2,k3k4

(ωn) can be expressed as

R̃e
k1k2,k3k4

(ωn) = T 2
∑
εℓ

∑
εℓ′

R̃e
k1k2,k3k4

(ωn, εℓ, εℓ′)

=
∑
k5k6

δσk1
,−σk2

δk1k5δk2k6σ1(iωn − εk1 + εk2)T
∑
εℓ

G̃k1(ωn + εℓ)

× G̃k2(εℓ)T
2
∑
ℓ2

∑
εℓ′

G̃k5(ωn + εℓ2)G̃k6(εℓ2)T
e
k5k6,k3k4

(ωn, εℓ2 , εℓ′)

=
∑
k5k6

δ−σk1
,σk2

δk1k5δk2k6σk1(iωn − εk1 + εk2)
n(εk2 , T )− n(εk1 , T )
iωn − εk1 + εk2

× T 2
∑
ℓ2

∑
εℓ′

G̃k5(ωn + εℓ2)G̃k6(εℓ2)T
e
k5k6,k3k4

(ωn, εℓ2 , εℓ′)

R̃e
k1k2,k3k4

(ωn) = δσk1
,−σk2

σk1 [n(εk2 , T )− n(εk1 , T )]

× T 2
∑
εℓ

∑
εℓ′

G̃k1(ωn + εℓ)G̃k2(εℓ)T
e
k5k6,k3k4

(ωn, εℓ, εℓ′). (3.98)
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Inserting Eq. (3.97) into Eq. (3.90), one obtains

I2 =
∑

k5k6k7k8

T 2
∑
ℓ2,ℓ3

δσk1
,−σk2

δk1k5δk2k6σk1(iωn − εk1 + εk2)G̃k1(ωn + εℓ)

× G̃k2(εℓ)G̃k5(ωn + βℓ2)G̃k6(βℓ2)U
e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)R̃
e
k7k8,k3k4

(ωn, βℓ3 , εℓ′)

=
∑

k5k6k7k8

T 2
∑
ℓ2,ℓ3

δσk1
,−σk2

δk1k5δk2k6σk1(iωn − εk1 + εk2)G̃k1(ωn + εℓ)G̃k2(εℓ)

× G̃k5(ωn + βℓ2)G̃k6(βℓ2)U
e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)

×
∑
k9k10

δσk7
,−σk8

δk7k9δk8k10σk7(iωn − εk7 + εk8)

× T
∑
ℓ4

G̃k7(ωn + βℓ3)G̃k8(βℓ3)G̃k9(ωn + βℓ4)G̃k10(βℓ4)T
e
k9k10,k3k4

(ωn, βℓ4 , εℓ′)

I2 =
∑

k5k6k7k8

δσk1
,−σk2

δk1k5δk2k6G̃k1(ωn + εℓ)G̃k2(εℓ)σk5(iωn − εk5 + εk6)

× T 2
∑
ℓ2,ℓ3

G̃k5(ωn + βℓ2)G̃k6(βℓ2)U
e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)G̃k7(ωn + βℓ3)G̃k8(βℓ3)

× σk7(iωn − εk7 + εk8)δσk7
,−σk8

T
∑
ℓ4

G̃k7(ωn + βℓ4)G̃k8(βℓ4)

× T e
k7k8,k3k4

(ωn, βℓ4 , εℓ′). (3.99)

Performing the summation over Matsubara frequencies εℓ and εℓ′ for integral I2 yields

T 2
∑
εℓ

∑
εℓ′

I2 =
∑

k5k6k7k8

δk1k5δk2k6T
∑
εℓ

G̃k1(ωn + εℓ)G̃k2(εℓ)

×

{
− δσk5

,−σk6
σk5(iωn − εk5 + εk6)

[
− T 2

∑
ℓ2,ℓ3

G̃k5(ωn + βℓ2)G̃k6(βℓ2)

× U e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)G̃k7(ωn + βℓ3)G̃k8(βℓ3)

]
σk7(iωn − εk7 + εk8)

}
× δσk7

,−σk8
T 2
∑
ℓ4

∑
εℓ′

G̃k7(ωn + βℓ4)G̃k8(βℓ4)T
e
k7k8,k3k4

(ωn, βℓ4 , εℓ′)

= −
∑

k5k6k7k8

[
−δk1k5δk2k6

n(εk2 , T )− n(εk1 , T )
iωn − εk1 + εk2

]

×

{
− δσk5

,−σk6
σk5(iωn − εk5 + εk6)

[
− T 2

∑
ℓ2,ℓ3

G̃k5(ωn + βℓ2)G̃k6(βℓ2)

× U e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)G̃k7(ωn + βℓ3)G̃k8(βℓ3)

]
σk7(iωn − εk7 + εk8)

}
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×

δσk7
,−σk8

T 2
∑
ℓ4

∑
εℓ′

G̃k7(ωn + βℓ4)G̃k8(βℓ4)T
e
k7k8,k3k4

(ωn, βℓ4 , εℓ′)


= −

∑
k5k6k7k8

[
−δk1k5δk2k6

n(εk2 , T )− n(εk1 , T )
iωn − εk1 + εk2

]

×

{
− δσk5

,−σk6
σk5(iωn − εk5 + εk6

[
− T 2

∑
ℓ2,ℓ3

G̃k5(ωn + βℓ2)G̃k6(βℓ2)

× U e
k5k6,k7k8

(ωn, βℓ2 , βℓ3)G̃k7(ωn + βℓ3)G̃k8(βℓ3)

]
σk7(iωn − εk7 + εk8)

σk7 [n(εk8 , T )− n(εk7 , T )]

}

×

[
δσk7

,−σk8
σk7 [n(εk8 , T )− n(εk7 , T )]T 2

∑
ℓ4

∑
εℓ′

G̃k7(ωn + βℓ4)G̃k8(βℓ4)

× T e
k7k8,k3k4

(ωn, βℓ4 , εℓ′)

]
T 2
∑
εℓ

∑
εℓ′

I2 = −
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ωn)Φ
(1)
k5k6,k7k8

(ωn)R̃
e
k7k8,k3k4

(ωn), (3.100)

where we have used Eqs. (3.95) and (3.98), and defined the first term of the particle-phonon
coupling amplitude Φ̃k1k2,k3k4(ωn) as

Φ̃
(1)
k1k2,k3k4

(ωn) = −δσk1
,−σk2

σk1(iωn − εk1 + εk2)A
[1](1)
k1k2,k3k4

(ωn)σk3(iωn − εk3 + εk4), (3.101)

where

A
[1](1)
k1k2,k3k4

(ωn) = − T 2

σk3 [n(εk4 , T )− n(εk3 , T )]
∑
ℓ2,ℓ3

G̃k1(ωn + βℓ2)G̃k2(βℓ2)

× U e
k1k2,k3k4

(ωn, βℓ2 , βℓ3)G̃k3(ωn + βℓ3)G̃k4(βℓ3). (3.102)

Inserting Eq. (3.97) into Eqs. (3.91) and (3.92), we obtain

I3 =
∑

k5k6k7k8

δσk1
,−σk2

δk1k5δk2k6G̃k1(ωn + εℓ)G̃k2(εℓ)

{
− σk5(iωn − εk5 + εk6)

×

[
−T

∑
ℓ3

G̃k5(ωn + εℓ3)Σ
e
k7k5

(ωn + εℓ3)δk6k8G̃k7(ωn + εℓ3)G̃k8(εℓ3)

]

× σk7(iωn − εk7 + εk8)

}
δσk7

,−σk8
T
∑
ℓ4

G̃k7(ωn + εℓ4)G̃k8(εℓ4)

× T e
k7k8,k3k4

(ωn, εℓ4 , εℓ′) (3.103)
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and

I4 =
∑

k5k6k7k8

δk1k5δk2k6G̃k1(ωn + εℓ)G̃k2(εℓ)

{
− δσk5

,−σk6
σk5(iωn − εk5 + εk6)

×

[
− T

∑
n3

G̃k6(ωn3)Σ
e
k6k8

(ωn3)δk7k5G̃k7(ωn + ωn3)G̃k8(ωn3)

]

× σk7(iωn − εk7 + εk8)

}
δσk7

,−σk8
T
∑
ℓ4

G̃k7(ωn + εℓ4)G̃k8(εℓ4)

× T e
k7k8,k3k4

(ωn, εℓ4 , εℓ′). (3.104)

After performing the summation over Matsubara frequencies εℓ and εℓ′ for integrals I3 and
I4, one obtains

T 2
∑
εℓ

∑
εℓ′

I3 = −
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ωn)Φ̃
(2)
k5k6,k7k8

(ωn)R̃
e
k7k8,k3k4

(ωn) (3.105)

and

T 2
∑
εℓ

∑
εℓ′

I4 = −
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ωn)Φ̃
(3)
k5k6,k7k8

(ωn)R̃
e
k7k8,k3k4

(ωn), (3.106)

where the second and third terms of the particle-phonon coupling amplitude Φ̃k1k2,k3k4(ωn)

are given as

Φ̃
(2)
k1k2,k3k4

(ωn) = −δσk1
,−σk2

σk1(iωn − εk1 + εk2)A
[1](2)
k1k2,k3k4

(ωn)σk3(iωn − εk3 + εk4) (3.107)

and

Φ̃
(3)
k1k2,k3k4

(ωn) = −δσk1
,−σk2

σk1(iωn − εk1 + εk2)A
[1](3)
k1k2,k3k4

(ωn)σk3(iωn − εk3 + εk4). (3.108)

Here we also have defined

A
[1](2)
k1k2,k3k4

(ωn) = − T

σk3 [n(εk4 , T )− n(εk3 , T )]
∑
ℓ3

G̃k1(ωn + εℓ3)Σ
e
k3k1

(ωn + εℓ3)

× δk2k4G̃k3(ωn + εℓ3)G̃k4(εℓ3) (3.109)
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and

A
[1](3)
k1k2,k3k4

(ωn) = − T

σk3 [n(εk4 , T )− n(εk3 , T )]
∑
n3

G̃k2(ωn3)Σ
e
k2k4

(ωn3)

× δk3k1G̃k3(ωn + ωn3)G̃k4(ωn3). (3.110)

After performing the Matsubara summations in each term of A[1]
k1k2,k3k4

(ωn), one obtains the
analytical form of the particle-phonon coupling amplitude Φ̃k1k2,k3k4(ωn):

Φ̃k1k2,k3k4(ωn) = Φ̃
(1)
k1k2,k3k4

(ωn) + Φ̃
(2)
k1k2,k3k4

(ωn) + Φ̃
(3)
k1k2,k3k4

(ωn), (3.111)

where

Φ̃
(1)
k1k2,k3k4

(ωn) =
δσk1

,−σk2
σk1

n(εk4 , T )− n(εk3 , T )

{∑
m

gmk4k2g
m∗
k3k1

[N(ωm, T ) + n(εk4 , T )]

× n(εk1 , T )− n(εk4 − ωm, T )

iωn − ωm − εk1k4
+
∑
m

gmk4k2g
m∗
k3k1

[N(ωm, T ) + n(εk3 , T )]

× n(εk3 − ωm, T )− n(ε2, T )
iωn + ωm − εk3k2

+
∑
m

gmk1k3g
m∗
k2k4

[N(ωm, T ) + 1− n(εk3 , T )]

× n(ωm + εk3 , T )− n(εk2 , T )
iωn − ωm − εk3k2

+
∑
m

gmk1k3g
m∗
k2k4

[N(ωm, T ) + 1− n(ε4, T )]

× n(εk1 , T )− n(ωm + εk4 , T )

iωn + ωm − εk1k4

}
, (3.112)

Φ̃
(2)
k1k2,k3k4

(ωn) =
δσk1

,−σk2
σk1δk2k4

n(εk4 , T )− n(εk3 , T )

{∑
k5,m

gm∗
k3k5

gmk1k5 [N(ωm, T ) + 1− n(εk5 , T )]

× n(εk4 , T )− n(εk5 + ωm, T )

iωn − ωm + εk4k5
+
∑
k5,m

gmk5k3g
m∗
k5k1

[N(ωm, T ) + n(εk5 , T )]

× n(εk4 , T )− n(εk5 − ωm, T )

iωn + ωm + εk4k5

}
, (3.113)

Φ̃
(3)
k1k2,k3k4

(ωn) =
δσk1

,−σk2
σk1δk3k1

n(εk4 , T )− n(εk3 , T )
∑
k6,m

{
gm∗
k2k6

gmk4k6 [N(ωm, T ) + 1− n(εk6 , T )]

× n(ωm + εk6 , T )− n(εk3 , T )
iωn + ωm − εk3k6

+ gmk6k2g
m∗
k6k4

[N(ωm, T ) + n(εk6 , T )]

× n(εk6 − ωm, T )− n(εk3 , T )
iωn − ωm − εk3k6

}
, (3.114)
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and the energy differences εkikj ≡ εki − εkj . Introducing the phonon vertex matrices

ξmηm
k1k2,k3k4

= δk1k3g
m(ηm)
k4k2

− gm(ηm)
k1k3

δk4k2 , (3.115)

the particle-phonon coupling amplitude Φ̃k1k2,k3k4(ωn) can be expressed concisely as

Φ̃k1k2,k3k4(ωn) =
δσk1

,−σk2
σk1

n(εk4 , T )− n(εk3 , T )
∑

k5,k6,m

∑
ηm=±1

ηmξ
mηm
k1k2,k5k6

ξmηm∗
k3k4,k5k6

× [N(ηmωm, T ) + n(εk6 , T )][n(εk6 − ηmωm, T )− n(εk5 , T )]
iωn − εk5 + εk6 − ηmωm

. (3.116)

It can be verified that the hp components Φ̃hp,h′p′(ωn) of the particle-phonon coupling
amplitude can be obtained from the ph components Φ̃ph,p′h′(ωn) via

Φ̃hp,h′p′(ωn) = Φ̃∗
ph,p′h′(−ωn). (3.117)

After the analytical continuation to the real frequencies, the BSE for the correlated ph
propagator R̃e

k1k2,k3k4
(ω) takes the form:

R̃e
k1k2,k3k4

(ω) = R̃0
k1k2,k3k4

(ω)−
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ω)Φ̃k5k6,k7k8(ω)R̃
e
k7k8,k3k4

(ω), (3.118)

where the spectral representation of the uncorrelated propagator and the particle-phonon
coupling amplitude are respectively given by

R̃0
k1k2,k3k4

(ω) = −δk1k3δk2k4
n(εk2 , T )− n(εk1 , T )

ω − εk1 + εk2
(3.119)

and

Φ̃k1k2,k3k4(ω) =
δσk1

,−σk2
σk1

n(εk4 , T )− n(εk3 , T )
∑

k5,k6,m

∑
ηm=±1

ηmξ
mηm
k1k2,k5k6

ξmηm∗
k3k4,k5k6

× [N(ηmωm, T ) + n(εk6 , T )][n(εk6 − ηmωm, T )− n(εk5 , T )]
ω − εk5 + εk6 − ηmωm

. (3.120)

Comparing Eq. (3.44) to Eq. (3.118), one should be able to highlight the merit of the
imaginary-time projection operator. As already mentioned before, one has to handle the
three-imaginary-time or, after doing a three-dimensional Fourier transform, three-energy
variable integrations to solve Eq. (3.44). Since the kernel W e consists of the energy-
dependent mass operator Σe and interaction amplitude U e, which are singular, these
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integrations are simply impossible to be done numerically. In contrast to Eq. (3.44), Eq.
(3.118) no longer contains any energy integration with singular kernels. Instead, Eq. (3.118)
allows us to perform the summations over the mean-field single-particle states, which are
numerically feasible.

The full finite-temperature response function R now satisfies the Bethe-Salpeter
equation:

Rk1k2,k3k4(ω) = R̃0
k1k2,k3k4

(ω)

−
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ω)[Ũk5k6,k7k8 + δΦ̃k5k6,k7k8(ω)]Rk7k8,k3k4(ω),

(3.121)

where the corrected particle-phonon coupling amplitude δΦ̃(ω) is obtained directly from the
subtraction of itself at ω = 0, viz.,

δΦ̃(ω) = Φ̃(ω)− Φ̃(0). (3.122)

This subtraction procedure serves as a method to eliminate the double counting of the PVC
effects, which appears inevitably in calculations based on the effective residual interaction.
In the finite-temperature relativistic random phase approximation (FT-RRPA) response
formalism, i.e., Eq. (3.121) without δΦ̃(ω), the residual interaction is the kernel of the
corresponding BSE. In the FT-RTBA, in addition to the residual interaction Ũ , the kernel
of BSE (3.121) also contains the contribution from the PVC amplitude Φ̃(ω).However, there
already exist the implicit static contribution Φ̃(0) of the PVC amplitude to the residual
interaction Ũ , because it is adjusted to experimental data on finite nuclei. Therefore, the
subtraction procedure is necessary for solving the double counting problem, which arises
from the presence of static contribution Φ̃(0) inside the residual interaction Ũ [71, 77]. In
addition, the subtraction improves considerably the convergence of the PVC amplitude and,
in the case of the dipole response, also helps eliminate the spurious translational mode [71].

3.5 Strength Function and Transition Density
In order to calculate the strength function S̃(E), one normally starts from the Bethe-

Salpeter equation (3.121). After solving Eq. (3.121) for the finite-temperature response
function R(ω), one utilizes Eq. (3.12) to calculate the strength distribution. It is useful,
however, to start from a single convolution of Eq. (3.121) with external field V̂ 0. In fact,
a single convolution of the finite-temperature response function R with external field V̂ 0
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defines the density matrix variation δρ, viz.,

δρk1k2(ω) = −
∑
k3k4

Rk1k2,k3k4(ω)V
0
k4k3

. (3.123)

A single convolution of the uncorrelated propagator R̃0 with external field V̂ 0 yields the
uncorrelated density matrix variation

δρ0k1k2(ω) = −
∑
k3k4

R̃0
k1k2,k3k4

(ω)V 0
k4k3

. (3.124)

Accordingly, one can rewrite Eq. (3.121) in terms of δρ(ω) and δρ0(ω) as

δρk1k2(ω) = δρ0k1k2(ω)

−
∑

k5k6k7k8

R̃0
k1k2,k5k6

(ω)[Ũk5k6,k7k8 + δΦ̃k5k6,k7k8(ω)]δρk7k8(ω) (3.125)

and the spectral density S(E) as

S(E) = − 1

π
lim

∆→+0
Im
∑
k1k2

V 0∗
k2k1

δρk1k2(E + i∆). (3.126)

The advantage of expressing the spectral density S(E) in terms of density matrix variation
δρ is that the transition density

ρfik1k2 = ⟨f |â
†
k1
âk2 |i⟩ (3.127)

from the initial state |i⟩ to final state |f⟩ is connected to the spectral density S(E) at the
energy E = ωfi. In the vicinity of ωfi, the full response function is a simple pole of the form:

Rfi
k1k2,k3k4

(E)
∣∣∣
E≈ωfi

≈ −
ρfik1k2ρ

fi∗
k3k4

E − ωfi

. (3.128)

Consequently, the imaginary part of the matrix element δρk1k2(E+ i∆) in the vicinity of ωfi

is given by
Imδρk1k2(ωfi + i∆) = − 1

∆
ρfik1k2

∑
k3k4

ρfi∗k3k4
V 0
k4k3

(3.129)
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and the spectral density S(ωfi) takes the form:

S(ωfi) =
1

π
lim

∆→+0

1

∆

∣∣∣∣∣∑
k3k4

ρfi∗k3k4
V 0
k4k3

∣∣∣∣∣
2

. (3.130)

Combining the last two equations yields

ρfik1k2 = lim
∆→+0

√
∆

πS(ωfi)
Imδρk1k2(ωfi + i∆) (3.131)

in analogy to the case of zero temperature [77]. This relation allows us to extract the
transition densities from a continuous strength distribution. To derive the normalization of
the transition densities, we start from Eq. (3.121) and rewrite it as an operator equation of
the form:

[(R̃0(ω))−1 + Ũ + Φ̃(ω)− Φ̃(0)]R(ω) = 1. (3.132)

The derivative of Eq. (3.132) with respect to ω leads to

−dRk1k2,k3k4(ω)

dω
=

∑
k5k6k7k8

Rk1k2,k5k6(ω)
d(R̃0)−1

k5k6,k7k8
(ω)

dω
Rk7k8,k3k4(ω)

+
∑

k5k6k7k8

Rk1k2,k5k6(ω)
dΦ̃k5k6,k7k8(ω)

dω
Rk7k8,k3k4(ω). (3.133)

Inserting Eqs. (3.119) and (3.128) into Eq. (3.133) yields the generalized normalization
condition

1 =
∑

k1k2k3k4

ρfi∗k1k2

Nk1k2,k3k4 −
dΦ̃k1k2,k3k4(ω)

dω

∣∣∣∣∣
ω=ωfi

 ρfik3k4 , (3.134)

where the matrix element Nk1k2,k3k4 is the finite-temperature random phase approximation
(FT-RPA) norm of the form:

Nk1k2,k3k4 =
δk1k3δk2k4

n(εk2 , T )− n(εk1 , T )
. (3.135)

For the case where the the only interaction involved is the residual interaction Ũ , the
derivative of Φ̃(ω) with respect to ω vanishes and, hence, the generalized normalization
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condition (3.134) reduces to the usual FT-RPA normalization condition:

∑
ph

|ρfiph|2 − |ρ
fi
hp|2

n(εh, T )− n(εp, T )
= 1. (3.136)

The generalized normalization condition can be employed to investigate the relative
contributions of dominant ph and p̃h components that define the underlying structure, the
degree of collectivity, and PVC for a particular excited state at a specific temperature.
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Chapter 4

Numerical Results

4.1 Numerical Details
In this section, we present realistic numerical calculations making use of the finite-

temperature relativistic time-blocking approximation (FT-RTBA) developed in Chapter 3.
We calculated the multipole strengths for even-even spherical nuclei 48Ca, 68Ni, 100,120,132Sn,
and 208Pb at various temperatures and investigated the evolution of these multipole strengths
with temperature. The general scheme of the calculations is given as follows [98]:

(i) We simultaneously solve the closed set of the RMF equations, i.e., Eqs. (2.42), (2.51)-
(2.54), with the densities of Eqs. (2.75)-(2.78) and the particle number constraint
(2.73) in a self-consistent way using the NL3 parameter set [156] of the nonlinear σ
model. We discussed the iterative procedures for solving the closed set of the RMF
equations in Section 2.3. The solution of the closed set of the RMF equations is the
temperature-dependent single-particle basis in terms of the Dirac spinors φk(r) and
the corresponding single-particle energies εk.

(ii) The obtained single-particle basis is utilized to solve the finite-temperature relativistic
random phase approximation (FT-RRPA) equations to obtain the phonon vertices gm

and frequencies ωm. Here the FT-RRPA equations are equivalent to Eq. (3.125)
without the corrected particle-phonon coupling amplitude δΦ̃(ω). Together with
the single-particle basis, the set of phonons forms the model space of 1p1h⊗phonon
configurations for the particle-phonon coupling amplitude Φ̃(ω).

(iii) Finally, we solve Eq. (3.125) and compute the strength function being given by Eq.
(3.12) for the specific external field V 0

LM . For the electric isoscalar monopole (E0) and
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quadrupole (E2) transitions, the external field V 0
LM takes the forms [157]:

V 0
00 = e

A∑
i=1

r2i Y00(ni) (4.1)

and

V 0
2M = e

A∑
i

r2i Y2M(ni), (4.2)

respectively, where n is a unit vector in the spherical coordinates. The isovector electric
dipole (E1) transitions are associated with the external field V 0

LM of the form [98, 157]:

V 0
1M =

eN

A

Z∑
i=1

riY1M(ni)−
eZ

A

N∑
i=1

riY1M(ni), (4.3)

which contains the correction for the center-of-mass motion. This whole scheme of the
calculations can be performed in the Dirac-space representation, which allows for direct
extraction of the transition densities, according to Eq. (3.131). A faster algorithm is,
however, to solve Eq. (3.118) in the basis of Dirac spinors and then the Bethe-Salpeter
equation

R(ω) = R̃e(ω)− R̃e(ω)Ũ R(ω) (4.4)

in the momentum-channel representation [78]. The momentum-channel representation
provides a more economical execution of the calculations that involve large masses and
high temperatures. The alternative algorithm implies the solution of Eq. (3.125) in
the Dirac basis. The coincidence of the two solutions in the different representations
serves as a validity test of our results.

In both calculation schemes, the particle-phonon coupling amplitude Φ̃(ω) is computed
within the particle-hole (ph) energy window of 25 and 30 MeV around the Fermi surface.
It has been verified that a further increase of this window gives insignificant change to
the strength functions at the energies below the value of this window. To eliminate the
spurious translational mode completely, the particle-hole basis was fixed by the limits
εph ≤ 300 MeV and εαh ≥ −1800 MeV with respect to the positive continuum. The values
of smearing parameter were set to be 500 keV for 48Ca and 68Ni nuclei, and 200 keV for
100,120,132Sn and 208Pb to match approximately the typical continuum width of the peaks
of the strength distributions. The collective vibrations with quantum numbers of spin and
parity Jπ = 2+, 3−, 4+, 5−, 6+ below the energy cutoff, which amounts to 15 and 20 MeV for
heavy and medium-mass nuclei, were included in the phonon space. An additional truncation
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condition was applied according to the values of the reduced transition probabilities B(EL)

of the corresponding electromagnetic transitions. For each Jπ, all modes with the values of
B(EL) less than 5% of the maximal one were neglected. It is assumed that keeping the same
truncation criteria for all temperature regimes guarantees a fair comparison of the calculated
strength distributions. At high temperatures, the number of phonons increases due to the
effect of thermal unblocking. In particular, at T ≈ 5-6 MeV, the average number of phonons
included in the phonon space becomes an order of magnitude larger than that at T = 0.
Finally, another truncation condition was made on the absolute values of the numerator of
Eq. (3.119): All particle-hole pairs with |n(εk2 , T ) − n(εk1 , T )| ≤ 0.01 do not contribute to
the solution of the Bethe-Salpeter equation (3.121).

4.2 Thermal Mean-field Calculations for Compound
Nuclei1

The thermal RMF calculations of the excitation energy E∗ as a function of temperature
T for compound nuclei 48Ca, 68Ni and 100,132Sn are illustrated in Fig. 4.1. Technically,
as it follows from Chapter 2, the effect of finite temperature on the total energy of a
thermally excited nucleus is mainly induced by the change of the fermionic occupation
numbers from the values of zero and one at T = 0 to the Fermi-Dirac distribution (2.72).
The fermionic densities of Eqs. (2.75)-(2.78) change accordingly and, thus, affect the meson
and photon fields being the sources for Eqs. (2.51)-(2.54). In turn, the changed meson fields
give the feedback on the nucleons, so that the thermodynamical equilibrium is achieved
through the self-consistent set of the thermal RMF equations. As the nucleons start to be
promoted to higher-energy orbits with the temperature increase, the total energy should grow
continuously and, in principle, the dependence E∗(T ) has to be parabolic, in accordance with
the non-interacting Fermi gas behavior. However, the discrete shell structure and especially
the presence of the large shell gaps right above the Fermi surface in the doubly magic nuclei
cause a flat behavior of the excitation energy until the temperature values become sufficient
to promote the nucleons over the shell gaps. This effect is clearly visible in Fig. 4.1 for
the doubly magic nuclei 48Ca and 100,132Sn, while it is much smaller in 68Ni which has an
open shell in the neutron subsystem. Otherwise, at T ≥ 1 MeV the thermal RMF E∗(T )

dependencies can be very well approximated by the parabolic fits providing the level density
parameters which are close to the empirical Fermi gas values a = A/k, where 8 < k < 12.

1Sections 4.2 is reprinted from Ref. [98], in accordance with American Physical Society (APS) copyright
policies (https://journals.aps.org/copyrightFAQ.html)
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Figure 4.1: The energies of the thermally excited nuclei 48Ca, 68Ni and 100,132Sn as functions
of temperature: RMF (blue circles) and parabolic fits (red curves) [98].

4.3 Isovector Dipole Resonance in 48Ca, 68Ni, and
100,120,132Sn2

The calculated temperature-dependent spectral densities S(ω) for 48Ca, 68Ni and
100,120,132Sn nuclei at various temperatures are shown in Figs. 4.2 and 4.3, respectively,
where we compare the evolution of the electric dipole spectral density within FT-RRPA
(left panels) and FT-RTBA (right panels). As the temperature increases, we observe the
following two major effects:

(i) The fragmentation of the dipole spectral density becomes stronger, so that the GDR
2Sections 4.3 is reprinted from Ref. [98], in accordance with American Physical Society (APS) copyright

policies (https://journals.aps.org/copyrightFAQ.html)
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undergoes a continuous broadening. The increased diffuseness of the Fermi surface
enhances significantly the amount of thermally unblocked states, especially the ones
above the Fermi energy εF , as shown schematically in Fig. 4.4. These states give
rise to the new transitions within the thermal particle-hole pairs p̃h, as follows from
the form of the uncorrelated propagator (3.95). The increasing amount of these
new pairs reinforces the Landau damping of the GDR. The spreading width of the
GDR determined by the PVC amplitude of Eq. (3.116) also increases because of the
increasing role of the new terms with ηm = −1, in addition to the terms with ηm = +1

which solely define the PVC at zero temperature. As these terms are associated with
the new poles, they enhance the spreading effects with the temperature growth, in
addition to the reinforced Landau damping. At high temperatures T ≈ 5 − 6 MeV,
when the low-energy phonons develop the new sort of collectivity, the coupling vertices
increase accordingly, which leads to a reinforcement of the spreading width of the
GDR. This is consistent with the experimental observations of the ”disappearance” of
the high-frequency GDR at temperatures T ≥ 6 MeV reported in the Ref. [106], while
these temperatures might be at the limits of existence of the considered atomic nuclei.

(ii) The formation and enhancement of the low-energy strength below the pygmy dipole
resonance. This enhancement occurs due to the new transitions within thermal p̃h
pairs with small energy differences. The number of these pairs increases with the
temperature growth in such a way that at high temperature T ≈ 5-6 MeV the formation
of new collective low-energy modes becomes possible. Within our model, these new
low-energy modes are not strongly affected by PVC. The lack of fragmentation is due
to the fact that for the thermal p̃h pairs with small energy differences the numerator
of Eq. (3.116) contains the factors n(εk6−ηmωm, T )−n(εk5 , T ) which are considerably
smaller than those for the regular T = 0 ph pairs of states located on the different sides
with respect to the Fermi surface. Notice that the smallness of this factor for the p̃h
pairs is not compensated by the denominator n(εk4 , T ) − n(εk3 , T ) which is balanced
by the numerator of Eq. (3.95). The inclusion of the finite-temperature ground state
correlations (GSC) induced by the PVC in the particle-phonon coupling amplitude
Φ̃(ω) may enforce the fragmentation of the low-energy peaks.

The trends are similar for the dipole strength in all considered nuclei shown in Figs. 4.2
and 4.3. The open-shell nuclei, such as 68Ni and 120Sn, are superfluid below the critical
temperature, which is Tc ≈ 0.6∆c, where ∆c is the superfluid pairing gap. It takes the
values ∆c = 1.6 MeV and ∆c = 1.1 MeV for 68Ni and 120Sn, respectively, so that the
superfluidity already vanishes at T = 1 MeV in these nuclei. As our approach does not
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Figure 4.2: Electric dipole spectral density in 48Ca and 68Ni nuclei calculated within FT-
RRPA (left panels) and FT-RTBA (right panels) at various temperatures. The value of
smearing parameter ∆ = 500 keV was adopted in both calculations [98].

take the superfluid pairing into account at T > 0, we can not track this effect continuously;
however, by comparing the strength distributions at T = 0 and T = 1 MeV for 68Ni and
120Sn we can see how the disappearance of superfluidity influences the strength. In the
doubly magic nuclei the dipole strength shows almost no change when going from T = 0 to
T = 1 MeV. This observation is consistent with the thermal RMF calculations displayed in
Fig. 4.1. As already discussed above, the presence of the large shell gaps in both neutron
and proton subsystems requires a certain value of temperature to promote the nucleons over
the shell gap. One can see that this temperature is T ≈ 0.75 − 1 MeV for the considered
closed-shell nuclei.

Notice that until now we discussed the microscopic spectral density S(E) without the
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∆ = 200 keV [98].
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Figure 4.6: Width and energy-weighted sum rule (EWSR) of the giant dipole resonance.
Left panel: Width of the giant dipole resonance in 120,132Sn as a function of temperature.
The experimental values from Refs. [158, 159, 160] are shown for 120Sn. Right panel: The
energy-weighted sum rule (EWSR) for 48Ca and 132Sn with respect to the TRK sum rule
[98].

exponential factor 1/[1−exp(−E/T )], which is present in the strength function S̃(E) (3.12)
due to the detailed balance. This factor does not affect the GDR region at all temperatures
under study; however, at moderate to high temperatures it enhances noticeably the low-
energy strength, as illustrated in Fig. 4.5 for the dipole response of 48Ca and 120Sn. At
E = 0 this factor is singular while the spectral density is equal to zero, so that the total
strength function has, thus, a nontrivial limit at E → 0. As one can see from Fig. 4.5,
this limit is finite except for the T = 0 case when the strength function coincides with
the spectral density vanishing at E → 0. In this work we focus mostly on the features
of the spectral density, which is the zero-temperature analog of the strength function, in
order to resolve clearly the details of the nuclear response at very low transition energies
E without concealing its fine features by the exponential factor. It can be easily included,
for instance, when experimental data on the low-energy response become available. The
important features are, in particular, the absence of the spurious translational mode and the
clear zero-energy limit of the spectral density.

The width and the energy weighted sum rules are the most important integral
characteristics of the GDR which are usually addressed in theoretical and experimental
studies. In particular, they help benchmarking the theoretical approaches because of their
almost model-independent character. The left panel of Fig. 4.6 illustrates the evolution
of GDR’s width Γ(T ) with temperature obtained in FT-RTBA for 120Sn and 132Sn nuclei

58



Table 4.1: Widths of the giant dipole resonance in 120Sn calculated by fitting the FT-RRPA
and FT-RTBA strengths with the Lorentz distribution within the energy interval 0 ≤ E ≤ 25
MeV [98].

T [MeV] 0 1.0 2.0 3.0 4.0
Γ [MeV], FT-RRPA 2.70 2.26 3.09 6.94 14.46
Γ [MeV], FT-RTBA 4.43 3.08 4.07 8.46 16.92

together with experimental data which are available only for 120Sn. The theoretical widths
at T = 0 are taken from our previous calculations [77, 78], respectively. Because of the phase
transition in 120Sn at T < 1 MeV, Γ(T ) has a smaller value at T = 1 MeV than at T = 0

as the disappearance of the superfluid pairing reduces the width. As already mentioned, the
thermal unblocking effects do not yet appear at T = 1 MeV in both 120Sn and 132Sn because
of their specific shell structure. For the protons which form the Z = 50 closed shell and have
the next available orbitals only in the next major shell, T = 1 MeV temperature is not yet
sufficient to promote them over the shell gap with a noticeable occupancy. In the neutron
subsystem, the situation in 132Sn is similar while in 120Sn the lowest available orbit is the
intruder 1h11/2 state where particles get promoted relatively easily, but after this orbit there
is another shell gap. As a consequence, at T = 1 MeV there is still no room for the p̃h pair
formation and, hence, for a noticeable thermal unblocking. Thus, our result can explain the
unexpectedly small GDR’s width at T = 1 MeV reported in Ref. [159], in contrast to the
thermal shape fluctuation calculations. After T = 1 MeV in 132Sn and T = 2 MeV in 120Sn
we obtain a fast increase of Γ(T ) because of the formation of the low-energy shoulder by p̃h
pairs and due to a slow increase of the fragmentation of the high-energy peak emerging from
the finite-temperature effects in the PVC amplitude Φ̃(ω). As 132Sn is more neutron-rich
than 120Sn, the respective strength in the low-energy shoulder of 132Sn is larger, which leads
to a larger overall width in 132Sn at temperatures above 1 MeV. The GDR’s widths for T > 3

MeV in 132Sn and for T > 4 MeV in 120Sn are not presented because the standard procedure
based on the Lorentzian fit of the microscopic strength distribution fails in recognizing the
distribution as a single peak structure.

The overall agreement of FT-RTBA calculations with data for the GDR’s width in
120Sn is found very reasonable except for the temperatures around 2 MeV, possibly due to
deformation and shape fluctuation effects, which are not included in the present calculations.
Our results are also consistent with those of microscopic approach of Ref. [161], which are
available for the GDR energy region at T ≤ 3 MeV, while in the entire range of temperatures
under study ΓGDR(T ) shows a nearly quadratic dependence agreeing with the Fermi liquid
theory [162]. Table 4.1 shows a comparison of ΓGDR(T ) in 120Sn calculated within FT-
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RRPA and FT-RTBA by fitting the corresponding strength distribution by the Lorentzian
within the energy interval 0 ≤ E ≤ 25 MeV. One can see that in both approaches, after
passing the minimum at T = 1 MeV because of the transition to the non-superfluid phase,
ΓGDR(T ) grows quickly with temperature. The difference between the width computed in
the two models is about 1.0− 1.7 MeV at low temperatures while it increases to ≈ 2.5 MeV
at T = 4 MeV. It can be concluded that the PVC contribution to the width evolution is
rather minor and the latter occurs mostly due to the reinforcement of the Landau damping
with the temperature growth. Indeed, we could observe from varying the boundaries of the
energy interval, where the fitting procedure is performed, that the amount of the low-energy
strength is very important for the value of the width.

The right panel of Fig. 4.6 shows the evolution of the energy-weighted sum rule for 48Ca
and 132Sn nuclei calculated within FT-RRPA and FT-RTBA in the percentage with respect
to the Thomas-Reiche-Kuhn (TRK) sum rule. The EWSR at T > 0 can be calculated in
full analogy with the case of T = 0 [132, 163]. In our approach, where the meson-exchange
interaction is velocity-dependent, already in RRPA and relativistic quasiparticle random
phase approximation (RQRPA) at T = 0 we observe up to 40% enhancement of the TRK
sum rule within the energy regions which are typically studied in experiments [77, 78], in
agreement with data. In the resonant time-blocking approximation without the GSC of
the PVC type the EWSR should have exactly the same value as in RPA [69] with a little
violation when the subtraction procedure is performed [69, 70]. Typically, at T = 0 in
the subtraction-corrected RTBA we find a few percent less EWSR in finite energy intervals
below 25-30 MeV than in RRPA, but this difference decreases if we take larger intervals.
This is due to the fact that in RTBA the strength distributions are more spread and if cut,
leaves more strength outside the finite interval. A similar situation takes place at T > 0.
Fig. 4.6 (b) shows that the EWSR decreases slowly with the temperature growth because
the entire strength distribution moves down in energy. In both nuclei, the FT-RRPA and
FT-RTBA EWSR values practically meet at T = 6 MeV when their high-energy tails become
less important.

To gain a better understanding of the formation and enhancement of the low-energy
strength, we have performed a more detailed investigation of the dipole strength in the
energy region E < 10 MeV. The dipole strength in 68Ni calculated at different temperatures
with a small value of the smearing parameter ∆ = 20 keV is displayed in Fig. 4.7. In the
testing phase, these calculations were used to ensure positive definiteness of the spectral
density as it reflects a very delicate balance between the self-energy and exchange terms in
the PVC amplitude Φ̃(ω). In particular, we found that consistency between p̃h pairs involved
in self-energy and exchange terms is very important.
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Figure 4.7: The temperature evolution of the low-energy dipole spectral density in 68Ni
calculated within FT-RTBA with the smearing parameter ∆ = 20 keV [98].

Figure 4.8: The evolution of the proton and neutron transition densities for the most
prominent peaks below 10 MeV in 68Ni and 100Sn within FT-RTBA. The green dashed
lines indicate the rms nuclear radius [98].
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Table 4.2: Major contributions of neutron (n) and proton (p) ph and p̃h configurations to the strongest dipole states below 10
MeV in 68Ni calculated within FT-RTBA for various temperatures [98].

T = 0; E = 6.89 MeV T = 1 MeV; E = 7.16 MeV T = 2 MeV; E = 7.70 MeV T = 3 MeV; E = 3.49 MeV
10.3% (2p3/2 → 2d5/2) n 56.8% (2p1/2 → 3s1/2) n 4.9% (1f5/2 → 2d5/2) n 31.1% (3s1/2 → 3p3/2) n
9.8% (2s1/2 → 2p3/2) p 4.4% (1f7/2 → 1g9/2) n 3.2% (1f7/2 → 1g9/2) n 15.7% (2d5/2 → 3p3/2) n
7.1% (1f7/2 → 1g9/2) p 2.2% (1f5/2 → 2d5/2) n 2.9% (2p3/2 → 2d5/2) n 0.1% (3s1/2 → 3p1/2) n
6.2% (1f5/2 → 2d5/2) n 1.4% (1f7/2 → 1g9/2) p 2.1% (1f5/2 → 2d3/2) n 0.01% (1f7/2 → 1g9/2) n
6.1% (1f7/2 → 1g9/2) n 1.0% (1f5/2 → 2d3/2) n 1.7% (1f7/2 → 1g9/2) p 0.01% (1g9/2 → 1h11/2) n
4.6% (1f5/2 → 2d3/2) n 0.9% (2p3/2 → 3s1/2) n 1.3% (2p1/2 → 2d3/2) n
1.0% (2p1/2 → 2d3/2) n 0.9% (2p1/2 → 2d3/2) n 1.1% (2s1/2 → 2p3/2) p
0.9% (1d3/2 → 2p1/2) p 0.7% (2p1/2 → 4s1/2) n 0.9% (2p3/2 → 3s1/2) n
0.9% (1d3/2 → 2p3/2) p 0.5% (2p3/2 → 2d5/2) n 0.2% (1d3/2 → 2p1/2) p
0.7% (2p3/2 → 3s1/2) n 0.3% (1d3/2 → 2p3/2) p 0.2% (1d3/2 → 2p3/2) p
0.4% (1f5/2 → 3d3/2) n 0.2% (1d3/2 → 2p1/2) p 0.1% (1f5/2 → 3d3/2) n
0.3% (2s1/2 → 2p1/2) p 0.1% (2p1/2 → 5s1/2) n
0.2% (2p3/2 → 3d5/2) n
0.2% (1f5/2 → 3d5/2) n
0.2% (2p3/2 → 2d3/2) n
0.2% (1f7/2 → 2d5/2) p
0.1% (1f7/2 → 2d5/2) n

49.2% 69.4% 18.6% 46.92%

T = 4 MeV; E = 2.55 MeV T = 5 MeV; E = 3.87 MeV T = 6 MeV; E = 3.63 MeV
66.1% (2f7/2 → 2g9/2) n 61.9% (2g9/2 → 2h11/2) n 21.2% (1i11/2 → 1j13/2) n
5.1% (3p1/2 → 3d3/2) n 3.0% (3f7/2 → 4d5/2) n 9.5% (2d5/2 → 2f7/2) p
0.7% (2f5/2 → 2g7/2) n 0.4% (2g7/2 → 3f5/2) n 8.8% (1i13/2 → 1j15/2) n
0.4% (2d3/2 → 3p1/2) n 0.3% (2d3/2 → 2f5/2) p 3.2% (2d3/2 → 2f5/2) n
0.1% (1g7/2 → 2f5/2) n 0.2% (1h11/2 → 1i13/2) n 0.1% (2g9/2 → 3f7/2) n

0.1% (3d3/2 → 2f5/2) n

72.4% 65.9% 42.8%
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The FT-RTBA calculations presented in Fig. 4.7 resolve individual states in the low-
energy region showing the details of the evolution of the thermally emergent dipole strength.
In particular, one can trace how the major peak moves toward lower energies and its intensity
increases. The proton and neutron transition densities for the most prominent peak below
10 MeV are displayed for different temperature values in Fig. 4.8 for the neutron-rich 68Ni
nucleus and for the neutron-deficient 100Sn nucleus. In the neutron-rich 68Ni nucleus proton
and neutron transition densities show in-phase oscillations inside the nucleus while neutron
oscillations become absolutely dominant outside for 0 ≤ T ≤ 5 MeV. At the temperature
T = 6 MeV protons and neutrons exhibit out of phase oscillation which resembles the well-
recognized pattern of the collective giant resonance. Indeed, as it is shown in Table 4.2
discussed below, the low-energy peak at T = 6 MeV has some features of collective nature.
The situation is quite similar in the neutron-deficient 100Sn nucleus, which exhibits the in-
phase oscillations of protons and neutrons inside the nucleus, but with the dominance of
proton oscillations in the outer area. Analogously, at T = 6 MeV one starts to distinguish a
GDR-like pattern of the out-of-phase oscillation in the low-lying state at E = 3.25 MeV. We
also notice that at 3 ≤ T ≤ 6 MeV the oscillations extend to far distances from the nuclear
central region.

In order to have some more insights into the structure of the new low-energy states,
we have extracted the p̃h compositions of the strongest low-energy states at various
temperatures. The quantities

zfiph =
|ρfiph|2 − |ρ

fi
hp|2

nh(εh, T )− np(εp, T )
(4.5)

are given in Table 4.2 in percentage with respect to the FT-RTBA generalized normalization
condition of Eq. (3.134). In most of the cases, we omit contributions of less than 0.1%. The
bottom line shows the total percentage of pure ph and p̃h configurations, so that the deviation
of this number from 100% characterizes the degree of PVC, according to Eq. (3.134).

We start with the state at E = 6.89 MeV at T = 0 which shows up as a slightly
neutron-dominant state with seven two-quasiparticle contributions bigger than 1%. This
state can be classified as a relatively collective one. At T = 1 MeV the 68Ni nucleus becomes
nonsuperfluid and one can see that the strongest low-energy state has a dominant particle-
hole configuration. For the E = 7.70 MeV state at T = 2 MeV the major contribution comes
from the PVC as the particle-hole configurations sum up to 18.6% only. It is important to
emphasize that the considered peaks at T ≤ 2 MeV are dominated by the ph transitions of
nucleons across the Fermi surface, while at T ≥ 3 MeV they are mainly composed of the
thermal p̃h transitions between the states above the Fermi energy. These states are mostly

63



located in the continuum, which is discretized in the present calculations. Although a more
accurate continuum treatment is necessary to investigate the low-energy response at finite
temperatures [137], as the large number of the basis harmonic oscillator shells are taken into
account in this work, the discretized description of the continuum should be quite adequate.
Thus, we notice that at T ≥ 2 MeV the collectivity becomes destroyed by the thermal effects
until it reappears again at T = 6.0 MeV. This temperature is, however, rather high and can
be close to the limiting temperature which terminates existence of the nucleus [106].

4.4 Isoscalar Monopole and Quadrupole Resonances in
68Ni

The study of the isoscalar monopole response (ISMR) is essential as the isoscalar giant
monopole resonance (ISGMR), which dominates the ISMR, is related to the finite-nucleus
incompressibility KA. This relationship is described by the formula [108]

EISGMR =

√
~2KA

m⟨r2⟩
, (4.6)

where EISGMR is the centroid of ISGMR, m is the nucleon mass, and ⟨r2⟩ is the mean-
square matter radius. The finite nucleus incompressibility KA, in turn, can be related to the
incompressibility of infinite symmetric nuclear matter K0 via the leptodermous expansion
[164]. The isoscalar monopole response in 68Ni at various temperatures is shown in Fig.
4.9. At temperature T = 2 MeV both FT-RRPA and FT-RTBA spectral densities show the
emergence of a new soft mode at E ≈ 5 MeV and it strengthens as the temperature increases.
At temperature T = 3 MeV one also observes the appearance of another new soft mode at
E ≈ 9 MeV. These two soft modes clearly manifests the effect of the thermal unblocking
mechanism. The effect of PVC can be seen from the strong fragmentation of ISGMR for
all temperatures. Another observation is the shift of the entire strength distribution toward
lower energies with the temperature increase. Respectively, the centroid energy decreases
as the temperature increases. According to Eq. (4.6), the decrease of the ISGMR centroid
energy means the decrease of the finite-nucleus incompressibility KA.

At zero temperature, the isoscalar quadrupole response (ISQR) comprises the two main
structures of collective character: the pronounced low-energy 2+ state and the broad
collective isoscalar giant quadrupole resonance (ISGQR) at high energy. The ISGQR is
closely related to the notion of the effective mass and, thus, provides a constraint on this
quantity. It can serve for the determination of the nuclear symmetry energy and neutron skin
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Figure 4.9: The isoscalar monopole response in 68Ni as a function of temperature calculated
within FT-RRPA (top panel) and FT-RTBA (bottom panel) with the smearing parameter
∆ = 500 keV.
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thickness and, in addition, shows some sensitivity to the nuclear matter incompressibility
[108]. The ISQR in 68Ni at various temperatures is shown in Fig. 4.10, where FT-RRPA
results (top panel) can be compared to those of FT-RTBA (bottom panel). At T = 1 MeV
both FT-RRPA and FT-RTBA strength distributions already demonstrate the formation
of new soft modes at the transition energies of ∼ 1 MeV and ∼ 4 MeV. As in the cases
of the dipole and monopole response, the enhancement of the low-energy spectral density
becomes stronger as the temperature increases due to the thermal unblocking mechanism.
The FT-RTBA high-energy peak remains strongly fragmented at all temperatures. The
vigorous enforcement of the PVC effects originates from the enhanced low-energy strengths
of the phonons of all multipolarities (those with Jπ = 2+, 3−, 4+, 5−, 6+ are included in
the calculations), as the new thermal phonon modes couple to the single-particle degrees
of freedom forming the additional 1p1h ⊗ phonon configurations, which enter the Φ̃(ω)

amplitude. The gradual fragmentation of the high-frequency peak and the enhancement
of the low-energy spectral density again lead to nearly disappearance of the high-frequency
ISGQR at high temperature, i.e., at T = 5 MeV.
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Chapter 5

Nuclear Mean Field with Point
Couplings and Pairing Correlations

5.1 Relativistic Mean-field Theory of Point Coupling
The relativistic mean-field (RMF) theory, which was discussed in Section 2.2, is a

phenomenological theory, where the nucleons are treated as quantum mechanical Dirac
particles moving independently in an average mean field produced by the exchange of
several classical meson fields between the nucleons themselves. In such a phenomenological
theory, the number of mesons is limited and the corresponding parameters−the meson masses
and coupling constants, and the nonlinear coupling parameters−are adjusted to some bulk
properties of a set of spherical nuclei [148]. This so-called RMF theory of finite range
(RMFT-FR) is able to quantitatively describe the ground-state properties of spherical and
deformed nuclei over the entire periodic table [31, 57]. As it was discussed in the previous
chapters, RMFT-FR can also serve as a good starting point for the quantum field theory
approaches, which go far beyond the mean-field approximation.

Alternatively to the finite-range interactions, for the low-energy nuclear phenomena, the
exchange of heavy mesons can be approximated by contact interactions (point couplings)
(see Fig. 5.1), that is the underlying assumption of the relativistic mean-field theory of
point coupling (RMFT-PC). In the relativistic point-coupling theory, the isoscalar-scalar
(σ-), isoscalar-vector (ω-), and isovector-vector (ρ-) meson exchange terms are replaced by
the corresponding contact interactions between the nucleons. The gradient or derivative
terms simulate the finite-range effects of the meson-exchange terms. The additional density-
dependent interactions, which account for the medium effects, are taken into account by
the density-dependent coupling constants in the two-body interactions (e.g., force DD-
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σ, ρ, ω

Figure 5.1: Diagrammatic representation of finite-range interactions and their corresponding
approximate point-coupling interactions.

PC1), or by many-body contact terms (e.g., force PC-F1). The advantage of the RMFT-
PC over the RMFT-FR is distinct. The numerical applications of RMFT-PC are more
straightforward since one no longer solves the Klein-Gordon equations for the mesons, and the
obtained particle-hole interaction has a channel structure and contains Dirac delta-function
in coordinate space. The later summarizes the main reason one shifts from the RMFT-FR to
the RMFT-PC when addressing the continuum effects. In the following section, we present
the detailed theoretical framework of the relativistic point-coupling theory with DD-PC1
parametrizations. The interested reader can find our detailed review on the RMFT-PC with
PC-F1 parameterizations in Appendix D.

5.1.1 DD-PC1 Force

We consider an effective Lagrangian of the form: [38]

L = Ψ(iγµ∂µ −M)Ψ− 1

2
αS(ρ̂)(ΨΨ)(ΨΨ)− 1

2
αV (ρ̂)(Ψγ

µΨ)(ΨγµΨ)

− 1

2
αTV (ρ̂)(Ψτ⃗ γ

µΨ) · (Ψτ⃗ γµΨ)− 1

2
δS(∂νΨΨ)(∂νΨΨ)− eΨγµAµ

1− τ3
2

Ψ, (5.1)

which now includes the isoscalar-scalar, isoscalar-vector, and isovector-vector four-fermion
interactions as well as the electromagnetic interaction. From the Euler-Lagrange equation

∂L

∂Ψ
− ∂

∂xµ

[
∂L

∂(∂µΨ)

]
= 0, (5.2)

we obtain the equation of motion

[γµ(i∂µ − Σµ
V − τ⃗ · Σ⃗

µ
TV − Σµ

R)− (M + ΣS)]Ψ = 0, (5.3)
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where isoscalar-scalar, isoscalar-vector, and isovector-vector mass operators are respectively
given by

ΣS = αS(ρ̂)(ΨΨ)− δS�(ΨΨ), (5.4)

Σµ
V = αV (ρ̂)j

µ + eAµ1− τ3
2

, (5.5)

Σ⃗µ
TV = αTV (ρ̂)(Ψτ⃗ γ

µΨ), (5.6)

and the rearrangement term Σµ
R is given as

Σµ
R =

1

2
uµ
{
∂αS(ρ̂)

∂ρ̂
(ΨΨ)(ΨΨ) +

∂αV (ρ̂)

∂ρ̂
jαjα +

∂αTV (ρ̂)

∂ρ̂
(Ψτ⃗ γαΨ) · (Ψτ⃗ γαΨ)

}
. (5.7)

Here the nucleon four-current jµ is defined as

jµ = ΨγµΨ = ρ̂uµ, (5.8)

where the four-velocity uµ is
uµ =

(1,v)√
1− v2

(5.9)

and the velocity v equals to zero in the rest-frame of the nuclear system. Accordingly, the
strength parameters αi (i = S, V, TV ) depend on the density ρ̂ = jµuµ. Multiplying Eq.
(5.3) from the left by Dirac matrix γ0, one obtains

0 =

{
i∂0 + iα ·∇− βM − 1

2
β
∂αS(ρ̂)

∂ρ̂
γαuα(ΨΨ)(ΨΨ)− βαS(ρ̂)(ΨΨ)

− 1

2
β
∂αV (ρ̂)

∂ρ̂
γαuαj

µjµ − βαV (ρ̂)(ΨγµΨ)γµ − 1

2
β
∂αTV (ρ̂)

∂ρ̂
γαuα(Ψτ⃗ γ

µΨ) · (Ψτ⃗ γµΨ)

− βαTV (ρ̂)(Ψτ⃗ γµΨ) · τ⃗ γµ − eβγµAµ
1− τ3

2
+ βδS�(ΨΨ)

}
Ψ. (5.10)

Making use of the stationary solution of the form

Ψ(r, t) =
∑
k

φk(r)e−iϵktâk, (5.11)

one arrives at

0 =

{
ϵk − (α · p + βM)− 1

2
β
∂αS(ρ̂)

∂ρ̂
γαuα(ΨΨ)(ΨΨ)− βαS(ρ̂)(ΨΨ)
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− 1

2
β
∂αV (ρ̂)

∂ρ̂
γαuαj

µjµ − βαV (ρ̂)(ΨγµΨ)γµ − 1

2
β
∂αTV (ρ̂)

∂ρ̂
γαuα(Ψτ⃗ γ

µΨ) · (Ψτ⃗ γµΨ)

− βαTV (ρ̂)(Ψτ⃗ γµΨ) · τ⃗ γµ − eβγµAµ
1− τ3

2
+ βδS�(ΨΨ)

}
φk(r). (5.12)

Taking the expectation value of this result with respect to the nuclear ground state |Φ⟩, one
obtains

0 =

{
ϵk − (α · p + βM)− 1

2
β
∂αS(ρV )

∂ρV
γα
jαV (r)
ρV

ρ2S(r)− βαS(ρV )ρS(r)

− 1

2
β
∂αV (ρV )

∂ρV
γα
jα
ρV
jµV (r)jµV (r)− βαV (ρV )jµV (r)γµ

− 1

2
β
∂αTV (ρV )

∂ρV

jαV (r)
ρV

γαj⃗µTV (r) · j⃗µTV (r)− βαTV (ρV )⃗j
µ
TV · τ⃗ γµ

− βeγµAµ
1− τ3

2
− βδS∇2ρS(r)

}
φk(r), (5.13)

where

ρS(r) = ⟨Φ|ΨΨ|Φ⟩ =
∑
kℓ

φk(r)φℓ(r)ei(ϵk−ϵℓ)t⟨Φ|â†kâℓ|Φ⟩

=
∑
k

nkφk(r)φk(r), (5.14)

ρ = ⟨Φ|ρ̂|Φ⟩ = ⟨Φ|ΨγµΨ|Φ⟩uµ = uµ
∑
kℓ

φk(r)γµφℓ(r)ei(ϵk−ϵℓ)t⟨Φ|â†kâℓ|Φ⟩

= uµ
∑
k

nkφk(r)γµφk(r) = uµj
µ
V (r), (5.15)

j⃗µTV (r) = ⟨Φ|Ψτ⃗ γµΨ|Φ⟩ =
∑
k

nkφk(r)τ⃗ γµφk(r). (5.16)

In the rest frame of the nuclear system, where v = 0, only the time-like u0 = 1 component
of the velocity four-vector survives, so that we can substitute ρ with ρV of the form

ρV = u0j
0
V (r) =

∑
k

nkφ
†
k(r)φk(r). (5.17)

The dependence of the strength parameters αi (i = S, V, TV ) on the density ρV is given by

αi(ρV ) = ai + (bi + cix)e
−dix, (5.18)
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where x = ρV /ρsat. Here ρsat denotes the nucleonic saturation density of symmetric nuclear
matter. The values of the parameters αi are tabulated in Table 5.1.

Table 5.1: The density-dependent coupling constants in the DD-PC1 parameterization [38,
39]. The coupling constants aTV and cTV are zero.

Parameter Value Dimension
aS −10.0462 [fm2]
bS −9.1504 [fm2]
cS −6.4273 [fm2]
dS 1.3724
aV 5.9195 [fm2]
bV 8.8637 [fm2]
dV 0.6584
bTV 1.8360 [fm2]
dTV 0.6400
δS −0.815 [fm4]

A further simplification can be made by considering: (1) the time-reversal symmetry of
the mean field and (2) the isospin as a good quantum number. We thus obtain the Dirac
Hamiltonian ĥD of the form

ĥD = α · p + β[M + S(r)] + V (r), (5.19)

where

S(r) = [αS(ρV ) + δS∇2]ρS(r), (5.20)
V (r) = ΣR(r) + ΣV (r) + τ3ΣTV (r), (5.21)

ΣR(r) =
1

2

∂αS(ρV )

∂ρV
ρ2S(r) +

1

2

∂αV (ρV )

∂ρV
ρ2V (r) +

1

2

∂αTV (ρV )

∂ρV
ρ2TV (r), (5.22)

ΣV (r) = αV (ρV )ρV (r) + eA0
1

2
(1− τ3), (5.23)

ΣTV (r) = αTV (ρV )ρTV (r). (5.24)

The Hamiltonian Ĥ can be obtain from the Lagrangian (5.1) via

Ĥ =

∫
d3r
{

∂L

∂(∂0Ψ)
(∂0Ψ) + (∂0Ψ)

∂L

∂(∂0Ψ)
+

∂L

∂(∂0Aµ)
(∂0Aµ)−L

}
. (5.25)
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An insertion of the Lagrangian L into the Hamiltonian Ĥ leads to

Ĥ =

∫
d3r
{
Ψ†(α · p + βM)Ψ +

1

2
αS(ρ̂)(ΨΨ)(ΨΨ)

+
1

2
αV (ρ̂)(Ψγ

µΨ)(ΨγµΨ) +
1

2
αTV (ρ̂)(Ψτ⃗ γ

µΨ) · (Ψτ⃗ γµΨ)

− 1

2
δS[(∂0ΨΨ)(∂0ΨΨ) + (∇ΨΨ) · (∇ΨΨ)] + eΨγµAµ

1− τ3
2

Ψ

}
. (5.26)

Making use of the stationary solution of the form

Ψ(r, t) =
∑
k

φk(r)e−iϵktâk  Ψ†(r, t) =
∑
ℓ

φ†
ℓ(r)eiϵℓtâ

†
ℓ (5.27)

and taking the expectation value with respect to the nuclear ground state |Φ⟩, we obtain the
covariant energy density functional (CEDF)

ERMF[ρ̂, A] ≡ ⟨Φ|Ĥ|Φ⟩

=

∫
d3r
∑
kℓ

φ†
k(r, t)(α · p + βM)φℓ(r, t)ρℓk

+
1

2

∫
d3r⟨Φ|αS(ρ̂)|Φ⟩

∑
kℓ

φ†
k(r, t)γ0φℓ(r, t)ρℓk

×
∑
mn

φ†
m(r, t)γ0φn(r, t)ρnm

+
1

2

∫
d3r⟨Φ|αV (ρ̂)|Φ⟩

∑
kℓ

φ†
k(r, t)γ0γµφℓ(r, t)ρℓk

×
∑
mn

φ†
m(r, t)γ0γµφn(r, t)ρnm

+
1

2

∫
d3r⟨Φ|αTV (ρ̂)|Φ⟩

∑
kℓ

φ†
k(r, t)γ0τ⃗ γµφℓ(r, t)ρℓk

×
∑
mn

φ†
m(r, t)γ0τ⃗ γµφn(r, t)ρnm

− 1

2
δS

∫
d3r
∑
kℓ

∂0φ
†
k(r, t)γ0φℓ(r, t)ρℓk

×
∑
mn

∂0φ†
m(r, t)γ0φn(r, t)ρnm

− 1

2
δS

∫
d3r
∑
kℓ

[∇φ†
k(r, t)γ0φℓ(r, t)]ρℓk
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×
∑
mn

[∇φ†
m(r, t)γ0φn(r, t)]ρnm

+ e

∫
d3r
∑
kℓ

φ†
k(r, t)γ0γµ

1− τ3
2

Aµφℓ(r, t)ρℓk. (5.28)

Defining
Tr[Ô ρ̂(r)] =

∑
k

nkφ
†
k(r)Oφk(r), (5.29)

the CEDF (5.28) can be expressed as

ERMF[ρ̂, A] =

∫
d3rTr[(α · p + βM)ρ̂(r)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0ρ̂(r)]1

2
αS[Tr ρ̂(r)] Tr[γ0ρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr ρ̂(r)1

2
αV [Tr ρ̂(r)] Tr ρ̂(r′)

+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0γiρ̂(r)]1

2
αV [Tr ρ̂(r)] Tr[γ0γiρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[τ⃗ ρ̂(r)]1

2
αTV [Tr ρ̂(r)] · Tr[τ⃗ ρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0γiτ⃗ ρ̂(r)]1

2
αTV [Tr ρ̂(r)] · Tr[γ0γiτ⃗ ρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0ρ̂(r)]1

2
δS∇2Tr[γ0ρ̂(r′)]

+ e

∫
d3rTr

[(
γ0γµ

1− τ3
2

Aµ(r)
)
ρ̂(r)

]
. (5.30)

One considers (1) the time-reversal symmetry of the mean field and (2) isospin is a good
quantum number. The CEDF ERMF[ρ̂, A] thus becomes

ERMF[ρ̂, A] =

∫
d3rTr[(α · p + βM)ρ̂(r)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0ρ̂(r)]1

2
αS[Tr ρ̂(r)] Tr[γ0ρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr ρ̂(r)1

2
αV [Tr ρ̂(r)] Tr ρ̂(r′)

−
∫
d3r
∫
d3r′δ(r− r′) Tr[γ0γiρ̂(r)]1

2
αV [Tr ρ̂(r)] Tr[γ0γiρ̂(r′)]

+

∫
d3r
∫
d3r′δ(r− r′) Tr[τ3ρ̂(r)]

1

2
αTV [Tr ρ̂(r)] · Tr[τ3ρ̂(r′)]

−
∫
d3r
∫
d3r′δ(r− r′) Tr[γ0γiτ3ρ̂(r)]

1

2
αTV [Tr ρ̂(r)] · Tr[γ0γiτ3ρ̂(r′)]
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+

∫
d3r
∫
d3r′δ(r− r′) Tr[γ0ρ̂(r)]1

2
δS∇2Tr[γ0ρ̂(r′)]

+ e

∫
d3rTr

[(
1− τ3

2
A0(r)

)
ρ̂(r)

]
, (5.31)

where we have used the identity γi = −γi (i = 1, 2, 3). Using the identity

δTr[Ô ρ̂(r)]
δρ̂(r1)

= O(r)δ(r− r1), (5.32)

one obtains

δERMF

δρ̂(r1)
= (α · p + βM)(1) + γ0(1)

1

2
αS(ρV (r1)) Tr[γ0ρ̂(r1)]

+
1

2

∂αS(ρV (r1))
∂ρV (r1)

Tr2[γ0ρ̂(r1)]1(1) + Tr[γ0ρ̂(r1)]
1

2
αS(ρV (r1))γ0(1)

+ 1(1)1

2
αV (ρV (r1)) Tr ρ̂(r1) +

1

2

∂αV (ρV (r1))
∂ρV (r1)

Tr2 ρ̂(r1)1(1)

+ Tr ρ̂(r1)
1

2
αV (ρV (r1))1(1) − γ0(1)γi(1)1

2
αV (ρV (r1)) Tr[γ0γiρ̂(r1)]

− 1

2

∂αV (ρV (r1))
∂ρV (r1)

Tr2[γ0γiρ̂(r1)]1(1) − Tr[γ0γiρ̂(r1)]
1

2
αV (ρV (r1))γ0(1)γi(1)

+ τ
(1)
3

1

2
αTV (ρV (r1)) Tr[τ3ρ̂(r1)] +

1

2

∂αTV (ρV (r1))
∂ρV (r1)

Tr2[τ3ρ̂(r1)]1(1)

+ Tr[τ3ρ̂(r1)]
1

2
αTV (ρV (r1))τ (1)3 − γ0(1)γi(1)τ

(1)
3

1

2
αTV (ρV (r1)) Tr[γ0γiτ3ρ̂(r1)]

− 1

2

∂αTV (ρV (r1))
∂ρV (r1)

Tr2[γ0γiτ3ρ̂(r1)]1(1)

− Tr[γ0γiτ3ρ̂(r1)]
1

2
αTV (ρV (r1))γ0(1)γi(1)τ (1)3

+ γ0(1)
1

2
δS∇2

1Tr[γ
0ρ̂(r1)] + Tr[γ0ρ̂(r1)]

1

2
δS∇2

1γ
0(1)

+

[
1− τ3

2

](1)
e2

4π

∫
d3r′ 1

|r1 − r′| Tr
[(

1− τ3
2

)
ρ̂(r′)

]
, (5.33)

where one has used the expression of the Coulomb field A0(r) of the form

A0(r) = e

4π

∫
d3r′ ρC(r

′)

|r− r′| , ρC(r) =
∑
k

nkφ
†
k(r)

1− τ3
2

φk(r). (5.34)

Second variational derivative of ERMF[ρ̂, A] with respect to ρ̂(r) results in the particle-hole
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(ph) interaction V ph(1, 2) of the form

V ph(1, 2) =
δ2ERMF

δρ̂(r1)δρ̂(r2)
= γ0(1)[αS(ρV (r1)) + δS∇2

1]δ(r1 − r2)γ0(2)

+ 1(1)

[
1

2

∂2αS(ρV (r1))
∂ρ2V (r1)

ρ2S(r1) + 2
∂αV (ρV (r1))
∂ρV (r1)

ρV (r1) + αV (ρV (r1))

+
1

2

∂2αV (ρV (r1))
∂ρ2V (r1)

ρ2V (r1) +
1

2

∂2αTV (ρV (r1))
∂ρ2V (r1)

ρ2TV (r1)
]
δ(r1 − r2)1(2)

+ τ
(1)
3 αTV (ρV (r1))δ(r1 − r2)τ (2)3

− γ0(1)γi(1)αV (ρV (r1))δ(r1 − r2)γ0(2)γi(2)

− γ0(1)γi(1)τ
(1)
3 αTV (ρV (r1))δ(r1 − r2)γ0(2)γi(2)τ (2)3

+ γ0(1)
∂αS(ρV (r1))
∂ρV (r1)

ρS(r1)δ(r1 − r2)1(2)

+ 1(1)∂αS(ρV (r1))
∂ρV (r1)

ρS(r1)δ(r1 − r2)γ0(2)

+ τ
(1)
3

∂αTV (ρV (r1))
∂ρV (r1)

ρTV (r1)δ(r1 − r2)1(2)

+ 1(1)∂αTV (ρV (r1))
∂ρV (r1)

ρTV (r1)δ(r1 − r2)τ (2)3

+

[
1− τ3

2

](1)
e2

4π

1

|r1 − r2|

[
1− τ3

2

](2)
. (5.35)

Analogous to the force PC-F1 (c.f. Appendix D), the particle-hole interaction V ph(1, 2) can
be brought to the so-called channel form

V ph(1, 2) =

∫ ∞

0

r2dr

∫ ∞

0

r′ 2dr′
∑
cc′

Q(1)
c (r)vcc′(r, r

′)Q
†(2)
c′ (r′), (no Coulomb term)

(5.36)

where the the effective interactions vcc′(r, r′) = vcc′(r)δ(r − r′) are now tabulated in Table
5.2.

Before continuing to the next subsection to discuss how the Coulomb interaction will be
included in the channels, let us summarize the essential results from the current subsection.
The single-particle basis {φk(r), ϵk} is defined according to

ĥDφk(r) = ϵkφk(r),
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with the Dirac Hamiltonian ĥD,

ĥD = α · p + β[M + S(r)] + V (r). (5.37)

In the parametrization DD-PC1, the scalar potential S(r) and vector potential V (r) contains
the strength parameters αi (i = S, V, TV ), which depends on the density ρV (Eq. (5.18)
and Table 5.1). These potentials take the form

S(r) = [αS(ρV ) + δS∇2]ρS(r),
V (r) = ΣR(r) + ΣV (r) + τ3ΣTV (r),

with the self energies

ΣR(r) =
1

2

∂αS(ρV )

∂ρV
ρ2S(r) +

1

2

∂αV (ρV )

∂ρV
ρ2V (r) +

1

2

∂αTV (ρV )

∂ρV
ρ2TV (r),

ΣV (r) = αV (ρV )ρV (r) + eA0
1

2
(1− τ3),

ΣTV (r) = αTV (ρV )ρTV (r),

and densities

ρS(r) =
∑
k

nkφk(r)φk(r),

ρV (r) =
∑
k

nkφ
†
k(r)φk(r),

Table 5.2: The effective interactions vcc′(r) for the DD-PC1 parameterization. Here F [ρV ] =
αV [ρV ] + 2α′

V [ρV ]ρV + 1
2
α′′
V [ρV ]ρ

2
V and αi[ρV ] ≡ αi(ρV (r)), where i = S, V, TV . The first

and second derivative of αi(ρV (r)) with respect to ρV (r) are denoted as α′[ρV ] and α′′[ρV ],
respectively. The structure of channel c can be found in Table D.2 of Appendix D.

Channel c′
1 2 3,4 5 6 7,8

C
ha

nn
el
c

1 αS[ρV ] + δS∇2 α′
S[ρV ]ρS 0 0 0 0

2 α′
S[ρV ]ρS

1
2
α′′
S[ρV ]ρ

2
S + F [ρV ]

+1
2
α′′
TV [ρV ]ρ

2
TV

0 0 α′
TV [ρV ]ρTV 0

3,4 0 0 −αV [ρV ] 0 0 0
5 0 0 0 0 0 0
6 0 α′

TV [ρV ]ρTV 0 0 αTV [ρV ] 0
7,8 0 0 0 0 0 −αTV [ρV ]
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ρTV (r) =
∑
k

nkφk(r)τ3γ0φk(r).

The particle-hole interaction V ph(1, 2) is also given by

V ph(1, 2) =

∫ ∞

0

r2dr

∫ ∞

0

r′ 2dr′
∑
cc′

Q(1)
c (r)vcc′(r, r

′)Q
†(2)
c′ (r′), (no Coulomb term)

where the interaction vcc′(r, r
′) is not completely diagonal in the coordinate-channel

representation, i.e., vcc′(r, r′) = vcc′(r)δ(r − r′). The multi-channel effective interactions
vcc′(r) are tabulated in Table 5.2.

5.1.2 Treatment of the Coulomb Interaction in the Coordinate-
channel Representation

We now turn our attention to the Coulomb term[
1

2
(1 + τ3)

](1)
vC(r1, r2)

[
1

2
(1 + τ3)

](2)
(5.38)

with the Coulomb potential

vC(r1, r2) =
e2

4π

1

|r1 − r2|
=

∞∑
L=0

L∑
ML=−L

vLC(r1, r2)Y
∗
LM(n2)YLM(n1), (5.39)

where
vLC(r1, r2) =

e2

2L+ 1

rL<
rL+1
>

. (5.40)

Here r< and r> denote smaller (larger) of r1 and r2. The Coulomb term (5.38) breaks the
isospin symmetry and can be decomposed according to[
1

2
(1 + τ3)

](1)
vC(r1, r2)

[
1

2
(1 + τ3)

](2)
=

1

4
vC(r1, r2)[1(1)1(2) + 1(1)τ

(2)
3 + τ

(1)
3 1(2) + τ

(1)
3 τ

(2)
3 ].

(5.41)

Making use of the expansion of the Dirac delta-function (D.72), one can expand the Coulomb
potential in the form

vC(r1, r2) =

∫
d3r
∫
d3r′ vC(r, r′)δ(r1 − r)δ(r′ − r2)
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Table 5.3: The Coulomb interactions vCcc′(r, r′) for each channel.

Channel c′
1 2 3,4 5 6 7,8

C
ha

nn
el
c

1 0 0 0 0 0 0
2 0 1

16
vCL,L′ 0 0 1

16
vCL,L′ 0

3,4 0 0 1
16
vCL,L′ 0 0 1

16
vCL,L′

5 0 0 0 0 0 0
6 0 1

16
vCL,L′ 0 0 1

16
vCL,L′ 0

7,8 0 0 1
16
vCL,L′ 0 0 1

16
vCL,L′

=

∫
r2dr

∫
r′ 2dr′

∑
LML

vLC(r, r
′)YLML

(n1)Y
∗
LML

(n2)
δ(r1 − r)
rr1

δ(r′ − r2)
r′r2

.

(5.42)

Using this expansion and the identity

1

4
γµγµ = 14×4, (5.43)

the Coulomb term (5.38) reads[
1

2
(1 + τ3)

](1)
vC(r1, r2)

[
1

2
(1 + τ3)

](2)
=

∫
r2dr

∫
r′ 2dr′

∑
LML

1

16
vLC(r, r

′)
δ(r1 − r)
rr1

δ(r′ − r2)
r′r2

YLML
(n1)Y

∗
LML

(n2)

× γµ(1)γµ(2)⊗ [1(1)1(2) + 1(1)τ
(2)
3 + τ

(1)
3 1(2) + τ

(1)
3 τ

(2)
3 ]. (5.44)

The last equation can be expressed in terms of the channels c defined in Table D.2, viz.[
1

2
(1 + τ3)

](1)
vC(r1, r2)

[
1

2
(1 + τ3)

](2)
=
∑
cc′

∫
r2dr

∫
r′ 2dr′ Q(1)

c (r)vCcc′(r, r
′)Q

(2)†
c′ (r′),

(5.45)
where the Coulomb effective interactions vCcc′(r, r′) = 1

16
vCLL′(r, r′) are now tabulated in Table

5.3.
Since the Coulomb term (5.38) has a similar channel structure as the non-Coulomb terms

in the particle-hole interaction V ph(1, 2), the particle-hole interaction V ph(1, 2) can take a
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generic form:

V ph(1, 2) =

∫ ∞

0

r2dr

∫ ∞

0

r′ 2dr′
∑
cc′

Q(1)
c (r)vph

cc′(r, r
′)Q

†(2)
c′ (r′), (5.46)

where the particle-hole effective interaction vph
cc′(r, r

′) now includes the Coulomb effective
interaction vCcc′(r, r

′) as well.

5.2 The BCS Theory
The inclusion of pairing correlations plays an essential role in giving a better description

of structure phenomena in open-shell and deformed nuclei. The inclusion of the pairing
correlations can be done in a self-consistent way in the framework of the relativistic Hartree-
Fock-Bogoliubov (RHFB) theory [31, 41, 143]. For the case of not very loosely-bound nuclei
with the Fermi level below the continuum, the treatment of pairing correlations using the
Bardeen-Cooper-Schrieffer (BCS) approximation is considered sufficient. In this work, we
will deal with the so-called like-particle pairing, i.e., either proton-proton (pp) or neutron-
neutron (nn) pairing, and neglect the proton-neutron (pn) pairing. In the following we
present the theoretical description of the BCS approximation to the superfluid pairing
correlations.

5.2.1 The BCS Wave Function

Consider a pairing Hamiltonian Ĥ which contains the single-particle term and the pairing
interaction term, viz.

Ĥ =
∑
k

ϵkâ
†
kâk −

∑
kk′>0

Gkk′P̂
†
k P̂k′ . (5.47)

The pair-creation operator P̂ †
k ,

P̂ †
k = â†kâ

†
k̄
:= (−1)j−mâ†jmâ

†
j−m, (5.48)

creates a pair of nucleons, one in a single-particle state |k⟩ = |jm⟩ and another in a time-
reversed state |k̄⟩ = (−1)j−m|j − m⟩. The corresponding pair-annihilation operator P̂k is
defined as

P̂k = âk̄âk := (−1)j−mâj−mâjm. (5.49)

The pairing strength Gkk′ determines the transition amplitude of a nucleon pair from the
state |k′⟩ and the time-reversed state |k̄′⟩ to the state |k⟩ and the time-reversed state |k̄⟩. In
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the simplest case one assumes the pairing strength Gkk′ is a constant G, and the Hamiltonian
Ĥ becomes

Ĥ =
∑
k

ϵkâ
†
kâk −G

∑
kk′>0

P̂ †
k P̂k′ . (5.50)

In the BCS model, the trial wave function is the ground state |BCS⟩ of the form:

|BCS⟩ =
∞∏
k>0

(uk + vkâ
†
kâ

†
k̄
)|−⟩, (5.51)

where |−⟩ stands for the bare vacuum defined according to

âk|−⟩ = 0 and âk̄|−⟩ = 0. (5.52)

The parameters uk and vk are taken to be real and one also defines uk̄ = uk and vk̄ = −vk.
The normalization of the BCS state, ⟨BCS|BCS⟩ = 1, leads to

u2k + v2k = 1. (5.53)

The state |BCS⟩ is a vacuum state with respect to the quasi-particle operators α̂k, i.e.,

α̂k|BCS⟩ = 0 (5.54)

for all k. The quasi-particle creation (annihilation) operators α̂†
k (α̂k) are connected to the

particle creation (annihilation) operators â†k (âk) via the Bogoliubov-Valatin transformations:

α̂†
k = ukâ

†
k − vkâk̄, (5.55)

α̂†
k̄

= ukâ
†
k̄
+ vkâk, (5.56)

α̂k = ukâk − vkâ†k̄, (5.57)
α̂k̄ = ukâk̄ + vkâ

†
k. (5.58)

The quasi-particle operators α̂k, α̂†
k satisfy the following commutation relations:

{α̂k, α̂
†
k′} = δkk′ ; {α̂k, α̂k′} = 0; {α̂†

k, α̂
†
k′} = 0 (5.59)

for all k. The inverse Bogoliubov-Valatin transformations are then given by

â†k = ukα̂
†
k + vkα̂k̄, (5.60)
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âk = ukα̂k + vkα̂
†
k̄
, (5.61)

â†
k̄

= ukα̂
†
k̄
− vkα̂k, (5.62)

âk̄ = ukα̂k̄ − vkα̂
†
k. (5.63)

The average particle number N serves as the constraint

N =
∑
k>0

[v2k + v2k̄] = 2
∑
k>0

v2k :=
∑
k

v2k. (5.64)

From Eqs. (5.64) and (5.53), we can interpret v2k as the probability of a pair state (k, k̄) to
be occupied, and, therefore, u2k is the probability of the pair state (k, k̄) to remain empty.
The trial wave function |BCS⟩ does not conserve the particle number. This follows from the
definition (5.51), where the wave function is a superposition of components with different
numbers of fermionic pairs. Being a quantum mechanical operator, the particle number
fluctuates around its average value, so that the mean square fluctuations of the particle
number (∆N)2 are quantified by

(∆N)2 = ⟨BCS|N̂2|BCS⟩ − ⟨BCS|N̂ |BCS⟩2 = 4
∑
k>0

u2kv
2
k. (5.65)

5.2.2 The BCS Equations

As the trial wave function |BCS⟩ does not conserve the particle number, the variational
condition becomes

δ⟨BCS|(Ĥ − λN̂)|BCS⟩ = 0, (5.66)

where λ is the chemical potential. Using Eq. (5.53), the variational condition (5.66) can be
rewritten as

0 =

(
∂

∂vk
+
∂uk
∂vk

∂

∂uk

)
⟨BCS|(Ĥ − λN̂)|BCS⟩. (5.67)

The expectation value of (Ĥ − λN̂) in the state |BCS⟩ is, therefore, given by

⟨BCS|Ĥ − λN̂ |BCS⟩ =
∑
k>0

2

(
ϵk − λ−

G

2
v2k

)
v2k −G

(∑
k>0

ukvk

)2

≈
∑
k>0

2(ϵk − λ)v2k −G

(∑
k>0

ukvk

)2

, (5.68)
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where the mean-field pairing contribution to the single-particle energy, i.e., −Gv2k/2, is
neglected due to its smallness (see the discussion in Appendix G of Ref. [165]). Inserting
Eq. (5.68) into Eq. (5.67), one obtains

0 = 4E2
kv

4
k − 4E2

kv
2
k +∆2, (5.69)

where the quasiparticle energy Ek is

E2
k = (ϵk − λ)2 +∆2

Ek =
√

(ϵk − λ)2 +∆2 > 0 (5.70)

and the gap parameter ∆ is defined as

∆ = G
∑
k>0

ukvk. (5.71)

Solving Eq. (5.69), one obtains
v2k =

1

2
± 1

2

ϵk − λ
Ek

. (5.72)

To determine the sign in v2k, one considers the case with no pairing, i.e., ∆ = 0. In this limit,
one should have Ek = |ϵk − λ|, (ϵk − λ) = −|ϵk − λ|, v2k = 1, and u2k = 0 for the occupied
states below the Fermi energy. This limit can be achieved if one chooses

v2k =
1

2

[
1− ϵk − λ

Ek

]
(5.73)

and, therefore, using Eq. (5.53), one also obtains

u2k = 1− v2k =
1

2

[
1 +

ϵk − λ
Ek

]
. (5.74)

Inserting the explicit forms of u2k and v2k into Eq. (5.71) yields the famous gap equation:

1 = G
∑
k>0

1

2Ek

, (5.75)

that allows finding the value of the pairing gap. The unrestricted sum over k in Eqs. (5.71)
and (5.75) results in a divergence. This is an artifact of using a non-realistic constant pairing
interaction strength. To avoid this situation, one has to introduce a cut-off energy or a fixed
pairing window Ep around the Fermi surface, so that any state with energy higher than Ep
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has the occupation probability v2k = 0. In addition, one can also introduces an additional
factor [166]:

fk =

[
1 + exp

(
ϵk − λ− Ep

µ

)]−1

, (5.76)

where the parameter µ here determines the smoothness of the cut-off. With the additional
factor fk, the gap equation (5.75) now reads:

1 = G
∑
k>0

fk
1

2Ek

. (5.77)

Equations (5.70), (5.73), (5.74), and (5.77) constitute the BCS equations with the constraints
related to the proton (neutron)-quasiparticle number Nπ (N ν):

Nπ,ν =
∑
k

v2k. (5.78)

These equations are valid for protons and neutrons separately. In the active pairing space
(inside the pairing window), the BCS pairing correlations modify the four nucleonic densities
ρi(r) (i = S, V, TS, TV ) by the replacement∑

k

nk · · · =⇒
∑
k

v2k · · · . (5.79)

This modification will affect the scalar potential S(r) and vector potential V (r), and, in turn,
the single-particle basis. Therefore, one solves the BCS equations with the constraint (5.78)
together with the self-consistent mean-field equations to obtain the correct single-particle
basis, chemical potential λ, quasiparticle energies Ek, the pairing strength G, the pairing
gap ∆, and the BCS occupation numbers v2k. This is the general feature of the RMF+BCS
model.

5.2.3 The Matrix Elements of One-body Operators

Consider a one-body operator Q̂ in the second quantization representation:

Q̂ =
∑
kk′

⟨k|Q̂|k′⟩â†kâk′ =
∑
kk′

Qkk′ â
†
kâk′ . (5.80)
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Using the inverse Bogoliubov-Valatin transformations (5.60) and (5.61), the one-body
operator Q̂ can be expressed as

Q̂ = Q0 +
∑
kk′

Q11
kk′α̂

†
kα̂k′ +

1

2

∑
kk′

(
Q20

kk′α̂
†
kα̂

†
k′ +Q02

k′kα̂k′α̂k

)
, (5.81)

where

Q0 =
∑
k

Qkkv
2
k =

∑
k>0

{Qkk +Qk̄k̄} v2k, (5.82)

Q11
kk′ = Qkk′ukuk′ −Qk̄′k̄vk′vk, (5.83)

Q20
kk′ = Qkk̄′ukvk′ −Qk′k̄uk′vk, (5.84)

Q02
k′k = Qk̄′kvk′uk −Qk̄k′vkuk′ . (5.85)

In the case of time-reversal invariance [T̂ −1F̂ T̂ ]† = (−1)SF̂ , where S = 0 for time-even
operators, i.e., scalar and time-like components of vector fields, and S = 1 for time-odd
operators, i.e., space-like components of the vector fields, one has (c.f. Appendix E)

⟨µ̄|F̂ |ν̄⟩ = (−1)S⟨ν|F̂ |µ⟩ and ⟨µ̄|F̂ |ν⟩ = −(−1)S⟨ν̄|F̂ |µ⟩. (5.86)

Using these relations, one can rewrite Eqs. (5.82)-(5.85) in terms of the factors ξSkk′ and ηSkk′ ,

ξSkk′ = ukuk′ − (−1)Svkvk′ , (5.87)
ηSkk′ = ukvk′ + (−1)Svkuk′ , (5.88)

as follows:

Q0 =
∑
k>0

Qkk

[
1 + (−1)S

]
v2k, (5.89)

Q11
kk′ = ξSkk′Qkk′ , (5.90)

Q20
kk′ = ηSkk′Qkk̄′ , (5.91)

Q02
k′k = ηSkk′Qk̄′k. (5.92)

This form of the one-body operators will be used in the following formalism.
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Chapter 6

Continuum Relativistic Quasiparticle
Random Phase Approximation

It is well-known that the phenomena of giant resonances (GRs) can be understood
microscopically as a result of the collective nuclear excitations. The random phase
approximation (RPA) is the simplest theory to describe the collective nuclear excitations.
It starts by assuming the existence of a correlated ground state, and describes the collective
excitations, which are caused by a weak external field, as a coherent superposition of particle-
hole excitations from this correlated ground state. In the presence of pairing correlations, one
has to extend the RPA formalism to the quasiparticle RPA (QRPA) formalism. In the QRPA
formalism, it is the two-quasiparticle and two-quasi-hole pairs that form the transitions from
the correlated ground state. The QRPA equations can be formulated in several ways. In
the first section of this Chapter, we derive the QRPA equations in configuration space using
the equation of motion method, following Ref. [21]. This formulation, however, does not
include accurately the continuum effects, but instead, these effects are included implicitly
via the so-called discretized continuum. In realistic calculations, however, because of the
inevitable basis truncations, such a treatment of the continuum has limited accuracy and,
thus, is not sufficient for the light and loosely-bound nuclear systems. To formulate the
Bethe-Salpeter equation (BSE) for particle-hole response functions in the framework of the
continuum relativistic QRPA, we employ the particle-hole V ph(1, 2) and particle-particle V̂ pp

interactions, which were defined in Section 5.1 and Section 5.2, respectively. We work out the
detail procedures to obtain the BSE in the coordinate space representation for particle-hole
and particle-particle channels in Section 6.2 and Section 6.3, respectively.
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6.1 The Quasiparticle Random Phase Approximation
(QRPA) Equations

Consider a set of exact eigenstates |ν⟩ of the nuclear Hamiltonian Ĥ satisfying the
Schrödinger equation

Ĥ|ν⟩ = Eν |ν⟩ (6.1)

with the corresponding exact eigenvalues Eν . The excitation operators Q̂†
ν , Q̂ν are defined

in such a way that Q̂†
ν creates the excited state |ν⟩, where ν > 0, when acting on the nuclear

ground state |0⟩, whereas Q̂ν causes the state |0⟩ to vanish, viz.

|ν⟩ = Q̂†
ν |0⟩ and Q̂ν |0⟩ = 0. (6.2)

It is possible for the operator Q̂†
ν to take the form

Q̂†
ν = |ν⟩⟨0|. (6.3)

Using the definition (6.3) of operator Q̂†
ν , the action of commutator [Ĥ, Q̂†

ν ] on the state |0⟩
gives the equation of motion

[Ĥ, Q̂†
ν ]|0⟩ = (Eν − E0)|ν⟩, (6.4)

where E0 is the ground state energy. Multiplying Eq. (6.4) from the left with the variation
δQ̂ν and closing it with the state |0⟩, one obtains

⟨0|[δQ̂ν , [Ĥ, Q̂
†
ν ]]|0⟩ = (Eν − E0)⟨0|[δQ̂ν , Q̂

†
ν ]|0⟩. (6.5)

In the quasiparticle random phase approximation (QRPA), the operator Q̂†
ν is the simplest

phonon creation operator, which is built from the pairs quasiparticle operators, viz.

Q̂†
ν =

1

2

∑
p<p′

(Xν
pp′α̂

†
pα̂

†
p′ − Y

ν
pp′α̂p′α̂p). (6.6)

The indices (p, q) and the prime indices (p′, q′) are used to label the quasiparticle basis. The
interchange between p and p′ in Eq. (6.6) gives

Q̂†
ν =

1

2

∑
p<p′

(Xν
p′pα̂

†
p′α̂

†
p − Y ν

p′pα̂pα̂p′) =
1

2

∑
p<p′

(−Xν
p′pα̂

†
pα̂

†
p′ + Y ν

p′pα̂p′α̂p),
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which implies the anti-symmetric property of the amplitudes Xν
pp′ and Y ν

pp′ , i.e.,

Xν
pp′ = −Xν

p′p and Y ν
pp′ = −Y ν

p′p. (6.7)

The QRPA ground state |QRPA⟩ can be identified by the vacuum condition (6.2)

Q̂ν |QRPA⟩ = 0. (6.8)

Using the QRPA ground state |QRPA⟩ as an approximation to the nuclear ground state |0⟩
in Eq. (6.5), one obtains

⟨QRPA|[δQ̂ν , [Ĥ, Q̂
†
ν ]]|QRPA⟩ = Ων⟨QRPA|[δQ̂ν , Q̂

†
ν ]|QRPA⟩, (6.9)

where Ων = (Eν − E0) is the phonon energy. Since the phonon creation operator consists
of two amplitudes Xν

pp′ and Y ν
pp′ , the corresponding variation δQ̂ν |QRPA⟩ has two terms,

i.e., α̂†
pα̂

†
p′ |QRPA⟩δXν

pp′ and α̂p′α̂p|QRPA⟩δY ν
pp′ . As they are associated with the independent

variations, one obtains the two sets of equations for each amplitude, namely,

⟨QRPA|[α̂†
pα̂

†
p′ , [Ĥ, Q̂

†
ν ]]|QRPA⟩ = Ων⟨QRPA|[α̂†

pα̂
†
p′ , Q̂

†
ν ]|QRPA⟩ (6.10)

and
⟨QRPA|[α̂p′α̂p, [Ĥ, Q̂

†
ν ]]|QRPA⟩ = Ων⟨QRPA|[α̂p′α̂p, Q̂

†
ν ]|QRPA⟩. (6.11)

To derive the QRPA equations from Eqs. (6.10) and (6.11), one applies the quasi-boson
approximation by assuming that the correlated ground state |QRPA⟩ does not differ very
much from the Hartree-Fock-Bogoliubov (HFB) ground state |HFB⟩. Here it is convenient to
introduce two-quasiparticle creation operator b̂†pp′ and two-quasiparticle annihilation operator
b̂pp′ ,

b̂†pp′ = α̂†
pα̂

†
p′ and b̂pp′ = α̂p′α̂p. (6.12)

Applying the quasi-boson approximation, one obtains the three expectation values
⟨QRPA|[b̂pp′ , b̂†qq′ ]|QRPA⟩, ⟨QRPA|[b̂pp′ , b̂qq′ ]|QRPA⟩, and ⟨QRPA|[b̂†pp′ , b̂

†
qq′ ]|QRPA⟩ as

follows:

⟨QRPA|[b̂pp′ , b̂†qq′ ]|QRPA⟩ ≈ ⟨HFB|[b̂pp′ , b̂†qq′ ]|HFB⟩ = δqpδq′p′ − δqp′δq′p, (6.13)
⟨QRPA|[b̂pp′ , b̂qq′ ]|QRPA⟩ ≈ ⟨HFB|[b̂pp′ , b̂qq′ ]|HFB⟩ = 0, (6.14)
⟨QRPA|[b̂†pp′ , b̂

†
qq′ ]|QRPA⟩ ≈ ⟨HFB|[b̂†pp′ , b̂

†
qq′ ]|HFB⟩ = 0. (6.15)
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With the aid of Eqs. (6.13), (6.14), and (6.15), Eqs. (6.10) and (6.11) become the so-called
QRPA equations

ΩνX
ν
pp′ =

∑
q<q′

App′qq′X
ν
qq′ +

∑
q<q′

Bpp′qq′Y
ν
qq′ , (6.16)

ΩνY
ν
pp′ = −

∑
q<q′

B∗
pp′qq′X

ν
qq′ −

∑
q<q′

A∗
pp′qq′Y

ν
qq′ , (6.17)

where the matrix elements App′qq′ and Bpp′qq′ are defined as

App′qq′ = ⟨HFB|[α̂p′α̂p, [Ĥ, α̂
†
qα̂

†
q′ ]]|HFB⟩ (6.18)

and
Bpp′qq′ = −⟨HFB|[α̂p′α̂p, [Ĥ, α̂q′α̂q]]|HFB⟩. (6.19)

The complex conjugate of these two matrix elements are

A∗
pp′qq′ = ⟨HFB|[α̂†

pα̂
†
p′ , [Ĥ, α̂q′α̂q]]|HFB⟩ (6.20)

and
B∗

pp′qq′ = −⟨HFB|[α̂†
pα̂

†
p′ , [Ĥ, α̂

†
qα̂

†
q′ ]]|HFB⟩. (6.21)

In the quasiparticle representation, the Hamiltonian Ĥ can be expressed as

Ĥ = H0 +
∑
p1p2

H11
p1p2

α̂†
p1
α̂p2 +

1

2

∑
p1p2

H20
p1p2

α̂†
p1
α̂†
p2
+

1

2

∑
p1p2

H20∗
p1p2

α̂p2α̂p1

+
∑

p1p2p3p4

H40
p1p2p3p4

α̂†
p1
α̂†
p2
α̂†
p3
α̂†
p4
+

∑
p1p2p3p4

H40∗
p1p2p3p4

α̂p4α̂p3α̂p2α̂p1

+
∑

p1p2p3p4

H31
p1p2p3p4

α̂†
p1
α̂†
p2
α̂†
p3
α̂p4 +

∑
p1p2p3p4

H31∗
p1p2p3p4

α̂†
p4
α̂p3α̂p2α̂p1

+
1

4

∑
p1p2p3p4

H22
p1p2p3p4

α̂†
p1
α̂†
p2
α̂p4α̂p3 . (6.22)

Making use of the expression (6.22), one obtains

App′qq′ = (Ep + Ep′)δpqδp′q′ +H22
pp′qq′ , (6.23)

Bpp′qq′ = 4! ·H40
pp′qq′ . (6.24)
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In the canonical basis, i.e., the basis that diagonalizes the normal one-body density matrix,
the matrix elements of QRPA matrices A and B are given by

Akk′ℓℓ′ = (Ek + Ek′)δkℓδk′ℓ′ + ukuk′uℓuℓ′V
pp
kk′ℓℓ′ + vkvk′vℓvℓ′V

pp
ℓ̄ℓ̄′k̄k̄′

+ ukuℓvk′vℓ′V
ph
kℓ̄′k̄′ℓ

+ uk′uℓ′vkvℓV
ph
k′ℓ̄k̄ℓ′

− ukuℓ′vk′vℓV
ph
kℓ̄k̄′ℓ′

− uk′uℓvkvℓ′V ph
k′ℓ̄′k̄ℓ

, (6.25)
Bkk′ℓℓ′ = −ukuk′vℓvℓ′V pp

kk′ℓ̄ℓ̄′
− vkvk′uℓuℓ′V pp

ℓℓ′k̄k̄′
+ ukvk′uℓvℓ′V

ph
kℓk̄′ℓ̄′

+ vkuk′vℓuℓ′V
ph
k′ℓ′k̄ℓ̄

− ukvk′vℓuℓ′V ph
kℓ′k̄′ℓ̄

− vkuk′uℓvℓ′V ph
k′ℓk̄ℓ̄′

. (6.26)

Accordingly, the QRPA equations in the canonical basis take the form

ΩνX
ν
kk′ =

∑
ℓ<ℓ′

Akk′ℓℓ′X
ν
ℓℓ′ +

∑
ℓ<ℓ′

Bkk′ℓℓ′Y
ν
ℓℓ′ , (6.27)

ΩνY
ν
kk′ = −

∑
ℓ<ℓ′

B∗
kk′ℓℓ′X

ν
ℓℓ′ −

∑
ℓ<ℓ′

A∗
kk′ℓℓ′Y

ν
ℓℓ′ . (6.28)

The indices (k, ℓ) and the prime indices (k′, ℓ′) will be used to indicate the canonical basis
throughout this chapter.

6.2 The Particle-hole Response Function Formalism
for Continuum Relativistic QRPA

As discussed in Section 5.1, the particle-hole interaction V ph(1, 2) takes the form

V ph(x1, x2) =

∫ ∞

0

r2dr

∫ ∞

0

r′ 2dr′
∑
cc′

Q(1)
c (r)vph

cc′(r, r
′)Q

†(2)
c′ (r′) (6.29)

in the coordinate representation. By means of the Dirac spinor

φk(r, σ, t) =
1

r

[
Fκk

(r)Ωjkℓkmk
(n, σ)

iGκk
(r)Ωjk ℓ̃kmk

(n, σ)

]
χ 1

2 τk
(t), (6.30)

one defines the particle-hole interaction V ph
kℓ′k′ℓ in configuration space as

V ph
kℓ′k′ℓ =

∫
dx1

∫
dx2 φ

†
k(x1)φ

†
ℓ′(x2)V

ph(x1, x2)φk′(x1)φℓ(x2)

=
∑
cc′

∫
dr r2

∫
dr′ r′2Qc

kk′(r)v
ph
cc′(r, r

′)Qc′∗
ℓℓ′ (r

′), (6.31)
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where the matrix elements Qc
kk′(r) and Qc′∗

ℓℓ′ (r
′) are given by

Qc
kk′(r) =

∫
dx1 φ

†
k(x1)Q

(1)
c (r)φk′(x1)

=

∫
d3r1

∑
t1t′1

∑
σ1,σ′

1

φ†
k(r1, σ1, t1)

δ(r − r1)
rr1

γD ⊗ TJLSM(n1)σ1σ′
1
⊗ (τT0)t1t′1

× φk′(r1, σ′
1, t

′
1)

=

∫
r21 dr1

∫
dn1

∑
t1t′1

∑
σ1,σ′

1

φ†
k(r1, σ1, t1)

δ(r − r1)
rr1

γD ⊗ TJLSM(n1)σ1σ′
1

⊗ (τT0)t1t′1 φk′(r1, σ′
1, t

′
1)

=

∫
dn1

∑
t1t′1

∑
σ1,σ′

1

φ†
k(r,n1, σ1, t1)γD ⊗ TJLSM(n1)σ1σ′

1
⊗ (τT0)t1t′1

× φk′(r,n1, σ
′
1, t

′
1) (6.32)

and

Qc′∗
ℓℓ′ (r

′) = Qc′†
ℓ′ℓ(r

′)

=

∫
dx2 φ

†
ℓ′(x2)Q

†(2)
c′ (r′)φℓ(x2)

=

∫
d3r2

∑
t2t′2

∑
σ2,σ′

2

φ†
ℓ′(r2, σ2, t2)

δ(r′ − r2)
r′r2

γD′ ⊗ T †
J ′L′S′M ′(n2)σ2σ′

2
⊗ (τT ′0)t2t′2

× φℓ(r2, σ′
2, t

′
2)

=

∫
r22 dr2

∫
dn2

∑
t2t′2

∑
σ2,σ′

2

φ†
ℓ′(r2, σ2, t2)

δ(r′ − r2)
r′r2

γD′ ⊗ T †
J ′L′S′M ′(n2)σ2σ′

2

⊗ (τT0)t2t′2 φℓ(r2, σ′
2, t

′
2)

=

∫
dn2

∑
t2t′2

∑
σ2,σ′

2

φ†
ℓ′(r

′,n2, σ2, t2)γD′ ⊗ T †
J ′L′S′M ′(n2)σ2σ′

2
⊗ (τT0)t2t′2

× φℓ(r
′,n2, σ

′
2, t

′
2). (6.33)

For computational convenience, one wants to avoid the denominator 1/r2 (1/r′2) in the
matrix element Qc

kk′(r) (Qc′∗
ℓℓ′ (r

′)), which originates from the Dirac spinor φk(r, σ, t). To
achieve this purpose, one introduces the Dirac spinor

Ψk(r, σ, t) =
[
Fκk

(r)Ωjkℓkmk
(n, σ)

iGκk
(r)Ωjk ℓ̃kmk

(n, σ)

]
χ 1

2 τk
(t), (6.34)
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so that the particle-hole interaction V ph
kℓ′k′ℓ now reads

V ph
kℓ′k′ℓ =

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′Qc
kk′(r)v

ph
cc′(r, r

′)Qc′∗
ℓℓ′ (r

′), (6.35)

where the matrix elements Qc
kk′(r) and Qc′∗

ℓℓ′ (r
′) are

Qc
kk′(r) =

∫
dn1

∑
t1,t′1

∑
σ1,σ′

1

Ψ†
k(r,n1, σ1, t1)γD ⊗ TJLSM(n1)σ1σ′

1
⊗ (τT0)t1t′1

× Ψk′(r,n1, σ
′
1, t

′
1), (6.36)

Qc′∗
ℓℓ′ (r

′) =

∫
dn2

∑
t2,t′2

∑
σ2,σ′

2

Ψ†
ℓ′(r

′,n2, σ2, t2)γD′ ⊗ T †
J ′L′S′M ′(n2)σ2σ′

2
⊗ (τT0)t2t′2

× Ψℓ(r
′,n2, σ

′
2, t

′
2). (6.37)

The use of symbol Ψk(r, σ, t) to indicate the Dirac spinor without the denominator 1/r2

should not be confused with the fermionic field Ψ(r, t). The radial functions Fκk
(r) and

Gκk
(r) satisfy the normalization condition∫ ∞

0

dr[|Fκk
(r)|2 + |Gκk

(r)|2] = 1. (6.38)

Making use of Eqs. (6.35) and (5.86), one obtains

Akk′ℓℓ′ = (Ek + Ek′)δkℓδk′ℓ′

+
∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ ηSkk′Qc
kk̄′(r)v

ph
cc′(r, r

′)ηS
′

ℓℓ′Qc′∗
ℓℓ̄′ (r

′), (6.39)

Bkk′ℓℓ′ =
∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ ηSkk′Qc
kk̄′(r)v

ph
cc′(r, r

′)ηS
′

ℓℓ′Qc′∗
ℓ̄′ℓ (r

′). (6.40)

The corresponding complex conjugate of these matrix elements are

A∗
kk′ℓℓ′ = (Ek + Ek′)δkℓδk′ℓ′

+
∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ ηSkk′Qc
k̄′k(r)v

ph
cc′(r, r

′)ηS
′

ℓℓ′Qc′∗
ℓ̄′ℓ (r

′), (6.41)

B∗
kk′ℓℓ′ =

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ ηSkk′Qc
k̄′k(r)v

ph
cc′(r, r

′)ηS
′

ℓℓ′Qc′∗
ℓℓ̄′ (r

′). (6.42)
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Inserting Eqs. (6.39)-(6.42) into Eqs. (6.27) and (6.28) yields

[ω − Ek − Ek′ ]Xkk′ =
∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
kk̄′(r)η

S
kk′v

ph
cc′(r, r

′)

×
[
Qc′∗

ℓℓ̄′ (r
′)ηS

′

ℓℓ′Xℓℓ′ +Qc′∗
ℓ̄′ℓ (r

′)ηS
′

ℓℓ′Yℓℓ′
]

(6.43)

and

[ω + Ek + Ek′ ]Ykk′ = −
∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
k̄′k(r)η

S
kk′v

ph
cc′(r, r

′)

×
[
Qc′∗

ℓ̄′ℓ (r
′)ηS

′

ℓℓ′Yℓℓ′ +Qc′∗
ℓℓ̄′ (r

′)ηS
′

ℓℓ′Xℓℓ′

]
. (6.44)

Defining
T c′(r′) :=

∑
ℓ<ℓ′

T c′

ℓℓ′(r
′) =

∑
ℓ<ℓ′

[
Qc′∗

ℓℓ̄′ (r
′)ηS

′

ℓℓ′Xℓℓ′ +Qc′∗
ℓ̄′ℓη

S′

ℓℓ′Yℓℓ′
]
, (6.45)

one obtains

0 = [Ek + Ek′ − ω]Xkk′

+
∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
kk̄′(r)η

S
kk′v

ph
cc′(r, r

′)T c′

ℓℓ′(r
′), (6.46)

0 = [Ek + Ek′ + ω]Ykk′

+
∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
k̄′k(r)η

S
kk′v

ph
cc′(r, r

′)T c′

ℓℓ′(r
′). (6.47)

These equations lead to the QRPA dispersion relation [167]

0 =
∑
c′

∫ ∞

0

dr′

{
δ(r′′ − r′)δc′′c′ −

∑
c

∫ ∞

0

dr R0c′′c(r′′, r, ω)vph
cc′(r, r

′)

}
T c′(r′), (6.48)

where the reduced free response function R0cc′(r, r′, ω) is defined as

R0cc′(r, r′, ω) =
∑
k<k′

{
Qc∗

kk̄′
(r)ηSkk′Qc′

kk̄′
(r′)ηS

′

kk′

ω − Ek − Ek′
−
Qc∗

k̄′k
(r)ηSkk′Qc′

k̄′k
(r′)ηS

′

kk′

ω + Ek + Ek′

}
. (6.49)

Defining

Wcc′(r, r′, ω) = δ(r − r′)δcc′ −
∑
c′′

∫ ∞

0

dr′′R0cc′′(r, r′′, ω)vph
c′′c′(r

′′, r′), (6.50)
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the reduced response function Rcc′(r, r′, ω) is determined via [167]

Rcc′(r, r′, ω) =

∫ ∞

0

dr′′
∑
c′′

(Wcc′′)−1(r, r′′, ω)R0c′′c′(r′′, r′, ω), (6.51)

which leads to the Bethe-Salpeter equation in the coordinate-channel representation:

Rcc′(r, r′, ω) = R0cc′(r, r′, ω)

+
∑
c1c2

∫ ∞

0

dr1

∫ ∞

0

dr2 R0cc1(r, r1, ω)v
ph
c1c2

(r1, r2)Rc2c′(r2, r
′, ω).

(6.52)

The reduced free response function R0cc′(r, r′, ω) being given by Eq. (6.49) has the following
spectral decomposition

R0cc′

2qp(r, r
′, ω) =

∑
k<k′

{
Qc∗

kk̄′
(r)ηSkk′Qc′

kk̄′
(r′)ηS

′

kk′

ω − Ek − Ek′
−
Qc∗

k̄′k
(r)ηSkk′Qc′

k̄′k
(r′)ηS

′

kk′

ω + Ek + Ek′

}
. (6.53)

Here the subscript 2qp indicates that the transitions occur between two quasiparticle states
inside the pairing active space. In the present work, which applies the BCS approach for
the pairing correlations, the pairing active space refers to the bound states with the single-
particle energy ϵk < 0. Under this assumption, the reduced free response function must
include the excitations between the quasiparticle states and continuum states (ϵk > 0),
which are treated as pure particle states. Following Ref. [65], one starts with reduced free
response function (6.49) but without the restriction k < k′, viz.

R0cc′(r, r′, ω) =
∑
kk′

{
Qc∗

kk̄′
(r)ηSkk′Qc′

kk̄′
(r′)ηS

′

kk′

ω − Ek − Ek′
−
Qc∗

k̄′k
(r)ηSkk′Qc′

k̄′k
(r′)ηS

′

kk′

ω + Ek + Ek′

}

=
∑
kk′

{
Qc∗

kk̄′
(r)ηSkk′Qc′

kk̄′
(r′)ηS

′

kk′

ω − Ek − Ek′
− (−1)S+S′Qc∗

k̄k′
(r)ηSkk′Qc′

k̄k′
(r′)ηS

′

kk′

ω + Ek + Ek′

}
.

(6.54)

Let k be the pure particle states, which are denoted by index i and have the BCS occupation
number v2i = 0. We also substitute the quasiparticle index k′ with k. Accordingly, the
multiplicative factor ηSkk′ηS

′

kk′ now reduces to the BCS occupation number v2k > 0. Since there
is no pairing interaction outside the pairing active space, the Bogoliubov energy Ei reduces
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to Ei = ϵi − λ. The reduced free response function (6.54) now becomes

R0cc′(r, r′, ω) =
∑
k

v2k
∑
i

{
Qc†

ki(r)Qc′

ik(r
′)

ω − Ek + λ− ϵi
+ (−1)S+S′ Qc†

ki(r)Qc′

ik(r
′)

−ω − Ek + λ− ϵi

}
(6.55)

or

R0cc′(r, r′, ω) =
∑
k

v2k

{
⟨k|Q̂c†(r)

1

ω − Ek + λ− ĥD
∑
i

|i⟩⟨i|Q̂c′(r′)|k⟩

+ (−1)S+S′⟨k|Q̂c†(r)
1

−ω − Ek + λ− ĥD
∑
i

|i⟩⟨i|Q̂c′(r′)|k⟩

}
, (6.56)

since the single-particle energies ϵi are the eigenvalues of the Dirac Hamiltonian ĥD. Using
the completeness relation

∑
i |i⟩⟨i| = 1−

∑
k′ |k′⟩⟨k′|, one obtains

R0cc′(r, r′, ω) =
∑
k

v2k⟨k|Q̂c†(r)[Ĝ(ω − Ek + λ) + (−1)S+S′
Ĝ(−ω − Ek + λ)]Q̂c′(r′)|k⟩

−
∑
k<k′

Qc∗
kk̄′(r)Q

c′

kk̄′(r
′)

{
v2k

[
(−1)S+S′

ω − (Ek + ϵk′ − λ)
− 1

ω + (Ek + ϵk′ + λ)

]

+ v2k′

[
1

ω − (Ek′ + ϵk − λ)
− (−1)S+S′

ω + (Ek′ + ϵk − λ)

]}
, (6.57)

where the single-particle relativistic Green’s function operators Ĝ(E) reads

Ĝ(E) =
1

E − ĥD
. (6.58)

The first term of Eq. (6.57) is the reduced non-spectral free response function,

R0cc′

cont(r, r
′, ω) =

∑
k

v2k⟨k|Q̂c†(r)
{
Ĝ(ω − Ek + λ) + (−1)S+S′

Ĝ(−ω − Ek + λ)
}
Q̂c′(r′)|k⟩

=
∑
k

v2k

∫
dx1

∫
dx2 Ψ

†
k(x1)Q

(1)†
c (r)

{
G(x1, x2;ω − Ek + λ)

+ (−1)S+S′
G(x1, x2;−ω − Ek + λ)

}
Q(2)

c′ (r
′)Ψk(x2). (6.59)

It includes the transitions from the quasiparticle states (bound states) to the pure particle
states (both bound and continuum states). The second term of Eq. (6.57) is called the
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correction term,

R0cc′

corr(r, r
′, ω) =

∑
k<k′

Qc∗
kk̄′(r)Q

c′

kk̄′(r
′)

{
v2k

[
(−1)S+S′

ω − (Ek + ϵk′ − λ)
− 1

ω + (Ek + ϵk′ + λ)

]

+ v2k′

[
1

ω − (Ek′ + ϵk − λ)
− (−1)S+S′

ω + (Ek′ + ϵk − λ)

]}
(6.60)

This term emerges from the completeness relation and eliminates the double counting that
occurs in the transitions between two bound states.

Following Ref. [168] the relativistic single-particle Green’s function G(x1, x2;E) takes
the form

G(x1, x2;E) =
∑
k

1

W

(
Fκk

(r1;E)Ωjkℓkmk
(n1, σ1)

iGκk
(r1;E)Ωjk ℓ̃kmk

(n1, σ1)

)
χ 1

2 τk
(t1)×

× χ∗
1
2 τk

(t2)
(

Ω∗
jkℓkmk

(n2, σ2)P∗
κk
(r2;E) −iΩ∗

jk ℓ̃kmk
(n2, σ2)Q∗

κk
(r2;E)

)
,

(6.61)

for r1 < r2, and

G(x1, x2;E) =
∑
k

1

W

(
Pκk

(r1;E)Ωjkℓkmk
(n1, σ1)

Qκk
(r1;E)Ωjk ℓ̃kmk

(n1, σ1)

)
χ 1

2 τk
(t1)×

× χ∗
1
2 τk

(t2)
(

Ω∗
jkℓkmk

(n2, σ2)F∗
κk
(r2;E) −iΩ∗

jk ℓ̃kmk
(n2, σ2)G∗κk

(r2;E)
)
,

(6.62)

for r1 > r2. The two radial functions Fκk
(r;E) and Gκk

(r;E) are the large and the small
components of the radial Dirac spinor |uκk

(r)⟩, viz.

|uκk
(r;E)⟩ =

(
Fκk

(r;E)

iGκk
(r;E)

)
, (6.63)

so that the spinor |uκk
(r;E)⟩ is the solution of the radial Dirac equation

(E − ĥDκk
(r))|uκk

(r;E)⟩ = 0, (6.64)

where the radial Dirac Hamiltonian ĥDκk
(r) is

ĥDκk
(r) =

(
V (r) + S(r) −i

(
− d

dr
+ κk

r

)
i
(

d
dr

+ κk

r

)
−2M + V (r)− S(r)

)
. (6.65)
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The solution |uκk
(r;E)⟩ is regular at the origin. The radial Dirac spinor |wκk

(r;E)⟩,

|wκk
(r;E)⟩ =

(
Pκk

(r;E)

iQκk
(r;E)

)
, (6.66)

is the irregular solution of the radial Dirac equation

(E − ĥDκk
(r))|wκk

(r;E)⟩ = 0. (6.67)

At a large distance (r → ∞), it represents an outgoing wave for E > 0 and, for E < 0, a
wave function, which decreases exponentially. Multiplying Eq. (6.64) by ⟨w∗

κk
(r;E)| and Eq.

(6.67) by ⟨u∗κk
(r;E)| from the left, and taking the difference between the two, one obtains

the expression for the Wronskian W , viz.

W =

∣∣∣∣∣ P∗
κk
(r;E) Fκk

(r;E)

Q∗
κk
(r;E) Gκk

(r;E)

∣∣∣∣∣ = P∗
κk
(r;E)Gκk

(r;E)−Q∗
κk
(r;E)Fκk

(r;E) = constant,

(6.68)
where the constant is usually taken to be 1.

The potentials V (r)+S(r) and V (r)−S(r) can be considered as a constant, i.e., V (r)+

S(r) ≈ V + S and V (r) − S(r) ≈ V − S, near the origin. From the radial Dirac equation
(6.64) one then obtains the following two coupled radial differential equations for Fκk

(r;E)

and Gκk
(r;E):

0 = (E − V − S)Fκk
(r) +

(
d

dr
− κk

r

)
Gκk

(r), (6.69)

0 = (E + 2M − V + S)Gκk
(r)−

(
d

dr
+
κk
r

)
Fκk

(r). (6.70)

Solving Eq. (6.70) for Gκk
(r), one obtains the relation between the upper and the lower

components:
Gκk

(r) =
1

E + 2M − V + S

(
d

dr
+
κk
r

)
Fκk

(r). (6.71)

Inserting this result into Eq. (6.69) yields the equation for the upper component:

d2

dr2
Fκk

(r)− κk(κk + 1)

r
Fκk

(r) + q2Fκk
(r) = 0, (6.72)

where q2 = (E − V − S)(E + 2M − V + S) > 0 for E > V + S. The quantum number κk
takes the values κk = ∓(jk + 1

2
) for jk = ℓk ± 1

2
. Since κk(κk + 1) = ℓk(ℓk + 1) for each value
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of κk, Eq. (6.72) can be written as

d2Fℓk(r)

dr2
− ℓk(ℓk + 1)

r
Fℓk(r) + q2Fℓk(r) = 0. (6.73)

By substitution of the variable x := qr and the ansatz Fℓk(r) = rF̃ℓk(x), the radial equation
(6.73) becomes

d2F̃ℓk(x)

dx2
+

2

x

dF̃ℓk(x)

dx
+

[
1− ℓk(ℓk + 1)

x2

]
F̃ℓk(x) = 0, (6.74)

which has four possible solutions: spherical Bessel functions jℓk(x), spherical Neumann
functions nℓk(x), and the spherical Hankel functions h(1)ℓk

(x) ≡ jℓk(x)+ inℓk(x) and h(2)ℓk
(x) ≡

h
(1)∗
ℓk

(x) [169]. These four solutions (fℓk(x) = jℓk(x), nℓk(x), h
(1,2)
ℓk

(x)) satisfy the recurrence
relations: [170]

fℓk+1(x) =

(
− d

dx
+
ℓk
x

)
fℓk(x), (6.75)

fℓk−1(x) =

(
d

dx
+
ℓk + 1

x

)
fℓk(x). (6.76)

Since the nℓk(x) are singular at the origin, the correct solution is F̃ℓk(x) = jℓk(x) and, hence,
Fℓk(r) = rjℓk(qr). Inserting this result into Eq. (6.71) and making use of the recurrence
relation (6.75), one obtains for the lower component

Gℓ̃k
(r) = −E − V − S

q
rjℓ̃k(qr) (6.77)

for κk = −(ℓk + 1) = −ℓ̃k. For the case of κk = ℓk = ℓ̃k + 1, one obtains

Gℓ̃k
(r) = +

E − V − S
q

rjℓ̃k(qr). (6.78)

Therefore, the analytical solution of Eq. (6.64) for E > V + S is

|uκk
(r;E)⟩ = r

(
jℓk(qr)

κk

|κk|
E−V−S

q
jℓ̃k(qr)

)
. (6.79)

In the limit of r → 0 the spinor |uκk
(r;E)⟩ reduces to [59]

|uκk
(r → 0;E)⟩ = r

 (qr)ℓk

(2ℓk+1)!!

κk

|κk|
E−V−S

q
(qr)ℓ̃k

(2ℓ̃k+1)!!

 . (6.80)
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To obtain the irregular solution of Eq. (6.67), one needs to consider two energy domains,
i.e., E < 0 and E > 0. For E > 0 two radial functions Pκk

(r;E) and Qκk
(r;E) satisfy the

two coupled radial differential equations:

0 = (E − V − S)Pκk
(r) +

(
d

dr
− κk

r

)
Qκk

(r), (6.81)

0 = (E + 2M − V + S)Qκk
(r)−

(
d

dr
+
κk
r

)
Pκk

(r), (6.82)

which are similar to Eqs. (6.69) and (6.70). The requirement that the solution of Eq. (6.67)
for E > 0 being an outgoing wave at large distance leads to

|wκk
(r;E > 0)⟩ = qr

(
h
(1)
ℓk
(qr)

|κk|
κk

iq
E+2M

h
(1)

ℓ̃k
(qr)

)
, (6.83)

where, in the limit of r →∞ it reduces to [59]

|wκk
(r →∞;E > 0)⟩ =

(
1

|κk|
κk

iq
E+M

)
eiqr. (6.84)

Here one has also considered that the potentials V (r)+S(r) and V (r)−S(r) approach zero
at a large distance to obtain the numerator of spinor |wκk

(r;E > 0)⟩. For E < 0 Eqs. (6.81)
and (6.82) yields

d2Pκk
(r)

dr2
− κk(κk + 1)

r2
Pκk

(r)−K2Pκk
(r) = 0, (6.85)

together with
Qκk

(r) =
1

E + 2M

(
d

dr
+
κk
r

)
Pκk

(r), (6.86)

where K = (V + S − E)(E − V + S + 2M) > 0. The substitution x = Kr and the ansatz
Pκk

(r) = xP̃κk
(x) bring Eq. (6.85) to the form

d2P̃ℓk(x)

dx2
+

2

x

dP̃ℓk(x)

dx
−
[
1 +

ℓk(ℓk + 1)

x2

]
P̃ℓk(x), (6.87)

where one has used the relation κk(κk+1) = ℓk(ℓk+1). The solution of this equation, which
has the correct limit at a large distance, is given by

P̃ℓk(x) =

√
2

πx
Kℓk+1/2(x) ≡ kℓk(x), (6.88)

and, therefore, Pℓk(r) = Kr · kℓk(Kr). Here kℓk(x) is the modified spherical Bessel function
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and the functionKν(x) is known as the modified Bessel function [169]. The modified spherical
Bessel function kℓk(x) satisfy the following recurrence relations: [169]

kℓk+1(x) =

(
− d

dx
+
ℓk
x

)
kℓk(x), (6.89)

kℓk−1(x) = −
(
d

dx
+
ℓk + 1

x

)
kℓk(x). (6.90)

For each value of κk Eq. (6.86) gives

Qℓ̃k
(r) = − K2r

E + 2M
kℓ̃k(x). (6.91)

Therefore, one arrives at the spinor |wκk
(r;E < 0)⟩ of the form

|wκk
(r;E < 0)⟩ = Kr

(
kℓk(Kr)

− K
E+2M

kℓ̃k(Kr)

)
. (6.92)

Finally, the spinor |wκk
(r;E < 0)⟩ reduces to [59]

|wκk
(r →∞;E < 0)⟩ =

(
1

− K
E+2M

)
e−Kr (6.93)

at a large distance (r →∞). The complete reduced free response function hence reads

R0cc′(r, r′, ω) = R0cc′

cont(r, r
′, ω) +R0cc′

2qp(r, r
′, ω)−R0cc′

corr(r, r
′, ω). (6.94)

The detailed calculation of the reduced matrix element of the free response R0cc′(r, r′, ω) is
given in Appendix G.

6.3 Pairing Interactions and Particle-particle Channels
As discussed in Section 5.2, the particle-particle interaction V̂ pp can be approximated by

the following Hamiltonian:
V̂ pp = −G

∑
k1,k2>0

P̂ †
k1
P̂k2 , (6.95)

where the pair-creation operator P̂ †
k1

and the pair-annihilation operator P̂k2 are defined as

P̂ †
k1

= â†k1 â
†
k̄1

(6.96)
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and
P̂k2 = âk̄2 âk2 . (6.97)

With the aid of the inverse Bogoliubov transformations (5.60)-(5.63), the matrix element of
V̂ pp is given by

V pp
kk′ℓℓ′ = −G

∑
k1,k2>0

⟨k|P̂ †
k1
|k′⟩⟨ℓ|P̂k2 |ℓ′⟩

= −G
∑

k1,k2>0

⟨BCS|α̂kP̂
†
k1
α̂†
k′|BCS⟩⟨BCS|α̂ℓP̂k2α̂

†
ℓ′|BCS⟩

= χδkk′δℓℓ′ , (6.98)

where the strength parameter χ is related to the gap parameter ∆ and the pairing strength
G via χ = −∆2/G. Retaining only the particle-particle channel, the matrix elements of
QRPA matrices A and B now read

Akk′ℓℓ′ = (Ek + Ek′)δkℓδk′ℓ′ + χ
∑
d=±

Sd
kk′ξ

d
kk′Sd

ℓℓ′ξ
d
ℓℓ′ (6.99)

and

Bkk′ℓℓ′ = χ
∑
d=±

Sd
kk′ξ

d
kk′Sd

ℓℓ′ξ
d
ℓℓ′ , (6.100)

where
S±
kk′ =

δkk′√
2

and ξ±kk′ = ukuk′ ∓ vkvk′ . (6.101)

The QRPA eigenvalue equations now become

[ω − Ek − Ek′ ]Xkk′ = χ
∑
d=±

Sd
kk′ξ

d
kk′

∑
ℓ<ℓ′

Sd
ℓℓ′ξ

d
ℓℓ′ [Xℓℓ′ + Yℓℓ′ ], (6.102)

−[ω + Ek + Ek′ ]Ykk′ = χ
∑
d=±

Sd
kk′ξ

d
kk′

∑
ℓ<ℓ′

Sd
ℓℓ′ξ

d
ℓℓ′ [Xℓℓ′ + Yℓℓ′ ]. (6.103)

Defining
T d =

∑
ℓ<ℓ′

Sd
ℓℓ′ξ

d
ℓℓ′ [Xℓℓ′ + Yℓℓ′ ], (6.104)

one arrives at the dispersion relation

0 =
∑
d=±

{
δdd′ −Rdd′

0 (ω)χ
}
T d, (6.105)
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where the free response function Rdd′
0 (ω) reads

Rdd′

0 (ω) =
∑
k<k′

Sd
kk′Sd′

kk′ξ
d
kk′ξ

d′

kk′

[
1

ω − Ek − Ek′
− 1

ω + Ek + Ek′

]
. (6.106)

The particle-particle response function Rdd′(ω) satisfies the Bethe-Salpeter equation

Rdd′(ω) = Rdd′

0 (ω) +
∑
d′′=±

Rdd′′

0 (ω)χRd′′d′(ω). (6.107)

Using the Wigner-Eckart theorem (see Appendix F), the particle-particle free response
function reads

Rdd′

0 (ω) =
∑
(k≤k′)

1

1 + δ(kk′)
Sd
(kk′)Sd′

(kk′)ξ
d
(kk′)ξ

d′

(kk′)

[
1

ω − E(k) − E(k′)
− 1

ω + E(k) + E(k′)

]
,

(6.108)
where

Sd
(kk′) =

√
jk +

1

2
δ(kk′). (6.109)

Here the bracketed indices (kk′) := {jk, ℓk, jk′ , ℓk′} of a one-body operator refer to its
corresponding reduced matrix element.

6.4 Strength Function
In the canonical basis, which coincides with the Dirac-BCS basis, the strength function

S(ω) can be obtained from the particle-hole response function R(ω) via the well-known
relation

S(ω) := − 1

π
lim

∆→+0
Im
∑
kk′ℓℓ′

F ∗
kk′Rkk′ℓℓ′(ω + i∆)Fℓℓ′ , (6.110)

where Fkk′ are the matrix elements of the one-body external field. The matrix elements Fkk′

can be expressed in terms of the matrix elements Qc
kk′(r) as

Fkk′ =
∑
c

eccF

∫ ∞

0

dr f cF (r)Qc
kk′(r), (6.111)

where cF is the channel index of the external field and eccF is the corresponding effective
charge. An external field for a specific mode of collective excitation is characterized by the
channel index cF , which comprises a set of quantum numbers: total angular momentum
J , parity π, total orbital angular momentum L, spin S, and isospin T . The external field
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Table 6.1: The list of channels cF and their corresponding effective charges eccF .

Channel cF J π L T f cF (r) Channel c eccF
Isoscalar Monopole (ISM) 0 + 0 0 r2 2 1

Isoscalar Quadrupole (ISQ) 2 + 2 0 r2 2 1

Isovector Dipole (IVD) 1 − 1 1 r
2 N−Z

2A

6 1
2

with channel cF will act only on a certain channel c of the particle-hole interaction. The
list of S = 0 channels cF := (J, π, L, T ) and their corresponding effective charges eccF are
tabulated in Table 6.1.

Let us now make a connection between the particle-hole response function Rkk′ℓℓ′(ω)

and the particle-hole reduced response function Rcc′(r, r′, ω) in the coordinate-channel
representation. The particle-hole response function Rkk′ℓℓ′(ω) satisfies the Bethe-Salpeter
equation in the Dirac-BCS basis:

Rkk′ℓℓ′(ω) = R0
kk′ℓℓ′(ω) +

∑
k1k2ℓ1ℓ2

R0
kk′k1ℓ1(ω)V

ph
k1ℓ2ℓ1k2

Rk2ℓ2ℓℓ′(ω). (6.112)

Inserting Eq. (6.35) into the Bethe-Salpeter equation (6.112), we obtain

Rkk′ℓℓ′(ω) = R0
kk′ℓℓ′(ω)

+
∑
c1c2

∫ ∞

0

dr1

∫ ∞

0

dr2
∑

k1k2ℓ1ℓ2

R0
kk′k1ℓ1(ω)Q

c1
k1ℓ1

(r1)v
ph
c1c2

(r1, r2)Qc2∗
k2ℓ2

(r2)Rk2ℓ2ℓℓ′(ω).

(6.113)

Multiplying the last equation with the matrix element Qc∗
kk′(r) from the left and Qc′

ℓℓ′(r
′) from

the right, and performing the summation over the indices (kk′ℓℓ′) lead to∑
kk′ℓℓ′

Qc∗
kk′(r)Rkk′ℓℓ′(ω)Qc′

ℓℓ′(r
′)

=
∑
kk′ℓℓ′

Qc∗
kk′(r)R

0
kk′ℓℓ′(ω)Qc′

ℓℓ′(r
′) +

∑
c1c2

∫ ∞

0

dr1

∫ ∞

0

dr2
∑

kk′k1ℓ1

Qc∗
kk′(r)R

0
kk′k1ℓ1(ω)Q

c1
k1ℓ1

(r1)

× vph
c1c2

(r1, r2)
∑

k2ℓ2ℓℓ′

Qc2∗
k2ℓ2

(r2)Rk2ℓ2ℓℓ′(ω)Qc′

ℓℓ′(r
′).

(6.114)

Comparing the last equation and Eq. (6.52) one establishes the relationship between
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the particle-hole response function Rkk′ℓℓ′(ω) in the Dirac-BCS basis and the particle-hole
reduced response function Rcc′(r, r′, ω) in the coordinate-channel representation, viz.

Rcc′(r, r′, ω) =
∑
kk′ℓℓ′

Qc∗
kk′(r)Rkk′ℓℓ′(ω)Qc′

ℓℓ′(r
′). (6.115)

Similarly, one can also define the particle-hole reduced free response function R0cc′(r, r′, ω)

as
R0cc′(r, r′, ω) =

∑
kk′ℓℓ′

Qc∗
kk′(r)R

0
kk′ℓℓ′(ω)Qc′

ℓℓ′(r
′). (6.116)

Using Eqs. (6.111) and (6.115), the strength function ScF (ω) for a specific excitation mode
can be written as

ScF (ω) = − 1

π
lim

∆→+0
Im
∑
cc′

eccF ec′cF

∫ ∞

0

dr

∫ ∞

0

dr′f cF (r)

×
∑
kk′ℓℓ′

Qc∗
kk′(r)Rkk′ℓℓ′(ω + i∆)Qc′

ℓℓ′(r
′)f cF (r′)

= − 1

π
lim

∆→+0
Im
∑
cc′

eccF ec′cF

∫ ∞

0

dr

∫ ∞

0

dr′f cF (r)Rcc′(r, r′, ω + i∆)f cF (r′).

(6.117)

Instead of solving Eq. (6.52), it is beneficial to solve the Bethe-Salpeter equation for the
particle-hole response in terms of the density matrix variation δρccF (r, ω), which, in the
coordinate-channel representation, has the form

δρccF (r, ω) :=

∫ ∞

0

dr′
∑
c′

ec′cFRcc′(r, r′, ω)f cF (r′). (6.118)

The integral equation for this density matrix variation, as it follows from Eq. (6.52), becomes

δρccF (r, ω) = δρ0ccF (r, ω) +
∑
c1c2

∫ ∞

0

dr1

∫ ∞

0

dr2 R0cc1(r, r1, ω)v
ph
c1c2

(r1, r2)δρ
c2
cF
(r2, ω). (6.119)

Accordingly, the strength function ScF (ω) is determined via the relation

ScF (ω) = − 1

π
lim

∆→+0
Im
∑
c

eccF

∫ ∞

0

dr f cF (r) δρccF (r, ω + i∆). (6.120)

Thereby, the problem of solving the relativistic QRPA with the point-coupling interaction is
formulated completely in the coordinate-channel representation. This allows for calculations
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of nuclear response that take into account coupling to the single-particle continuum exactly.
This is very important for calculating the nuclear multipole responses in light and loosely-
bound nuclear systems. The numerical realization of the relativistic continuum QRPA
has been done in Refs. [60, 144], where the results for the isoscalar giant monopole
resonance and isovector giant dipole resonance for Sn isotopes were presented. The numerical
calculations demonstrated reasonable agreement with the experimental data [171, 172, 173].
The continuum QRPA calculations also assessed the impact of the continuum effects on the
low-lying pygmy dipole resonance (PDR) strengths in Tin isotopes. Now the task is to add
the particle-vibration coupling to the relativistic continuum QRPA, as discussed in the first
part of this dissertation, first at zero temperature, but eventually at T > 0. This will allow
one to describe the spreading width of the high-frequency giant resonances and to resolve
the fine structure of the PDR on equal footing with the continuum effects. The essential
steps to perform this task are outlined in the next Chapter.
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Chapter 7

Further Developments: The Inclusion
of PVC Effects in the CRQRPA

The inclusion of the continuum effects in the relativistic QRPA has provided a better
description of the strength distribution for spherical nuclei in both low-energy and high-
energy domains. The continuum relativistic QRPA (CRQRPA) is designed to reproduce
the escape width of the giant resonances (GRs) and to describe better the low-lying pygmy
dipole resonance (PDR) in heavy spherical nuclei [59, 144]. However, one cannot describe
the spreading width of GRs without taking into account the coupling between the correlated
one-particle-one-hole (1p1h) excitations via the particle-vibration coupling mechanism. Here
we outline the necessary steps to incorporate the PVC effects into the CRQRPA as follows:

1. Extract the phonon transition densities from the RCQRPA strength functions.

2. Verify the QRPA normalization condition numerically.

3. Calculate the particle-phonon coupling amplitude.

4. Construct the full response function in the coordinate space representation.

This program has been implemented in Ref. [70], however, relatively simple Woods-Saxon
mean field and phenomenological Landau-Migdal effective interaction were used in the
numerical implementation of this approach. The current developments are designed for
implementations based on a more advanced relativistic self-consistent density-dependent
forces. Because of the time constraints, only steps 1 and 2 were completed, and the remaining
steps are to be done in the near future. We dedicate the next sections of this Chapter to
explaining and introducing the essential formulas for steps 1 and 2.
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7.1 Extraction of the Phonon Transition Densities
In what follows, we demonstrate how to extract the phonon transition densities of a

specific multipolarity cF := Jπ. We start with Eq. (6.119) instead of (6.52). From the Eq.
(6.119), one obtains the density matrix variation δρccF (r, ω). The density matrix variation
δρccF (r, ω) relates to the phonon transition density ρνccF (r) via [77]

ρνccF (r) = lim
∆→+0

√
∆

πScF (Ων)
ImδρccF (r,Ω

ν), (7.1)

where Ων is the energy of the excited state ν measured from the ground state energy E0. We
have investigated the accuracy of this formula at the pole ω = Ων by performing numerical
calculations. We first note that the transition probability can be calculated in the coordinate-
channel representation as

BcF (ω) =

∣∣∣∣∣∑
c

eccF

∫ ∞

0

dr ρccF (r, ω)f
cF (r)

∣∣∣∣∣
2

(7.2)

for arbitrary ω. For arbitrary ω, we have defined

ρccF (r, ω) = lim
∆→+0

√
∆

πScF (ω)
ImδρccF (r, ω). (7.3)

Accordingly, the strength function ScF (ω) can be expressed in terms of the transition
probability BcF (ω) as

ScF (ω) = lim
∆→+0

BcF (ω)

π∆
. (7.4)

We have calculated the values of ScF (ω) numerically for a specific range of ω and compared

Table 7.1: Comparison between the isovector dipole (IVD) strengths S(IVD)(ω) and S(IVD)
ref (ω)

at the poles ω = Ων for 16O nucleus computed with the smearing parameter ∆ = 200 keV.

Ω [MeV] S
(IVD)
ref (Ων) [e2fm2/MeV] S(IVD)(Ων) [e2fm2/MeV], ∆ = 200 keV

16.70 6.5827898218804730 6.5827898218804712
18.50 0.68623455819759616 0.68623455819759593
19.90 0.20005132846979362 0.20005132846979365
23.10 0.17192296026764683 0.17192296026764683
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the results to those of available code (ScF
ref(ω)) Ref. [60, 144]. We found that they are indeed

the same at the pole ω = Ων (see Table 7.1).

7.2 Numerical Verification of the QRPA Normalization
Condition

We start with the QRPA equations written in the form

[Ων − Ek − Ek′ ]X
ν
kk′ =

∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
kk̄′(r)η

S
kk′v

ph
cc′(r, r

′)

×
[
Qc′∗

ℓℓ̄′ (r
′)ηS

′

ℓℓ′X
ν
ℓℓ′ +Qc′∗

ℓ̄′ℓ (r
′)ηS

′

ℓℓ′Y
ν
ℓℓ′

]
(7.5)

and

[Ων + Ek + Ek′ ]Y
ν
kk′ = −

∑
ℓ<ℓ′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
k̄′k(r)η

S
kk′v

ph
cc′(r, r

′)

×
[
Qc′∗

ℓ̄′ℓ (r
′)ηS

′

ℓℓ′Y
ν
ℓℓ′ +Qc′∗

ℓℓ̄′ (r
′)ηS

′

ℓℓ′X
ν
ℓℓ′

]
(7.6)

in the canonical basis. These are the equations (6.43) and (6.44) from the previous chapter
with ω = Ων . Let us now define the radial components of the phonon transition densities
ρcν(r) as

ρcν(r) :=
∑
ℓ<ℓ′

[
Qc∗

ℓℓ̄′(r)η
S
ℓℓ′X

ν
ℓℓ′ +Qc∗

ℓ̄′ℓ(r)η
S
ℓℓ′Y

ν
ℓℓ′

]
. (7.7)

Using this definition, we can write the QRPA equations (7.5) and (7.6) as

Xν
kk′ =

1

Ων − Ek − Ek′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
kk̄′(r)η

S
kk′v

ph
cc′(r, r

′)ρc
′ν(r′), (7.8)

Y ν
kk′ = − 1

Ων + Ek + Ek′

∑
cc′

∫ ∞

0

dr

∫ ∞

0

dr′ Qc
k̄′k(r)η

S
kk′v

ph
cc′(r, r

′)ρc
′ν(r′). (7.9)

The QRPA normalization condition reads

1

4

∑
k<k′

[
|Xν

kk′ |2 − |Y ν
kk′|2

]
= 1, (7.10)

where the factor 1
4

originates from Eq. (6.6). Inserting Eqs. (7.8) and (7.9) into Eq. (7.10)
and making use of Eqs. (G.22) and (G.23) (c.f. Appendix G) yields the reduced QRPA
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normalization
1

4

∑
(k≤k′)

1

1 + δ(kk′)
[|Xν

(kk′)|2 − |Y ν
(kk′)|2] = 1, (7.11)

where

|Xν
(kk′)|2 =

1

[Ων − E(k) − E(k′)]2

∑
c1c2

∑
c′1c

′
2

∫ ∞

0

dr1

∫ ∞

0

dr′1

∫ ∞

0

dr2

∫ ∞

0

dr′2

×
δJ1J ′

1
δM1M ′

1

2J1 + 1

{
Qc1∗

(kk′)(r1)η
S1

(kk′)v
ph
c1c2

(r1, r2)ρ
c2ν(r2)

}
×

{
Qc′1∗

(kk′)(r
′
1)η

S′
1

(kk′)v
ph
c′1c

′
2
(r′1, r

′
2)ρ

c′2ν(r′2)
}
, (7.12)

|Y ν
(kk′)|2 =

1

[Ων + E(k) + E(k′)]2

∑
c1c2

∑
c′1c

′
2

∫ ∞

0

dr1

∫ ∞

0

dr′1

∫ ∞

0

dr2

∫ ∞

0

dr′2

× (−1)S1+S′
1
δJ1J ′

1
δM1M ′

1

2J1 + 1

{
Qc1∗

(kk′)(r1)η
S1

(kk′)v
ph
c1c2

(r1, r2)ρ
c2ν(r2)

}
×

{
Qc′1∗

(kk′)(r
′
1)η

S′
1

(kk′)v
ph
c′1c

′
2
(r′1, r

′
2)ρ

c′2ν(r′2)
}
. (7.13)

Since the phonon transition densities ρcν(r) can be calculated numerically using Eq. (7.1),
the numerical calculation of the reduced QRPA normalization is feasible.
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Chapter 8

Conclusions and Outlook

The first part of this Ph.D. work focuses on a finite-temperature extension of the
nuclear response theory beyond the relativistic RPA. Starting from the Lagrangian density
of quantum hadrodynamics (QHD), the static residual interaction, which consists of the
finite-range meson exchange between nucleons, is formulated. To calculate the dynamical,
or induced, interaction, which contains coupling between nucleons and phonons, we
generalized the time-blocking method developed previously for the zero-temperature case
to the imaginary-time (Matsubara) formalism. In this generalization, we have shown that
the temperature-dependent projection operator containing Fermi-Dirac occupation numbers
gives rise to the soft blocking in the imaginary-time domain, replacing the sharp time blocking
that occurs at zero temperature. The proposed soft-blocking technique, when applied to the
Matsubara two-fermion propagators, results in the imaginary-time ordered diagrams. As
a consequence, it reduces the Bethe-Salpeter equation for the nuclear response to a single
frequency variable equation and well-defined analytical properties of the resulting response
functions, such as locality and unitarity.

The method named finite-temperature relativistic time-blocking approximation (FT-
RTBA) was implemented on the base of QHD using the NL3 parametrization. We
investigated the temperature dependence of the dipole response in medium-light 48Ca,
68Ni, and medium-heavy 100,120,132Sn nuclei. The obtained results are consistent with the
existing experimental data on the GDR’s width and with the result of Landau’s theory
for the temperature dependence of the GDR’s width. The calculations extended to high
temperatures explain the critical phenomenon of the disappearance of the GDR and suggest
that the collective motion may reappear at low frequencies in the high-temperature regime.
In addition to the dipole response, we also analyzed other multipoles, in particular, the
isoscalar monopole and quadrupole responses in the 68Ni nucleus. We found that the
disappearance of the high-frequency collective motion at very high temperature and arising
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prominent low-energy strength of thermal origin is a common phenomenon for all multipole
responses. An accurate description of the low-lying strength, especially at the r-process
temperature conditions, requires further improvement of the current version of FT-RTBA,
such as the inclusion of the continuum effects and ground-state correlations associated with
the PVC. The former is partly addressed in the second part of this dissertation, and the
latter will be considered in the future work.

The first part of this Ph.D. work has resulted in four publications in peer-review journals:
Physical Review Letters (PRL) [174], Physical Review C (PRC) [98], European Physical
Journal A [157], and Physics Letters B [175]. The PRL paper briefly highlighted the essential
formulas of the FT-RTBA and discussed the temperature dependence of dipole spectra
in the even-even nuclei 48Ca and 100, 120, 132Sn. A comprehensive analytical and numerical
study within the FT-RTBA can be found in the PRC paper. In addition to the isovector
dipole resonance in 48Ca and 100, 120, 132Sn nuclei, the PRC paper discussed the temperature
dependence of the isovector dipole response in 68Ni nucleus. The temperature dependence of
monopole and quadrupole response in 48Ca nucleus was discussed in our publication in the
European Physical Journal A. The PLB paper addressed the proton-neutron nuclear response
in the framework of FT-RTBA. It discussed the temperature dependence of the Gamow-
Teller and spin dipole resonances in the closed-shell nuclei 48Ca, 78Ni, and 132Sn, as well as
their broader impacts for the associated beta decay rates and lifetimes of 78Ni and 132Sn in
hot astrophysical environments. Our results have also been disseminated in terms of oral
presentations in two international conferences held by the American Physical Society (APS)
Division of Nuclear Physics (DNP): 2017 Fall Meeting and 2019 April Meeting. In addition
to the oral presentations, we presented our results in the form of a poster presentation in
the Nuclear Structure 2018 conference.

In the second part of this Ph.D. work, we focus on the improvement of the continuum
relativistic quasiparticle random phase approximation (CRQRPA) to incorporate the
particle-vibration coupling effects. In an attempt to fully understand the CRQRPA, we
work out in detail an alternative derivation of the CRQRPA equations starting from the non-
relativistic QRPA equations in the canonical basis, in order to reconstruct and clarify the
details of Ref. [60]. We demonstrated via numerical calculations that the phonon transition
densities can be extracted directly from the phonon strength functions with high accuracy.
We formulated a feasible formula to calculate the QRPA normalization condition numerically.
The future work will address calculations of the particle-phonon coupling amplitude, and, in
turn, the full response function in the coordinate space representation.
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Appendix A

Summation Over the Matsubara
Frequencies

In this Appendix, we evaluate the first summation over ℓ′ of Eq. (3.47), i.e.,

T
∑
ℓ′

1

iεℓ′ − εk3 + µ

1

iεℓ − iεℓ′ + ωm

. (A.1)

The fermion occupation number

n(ξ′, T ) =
1

e(ξ′−µ)/T + 1
(A.2)

has poles along the line of Re[ξ′] = µ given by

ξℓ′ = iεℓ′ + µ, (A.3)

where εℓ′ = (2ℓ′ + 1)πT and ℓ′ = 0,±1,±2, .... We expand the exponential term in the
denominator of (A.2) in the vicinity of ξℓ′ and obtain

n(ξ′, T ) = − T

ξ′ − ξℓ′
. (A.4)

Let us consider the contour integral∮
C

dξ′

2πi

1

ξ′ − εk3
1

iεℓ − ξ′ + ωm + µ
n(ξ′, T ), (A.5)

where the contour C is defined according to Figure A.1. Inserting Eq. (A.4) into Eq. (A.5)
and using the residue theorem, it can be shown that Eq. (A.1) can be converted into the
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contour integral (A.5), viz.,

T
∑
ℓ′

1

iεℓ′ − εk3 + µ

1

iεℓ − iεℓ′ + ωm

= −
∮
C

dξ′

2πi

1

ξ′ − εk3
1

iεℓ − ξ′ + ωm + µ
n(ξ′, T ). (A.6)

C

µ

C1

C2

εk3

iεℓ + ωm + µ

Γ

Re[ξ′]

Im[ξ′]

C ′

Figure A.1: Integration contours C and C ′ in the complex ξ′-plane.

Contour C now deforms into contour C ′, which consists of contours C1, C2, and Γ. The
contours C1 and C2 enclose the poles εk3 and iεℓ + ωm + µ, respectively (see Figure A.1).
Accordingly, Eq. (A.6) then consists of three integrals:

T
∑
ℓ′

1

iεℓ′ − εk3 + µ

1

iεℓ − iεℓ′ + ωm

=

∮
C′

dξ′

2πi

1

ξ′ − εk3
n(ξ′, T )

ξ′ − iεℓ − ωm − µ

=

∫
Γ

dξ′

2πi

1

ξ′ − εk3
n(ξ′, T )

ξ′ − iεℓ − ωm − µ

+

∫
C1

dξ′

2πi

1

ξ′ − εk3
n(ξ′, T )

ξ′ − iεℓ − ωm − µ

+

∫
C2

dξ′

2πi

1

ξ′ − εk3
n(ξ′, T )

ξ′ − iεℓ − ωm − µ
. (A.7)
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The first integration along the contour Γ approaches zero as Γ goes to infinity. Using the
residue theorem for the second and the third integrals, we thus obtain

T
∑
ℓ′

1

iεℓ′ − εk3 + µ

1

iεℓ − iεℓ′ + ωm

= −

[
n(εk3 , T )

εk3 − iεℓ − ωm − µ
+
n(iεℓ + ωm + µ, T )

iεℓ + ωm + µ− εk3

]
. (A.8)

The numerator n(iεℓ + ωm + µ, T ) can be identified as

n(iεℓ + ωm + µ, T ) =
1

1 + e(iεℓ+ωm+µ−µ)/T
=

1

1− eωm/T
= −N(ωm, T ), (A.9)

where N(ωm, T ) is phonon occupation number with energy ωm. Therefore, (A.8) becomes

T
∑
ℓ′

1

iεℓ′ − εk3 + µ

1

iεℓ − iεℓ′ + ωm

=
n(εk3 , T ) +N(ωm, T )

iεℓ − εk3 + µ+ ωm

. (A.10)
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Appendix B

Imaginary-time Projection Operator
for Particle-hole Channel

In the τ representation, the D̃-operator for particle-hole channel, D̃ph(12, 34), is given by

D̃ph(12, 34) = −δk1k3δk2k4(1− nk1)nk2 [nk2θ(τ41)θ(τ31)θ(τ12)

+ (1− nk1)θ(τ42)θ(τ32)θ(τ21)]e
−[(εk1−µ)τ31+(εk2−µ)τ24]. (B.1)

Introducing the τ -difference variables τ31 = τ3 − τ1, τ21 = τ2 − τ1, and τ34 = τ3 − τ4, the
Fourier transformation of D̃ph(12, 34) ≡ D̃ph

k1k2,k3k4
(τ31, τ21, τ34) reads:

D̃ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =

∫ 1/T

−1/T

∫ 1/T

−1/T

∫ 1/T

−1/T

dτ31dτ21dτ34D̃
ph
k1k2,k3k4

(τ31, τ21, τ34)

× ei(ωnτ31+εℓτ21+εℓ′τ34)

= I1 + I2, (B.2)

where

I1 = −δk1k3δk2k4 [1− nk1 ]n
2
k2

∫
dτ31dτ21dτ34e

(iωn−εk1+εk2 )τ31e(iεℓ−εk2+µ)τ21

× e(iεℓ′−εk2+µ)τ34θ(τ31)θ(τ31 − τ34)θ(τ12), (B.3)

I2 = −δk1k3δk2k4 [1− nk1 ]
2nk2

∫
dτ31dτ21dτ34e

(iωn−εk1+εk2 )τ31e(iεℓ−εk2+µ)τ21

× e(iεℓ′−εk2+µ)τ34θ(τ21)θ(τ31 − τ21 − τ34)θ(τ31 − τ21). (B.4)

We start by evaluating the term I1. Normally, τ31 has range −1/T ≤ τ31 ≤ 1/T . Because
there is a theta function θ(τ31), the limit of integration with respect to τ31 is 0 ≤ τ31 ≤ 1/T .
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Similarly, the theta function θ(τ12) = θ(−τ21) constraints the limit of integration with respect
to τ21 to be −1/T ≤ τ21 ≤ 0. To determine the limit of integration with respect to τ34, we
consider the theta function θ(τ31− τ34). The theta function θ(τ31− τ34) constraints the limit
of integration with respect to τ34 to be −1/T ≤ τ34 − τ31 ≤ 0 or −1/T + τ31 ≤ τ34 ≤ τ31.
The theta functions θ(τ31), θ(τ12), and θ(τ31 − τ34) are expressed as

θ(τ31) = − lim
η→0+

∫ ∞

−∞

dα

2πi

e−iατ31

α + iη
, (B.5)

θ(τ12) = θ(−τ21) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

eiβτ21

β + iξ
, (B.6)

θ(τ31 − τ34) = − lim
δ→0+

∫ ∞

−∞

dγ

2πi

e−iγ(τ31−τ34)

γ + iδ
. (B.7)

Using these expressions and the consideration pertaining to the integral limits, I1 becomes

I1 = δk1k3δk2k4 [1− nk1 ]n
2
k2

lim
η→0+

lim
ξ→0+

lim
δ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

∫ ∞

−∞

dβ

2πi

1

β + iξ

×
∫ ∞

−∞

dγ

2πi

1

γ + iδ

∫ 0

−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21

∫ 1/T

0

dτ31e
(iωn−iα−iγ−εk1+εk2 )τ31

×
∫ τ31

−1/T+τ31

dτ34e
(iεℓ′+iγ−εk2+µ)τ34 . (B.8)

The result of the integration with respect to τ34 is∫ τ31

−1/T+τ31

dτ34e
(iεℓ′+iγ−εk2+µ)τ34 =

1

iεℓ′ + iγ − εk2 + µ
e(iεℓ′+iγ−εk2+µ)τ31

[
1 + e−(iγ−εk2+µ)/T

]
.

(B.9)
The next integration with respect to τ31 gives∫ 1/T

0

dτ31e
(iωn−iα−iγ−εk1+εk2 )τ31

∫ τ31

−1/T+τ31

dτ34e
(iεℓ′+iγ−εk2+µ)τ34

= − 1

iεℓ′ + iγ − εk2 + µ

1

iωn + iεℓ′ − iα− εk1 + µ

[
1 + e−(iγ−εk2+µ)/T

]
×

[
e−(iα+εk1−µ)/T + 1

]
. (B.10)

The last integration with respect to τ21 gives∫ 0

−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21 =

1

iεℓ + iβ − εk2 + µ

[
1 + e−(iβ−εk2+µ)/T

]
. (B.11)
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Inserting these results into the term I1, we obtain

I1 = −δk1k3δk2k4 [1− nk1 ]n
2
k2

lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ′ − iα− εk1 + µ

×
[
e−(iα+εk1−µ)/T + 1

]
lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ + iβ − εk2 + µ

[
1 + e−(iβ−εk2+µ)/T

]
× lim

δ→0+

∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

iεℓ′ + iγ − εk2 + µ

[
1 + e−(iγ−εk2+µ)/T

]
= iδk1k3δk2k4 [1− nk1 ]n

2
k2

lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

α− ωn − εℓ′ − i(εk1 − µ)

×
[
e−(iα+εk1−µ)/T + 1

]
lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

β + εℓ + i(εk2 − µ)
[
1 + e−(iβ−εk2+µ)/T

]
× lim

δ→0+

∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

γ + εℓ′ + i(εk2 − µ)
[
1 + e−(iγ−εk2+µ)/T

]
. (B.12)

The integration with respect to β is given by

lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

β + εℓ + i(εk2 − µ)
[
1 + e−(iβ−εk2+µ)/T

]
= − i

iεℓ − εk2 + µ

1

nk2

.

(B.13)

The integration with respect to γ is given by

lim
δ→0+

∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

γ + εℓ′ + i(εk2 − µ)
[
1 + e−(iγ−εk2+µ)/T

]
= − i

iεℓ′ − εk2 + µ

1

nk2

.

(B.14)

The integration with respect to α is given by

lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

α− ωn − εℓ′ − i(εk1 − µ)
[
e−(iα+εk1−µ)/T + 1

]
=

i

i(εℓ′ + ωn)− εk1 + µ

1

1− nk1

. (B.15)

Inserting Eqs. (B.13), (B.14), and (B.15) into Eq. (B.12), we obtain

I1 = δk1k3δk2k4
1

(iεℓ − εk2 + µ)[i(εℓ′ + ωn)− εk1 + µ](iεℓ′ − εk2 + µ)
. (B.16)

After evaluating the term I1, we continue to evaluate the term I2. The theta function
θ(τ21) constraints the integration limit of τ21 to be 0 ≤ τ21 ≤ 1/T . The theta function
θ(τ31 − τ21) determines the integration limit of τ31 to be 0 ≤ τ31 − τ21 ≤ 1/T or τ21 ≤ τ31 ≤
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τ21 + 1/T . The last theta function, i.e., θ(τ31 − τ21 − τ34), gives the integration limit of τ34
as −1/T ≤ τ34 − (τ31 − τ21) ≤ 0 or −1/T + (τ31 − τ21) ≤ τ34 ≤ τ31 − τ21. Similarly, we also
express each of theta function as

θ(τ21) = − lim
η→0+

∫ ∞

−∞

dα

2πi

e−iατ21

α + iη
, (B.17)

θ(τ31 − τ21) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

e−iβ(τ31−τ21)

β + iξ
, (B.18)

θ(τ31 − τ21 − τ34) = − lim
δ→0+

∫ ∞

−∞

dγ

2πi

e−iγ(τ31−τ21−τ34)

γ + iδ
. (B.19)

Using these expressions and the integral limits discussion above, the term I2 can be written
as

I2 = δk1k3δk2k4 [1− nk1 ]
2nk2 lim

η→0+
lim
ξ→0+

lim
δ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

∫ ∞

−∞

dβ

2πi

1

β + iξ

×
∫ ∞

−∞

dγ

2πi

1

γ + iδ

∫ 1/T

0

dτ21e
(iεℓ−iα+iβ+iγ−εk2+µ)τ21

×
∫ τ21+1/T

τ21

dτ31e
(iωn−iβ−iγ−εk1+εk2 )τ31

∫ τ31−τ21

−1/T+(τ31−τ21)

dτ34e
(iεℓ′+iγ−εk2+µ)τ34 . (B.20)

The integration with respect to τ34 gives∫ τ31−τ21

−1/T+(τ31−τ21)

dτ34e
(iεℓ′+iγ−εk2+µ)τ34 =

1

iεℓ′ + iγ − εk2 + µ
e(iεℓ′+iγ−εk2+µ)(τ31−τ21)

×
[
1 + e−(iγ−εk2+µ)/T

]
. (B.21)

Inserting this result into the term I2, we obtain

I2 = δk1k3δk2k4 [1− nk1 ]
2nk2 lim

η→0+
lim
ξ→0+

lim
δ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

∫ ∞

−∞

dβ

2πi

1

β + iξ

×
∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

iεℓ′ + iγ − εk2 + µ

[
1 + e−(iγ−εk2+µ)/T

]
×

∫ 1/T

0

dτ21e
(iεℓ−iεℓ′−iα+iβ)τ21

∫ τ21+1/T

τ21

dτ31e
(iωn+iεℓ′−iβ−εk1+µ)τ31 . (B.22)

Now integration with respect to τ31 gives∫ τ21+1/T

τ21

dτ31e
(iωn+iεℓ′−iβ−εk1+µ)τ31 = − 1

iωn + iεℓ′ − iβ − εk1 + µ
e(iωn+iεℓ′−iβ−εk1+µ)τ21

×
[
1 + e−(iβ+εk1−µ)/T

]
(B.23)
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and integration with respect to τ21 gives∫ 1/T

0

dτ21e
(iεℓ−iεℓ′−iα+iβ)τ21

∫ τ21+1/T

τ21

dτ31e
(iωn+iεℓ′−iβ−εk1+µ)τ31

=
1

iωn + iεℓ′ − iβ − εk1 + µ

1

iωn + iεℓ − iα− εk1 + µ

[
1 + e−(iα+εk1−µ)/T

]
×

[
1 + e−(iβ+εk1−µ)/T

]
. (B.24)

Using the results of the integration, the term I2 can be written as

I2 = iδk1k3δk2k4 [1− nk1 ]
2nk2

× lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

α− ωn − εℓ − i(εk1 − µ)
[
1 + e−(iα+εk1−µ)/T

]
× lim

ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

β − ωn − εℓ′ − i(εk1 − µ)
[
1 + e−(iβ+εk1−µ)/T

]
× lim

δ→0+

∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

γ + εℓ′ + i(εk2 − µ)
[
1 + e−(iγ−εk2+µ)/T

]
. (B.25)

The integration with respect to γ gives

lim
δ→0+

∫ ∞

−∞

dγ

2πi

1

γ + iδ

1

γ + εℓ′ + i(εk2 − µ)
[
1 + e−(iγ−εk2+µ)/T

]
= − i

iεℓ′ − εk2 + µ

1

nk2

.

(B.26)

The integration with respect to β gives

lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

β − ωn − εℓ′ − i(εk1 − µ)
[
1 + e−(iβ+εk1−µ)/T

]
=

i

i(ωn + εℓ′)− εk1 + µ

1

1− nk1

. (B.27)

The last integral with respect to α gives

lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

α− ωn − εℓ − i(εk1 − µ)
[
1 + e−(iα+εk1−µ)/T

]
=

i

i(εℓ + ωn)− εk1 + µ

1

1− nk1

. (B.28)

Inserting Eqs. (B.26), (B.27), and (B.28) into Eq. (B.25), we obtain

I2 = −δk1k3δk2k4
1

(iεℓ′ − εk2 + µ)[i(ωn + εℓ′)− εk1 + µ][i(εℓ + ωn)− εk1 + µ]
. (B.29)
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Inserting the terms I1 and I2 into the expression of D̃ph
12,34(ωn, εℓ, εℓ′), we obtain

D̃ph
12,34(ωn, εℓ, εℓ′) = δk1k3δk2k4(iωn − εk1 + εk2)G̃k1(εℓ + ωn)G̃k2(εℓ)G̃k3(εℓ′ + ωn)G̃k4(εℓ′). �
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Appendix C

Derivation of Finite-temperature Free
Response Function

In the τ representation, the finite-temperature free response function R̃0(12, 34) is defined
as

R̃0(12, 34) =
∑
σ1,σ2

R̃0(σ1,σ2)(12, 34), (C.1)

where
R̃0(σ1,σ2)(12, 34) = −G̃ σ1(3, 1)G̃ σ2(2, 4), σ1,2 = +1,−1. (C.2)

The Matsubara’s Green functions G̃ σ1(3, 1) and G̃ σ2(2, 4) are defined as

G̃ (+1)(3, 1) = −δk1k3 [1− n(εk1 − µ, T )]e−(εk1−µ)τ31θ(τ31)

= −δk1k3 [1− nk1 ]e
−(εk1−µ)τ31θ(τ31), (C.3)

G̃ (−1)(3, 1) = δk1k3n(εk1 − µ, T )e−(εk1−µ)τ31θ(−τ31)

= δk1k3nk1e
−(εk1−µ)τ31θ(−τ31), (C.4)

G̃ (+1)(2, 4) = −δk2k4 [1− n(εk2 − µ, T )]e−(εk2−µ)τ24θ(τ24)

= −δk2k4 [1− nk2 ]e
−(εk2−µ)τ24θ(τ24), (C.5)

G̃ (−1)(2, 4) = δk2k4n(εk2 − µ, T )e−(εk2−µ)τ24θ(−τ24)

= δk2k4nk2e
−(εk2−µ)τ24θ(−τ24). (C.6)

The notion of particle (hole) is given for σ = +1(−1). Each time τi, where i = 1, 2, 3, 4, is
defined to have an interval 0 ≤ τi ≤ 1/T , where T > 0 is temperature. Therefore, each time
difference τij ≡ τi − τj has an interval −1/T ≤ τij ≤ 1/T . The spectral representation of
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R̃0(σ1,σ2)(12, 34) ≡ R̃0(σ1,σ2)
k1k2,k3k4

(τ31, τ21, τ34) is defined via the Fourier transformation:

R̃0(σ1,σ2)
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

∫ 1/T

−1/T

dτ34e
iεℓ′τ34

× R̃0(σ1,σ2)
k1k2,k3k4

(τ31, τ21, τ34), (C.7)

where ωn = 2nπT , εℓ = (2ℓ + 1)πT , εℓ′ = (2ℓ′ + 1)πT , and n = ℓ = ℓ′ =

· · · ,−2,−1, 0, 1, 2, · · · . Inserting Eq.(C.2) into Eq.(C.7), one obtains

R̃0pp
12,34(ωn, εℓ, εℓ′) = −1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)G̃ (+1)(3, 1)G̃ (+1)(2, 4),

(C.8)

R̃0ph
12,34(ωn, εℓ, εℓ′) = −1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)G̃ (+1)(3, 1)G̃ (−1)(2, 4),

(C.9)

R̃0hp
12,34(ωn, εℓ, εℓ′) = −1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)G̃ (−1)(3, 1)G̃ (+1)(2, 4),

(C.10)

R̃0hh
12,34(ωn, εℓ, εℓ′) = −1

8

∫ 1/T

−1/T

dτ31dτ21dτ34e
i(ωnτ31+εℓτ21+εℓ′τ34)G̃ (−1)(3, 1)G̃ (−1)(2, 4).

(C.11)

Inserting Eq.(C.3) and Eq.(C.5) into Eq.(C.8), we obtain

R̃0pp
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4 [1− nk1 ][1− nk2 ]

∫ 1/T

−1/T

dτ31e
iωnτ31

×
∫ 1/T

−1/T

dτ21e
iεℓτ21

∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31

× e−(εk2−µ)(τ21+τ34−τ31)θ(τ31)θ(τ21 + τ34 − τ31). (C.12)

R̃0pp
k1k2,k3k4

(ωn, εℓ, εℓ′) contains two theta functions, i.e., θ(τ31) and θ(τ24) = θ(τ21 + τ34 − τ31).
The theta function θ(τ31) constrains the interval of τ31 to be 0 ≤ τ31 ≤ 1/T . Due to the
presence of θ(τ24), τ24 and, hence, the linear combination τ21+τ34−τ31 have an interval from
0 to 1/T . We choose τ21 to have an interval τ31 − τ34 ≤ τ21 ≤ τ31 − τ34 + 1/T and determine
the interval of τ34 to be −1/T ≤ τ34 ≤ 1/T . Under these considerations, Eq.(C.12) becomes

R̃0pp
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4 [1− nk1 ][1− nk2 ]

∫ 1/T

0

dτ31e
iωnτ31
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×
∫ τ31−τ34+1/T

τ31−τ34

dτ21e
iεℓτ21

∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31

× e−(εk2−µ)(τ21+τ34−τ31)θ(τ31)θ(τ21 + τ34 − τ31). (C.13)

Next, we apply the integration representations of θ(τ31) and θ(τ21 + τ34 − τ31):

θ(τ31) = − lim
η→0+

∫ ∞

−∞

dα

2πi

e−iατ31

α + iη

θ(τ21 + τ34 − τ31) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

e−iβ(τ21+τ34−τ31)

β + iξ

to Eq.(C.13) and obtain

R̃0pp
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4 [1− nk1 ][1− nk2 ] lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

∫ 1/T

0

dτ31e
(iωn−iα+iβ−εk1+εk2 )τ31

×
∫ 1/T

−1/T

dτ34e
(iεℓ′−iβ−εk2+µ)τ34

∫ τ31−τ34+1/T

τ31−τ34

dτ21e
(iεℓ−iβ−εk2+µ)τ21 .

(C.14)

We first evaluate the integration with respect to τ21 as follows:∫ τ31−τ34+1/T

τ31−τ34

dτ21e
(iεℓ−iβ−εk2+µ)τ21 =

1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)τ21

∣∣∣∣τ31−τ34+1/T

τ31−τ34

=
1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)(τ31−τ34)

×
[
−e−(iβ+εk2−µ)/T − 1

]∫ τ31−τ34+1/T

τ31−τ34

dτ21e
(iεℓ−iβ−εk2+µ)τ21 = − 1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)(τ31−τ34)

×
[
e−(iβ+εk2−µ)/T + 1

]
. (C.15)

Inserting this into Eq.(C.14), we obtain

R̃0pp
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4 [1− nk1 ][1− nk2 ] lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

[
e−(iβ+εk2−µ)/T + 1

]
×

∫ 1/T

0

dτ31e
(iωn+iεℓ−iα−εk1+µ)τ31

∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 . (C.16)
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The integration with respect to τ34 gives∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 =

2

T
δℓℓ′ (C.17)

and the integration with respect to τ31 gives∫ 1/T

0

dτ31e
(iωn+iεℓ−iα−εk1+µ)τ31 = − 1

iωn + iεℓ − iα− εk1 + µ

[
e−(iα+εk1−µ)/T + 1

]
.

(C.18)

Inserting these results into Eq.(C.16), we obtain

R̃0pp
12,34(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4 [1− nk1 ][1− nk2 ] lim

η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

× 1

iωn + iεℓ − iα− εk1 + µ

[
e−(iα+εk1−µ)/T + 1

]
× lim

ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

×
[
e−(iβ+εk2−µ)/T + 1

]
. (C.19)

The integration with respect to α gives

Iα = lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ − iα− εk1 + µ

[
e−(iα+εk1−µ)/T + 1

]
= − 1

i(ωn + εℓ)− εk1 + µ

1

1− nk1

(C.20)

and the integration with respect to β gives

Iβ = lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

[
e−(iβ+εk2−µ)/T + 1

]
= − 1

iεℓ − εk2 + µ

1

1− nk2

. (C.21)

Inserting these results into Eq.(C.19), we obtain

R̃0pp
12,34(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4G̃k1(ωn + εℓ)G̃k2(εℓ). (C.22)
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Inserting Eq.(C.3) and Eq.(C.6) into Eq.(C.9), we obtain

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4 [1− nk1 ]nk2

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(τ31)θ(τ31 − τ21 − τ34). (C.23)

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) contains two theta functions, i.e., θ(τ31) and θ(−τ24) = θ[−(τ21 + τ34 −
τ31)]. The theta function θ(τ31) constrains the interval of τ31 to be 0 ≤ τ31 ≤ 1/T . Due
to the presence of θ(−τ24), τ24 and, hence, the linear combination τ21 + τ34 − τ31 have an
interval from −1/T to 0. We choose τ21 to have an interval τ31− τ34− 1/T ≤ τ21 ≤ τ31− τ34
and determine the interval of τ34 to be −1/T to 1/T . Under these considerations, Eq.(C.23)
becomes

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4 [1− nk1 ]nk2

∫ 1/T

0

dτ31e
iωnτ31

∫ τ31−τ34

τ31−τ34−1/T

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(τ31)θ(τ31 − τ21 − τ34). (C.24)

Next, we apply the integration representations of θ(τ31) and θ(τ31 − τ21 − τ34):

θ(τ31) = − lim
η→0+

∫ ∞

−∞

dα

2πi

e−iατ31

α + iη

θ(τ31 − τ21 − τ34) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

e−iβ(τ31−τ21−τ34)

β + iξ

to Eq.(C.24) and obtain

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4 [1− nk1 ]nk2 lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

∫ 1/T

0

dτ31e
(iωn−iα−iβ−εk1+εk2 )τ31

×
∫ 1/T

−1/T

dτ34e
(iεℓ′+iβ−εk2+µ)τ34

∫ τ31−τ34

τ31−τ34−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21 .

(C.25)
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We first evaluate the integration with respect to τ21 as follows:∫ τ31−τ34

τ31−τ34−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21 =

1

iεℓ + iβ − εk2 + µ
e(iεℓ+iβ−εk2+µ)τ21

∣∣∣∣τ31−τ34

τ31−τ34−1/T

=
1

iεℓ + iβ − εk2 + µ
e(iεℓ+iβ−εk2+µ)(τ31−τ34)

×
[
1 + e−(iβ−εk2+µ)/T

]
. (C.26)

Inserting this into Eq.(C.25), we obtain

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4 [1− nk1 ]nk2 lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
×

∫ 1/T

0

dτ31e
(iωn+iεℓ−iα−εk1+µ)τ31

∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 . (C.27)

The integration with respect to τ34 gives∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 =

2

T
δℓℓ′ (C.28)

and the integration with respect to τ31 gives∫ 1/T

0

dτ31e
(iωn+iεℓ−iα−εk1+µ)τ31 = − 1

iωn + iεℓ − iα− εk1 + µ

[
e−(iα+εk1−µ)/T + 1

]
.

(C.29)

Inserting these results into Eq.(C.27), we obtain

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4 [1− nk1 ]nk2

× lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ − iα− εk1 + µ

×
[
e−(iα+εk1−µ)/T + 1

]
lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

× 1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
. (C.30)
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The integration with respect to α gives

Iα = lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ − iα− εk1 + µ

[
e−(iα+εk1−µ)/T + 1

]
= − 1

i(ωn + εℓ)− εk1 + µ

1

1− nk1

(C.31)

and the integration with respect to β gives

Iβ = lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
= − 1

iεℓ − εk2 + µ

1

nk2

. (C.32)

Inserting these results into Eq.(C.30), we obtain

R̃0ph
k1k2,k3k4

(ωn, εℓ, εℓ′) = −
1

4T
δℓℓ′δk1k3δk2k4G̃k1(ωn + εℓ)G̃k2(εℓ). (C.33)

Inserting Eq.(C.4) and Eq.(C.5) into Eq.(C.10), we obtain

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4nk1 [1− nk2 ]

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(−τ31)θ(τ21 + τ34 − τ31). (C.34)

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) contains two theta functions, i.e., θ(−τ31) and θ(τ24) = θ(τ21+τ34−τ31).
The theta function θ(−τ31) constrains the interval of τ31 to be −1/T ≤ τ31 ≤ 0. Due to the
presence of θ(τ24), τ24 and, hence, the linear combination τ21+τ34−τ31 have an interval from
0 to 1/T . We choose τ21 to have an interval τ31 − τ34 ≤ τ21 ≤ τ31 − τ34 + 1/T and determine
the interval of τ34 to be −1/T to 1/T . Under these considerations, Eq.(C.34) becomes

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4nk1 [1− nk2 ]

∫ 0

−1/T

dτ31e
iωnτ31

∫ τ31−τ34+1/T

τ31−τ34

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(−τ31)θ(τ21 + τ34 − τ31). (C.35)
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Next, we apply the integration representations of θ(−τ31) and θ(τ21 + τ34 − τ31):

θ(−τ31) = − lim
η→0+

∫ ∞

−∞

dα

2πi

eiατ31

α + iη

θ(τ21 + τ34 − τ31) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

e−iβ(τ21+τ34−τ31)

β + iξ

to Eq.(C.35) and obtain

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) =
1

8
δk1k3δk2k4nk1 [1− nk2 ] lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

∫ 0

−1/T

dτ31e
(iωn+iα+iβ−εk1+εk2 )τ31

×
∫ 1/T

−1/T

dτ34e
(iεℓ′−iβ−εk2+µ)τ34

∫ τ31−τ34+1/T

τ31−τ34

dτ21e
(iεℓ−iβ−εk2+µ)τ21 .

(C.36)

We first evaluate the integration with respect to τ21 as follows:∫ τ31−τ34+1/T

τ31−τ34

dτ21e
(iεℓ−iβ−εk2+µ)τ21 =

1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)τ21

∣∣∣∣τ31−τ34+1/T

τ31−τ34

=
1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)(τ31−τ34)

×
[
−e−(iβ+εk2−µ)/T − 1

]
= − 1

iεℓ − iβ − εk2 + µ
e(iεℓ−iβ−εk2+µ)(τ31−τ34)

×
[
e−(iβ+εk2−µ)/T + 1

]
. (C.37)

Inserting this into Eq.(C.36), we obtain

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4nk1 [1− nk2 ] lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

[
e−(iβ+εk2−µ)/T + 1

]
×

∫ 0

−1/T

dτ31e
(iωn+iεℓ+iα−εk1+µ)τ31

∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 . (C.38)

The integration with respect to τ34 gives∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 =

2

T
δℓℓ′ (C.39)

138



and the integration with respect to τ31 gives∫ 0

−1/T

dτ31e
(iωn+iεℓ+iα−εk1+µ)τ31 =

1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
.

(C.40)

Inserting these results into Eq.(C.38), we obtain

R̃0hp
12,34(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4nk1 [1− nk2 ] lim

η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

× 1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
× lim

ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

[
e−(iβ+εk2−µ)/T + 1

]
.

(C.41)

The integration with respect to α gives

Iα = lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
= − 1

i(ωn + εℓ)− ε1 + µ

1

nk1

(C.42)

and the integration with respect to β gives

Iβ = lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ − iβ − εk2 + µ

[
e−(iβ+εk2−µ)/T + 1

]
= − 1

iεℓ − εk2 + µ

1

1− nk2

. (C.43)

Inserting these results into Eq.(C.41), we obtain

R̃0hp
k1k2,k3k4

(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4G̃k1(ωn + εℓ)G̃k2(εℓ). (C.44)

Inserting Eq.(C.4) and Eq.(C.6) into Eq.(C.11), we obtain

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4nk1nk2

∫ 1/T

−1/T

dτ31e
iωnτ31

∫ 1/T

−1/T

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(−τ31)θ(τ31 − τ21 − τ34). (C.45)
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R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) contains two theta functions, i.e., θ(−τ31) and θ(−τ24) = θ[−(τ21+τ34−
τ31)]. The theta function θ(−τ31) constrains the interval of τ31 to be −1/T ≤ τ31 ≤ 0. Due
to the presence of θ(−τ24), τ24 and, hence, the linear combination τ21 + τ34 − τ31 have an
interval from −1/T to 0. We choose τ21 to have an interval τ31− τ34− 1/T ≤ τ21 ≤ τ31− τ34
and determine the interval of τ34 to be −1/T to 1/T . Under these considerations, Eq.(C.45)
becomes

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4nk1nk2

∫ 0

−1/T

dτ31e
iωnτ31

∫ τ31−τ34

τ31−τ34−1/T

dτ21e
iεℓτ21

×
∫ 1/T

−1/T

dτ34e
iεℓ′τ34e−(εk1−µ)τ31e−(εk2−µ)(τ21+τ34−τ31)

× θ(−τ31)θ(τ31 − τ21 − τ34). (C.46)

Next, we apply the integration representations of θ(−τ31) and θ(τ31 − τ21 − τ34):

θ(−τ31) = − lim
η→0+

∫ ∞

−∞

dα

2πi

eiατ31

α + iη

θ(τ31 − τ21 + τ34) = − lim
ξ→0+

∫ ∞

−∞

dβ

2πi

e−iβ(τ31−τ21−τ34)

β + iξ

to Eq.(C.46) and obtain

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4nk1nk2 lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

×
∫ ∞

−∞

dβ

2πi

1

β + iξ

∫ 0

−1/T

dτ31e
(iωn+iα−iβ−εk1+εk2 )τ31

×
∫ 1/T

−1/T

dτ34e
(iεℓ′+iβ−εk2+µ)τ34

∫ τ31−τ34

τ31−τ34−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21 .

(C.47)

We first evaluate the integration with respect to τ21 as follows:∫ τ31−τ34

τ31−τ34−1/T

dτ21e
(iεℓ+iβ−εk2+µ)τ21 =

1

iεℓ + iβ − εk2 + µ
e(iεℓ+iβ−εk2+µ)τ21

∣∣∣∣τ31−τ34

τ31−τ34−1/T

=
1

iεℓ + iβ − εk2 + µ
e(iεℓ+iβ−εk2+µ)(τ31−τ34)

×
[
e−(iβ−εk2+µ)/T + 1

]
. (C.48)
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Inserting this into Eq.(C.47), we obtain

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = −1

8
δk1k3δk2k4nk1nk2 lim

η→0+
lim
ξ→0+

∫ ∞

−∞

dα

2πi

1

α + iη

∫ ∞

−∞

dβ

2πi

1

β + iξ

× 1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
×

∫ 0

−1/T

dτ31e
(iωn+iεℓ+iα−εk1+µ)τ31

∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 . (C.49)

The integration with respect to τ34 gives∫ 1/T

−1/T

dτ34e
i(εℓ′−εℓ)τ34 =

2

T
δℓℓ′ (C.50)

and the integration with respect to τ31 gives∫ 0

−1/T

dτ31e
(iωn+iεℓ+iα−εk1+µ)τ31 =

1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
.

(C.51)

Inserting these results into Eq.(C.49), we obtain

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4nk1nk2 lim

η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

× 1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
× lim

ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
.

(C.52)

The integration with respect to α gives

Iα = lim
η→0+

∫ ∞

−∞

dα

2πi

1

α + iη

1

iωn + iεℓ + iα− εk1 + µ

[
e−(iα−εk1+µ)/T + 1

]
= − 1

i(ωn + εℓ)− εk1 + µ

1

nk1

(C.53)

and the integration with respect to β gives

Iβ = lim
ξ→0+

∫ ∞

−∞

dβ

2πi

1

β + iξ

1

iεℓ + iβ − εk2 + µ

[
e−(iβ−εk2+µ)/T + 1

]
= − 1

iεℓ − εk2 + µ

1

nk2

. (C.54)
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Inserting these results into Eq.(C.52), we obtain

R̃0hh
k1k2,k3k4

(ωn, εℓ, εℓ′) = − 1

4T
δℓℓ′δk1k3δk2k4G̃k1(ωn + εℓ)G̃k2(εℓ). (C.55)

Finally, the Fourier transform of full finite temperature free response function R̃0(12, 34) is
given by

R̃0
k1k2,k3k4

(ωn, εℓ, εℓ′) = −
1

T
δℓℓ′δk1k3δk2k4G̃k1(ωn + εℓ)G̃k2(εℓ). �
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Appendix D

PC-F1 Force

The relativistic point-coupling Lagrangian density L is built from the point couplings
of the general type [37]

(
ΨOτΓΨ

)
, Oτ ∈ {1, τi}, Γ ∈ {1, γµ, γ5, γ5γµ, σµν}, (D.1)

where Ψ is the Dirac spinor field of the nucleon, τi (i = 1, 2, 3) are the isospin Pauli matrices,
and Γ represents one of the 4×4 Dirac matrices. Following Ref. [37], we consider the following
four-fermion vertices:

isoscalar-scalar: (ΨΨ)2,

isoscalar-vector: (ΨγµΨ)(ΨγµΨ),

isovector-scalar: (Ψτ⃗Ψ) · (Ψτ⃗Ψ),

isovector-vector: (Ψτ⃗ γµΨ) · (Ψτ⃗ γµΨ),

and their corresponding gradient couplings ∂ν(· · · )∂ν(· · · ). From these ingredients, we start
with the Lagrangian density L of the form

L = L free + L 4f + L hot + L der + L em. (D.2)

Here L free is the Lagrangian density for free nucleons:

L free = Ψ(iγµ∂
µ −M)Ψ. (D.3)

The interaction between nucleons is described by the four-fermion point-coupling terms:

L 4f = −1

2
αS(ΨΨ)(ΨΨ)− 1

2
αV (ΨγµΨ)(ΨγµΨ)
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− 1

2
αTS(Ψτ⃗Ψ) · (Ψτ⃗Ψ)− 1

2
αTV (Ψτ⃗ γµΨ) · (Ψτ⃗ γµΨ), (D.4)

the higher order terms:

L hot = −1

3
βS(ΨΨ)3 − 1

4
γS(ΨΨ)4 − 1

4
γV [(ΨγµΨ)(ΨγµΨ)]2, (D.5)

which is responsible for the medium effects, and the derivative terms:

L der = −1

2
δS(∂νΨΨ)(∂νΨΨ)− 1

2
δV (∂νΨγµΨ)(∂νΨγµΨ)

− 1

2
δTS(∂νΨτ⃗Ψ) · (∂νΨτ⃗Ψ)− 1

2
δTV (∂νΨτ⃗ γµΨ) · (∂νΨτ⃗ γµΨ) (D.6)

simulating the finite-range effects. The electromagnetic interaction between protons is
described by

L em = −eAµΨ
1

2
(1 + τ3)γ

µΨ− 1

4
FµνF

µν , (D.7)

where Aµ is the four-vector potential and the electromagnetic field strength tensor F µν is
defined as

F µν = ∂µAν − ∂νAµ. (D.8)

The value of τ3 is +1(−1) for proton (neutron). The set of nine coupling constants for the
nonlinear point-coupling effective interaction PC-F1 is shown in Table D.1. In the PC-F1
parameterization, the coupling constants αTS and δTS are zero.

Table D.1: The set of coupling constants in the PC-F1 parameterization [37].

Coupling Constant Value Dimension
αS −3.83577× 10−4 [MeV−2]
βS 7.68567× 10−11 [MeV−5]
γS −2.90443× 10−17 [MeV−8]
δS −4.18530× 10−10 [MeV−4]
αV 2.59333× 10−4 [MeV−2]
γV −3.87900× 10−18 [MeV−8]
δV −1.19210× 10−10 [MeV−4]
αTV 3.46770× 10−5 [MeV−2]
δTV −4.20000× 10−11 [MeV−4]

From the Euler-Lagrange equation

∂L

∂Ψ
− ∂

∂xµ

(
∂L

∂(∂µΨ)

)
= 0, (D.9)
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we obtain the Dirac equation of motion for the nucleonic fields:

0 =
{
(iγµ∂

µ −M)− αS(ΨΨ)− αV (Ψγ
µΨ)γµ − αTS(Ψτ⃗Ψ) · τ⃗ − αTV (Ψτ⃗ γ

µΨ) · τ⃗ γµ

− βS(ΨΨ)2 − γS(ΨΨ)3 − γV [(ΨγαΨ)(ΨγαΨ)](ΨγµΨ)γµ − eAµ
1

2
(1 + τ3)γ

µ

+ δS�(ΨΨ) + δV�(ΨγαΨ)γα + δTS�(Ψτ⃗Ψ) · τ⃗ + δTV�(Ψτ⃗ γαΨ) · τ⃗ γα
}
Ψ. (D.10)

The multiplication of Eq.(D.10) with β ≡ γ0, the application of the expansion

Ψ(r, t) =
∑
k

φk(r)e−iϵktâk (D.11)

to Eq. (D.10), and the mean-field approximation lead to

0 =
{
ϵk − (α · p + βM)− βαS⟨Φ|ΨΨ|Φ⟩ − βαV ⟨Φ|ΨγµΨ|Φ⟩γµ

− βαTS⟨Φ|Ψτ⃗Ψ|Φ⟩ · τ⃗ − βαTV ⟨Φ|Ψτ⃗ γµΨ|Φ⟩ · τ⃗ γµ − ββS⟨Φ|(ΨΨ)2|Φ⟩

− βγS⟨Φ|(ΨΨ)3|Φ⟩ − γV β⟨Φ|ΨγµΨ[(ΨγαΨ)(ΨγαΨ)]|Φ⟩γµ

− eγ0Aµ
1

2
(1 + τ3)γ

µ + δSβ�⟨Φ|ΨΨ|Φ⟩+ δV βγα�⟨Φ|ΨγαΨ|Φ⟩

+ δTSβτ⃗ ·�⟨Φ|Ψτ⃗Ψ|Φ⟩+ δTV βτ⃗γα ·�⟨Φ|Ψτ⃗ γαΨ|Φ⟩
}
φk(r). (D.12)

Introducing the following density and currents:

ρS(r) =
∑
k

nkφ̄k(r)φk(r) ≡ ⟨Φ|ΨΨ|Φ⟩, (D.13)

jµV (r) =
∑
k

nkφ̄k(r)γµφk(r) ≡ ⟨Φ|ΨγµΨ|Φ⟩, (D.14)

j⃗TS(r) =
∑
k

nkφ̄k(r)τ⃗φk(r) ≡ ⟨Φ|Ψτ⃗Ψ|Φ⟩, (D.15)

j⃗µTV (r) =
∑
k

nkφ̄k(r)τ⃗ γµφk(r) ≡ ⟨Φ|Ψτ⃗ γµΨ|Φ⟩, (D.16)

Eq.(D.12) becomes

ϵkφk(r) =
{
α · p + βM + β[αSρS(r) + βSρ

2
S(r) + γSρ

3
S(r) + δS∇2ρS(r)

+ αTS τ⃗ · j⃗TS(r) + δTS τ⃗ · ∇2j⃗TS(r)] + β[αV γµj
µ
V (r)

+ γV γµj
µ
V (r)jV α(r)jαV (r) + δV γµ∇2jµV (r) + eγµA

µ 1
2
(1 + τ3)

+ αTV τ⃗ γµ · j⃗µTV (r) + δTV τ⃗ γµ · ∇2j⃗µTV (r)]
}
φk(r). (D.17)
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Assuming the time-reversal symmetry of the mean field and the isospin τ3 is a good quantum
number, the currents jµV (r), j⃗TS(r), and j⃗µTV (r) respectively become local densities:

ρV (r) =
∑
k

nkφ̄k(r)γ0φk(r) =
∑
k

nkφ
†
k(r)φk(r), (D.18)

ρTS(r) =
∑
k

nkφ̄k(r)τ3φk(r), (D.19)

ρTV (r) =
∑
k

nkφ̄k(r)τ3γ0φk. (D.20)

Equation (D.17) then becomes the time-independent Dirac equation for nucleon:

ϵkφk(r) =
{
α · p + βM + β[αSρS(r) + βSρ

2
S(r) + γSρ

3
S(r) + δS∇2ρS(r)

+ τ3αTSρTS(r) + τ3δTS∇2ρTS(r)] + [αV ρV (r) + γV ρ
3
V (r)

+ δV∇2ρV (r) + eA0 1
2
(1 + τ3) + τ3αTV ρTV (r) + τ3δTV∇2ρTV (r)]

}
φk(r)

ϵkφk(r) = ĥDφk(r), (D.21)

where the Dirac Hamiltonian ĥD is

ĥD = α · p + β[M + S(r)] + V (r). (D.22)

Here the scalar potential S(r) consists of the isoscalar-scalar ΣS(r) and isovector-scalar
ΣTS(r) self-energies, viz.

S(r) = ΣS(r) + τ3ΣTS(r), (D.23)
ΣS(r) = αSρS(r) + βSρ

2
S(r) + γSρ

3
S(r) + δS∇2ρS(r), (D.24)

ΣTS(r) = (αTS + δTS∇2)ρTS(r). (D.25)

The vector potential V (r) is also decomposed into two self-energy terms, viz.

V (r) = ΣV (r) + τ3ΣTV (r), (D.26)

where the isoscalar-vector ΣV (r) and isovector-vector ΣTV (r) self-energies respectively are
given by

ΣV (r) = αV ρV (r) + γV ρ
3
V (r) + δV∇2ρV (r) + eA0 1

2
(1 + τ3), (D.27)

ΣTV (r) = (αTV + δTV∇2)ρTV (r). (D.28)
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From the Lagrangian density, we can obtain the total Hamiltonian Ĥ via

Ĥ =

∫
d3r
{

∂L
∂(∂0Ψ)

(∂0Ψ) + (∂0Ψ)
∂L

∂(∂0Ψ)
+

∂L
∂(∂0Aµ)

(∂0Aµ)− L
}
. (D.29)

Insertion of Eqs. (D.2)-(D.7) into the expression of total Hamiltonian Ĥ leads to

Ĥ =

∫
d3r
{
Ψ†(α · p + βM)Ψ +

1

2
αS(ΨΨ)(ΨΨ) +

1

2
αV (ΨγµΨ)(ΨγµΨ)

+
1

2
αTS(Ψτ⃗Ψ) · (Ψτ⃗Ψ) +

1

2
αTV (Ψτ⃗ γµΨ) · (Ψτ⃗ γµΨ) +

1

3
βS(ΨΨ)3

+
1

4
γS(ΨΨ)4 +

1

4
γV [(ΨγµΨ)(ΨγµΨ)]2

− 1

2
δS[(∂0ΨΨ)(∂0ΨΨ) + (∇ΨΨ) · (∇ΨΨ)]

− 1

2
δV [(∂0ΨγµΨ)(∂0ΨγµΨ) + (∇ΨγµΨ) · (∇ΨγµΨ)]

− 1

2
δTS[(∂0Ψτ⃗Ψ) · (∂0Ψτ⃗Ψ) + (∇Ψτ⃗Ψ) · (∇Ψτ⃗Ψ)]

− 1

2
δTV [(∂0Ψτ⃗ γµΨ) · (∂0Ψτ⃗ γµΨ) + (∇Ψτ⃗ γµΨ) · (∇Ψτ⃗ γµΨ)]

}
− 1

2

∫
d3r
[
ȦjȦj + (∇Aµ) · (∇Aµ)

]
+

∫
d3rΨΓµ

eAµΨ. (D.30)

Using the mean-field approximation, the energy density functional reads:

ERMF[ρ̂, A] = ⟨Φ|Ĥ|Φ⟩

=

∫
d3r
{∑

kℓ

ψ†
k(r, t)(α · p + βM)ψℓ(r, t)ρℓk

+
1

2
αS

∑
kℓ

ψ†
k(r, t)γ0ψℓ(r, t)ρℓk

∑
mn

ψ†
m(r, t)γ0ψn(r, t)ρnm

+
1

2
αV

∑
kℓ

ψ†
k(r, t)γ0γµψℓ(r, t)ρℓk

∑
mn

ψ†
m(r, t)γ0γµψn(r, t)ρnm

+
1

2
αTS

∑
kℓ

ψ†
k(r, t)γ0τ⃗ψℓ(r, t)ρℓk ·

∑
mn

ψ†
m(r, t)γ0τ⃗ψn(r, t)ρnm

+
1

2
αTV

∑
kℓ

ψ†
k(r, t)γ0τ⃗ γµψℓ(r, t)ρℓk ·

∑
mn

ψ†
m(r, t)γ0τ⃗ γµΨn(r, t)ρnm

+
1

3
βS
∑
kℓ

ψ†
k(r, t)γ0ψℓ(r, t)ρℓk

∑
mn

ψ†
m(r, t)γ0ψn(r, t)ρnm

×
∑
pq

ψ†
p(r, t)γ0ψq(r, t)ρqp
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+
1

4
γS
∑
kℓ

ψ†
k(r, t)γ0ψℓ(r, t)ρℓk

∑
mn

ψ†
m(r, t)γ0ψn(r, t)ρnm

×
∑
pq

ψ†
p(r, t)γ0ψq(r, t)ρqp

∑
rs

ψ†
r(r, t)γ0ψs(r, t)ρsr

+
1

4
γV
∑
kℓ

ψ†
k(r, t)γ0γµψℓ(r, t)ρℓk

∑
mn

ψ†
m(r, t)γ0γµψn(r, t)ρnm

×
∑
pq

ψ†
p(r, t)γ0γαψq(r, t)ρqp

∑
rs

ψ†
r(r, t)γ0γαψs(r, t)ρsr

− 1

2
δS
∑
kℓ

∂0ψ
†
k(r, t)γ0ψℓ(r, t)ρℓk

∑
mn

∂0ψ†
m(r, t)γ0ψn(r, t)ρnm

− 1

2
δS
∑
kℓ

[∇ψ†
k(r, t)γ0ψℓ(r, t)]ρℓk ·

∑
mn

[∇ψ†
m(r, t)γ0ψn(r, t)]ρnm

− 1

2
δV
∑
kℓ

∂0ψ
†
k(r, t)γ0γµψℓ(r, t)ρℓk

∑
mn

∂0ψ†
m(r, t)γ0γµψn(r, t)ρnm

− 1

2
δV
∑
kℓ

[∇ψ†
k(r, t)γ0γµψℓ(r, t)]ρℓk ·

∑
mn

[∇ψ†
m(r, t)γ0γµψn(r, t)]ρnm

− 1

2
δTS

∑
kℓ

[∂0ψ
†
k(r, t)γ0τ⃗ψℓ(r, t)]ρℓk ·

∑
mn

[∂0ψ†
m(r, t)γ0τ⃗ψn(r, t)]ρnm

− 1

2
δTS

∑
kℓ

[∇ψ†
k(r, t)γ0τ⃗ψℓ(r, t)]ρℓk ·

∑
mn

[∇ψ†
m(r, t)γ0τ⃗ψn(r, t)]ρnm

− 1

2
δTV

∑
kℓ

[∂0ψ
†
k(r, t)γ0τ⃗ γµψℓ(r, t)]ρℓk ·

∑
mn

[∂0ψ†
m(r, t)γ0τ⃗ γµψn(r, t)]ρnm

− 1

2
δTV

∑
kℓ

[∇ψ†
k(r, t)γ0τ⃗ γµψℓ(r, t)]ρℓk ·

∑
mn

[∇ψ†
m(r, t)γ0τ⃗ γµψn(r, t)]ρnm

+
∑
kℓ

ψ†
k(r, t)γ0Γµ

eAµψℓ(r, t)ρℓk
}
− 1

2

∫
d3r
[
ȦjȦj + (∇Aµ) · (∇Aµ)

]
.

(D.31)

The first variational derivative of ERMF[ρ̂, A] with respect to ρ̂ gives the matrix element

HD
ab =

δERMF[ρ̂, A]

δρba

=

∫
d3r
{
ψ†
a(r, t)[α · p + βM ]ψb(r, t) + αSψ

†
a(r, t)γ0ρS(r, t)ψb(r, t)

+ αV ψ
†
a(r, t)γ0γµj

µ
V (r, t)ψb(r, t) + αTSψ

†
a(r, t)γ0τ⃗ · j⃗TS(r, t)ψb(r, t)

+ αTV ψ
†
a(r, t)γ0τ⃗ · γµj⃗

µ
TV (r, t)ψb(r, t) + βSψ

†
a(r, t)γ0ρ2S(r, t)ψb(r, t)

+ γSψ
†
a(r, t)γ0ρ3S(r, t)ψb(r, t) + γV ψ

†
a(r, t)γ0γµj

µ
V (r, t)jV α(r, t)jαV (r, t)ψb(r, t)
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− δS∂0ψa(r, t)ψb(r, t)∂0ρS(r, t)− δS[∇ψa(r, t)ψb(r, t)] ·∇ρS(r, t)
− δV ∂0ψa(r, t)γµψb(r, t)∂0jµV (r, t)− δV [∇ψa(r, t)γµψb(r, t)] ·∇jµV (r, t)
− δTS∂0ψa(r, t)τ⃗ψb(r, t) · ∂0j⃗TS(r, t)− δTS[∇ψa(r, t)τ⃗ψb(r, t)] ·∇j⃗TS(r, t)
− δTV ∂0ψa(r, t)τ⃗ γµψb(r, t) · ∂0j⃗µTV (r, t)− δTV [∇ψa(r, t)τ⃗ γµψb(r, t)] ·∇j⃗µTV (r, t)
+ ψa(r, t)Γµ

eAµψb(r, t)
}
, (D.32)

where the charge density ρS(r, t) and the current densities jµV (r, t), j⃗TS(r, t), and j⃗µTV (r, t)
are

ρS(r, t) =
∑
mn

ψm(r, t)ψn(r, t)ρnm; (D.33)

jµV (r, t) =
∑
mn

ψm(r, t)γµψn(r, t)ρnm; (D.34)

j⃗TS(r, t) =
∑
mn

ψm(r, t)τ⃗ψn(r, t)ρnm; (D.35)

j⃗µTV (r, t) =
∑
mn

ψm(r, t)τ⃗ γµψn(r, t)ρnm. (D.36)

The static approximation
ψa(r, t) = φa(r)e−iϵat (D.37)

and the single-particle density matrix

ρab = naδab, (D.38)

where na is the single-particle occupation numbers, lead to the time-independent charge
density and current densities:

ρS(r) =
∑
m

nmφ
†
m(r)γ0φm(r), (D.39)

jµV (r) =
∑
m

nmφm(r)γµφm(r), (D.40)

j⃗TS(r) =
∑
m

nmφm(r)τ⃗φm(r), (D.41)

j⃗µTV (r) =
∑
m

nmφm(r)τ⃗ γµφm(r). (D.42)

Accordingly, the matrix element HD
ab reduces to the matrix element of the Dirac Hamiltonian
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ĥD:∫
d3rφ†

a(r)ĥDφb(r) =

∫
d3r
{
φ†
a(r)[α · p + βM ]φb(r) + αSφ

†
a(r)γ0ρS(r)φb(r)

+ αV φ
†
a(r)γ0γµj

µ
V (r)φb(r) + αTSφ

†
a(r)γ0τ⃗ · j⃗TS(r)φb(r)

+ αTV φ
†
a(r)γ0τ⃗ · γµj⃗

µ
TV (r)φb(r) + βSφ

†
a(r)γ0ρ2S(r)φb(r)

+ γSφ
†
a(r)γ0ρ3S(r)φb(r) + γV φ

†
a(r)γ0γµj

µ
V (r)jV α(r)jαV (r)φb(r)

− δS[∇φa(r)φb(r)] ·∇ρS(r)− δV [∇φa(r)γµφb(r)] ·∇jµV (r)
− δTS[∇φa(r)τ⃗φb(r)] ·∇j⃗TS(r)− δTV [∇φa(r)τ⃗ γµφb(r)] ·∇j⃗µTV (r)
+ φa(r)Γµ

eAµφb(r)
}
. (D.43)

The integrals involving the ∇ can be transformed as follows:∫
d3r[∇φ(r)φb(r)] ·∇ρS(r) = −

∫
d3rφa(r)∇2ρS(r)φb(r), (D.44)∫

d3r[∇φa(r)γµφb(r)] ·∇jµV (r) = −
∫
d3rφa(r)γµ∇2jµV (r)φb(r), (D.45)∫

d3r[∇φa(r)τ⃗φb(r)] ·∇j⃗TS(r) = −
∫
d3rφa(r)τ⃗ · ∇2j⃗TS(r)φb(r), (D.46)∫

d3r[∇φa(r)τ⃗ γµφb(r)] ·∇j⃗µTV (r) = −
∫
d3rφa(r)τ⃗ γµ · ∇2j⃗µTV (r)φb(r). (D.47)

The matrix element of the operator ĥD then becomes∫
d3rφ†

a(r)ĥDφb(r) =

∫
d3rφ†

a(r)
{
(α · p + βM) + αSγ

0ρS(r) + αV γ
0γµj

µ
V (r)

+ αTSγ
0τ⃗ · j⃗TS(r) + αTV γ

0τ⃗ · γµj⃗µTV (r) + βSγ
0ρ2S(r)

+ γSγ
0ρ3S(r) + γV γ0γµj

µ
V (r)jV α(r)jαV (r) + δSγ

0∇2ρS(r)
+ δV γ

0γµ∇2jµV (r) + δTSγ
0τ⃗ · ∇2j⃗TS(r)

+ δTV γ
0τ⃗ γµ · ∇2j⃗µTV (r) + γ0Γµ

eAµ

}
φb(r) (D.48)

and the Dirac Hamiltonian ĥD is given by

ĥD = (α · p + βM) + γ0ΣS(r) + γ0γµΣ
µ
V (r) + γ0τ⃗ · Σ⃗TS(r) + γ0τ⃗ γµ · Σ⃗µ

TV (r),
(D.49)
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where

ΣS(r) = αSρS(r) + βSρ
2
S(r) + γSρ

3
S(r) + δS∇2ρS(r), (D.50)

Σµ
V (r) = αV j

µ
V (r) + γV j

µ
V (r)jV α(r)jαV (r) + δV∇2jµV (r) + Γµ

eAµ, (D.51)
Σ⃗TS(r) = αTS j⃗TS(r) + δTS∇2j⃗TS(r), (D.52)

Σ⃗µ
TV = αTV j⃗

µ
TV (r) + δTV∇2j⃗µTV (r). (D.53)

Assuming the time-reversal symmetry of the mean field and the nucleon single-particle states
do not mix isospin, the current densities (D.40)-(D.42) reduce to local densities ρV (r), ρTS(r),
and ρTV (r). Under these assumptions, we, therefore, obtain the Dirac Hamiltonian ĥD given
by Eq. (D.22).

Using the static approximation and the single-particle density matrix ρℓk = nkδℓk, the
energy density functional ERMF[ρ̂, A] becomes

ERMF[ρ̂, A] =

∫
d3r
∑
k

nkφ
†
k(r)(α · p + βM)φk(r)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0φk(r)

αS

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0γµφk(r)

αV

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0γµφm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0τ3φk(r)

αTS

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0τ3φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0τ3γµφk(r)

αTV

2
δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0τ3γµφm(r′)

+
1

3
βS

∫
d3r
∫
d3r′

∫
d3r′′

∑
k

nkφ
†
k(r)γ0φk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0φm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0φp(r′′)

+
1

4
γS

∫
d3r
∫
d3r′

∫
d3r′′

∫
d3r′′′

∑
k

nkφ
†
k(r)γ0φk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0φm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0φp(r′′)δ(r′′ − r′′′)

×
∑
s

nsφ
†
s(r′′′)γ0φs(r′′′)
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+
1

4
γV

∫
d3r
∫
d3r′

∫
d3r′′

∫
d3r′′′

∑
k

nkφ
†
k(r)γ0γµφk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0γµφm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0γαψp(r′′)δ(r′′ − r′′′)

×
∑
s

nsφ
†
s(r′′′)γ0γαφs(r′′′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)φk(r)
1

2
δS∇2δ(r− r′)

∑
m

nmφm(r′)φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)γµφk(r)
1

2
δV∇2δ(r− r′)

∑
m

nmφm(r′)γµφm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)τ3φk(r)
1

2
δTS∇2δ(r− r′)

∑
m

nmφm(r′)τ3φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)τ3γµφk(r)
1

2
δTV∇2δ(r− r′)

×
∑
m

nmφm(r′)τ3γµφm(r′) +
∫
d3r
∑
k

nkφ
†
k(r)γ0

1

2
(1 + τ3)eγ

0A0(r)φk(r)

− 1

2

∫
d3r(∇A0) · (∇A0). (D.54)

The zeroth component A0(r) of electromagnetic field satisfies the Poison equation

−∇2A0(r) = eρc(r), (D.55)

where the electric charge density ρc(r) is

ρc(r) =
∑
k

nkφ
†
k(r)

1

2
(1 + τ3)φk(r) (D.56)

and its solution is given by
A0(r) = e

4π

∫
d3r′ ρc(r

′)

|r− r′| . (D.57)

Accordingly, the last integral on Eq. (D.54) can be expressed as

−1

2

∫
d3r(∇A0) · (∇A0) = −1

2

∫
d3r∇ · [A0∇A0]︸ ︷︷ ︸

=0

+
1

2

∫
d3rA0∇2A0

= −1

2

∫
d3rA0eρc(r)

= −1

2

∫
d3r
∫
d3r′ρc(r′)

e2

4π

1

|r− r′|ρc(r)
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= −1

2

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)

1

2
(1 + τ3)φk(r)

× e2

4π

1

|r− r′|
∑
m

nmφ
†
m(r′)

1

2
(1 + τ3)φm(r′). (D.58)

The insertion of Eqs. (D.57) and (D.58) on Eq. (D.54) leads to

ERMF[ρ̂, A] =

∫
d3r
∑
k

nkφ
†
k(r)(α · p + βM)φk(r)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0φk(r)

αS

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0γµφk(r)

αV

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0γµφm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0τ3φk(r)

αTS

2
δ(r− r′)

∑
m

nmφ
†
m(r′)γ0τ3φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)γ0τ3γµφk(r)

αTV

2
δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0τ3γµφm(r′)

+
1

3
βS

∫
d3r
∫
d3r′

∫
d3r′′

∑
k

nkφ
†
k(r)γ0φk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0φm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0φp(r′′)

+
1

4
γS

∫
d3r
∫
d3r′

∫
d3r′′

∫
d3r′′′

∑
k

nkφ
†
k(r)γ0φk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0φm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0φp(r′′)δ(r′′ − r′′′)

×
∑
s

nsφ
†
s(r′′′)γ0φs(r′′′)

+
1

4
γV

∫
d3r
∫
d3r′

∫
d3r′′

∫
d3r′′′

∑
k

nkφ
†
k(r)γ0γµφk(r)δ(r− r′)

×
∑
m

nmφ
†
m(r′)γ0γµφm(r′)δ(r′ − r′′)

∑
p

npφ
†
p(r′′)γ0γαψp(r′′)δ(r′′ − r′′′)

×
∑
s

nsφ
†
s(r′′′)γ0γαφs(r′′′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)φk(r)
1

2
δS∇2δ(r− r′)

∑
m

nmφm(r′)φm(r′)
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+

∫
d3r
∫
d3r′

∑
k

nkφk(r)γµφk(r)
1

2
δV∇2δ(r− r′)

∑
m

nmφm(r′)γµφm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)τ3φk(r)
1

2
δTS∇2δ(r− r′)

∑
m

nmφm(r′)τ3φm(r′)

+

∫
d3r
∫
d3r′

∑
k

nkφk(r)τ3γµφk(r)
1

2
δTV∇2δ(r− r′)

×
∑
m

nmφm(r′)τ3γµφm(r′) +
1

2

∫
d3r
∫
d3r′

∑
k

nkφ
†
k(r)

1

2
(1 + τ3)φk(r)

× e2

4π

1

|r− r′|
∑
m

nmφ
†
m(r′)

1

2
(1 + τ3)φm(r′). (D.59)

Let us define Tr[Ô ρ̂(r)] as

Tr[Ô ρ̂(r)] =
∑
k

nkφ
†
k(r)Ôφk(r) (D.60)

and its first functional derivative with respect to ρ̂(r) as

δ

δρ̂(r′) Tr[Ô ρ̂(r)] = Ôδ(r− r′). (D.61)

Using these definitions, the first functional derivative of ERMF with respect to ρ̂(r) reads

δERMF

δρ̂(r1)
= (α · p + βM)(1) + αS

∫
d3rγ0(1)δ(r1 − r) Tr[γ0ρ̂(r)]

+ αV

∫
d3rγ0(1)γ(1)µ δ(r1 − r) Tr[γ0γµρ(r)]

+ αTS

∫
d3rγ0(1)τ (1)3 δ(r1 − r) Tr[γ0τ3ρ̂(r)]

+ αTV

∫
d3rγ0(1)τ (1)3 γ(1)µ δ(r1 − r) Tr[γ0τ3γµρ̂(r)]

+ βS

∫
d3r
∫
d3r′γ0(1)δ(r1 − r) Tr[γ0ρ̂(r)]δ(r− r′) Tr[γ0ρ̂(r′)]

+ γS

∫
d3r
∫
d3r′

∫
d3r′′γ0(1)δ(r1 − r) Tr[γ0ρ̂(r)]

× δ(r− r′) Tr[γ0ρ̂(r′)]δ(r′ − r′′) Tr[γ0ρ̂(r′′)]

+ γV

∫
d3r
∫
d3r′

∫
d3r′′γ0(1)γ(1)µ δ(r1 − r) Tr[γ0γµρ̂(r)]

× δ(r− r′) Tr[γ0γαρ̂(r′)]δ(r′ − r′′) Tr[γ0γαρ̂(r′′)]

+

∫
d3rγ0(1)1

2
δS∇2δ(r1 − r) Tr[γ0ρ̂(r)]
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+

∫
d3rTr[γ0ρ̂(r)]1

2
δS∇2δ(r− r1)γ0(1)

+

∫
d3rγ0(1)γ(1)µ

1

2
δV∇2δ(r1 − r) Tr[γ0γµρ̂(r)]

+

∫
d3rTr[γ0γµρ̂(r)]

1

2
δV∇2δ(r− r1)γ0(1)γµ(1)

+

∫
d3rγ0(1)τ (1)3

1

2
δTS∇2δ(r1 − r) Tr[γ0τ3ρ̂(r)]

+

∫
d3rTr[γ0τ3ρ̂(r)]

1

2
δTS∇2δ(r− r1)γ0(1)τ (1)3

+

∫
d3rγ0(1)τ (1)3 γ(1)µ

1

2
δTV∇2δ(r1 − r) Tr[γ0τ3γµρ̂(r)]

+

∫
d3rTr[γ0τ3γµρ̂(r)]

1

2
δTV∇2δ(r− r1)γ0(1)τ (1)3 γµ(1)

+
1

2

∫
d3r
[
1

2
(1 + τ3)

](1)
e2

4π

1

|r1 − r| Tr
[
1

2
(1 + τ3)ρ̂(r)

]
+

1

2

∫
d3rTr

[
1

2
(1 + τ3)ρ̂(r)

]
e2

4π

1

|r− r1|

[
1

2
(1 + τ3)

](1)
. (D.62)

The second functional derivative of ERMF[ρ̂, A] with respect to ρ̂(r) gives the particle-hole
interaction:

V ph(1, 2) =
δ2ERMF

δρ̂(r1)δρ̂(r2)
= γ0(1)[αS + 2βSρS(r1) + 3γSρ

2
S(r1) + δS∇2]δ(r1 − r2)γ0(2)

+ [γ0(1)γ0(1)][αV + 3γV ρ
2
V (r1) + δV∇2]δ(r1 − r2)[γ0(2)γ0(2)]

+ [γ0(1)γ
(1)
i ][αV + 3γV ρ

2
V (r1) + δV∇2]δ(r1 − r2)[γ0(2)γi(2)]

+ [γ0(1) ⊗ τ (1)3 ][αTS + δTS∇2]δ(r1 − r2)[γ0(2) ⊗ τ (2)3 ]

+ [γ0(1) ⊗ τ (1)3 γ0(1)][αTV + δTV∇2]δ(r1 − r2)[γ0(2) ⊗ τ (2)3 γ0(2)]

+ [γ0(1) ⊗ τ (1)3 γ
(1)
i ][αTV + δTV∇2]δ(r1 − r2)[γ0(2) ⊗ τ3(2)γi(2)]

+

[
1

2
(1 + τ3)

](1)
e2

4π

1

|r1 − r2|

[
1

2
(1 + τ3)

](2)
. (D.63)

Since

γ0γ0 =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= 1⊗ 1, (D.64)

γ0γi =

(
1 0
0 −1

)(
0 σi

−σi 0

)
=

(
0 σi

σi 0

)
= γ5 ⊗ σi, (D.65)
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γ0γi =

(
1 0
0 −1

)(
0 −σi
σi 0

)
=

(
0 −σi
−σi 0

)
= −γ5 ⊗ σi, (D.66)

the particle-hole interaction V ph(1, 2) then becomes

V ph(1, 2) = {γ0 ⊗ 1⊗ 1}(1)[αS + 2βSρS(r1) + 3γSρ
2
S(r1) + δS∇2]δ(r1 − r2)

× {γ0 ⊗ 1⊗ 1}(2)

+ {1⊗ 1⊗ 1}(1)[αV + 3γV ρ
2
V (r1) + δV∇2]δ(r1 − r2){1⊗ 1⊗ 1}(2)

− {γ5 ⊗ σi ⊗ 1}(1)[αV + 3γV ρ
2
V (r1) + δV∇2]δ(r1 − r2){γ5 ⊗ σi ⊗ 1}(2)

+ {γ0 ⊗ 1⊗ τ3}(1)[αTS + δTS∇2]δ(r1 − r2){γ0 ⊗ 1⊗ τ3}(2)

+ {1⊗ 1⊗ τ3}(1)[αTV + δTV∇2]δ(r1 − r2){1⊗ 1⊗ τ3}(2)

− {γ5 ⊗ σi ⊗ τ3}(1)[αTV + δTV∇2]δ(r1 − r2){γ5 ⊗ σi ⊗ τ3}(2)

+

[
1

2
(1 + τ3)

](1)
e2

4π

1

|r1 − r2|

[
1

2
(1 + τ3)

](2)
. (D.67)

The scalar product between two Pauli matrices, viz.

σ
(1)
i σ

(2)
i ≡

∑
i=x,y,z

σ
(1)
i σ

(2)
i , (D.68)

can be expressed in terms of the spherical Pauli matrices σSMS
, i.e.,

σ00 = 1, σ1(+1) = −
1√
2
[σx + iσy], σ10 = σz, σ1(−1) =

1√
2
[σx − iσy], (D.69)

as
σ
(1)
i σ

(2)
i =

∑
MS

(−1)MSσ
(1)
1MS

σ
(2)
1(−MS)

. (D.70)

Using the definition of the spherical Pauli matrices, we can rewrite the particle-hole
interaction V ph(1, 2) as

V ph(1, 2) = {γ0 ⊗ σ00 ⊗ 1}(1)[αS + 2βSρS(r1) + 3γSρ
2
S(r1) + δS∇2]δ(r1 − r2)

× {γ0 ⊗ σ00 ⊗ 1}(2)

+ {1⊗ σ00 ⊗ 1}(1)[αV + 3γV ρ
2
V (r1) + δV∇2]δ(r1 − r2){1⊗ σ00 ⊗ 1}(2)

−
∑
MS

(−1)MS{γ5 ⊗ σ1MS
⊗ 1}(1)[αV + 3γV ρ

2
V (r1) + δV∇2]δ(r1 − r2)

× {γ5 ⊗ σ1(−MS) ⊗ 1}(2)

+ {γ0 ⊗ σ00 ⊗ τ3}(1)[αTS + δTS∇2]δ(r1 − r2){γ0 ⊗ σ00 ⊗ τ3}(2)
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+ {1⊗ σ00 ⊗ τ3}(1)[αTV + δTV∇2]δ(r1 − r2){1⊗ σ00 ⊗ τ3}(2)

−
∑
MS

(−1)MS{γ5 ⊗ σ1MS
⊗ τ3}(1)[αTV + δTV∇2]δ(r1 − r2)

× {γ5 ⊗ σ1(−MS) ⊗ τ3}(2) +
[
1

2
(1 + τ3)

](1)
e2

4π

1

|r1 − r2|

[
1

2
(1 + τ3)

](2)
.(D.71)

The expansion of Dirac delta function

δ(r1 − r2) =
δ(r1 − r2)
r1r2

∑
LML

YLML
(Ω1)Y

∗
LML

(Ω2) (D.72)

results in the term ∑
MS

∑
LML

(−1)MSσ
(1)
SMS

Y
(1)
LML
· σ(2)

S(−MS)
Y

∗(2)
LML

(D.73)

for S = 0 and S = 1. This term can be expressed in terms of the coupling between spherical
spin and harmonics,

[σSYL]JM =
∑

MLMS

⟨LMLSMS|JM⟩YLML
σSMS

, (D.74)

as ∑
MS

∑
LML

(−1)MSσ
(1)
SMS

Y
(1)
LML
· σ(2)

S(−MS)
Y

∗(2)
LML

=
∑
LJM

[σSYL]
(1)
JM [σSYL]

†(2)
JM .

(D.75)

The particle-hole interaction V ph(1, 2) now becomes

V ph(1, 2) =
δ(r1 − r2)
r1r2

∑
LJM

{γ0 ⊗ [σ0YL]JM ⊗ 1}(1)[αS + 2βSρS(r1) + 3γSρ
2
S(r1) + δS∇2]

× {γ0 ⊗ [σ0YL]JM ⊗ 1}†(2)

+
δ(r1 − r2)
r1r2

∑
LJM

{1⊗ [σ0YL]JM ⊗ 1}(1)[αV + 3γV ρ
2
V (r1) + δV∇2]

× {1⊗ [σ0YL]JM ⊗ 1}†(2)

+
δ(r1 − r2)
r1r2

∑
LJM

{γ5 ⊗ [σ1YL]JM ⊗ 1}(1)[−αV − 3γV ρ
2
V (r1)− δV∇2]

× {γ5 ⊗ [σ1YL]JM ⊗ 1}†(2)

+
δ(r1 − r2)
r1r2

∑
LJM

{γ0 ⊗ [σ0YL]JM ⊗ τ3}(1)[αTS + δTS∇2]
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× {γ0 ⊗ [σ0YL]JM ⊗ τ3}†(2)

+
δ(r1 − r2)
r1r2

∑
LJM

{1⊗ [σ0YL]JM ⊗ τ3}(1)[αTV + δTV∇2]

× {1⊗ [σ0YL]JM ⊗ τ3}†(2)

+
δ(r1 − r2)
r1r2

∑
LJM

{γ5 ⊗ [σ1YL]JM ⊗ τ3}(1)[−αTV − δTV∇2]

× {γ5 ⊗ [σ1YL]JM ⊗ τ3}†(2) +
[
1

2
(1 + τ3)

](1)
e2

4π

1

|r1 − r2|

[
1

2
(1 + τ3)

](2)
. (D.76)

For the case of spherical nuclei the total angular momentum J = L + S is a good quantum
number. When S = 0, there is only a single value of L = J for a specific value of J . On the
other hand, there are three possible values of L = J − 1, J, J +1 for S = 1. We assign S = 0

to a scalar and time-like vector and S = 1 to a space-like vector. Then the possible values
of L for each value of S are

L =

{
J, for S = 0,

J ± 1, for S = 1.
(D.77)

Together with two possible values of T = 0, 1, we end up with eight possible combinations
(channels c) of quantum numbers S, L, and T , which are listed in Table D.2.

Table D.2: The list of channels c = (D, S, L, J, M, T ).

c D S L T γD ⊗ [σSYL]JM ⊗ τT0

1 S 0 J 0 γ0 ⊗ [σ0YL]JM ⊗ 1
2 V 0 J 0 1⊗ [σ0YL]JM ⊗ 1
3 V 1 J − 1 0 γ5 ⊗ [σ1YL]JM ⊗ 1
4 V 1 J + 1 0 γ5 ⊗ [σ1YL]JM ⊗ 1
5 S 0 J 1 γ0 ⊗ [σ0YL]JM ⊗ τ3
6 V 0 J 1 1⊗ [σ0YL]JM ⊗ τ3
7 V 1 J − 1 1 γ5 ⊗ [σ1YL]JM ⊗ τ3
8 V 1 J + 1 1 γ5 ⊗ [σ1YL]JM ⊗ τ3

Apart from the Coulomb interaction, the particle-hole interaction V ph(1, 2) takes the
form:

V ph(1, 2) =
δ(r1 − r2)
r1r2

∑
cc′

Γ(1)
c vcc′(r1)Γ

†(2)
c′ (no Coulomb term), (D.78)

where the vertices
Γc = γD ⊗ [σSYL]JM ⊗ τT0 (D.79)
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consist of matrix γD of the types:

γ0 =

(
1 0

0 −1

)
, 1 =

(
1 0

0 1

)
, γ5 =

(
0 1

1 0

)
, (D.80)

the coupling [σSYL]JM between spin S and angular momentum L, and the isospin matrices
τT0 of the types:

τ00 = 1, τ10 = τ3. (D.81)

Using the identity ∫ ∞

0

r2dr
δ(r − r1)
rr1

δ(r − r2)
rr2

vcc′(r) =
δ(r1 − r2)
r1r2

vcc′(r1), (D.82)

the particle-hole interaction (D.78) thus becomes

V ph(1, 2) =

∫ ∞

0

r2dr
∑
cc′

δ(r − r1)
rr1

Γ(1)
c vcc′(r)

δ(r − r2)
rr2

Γ
†(2)
c′

=

∫ ∞

0

r2dr

∫ ∞

0

r′2dr′
∑
cc′

Q(1)
c (r)vcc′(r, r

′)Q
†(2)
c′ (r′), (D.83)

where vcc′(r, r′) = vc(r)δcc′δ(r − r′) and the single-particle operator Q(1)
c (r) is defined as

Q(1)
c (r) =

δ(r − r1)
rr1

Γ(1)
c =

δ(r − r1)
rr1

γ
(1)
D ⊗ [σSYL]

(1)
JM ⊗ τ

(1)
T0 . (D.84)

The effective interactions vc(r) are summarized in Table D.3 and the Laplacian operator ∇2

takes the form:

∇2 =
1

r2
∂

∂r

{
r2
∂

∂r

}
− L(L+ 1)

r2

= −
←−
∂

∂r

−→
∂

∂r
− L(L+ 1)

r2
(D.85)

= − 1

r2

←−
∂

∂r
r2
−→
∂

∂r
− L(L+ 1)− 2

r2
. (D.86)

At this stage one can summarize the important results of this subsection as follows.
Starting from the Lagrangian density L (Eq. (D.2)) with the nonlinear point-coupling
interactions PC-F1 (see Table D.1), one can derive the time-independent Dirac equation for
nucleon

ĥDφk(r) = ϵkφk(r), (D.87)
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Table D.3: The effective interactions vc(r) for each channel.

Character vc(r)
Scalar αS + 2βSρS(r) + 3γSρ

2
S(r) + δS∇2

Timelike vector αV + 3γV ρ
2
V (r) + δV∇2

Spacelike vector −αV − 3γV ρ
2
V (r)− δV∇2

Isoscalar αTS + δTS∇2

Timelike isovector αTV + δTV∇2

Spacelike isovector −αTV − δTV∇2

where the Dirac Hamiltonian ĥD reads

ĥD = α · p + β[M + S(r)] + V (r).

Here the scalar potential S(r) and vector potential V (r) are given by

S(r) = ΣS(r) + τ3ΣTS(r), V (r) = ΣV (r) + τ3ΣTV (r),

with the self-energies Σi(r) (i = S, V, TS, TV ) are

ΣS(r) = αSρS(r) + βSρ
2
S(r) + γSρ

3
S(r) + δS∇2ρS(r),

ΣTS(r) = (αTS + δTS∇2)ρTS(r),
ΣV (r) = αV ρV (r) + γV ρ

3
V (r) + δV∇2ρV (r) + eA0 1

2
(1 + τ3),

ΣTV (r) = (αTV + δTV∇2)ρTV (r).

In obtaining the Dirac equation (D.87), one has made use of the mean-field approximation,
and assumed the time-reversal symmetry of the mean field and the isospin τ3 is a good
quantum number. Together with the various densities ρi(r) (i = S, V, TS, TV ):

ρS(r) =
∑
k

nkφ̄k(r)φk(r),

ρV (r) =
∑
k

nkφ
†
k(r)φk(r),

ρTS(r) =
∑
k

nkφ̄k(r)τ3φk(r),

ρTV (r) =
∑
k

nkφ̄k(r)τ3γ0φk(r),
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and the zeroth component A0(r) of electromagnetic field:

A0(r) = e

4π

∫
d3r′ ρc(r

′)

|r− r′| , ρc(r) =
∑
k

nkφ
†
k(r)

1

2
(1 + τ3)φk(r),

Dirac equation (D.87) can be solved in a self-consistent way to obtain the single-particle
basis, which consists of the Dirac spinors φk(r) and single-particle energies ϵk. Apart from the
Coulomb interaction, the particle-hole interaction V ph(1, 2) has a multi-channel structure:

V ph(1, 2) =

∫ ∞

0

r2dr

∫ ∞

0

r′2dr′
∑
cc′

Q(1)
c (r)vcc′(r, r

′)Q
†(2)
c′ (r′),

where the single-particle operator Q(1)
c (r) is defined according to Eq. (D.84) and Table D.2.

The interaction matrix elements vcc′(r, r′) are diagonal in the channel and radial coordinate
representations, i.e., vcc′(r, r′) = vc(r)δcc′δ(r − r′), where the effective interactions vc(r) are
given in Table D.3.
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Appendix E

Time-reversal Transformation

The time-reversal operator T̂ is defined as [176]

T̂ = ÛK̂, (E.1)

where K̂ is a complex conjugate operator and Û is a unitary operator. The action of operator
T̂ on a single-particle state |jm⟩ with angular momentum quantum numbers (j,m) defines
time-conjugate state |jm⟩ as

|jm⟩ = T̂ |jm⟩ = (−1)j−m|j −m⟩. (E.2)

We summarize the properties of operator T̂ as follows:

A. The time-reversal operator T̂ is an anti-linear operator since the inner product of two
time-conjugate states satisfies:

⟨µ̄|ν̄⟩ = ⟨∗µ| Û †Û︸︷︷︸
=1

|ν∗⟩ = ⟨∗µ|ν∗⟩ = ⟨µ|ν⟩∗ = ⟨ν|µ⟩. (E.3)

B. The Hermitian conjugate of operator T̂ is its own inverse:

T̂ †T̂ = K̂Û †ÛK̂ = K̂K̂ = 1 or T̂ † = T̂ −1. (E.4)

C. For fermions (with half-integer j), operator T̂ satisfies:

T̂ 2|jm⟩ = (−1)j−mT̂ |j −m⟩ = (−1)j−m(−1)j+m|jm⟩ = (−1)2j|jm⟩ or T̂ 2 = −1.
(E.5)
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The time-reversal transformation of a one-body operator F̂ is [165](
T̂ −1F̂ T̂

)†
= (−1)SF̂ , (E.6)

where S = 0 for time-even operators, i.e., scalar and time-like parts of vectors, and S = 1 for
time-odd operators, i.e., space-like components of the vector fields. Accordingly, the matrix
element ⟨µ̄|F̂ |ν̄⟩ can be evaluated as follows:

⟨µ̄|F̂ |ν̄⟩ = ⟨γ̄|ν̄⟩ (by defining ⟨µ̄|F̂ = ⟨γ̄|)
= ⟨γ|ν⟩∗ (by property A of operator T̂ )
= ⟨ν|γ⟩

= ⟨ν|T̂ −1|γ̄⟩

= ⟨ν|T̂ −1F̂ †|µ̄⟩

= ⟨ν|T̂ −1F̂ †T̂ T̂ −1|µ̄⟩

= ⟨ν|T̂ −1F̂ †T̂ |µ⟩

= ⟨ν|
(
T̂ −1F̂ T̂

)†
|µ⟩

⟨µ̄|F̂ |ν̄⟩ = (−1)S⟨ν|F̂ |µ⟩. (E.7)

Similarly, one also obtains

⟨µ̄|F̂ |ν⟩ = ⟨γ̄|ν⟩

= ⟨ν|γ̄⟩∗

= ⟨ν∗|γ̄∗⟩

= ⟨K̂ν|K̂γ̄⟩

= ⟨Û †ÛK̂ν|K̂ÛK̂γ⟩

= ⟨ÛK̂ν|ÛK̂ÛK̂|γ⟩

= ⟨T̂ ν|T̂ 2|γ⟩ (by the definition of operator T̂ )
= −⟨ν̄|γ⟩

= −⟨ν̄|T̂ −1|γ̄⟩

= −⟨ν̄|T̂ −1F̂ †|µ̄⟩

= −⟨ν̄|T̂ −1F̂ †T̂ |µ⟩

= −⟨ν̄|
(
T̂ −1F̂ T̂

)†
|µ⟩

⟨µ̄|F̂ |ν⟩ = −(−1)S⟨ν̄|F̂ |µ⟩. (E.8)

163



Appendix F

Some Useful Formulas From The
Quantum Theory of Angular
Momentum

F.1 Clebsch-Gordan Coefficients
The state vectors |γj1j2jm⟩ are given in terms of the state vectors |γj1m1j2m2⟩ by the
unitary transformation

|γj1j2jm⟩ =
∑

m1,(m2)

|γj1m1j2m2⟩⟨j1m1j2m2|j1j2jm⟩. (F.1)

The additional quantum numbers γ clearly are not included in the coefficients
⟨j1m1j2m2|j1j2jm⟩. These coefficients are known as vector-coupling, Wigner, or
Clebsch-Gordan (C-G) coefficients. The pair j,m are determined by j1 and j2

according to the vector addition rules:

j = j1 + j2, j1 + j2 − 1, j1 + j2 − 2, · · · , |j1 − j2|+ 1, |j1 − j2| (F.2)
m = −j, · · · , j. (F.3)

Since m is fixed by j and m = m1 +m2, m2 is determined by m1 and m. This is the reason
m2 is written in parentheses in the summation symbol. The Clebsch-Gordan coefficients
are zero unless the vector addition rules are satisfied.
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The inverse transformation is

|γj1m1j2m2⟩ =
∑
j

|γj1j2jm⟩⟨j1j2jm|j1m1j2m2⟩, (F.4)

where the coefficients ⟨j1j2jm|j1m1j2m2⟩ are the complex conjugates of the corresponding
coefficients ⟨j1m1j2m2|j1j2jm⟩:

⟨j1j2jm|j1m1j2m2⟩ = ⟨j1m1j2m2|j1j2jm⟩∗. (F.5)

The summation is over j only because m is fixed by the fixed values of m1 and m2. The
Clebsch-Gordan coefficients are often abbreviated by ⟨j1m1j2m2|jm⟩ and ⟨jm|j1m1j2m2⟩.
The Clebsch-Gordan coefficients are usually taken to be real:

⟨jm|j1m1j2m2⟩ = ⟨j1m1j2m2|jm⟩. (F.6)

The orthogonality relations of the Clebsch-Gordan coefficients are∑
j

⟨j1m′
1j2m

′
2|jm⟩⟨j1m1j2m2|jm⟩ = δm′

1m1
δm′

2,m2
, (F.7)∑

m1,(m2)

⟨j1m1j2m2|j′m′⟩⟨j1m1j2m2|jm⟩ = δj′jδm′m. (F.8)

Setting j′ = j and m′ = m, the last equation gives orthonormality relation∑
m1,(m2)

|⟨j1m1j2m2|jm⟩|2 = 1. (F.9)

The symmetry properties of Clebsch-Gordan coefficients are given as follows:

1. The cyclic exchange of the type 123→ 213 introduces the phase (−1)j1+j2−j3 .

⟨j1m1j2m2|j3m3⟩ = (−1)j1+j2−j3⟨j2m2j1m1|j3m3⟩. (F.10)

2. The cyclic exchange of the type 123→ 3(−2)1 introduces the phase (−1)j1−j3+m2 and
a multiplication factor.

⟨j1m1j2m2|j3m3⟩ = (−1)j1−j3+m2

√
2j3 + 1

2j1 + 1
⟨j3m3j2(−m2)|j1m1⟩. (F.11)

3. The cyclic exchange of the type 123 → (−2)31 gives the phase (−1)j2+m2 and a
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multiplication factor.

⟨j1m1j2m2|j3m3⟩ = (−1)j2+m2

√
2j3 + 1

2j1 + 1
⟨j2(−m2)j3m3|j1m1⟩. (F.12)

4. The reverse of the signs of all three m’s gives the phase (−1)j1+j2−j3 .

⟨j1m1j2m2|j3m3⟩ = (−1)j1+j2−j3⟨j1(−m1)j2(−m2)|j3(−m3)⟩. (F.13)

F.2 3-j Symbol and the Wigner-Eckart Theorem
The 3-j symbol of Wigner is defined as(

j1 j2 j3

m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

⟨j1m1j2m2|j1j2j3(−m3)⟩. (F.14)

The symmetry properties of 3-j symbol are given as follows:

1. The numerical value of a 3-j symbol remains unchanged under an even permutation.(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)
. (F.15)

2. The odd permutation gives multiplication factor of (−1)j1+j2+j3 .

(−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j1 j3

m2 m1 m3

)
=

(
j1 j3 j2

m1 m3 m2

)

=

(
j3 j2 j1

m3 m2 m1

)
. (F.16)

3. The reverse of the signs of all three m’s introduces multiplication factor of (−1)j1+j2+j3 .(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (F.17)

The orthogonality relations of 3-j symbol are

∑
j3,m3

(2j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′
1 m′

2 m3

)
= δm′

1m1
δm′

2m2
, (F.18)
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∑
m1,(m2)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j′3

m1 m2 m′
3

)
=

1

2j3 + 1
δj3j′3δm3m′

3
. (F.19)

Some useful formula for calculating 3-j symbol are(
J J 0

M −M 0

)
=

(−1)J−M

√
2J + 1

, (F.20)(
J J 1

M −M 0

)
= (−1)J−M M√

(2J + 1)(J + 1)J
, (F.21)(

J J 1

M −M − 1 1

)
= (−1)J−M

√
2(J −M)(J +M + 1)

(2J + 2)(2J + 1)2J
(F.22)(

j1 j2 j3

m1 m2 m3

)
= 0, if m1 +m2 ̸= −m3. (F.23)

The Wigner-Eckart Theorem can be stated as follows:

Let T̂ k
q be a spherical tensor operator. The projection quantum numbers

dependence of the matrix element ⟨γ′j′m′|T̂ k
q |γjm⟩ is solely contained in the

Clebsch-Gordan coefficient.

⟨γ′j′m′|T̂ k
q |γjm⟩ = (−1)j−m ⟨j′m′j(−m)|j′jkq⟩√

2k + 1
⟨γ′j′||T̂ k||γj⟩. (F.24)

Here, the matrix element ⟨γ′j′||T̂ k||γj⟩ is called the ”double-barred” or ”reduced”
matrix element. Instead of Eq. (F.24), one often uses the following statement of the
Wigner-Eckart theorem:

⟨γ′j′m′|T̂ k
q |γjm⟩ = (−1)j′−m′

(
j′ k j

−m′ q m

)
⟨γ′j′||T̂ k||γj⟩. (F.25)

F.3 Spin Angular Tensor Operator
The spin-angular tensor operator TJLSM are defined as

TJLSM(n)σ1σ2 =
∑
mµ

⟨LmSµ|JM⟩YLm(n)(σSµ)σ1σ2 , (F.26)

where n = r/r, YLm(n) are spherical harmonics functions, and σSµ are the spherical spin
Pauli matrices. Here, m, µ, and M have values

m = −L, · · · , L;
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µ = −S, · · · , S;

M = m+ µ = −J, · · · , J. (F.27)

For S = 0 and S = 1, the spherical spin Pauli matrices are given by

σ00 =

(
1 0

0 1

)
, (F.28)

σ10 = σz =

(
1 0

0 −1

)
, (F.29)

σ1(+1) = − 1√
2
(σx + iσy) = −

1√
2

(
0 2

0 0

)
, (F.30)

σ1(−1) =
1√
2
(σx − iσy) =

1√
2

(
0 0

2 0

)
. (F.31)

The components of spherical spin Pauli matrices can be written compactly as

(σSµ)σ1σ2 =
√

2(2S + 1)(−1)
1
2
−σ1

(
1
2

1
2

S

σ2 −σ1 µ

)
, (F.32)

where σ1, σ2 = ±1
2
. Inserting S = 0 and S = 1, one can reproduce (F.28)-(F.31). Since the

Clecbsch-Gordan coefficients are real, (F.32) suggests that the spherical spin Pauli matrices
are also real. The spherical spin Pauli matrices satisfy orthogonality relation:

1

2
Tr(σ†

S1µ1
σS2µ2) = δS1S2δµ1µ2 . (F.33)

The orthogonality relation of the spherical harmonics functions YLm(n) is∫
dn Y ∗

Lm(n)YL′m′(n) = δLL′δmm′ . (F.34)

Applying (F.33) and (F.34), we obtain the orthogonality relation for the spin-angular tensor
operator TJLSM(n):

1

2
Tr

∫
dn T †

J1L1S1M1
(n)TJ2L2S2M2(n) = δJ1J2δM1M2δL1L2δS1S2 . (F.35)

The completeness relations of the spin-angular tensor operator are

∑
M

T †
JLSM(n)TJLSM(n) =

2J + 1

4π
, (F.36)
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1

2

∑
JLSM

T ∗
JLSM(n)σ1σ2TJLSM(n′)σ′

1σ
′
2

= δ(n− n′)δσ1σ′
1
δσ2σ′

2
. (F.37)

From (F.26), we obtain

T †
JLSM(n)σ1σ2 =

∑
mµ

⟨JM |LmSµ⟩Y ∗
Lm(n)(σ

†
Sµ)σ1σ2

T †
JLS(−M)(n)σ1σ2 =

∑
mµ

⟨J(−M)|LmSµ⟩Y ∗
Lm(n)(σ

†
Sµ)σ1σ2

=
∑
mµ

⟨LmSµ|J(−M)⟩Y ∗
Lm(n)(σ

†
Sµ)σ1σ2 (C-G coefficients are real)

T †
JLS(−M)(n)σ1σ2 = (−1)L+S−J

∑
mµ

⟨L(−m)S(−µ)|JM⟩(−1)−mYL(−m)(n)(σ
†
Sµ)σ1σ2 ,

(F.38)

where we have used the fourth symmetry property of the C-G coefficients and the symmetry
property of the spherical harmonics functions:

YL(−m)(n) = (−1)mY ∗
Lm(n). (F.39)

We can evaluate (σ†
Sµ)σ1σ2 as follows:

(σ†
Sµ)σ1σ2 = (σSµ)

∗
σ2σ1

=
√

2(2S + 1)(−1)
1
2
−σ2

(
1
2

1
2

S

σ1 −σ2 µ

)∗

=
√
2(2S + 1)(−1)

1
2
−σ2

(
1
2

1
2

S

σ1 −σ2 µ

)

=
√
2(2S + 1)(−1)

1
2
−σ2(−1)

1
2
+
1
2
+S

(
1
2

1
2

S

−σ1 σ2 −µ

)

=
√
2(2S + 1)(−1)

1
2
−σ2(−1)

1
2
+
1
2
+S(−1)

1
2
+
1
2
+S

(
1
2

1
2

S

σ2 −σ1 −µ

)

=
√
2(2S + 1)(−1)

1
2
−σ2

(
1
2

1
2

S

σ2 −σ1 −µ

)

=
√
2(2S + 1)(−1)

1
2
−σ1(−1)−µ

(
1
2

1
2

S

σ2 −σ1 −µ

)
(σ†

Sµ)σ1σ2 = (−1)−µ(σS(−µ))σ1σ2 . (F.40)

169



Introducing the notation m′ = −m = −L, · · · , L and µ′ = −µ = −S, · · · , S, (F.38) becomes

T †
JLSM(n)σ1σ2 = (−1)L+S−J

∑
mµ

⟨L(−m)S(−µ)|J(−M)⟩(−1)−m−µYL(−m)(n)(σS(−µ))σ1σ2

= (−1)L+S−J
∑
m′µ′

⟨Lm′Sµ′|J(−M)⟩(−1)−MYLm′(n)(σSµ′)σ1σ2

= (−1)−2J︸ ︷︷ ︸
=1

(−1)L+S+J−MTJLS(−M)(n)σ1σ2

T †
JLSM(n)σ1σ2 = (−1)L+S+J−MTJLS(−M)(n)σ1σ2 . (F.41)

This is one of the symmetry properties of spin angular tensor operators. Another symmetry
property of TJLSM(n) is

TJLSM(n)σ1σ2 = (−1)S+
1
2
−σ1+

1
2
−σ2TJLSM(n)(−σ2)(−σ1). (F.42)

Introducing a tensor spherical harmonics

Ωjkℓkmk
(n, σ) =

∑
mℓ,ms

⟨ℓmℓ
1
2
ms|jm⟩Yℓmℓ

(n)χ1
2
ms

(σ), (F.43)

the matrix element of spin angular tensor operator TJLSM(n)σ1σ2 is defined as

⟨jkℓkmk|TJLSM |jk′ℓk′mk′⟩ =

∫
dn
∑
σ1σ2

Ω∗
jkℓkmk

(n, σ1)TJLSM(n)σ1σ2Ωjk′ℓk′mk′
(n, σ2).

(F.44)

Using the Wigner-Eckart theorem, one obtains

⟨jkℓkmk|TJLSM |jk′ℓk′mk′⟩ = (−1)jk−mk

(
jk J jk′

−mk M mk′

)
⟨jkℓk||TJLS||jk′ℓk′⟩, (F.45)

where the reduced matrix element ⟨jkℓk||TJLS||jk′ℓk′⟩ reads

⟨jkℓk||TJLS||jk′ℓk′⟩

=
1

2
[1 + (−1)L+ℓk+ℓk′ ](−1)S+jk′−

1
2

√
(2J + 1)(2L+ 1)(2jk + 1)(2jk′ + 1)

4π

×

(
jk jk′ J
1
2
−1

2
0

){(
J L S

0 0 0

)
+

√
S(S + 1)

J(J + 1)

(
J L S

1 0 −1

)
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× [(ℓk − jk)(2jk + 1) + (−1)J+L+S(ℓk′ − jk′)(2jk′ + 1)]

}
. (F.46)

Using the symmetry property (F.41) and the Wigner-Eckart theorem, the matrix element
⟨jk′ℓk′mk′ |T †

JLSM |jkℓkmk⟩ can be written as

⟨jk′ℓk′mk′ |T †
JLSM |jkℓkmk⟩ = (−1)L+S+J−M⟨jk′ℓk′mk′|TJLS(−M)|jkℓkmk⟩

= (−1)L+S+J−M(−1)jk′−mk′

(
jk′ J jk

−mk′ −M mk

)
× ⟨jk′ℓk′||TJLS||jkℓk⟩

= (−1)L+S+J−M(−1)jk′−mk′

(
jk J jk′

−mk M mk′

)
× ⟨jk′ℓk′||TJLS||jkℓk⟩. (F.47)

Using the identity ⟨jkℓkmk|TJLSM |jk′ℓk′mk′⟩ = ⟨jk′ℓk′mk′ |T †
JLSM |jkℓkmk⟩∗ and the fact that

the reduced matrix element ⟨jkℓk||TJLS||jk′ℓk′⟩ is real, one can prove the following symmetry
property:

⟨jkℓk||TJLS||jk′ℓk′⟩ = (−1)L+S+J(−1)jk′−jk⟨jk′ℓk′||TJLS||jkℓk⟩. (F.48)

Applying this result to Eq. (F.47), one obtains

⟨jk′ℓk′mk′ |T †
JLSM |jkℓkmk⟩ = (−1)jk′−jk(−1)L+S+J(−1)jk−mk′−M

(
jk J jk′

−mk M mk′

)
× ⟨jk′ℓk′||TJLS||jkℓk⟩

= (−1)jk−mk

(
jk J jk′

−mk M mk′

)
⟨jkℓk||TJLS||jk′ℓk′⟩. (F.49)
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Appendix G

Reduced Matrix Elements of the
Particle-hole Free Response Function
in the Continuum Relativistic QRPA

Using the definition of the Dirac spinor:

Ψk(r, σ, t) =
[
Fκk

(r)Ωjkℓkmk
(n, σ)

iGκk
(r)Ωjk ℓ̃kmk

(n, σ)

]
χ 1

2 τk
(t) (G.1)

the matrix element Qc
kk′(r) given by Eq. (6.36) now reads:

Qc
kk′(r) ≡ ⟨k|Qc(r)|k′⟩

=

∫
dn1

∑
t1t′1

∑
σ1,σ′

1

Ψ†
k(r,n1, σ1, t1)γD ⊗ TJLSM(n1)σ1σ′

1
⊗ (τT0)t1t′1

× Ψk′(r,n1, σ
′
1, t

′
1),

=

∫
dn1

∑
t1t′1

∑
σ1,σ′

1

χ∗
1
2
τk
(t1)

(
Ω∗

jkℓkmk
(n1, σ1)F

∗
κk
(r) −iΩ∗

jk ℓ̃kmk
(n1, σ1)G

∗
κk
(r)

)

× γD ⊗ TJLSM(n1)σ1σ′
1
⊗ (τT0)t1t′1

(
Fκk′

(r)Ωjk′ℓk′mk′
(n1, σ

′
1)

iGκk′
(r)Ωjk′ ℓ̃k′mk′

(n1, σ
′
1)

)
χ1

2
τk′
(t′1)

Qc
kk′(r) =

∑
t1t′1

χ∗
1
2
τk
(t1)(τT0)t1t′1χ1

2
τk′
(t′1)

×
∫
dn1

∑
σ1,σ′

1

(
Ω∗

jkℓkmk
(n1, σ1)F

∗
κk
(r) −iΩ∗

jk ℓ̃kmk
(n1, σ1)G

∗
κk
(r)

)

× γD ⊗ TJLSM(n1)σ1σ′
1

(
Fκk′

(r)Ωjk′ℓk′mk′
(n1, σ

′
1)

iGκk′
(r)Ωjk′ ℓ̃k′mk′

(n1, σ
′
1)

)
. (G.2)
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Let us define an isospin charge qTisospin as

qTisospin =
∑
t1t′1

χ∗
1
2
τk
(t1)(τT0)t1t′1χ1

2
τk′
(t′1). (G.3)

There are two operators τT0, i.e., τ00 = 1 and τ10 = τ3, which are diagonal. Since

χ1
2
τk
(t1) = δt1τk , (G.4)

the isospin charge qTisospin takes the form

qTisospin =
∑
t1t′1

δt1τk(τT0)t1t′1δt′1τk′ = (τT0)τkτkδτkτk′ , (G.5)

which implies the condition τk = τk′ . There are two values of τk, i.e., +1/2 for neutrons and
-1/2 for protons. For the case of isoscalar (τ00 = 1), we obtain

q0isospin = (τ00)+1/2,+1/2 = 1 (G.6)

for neutron and

q0isospin = (τ00)−1/2,−1/2 = 1 (G.7)

for proton. For the case of isovector (τ10 = τ3), we obtain

q1isospin = (τ10)+1/2,+1/2 = 1 (G.8)

for neutron and
q1isospin = (τ10)−1/2,−1/2 = −1 (G.9)

for proton. Therefore, neutrons always have the isospin charge +1, whereas protons have
the isospin charge +1 (−1) for isoscalar (isovector) case.

It is worthwhile to work out the matrix elements Qc
kk′(r) for specific channels. Let us

begin with channel c = 1. Channel c = 1 has the Dirac matrix γD = γ0, spin angular tensor
TJLSM(n)σ1σ′

1
= ([σ0YJ ]JM)σ1σ′

1
, and q0isospin = 1 for protons and neutrons. For c = 1, the

matrix element Q1
kk′(r) takes the form

Q1
kk′(r) = F ∗

κk
(r)Fκk′

(r)

∫
dn1

∑
σ1,σ′

1

Ω∗
jkℓkmk

(n1, σ1)([σ0YJ ]JM)σ1σ′
1
Ωjk′ℓk′mk′

(n1, σ
′
1)
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− G∗
κk
(r)Gκk′

(r)

∫
dn1

∑
σ1,σ′

1

Ω∗
jk ℓ̃kmk

(n1, σ1)([σ0YJ ]JM)σ1σ′
1
Ωjk′ ℓ̃k′mk′

(n1, σ
′
1)

= F ∗
κk
(r)Fκk′

(r)⟨jkℓkmk|[σ0YJ ]JM |jk′ℓk′mk′⟩

− G∗
κk
(r)Gκk′

(r)⟨jkℓ̃kmk|[σ0YJ ]JM |jk′ ℓ̃k′mk′⟩. (G.10)

By the Wigner-Eckart theorem, the matrix element Q1
kk′(r) reads

Q1
kk′(r) = (−1)jk−mk

(
jk J jk′

−mk M mk′

)
Q1

(kk′)(r), (G.11)

where the reduced matrix element Q1
(kk′)(r) is given by

Q1
(kk′)(r) = F ∗

κk
(r)Fκk′

(r)⟨jkℓk||[σ0YJ ]J ||jk′ℓk′⟩

− G∗
κk
(r)Gκk′

(r)⟨jkℓ̃k||[σ0YJ ]J ||jk′ ℓ̃k′⟩. (G.12)

For channel c = 2, one still has an isospin charge q0isospin = 1 and the spin angular tensor
TJLSM(n)σ1σ′

1
= ([σ0YJ ]JM)σ1σ′

1
, except that γD = 14×4. For channel c = 2, one obtains

Q2
kk′(r) = (−1)jk−mk

(
jk J jk′

−mk M mk′

)
Q2

(kk′)(r), (G.13)

where the reduced matrix element Q2
(kk′)(r) is given by

Q2
(kk′)(r) = F ∗

κk
(r)Fκk′

(r)⟨jkℓk||[σ0YJ ]J ||jk′ℓk′⟩

+ G∗
κk
(r)Gκk′

(r)⟨jkℓ̃k||[σ0YJ ]J ||jk′ ℓ̃k′⟩. (G.14)

For channel c = 3 with an isospin charge q0isospin = 1, the spin angular tensor TJLSM(n)σ1σ′
1
=

([σ1YJ−1]JM)σ1σ′
1
, and the Dirac matrix γD = γ5, the matrix element Q3

kk′(r) reads

Q3
kk′(r) = (−1)jk−mk

(
jk J jk′

−mk M mk′

)
Q3

(kk′)(r), (G.15)

where the reduced matrix element Q3
(kk′)(r) takes the form

Q3
(kk′)(r) = −iG∗

κk
(r)Fκk′

(r)⟨jkℓ̃k||[σ1YJ−1]J ||jk′ℓk′⟩

+ iF ∗
κk
(r)Gκk′

(r)⟨jkℓk||[σ1YJ−1]J ||jk′ ℓ̃k′⟩. (G.16)
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Therefore, a matrix element Qc
kk′(r) for a specific channel c has a generic form:

Qc
kk′(r) = (−1)jk−mk

(
jk J jk′

−mk M mk′

)
Qc

(kk′)(r), (G.17)

where Qc
(kk′)(r) is the corresponding reduced matrix element, which has included the isospin

charge qTisospin implicitly.
The matrix element Qc′∗

kk′(r
′) is given by

Qc′∗
kk′(r

′) =

∫
dn2

∑
t2,t′2

∑
σ2,σ′

2

Ψ†
k′(r

′,n2, σ2, t2)γD′ ⊗ T †
J ′L′S′M ′(n2)σ2σ′

2
⊗ (τT0)t2t′2

× Ψk(r
′,n2, σ

′
2, t

′
2)

= qT
′

isospin

∫
dn2

∑
σ2,σ′

2

(
Ω∗

jk′ℓk′mk′
(n2, σ2)F

∗
κk′

(r) −iΩ∗
jk′ ℓ̃k′mk′

(n2, σ2)G
∗
κk′

(r′)
)

× γD′ ⊗ T †
J ′L′S′M ′(n1)σ2σ′

2

(
Fκk

(r′)Ωjkℓkmk
(n2, σ

′
2)

iGκk
(r′)Ωjk ℓ̃kmk

(n2, σ
′
2)

)
. (G.18)

With the aid of Eq. (F.49), one can deduce

Qc′∗
kk′(r

′) = (−1)jk−mk

(
jk J ′ jk′

−mk M ′ mk′

)
Qc′∗

(kk′)(r
′), (G.19)

where, for example, the reduced matrix element Qc′∗
(kk′)(r

′) takes the form

Q1∗
(kk′)(r

′) = F ∗
κk′

(r′)Fκk
(r′)⟨jkℓk||[σ0YJ ′ ]J ′||jk′ℓk′⟩

− G∗
κk′

(r′)Gκk
(r′)⟨jkℓ̃k||[σ0YJ ′ ]J ′||jk′ ℓ̃k′⟩. (G.20)

for channel c′ = 1.
The reduced spectral free response function given by Eq. (6.53) reads

R0cc′

2qp(r, r
′, ω) =

∑
k<k′

{
Qc∗

kk̄′
(r)ηSkk′Qc′

kk̄′
(r′)ηS

′

kk′

ω − Ek − Ek′
−
Qc∗

k̄′k
(r)ηSkk′Qc′

k̄′k
(r′)ηS

′

kk′

ω + Ek + Ek′

}
. (G.21)

The numerator of the first term on the right-hand side can be evaluated using the Wigner-
Eckart theorem and the definition of time-conjugate state (E.2) as follows:

Qc∗
kk̄′(r) = (−1)jk−mk(−1)jk′−mk′

(
jk J jk′

−mk M −mk′

)
Qc∗

(kk′)(r)
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Qc′

kk̄′(r
′) = (−1)jk−mk(−1)jk′−mk′

(
jk J ′ jk′

−mk M ′ −mk′

)
Qc′

(kk′)(r
′)∑

mk,mk′

Qc∗
kk̄′(r)Q

c′

kk̄′(r
′) =

∑
mk,mk′

(−1)2jk−2mk︸ ︷︷ ︸
=1

(−1)2jk′−2mk′︸ ︷︷ ︸
=1

Qc∗
(kk′)(r)Qc′

(kk′)(r
′)

×

(
jk J jk′

−mk M −mk′

)(
jk J ′ jk′

−mk M ′ −mk′

)

=
∑

mk,mk′

(
jk J jk′

−mk M −mk′

)(
jk J ′ jk′

−mk M ′ −mk′

)
× Qc∗

(kk′)(r)Qc′

(kk′)(r
′)∑

mk,mk′

Qc∗
kk̄′(r)Q

c′

kk̄′(r
′) =

δJJ ′δMM ′

2J + 1
Qc∗

(kk′)(r)Qc′

(kk′)(r
′). (G.22)

Similarly, the numerator of the second term on the right-hand side can be evaluated as
follows:

Qc∗
k̄′k(r) = −(−1)SQc∗

k̄k′(r) (by Eq. (E.8))

= −(−1)S(−1)jk+mk(−1)jk−mk

(
jk J jk′

mk M mk′

)
Qc∗

(kk′)(r)

Qc∗
k̄′k(r) = −(−1)S(−1)2jk

(
jk J jk′

mk M mk′

)
Qc∗

(kk′)(r)

Qc′

k̄′k(r) = −(−1)S′
(−1)2jk

(
jk J ′ jk′

mk M ′ mk′

)
Qc′

(kk′)(r)

∑
mk,mk′

Qc∗
k̄′k(r)Q

c′

k̄′k(r
′) = (−1)S+S′ ∑

mk,mk′

(−1)4jk︸ ︷︷ ︸
=1

(
jk J jk′

mk M mk′

)(
jk J ′ jk′

mk M ′ mk′

)
× Qc∗

(kk′)(r)Qc′

(kk′)(r)

= (−1)S+S′ δJJ ′δMM ′

2J + 1
Qc∗

(kk′)(r)Qc′

(kk′)(r
′). (G.23)

Therefore, the reduced spectral free response function now can be written as

R0cc′

2qp(r, r
′, ω) =

∑
(k<k′)

∑
mk,mk′

{
Qc∗

kk̄′
(r)ηS(kk′)Qc′

kk̄′
(r′)ηS

′

(kk′)

ω − E(k) − E(k′)
−
Qc∗

k̄′k
(r)ηS(kk′)Qc′

k̄′k
(r′)ηS

′

(kk′)

ω + E(k) + E(k′)

}

=
δJJ ′δMM ′

2J + 1

∑
(k≤k′)

Qc∗
(kk′)(r)η

S
(kk′)Qc′

(kk′)(r
′)ηS

′

(kk′)

1 + δ(kk′)
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×
{

1

ω − E(k) − E(k′)
− (−1)S+S′

ω + E(k) + E(k′)

}
(G.24)

Analogous to the reduced spectral free response function R0cc′
2qp(r, r

′, ω), the reduced free
response function R0cc′

corr(r, r
′, ω) defined by Eq. (6.60) now reads

R0cc′

corr(r, r
′, ω) =

δJJ ′δMM ′

2J + 1

∑
(k≤k′)

Qc∗
(kk′)(r)Qc′

(kk′)(r
′)

1 + δ(kk′)

×

{
v2(k)

[
(−1)S+S′

ω − (E(k) + ϵ(k′) − λ)
− 1

ω + (E(k) + ϵ(k′) + λ)

]

+ v2(k′)

[
1

ω − (E(k′) + ϵ(k) − λ)
− (−1)S+S′

ω + (E(k′) + ϵ(k) − λ)

]}
. (G.25)

To evaluate the reduced non-spectral free response function R0cc′
cont(r, r

′, ω),

R0cc′

cont(r, r
′, ω) =

∑
k

v2k

∫
dx1

∫
dx2 Ψ

†
k(x1)Q

(1)†
c (r)

{
G(x1, x2;ω − Ek + λ)

+ (−1)S+S′
G(x1, x2;−ω − Ek + λ)

}
Q(2)

c′ (r
′)Ψk(x2), (G.26)

one needs to evaluate the integral∫
dx1

∫
dx2 Ψ

†
k(x1)Q

(1)†
c (r)G(x1, x2;E)Q(2)

c′ (r
′)Ψk(x2). (G.27)

Here the relativistic single-particle Green’s function G(x1, x2;E) takes the form (W = 1):

G(x1, x2;E) =
∑
k′

(
Fκk′

(r1;E)Ωjk′ℓk′mk′
(n1, σ1)

iGκk′
(r1;E)Ωjk′ ℓ̃k′mk′

(n1, σ1)

)
χ 1

2 τk′
(t1)

× χ∗
1
2 τk′

(t2)
(

Ω∗
jk′ℓk′mk′

(n2, σ2)P∗
κk′

(r2;E) −iΩ∗
jk′ ℓ̃k′mk′

(n2, σ2)Q∗
κk′

(r2;E)
)
,

(G.28)

for r1 < r2, and

G(x1, x2;E) =
∑
k′

(
Pκk′

(r1;E)Ωjk′ℓk′mk′
(n1, σ1)

iQκk′
(r1;E)Ωjk′ ℓ̃k′mk′

(n1, σ1)

)
χ 1

2 τk′
(t1)

× χ∗
1
2 τk′

(t2)
(

Ω∗
jk′ℓk′mk′

(n2, σ2)F∗
κk′

(r2;E) −iΩ∗
jk′ ℓ̃k′mk′

(n2, σ2)G∗κk′
(r2;E)

)
,

(G.29)
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for r1 > r2. Let us evaluate the integral (G.27) for the case of r1 < r2. Inserting Eq. (G.28)
into Eq. (G.27) yields∫

dx1

∫
dx2 Ψ

†
k(x1)Q

(1)†
c (r)G(x1, x2;E)Q(2)

c′ (r
′)Ψk(x2) :=

∑
k′

Mc†
kk′(r;E)M

c′

k′k(r
′;E),

where the matrix elements Mc†
kk′(r;E) and Mc′

k′k(r
′;E) are respectively defined as

Mc†
kk′(r;E) =

∫
d3r1

∑
σ1,σ′

1

∑
t1,t′1

Ψ†
k(r1, σ1, t1)Q(1)†

c (r)

(
Fκk′

(r1;E)Ωjk′ℓk′mk′
(n1, σ

′
1)

iGκk′
(r1;E)Ωjk′ ℓ̃k′mk′

(n1, σ
′
1)

)
× χ 1

2 τk′
(t′1) (G.30)

and

Mc′

k′k(r
′;E) =

∫
d3r2

∑
σ2σ′

2

∑
t2,t′2

χ∗
1
2 τk′

(t2)

×
(

Ω∗
jk′ℓk′mk′

(n2, σ2)P∗
κk′

(r2;E) −iΩ∗
jk′ ℓ̃k′mk′

(n2, σ2)Q∗
κk′

(r2;E)
)

× Q(2)
c′ (r

′)Ψk(r2, σ′
2, t

′
2). (G.31)

Making use of Eq. (G.1) and the definition of the one-body operator Q(1)†
c (r),

Q(1)†
c (r) =

δ(r − r1)
rr1

γ
(1)
D ⊗ T

†
JLSM(n1)σ1σ′

1
(τT0)t1t′1 , (G.32)

one arrives at

Mc†
kk′(r;E) = qTisospin

∫
dn1

∑
σ1,σ′

1

(
Ω∗

jkℓkmk
(n1, σ1)F

∗
κk
(r) −iΩ∗

jk ℓ̃kmk
(n1, σ1)G

∗
κk
(r)

)

× γ
(1)
D ⊗ T

†
JLSM(n1)σ1σ′

1

(
Fκk′

(r1;E)Ωjk′ℓk′mk′
(n1, σ

′
1)

iGκk′
(r1;E)Ωjk′ ℓ̃k′mk′

(n1, σ
′
1)

)
χ 1

2 τk′
(t′1). (G.33)

As before, the Wigner-Eckart theorem suggests that one can write the matrix element
Mc†

kk′(r;E) in a generic form:

Mc†
kk′(r;E) = (−1)jk′−mk′

(
jk′ J jk

−mk′ M mk

)
Mc∗

(k′k)(r;E), (G.34)
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where, for example, the reduced matrix element Mc∗
(k′k)(r;E) takes the form

M1∗
(k′k)(r;E) = F ∗

κk
(r)Fκk′

(r;E)⟨jk′ℓk′ ||[σ0YJ ]J ||jkℓk⟩

− G∗
κk
(r)Gκk′

(r;E)⟨jk′ ℓ̃k′||[σ0YJ ]J ||jkℓ̃k⟩. (G.35)

for c = 1. Similarly, the application of the Wigner-Eckart theorem to the matrix element
Mc′

k′k(r
′;E) results in

Mc′

k′k(r
′;E) = (−1)jk′−mk′

(
jk′ J ′ jk

−mk′ M ′ mk

)
Mc′

(k′k)(r
′;E), (G.36)

where the reduced matrix element Mc′

(k′k)(r
′;E) reads

M1
(k′k)(r

′;E) = P∗
κk′

(r′;E)Fκk
(r′)⟨jk′ℓk′ ||[σ0YJ ]J ||jkℓk⟩

− Q∗
κk′

(r′;E)Gκk
(r′)⟨jk′ ℓ̃k′||[σ0YJ ]J ||jkℓk⟩ (G.37)

for c′ = 1. Therefore, the reduced non-spectral free response function R0cc′
cont(r, r

′, ω) takes
the form

R0cc′

cont(r, r
′, ω) =

∑
(k,k′)

v2(k)
∑

mk,mk′

(−1)2jk′−2mk′︸ ︷︷ ︸
=1

(
jk′ J jk

−mk′ M mk

)(
jk′ J ′ jk

−mk′ M ′ mk

)

×
{
Mc∗

(k′k)(r;ω − E(k) + λ)Mc′

(k′k)(r
′;ω − E(k) + λ)

+ (−1)S+S′Mc∗
(k′k)(r;−ω − E(k) + λ)Mc′

(k′k)(r
′;−ω − E(k) + λ)

}
=

δJJ ′δMM ′

2J + 1

∑
(k,k′)

v2(k)

{
Mc∗

(k′k)(r;ω − E(k) + λ)Mc′

(k′k)(r
′;ω − E(k) + λ)

+ (−1)S+S′Mc∗
(k′k)(r;−ω − E(k) + λ)Mc′

(k′k)(r
′;−ω − E(k) + λ)

}
(G.38)

for r < r′. For r > r′, the response R0cc′
cont(r, r

′, ω) reads

R0cc′

cont(r, r
′, ω) =

δJJ ′δMM ′

2J + 1

∑
(k,k′)

v2(k)

{
N c∗

(k′k)(r;ω − E(k) + λ)N c′

(k′k)(r
′;ω − E(k) + λ)

+ (−1)S+S′N c∗
(k′k)(r;−ω − E(k) + λ)N c′

(k′k)(r
′;−ω − E(k) + λ)

}
, (G.39)

where the expression for the matrix elements N c∗
(k′k)(r;E) and N c′

(k′k)(r
′;E) can be derived

from Eqs. (G.30) and (G.31) by interchanging (F ,G) and (P,Q).
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