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Tiba Zaki Abdulhameed, Ph.D.

Western Michigan University, 2020

Significant advances have been made with Modern Standard Arabic (MSA) Automatic

Speech Recognition (ASR) applications. Yet, dialectal conversation ASR is still trailing behind

due to limited language resources. As is the case in most cultures, the formal Modern Standard

Arabic language is not used in daily life. Instead, varieties of regional dialects are spoken,

which creates a dire need to address dialect ASR systems. Processing MSA language naturally

poses considerable challenges that are passed on to the processing of its derived dialects. In

dialects, many words have gradually morphed from MSA pronunciations and at many times

have different usages. Also, a significant number of new vocabulary words have been imported

from other foreign languages. In addition to these issues, dialects have low resources to be

considered for any meaningful natural language processing (NLP) research. Therefore, there is

a pressing need for an efficient language model (LM) for deployment in Arabic conversational

speech recognition systems.

In this thesis, we explore building an Iraqi dialect conversational speech language model

based on utilizing MSA data. Because there isn’t a pre-defined annotated vocabulary set, our

main approach is making use of word embedding for unsupervised clustering of the MSA-Iraqi



dialect words. Clustering the dialect words within the relative MSA words is employed to

create a class-based LM. This allows the use of MSA data to cover the insufficiency of the

dialect data. The model uses the dialect word’s statistical history in addition to the statistics

of related MSA words to make predictions of the intended spoken word sequence. Thus,

efficient word embedding becomes important to produce a reliable LM.

To achieve efficient word embedding, first an analysis of the MSA and the Iraqi dialect

vocabulary sets and their context intersection is conducted. For this purpose, Dialect Fast

Stemming Algorithm (DFSA) is proposed that utilizes the MSA data and a predefined dialect

suffixes set. The intersection set enlarged from 42.8% to 54% of the Iraqi vocabulary, and

from 8% to 13% of the MSA vocabulary. Second, the syntax and semantic feature vector that

is produced by applying the distributional-theory-based word embedding word2vec contained

noise from having contexts that appear in MSA or in the dialect solely; thus, applying PCA

reduced the perplexity (pp) by 6.7%. Finally, the novel Wasf-Vec topological word embedding

algorithm is proposed, which relies on the hypothesis that for a rich morphological language

like Arabic, the word’s topological feature is of much significance to be considered. This new

feature extraction technique addresses the high morphological properties and reduces PP by

7% when using distributional-theory-based word embedding. Moreover, a deep analysis of the

words syntagmatic and paradigmatic relations are illustrated based on solid Arabic and Greek

linguistic theories that prove the need of topological word embedding.

The three researches compiling this dissertation demonstrate the feasibility of utilizing

MSA resources to enhance dialect processing. Further, combining distributional-theory-based

and Topology-based word embedding is highly of great intense for future investigation.
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CHAPTER 1. INTRODUCTION

Automatic Speech Recognition System (ASR) is the field of electrical engineering and com-

puter science that is concerned with translating the audio signal to text. There has been

increasing demand for efficient ASR in many applications such as computer aided learning,

speech therapy (Assessment of Apraxia), meeting and conference summarization, information

extraction and retrieval using voice search, speech to text translation, automatic indexing of

audio files, facilitation of machine communication with people with special disabilities, and

most recently gaming. All these applications, and others, have led to the development of

Speech based User Interface (SUI). However, ASR systems are not perfect since humans have

so many variations in their speech due to dialects, accents and unique ways of pronunciations

of certain words. These issues increase the probability of having out of vocabulary words and

incorrect prediction which require the speaker to repeat the word frequently until the machine

is able to understand it. Thus, even with the existence of the current ASR, improving the

accuracy would make the user more comfortable when using them.

1.1 Arabic ASR

Arabic is the sixth most spoken language and is spoken by more than a half billion people

around the world. In addition to its religious importance for Muslims, it is one of the official

languages of the United Nations and has gained increasing importance in political and eco-

nomic fields. In recent years, the Arabic Language computational analysis domain has come

to a promising stage [1]. According to the ProQuest database, statistics show that research

in Arabic ASR has blossomed and grown since 2009.

In daily life communications, Modern Standard Arabic (MSA) is not spoken, but is the

official language for education, media, and written documents. Thus, frequently in automated

speech recognition applications, users prefer to communicate with the computer using simple

dialectical forms of the Arabic language, for example, when giving orders to a robot or search-

ing the web with dialectical spoken words. On the other hand, due to the lack of dialectical

1



language research and resources such as recorded and documented corpora, Arabic ASR sys-

tems are not easily usable if the user choses to speak in a dialectical form. For this reason,

a mixed Language model of both MSA and dialectical Arabic is needed to make use of the

MSR resources. Moreover, many real-life chatting sessions include English words. A one-hour

lecture in computer science is a mixture of MSA, English, and dialectical languages. Thus,

it is important to utilize the information identified regarding MSA and the English language

ASR to develop a real life Arabic spoken ASR.

1.2 Issues in Arabic Dialect Languages

Arabic dialects have inherited rich morphology features from MSA. In addition to the mor-

phology features inherited from the MSA, other issues related to the existence of new imported

words and even new phonemes from non-Arabic neighbors during centuries of interaction, such

as the Persian word Aghatee which in Iraqi dialect is used to show respect [2]. Nevertheless,

people tend to choose easier, lighter word pronunciations in their conversations, so dialects

contain many words that have incorporated the pronunciations of the original MSA word.

The same MSA word can have a different usage in different dialects and this usage reflects

cultural evolution as language is a symbolic communication of a culture [3].

In most of the Arabic dialects, the morphology has been changed a bit from the original

MSA form. Therefore, some simpler morphological forms are used. For example, the feminine

plural and dual verb forms have been merged with the masculine plural. Other morphological

features have become more complex, such as having new prefixes such as msh شم and mo

وم for negation, where the original interchanged MSA prefix is mA ام [4]. All of these issues

have caused increases in the Out Of Vocabulary (OOV) words ratio and the sparsity issue in

the data. For these reasons, a great deal of research needs to be done on the dialectical Arabic

language.
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Figure 1.1.: ASR Structure. W=w1, w2,…, wn, where n is the context length. And O=o1,
o2,…, ot, where t is the number of frames in utterance.

1.3 Automatic Speech Recognition Structure

The state-of-the-art structure of ASR is based on identifying phonemes as the smallest

pronunciation unit. A speech utterance is a sequence of phonemes over a specific time period

of speech. The utterance can be zero or more words. By zero, we mean an utterance like

laughing, coughing, or even just noise. The end goal of ASR is to output an accurate transcript

for the utterance.

Many components contribute to the accuracy of the ASR and work together. One ineffi-

cient component can affect the whole ASR performance. In our work, we are targeting the

LM component because this component is language specific and is an important component

in many other Natural Language Processing (NLP) applications.

The ASR structure is shown in figure 1.1 and its components are introduced in the following

sections.
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1.3.1 Lexicon

A lexicon is a file of words and pronunciations that identifies the sequence of phonemes

or graphemes (sub-word units) for each vocabulary word. In other words, a lexicon builds a

pronunciation model for each word. More than one sequence of phonemes for the same word

can take place. In this case, the word may have different pronunciations. This is mainly

important when considering conversational ASRs because the informal speech is free from

restricted rules.

The Arabic lexicon can be constructed by direct mapping to the Buckwalter format of

Romanizing the Arabic letters [5]. For example, ghaiem مئاغ , that means cloudy, is written

in the lexicon as gA<m. A good lexicon needs to include other pronunciation occurrences

of the same word such as if the word appears with different diacritic markings, for example,

ghaiemon ٌمئاغ or ghaieman ًامئاغ as gA<mN and gA<mAF, respectively. These pronunciation

differences are mainly due to the short vowels that are presented in the Arabic orthography

as diacritics.

1.3.2 Acoustic Modeling

A sub-word level recognition is done in the Acoustic model. The input audio signal is

mapped to the Acoustic model based on either a Neural Network (NN) structure or on a

Hidden Markov Model (HMM). The Acoustic model can be easily represented as a graph

where the nodes are either NN nodes or HMM states. The Deep Neural Network (DNN)

recently achieved good advances in this field of research [6]. The Acoustic model uses the

lexicon graph to find the corresponding word to phoneme sequence. The decoder of the ASR

uses the sequence scores to decide what path to follow where each path represents a given

utterance.
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1.3.3 Language Modeling (LM)

The next step after the Acoustic model nominates some words, the LM will predict the

most coherent utterance spoken. One way to classify LMs is by considering them as either

rule based or statistical. Rule based models are not as popular for complex languages due

to the difficulties of reducing the ambiguities. Thus, the statistical Models depending on the

probability of word combinations are the most commonly used LMs. The probabilities are

estimated from the training data. In English, for example, a LM needs to give the most

statistically appropriate word among the similarly pronounced words, such as there, their, or

they’re. An Arabic example is if the utterance phoneme was identified by the Acoustic model

to be /gha<mmSHobzxAtmtr/. In this case, the LM will predict the most likely phrase or

sentence among several.

• Cloudy sucking doom in falling coming rain رطمتاخزببوحصممئاغ

• Cloudy with rain coming in falling رطمتاخزببوحصممئاغ

• Cloudy with rain showers رطمتاخزببوحصممئاغ

The last line is the most likely and coherent phrase.

Another example: if the utterance phoneme was identified by the Acoustic model to be

/sharbimA>/ which will lead the LM to predict the most likely sentence among several.

• Devil in water ءامبرَش .

• He drank water ءامبرَش .

The last line is the most likely and coherent sentence.

From these examples, we can conclude that as the vocabulary set gets larger, more sen-

tences can be formed from the same sequence of phonemes, and it will be more difficult for

the LM to make the correct choice among the identified possibilities.

The most popular LM is the n-gram where the probability of a word is computed as the

dependent probability of n-1 preceding words, as in Eq. 1.1.

p(utterance) = p(w1)p(w2|w1)p(w3|w1w2)...p(wn|w1...wn-1) (1.1)
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However, in reality, it is time consuming to consider n-gram of n more than three or five and

may not increase the efficiency of the LM. In general, a statistical LM can be either NN based

or count based. Some LMs consider phonemes as the processing unit instead of whole words.

Many alternatives LMs are clearly illustrated in [4] ch5. The choice of LM type depends on

the language specifications.

The LM efficiency is measured in perplexity (pp). The pp is a way to quantify the cross

entropy, which can be defined as uncertainty in a probability distribution [4] ch5. See Eq.1.2

Eq.1.3

H(PLM) = − 1

n

n∑
i=1

logPLM(wi|w1...wi-1) (1.2)

pp = 2H(PLM ) (1.3)

A smaller pp means greater LM efficiency. There are many ready to use tools to build a

LM such as CMUCLMtk [7] and SRILM [8]. Both build a LM in ARPA format. There are

other tools, but these two are the most standard and popular ones. The current research used

SRILM in building and evaluating the various LMs.

1.3.4 Search or Encoder

The engine of the ASR is the decoder, which searches the best path in the HHM graph

for any given input. The dominant algorithms used are the Viterbi decoder and Baum-Welch.

The search space is mainly presented as the weighted finite state transducer or lattice. There

are open-source ASRs that give the researcher the ability to use and make enhancements.

The most popular ASRs are the Kaldi for C++ and other languages that can be integrated

through bash scripting, the CMU-Sphinx for java programmers, and the HTK toolkit.

1.4 ASR Evaluation Metrics

A common way to measure the ASR’s accuracy in transcription is to compute the Word

Error Rate (WER). See Eq. 1.4 .
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WER =
S +D + I

N
(1.4)

where,

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• N is the number of words in the reference (N=S+D+C)

• C is the number of correct words,

1.5 Literature Review

One of the most important projects done on Iraqi dialect speech recognition and speech

to speech translation was the TransTac program funded by the Defense Advanced Research

Projects Agency (DARPA). The data and lexicon used in this project are supported by Lin-

guistic Data Consortium (LDC) for official use only. Research on Iraqi speech and machine

translation were done under this project. The data was enlarged in size through the time pe-

riod of the project. Summarized advances made until 2009 were ended up with an ASR WER

of 32% for a collected data set of l507 hours of Iraqi Arabic speech and text data using SRI’s

Dynaspeak® speech recognizer [9]. Morphological traditional class-based LM was proved to

get the lowest pp. Other research focused on improving the acoustic model by considering the

different word pronunciation in the lexicon ending with 2.4% reduction of WER [10]. This was

done using the Janus Recognition Toolkit and 450-hour training set of a 62k word vocabu-

lary set. Their research concluded with future recommendations to investigate pronunciation

modeling in combination with discriminative training of acoustic models, and to investigate

methods to optimally handle pronunciation variants of the same word within the language

model and homograph issues.
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For other Arabic dialects, Algeria’s dialect was chosen by [11] and a new ASR named the

Arabic Loria ASR system was introduced. The system used DNN with classical n-gram LM,

and was tested for MSA with WER of 14%, while WER of 89% was recorded for 70 minutes of

Algerian data. Adapting the acoustic model with both Arabic and French resources resulted

in a WER reduction of 24% ending with a 65.45% WER. In addition, [12] investigated the use

of MSA resources for the purpose of dialect ASR. A dialect independent phonemic acoustic

model was introduced by first normalizing the MSA and dialect phonemes, then adapting

the MSA phonemic acoustic model to the Egyptian dialect. A careful selection of 33 hours

of MSA using the 34 phoneme-set and 0.5 hour of the 41 phoneme set was considered. An

average reduction rate in WER was 18.2% using the CMU-Sphinx engine. For a more efficient

pronunciation lexicon, automatically generated spelling variances for dialectal Arabic was used

to solve the lack of transcribed dialect speech. The process was applied by adding the modified

dialectal sound of the original Arabic orthographic letter such that one word can be defined

in more than one pronunciation. For example, لوقعم have maEquwl and ma>uwl. In the

context of improving the Acoustic model of MSA by automatically generating pronunciation

of words, [13] produced phonemes based on their probabilities by keeping the most likely word

pronunciation variants in the pronunciation’s dictionary, which achieved a reduction of WER

by about 1%. A different approach implemented by [14] depended on linguistic rules, MADA

morphological analysis, and disambiguation tools, and achieved a 3.7%-7.29% reduction of

WER.

In Kaldi ready recipe examples, there is the Arabic GALE [15] which uses MSA 203

speech hours and achieved 26.95% WER using the Triphone+DNN+MPE pipeline. Separating

the conversational data and testing it alone achieved 32. 21% WER. The research showed

the preference of using the MADA vowelization based phoneme system over the grapheme-

based system. MADA vowelization followed by vowelization to phonetization (V2P) was the

best approach used to generate phoneme lexicons with 35 speech phoneme and one silent

phoneme, in addition to the Egyptian dialect callhome data set with best WER 52.29% using

Triphone+SGMM+SAT+fMLLR pipeline. A Kaldi specific implementation results on a data

set that is approximately similar in size or structure of the data set we are using is [16], who
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developed the 18-hour Czech dataset for dialog-based ASR and achieved 48% WER using the

Triphone+LDA+MLLT+ BMMI pipeline.

1.6 Data Used

The corpus used in our experiments is the Iraqi Arabic Conversational Telephone Speech

(LDC2006S45) [17]. This corpus is taken from the Linguistic Data Consortium (LDC) and

contains 276 Iraqi Arabic speakers in the form of Iraqi dialect telephone conversations. The

dataset is subdivided into train-c1, train-c2, and devtest. Train-c1 represents one side of a

recorded phone conversation and train-c2 is the other side. Both training sets are combined.

The transcriptions consist of 199k words and its size is 1.8MB. The devtest is balanced in

term of speaker diversity and account for 6% of the dataset. It is a certified standard test set

according to the test process applied by the National Institute of Standards and Technology

(NIST). Another 4% of the data was used as a tuning set. For our experiment, 90% of the

corpus was used for training, that is, 199k words. The devtest was used for testing and

included 102KB of about 12k words. In addition, the GALE dataset containing about 1516k

words of MSA broadcast news and reports [18] [19] was also used for training.

1.7 Data Preprocessing

Data preprocessing needs to take place to reduce the sparsity of the vocabulary set. For

Arabic data, we reduce the effect of the high morphology by applying MADAMIRA stemming

tool and Iraqi stemming. In addition, other languages written words in the transcripts were

removed. The third action was normalizing how Hamza is written, and removing stop words.

Detailed explanations can be found in the following sections.

1.7.1 Stemming

Stemming was implemented using MADAMIRA-release-20170403-2.1 [20]. We applied ad-

ditional Iraqi stemming through our proposed stemming algorithm, the Dialect Fast Stemming
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Algorithm (DFSA) that does not need any additional tree-banks or Database. The DFSA does

not need training because it depends solely on the vocabulary set and predefined suffix set.

The objective of the proposed algorithm is to lower the data sparsity by reducing different

word forms of similar stems.

For Iraqi stemming, the vocabulary set is a union of Iraqi and MSA. The vocabulary is

extracted from the existing corpora. The algorithm mainly reduces the Iraqi specific prefixes

from a word if the remainder of the word also exists in the vocabulary set. Words that will be

under stemming consideration contain at least five letters, since words of less than 5 letters

are rarely expected to be attached to prefixes. This is because most of the Arabic words’

roots are 3 letters in length. The algorithm is fast because it does not consume learning time

and can be applied on MSA by defining the MSA’s expected suffix set. The algorithm is

listed in Chapter 4 Algorithm in Figure 4.3 and the same procedure is applied for postfixes

if needed. In Iraqi the postfixes did not need further processing since most of them were

captured through MADAMIRA.

Applying both stemming techniques to the Iraqi and MSA data improved the ratio of

the common words between their vocabularies. The stemming caused an increase in the

intersection ratio between Iraqi and MSA words from 42.8% to 54.5% of the Iraqi vocabulary,

as shown in Chapter 4. In addition, stemming reduced the vocabulary size of both Iraqi and

MSA from 21k words to 13.4k words, and from 111k words to 53k words, respectively.

Stop Words

Words were eliminated using the nltk.corpus.stopwords.words(’arabic’) set in addition to

a calculated set of the highest frequent words extracted from the Iraqi corpus.

1.8 Main Goal

The main goal of this dissertation is to propose an efficient Arabic dialect LM that can be

used in building conversational ASR using MSA resources.

10



1.9 Thesis Structure

This dissertation systematically compiles the work findings documented in three published

works and presented in Chapters 2, 3 and 4. Chapters 2 demonstrates how to build a word

embedding class-based LM with analyses of the relation between MSA and Iraqi vocabulary

and context to assess the ability of using MSA to enhance dialect LM. Chapter 3 addresses

optimizing the feature vector length using PCA. Chapter 4 provides an in-depth analysis

of MSA to Iraqi dialect words analogy captured by word embedding in addition to the new

proposed features vector (Wasf-Vec). Finally, chapter 5 presents the conclusions and examines

potential future work.
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CHAPTER 2. ASSESSING THE USABILITY OF MODERN STANDARD ARABIC

DATA IN ENHANCING THE LANGUAGE MODEL OF LIMITED SIZE DIALECT

CONVERSATIONS

”Tiba Zaki Abdulhameed, Imed Zitouni, Ikhlas Abdel-Qader, and Mohamed Abusharkh. As-

sessing the usability of modern standard Arabic data in enhancing the language model of

limited size dialect conversations. Casablanca, Moroco, December 2017. International Con-

ference on Natural Language, Signal and Speech Processing 2017.”

Conversations are mostly spoken through a variety of dialects and the need for accurate

speech recognition systems is growing in a wide range of applications. This paper presents

an evaluation of the feasibility of using Modern Standard Arabic (MSA) data to enhance the

perplexity (pp) of the Language Model (LM) for limited size Iraqi dialect conversations. We

are interested in adapting the MSA’s LM to Iraqi dialect by exploiting the capabilities of word

embedding to deliver clusters of word vector representations classifying dialect specific words

along with relevant MSA words. The vocabulary set of size 21k word extracted from Iraqi

conversational speech from Appen’s LDC was reduced to 14k word using the MSA-stemming

followed by a dialect stemming technique. The stemming aimed to increase the intersection

ratio between the dialect and MSA vocabulary, which are from GALE phase2 part1 and 2 from

LDC. Various combinations of both corpora were tested. Two approaches were evaluated: 1)

Separate word-based and class-based LMs, and 2) producing interpolated LMs of the various

training data LMs. Results show that the second approach enhanced the only Iraqi LM around

8%, while improving the adaptation of the combined Iraqi and MSA LM to 30% using the

interpolating technique. The results were promising when interpolating word based LMs with

generalized LMs using word embedding feature vector classes based LMs. In addition, a 9%

improvement of interpolating the class-based LM over interpolating word based alone LMs

was achieved.
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2.1 Introduction

Speech recognition tools have made major leaps in recent years and the accuracy of such

technology grew from around 70% in 2010 to around 95% recently for market leaders like

Google Now and Siri [1]. This can be attributed to a number of reasons but certainly robust

LMs are critical to predict unclear sentences or sentence parts. However, producing efficient

LM with low perplexity remains a challenge that needs addressing. This is especially true in

the case of the Arabic language in which a complex lexicon and multiple living dialects make

LM-based prediction a more challenging task.

A closer look at LM for Arabic dialects highlights the challenges that cause higher am-

biguity than the standard language commonly termed MSA. Dialect pronunciation and rules

differ from those of MSA. This can occur to the extent that these dialects can become mostly

unrecognizable for MSA speakers so significant effort is required to facilitate communication

between speakers of different dialects. Looking at the Iraqi dialect as an example, the Iraqi

dialect has diversity in pronunciation based on a region spanning from the north to the south

of Iraq, and many words originated from other regional languages such as Turkish, Farsi, and

English. Also, some words come from MSA but have a slightly changed pronunciation. This

causes an unbounded vocabulary set to develop. Moreover, speakers may use unrestricted

grammar [2]. An additional challenge comes from the tendency of dialects to adjust the vo-

cabulary and language usage during relatively short time intervals to reflect the cultural and

generational changes. As an illustration, a new expression for ”a friend” was introduced by

one popular Iraqi T.V. comedy series. This led many young people to use the new term, and

thus, a new vocabulary synonym of close friend was introduced to the daily conversations.

Such word usage varies over time and LM should be enabled to recognize such evolution and

adapt.

Within our assessment of the usability of MSA in enhancing the Iraqi dialect LM, we

addressed three main challenges for the Iraqi dialect conversations LM adaptation; data spar-

sity, adapting different speech domains (conversations vs. broadcast news), and the data size

limitation. Resolving these issues would result in a more accurate LM.
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The first issue of the data sparsity, which is a feature inherited from the mother language

MSA is our first challenge and the most difficult one. We resolved the data sparsity issue by

using a class-gram LM and employing word2vec [3] in a comprehensive scheme that produces

class n-gram. The word2vec program is introduced as a machine learning tool that could

construct feature vectors for words in the input data set [3]. It has been successfully used in

sentiment analysis and document classification work [4], [5]. Since we are using both MSA

and Iraqi, words appears in many different contexts. We hypothesize that employing word

clustering based on a k-means classifier can produce effective language modeling when words

are used in various ways. Thus, clustering words and using class probability, where the cluster

number is the word’s class, would reduce the sparse words probability. More specifically, we

propose using word2vec to cluster corpus words into classes that, in turn, would be used

to build a language model using class n-gram technique [6]. The second challenge related

to the fact that we are targeting conversational speech transcription language modeling and

attempting to produce improvements by adapting MSA broadcast news and reports LM to

Iraqi dialect phone conversations. We resolved this issue by interpolation of both data sets’

LMs.

The third challenge is due to the small size Iraqi training data, which we resolved by

expanding our training data with data taken from MSA corpus. This work is focused on

exploring the feasibility of mixing the training data to enlarge the limited size dialect data.

We define this problem as an adaptation problem and consider Iraqi dialect as domain

specific, while MSA is the general big background data set. Our scheme has the objective of

minimizing LM perplexity by adapting the MSA LM to the Iraqi dialect, which can lead to

significant improvements in the speech recognition systems for dialect-based conversations.

Chapter 2 is organized as follows. Section 2.2 discusses the most pertinent research efforts.

Section 2.3 presents the language model used in this work while section 2.4 includes the

experimental proposed scheme, and 2.5 relays the setup, results, and analysis. Finally, Section

2.6 is a conclusion of this chapter.
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2.2 Related Work

A class-based LM was shown to be effective in solving the data sparsity problems of

datasets. Instead of depending on independent word prediction, words are clustered into

classes and via modeling, prediction can be achieved. This was shown in [7] where Part Of

Speech (POS) techniques were used to classify the data and produce the neural network (NN)

n-gram LM. Previous efforts considering Egyptian dialect LM for ASR reported that the best

prediction results are achieved when an n-gram is combined with a class n-gram [8].

The challenge in this scenario rises from the assumption that the data set is fully classified.

Yet, most available dialect data sets are not annotated for the purpose of word classification.

A major data classification method that has proven to be effective for other languages is the

count base statistical clustering of the corpus such as the hierarchical Brown clustering. NN-

based word embedding was also used to replace manual tagging of POS. In [9], it was shown

that word embedding can be used for unsupervised POS tagging.

In the context of the Arabic language, word2vec was used as a word embedding tool for

Arabic sentiment analysis in [10]. They considered MSA and the dialectal Arabic sentiment

opinion (specifically Egyptian dialect). The features were extracted from word2vec as an

alternative to hand-crafted methods. In addition, word2vec proved its applicability in Arabic

information retrieval and short answer grading in [11]. This was tested using twitter and book

reviews that are considered a combination of more than one dialect, while new articles were

considered as MSA. Also, word2vec was used to produce a comparable corpus (CALLYOU)

from Youtube for Algerean, MSA, and French comments [12].

Linear interpolation has been proposed in many scenarios as an effective method of LMs

adaptation. In the literature, the adaptation of domain specific LM of the same language

was mainly explored [13] [14]. In a similar way, we are considering the dialect as a separate

language domain that has intersection with MSA domain. For mixing heterogeneous text data

of domain-specific LM, [15] produced term weighting that is used to decide in-domain and

out-of-domain text segments for the purpose of document classification. This inspired us to

produce a new weighting function to filter the MSA from text segments of less common words
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with the dialect.

Our approach aims at making use of the semantic representation of the word embedding

in word2vec for generating class-ngram. It is noted in the literature that most of the efforts

are focused on MSA with a few efforts considering Egyptian and Levantine dialects. Despite

being rich and commonly used, the Mesopotamian dialect group is spoken by approximately

30 million people, yet there is a lack of research catering to this prominent dialect. Thus,

there is a need for a comprehensive LM that improves speech recognition performance and

potentially highlights dependencies between the Iraqi dialect and MSA.

2.3 Language Model

One of the main factors in efficient ASR is the language model that will be fed to the

system to decide the hypothesized spoken word using context-based probabilities. The pp is

the metric that is used for computing the Language model efficiency [6]. A lower value of pp

means high value of the expected word probability in a certain context and naturally a lower

number of bits needed to encode the words. This enables easier decision making (i.e. reduced

sparsity) [8].

The simplest possible regular LM is the unigram. Each unit of the language has a prob-

ability of its count divided by total words count in the corpus. An n-gram model is a model

that counts the word probability by taking into consideration word history (i.e. context) of

length n-1. So, the probability of a certain word x to appear in the corpus given the previous

word was word y is

p(x|y) =
count(yx)

count(y)
(2.1)

Certain algorithms can be applied to smooth the probabilities and achieve better pp such as

Kneser-Ney [8]. Smoothing includes three operations to improve accuracy, namely, discount-

ing, back-off and interpolation. For example, a class based bigram computes the probability

of word x, given the previous word, y as

p(x | y) = p(x | class(x))p(class(x) | class(y)) (2.2)
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Where the conditional probability of the word x, given that it appears in a unique class,

class(x), is defined as the ratio of the number of occurrences of word x, to the total number

of occurrences of its class within the corpus. Classes are mutually exclusive where a word

belongs to one class only. In addition, classes lengths are not necessarily equal.

count(class(y)) =
∑

i∈V count(wi ∈ class(y)) (2.3)

Where V is the vocabulary set

p(x | class(x)) =
count(x)

count(class(x))
(2.4)

p(class(x) | class(y)) =
count(class(y)class(x))

count(class(y))
(2.5)

2.4 Methodology

2.4.1 Preprocessing Data

Data preprocessing includes removal of unneeded tags followed by the preprocessing stem-

ming steps described in Section 4.4.1. OOV words are words that are not in the Iraqi word

vocabulary set.

2.4.2 Running word2vec

As shown in Fig. 2.1, the preprocessed training dataset is used as an input into the

word2vec tool. word2vec uses a single hidden layer that is fully connected NN. The input

and output layers are both of the same cardinality of the vocabulary. To reduce computation

complexity, the hidden layer was replaced by simple projection. This makes word2vec capable

of large data training. The feature vector is extracted from the weights matrix between the

input layer and the hidden layer where the end target would be the word’s neighbors in con-

text [3]. A continuous Bag Of Words (CBOW) was tested to predict a word from the input
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Figure 2.1.: Steps diagram to produce statistical LM.

context window by applying word2vec with 700 class, vector size 350, and window width of 5.

Multiple output produced by word2vec is then used in describing the language model. In

our work, we are more interested in the output of the word2vec (classes.txt) file which contains

class-word pairs for all of the words in the dataset. To show how word2vec semantically

classifies the data, we present a few examples of word classes from the corpus in table 2.1.

For example, class 3 shows some words of the same root clustered together, which clearly

is reflecting the semantic and syntactic clustering dependency. In class 0, we also notice

the semantically related words clustered together. In class 9, three different orthography

formats of the same word ًالها , which means ’Hi or welcome’, appeared in the same class.

This implies that the word2vec was to a certain extent successfully capturing semantic and

syntactic relations of Iraqi dialect.

Next, we built a supporting tool in Python that takes one file (classes.txt) from word2vec

output and generates two files, CPW and CS, with the Iraqi unclassified words separated in

one class of its own. Also, each line in CPW contains the tuple class C, probability P of a

word within class, and the word W . P was computed per equation 2.4.

In the CS file, each line contains the tuple: (class Ci, next class Cj, the number of occur-
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Table 2.1.: Examples from classes.txt of words semantic clustering output of word2vec using
CBOW gram of 10 cluster.

class9 class3 class6
مالسلا greeting peace ةيوس together ةلوغشم busy
اًلها greeting Hi يجت come يهتلم busy
اًلهأ greeting Hi حورت go ةضيرم sick
الها greeting Hi عجرت return لكاشم problems

rence of any word of class Ci followed by any word of class Cj for all classes i and j). The

”start” of the sentence is represented using the tag <s> while the sentence end is indicated

by the tag < /s >. We used two approaches to handle the out of vocabulary (OOV) words.

In the first, we tagged those words as < unk > and they were treated as words in their own

unified class while in the second they were just left as is and classified with the vocabulary

words but were not considered in computing the probabilities for the language model.

CS is then used with SRILM to count class n-gram LM, while CPW is used in computing

the pp as follows:

See the following command:

$ ngram-count -order 2 \

-read w2vClassBasedLM-CS -write f1.ngrams

$ ngram-count -order 2 \

-read f1.ngrams -lm w2vClassBasedLM.lm

To calculate the pp,

$ ngram -lm w2vClassBasedLM.lm \

-classes CPW -ppl test-data

To calculate the interpolated LMs pp,
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For example w2vClassBasedLM1.lm and w2vClassBasedLM2.lm,

# We first need to differentiate the classes in CPW files of the

interpolated class based LMs by assigning some identification letter

to the classes names. Here we used letter 'G'

$sed -e 's/^/G/' w2vClassBasedLM2-CPW > w2vClassBasedLM2-CPW2

#Then concatenate both CPW files for each LM

$cat w2vClassBasedLM2-CPW2 w2vClassBasedLM1-CPW > combined_classes.CPW

#make the same changes of classes names on the LM

$sed -e 's/CLASS/GCLASS/g' \

-e 's/\<s\>/G\<s\>/g' \

-e 's/\<\/s\>/G\<\/s\>/g' \

w2vClassBasedLM2.lm > w2vClassBasedLM2.G.lm

#Interpolate them and assign the lambdas

L=0.5

L2=0.2

$ngram -unk -lm LM1.lm -lambda $L\

-mix-lm w2vClassBasedLM1.lm \

-mix-lm2 w2vClassBasedLM2.G.lm -mix-lambda2 $L2\

-classes combined_classes.CPW -bayes 0 \

-ppl $test -write-lm New.lm

2.4.3 Combining Iraqi and GALE Corpora

To compensate for the small data size that is available for this project, we combined Iraqi

with the GALE corpora. This was performed via two methods as follows:
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• Set1: Iraqi dialect phone calls corpus [16]. Testing data are the Devtest data defined as

part of this corpus from the Linguistic Data Consortium (LDC).

• Set 2: Set 1 with 10% of Set 3.

• Set 3: GALE MSA [17] [18], which is broadcast news and report corpus.

• Set 4: 10 times duplicated Set 1 combined with Set 3. This will enlarge the frequency

of the Iraqi context.

• Set 5: Iraqi and the whole of GALE, i.e Set 1 and Set 3.

In addition, refining the GALE data was also considered for which we computed, for each

sentence, the probability of the OOV words that are tagged as <unk>. If the probability is

more than 0.3, then the sentence will be discarded and considered noise.

2.4.4 Interpolating With LMs

The interpolation is presented using the following equation:

p(w) = 0.5pIraqiTri−gram(w) + 0.3pIraqiCB(w)

+0.2pGALECB(word)
(2.6)

where CB refers to word2vec class n-gram. The lambda weights were estimated using the Iraqi

data tuning set. The lambda weights’ combination that produced best results for the tuning

set were chosen for the final interpolated versions. The flow diagram of the interpolation that

produced the best results is shown in Fig.2.

2.4.5 Calculating Perplexity Using SRILM Tool

The SRI tool for Language Modeling [19] was introduced as a solution to generate LM and

compute perplexity of the test data. All tests were unified on the same Iraqi devtest and the

same vocabulary set.
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Table 2.2.: A comparison of the results of different LM mixing for multiple clustering
methods.

LM pp LM pp
Set 1 tri-gram 124.2 Set 1 CB 136.5
Set 3tri-gram 636 Set 3 CB 509 467
Refined Set 3 tri-gram 628.8 Refined Set 3 CB 471.8
Set 5 tri-gram 177.6 Set 5 CB 367.8
Refined Set 5 tri-gram 176 Refined Set 5 CB 342.7
set 2 tri-gram 137.24 set 2 CB 185.2
Refined Set 2 tri-gram 136.764 Refined Set 2 CB 169.9
Set 4 tri-gram 208.3 Set 4 CB 282.4
Refined Set 4 tri-gram 207.7 Refined Set 4 CB 286.9
Interpolated Set 1 CB, and Set 1 tri-gram 114
Interpolated, Set 2 130.8 Interpolated, Set2 CB , 116
, and Set 1 tri-gram Set 1 CB, and Set 1 tri-gram
Interpolated Set 3 tri-gram, 148 Interpolated Set 1 CB, Set 3 CB 119.5
and Set 1 tri-gram and Set 1 tri-gram
Interpolated Set 5 tri-gram 130 Interpolated Set 5 trigram, 124
and Set 1 tri-gram Set 1 CB, and Set 1 tri-gram

Interpolated Set 5 CB, 118
Set 1 CB, and Set 1 tri-gram
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Figure 2.2.: Clustering and LM Generation.

2.5 Experimental Results and Discussion

The upper part of table2.2 shows results obtained from word trigram LM on the left side,

and the word embedding class based LM on the right side, while in the lower part, we present

interpolated versions of some of the upper LMs. In our attempt to expand the Iraqi data by

mixing it with GALE, one might not expect that only about 54% of Iraqi words will actually

appear in the MSA. This was clear when we extracted the intersecting words between them.

Surprisingly, we found that the intersection set is only 7.3kword after stemming, yet only about

3.2kword is considered for clustering using word2vec. This is because in our experiment, we

ignored words of frequency less than five from classification. This is similar to the default

setup in word2vec to ensure good training of feature vectors. This may justify the lack of

improvements under the method of only mixing two corpora. Indeed, Iraqi dialect and MSA

are both Arabic, but they have almost different vocabularies which prevented this method

from performing. Also, the data nature, that is news and broadcast, is different in context

and vocabulary choices from those in phone conversations.
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OOV words are either kept as they are or replaced by the <unk> to enable refining in

a later step. The refining of the data, based on the <unk> ratio in the sentence, produced

better results in the class-based LM, while it did not improve the word based trigram more

than 1. This indicated the sensitivity of the word embedding class based method to the noisy

sentences.

As an illustration, one arbitrary segment of each corpus is further explored in Fig. 2.3(a),

2.3(b), 2.3(c), and 2.3(d). The sample segments are for both Iraqi and GALE, and both are

presented before stemming and after stemming. One can notice that <unk> words appeared

in GALE due to the use of only Iraqi vocabulary. These <unk> words refer to word appearing

in GALE but not in Iraqi. This causes high ambiguity when testing the Iraqi devtest data.

In fact, the only common words in this arbitrary segments are اهامال'فنأ , where most of

them are connecting words except فنأ . These connecting words do have high frequency in

both corpora, which means that the gain of having them in GALE was not that significant

in enhancing the LM. We need to support words that appear in an average frequency in the

Iraqi data.

Though, refining GALE data before calculating word embedding class based LM achieved

on average 5% improvement over the LMs trained on unrefined MSA data, interpolating word-

based with class-based of the Iraqi and any other set that contains MSA, produced relatively

near results due to the λ weights that were 0.5, 0.3, and 0.2 for the Iraqi alone tri-gram, Iraqi

CB, and (other MSA Set) CB LM respectively.

Interpolating the language models and enforcing the MSA’s LM contributions to be small

via the small λ weight leads to sharing common word probabilities and reducing the sparsity.

Also, we would like to include a note about the classification of words that are in Iraqi but

not in GALE. Theoretically, the class probability would enhance the conditional (word|class)

probability for these words; however, discarding all the GALE MSA vocabulary did not allow

for this enhancement to occur. Nevertheless, if we consider all the GALE vocabulary, the

sparsity of the words will be higher causing a higher pp.

We have actually considered the MSA words in the vocabulary, and the results show that

not all Iraqi words clustered within similar MSA words, but there are some that did, such as
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words with different spellings but the same actual use and syntax.

(a) Sample of Iraqi data. (b) Sample of Stemmed Iraqi data.

(c) Sample of GALE data. (d) Sample of Stemmed GALE
data.

Figure 2.3.: Samples of the Iraqi and GALE data.

2.6 Conclusion

We attempted to investigate the value of using GALE MSA data to reduce the Iraqi

dialectal conversation ambiguity through mixing the data and interpolating word-based with

word-embedding feature vector classes-based language models. LMs interpolation achieved

encouraging improvements and so future consideration can be given to such an approach. In

addition, a different treatment for OOV words can be considered for future study. Also, a

biased selection of a subset of GALE’s dataset can be used to enhance the results further.
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CHAPTER 3. ENHANCEMENT OF THE WORD2VEC CLASS-BASED LANGUAGE

MODELING BY OPTIMIZING THE FEATURES VECTOR USING PCA

” Tiba Zaki Abdulhameed, Imed Zitouni, and Ikhlas Abdel-Qader. Enhancement of the

word2vec class-based language modeling by optimizing the features vector using PCA. In

2018 IEEE International Conference on Electro/Information Technology (EIT), volume 2018-

, pages 0866–0870. IEEE, 2018. ”

Neural word embedding, such as word2vec, produces very large feature vectors. In this

Chapter, we are investigating the length of the feature vector aiming to optimize the word rep-

resentation results, and also to speed up the algorithm by addressing noise impact. Principal

Component Analysis (PCA) has a proven record in dimensionality reduction so we selected it

to achieve our objectives. We also selected class based Language Modeling as extrinsic evalu-

ation of the features’ vectors and are using Perplexity (pp) as our metric. K-means clustering

is used to classify words. The execution time of the classification is also computed. As a

result, we concluded that for a given test data, if the training data is of one domain then large

vector size can increase the precision of describing word relations. In contrast, if the training

data is from different domains and contains large number of contexts not expected to occur in

the test data then a small vector size will give a better description to help reducing the noise

effect on clustering decisions.

Two different data training domains were used in this analysis; Modern Standard Arabic

(MSA) broadcast news and reports, and Iraqi phone conversations with testing data of the

same Iraqi data domain. Depending on this analysis, same domain training data and test

data have execution times reduced by 61% while keeping same representation efficiency. In

addition, for different domain training data i.e. MSA, pp reduction ratio of 6.7% is achieved

with time reduced by 92%. This implies the importance of carefully choosing feature vector

size on the overall performance.
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3.1 Introduction

Vector representation of words can be produced using many methods, but the most com-

mon one is word2vec which is a neural network-based word embedding technique. To use

word2vec, one needs to select certain parameters such as context window size, sub-sampling

rate, and the length of the feature-vector. In the original paper, that produced word2vec [1],

vector size of 300 was used. We concluded that these parameters are very crucial decisions

and differ from one problem to another but did not reveal how to decide on the values of the

most of the parameters. In this Chapter, we investigate how to optimize the length of the

feature vector and the impact it has on performance. It is clear that the feature vector length

is a very important parameter that not only impacts the accuracy of word representation, but

also can influence runtime of word2vec and the execution time based on the applications.

Parallelization of word2vec training was applied by facilitating GPUs to speed up the run

time [2]. The parallelization needed to define the dependency in its algorithm. Algorithm de-

pendency is the main issue in parallelizing training algorithms like word2vec. Thus, optimizing

these algorithm’s word feature vector length aiming for better performance by analyzing words

feature vectors is our focus in this Chapter.

Originally, word2vec applies negative sampling for noise defined as randomly generated

contexts of words to increase the accuracy of semantic relations between words occurring in

same context [1]. The injected noise is given very low weights in order to bring up the true

contexts’ weights. We define noise in the training data as contexts that are not expected to

occur in the test data. It is also worth noting that eliminating the effect of Out of Vocabulary

Words (OOV) to focus on context impact is done by replacing such words with Unknown Word

Symbol (unk) in the training set. We also investigate the potential of using PCA of the words

feature vectors to analyze the vector length on the performance of the LM and compute time.

Other related works can be found in [1], were they focused on extracting the first 2 components

of PCA to allow for words visualization in 2D space. On the same context, [3] showed that

the first 2 components of PCA can also allow us to explore the most variant relations between

words, which is the semantic meaning, while other feature reduction techniques can capture
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less variant relations between same semantic group of words, such as the syntactic relations

of verb tense. In [4] PCA was tested on 40 languages and demonstrated a better performance

than a skip-gram model. Research results indicate that a skip-gram can be presented as

an application of the exponential-family principal components analysis (EPCA). Also, [5]

concluded that for efficient word representation, negative sampling is not enough, and we need

to apply Noise Contrastive Estimation (NCE). Mathematically, [6] showed that word2vec Skip-

Gram with negative sampling is actually a weighted logistic PCA. The word2vec was applied

to a dialog act recognition task and it was reported that regardless of the size of the training

corpus, word2vec could not capture valuable information [7]. Their reported limitations of

word2vec was based on investigations of corpus size but not the word2vec model parameters.

In our research, we find that the corpus size is not the only factor affecting the choice of

the feature vector length but also the number of unexpected contexts that is embedded in

the training set only. This is in agreement with [8], where a thorough comparative analysis

of various word embeddings is implemented to address the problem of generating best word

representations. Although, the study recorded similar behavior of various word embeddings

in response to vector dimensionality, they could not reach a suggestion of the best choice

for the vector length. They found that the domain of the corpus had more impact than the

corpus size. Such research findings propelled our motivation to investigate the feature vector

dimensionality.

3.2 Background

3.2.1 Neural Word Embedding

As the size of the training corpora increased with the availability of web resources, the

need for relatively fast unsupervised algorithms to extract word relations rapidly increased.

Research in Natural Language Processing (NLP), especially for language modeling tasks,

improved greatly by making use of words feature vectors that are automatically generated

using fully connected neural net techniques.

word2vec [9] is a tool that produces large dimension vectors for large vocabulary size. It
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is a feed forward Neural Network where the connections weights between the input layer and

the hidden layer construct the feature vector of each word. Both the input and output layer

contain nodes equivalent to the number of words in the vocabulary set. A user can choose

either a skip gram model or a continuous bag of word model. The type of the model decides

what node would be highlighted in the input and output layer. Continuous bag of words tries

to predict a word given its surrounding context, while Skip-gram predicts the context within

a word may occur.

3.2.2 Principal Component Analysis (PCA)

While having a high dimension representation of words, a projection onto a lower dimension

is needed to better interpret the feature vectors and to achieve improved performance. We

also aimed to better our understanding and reveal the underlying structure of the data, which

is very important for subsequent language modeling and word prediction.

Assume N is the number of words in the corpus, and each word feature vector is of length

d, in order to reduce it to k, where k<d, features covariance (or correlation) matrix R with

size (d×d) is constructed. Thus, the covariance σjl between two features j and l is computed

using

σjl =
1

n− 1

N∑
i=1

(xij − µj)(xil − µl) (3.1)

where, xij is the jth feature of word i. To summarize, to produce the matrix R, apply (3.2)

R =
1

n− 1
(X − ~µ)T (X − ~µ) (3.2)

Then eigenvalues and eigenvector are constructed from the covariance matrix R. The end goal

is to project the original data feature matrix, that is of (N×d), using the best k eigenvectors

as its axes. To choose a number k, the first k eigenvectors should maintain 99% of the

cumulative variance. This is done by choosing k eigenvectors corresponding to the k highest

eigenvalues in a projection matrix P of size (d×k). Then recreate original data but with
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Figure 3.1.: Counting and LM Generation [13].

reduced dimensionality by multiplying original data feature matrix by the projection matrix,

which will be of size (N×k). This reduction preserved the most important features that hold

most of the information [10].

3.2.3 Class-Based Language Modeling

Evaluating the word2vec would be either extrinsic or intrinsic. Extrinsic means comput-

ing the performance of the application that uses word2vec, while intrinsic means analyzing

the word relation captured by the word2vec. It is better to have extrinsic evaluation of the

word2vec feature vector because looking at the intrinsic evaluation alone would not be satis-

fying [11]. For detailed introduction to Class-based language modeling, one can refer to [12].

We use class-based language model pp as the extrinsic evaluation metric. The classes

are the clusters extracted by applying k-means clustering on the feature vectors. If a good

capturing of words relationship exists in feature vectors, then similar words will belong to the

same cluster.

The system architecture explained in [13] was used to get the class-based Language mod-

eling as shown in Fig. 3.1.
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3.3 Experimental Setup

We chose Iraqi dialect as our language modeling goal. This language modeling is the

application on word2vec words feature vector. Thus, pp is our metric of efficient words feature

vector. The test data is also an Iraqi dialect. Test data is 10% of the total corpus size, where

6% was kept blind and 4% was used for tuning.

To be able to understand how noise will affect the results, noisy data need to be provided.

We made various combinations of Iraqi dialect conversations data with Modern Standard

Arabic (MSA) of broadcasting formal language, which has vocabulary intersection with Iraqi

and many similar contexts but nevertheless, there are a huge number of words in context that

are not expected to appear in dialect phone calls. Words that are in MSA but not in Iraqi

were excluded and considered as OOV.

We replicated the experimental setup of [13] shown in Fig. 2.1 for the same 5 different

training sets as shown in Fig. 3.2. To understand how word feature vector size influences

the results, other parameters were set fixed to window size of 5, negative sampling of 25,

sub-sampling of 1e-4, and Bag of word model.

Recalling the data identification from 2.4.3:

• Set 1: Iraqi dialect [14], which is defined as low noise data since the testing set is of

same style

• Set 2: Set 1 with 10% of Set 3. This Set is also considered low noise although it contains

MSA context but not a big amount.

• Set 3: GALE MSA [15], which is broadcast news and reports corpus. This is a highly

noisy data because it contains big amount of context that appears in broadcast news of

formal language while these contexts are not expected to appear in the testing data.

• Set 4: 10 times duplicated Set 1 combined with Set 3. This is considered as noisy

because it contains all of Set 3.

• Set 5: Iraqi and the whole of GALE, i.e Set 1 and Set 3.
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Figure 3.2.: Experimental setup flow diagram, either Features Vectors (FV) input directly to
the class-based LM or PCA is applied to reduce the FV dimensionality, then input to

class-based LM.

3.4 Results

Results can be analyzed in two different aspects. First, by measuring the efficiency of the

words feature vector which is evaluated as to how similar words were gathered in vector space

and clustered together. This is evaluated by the class-based LM pp. The second aspect is the

run time delay of the application facilitating these vectors.

Table 3.1.: Perplexity reduction ratio of low and high noise data.

Training baseline vector Best pp vector size Reduction
corpus size 350 pp that produced ratio

best pp
set 1 137 136.4 (PCA 116 0.3%

of 350)&175
set 2 174 172.2 175 1%

set 3 500.7 466.9 (PCA 2 of 10) 6.7%
set 4 296 214.7 (PCA 2 of 10) 27.4%
set 5 372.347 291.9424 (PCA 2 of 10) 21.5%
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3.4.1 LM Perplexity (pp)

As explained previously, LM pp is the extrinsic metric used to measure the words feature

efficiency. The base line is pp of class-based LM, where classes were produced by clustering

words feature vectors of length 350. Table 3.1 shows the reduction ratio in pp. Set 3, Set 4,

and Set 5 LM pp were decreased in good ratio when fetching the first two PCA components on

feature vector of length 10. This means that the first two PCA components of the 10 features

vector were able to represent the semantic relations between Iraqi and MSA words.

On the other hand, table 3.2 shows for low noise data as Set 1, higher pp was produced

when a small feature vector is used. This means important information of the low noise data

set was lost. In addition, looking back at table 3.1, we can see that no significant improvement

was gained when using more than 116 PCA components of feature vector of length 350. This

is shown in Fig. 3.3.

Set 4 and Set 5 are composed of GALE (MSA) but differ in that Set 5 contains one copy of

Iraqi set while Set 4 has 10 duplicates of the Iraqi set. Set 4 pp was lower than Set 5 because

the Iraqi contexts got highly weighted when it appeared more in the training set. Using 2

PCA components of the originally 10 length feature vector, Set 4 pp is 214.7 while Set 5 is

291.9 and thus, a reduction of 24.4% is gained.

3.4.2 Execution Time

Clustering time is one metric that we used in our implementations and it gives insights

on how training and perhaps other applications could be delayed similarly. Because k-means

algorithm complexity is O(number of words ∗ vector length), it is clear that reducing vector

length will speed up the process as shown in Fig. 3.5.

Though, the question arises: what is a good enough vector size is needed to capture

beneficial information in a clear data set? This can be answered by producing a long vector

then taking the PCA that captures the most variant information.

As shown in table 3.2, for Set1, that pp was never less than 136 even when a larger vector

was tested. Yet, computation time spent using vector length 350 is about three times longer
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Figure 3.3.: Low noise data LM performance using different words feature vector length.

Figure 3.4.: High noise data LM performance using different words feature vector length.

than if we use 116. This is a delay with no beneficial output. The number 116 was decided

after analyzing the original 350 length feature vectors and finding that about 99.7% of the
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information is captured in the first third of the PCA components. See Fig. 3.6. For this

reason, it is recommended to look for the minimum vector length that captures the most

necessary information without wasting time and memory allocation.

Figure 3.5.: Clustering run time for different words feature vector length.

3.5 Conclusion

By examining variations in the lengths of word feature vector of word2vec, it appears that

training data size is not the only factor for deciding feature vectors lengths. Results indicate

that the number of unexpected contexts (indicative of noise level) in the training set is the

most important factor. The training data of low noise levels will accurately represent the

information within the feature vectors with relatively long vectors. On the other hand, having

noisy training data, that includes many contexts that are not expected to appear in the test

data, a small feature vector length was desired. These results are also in a complete alignment

of expectations with dimensionality reduction, that is noise is reduced by removing the smaller

PCs, and so performance is improved.

In addition, for low noise data, there is the issue of selecting a proper vector length
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Figure 3.6.: Information in first third PCA components.

threshold. If no performance enhancement is observed, there should be no need for the vectors

to be too long. A threshold value can be selected by using PCA analysis of the initial long

feature vectors and retaining the components that contained within 99.8% of the covariance.

For future work, conducting a comparative study using other dialects and formal languages

corpora can be informative in our quest to generate an adaptive technique for word feature

vector lengths.
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CHAPTER 4. WASF-VEC WORD EMBEDDING WASF-VEC: TOPOLOGY-BASED

WORD EMBEDDING FOR MODERN STANDARD ARABIC AND IRAQI DIALECT

ONTOLOGY

”Tiba Zaki Abdulhameed, Imed Zitouni, and Ikhlas Abdel-Qader. Wasf-vec: Topology-based

word embedding for modern standard Arabic and Iraqi dialect ontology.ACM Trans. Asian

Low-Resour. Lang. Inf. Process., 19(2), December 2019.”

Word clustering is a serious challenge in low resource languages. Since words that share

semantics are expected to be clustered together, it is common to use a feature vector represen-

tation generated from a distributional theory-based word embedding method. This Chapter

describes the work which utilized Modern Standard Arabic (MSA) for better clustering per-

formance of the low resource Iraqi vocabulary. We began with a new Dialect Fast Stemming

Algorithm (DFSA) that utilizes the MSA data. The proposed algorithm achieved 0.85 ac-

curacy measured by the F1 score. Then, the distributional theory-based word embedding

method and a new simple, yet effective feature vector named Wasf-Vec word embedding are

tested. Wasf-Vec word representation utilizes a word’s topology features. The difference be-

tween Wasf-Vec and distributional theory-based word embedding is that Wasf-Vec captures

relations that are not contextually based. The embedding processes is followed by an analysis

of how the dialect words are clustered within other MSA words. The analysis is based on

the word semantic relations that are well supported by solid linguistic theories to shed light

on the strong and weak word relation representations identified by each embedding method.

The analysis is handled by visualizing the feature vector in 2D space. The feature vectors

of the distributional theory-based word embedding method are plotted in 2D space using

the t-sne algorithm, while the Wasf-Vec feature vectors are plotted directly in 2D space. A

word’s nearest neighbors and the distance-histograms of the plotted words are examined. For

validation purpose of the word classification used in this Chapter, the produced classes are

employed in a Class-Based Language Modeling CBLM. The Wasf-Vec CBLM achieved a 7%

lower perplexity (pp) than the distributional theory-based word embedding method CBLM.
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This result is significant when working with low resource languages.

4.1 Introduction

The Arabic dialects, such as the Iraqi dialects, do not have enough linguistic resources for

research and application development. On the other hand, Modern Standard Arabic (MSA)

has been well studied, resulting in a wealth of linguistically annotated data. Since there is an

intersection between the MSA and dialects, researchers should utilize the MSA to improve the

dialect applications. Classifying the dialect words within the MSA words that have the same

meaning, usage, or some other common features can be an important pre-processing stage for

many applications. Our case study is the Iraqi dialect, but the methodology is applicable to

the other dialect variants of the MSA.

Ontology is the science concerned in studying objects’ properties and their relations, while

semantics is the study of meaning [1]. Words are objects used to convey semantics. Thus, word

ontology can be studied in a perspective of semantic theory and refers to word features and

semantic relations between words. Saying two words are semantically related is not equivalent

to saying that these words are synonyms, but it is true to say synonyms are semantically related

because antonyms are also semantically related but in the opposite direction. Since dialects

are mainly used in people’s daily life conversations, this research is focusing on written words

representing speech transcription. The research analyzes the semantic relations induced by

word features, aiming to cluster low resource Arabic dialect words using the rich dominant

MSA language.

4.1.1 Background and Problem Statement

Historically, from a linguistic view, word semantics is a deep rich philosophical topic that

is concerned with word meanings. This was studied heavily by the Ancient Greeks, Indians,

and Arabs. Each was influenced by their language properties [2], but nevertheless, they agreed

on many common points. Unfortunately, the terminology used is quite different. Because we

are studying the Arabic word ontology, we will consider some of the Arabic linguistic theories
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to justify our understanding along with other Greek and Indian supporting linguistic theories.

Word Features

Natural Language Processing (NLP) treats a word as an object in the same way as other

fields of research, such as signal processing, treats an image or audio signal. This object

has features to be selected and extracted in order to use them in classification or for other

purposes. A word’s features can be extracted from the two structures. First, there is the

word’s topology which is the orthographic, phonological, and morphological word structure.

Orthographic refers to the word’s spelling, phonological refers to the word’s pronunciation,

and morphology is the way in which words are formed from morphemes [3]. Second, there is

the word’s contextual structure [4] as listed below.

1. Word topology: orthographic, phonological, and morphological word structure

Arabic linguistics subdivide these features into:

(a) the lexicon features which are defined as the exact meaning of a word in the dic-

tionary. Arabic has a very large vocabulary size with a diversity of dialects across

various geographical areas and often use words even from other foreign languages.

In the Iraqi dialect, many Persian and Turkish words were imported during cen-

turies of cultural interaction, such as the Persian word Aghatee in the Iraqi dialect

used to show respect [5].

This word’s lexicon feature is also related to the acoustic features of the letters

composing the word. One important characteristic of the Arabic language is having

an almost direct one-to-one mapping of letter to pronunciation [6]. Theoretical

studies of old Arabic linguistic scientists, such as Ibin-Ginni (941-1002) in his Al-

khasaes book, illustrate that there is a relationship between the sound of a word

and its meaning [7]. These thoughts are supported by Ancient Indian linguistic

philosophers [8].

(b) the morphological (Sarf is the Arabic term) features are defined by the following:
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i. Rooting derivative feature that relates the word meaning to the derived root

meaning, where a root has a constant lexical meaning [9];

ii. Template feature of the word that gives the template meaning of usage;

iii. Inflectional ending suffix feature of the word referring to plural-singular-dual

and feminine-masculine meaning;

iv. Inflection ending suffix feature of the word referring to parsing features;

v. Inflection starting suffix feature of the word referring to feminine-masculine

meaning;

vi. Inflection starting suffix feature of the word referring to the addressee - second

or third person;

vii. Inflection starting suffix feature of the word referring to word negation;

viii. Inflection starting suffix feature of the word referring to future verb time.

The Arabic language follows a templatic, highly rich and complex morphological system.

Its system is based on root-pattern schemes where both inflectional or/and derivation

changes can be applied to the root to produce a new pattern or a new form. Different

patterns relate to different syntax and semantic usage. This induces the data sparsity

problem in Arabic corpora. The performances of Arabic NLP applications are highly

affected by this sparsity. As an illustration, the word give in English may appear in

five different forms. Three forms are produced by inflectional morphology that changes

the word give to given, giving, and givenness, while derivation morphology produces

the word gave. On the other hand, we counted the same meaning word in Arabic ’>

ETY’1 ىطعأ in both Iraqi conversations and GALE Modern Standard Arabic (MSA)

data. We were surprised by having 138 different word forms for the word give ’> ETY’

ىطعأ as listed in Appendix A. These were reduced to 82 after applying the morphological

analyzer MADAMIRA. Arabic dialects inherit the rich morphological feature from the

MSA.

Away from these Sarf template rules, people using dialects in their daily life have also
1Backwalter Arabic transliteration format
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made some changes in some words to make them lighter in pronunciations. For example,

the verb gave ’>ETY’ ىطعأ was replaced with ’>nTY’ ىطنا , ’ETY’ ىطع , and ’nTY’ ىطن in

the Iraqi dialect. This is to reduce the difficulty in pronouncing the Hamza letter ’>’

أ followed by Ayn letter ’E’ .ع It would be relatively heavy to pronounce the Hamza

letter that produces a consonant glottal stop, followed by the voiced pharyngeal fricative

Ayn letter. Both of the sounds are articulated in a very similar way, although the Ayn

letter is articulated deeper down in the throat. This phenomena is named Dissimilation

in linguistic theory [10, 11].

A word’s topology features are very important factors in identifying words. Humans

start to learn words initially by identifying the order of letters in a word and its

shape [12]. Actually, the letters are the main identity of a word. Machine learning

attempts to simulate human learning. Thus, we need to have a quantitative word fea-

ture that represents its shape. The optimal goal of machine learning in NLP research

is to mimic the human cognitive system and according to [13] our brain uses function-

ally organized semantic memory through similarity and association between words to

recognize the meaning.

2. A word’s contextual structure

This is defined by how the word is used and its collocations, or the words that accompany

it. The final meaning of a sentence is understood from the composition of its words.

4.1.2 Word Relations

Now that we have illustrated a word’s features, we need to identify the semantic relations

that we are looking for in our analysis. Naming the semantic relations is a field of study of

its own and is related to language and information retrieval. For Arabic semantic relation

extraction, [14] gave a good illustration of the different approaches applied when defining

the Arabic word semantic relations. In general, some studies give the taxonomy of semantic

relation in a coarse-grained way. Other researchers are more domain specific and fine-grained
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in their relations [15].

There are many ways to look at a word’s semantic relations. Researchers define the set

of relations to follow depending on the research goal and domain. In Arabic word semantic

literature, Al-Gazali’s (1058-1111) taxonomy is very popular. Thus, we will be looking at

a combination of Al-Ghazali and Ferdinand de Saussure’s (1959) classification. Al-Ghazali

classified Arabic words semantic relations as the association, the part of a whole, and the

inherent [16], while Ferdinand de Saussure classified word relations as paradigmatic and syn-

tagmatic semantics relations discussed in [17]. So, relating both classifications is as follows:

1. Paradigmatic: words that are syntactically replaceable in a context [17]. This includes:

(a) words with an association relation (Arabic term Mutabaqa) such as synonyms,

and morphological related terms [18]. To relate all derived words to their root

and other word forms, we will consider the general relation identified as the has-

derived type of relation in WordNet that is used as one semantic driven feature for

text classification [19]. Aristotle named this phenomenon in Greek as paronuma

which is translated to the English language as paronyms, where a word is derived

from another word and has a closely related meaning [20] such as grammar to

grammarian, courageous to courage, or wisdom to wise.

(b) words that are meronymys or related as part of a whole (Arabic term Tadhamun).

This relation was also well approved by Al-shafie (767) who linked the relation

between ناسنا ’<nsAn’ (human) to ناويح ’HywAn’(animal) to يح ’Hy’ (alive) by

looking at the similarities in letters order ناسنا ’<nsAn’ending with نا ’An’ is part

of ناويح ’HywAn’, starting with يح , ’Hy’ that is part of يح ’Hy’ [21]. Gilbert and

the Porretan (1085) agree with Al-Shafie and illustrate the part-of-whole relation

between man and human [20]. This also includes the phonological similarities [18].

2. Syntagmatic: words that are inherent (Arabic term Mutalazima), where words co-occur

together and are often in positions near each other [17].

Nevertheless, there is a dynamic relation between the syntagmatic and paradigmatic [18].
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It has been stated by [22] that distributional word-space captures both paradigmatic and

syntagmatic relations and can be considered as evidences of word similarities.

In light of these theories, the main contributions in this Chapter are:

1. Development of a new feature extraction technique that addresses the high morpholog-

ical properties of Arabic and dialect languages2.

2. Achieving a higher MSA and a dialect vocabulary intersection by stemming and propos-

ing a new dialect fast stemming algorithm (DFSA) that does not need annotated data3.

3. Applying and analyzing distributional theory-based word embedding method on mixed

MSA and dialect datasets.

4. Reducing the perplexity (pp) of the CBLM by 7%.

The rest of the Chapter is organized as follows: Section 4.2 highlights the main related work.

Section 4.3 gives a description of the used data. Section 4.4 is dedicated for our approach

along with the pre-processing steps. The experimental results and their analysis are listed in

section 4.5. Finally, section 4.6 concludes this paper.

4.2 Related Work

To capture word features in NLP applications, the well-known word embedding techniques

based on distributional theory produce vector representations of the semantic and syntactic

features of the words depending on their contextual structure, i.e. word composition in sen-

tences. On the other hand, topology features are not represented in this word embedding,

and we believe the topology features have not been utilized well in extracting semantic re-

lations, although many linguists gave evidence of the impact of these features on semantic

recognition [4, 7, 12].

Work on providing a pre-trained Arabic distributional-theory based on a word embedding

language model was done by [23]. This model was built by collecting Arabic text from social
2https://github.com/TibaZaki/Wasf-Vec
3https://github.com/TibaZaki/DFSA
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media, Wikipedia, and other resources. A pre-process step was applied for these data sets

and the LM was trained using the word2vec tool. A qualitative efficiency measurement was

made by selecting a very small set of words and checking whether similar words were clustered

together. In the literature of the extraction and evaluation of word analogy, i.e. relations,

the original word2vec tool was tested by using a proposed set of English word analogies [24].

Similarly, [25] produced a large Arabic pre-trained feature vector from Twitter and other

Arabic text resources. The efficiency was tested in the sentiment analysis process with a very

limited analogy test of some words that were selected to test each word’s representation. It

was stated that no Arabic analogy test set was equivalent to the one produced by [24] for

English or is currently available. The Google translated set from English to Arabic was not

reliable and did not represent the Arabic word relations [26]. Another researcher examined

the performance of the ’fasttext’ tool that depends on sub-word information on an Arabic

corpus, which demonstrated that it was applicable for Arabic. The evaluation was done by

computing the recall and precision of test data that is publicly available and contains words

that are classified as either positive or negative [27]. However, [28] recorded improvement of

sentiment analysis for Arabic in a publicly available health sentiment dataset. The efficiency

was evaluated by taking the five nearest neighbors of two words - good and bad. In reflecting

on the usefulness of these evaluation methods, the analogy set technique was not reliable, the

word classification was not dependable because words cannot always be classified as positive

or negative, and the nearest neighbor technique did not give enough information.

To analyze a word’s analogy, a visualization of the relations between words need to take

place first. In this context, t-SNE [29, 30] is a commonly used tool in Python to reduce the

feature vector to 2D and visualize the relations as distances between words. This technique was

employed by [31] to compare cultural difference in word phrase usage of Korean and Japanese

inter-cultural dialog. [32] focused on social network dialog to explore collective attention by

choosing data from conversations during some important events and visualizing how people

reacted to these events. This was done using network-based visualization of word2vec feature

vectors. A similarity threshold of 0.6 for at most 20 words of a seed word, which is the

most commonly used word related to the chosen event, were plotted as a network. A co-
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occurrence network for all words with a frequency greater than 200 was implemented. Then,

an analysis of how people were reacting to different events enabled the researchers to explore

human behavior. A new method to visualize the words vectors was explored by [33]. The

space dimensionality reduction was implemented in various ways using PCA, SVM+PCA, and

SVM+REG to capture various words relationships. It has been stated that visualizing the

word vectors in 2D space using the PCA technique will explore the relations between words

with the same semantic while missing other relationships. The SVM+PCA captured parallel

relations, while SVM+REG captured other relations.

Because word vector space produced by the distributional theory-based word embedding

method is insensitive to the topology features, further research in the fine-tuning of the pro-

duced features vector have been taking place. The technique proposed by [34] injects morpho-

logical language-specific rules that try to either attract the related words or repel unrelated

words. Another way of injecting morphological information into the word2vec feature vec-

tor was done by considering the character n-gram where the sum of these representations

is considered as a word representation [35]. [36] refined the Wikipedia pre-trained word vec-

tors through antonym repulsion and synonym attraction constraints and then complemented

them with feature vectors of bag-of-word embedding trained on the ontological description

text of the entities that needed to be matched. Finally, this method matched the entities of

two different ontologies according to the Stable Marriage algorithm over the entities’ pair-

wise distances. In the ontology matching application, similar words must be matched so that

ontologies defined by different groups of experts can be automatically mapped. Thus, refin-

ing the learned feature vectors mainly depends on the semantic similarity relations between

words. [?, 38] used the pre-defined synonym-antonyms relations in semantic lexicons to refine

the distributional theory-based word embedding method feature vectors so that synonyms are

attracted to each other. Each researcher wanted to add information to the feature vector for

better word embedding.

Our approach proposes a new algorithm, the ’Wasf-Vec’, that produces a new space vector

representation for the word structure by employing the topology distance as will be explained

later in section 4.4.2. Our approach agrees with [39], whose research was applied to English
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language word pairs and showed the importance of the alphabetical word character structure

to classify semantically related words and measured the words’ similarities using Dice’s simi-

larity coefficient that looks for the characters’ bigram similarities as the orthographic distance

measure. The Wasf-Vec takes the index of the sorted vocabulary as a feature representing the

character structure of words. The technique can be used in English or other languages but

has higher impact on Arabic.

Figure 4.1.: Pronunciation similarity and semantic relations.

Fig. 4.1 shows the pronunciation relations between words. The pronunciation of an Arabic

word also includes the morphological features. The distributional theory-based word embed-

ding method can be used to capture a word’s contextual features, and thus, is efficient at

extracting the semantic relations between the words regardless of their pronunciation and

morphological similarity degree. This word embedding covers the relations marked inside the

oval area in Fig. 4.1, while Wasf-Vec is used for capturing the topology similarity degree that

appears in Fig. 4.1 by following the ’close in pronunciation’ branch. In addition, we propose

a light dialect stemming algorithm as a pre-processing step, as explained in section 4.4.1. It is

implemented on Iraqi dialect, but nevertheless, it can be implemented on other Arabic dialects

with the assistance of having the MSA vocabulary list.
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4.3 Datasets Description

Two corpora are used in this experimental work. The Iraqi and MSA GALE recordings

are taken from the Linguistic Data Consortium (LDC).

The Iraqi Arabic Conversational Telephone Speech (LDC2006S45) [40] and their transcrip-

tion (LDC2006T16) [41] are considered. This corpus contains 276 Iraqi Arabic speakers in the

form of Iraqi dialect telephone conversations. The data set is subdivided as train-c1, train-c2,

and devtest. Train-c1 represents one side of recorded phone conversation and train-c2 is a

two-sided conversation. For our experiment, we used 90% of the corpus for training, or 199k

word. The devtest is a certified standard test set according to the test process applied by the

National Institute of Standards and Technology (NIST). The devtest is balanced and is 6%

(102KB or about 12k words) of the total Iraqi dataset. Another 4% of the dataset was used

as a tuning set.

The other data used to support the small Iraqi dialect set was the MSA GALE dataset,

which contains about 1516k word of MSA broadcasts of news and reports [42,43]. Again, the

considered dataset is the transcript of the audio recording. The transcription in most cases

preserves the phonology of the recorded audio. The Iraqi data size is about 10% of the MSA

GALE dataset. For a balanced distributional theory-based word embedding method training,

the Iraqi data set is over-sampled by duplicating the dataset 10 times, because the training is

based on word and context frequencies.

4.4 Methodology

As shown in Fig. 4.2, the data is pre-processed to increase the intersections between the

Iraqi dialect and the MSA. The data pre-processing techniques are illustrated in 4.4.1. Then,

the processed dataset is fed to feature extraction using either a distributional theory-based

word embedding method or the Wasf-Vec feature extraction technique explained in section

4.4.2. After representing the words as feature vectors, the analysis of the representation is

done through visualizing the feature vectors in 2D. More details and some examples of how

words were clustered with a k-means approach are found in section 4.4.4. Finally, the CBLM
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is implemented to test the clustering efficiency as described in section 4.4.3.

Figure 4.2.: Flow diagram of the steps for analyzing and evaluating words’ features
representations.

4.4.1 Data Pre-processing

Data pre-processing needs to occur to reduce the sparsity of the vocabulary set. For Arabic

data, we reduce the effect of high morphology by using MADAMIRA and Iraqi stemming.

Furthermore, any other foreign language written words in the transcripts are removed, and

the way Hamza is written is normalized. Stemming was implemented using the MADAMIRA-

release-20170403-2.1 [44]. We applied additional Iraqi stemming through our proposed Dialect

Fast Stemming Algorithm (DFSA) that does not need any additional tree-bank or database.

Besides, the algorithm does not need training because it depends solely on the vocabulary

set and a pre-defined suffix set. The objective of the proposed algorithm is to lower the data

sparsity by reducing different word forms of similar stems.

For Iraqi stemming purposes, the vocabulary set is a union of Iraqi and MSA. This is

extracted from the existing corpora. The algorithm mainly reduces the Iraqi specific prefixes
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Figure 4.3.: Dialect fast stemming algorithm.
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from a word if the remainder of the word also exists in the vocabulary set. Words that will

be under-stemming consideration are of at least five letters in length, since words of less than

5 are rarely expected to be attached to prefixes. This is because most Arabic words have

roots that are 3-letters long [9]. The algorithm is fast because it does not consume learning

time and can be applied on MSA by defining the MSA’s expected suffix set. DFSA is listed

in algorithm shown in Fig. 4.3 and the same procedure is applied for post-fixes if needed. In

Iraqi, we did not need to process the post-fixes further since most were captured through the

MADAMIRA.

4.4.2 Features Extraction

In order to extract more information, two different methods for features extraction are to

be explored:

Extracting Word Contextual Structure

The distributional theory-based word embedding methods such as the word2vec and Glove

are well known techniques for feature extraction. In this Chapter, word2vec is implemented

and evaluated. Word2vec captures the contextual features of words by keeping the node

weights of the hidden layer of a Continuous Bag Of Words (CBOW), which is a neural network

model.

Extracting Word Topology Feature Vector ( Wasf-Vec Algorithm)

A new way of representing words as feature vectors is explored in this research. It is very

simple, yet profound. The main idea is based on considering alphabetical order as the feature.

The Wasf part of the algorithm stands for the Arabic word فصو , which means description

in English, while, as commonly known, Vec stands for vector. So, the Wasf-Vec names the

proposed algorithm shown in Fig. 4.4.

If we look at word order in a sorted vocabulary dataset, we notice clearly the importance of
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Figure 4.4.: Wasf-Vec: The words’ topology features extraction.

Figure 4.5.: Illustration of Wasf.
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letter order. We consider the index of a word in the sorted vocabulary as its quantified lexical

feature. This usage is because if we consider the one-dimensional feature to be projected at

x-axis, items will be clustered in a way that related items are close together at that dimension

of space. Therefore, if a word’s index is the feature, we can use k-means to cluster words

depending on their indexes in the sorted vocabulary list. In this way, topologically related

will be gathered in the same cluster. This captures the inflectional starting, some roots, and

the pattern features.

The ascending alphabetical sort of the vocabulary set will produce indexes representing

the similarities at a word’s beginning, but we can have another feature that represents how

words are similar at the end by reversing the letter order of each word before sorting the

vocabulary. This is a very important feature that captures semantic and syntactic similarities

that a lexical structure enforces. For example, the feminine sound plural words will have close

distances. The inflection ending suffix morphological features, as defined in section 4.1, are

captured during this step. The Wasf-Vec illustration diagram is shown in Fig. 4.5.

4.4.3 Class-Based Language Modeling

This section gives a brief introduction of CBLM. To evaluate each word representation

method, a CBLM is implemented and the perplexity (pp) is computed where word classes

are the cluster numbers. CBLM was first introduced in Reference [45] and was implemented

on word2vec classes in Reference [46]. A class-based language model would be useful when

limited data resources are available. Here, the statistical information of dialect words will

share the statistical information of semantically related MSA words by having the dialect

words classified within the MSA words and building a CBLM. The classes are the number of

the k-means clusters of the feature vectors. For comparison purposes, two different clusterings

are produced, and these depend on the distributional theory-based word embedding method

feature vectors and the proposed Wasf-Vec. According to the results in Reference [47], the

feature vector size of the word2vec word embedding was 10 then was reduced to 2 using t-sne.
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4.4.4 Analysis Method: Visualizing Feature Vectors

Because word2vec produces high dimension feature vectors, t-sne is applied to reduce the

dimensionality and visuale the vectors in a 2D Cartesian plane. On the other hand, Wasf-Vec

produces a 2D space vector for each word, and thus, is directly visualized.

The results of visualization and analysis of the figures are listed in the visualizing feature

vector results section 4.5. The Iraqi and MSA datasets were input to build Wasf-Vec. The 10

times over-sampled Iraqi dataset and MSA GALE dataset were input to train the word2vec

model. The analysis was mainly based on zooming in on arbitrary subareas of the clouds

produced by plotting the feature vectors in both spaces Wasf-Vec and word2vec. Experts

defined semantic relations between the words in each area. These semantic relations are

represented by edges in the graphs.

The pattern fEl represents a three letter root. It carries no specific meaning except an

abstract general root pattern. Words that are of this pattern retain the abstract meaning of

the original lexical word [48]. On the other hand, the other Arabic patterns add semantics

to the word. The root set of the Wiktionary was considered. Some other derived forms of

the roots were generated and included in the analysis if they belonged to the data vocabulary

set. At the same time, to have a good understanding of how words from the same root but

different template relations are represented, a histogram of categorized distances is introduced.

In addition to the root lexical meaning, other patterns studied were mfEwl that carries the

meaning of the object where the action was done and fAEl, that carries the meaning of who

did the action.

For analysis purposes, various data sets were plotted separately as listed below.

• Subset 1 contains words picked from many regions of the word2vec cloud.

• Subset 2 contains words picked from many regions of the Wasf-Vec cloud.

• Set of all words derived from Gave ’>ETY’ ىطعأ were plotted alone to see how these

words were spread in the vector space.

• Set of some paradigmatic related words.
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• Set of some syntagmatic related words.

• Set of all words that belong to the fEl and mfEwl templates.

• Set of all words that belong to the fEl and fAEl templates.

A sample of some words and their nearest neighbors that appear in words clusters are also

listed to give an intuition of the clustering quality.

4.5 Results and Analysis

4.5.1 Dialect Fast Stemming Algorithm (DFSA) Accuracy

Figure 4.6.: Iraqi-MSA Vocabulary Intersections.

DFSA is an additional stemming step after applying the MSA stemming MADAMIRA.

An example of stemming output of the dialect sentence:

ةنيزاهنإممصمدلاولاعاضوألاهدعبنولوقيشدعبكللوقاشيرداام

that was stemmed through MADAMIRA to be

ةنيزاهّناممصمدلاوّلاعاضواّلاهادعبنولوقيشدعبكّللوقاشيرداام
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then the DFSA applied further stemming to produce

ةنيزاهّناممصمدلاوّلاعاضواّلاهادعبنولوقيّشدعبكّللوقاّشيرداام

The accuracy was computed using precision, recall and the F1 score, where:

• True positives are words that needs dialect stemming and were stemmed correctly.

• True negatives are words that do not need stemming and were left correctly.

• False negatives are words that need dialect stemming but were left out.

• False positives are words that do not need stemming but were stemmed incorrectly.

The precision is 0.94 which indicates that a very small ratio of the words was over-stemmed,

while the recall is 0.78 which means there are still about 20% of the words that were under-

stemmed. The F1 score can be defined as the equation 4.1 is 0.85.

F1 =
2 (precision ∗ recall)
(precision+ recall)

(4.1)

Applying both stemming techniques to the Iraqi and MSA GALE data improved the ratio

of the common words to their vocabulary sets. The stemming increased the intersection ratio

between Iraqi and MSA words from 42.8% to 54.5% of the Iraqi vocabulary and from 8% to

13% of the MSA GALE vocabulary, as shown in Fig. 4.6. At the same time, stemming reduced

the vocabulary size of both Iraqi and MSA from 21k words to 13.4k words, and 111k words

to 53k words, respectively. Although the number the intersected words of GALE MSA words

and Iraqi word were reduced through stemming, the ration to the total datasets increased.

Therefore, sparsity was reduced while the intersection of Iraqi words with the GALE MSA

words increased which increased the relations between the two languages.

4.5.2 Visualization Result of Feature Vectors

Before starting visualization of the word relations, examples of how syntagmatic and

paradigmatic relations appear in MSA and Iraqi dialect are presented in table 4.1.
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Table 4.1.: Examples of how paradigmatic and syntagmatic relations between words appear
in MSA and the Iraqi dialect.

relation Paradigmatic Syntagmatic
MSA Used as a Rhetorical device Grammatically correct syntax

ex1: لوؤسمردصم ىلدأ ex:- ىربكلاندملايحاوضىلعلوجتتةلفاحهذه

ردصملا لاقو

ىلدأ،لاق are exchangeable synonymssaid,mentioned
ex2: تيخبلافورعمروتكدلا دكأ هبناجنم

نايبيفتيخبلا ددشو

دكأ،ددش are exchangeable synonymsemphasized, confirmed
ex3: موجهلا رمدو

فصقلا رمدو

فصقلا،موجهلا are associative word attack, Bombing

Iraqi 1-Dialect discourse structure contains the repetition 1-Shorter sentences that are somehow
يكرتدلولااذهىلإ اهيدوأ وهيإيإ free of constraint syntax grammar.
يكرتدلولااذهىلإ اهذخأ وهيإيإ ex: اهتلامتيجزاجلالإيوسواهنبيجأاهذخآ

اهيدوأ،اهذخأ are associative words with similar morphology take it, hold it. (no grammar used)

2- Vocabulary interchanged by other foreign words. 2- Dialect discourse use parallelism.
split تلبسلا بيجنح ex1: اهلدبننسحأ هتلامةقشلاذخانلخ نسحأúاو نسحأيإ يبدب

Original MSA is ةلصفنملا split unit ديربتلاةدحو بلجنس ex2: úاوةيطخةيوش تاعاسعبرأياهتناك ةيوشتناك

ex3: بتاروكأ ىتح لغشوكأ وه

3-Vocabulary interchanged by other variants of lighter phonemes words. ex4: نيفلأ فلأ كلبيجأ كلبيجأ

ex1: ايوبااهينيع كنولش ex5: هأهيلعلغتشي دحاو دحاو ياهاذإياهيإاهاه

تنإ how are you كنوش

ex2: صنو ةينامثشيل

Original MSA word is Half فصن

ex3: فلأ شعطسمخ قرفهبرعسنيفلأال

Original MSA word is fifteen رشعةسمخ

ex4: تبرش اوتعزو

Original MSA word is drinks تابورش

Figure 4.7.: Plots of selected set1 from different regions of word2vec cloud is shown. (a) in
word2vec (b) in Wasf-Vec.

In Fig. 4.7, 4.8 words that appear in the GALE MSA vocabulary are plotted as circles,

while words that belong to the Iraqi vocabulary are plotted as triangles. In the Wasf-Vec 2D
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Figure 4.8.: Plots of selected set2 from different regions of the Wasf-Vec cloud. (a) in
word2vec (b) in Wasf-Vec.

graph, the x-axes refers to the word topology features that are induced by the words’ starting

letters. On the other hand, the y-axes refers to word topology features that are induced by the

words’ ending letters. Since the word topology features are the indexes of sorted vocabulary,

the words near to the origin of the x-axes are the words starting with first Arabic alphabetical

letter ’Alef’ ,ا while the words starting with the last Arabic alphabetical letter ’Ya’ ي appear

far to the right of the x-axes. The same thing applies for the y-axes. Thus, in the top right

corner are the words that start and end with ’Ya’ .ي

Words plotted in the word2vec space using t-sne, On the other hand, the Wasf-vec is

a 2D space, so the words are plotted by their actual feature vector values with no need to

use t-sne. The scattergram Fig. 4.7, 4.8 are produced to show how same set of words is

distributed/clustered in each space. Fig. 4.7 (a) is produced by zooming in on the word2vec

cloud and plotting only selected words from various areas to analyze in subset 1. 4.8 (b) is

produced by plotting only subset 1 selected words in the Wasf-Vec space. On the other hand,

Fig. 4.8 (a) is produced by zooming in on the Wasf-Vec cloud and plotting only selected

words from the various areas as subset 2. (b) is produced by plotting only subset 2 words

in the word2vec space. This shows how closely related words in word2vec were spread in the
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Wasf-Vec and vice versa.

To complete a better analysis, words from both subsets are plotted with predefined lines

between some of the paradigmatic related words and syntagmatic related words. Thus, the

length of the line represents the distance between words. Because the end goal is clustering

related words, the long lines mean that the relations were not captured well and need to be

attracted to each other in some manner, relation analysis should bring more insights of how

to achieve this goal.

Paradigmatic Relation Analysis

Figure 4.9.: The lines represent the distances between paradigmatic related words in
Wasf-Vec.
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Figure 4.10.: The lines represent the distances between paradigmatic related words in
word2vec.

The paradigmatic relations are very well captured by the Wasf-Vec as shown in Fig. 4.9,

where words can be replaced in a sentence. Even if the edge length appears long, many straight

vertical or horizontal lines can be seen. For example, the line AB connects the words I buy

يرتشا ’>$tary’4 and we buy يرتشن ’na$tary’ and line HG connects the words officer يدنج ’jndy’

and officers دونج ’jnuWd’. While in word2vec space, these related words appear closer to each

other.

Some long-distance lines appear because related words are not from the same root, such

as line CD that connects accepted قفاو ’>wAfiq’ and approved رقا ’>qir’., or they are words

that share the same root but have a different prefix and post-fix added, such as line EF that
4Buckwalter Arabic transliteration format
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connects I refuse ضفرا ’>rfuD’ and they refuse اوضفري ’yarfuDw’. Line ij and pq in Fig. 4.10

in word2vec space also illustrates a relatively long distances between related words.

Some Iraqi dialect words imported morphemes from the Turkish language such as the

morpheme that means without زس ’siz’ and hence, the two words morality and with no moral-

ity ةيبدا ’>dabyap’ and ةيزسبدا ’>dabsizyap’ appear close together in Fig. 4.9. While in the

word2vec Fig. 4.10, the line mk shows a long distance between these words. Also, the two

words for upset, the MSA رجض ’Dajr’ and the Iraqi dialect word ركنط ’Tankr’ appear very close

and have the same meaning. Although they do not belong to same root, their pronunciation is

similar to each other, which agrees with Ibin-Ginni’s (941-1002) theory that relates the word

pronunciations to their meanings. In the word2vec space Fig. 4.10, these two words for upset

appear at a greater distance than they appeared in the Waf-Vec as shown in line rs.

In Wasf-Vec, words that have the same beginning and nearly similar endings refer to plural

characteristics such as eastern people نويقرش ’$arqywn’ and نييقرش ’$arqyyn’ are also gathered

in very close positions. Moreover, words can be spelled incorrectly or differently according

to the person who transcribes it, because the word is not Arabic. This applies to foreign

names such as Richard that appears in three different forms درشتير ’ryt$rd’ دراشتير ’ryt$Ard

دراشير ’ry$Ard’ and the word strategy يجيتارتس ’strAtyjy’ يجيتارتسا ’>stratyjy’ that appears

close to each other and in different spellings in the Wasf-Vec space. The Wasf-Vec considers all

words in the vocabulary, while the word2vec considers words have some predefined frequency

to enable good training. In our experiments, to be a part in the training process, a word

must appear a minimum of 5 times. In the word2vec space vector, if the same word appears

in different spellings, it is not recognized as the same word and is excluded from the training

process. This applies to eastern people نويقرش ’$arqywn’ and نييقرش ’$arqyyn’.

Both Word2vec and Wasf-Vec captured and agreed on some paradigmatic relations. For

example, words that belong to the same template were gathered, such as the words accumulated

ةمكارتم ’mutarAkimap’ and overlapped ةلخادتم ’mutadAxilap’, because they belong to the

template ةلعافتم ’mutafAEilap’. Given that the Arabic templates refer to how words are used

and part of their meaning, the ’mutafAEilap’ template means that something is interactive.

This is why these words are adjacent in the word2vec space in Fig. 4.10. In the Wasf-
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Vec space shown in Fig. 4.9, the words accumulated ةمكارتم ’mutarAkimap’ and overlapped

ةلخادتم ’mutadAxilap’ also appear adjacent because they share the same template and thus

have similar beginnings and endings. Dialect words that were originally MSA words but have

been changed in pronunciation, such as talk in dialect يجح ’Hajy’ and MSA يكح ’Haky’,

appear near each other in both Fig. 4.9, 4.10.

To compare the distances, Fig. 4.11 demonstrates (a) how word2vec captured the paradig-

matic relations, while (b) how Wasf-Vec captured the same words. The Wasf-Vec histogram

indicates a skewed distribution where most frequencies lie on the lower distance values. On

the other hand, the word2vec histogram is spread, or has a bi-modal distribution. Actual

distance values should not be used for direct comparison between Wasf-Vec and word2vec

since distances belong to different vector spaces, but within each, Wasf-Vec results points to

a better clustering performance. This indicates that the Wasf-Vec captured the paradigmatic

relations more efficiently.

Figure 4.11.: The distances histogram of the paradigmatic related words. (a) Is word2vec
space (b) Is Wasf-Vec space.

Syntagmatic Relation Analysis

Since the distributional theory-based word embedding method characterizes words by

the company they keep, the syntagmatic relations are the word relations represented in the

word2vec vector space. The most common case of syntagmatic relations in Arabic is defined

as the Nominal muDaf Arabic grammar rule [9], where a word meaning is not complete until

it is followed by the next word. The Wasf-Vec does not capture these relations very well as

seen in Fig. 4.12 (b), while in the word2vec Fig. 4.12 (a) these words appear near each other.
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Figure 4.12.: The lines represent the distances between syntagmatic related words. (a) is
word2vec space and (b) is Wasf-Vec space.

Figure 4.13.: The distances histogram of the syntagmatic relation of the words. (a) is
word2vec space and (b) is Wasf-Vec space.

In terms of quantitative analysis, the distance histogram in Fig. 4.13 (a) shows how

word2vec captured the syntagmatic relations, while (b) shows Wasf-Vec. Due to the small

size of the syntagmatic related word sample set (12 words of 6 relations), drawing a conclusion

from the histograms may not be fruitful at this point.

Same Root Word ( ىطعأ Gave) Relation Analysis

Same root relation analysis can be an instance of paradigmatic relationships produced

through phonology and morphology similarities. Fig. 4.14 shows the different word forms

derived from ’>ETY’ ىطعأ , including the dialect specific forms. In the word2vec Fig. (a),

the different word forms of the same root were spread mainly on the left side of the graph.
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Figure 4.14.: This figure shows how different ’>nTa’ rooted words are spread in the vector
space. (a) is word2vec space and (b) is Wasf-Vec space.

Figure 4.15.: This figure shows how words with the patterns fEl and fAEl are presented in
the vector space. (a) is word2vec space, (b) is Wasf-Vec space.

While on the Wasf-Vec, Fig. (b), the present tense verbs were gathered to the right side of

the Fig. and the past tense verbs appear on the left. The different pronouns attached to word

endings as post-fixes cause the spreading of the words along the y-axes. The Wasf-Vec gives

those different word forms a closer allocation than in the word2vec.

The fEl-fAEl, and fEl-mfEwl Patterns Relation Analysis

Root-pattern relations can be considered as syntagmatic relations because the fEL, fAEl,
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Figure 4.16.: This figure shows distance histogram of words with the patterns fEl and fAEl
(a) is word2vec space, (b) is Wasf-Vec space.

and mfEwl patterns are not replaceable but have different syntax positions. To find whether

there is a pattern of the word template distances, the 3-letter roots of the form fEl لعف that

are defined in the Wiktionary and fAEl لعاف template that appear in our data are plotted in

Fig. 4.15, where scattergram (a) is the word2vec space, and scattergram (b) is the Wasf-Vec

space. Fig. 4.16 (a) and (b) are the Euclidean distance histograms. From the histograms, the

Wasf-Vec has very steady distances and the distances between fEl-fAEl appear close to each

other.

In Fig. 4.17, scattergrams (a) and (b) illustrate how the related words of patterns fEl-

mfEwl لوعفم - لعف are spread in word2vec and Wasf-Vec spaces respectively. Since all mfEwl

words start with ’M’, almost all appear on the right side of scattergram (b) and most share the

same horizontal y-axes with the fEl form of the same word. The Wasf-Vec distances are spred

in the left side, as seen in Fig. 4.18 (b). The distance histogram of the fEl-mfEwl relations

in word2vec presented in Fig. 4.18 (a) can be considered as normally distributed. Thus, both

Wasf-Vec and word2vec were unable to capture the fEl-mfEwl relation very well.

4.5.3 Nearest Neighbors

Now that the 2D visualization and some histograms have been illustrated, samples of the

word clustering produced are shown in table 4.2 for the Wasf-Vec and 4.3 for the word2vec.

Looking at the Wasf-Vec clusters sample table 4.2, the class 37 words share the same syn-

tax rule of being masculine plural and present verb. These properties were enforced by the

starting letter ي and ending letters نو . In other words, they share the paradigmatic re-
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Figure 4.17.: This figure shows how words of pattern fEl and mfEwl are presented in the
vector space. (a) is word2vec space, (b) is Wasf-Vec space.

Figure 4.18.: This figure shows distance histogram of words with the patterns fEl and mfEwl
(a) is word2vec space, (b) is Wasf-Vec space.

lation. Also, many words were found that have closely related meanings, such as they fight

نولتاقي ’yuqAtilwn’ they fight one against the other نولتتقي ’yaqtatilwn’ they resist نومواقي ’yuqAw-

imwn’. Opposite words also appear, such as they resist نومواقي ’yuqAwimwn’ they accept نولبقي

’yaqbalwn’. In class 22, many negative words are clustered and share the prefix ب to refer to

the continuous verb and the post-fix او to refer to the plural. Class 278 contains many names

and other verbs with the prefix ف to refer to the word ’so’. Feminine plural nouns indicated

by the post-fix تا are clustered in class 538. By identifying nearest neighbors, related words

are clustered effectively.

The word2vec word embedding sample clusters in Table 4.3 indicate many words that can

appear in same sentence. Class 37 contains many negative words that may appear in the

same context. Class 23 contains hospital ىفشتسم ’musta$fY’ and Upper يولع ’Eilwy’. Upper
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Table 4.2.: Sample of Wasf-Vec clustered words.

Word Class Translation Word Class Translation Word Class Translation Word Class Translation
نولضفي 37 They prefer اومتشيب 22 They are swearing يداف 278 Fady an Arabic name 538 Comments
نولعفي 37 They do اونحشيب 22 They are wrangling يسراف 278 Persian تاميلعت 538 Instructions
نوكفي 37 They release اوككشيب 22 They are doubting يشاف 278 fascist تاضوافت 538 Negotiations
نومهفي 37 They understand اولكشيب 22 They are forming يضاف 278 empty تادهعت 538 Promises

نولباقي 37 They meet اوكشيب 22
They are
falling under
suspicion

يدقاف 278 who are losing تاضيوعت 538 Compensations

نولتاقي 37 They fight اونشيب 22 They are triggering يريلاف 278
Falary a
non Arabic
name

تانييعت 538 Assignments

نونراقي 37 They compare اوفوشيب 22 They are looking يرظتناف 278 so wait تاريغت 538 Arbitrary Changes
نومواقي 37 They resist اوليشيب 22 They are raising يقبتبف 278 so you stay تارييغت 538 Planed Changes

نولبقي 37 They accept اولفطصيب 22 They taking care
of their problems يدتبيبف 278 so he starts تالعافت 538 inter-activities

نولتتقي 37
They fight
one against
the other

اوقياضيب 22 They are harassing يفتكيبف 278 so he would
be satisfied تامهافت 538 agreements

Table 4.3.: Sample of word2vec clustered words.

Word Class Translation Word Class Translation Word Class translation Word Class translation
لماتا 37 I hope حيحص 22 Righ راذا 278 March زنيجلا 538 Jeans
يماهتا 37 Accusing me يتلام 22 Mine تاثداحم 278 Conversations ميازعلا 538 Invitations
ايقالخا 37 Morally فظن 22 cleanup اوكرتا 279 Leave ادغلا 538 Lunch

لالذا 37 Humiliation بحي 22 He loves ديشرا 279 Arabic name (Arsheed ) يوبواكلا 538 Cowboy
يدادبتسا 37 Tyrannical نووسي 22 They make تلمعتسا 279 She used ميلا 538 Painful

دارفتسا 37 Standalone علطي 22 He is getting out اهلا 279 For her انيهتنا 538 We finished
ءاوقتسا 37 Bullying ةعسات 23 Ninth اجيموا 279 Omega قشنا 538 Ripped

دنتسا 37 Lean ةيمنامث 23 Eight hundred لوقاب 279 I am saying بلقنا 538 Turned over
ماهسا 37 Contribution يولع 23 Upper اولوقتب 279 You are saying يليميا 538 My email
ةداشا 37 Praise يفشتسم 23 Hospital دكايب 279 He is confirming سحاب 538 I feel

and hospital words are also syntagmatically related when upper refers to a floor. In 278,

discussions occurring in March راذاتاثداحم are syntagmatically related words that are defined

by the ’Mudhaf’ Arabic grammar rule. But, also in 278 are I am saying لوقاب ’bAqwl’ you

are saying اولوقتب ’bitqwlw’ he is confirming دكايب ’bi>kid’, which are words similar in meaning

and share the prefix ب of the present tense verb to refer to continuous time. Jeans زنيج ’jynz’

cowboy يوبواك ’kAwbwy’ in 538 are two words of exactly the same meaning and use, so this

kind of similarity would not be captured in the Wasf-Vec.

From these samples, one can conclude that the paradigmatically related words are usually

clustered when the Wasf-Vec feature vector is used, while more syntagmatically related words

are usually clustered together when using the word2vec feature vectors.
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4.5.4 CBLM pp

The pp reduction ratio achieved by the Wasf-Vec CBLM is 7% better than the word2vec

CBLM as shown in 4.4. Paradigmatic relations, which identify words that can be replaced in a

sentence either for a similar meaning or for their syntax role, were represented more efficiently

in the Wasf-Vec. Since CBLM basically allows same class words to share the statistical

probability, then it makes sense that replaceable words share their probabilities when modeling

the language. This contributes to the Wasf-Vec’s pp reduction ratio over the word2vec CBLM.

Furthermore, by observing the data, the topology feature differences between the Iraqi

dialect and the MSA are briefly shown in table 4.5. A thorough comparison between the

MSA and Iraqi dialect can be found in Reference [9], where it has been stated that not all

MSA patterns are preserved in the Iraqi dialect, and roots in Iraqi dialect may not correspond

identically to the MSA roots. The table shows that the Iraqi dialect phonologically produces

other variants of the MSA words that are paradigmatically related to the MSA original words.

The paradigmatic relation also relates the widely used Iraqi morphological forms of words to

the other MSA forms of words. Thus, the main relation between the Iraqi words and MSA

words is paradigmatic, which explains why applying the Wasf-Vec and utilizing the MSA to

build the Iraqi dialect LM reduces the pp by 7%.

Table 4.4.: The pp of the CBLMs.

LM pp
Wasf-Vec class based LM 220.1413
word2vec class based LM 237.7988
Reduction Ratio %7.4

4.6 Conclusions

To overcome the challenges of low resource Iraqi dialect, the first step was applying

MADAMIRA stemming then using the results to perform additional dialect-specific stem-

ming. This enlarged the vocabulary intersection and reduced the sparsity. Sparsity is a
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Table 4.5.: Comparing the Iraqi to MSA in terms of topological features.

orthographic phonologic morphologic

MSA Diacritic may appear
with the letters

Words pronunciations
are almost one to one
mapping to their
letters pronunciation

Rich and variety usage
of all kinds of
morphological affixes.

Iraqi Same as MSA but less
need of using diacritics

Includes wider range
of sounds such as /p/,
/v/,/g/,/ch/.
Less use of short vowel
sounds on the words
endings.

1-Lower use of feminine
plural verb than Masculine
plural verb
2-Rare use of dual format
( The use of + Dual Ending نا

is less than + Dual Ending ني )
3-Rare use of plural noun
ending by نو

challenge because MSA is a highly morphological language, which is a property that is also

passed to dialects. Indeed, both Iraqi and MSA have a large amount of words that have similar

meaning but have different forms which causes the sparsity problem. Also, having many words

in the dialect that are MSA words with slightly different pronunciations increased the number

of word forms. The training of the distributional theory-based word embedding method is sig-

nificantly impacted by this sparsity. To overcome this, the Wasf-Vec was developed to reduce

the sparsity issue. The Wasf-Vec is a word embedding system that takes advantage of words

topological features. Allowing words to be close together based on the topology distance space

resulted in assigning these words to the same statistical class in the CBLM. This significantly

reduced the sparsity problem.

Two types of word representations for the Iraqi dialect and MSA were used in order to de-

velop word clusters. By applying the distributional theory-based word embedding method and

the Wasf-Vec, two types of clustering were produced. The clustering results show that Wasf-

Vec represented the paradigmatic relationships efficiently and proved to be more reasonable

for sharing probabilities through CBLM.

In future investigations, it would be worthy to investigate a system in which both feature

vectors are used for classifying MSA and dialect words. Verifying Wasf-Vec’s abilities on other

data sets to allow performance quantification via word pp to develop a better understanding of
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the new technique and its advantages. Also, it would be good to investigate deriving the Arabic

analogy set from various patterns that share the same root and/or nominal, muDaf, phrased

words to test the efficiency of the distributional theory-based word embedding method.
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CHAPTER 5. CONCLUSION

Because the daily spoken dialects are still considered to be low-resource languages, Arabic

NLP uses MSA. Since these dialects, such as Iraqi, are mainly derived from MSA, one should

aim to benefit from their properties’ intersections. Language properties are vocabulary and

linguistic features such as morphology and phoneme sets. The goal of this thesis is to build

an LM for dialect conversations to be used in a speech recognition system. Not only are the

challenges of MSA processing passed to the derived dialects, but also, conversational type of

communication increases the challenge level due to the differences in word usage and utterance

length.

Developing the LM is a fundamental process to build many NLP applications. In this work,

we opted to model the problem as a domain adaptation. That is MSA and dialect are being

viewed as the same language but different domain. The differences come in two major axes:

difference in speech style (such as in news vs. conversation), and difference in vocabulary set.

Interpolated LM and class-based LM are selected to address the domain adaptation problem.

It has been proven that word embedding produces good unsupervised word feature vector

representation. The need for unsupervised classification stems from the fact that dialects

are low-resource languages, and researchers do not have a pre-defined annotated vocabulary

set. The clusters are used for building the class-based LM, and those clusters are the media

that carry the transferred information between the two languages. Thus, efficient clustering

sustains better cross-language information transformation.

The distributional-based word embedding applied in this thesis is NN-based using word2vec,

where for each word a semantic and syntactic feature vector were extracted. Investigations

also included a selection criterion for best feature vector length that represents a word. Prin-

cipal component analysis (PCA) was used at the feature vector level and found that small

size feature vectors give better representation of words if the NN word embedding is trained

on different domain corpora. This eliminated some of the noise effect related to having words

with context that were not expected to occur in test data. Syntax and semantic features based
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on word context usage are not always applicable or even consistent. For instance, broadcast

news and report contexts are very different from phone conversation contexts.

Moreover, because Wasf-vec is a Topology-based word embedding, it overcomes the limi-

tations of having relatively small data for training, and essentially solves the sparsity problem

caused by the high morphology property of the Arabic language.

An analysis of the weaknesses and strengths of both word embeddings in terms of syntag-

matic and paradigmatic relations is presented with a solid linguistic theoretical base. Paradig-

matic relates replaceable words, while syntagmatic relates words in some context. Our analysis

shows that the paradigmatic relation is the most important relation when considering cross-

language word relation of dialect and MSA. That is why the LM that was based on classes

produced from clustering words in Wasf-Vec outperformed the LM that was based on classes

produced from clustering words in distributional-based word embedding.

Deploying the additional new stemming algorithm, DFSA, increased the vocabulary inter-

section between the two domains. In addition, the assumption that dialect and MSA are two

different but intersected domains answers the question regarding why the interpolated LMs

of both domains resulted improvements.

The LM efficiency was calculated by its perplexity metric, but other methods to evaluate

the LM can be used, such as implementing it in an NLP application and calculating the

enhancement achieved. However, the lack of access to the ASR system to test the proposed

model limited this work to perplexity metric, and therefore, a reduction in WER was not

presented.

The importance of using Wasf-vec, a topology-based word embedding method, is to reduce

sparsity that could not be achieved using other word embedding methods. It is important to

locate different forms of words in order to share statistical history that a class-based language

model will use. Thus, taking advantage of word topological features allows the recognition

of different word forms in one cluster and assists in identifying the most common language

utterance spoken. A speech recognition system can be built using the new language model to

develop a lower WER in the future.
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5.1 Contribution

In this chapter, we give an overview of this dissertation contribution and few suggestions

to future work.

• Adapting MSA LM to a dialect LM. We defined the problem of utilizing MSA data

to develop a dialect-LM as a domain adaptation. This definition leads to interpolating

both of the languages’ LMs. It is illustrated in this work how both domain adaptation

is successful and is one way of utilizing the MSA data to support developing the dialect

LM.

• Class-based language modeling. To address the difficulties associated with limited

dialect data, we used classes that were obtained via clustering the word embeddings of

MSA-dialect words. Clustering the dialect words within the MSA words allowed the

statistical information transformation of the rich MSA data to the dialect.

• Specifying noise in the feature vector produced by NN word embedding.

Distributional-based word embedding of multiple domain-training corpora is defined as

context that appears in one domain but not in the other. This noise is reduced using

PCA.

• Words ontology analysis. Addressing the definition of word ontology using word

contextual and topological features and its paradigmatic and syntagmatic related words.

This definition allowed us to identify the information that were underrepresented in the

word embedding.

• Intrinsic evaluation of word embedding. A deep look at the word representation

through visualization and distance histogram of selected paradigmatic and syntagmatic

related words shows the intrinsic evaluation of the representation in addition to the

extrinsic evaluation that was computed through LM pp.

• Iraqi- MSA analogy analysis from information technology insight. This is new

development that allowed intrinsic information of the Iraqi dialect word embeddings to
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be investigated and tied to its counterpart in MSA. Designed and Developed Dialect Fast

Stemming Algorithm (DFSA). This framework has several elements of novelty such as

the stemming algorithm which can be adopted for any dialect that has a corresponding

corpus, such MSA.

• Wasf-vec word embedding framework. This algorithm is based on topological

word features that solved the Arabic high morphology issue and can be applied to

other languages as well. The algorithm is simple yet very effective and is efficient

in cross language information transformation by capturing relations that were missing

in distributional word embedding. The data sparsity caused the high morphological

property of Arabic is highly reduced by clustering various forms of same rooted words

in same cluster and consider the class-based LM.

5.2 Future Work

The findings of this research will allow for building a new structure for a probabilistic NN

LM to adjust the weights of the NN of distributional-based word embedding, which are the

semantic and syntactic features, for more efficient words representation. The adjustment aims

to integrate the proposed topological features with the semantic and syntactic features in one

probabilistic NN LM.

Further, the work allows for applying the resultant LM to a Kaldi ASR recipe for Iraqi

phone conversation data to evaluate the proposed LM with WER metric. This will give a

more solid validation of the LM to be used in actual applications.

In addition, the Wasf-Vec can be tested in other NLP applications such as dialect sentiment

analysis and translation. We expect that capturing the paradigmatic relations using Wasf-Vec

will cause improving the performance of these applications. This can be done by concatenating

topological features with the semantic and syntactic features and feeding them to a DNN

classification system.
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A Different Forms of the Word Give

اهاطعأ هاطنأو هيطنأد كيطنأو كيطنا انيطنيد كيطني هاطنأ ينيطني كيطنيح هاطنا

انوطنإ هيطنإ هيطنيح تيطنا تيطناو انيطنت هيطنت نيطنت كيطناو ينيطنيو

ينتيطنإ مهيطنت مهيتيطنا يطنتو اهيطنإ هيتيطنا كيطنأ ينيطناد يطنإ هيطناح

اهتيطناو يناطناو اناطنا هيطعأ هوطناو كاطنإ يناطنإ هيطنأ ىطعأو هوطنإ

انيطعأ اهيتيطنا مهيطنا كيطنيد كاطنا يطنت ينيطنتو هيطني كتيطعأ اهيطني

هانيطنا هتيطنا هاطعأو انيطني انيطنا ينتطنأ اهتطنا ءاطعإو اهيطنت هتطنا

ينتطناو كيطعأ انطعا ينوطنا تطعأو كوطنا كتطنا يطنأو انوطعأ انيطعأو

ءاطعإل كيطعأس هاطعأ تيطعأ ينيطعأ مهيطني يطعاب كيطنأد اوطنا ينيطنيش

يطنأ كيطنت اهيطنأ مهيطنأو نهيطنا نهوطنا اهيطناو كاطناو اهيطعأ ءاطعإ

ءاطعإب اناطعأ ينوطنأ كيطعاب نهيطني هوطنا مكيطنأ انيطناو هيطناو هيطنادو

انوطنا مكوطنا كيطناش هيطنتش كيطنتو يطنيو تطعأ تيطعأو مكيطني ينيطنإ

ينتطنا ىطعأ نهتيطنإ اهيطنا ينوطعا اوطعأ حيطني يطني ينطعا انيطعا

يناطنا اهوطنا يطنا كتيطنا ينتيطنا هتيطنإ كانيطنا ينيطنا هيطنا ينيطنت

يناطناف اوطنإ انوطعا كيطعأب يطعأ اهتيطنا هيطنتو
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Figure B.3.: Permission to include ”Tiba Zaki Abdulhameed, Imed Zitouni, and Ikhlas
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