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Extremal Problems On Induced

Graph Colorings

James Hallas, Ph.D.
Western Michigan University, 2020

Graph coloring is one of the most popular areas of graph theory, no doubt due
to its many fascinating problems and applications to modern society, as well as
the sheer mathematical beauty of the subject. As far back as 1880, in an attempt
to solve the famous Four Color Problem, there have been numerous examples
of certain types of graph colorings that have generated other graph colorings of
interest. These types of colorings only gained momentum a century later, however,
when in the 1980s, edge colorings were studied that led to vertex colorings of various
types, led by the introduction of the irregularity strength of a graph by Chartrand
and the majestic chromatic index of a graph by Harary and Plantholt. Since then,
the study of such graph colorings has become a popular area of research in graph
theory. Recently, two set and number theoretic graph colorings were introduced,
namely royal colorings and rainbow mean colorings. These two colorings as well
as variations have extended some classical graph coloring concepts. We investigate
structural and extremal problems dealing with royal and rainbow mean colorings
and explore relationships among the chromatic parameters resulting from these

colorings and traditional chromatic parameters.
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Chapter 1

Introduction

1.1 Graph Colorings

On October 23, 1852, a problem was stated that immeasurably changed the field of
graph theory. A young mathematician named Francis Guthrie posed the following
question. Using at most four colors, can the regions of a map be colored so that
no two regions sharing a boundary are colored the same? This deceptively simple
sounding question stumped problem solvers from a variety of different backgrounds
for over a century. It wasn’t until 1976 when Kenneth Appel and Wolfgang Haken
finally found a solution to this problem, which was initially controversial due to
its reliance on computer technology. Nevertheless they showed that the answer is
affirmative, namely that any map can indeed be colored in the desired way using
at most four colors. This famous question led to the development of a branch of
graph theory focused on the study of graph colorings. Today, graph coloring is one
of the most popular areas of graph theory because of its history as well as its many
fascinating problems and applications to modern society.

A k-edge coloring of a graph G is a function ¢ : E(G) — [k] = {1,2,...,k}
where k is a positive integer. The edge coloring c is unrestricted if no condition
is placed on how the edges may be colored. For example, in an unrestricted edge
coloring, adjacent edges may be colored the same. However, if no pair of adjacent
edges in GG can be colored the same, then c is referred to as a proper edge coloring.
The minimum positive integer k for which G has a proper k-edge coloring is its
chromatic indez, denoted by x'(G). For every nonempty graph G, x'(G) > A(G),

where A(G) is the maximum degree of G.



The most famous theorem dealing with the chromatic index was obtained by
Vizing in [43].

Theorem 1.1.1 (Vising’s Theorem) For every nonempty graph G,

Y (G) < A(G) + 1.

As a result of Vizing’s theorem, the chromatic index of a nonempty graph
G is one of two numbers, namely either A(G) or A(G) + 1. A graph G with
X'(G) = A(G) is called a class one graph while a graph G with \'(G) = A(G) +1
is called a class two graph.

A wvertex k-coloring of a graph G is a function ¢ : V(G) — [k] where k is a
positive integer. A vertex coloring of a nontrivial graph G is vertez-distinguishing
or rainbow if distinct vertices of G are assigned distinct colors while a vertex
coloring of G is neighbor-distinguishing if no two adjacent vertices are colored the
same. Such a coloring is commonly called a proper coloring. The minimum k for
which a proper (vertex) k-coloring of a graph G exists is the chromatic number
of G and is denoted by x(G). Notice that every rainbow coloring is also proper,
making rainbow a stronger condition to require of a graph coloring.

We refer to the book [23] for graph theory notation and terminology not de-
scribed in this dissertation. The following are some well-known results about the
chromatic number of a graph. For graphs of order n > 3, it is immediate which
graphs of order n have chromatic number 1, 2, or n. A graph is empty if it has no

edges. Consequently, a nonempty graph has one or more edges.

Observation 1.1.2 If G is a graph of order n > 3, then x(G) = 1 if and only if
G is empty, xX(G) = n if and only if G = K,,, and x(G) = 2 if and only if G is a
nonempty bipartite graph.

By Observation 1.1.2, x(G) > 3 if and only if G' contains an odd cycle (or
equivalently G is not a bipartite graph).

Proposition 1.1.3 If H is a subgraph of a graph G, then x(H) < x(G).

The cligue number w(G) of a graph G is the maximum order of a complete
subgraph of G. In particular, w(K,) = n and w(G) = 2 for every nonempty
bipartite graph G.



Theorem 1.1.4 For every graph G,

W(G) < x(G) < AG) + 1.

For each odd integer n > 3, the connected graphs C,, and K, have the property
that x(C,) =3 =A(C,)+1 and x(K,) =n = A(K,)+ 1. Brooks [9] showed that

these two classes of graphs are the only connected graphs with this property.

Theorem 1.1.5 (Brooks’ Theorem) If G is a connected graph that is neither

an odd cycle nor a complete graph, then

X(G) < A(G).

During the past several decades, there have been many studies of edge labelings
or edge colorings of graphs that give rise to vertex labelings or colorings where the
vertex coloring is either proper or rainbow. Such colorings are often referred to
as color-induced graph colorings. Among the colored-induced vertex colorings ¢
of a graph G obtained from an edge coloring ¢ of G, the most studied are those
for which the color ¢(v) of a vertex v of G is either (1) the set of colors of those
edges incident with v, (2) the multiset of colors of the edges incident with v, or (3)
the sum of the colors of the edges incident with v. The induced graph colorings
studied in this work belong to one of two types, namely set-defined and sum-defined
colorings. We refer to the books [15, 23, 45, 46| for definitions, applications, and

results relating to these topics.

1.2 Set-Defined Colorings

First, we consider edge colorings that lead to vertex colorings by the process de-
scribed in (1). An early example of such an edge coloring was introduced by Harary
and Plantholt [29] in 1985. Let ¢ : E(G) — [k] be an unrestricted edge coloring of
a nontrivial connected graph G with ¢(v) = {J,cp {c(e)} for each vertex v in G,
where E, denotes the set of edges incident to v. If ¢ is vertex-distinguishing, then
c is called a strong magestic edge coloring (also called a set irreqular edge coloring)
of G. The minimum positive integer k for which a graph G has a strong majestic
edge coloring is the strong magestic index of G. (This parameter was referred to

as the point-distinguishing chromatic index by Harary and Plantholt.)
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In 2008, an edge coloring c of a connected graph G of order 3 or more leading to
a vertex coloring in the same fashion was introduced by Hornakb, Sotak, Palmer
and Wozniak [27] where again ¢ : E(G) — [k] is unrestricted, but the induced set
vertex coloring ¢ need only be proper. They referred to such a coloring ¢ as a
neighbour-distinguishing coloring and the minimum k for such a coloring exists is
called the general neighbour-distinguishing index of G, denoted by gndi(G). These
concepts were studied further in [7, 30], under the unified terminology majestic
edge coloring and majestic indexr, which emphasizes the relationship between the
proper and rainbow cases. The majestic index of a connected graph G of order 3
or more is denoted by maj(G). In this work, we will use the terminology “majestic
edge coloring” and “majestic index” with the notation maj(G) for this parameter
of a graph G. Other concepts related to majestic edge colorings were introduced
by Chartrand in 2015 [46].

While an edge coloring ¢ of a graph G typically uses colors from the set [k] for
some positive integer k resulting in c¢(e) = ¢ for some i € [k], we might equivalently
define c(e) = {i} as well. In this case, both the edge coloring ¢ and the induced
vertex coloring ¢ assign subsets of [k] to the edges and the vertices of G respectively,
where the color assigned to an edge by c is a singleton subset of [k]. Looking at ¢
in this manner suggests the idea of studying edge colorings ¢ where both ¢ and its
induced vertex coloring ¢’ assign nonempty subsets of [k] to the elements (edges
and vertices) of a graph G such that the color assigned to an edge of G by c is
not necessarily a singleton subset of [k]. This observation gives rise to two main
concepts of this work; strong royal colorings and royal colorings of graphs as well

as the corresponding chromatic indexes.

1.3 Sum-Defined Colorings

Here we consider edge colorings that give rise to vertex colorings using the process
described in (3). The unrestricted edge colorings inducing sum-defined vertex col-
orings that have attracted the most attention are those where the vertex colorings
are either vertex-distinguishing or neighbor-distinguishing. A nontrivial graph has
been called irreqular if its vertices have distinct degrees. It is well known that
no graph is irregular. This observation led to the concept of irreqularity strength,
introduced by Chartrand [14] at the 250th Anniversary of Graph Theory Confer-



ence held at Indiana University-Purdue University Fort Wayne (now called Purdue
University Fort Wayne) in 1986. In the past 30 years, this topic has been studied
extensively by many researchers, as described in [15, 45, 46].

For a connected graph G, a weighting w of G is an assignment of numbers
(usually positive integers) to the edges of G, where w(e) denotes the weight of an
edge e of G. This then converts G into a weighted graph in which the (weighted)
degree of a vertex v is defined as the sum of the weights of the edges incident with
v. A weighted graph G is then irregular if the vertices of G have distinct (weighted)
degrees. This concept can be viewed using graph coloring terminology.

Let G be a connected graph of order at least 3. An unrestricted edge coloring
¢ : E(G) — N induces a vertex coloring ¢ : V(G) — N, where N denotes the
set of positive integers, defined by ¢'(v) = > .5 c(e) for each vertex v of G,
where F), is the set of the edges incident with v in G. Here, the induced vertex
coloring c is required to be vertex-distinguishing. In this case, c is called a vertex-
distinguishing edge coloring of G. The minimum of the largest colors used among
all vertex-distinguishing edge colorings of G is called the irreqularity strength of G.
The goal was for the vertices to have distinct colors, regardless of how large the
induced vertex colors may be. This observation motivates the two other primary
concepts of this work, namely rainbow mean colorings and proper mean colorings

of graphs as well as the corresponding chromatic indexes.



Chapter 2

Royal Colorings

Abstract: For a graph GG and a positive integer k, a royal k-edge coloring of G is
an assignment of nonempty subsets of the set {1,2,...,k} to the edges of G that
gives rise to a proper vertex coloring in which the color assigned to each vertex v is
the union of the sets of colors of the edges incident with v. If the resulting vertex
coloring is rainbow, then the edge coloring is a strong royal k-edge coloring. The
minimum positive integer k for which a graph has a strong royal k-edge coloring is
the strong royal index of the graph. The primary emphasis here is on strong royal

colorings of trees.

2.1 Introduction

For a connected graph G of order 3 or more and a positive integer k, let ¢ :
E(G) — [k] = {1,2,...,k} be an unrestricted edge coloring of G. Again such
a coloring allows adjacent edges of GG to be assigned the same color. We write
P*([k]) for the set consisting of the 2¥ — 1 nonempty subsets of [k]. The edge
coloring ¢ induces a vertex coloring ¢ : V(G) — P*([k]) where ¢/(v) is the set
of colors of the edges incident with v. If ¢ is a proper vertex coloring of G,
then ¢ is a majestic k-edge coloring and the minimum positive integer k& for which
G has a majestic k-edge coloring is the majestic index maj(G) of G. 1If ¢ is
rainbow (that is, ¢(u) # c(v) for every two distinct vertices u and v of G),
then ¢ is a strong majestic k-edge coloring and the minimum positive integer k
for which G' has a strong majestic k-edge coloring is the strong majestic index
smaj(G) of G. Majestic edge colorings were introduced by Gyéri, Horndk, Palmer,
and Woznick [27] under different terminology and studied further in [30, 34]. Strong

6



majestic edge colorings were introduced by Harary and Plantholt [29] in 1985, also
using different terminology, and studied further by others (see [23, 45, 46]).

The following is an immediate observation concerning these indexes.

Proposition 2.1.1 FEvery connected graph G of size m > 2 has a strong majestic

coloring and therefore a majestic coloring. Furthermore,
2 <maj(G) < smaj(G) < m.

Proof. For a connected graph G with E(G) = {ej,ea,...,en}, define an edge
coloring ¢ : E(G) — [m] by c(e;) = i for 1 < i < m. Since the sets of edges
incident with distinct vertices are distinct, it follows that ¢ is a strong majestic

m-~edge coloring of G, producing the desired inequalities. [

The following results were obtained by Harary and Plantholt [29] on complete
graphs K, , complete bipartite graphs K ;, paths P,, cycles C,,, and hypercubes Q),,.

Theorem 2.1.2 [29] For every integer n > 3,
smaj(K,) =maj(K,) =1+ [log,n].
Theorem 2.1.3 [29] For integers s and t with 2 < s <,
smaj(K.) <2+ [logy ]
In particular, 1 + [logyt| < smaj(Ky.) < 2+ [log,t] for each integert > 2.

Theorem 2.1.4 [29] For each integer n > 3,

148 —9 ] [ -1
smaj(P,) = min{? —rven—?Y -1, 2 n w},

4

4

smaj(C,) = win {2 LI Y| |}

Theorem 2.1.5 [29] For each integer n > 2, smaj(Q,) = n + 1.



Theorem 2.1.6 [29] For each integer k > 2, the largest order M(k) of a tree

with strong majestic index k is

k243k—4  rps
M(E) = 5 ifk>2and k # 4
11 ifk=4.

The following is a consequence of Theorem 2.1.6.

Corollary 2.1.7 IfT is a tree of order n > 3 and smaj(T) # 4, then

smaj(7) > | YRR

2

Proof. Let T be a tree of order n > 3 with smaj(7T) = k # 4. It then follows
by Theorem 2.1.6 that n < % and so k? + 3k — 2n — 4 > 0, producing the

desired inequality. [

2.2 Motivation

Recall in a majestic coloring ¢ of a graph GG that the edge colors are positive inte-
gers. As stated in the introduction, this concept can be generalized by allowing the
edge coloring ¢ to assign nonempty subsets of [k] for some k. The following scenario
illustrates why broadening majestic colorings in this manner is advantageous.
Consider a social media platform where users can connect with one another
in some way. For example, on the popular site Facebook, users can connect as

7

“friends.” Similarly on the professional networking platform LinkedIn, users can
send and accept “connection invitations.” Given a collection of users from such a
site, a graph (social network) can be constructed, where the vertices of the graph
are the users and two users are joined by an edge if they are connected on the
site. Some sites have connection processes that are not symmetric, in which case
a digraph could be used, but here we assume that the social network is a graph.
Suppose common interests between friends in a social network are being tracked.
For simplicity, we will refer to two connected users as friends. Let the representa-

tive graph be connected and assume further that any pair of friends has at least



one common interest. If we create a list of interests for each user by compiling all
the interests they share with at least one friend, what conditions must be met so
that no two users who are friends share the same list of interests. Moreover, is it
possible distinct users in the network always have distinct lists of interests? If ei-
ther of the former questions can be answered in the affirmative, how many distinct
interests must be tracked and how do those interests have to be distributed across
the social network?

If we replace interests by positive integers, then these questions suggest study-
ing a set-defined edge coloring of a graph that gives rise to a set-defined coloring
of the vertices of the graph in a similar fashion to the majestic coloring problem.

This type of coloring is the primary subject of this section.

2.3 The Royal Index of a Graph

In a majestic edge coloring of a graph G, the colors assigned to the edges of G
are elements of some set [k] for a positive integer k, which results in a proper
vertex coloring of G where the color of a vertex v is the set of colors of the edges
incident with v. If the vertex coloring is rainbow, then the edge coloring is a strong
majestic edge coloring of G. Here, we consider edge colorings, called royal colorings
and strong royal colorings, where the colors assigned to the edges of a graph are
nonempty subsets of a set [k] rather than elements of [k].

For a connected graph G of order 3 or more, let ¢ : E(G) — P*([k]) be an
unrestricted edge coloring of G for some positive integer k. The edge coloring ¢
produces the vertex coloring ¢’ : V(G) — P*([k]) defined by

where F, is the set of edges of GG incident with v. If ¢’ is a proper vertex coloring
of G, then c is called a royal k-edge coloring of G. An edge coloring ¢ is a royal
coloring of G if ¢ is a royal k-edge coloring for some positive integer k. The
minimum positive integer k for which a graph G has a royal k-edge coloring is the
royal index roy(G) of G. If ¢ is rainbow, then c is a strong royal k-edge coloring
of G. An edge coloring c is a strong royal coloring of G if ¢ is a strong royal k-edge

coloring for some positive integer k. The minimum positive integer k£ for which a



graph G has a strong royal k-edge coloring is the strong royal index sroy(G) of G.
This concept was independently introduced and studied in [8, 17]. While no royal
coloring exists for the graph K5, such a coloring exists for every connected graph of
order at least 3. Since every strong majestic edge coloring is a strong royal coloring
and every majestic edge coloring is a royal coloring, the following is a consequence

of Proposition 2.1.1.

Proposition 2.3.1 FEvery connected graph G of order 3 or more has a strong

royal coloring and therefore a royal coloring. Furthermore,
2 <roy(G) < maj(G) < smaj(G) and roy(G) < sroy(G) < smaj(G).

If G is a connected graph of order 3, then either G = P; or G = Kj3. [t
is easy to see that sroy(P;) = smaj(P;) = 2 and sroy(K3) = smaj(K;) = 3.
Since |P*([2])| = 3, it follows that sroy(G) > 3 for every connected graph G of
order n > 4. This implies that P; is the only connected graph with strong royal
index 2. In what follows, we consider only connected graphs of order at least 4.
For example, consider the star G = K; 4 of size 4. Figure 2.1 shows a royal 2-edge
coloring, a strong royal 3-edge coloring, and a strong majestic 4-edge coloring of G.
For simplicity, we write the set {a} as a, {a,b} as ab, and {a,b,c} as abe. In fact,
roy(G) = 2,sroy(G) = 3, and smaj(G) = 4 for this graph G. Thus, the values of
the three parameters roy(G), sroy(G), and smaj(G) can be different for a graph G.
Moreover, the value of smaj(G) — sroy(G) can be arbitrarily large for a connected
graph G (as we will see in Section 2.4). It can also occur that smaj(G) = sroy(G)

for connected graphs G of order 4 or more.

Q) ®
OO0 OO0 OO

Figure 2.1: A graph G with roy(G) = 2,sroy(G) = 3, and smaj(G) = 4

Proposition 2.3.2 For every integer n > 4,
sroy(K,) = smaj(K,) =1+ [logyn] .
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Proof. Since sroy(K,) < 1+ [log,n| by Theorem 2.1.2 and Proposition 2.3.1, it
remains to show that sroy(K,) > 1+ [log, n]. Suppose that sroy(K,,) = k for an
integer n > 4. Then there exists a strong royal k-edge coloring ¢ : E(K,,) — P*([k])
of K, such that the induced vertex coloring ¢ : V(K,) — P*([k]) is rainbow; so
d(u) # d(v) for every two distinct vertices u and v of K,,. However, since ¢(u)
and ¢/(v) both contain the color c(uv), it follows that ¢/ (u) N ¢'(v) # 0. Thus, if
A C [K] such that ¢(z) = A for some vertex = of K, then ¢(y) € A =[k] — A

2k—1

for every vertex y of K, distinct from z. Hence, there are at most possible

colors for the n vertex colors of K, implying that n < 287! and so log,n < k — 1.

Therefore, sroy(K,) = k > 1 + [log, n] resulting in sroy(K,) =1+ [logyn]. =

There are other connected graphs G for which smaj(G) = sroy(G). First, we
present a lower bound for the strong royal index of any connected graph of order 4

or more in terms of its order.

Proposition 2.3.3 If G is a connected graph of order n > 4, then
sroy(G) = [logy(n +1)] =1+ [logyn.

Proof. Suppose that sroy(G) = k and let ¢ : E(G) — P*([k]) be a strong royal
k-edge coloring of G. Then the induced coloring ¢ : V/(G) — P*([k]) is rainbow.
Since ¢/(v) # 0 for each vertex v of G and |P*([k])| = 2¥ — 1, it follows that
n < 2F — 1 and so sroy(G) = k > [logy(n +1)] =1 + |logy n]. =

For the hypercubes @, with n > 3, we have sroy(Q,) < smaj(Q,) =n+ 1 by
Propositions 2.1.5 and 2.3.1. Since the order of @, is 2", it follows by Proposi-
tion 2.3.3 that sroy(Q,) > [log,(2" + 1)] = n+ 1. These observations provide the

following result.
Proposition 2.3.4 For an integer n > 3,
stoy(Qn) = smaj(@Q,) = [logy(2" +1)] =n + 1.

If G is a connected graph of order 4, then

Ge{Ky,Ky—e (Ky+ Ky)V Ky, Cy, Py, Ky 5}

11



By Proposition 2.3.3, sroy(G) > 3. Figure 2.2 shows a strong royal 3-edge coloring
for each of these graphs. Thus, sroy(G) = 3 = [logy(n + 1)] for every connected
graph G of order n = 4. Furthermore, smaj(G) = sroy(G) = 3 for these six
graphs G. In fact, for each integer n > 4, there is a connected graph G of order n >
4 such that sroy(G) = [logy(n + 1)], as we will see in Section 2.4.

41@? O—@®
8 @O

; ®
3 \ 3 12 13 3 1
© @\% @igi@

Figure 2.2: Strong royal 3-edge colorings of connected graphs of order 4

2.4 Strong Royal Colorings of Trees

In Proposition 2.3.3, a lower bound for the strong royal index of a connected
graph G was presented in terms of its order. Next, we present an upper bound for
the strong royal index of GG in terms of the strong royal indexes of the connected
spanning subgraphs of G. This bound shows the value of determining the strong

royal indexes of trees.

Proposition 2.4.1 If G is a connected graph of order 3 or more, then
sroy(G) < 1+ min{sroy(H) : H is a connected spanning subgraph of G'}.
In particular,
sroy(G) < 1+ min{sroy(T") : T is a spanning tree of G'}. (2.1)

Proof. Among all connected spanning subgraphs of GG, let H be one having the
minimum strong royal index, say sroy(H) = k. Let ¢y : E(H) — P*([k]) be a
strong royal k-edge coloring of H. Then dy(z) # cy(y) for every two distinct

12



vertices x and y of H. We extend cy to an edge coloring c¢ : E(G) — P*([k + 1])
of G by defining

[ enle) ifee B(H)
cale) = { {k+1} ifeec E(G)—-E(H).

Since either ¢ (z) = cy(x) C [k] or cg(x) = dy(x) U {k + 1} for each z € V(G)
and ¢y is rainbow, it follows that ¢, is rainbow. Therefore, ¢ is a strong royal
(k + 1)-edge coloring of G and so sroy(G) < k + 1 = sroy(H) + 1. The inequality

(2.1) follows immediately. ]

As a consequence of Proposition 2.4.1, if we know the strong royal indexes
of all spanning trees of a connected graph G, then we have an upper bound for
sroy(G). Consequently, we now turn to investigating the strong royal indexes of
trees of order 4 or more. By Proposition 2.3.3, if T" is a tree of order n > 4, then
sroy(T') > [logy(n + 1)]. We show that there is equality for this bound when 7 is

either a star or a path.
Proposition 2.4.2 For every integer n > 4,
sroy (K1 ,-1) = [logy(n+1)] .

Proof. Let k = [logy(n+1)| > 3 and let G = K;,_; be a star of order n, where
V(G)={v, v1, va, ..., v,_1} and deg, v = n — 1. By Proposition 2.3.3, it suffices
to show that G has a strong royal k-edge coloring. Since k = [log,(n + 1)] > 3, it
follows that

k=l _1<mpn—1<2F_2.

Let S1, S, ..., So_o be the 28 — 2 distinct nonempty proper subsets of [k], where
S; = {i} for 1 < i < k. Define the coloring ¢ : E(G) — P*([k]) by c(vv;) = S;
for 1 <7 <n-—1. Since (v;) = S; for 1 <i <n—1and (v) = [k], it follows
that ¢ is rainbow. Therefore, ¢ is a strong royal k-edge coloring of G and so
sroy(G) = [logy(n+1)]. m

For every path P, of order n > 4, it was shown in [8] that there exists a strong
royal coloring of P, using colors from the set P*([k]) where k = [log,(n + 1)].
Here, we provide a constructive proof that describes an appropriate strong royal

coloring for each path P, of order n > 4.
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Theorem 2.4.3 For every integer n > 4, sroy(P,) = [logy(n+1)] .

Proof. Letk = [logy(n +1)] > 3. Then 2*~! < n < 2*—1. By Proposition 2.3.3,
it suffices to show that G has a strong royal k-edge coloring. For 4 < n < 7, there
is a strong royal 3-edge coloring of P, (shown in Figure 2.3) and so sroy(P,) =
3 = [logy(n 4+ 1)]. We may assume that n > 8.

1 2 23 13 3
01/3\13@]\12@26\2@3@
Figure 2.3: Strong royal 3-edge colorings of P, for 4 <n <7

First, we construct strong royal 4-edge colorings of Py and Py from a strong
royal 3-edge coloring of P, as follows. Let P be constructed from two copies of Pj,
namely (uq,us, us, uy) and (vy,ve,vs,v4), by adding the edge uqvy and let Py be
obtained from Py by adding a new vertex vy and the new edge vouy. (That is, Py
is constructed from Py = (uy,ug, ug, uy) and Ps = (vo, vy, vg, v3,v4) by adding the
edge u4qvy.) Let ¢4 be a strong royal 3-edge coloring of P;. Define the strong royal
4-edge coloring cg : E(Ps) — P*([4]) of Py as follows:

ca(e) if e = wyu;yq for 1 <i <3
cs(e) = < caluguy) if e = uqvy
C4(uiui+1) U {4} if e = ViVt for 1 S 1 S 3.

Since
cg(u;) = cy(u;) and cg(v;) = cy(u;) U {4}

for 1 < <4, it follows that ¢ is rainbow. Thus, cg is a strong royal 4-edge coloring
of Ps. Next, we extend this strong royal 4-edge coloring cg of Py to a strong royal

4-edge coloring ¢y by assigning {4} to the edge vyv;. Since c¢f(vg) = {4} and
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co(x) = dg(x) # {4} if x # wvo, it follows that ¢ is rainbow. Hence, ¢g is a strong
royal 4-edge coloring of Py. Thus, sroy(Ps) = sroy(Py) = 4. These two colorings are
illustrated in Figure 2.4. Similarly we can construct strong royal 4-edge colorings
of Py, and Py from a strong royal 3-edge coloring of P, for t = 5,6, 7. It follows
that if 8 < n < 15, then sroy(F,) = 4.

@1 : 2 : 3 @1@2@3
3
.142434 0414 @

Figure 2.4: Constructing strong royal 4-edge colorings of Py and P,

Suppose for an integer n > 8 such that 2¥=! < n < 2¥ — 1 for some integer k
that sroy(P,) = k. Let ¢, : E(P,) — P*([k]) be a strong royal k-edge coloring
of P,. Since 2¥71 < n < 2F — 1, it follows that 2 < 2n < 2! — 1 and 2% <
2n + 1 < 281 — 1. Hence, [logy(2n + 1)] = [logy(2n + 2)] = k + 1. We construct
strong royal (k + 1)-edge colorings of P,, and P,y from the strong royal k-
edge coloring ¢, of P, as follows. Let P,, be constructed from two copies of P,,
namely (uy,us, ..., u,) and (v, ve,...,v,), by adding the edge u,v, and let Py,.4
be obtained from P, by adding a new vertex vy and joining vy to v; with the edge
vovy. Define the edge coloring ¢y, @ E(Pan) — P*([k + 1]) of Py, as follows:

cnle) if e = wju;pq for 1 <i<mn-—1
conl€) =< cn(tn_1uy) if e = u,v,
cn(uiuiﬂ) U {k + 1} ife= ViVit1 for 1 S ) S n—1.

Since
Ch,(ui) = ¢, (u;) and ¢, (v;) = ¢, (u;) U{k + 1}

for 1 < i < n, it follows that ¢}, is rainbow. Thus, ¢y, is a strong royal (k+1)-edge
coloring of Ps,. Next, we extend this strong royal (k + 1)-edge coloring co,, of P,
to a strong royal (k 4 1)-edge coloring ¢, 1 of Py,41 by assigning {k + 1} to the
edge vovy. Since ¢, (vo) = {k + 1} and ¢, (x) = ¢, (x) # {k + 1} if © # v, it
follows that ¢, is rainbow. Hence, c9,41 is a strong royal (k + 1)-edge coloring

of P,1. This is illustrated in Figure 2.5 for n = 8 and k = 4, where a strong royal

15



5-edge coloring of P;; is constructed from a strong royal 4-edge coloring of Fs.
Deleting the vertex labeled 5 from P;7, we obtain a strong royal 5-edge coloring

of P16.

12333424/\14

@5_: 15 @ 25 35 @ 35345 245145.14
Figure 2.5: Constructing strong royal 5-edge colorings of Pjg and P

Since the desired coloring exists, sroy(P,) = [logy(n + 1)] for each integer
n > 4. n

By Proposition 2.3.3, sroy(T") > 3 for a tree T of order n where 4 <n < 7. In

fact, the following result can be readily verified.
Proposition 2.4.4 If T is a tree of order n where 4 < n <7, then
sroy (T) = 3.

Figure 2.6 shows a strong royal 3-edge coloring for each tree of order 7.
We now determine this parameter for double stars. Recall that a double star is

a tree of diameter 3.
Theorem 2.4.5 IfT is a double star of order n > 4, then
sroy(T) = [logy(n+1)] .

Proof. By Proposition 2.4.4, we may assume that 7T is a double star of order
n > 8. Let k = [logy(n +1)] > 4. Then 2¥~! < n < 2% — 1. By Proposition 2.3.3,
it suffices to show that T has a strong royal k-edge coloring. Let u and v be
the central vertices of 7" where deg;u = a and degpv = b. Suppose that u is
adjacent to the end-vertices uy,us,...,u,_1 and v is adjacent to the end-vertices
vy, Vs, . ..,0p_1. We may assume that 2 < a < b. Since -l <pn=a+b<2F—-1,
2<a<b, and k > 4, it follows that

1<a—1<2'_2andk—1<b—-1<2F_—q—2. (2.2)

We consider two cases, according to a < k or a > k + 1.

Casel. 2<a<k Letp=a—1. Thenl1<p<k—landb—1<2F—p—3
by (2.2). For each integer ¢ with 1 <1 <p, let X; = {i} for 1 <i < p. Next, let
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Figure 2.6: Strong royal 3-edge colorings of trees of order 7

YV =P([k]) - {[pl, M} U {Xi - 1 <0 <p})

Then |Y| =28 —p—3. Let Y1, Ys,..., Yor_, 3 be the 28 —p—3 distinct elements of Y/
such that Y; = {j, k} for 1 < j < k—1. Define an edge coloring ¢ : E(T) — P*([k])
by

X, ife=wuvore=uuy
cle)=¢ X; ife=uy; for2<i<p
Y; ife=wvyfor1<j<b-—1<2F¥—p-—3.

This is shown in Figure 2.7 for a double star of order n = 15 wherea = 4 and b = 11.
Sincep=a—1<k—1and b—12> k—1, it follows that ¢/(u) = [p] # [k] = (v).
In fact, the induced vertex coloring ¢ : V(T') — P*([k]) of T is given by

X, frx=uforl<i<p
, ] ifz=u
¢le) = k] ifz=w

Y;

ifx:vjf0r1§j§6—1§2k—p—3.
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Since ¢ is rainbow, ¢ is a strong royal k-edge coloring of T'.

Case 2. k+1<a<2'_—1. Let p=a— 1. It follows that
k<p<2'—2=1P*(k—-1]) - {[k - 1]}|

Let X3, Xs, ..., X, be distinct elements of P*([k—1])—{[k—1]} such that X; = {:}
for 1 <i <k — 2. Next, let

YV =P (k) = ({[Fk = 1, [R[} U{Xi: 1<i<p}).

Then |Y| = 2*—3—p. Let Y1,Ys,...,Yor_, 3 be the 28 —p—3 distinct elements of Y’
such that Y; = {j, k} for 1 < j < k—1. Define an edge coloring ¢ : E(T") — P*([k])
by

X, ife=wvore=uy
cley=1¢ X; ife=wuuy;and2<i<p
Y, ife=wyfor1 <i<b—1<2F!—p-_3

This is shown in Figure 2.7 for a double star of order n = 15 where a = 7 and
b=38. Sincep=a—1>kand b—12>k—1, it follows that ¢(u) = [k — 1] and
d(v) = [k]. The induced vertex coloring ¢ : V(T') — P*([k]) is given by

X; ifr=ufor1 <i:<p
k—1] ifzx=u

/ —
¢le) = (k] ifr=v
Y; if:v:vjforlgjgb—1§2k—p—3.
Since ¢ is rainbow, ¢ is a strong royal k-edge coloring of T'. [

There are other special classes of trees T' of order n > 4 for which it has been
verified that sroy(7") = [logy(n + 1)] (see [8, 17]). The results obtained thus far

on the strong royal indexes of trees suggest the following conjecture.
Conjecture 2.4.6 If T is a tree of order n > 4, then sroy(T) = [logy(n +1)].

For an integer n > 4, let k be the unique integer such that 2¥~1 <n < 2F — 1.
We construct a graph G, of order 2% — 1 as follows. The vertices of G}, are labeled
with the 2F — 1 distinct elements of P*([k]). For each v € V(Gy), let £(v) denote
the label of v. Thus,
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a=4and b=11 a=Tand b=38

Figure 2.7: Strong royal 4-edge colorings of two double stars of order 15

{€(v) : veV(Gr)} =P ([k]).

Two vertices u and v of Gy, are adjacent in Gy, if and only if ¢(u) N ¢(v) # (. The
graph G5 of order 7 = 23 — 1 is shown in Figure 2.8.

Figure 2.8: The graph G of order 7 =23 — 1

Conjecture 2.4.6 is true if and only if for every tree T of order n > 4, where
2F=1 < n < 2% — 1, there is a subgraph H of G}, isomorphic to T having the
property that every edge uv of H is assigned the color c(uv) = ¢(u) N ¢(v) and
ceiy(v) C(€), Where Ep(v) is the
set of the edges of H incident with v, such that ¢/(v) = ¢(v).

For instance, consider the tree T' of order 5 in Figure 2.9 and the graph Gj

every vertex v of H is assigned the color ¢ (v) = |J

in Figure 2.8. Figure 2.9 also shows five subgraphs G31, G352, G33,Gs4, G35 of
(i3, each isomorphic to 7" with the corresponding edge colors and vertex colors

described above. The subgraphs Gs3 and G355 result in a strong royal 3-edge

19



coloring of T', which verifies Conjecture 2.4.6 for this tree 7. This also shows that

there are two distinct ways to give a strong royal 3-edge coloring of 7.

O .
:—®—@ Gg,y;';@_@_@

Figure 2.9: Three subgraphs of G3 isomorphic to T'

We have seen that Conjecture 2.4.6 is true for all trees of order n with4 <n <7
as well as all paths, stars, and double stars. Hence, it remains to show that
Conjecture 2.4.6 is true for every tree of order n > 8 that is not a path, star, or
double star. A caterpillar is a tree T of order 3 or more, the removal of whose
leaves produces a path (called the spine of T'). A star is therefore a caterpillar of
diameter 2 whose spine is a trivial path of order 1 and a double star is a caterpillar
of diameter 3 whose spine is a path of order 2. We now move on to the next step
by showing that Conjecture 2.4.6 is true as well if T is a caterpillar whose spine
has order 3, that is, 7" has diameter 4. In the proof, we assume that the spine of T’
is (x,y,2); so T contains a path P = (s,x,y, z,t), where deg; s = deg,t = 1 and
degrx > 2, degpy > 2, and degp 2 > 2.

Theorem 2.4.7 IfT is a caterpillar of order n > 8 and diameter 4, then
sroy (T) = [logy(n+1)] .
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Proof. Letk = [logy(n + 1)] > 4. Then 2¥~! < n < 2¥—1. By Proposition 2.3.3,
it suffices to show that 7" has a strong royal k-edge coloring.
We consider three cases base on the number of internal vertices of P that have

neighbors not in P.

Case 1. Exactly one of x,y and z has degree exceeding 2. We may assume that

exactly one of x and y is adjacent to n — 5 > 3 vertices not on P.

Subcase 1.1. x is adjacent to n — b wvertices not on P. Let xy,x9,..., 2, 5
be the neighbors of x not on P and let ¢; = xz; for 1 < ¢ < n —>5. Let S} =
{1,k}, So = [2,k] and let S5, Sy,...,S,_5 be distinct nonempty proper subsets
of [k] different from {1}, {2}, {3}, {2,3}, {1,k}, [2,k]. Define an edge coloring
c: E(T) — P*([k]) by

{1} ife=sx

{2} ife=zyore=yz

{3} ife=zt

S; He=eforl<i<n-—2>.

cle) =

Then d(s) = {1}, d(z) = [k], d(y) = {2}, d(2) = {2,3}, d(t) = {3}, and
d(z;) = S; for 1 <i <n-—>5. Since ¢ is rainbow, ¢ is a strong royal k-edge coloring
of T

Subcase 1.2. y s adjacent to n — 5 > 3 wvertices not on P. Let y1,9s2,...,Yn_5
be the neighbors of ¥y not on P and let e; = yy; for 1 < i < n —>5. Let S; =
{1,k}, So = [2,k] and let S3,S4,...,S,—5 be distinct nonempty proper subsets
of [k] different from {1}, {3}, {1,2}, {2,3}, {1,k}, [2,k]. Define an edge coloring
c: E(T) — P*([k]) by

{1} ife=sx
cle) = {2} fe=zyore=yz
{3} ife=zt
S; fe=e¢forl<i<n-—>.

Then d(s) = {1}, d(x) = {12}, d(y) = [K], d(z) = {2,3}, ¢(t) = {3}, and
d(z;) = S; for 1 <i < n—>5. Since ¢ is rainbow, ¢ is a strong royal k-edge coloring
of T.
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Figure 2.10: Strong royal 4-edge colorings of two caterpillars of order 15 and
diameter 4 in Case 1

Case 2. Fxactly two of x,y and z have degree exceeding 2. We may assume

that x has degree exceeding 2 and exactly one of y and z has degree exceeding 2.

Subcase 2.1. x and z have degree exceeding 2. We may assume that x is
adjacent to the p vertices 1,9, ..., 2, not on P and 2 is adjacent to the ¢ vertices
21,29, ..., 2y not on P, where 1 <p <gand p+¢q=n—>5. Then p < %(n—5) <
%(2’“—6) andsop < 2813, Let S}, Sy, . .., S, be distinct nonempty proper subsets
of [k — 1] where S; = [2, k — 1] such that S; # {1} for 2 <i <p. Let T1,T5, ..., T,
be distinct nonempty proper subsets of [k] different from Sy, Ss, ..., S, such that
Ty =[2,k|, b, ={1} U [3, k] and T; # {1}, {k}, {1, k}, [k — 1] for 3 < i < ¢. Thus,
for 1 <i<np,

Si € Pr([k = 1)) = {{1}, [k = 1]}
and for 1 <17 <,
Ti e Pr([k]) = [{Si - 1 < i < py U{{1}, {k}, {1, K}, [k — 1], [K]}]
Define an edge coloring ¢ : E(T) — P*([k]) by

{1} ife=sxore=uxy
{k} ife=yzore=zt
S; ife=axxr;forl1 <i<p
T, ife=zzforl<i<q.

cle) =
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Then c/(s) = {1}, d(z) = [k—1], /(y) = {1, k}, ¢(2) = [k], ¢(t) = {k}, (i) = S
for 1 <i<pandd(z) =T, for 1 <i<gq. Since ¢ is rainbow, ¢ is a strong royal

k-edge coloring of T'.

Figure 2.11: A strong royal 4-edge coloring of a caterpillar of order 15 and diame-
ter 4 in Subcase 2.1

Subcase 2.2. x and y have degree exceeding 2. Suppose that x is adjacent to the
p vertices x,x2,...,7, not on P and y is adjacent to the ¢ vertices yi, 42, ...,Yq,
not on P. Then p,q > 1 and p+ ¢ =n — 5. There are two subcases, according to
whether p < g or p > q. Observe that

Subcase 2.2.1. p < g. Then
p<5(n—5) <328 =6) =21 =3 =P ([k—1]) — {{1}, [k — 1]}].

Let 51,59, ...,S, be distinct elements of P*([k — 1]) — {{1}, [k — 1]} where S; =
2,k — 1] and let T}, T, ..., T, be distinct elements of

Pr(k]) —[{Si - 1 <i<pU{{1}{Lk =1k} {k =1k}, [k — 1], [K]}]
where T} = [2, k]. Define an edge coloring ¢ : E(T") — P*([k]) by
{1} if e € {sz,zy,yz}
{k—=1,k} ife=zt

S; ife=ax;for1 <i:<p
T; ife=yy forl1 <i<q.

cle) =

Then ¢ (s) = {1}, d(x) = [k—1], d(y) = [k], d(2) = {1, k—=1,k}, I(t) = {k—1, k},
d(z;) =S; for 1 <i<pandd(y;) =T for 1 <i <gq. Since ¢ is rainbow, ¢ is a
strong royal k-edge coloring of T'.

Subcase 2.2.2. p > q. Then
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¢ <5(n—5)<3(2"=6) =2 =3 =P ([k—1]) - {{1}. [k — 1]}I.

Let Sy, S, ...,S, be distinct elements of P*([k — 1]) — {{1}, [k — 1]} where S} =
2,k — 1] and let T3, T3, ..., T, be distinct elements of

Pr(k) —[{Si: 1 <e<pyU{{1}, {1,k =1}, [k = 1], [k]}]

where T; = [2, k]. Define an edge coloring ¢ : E(T') — P*([k]) by

({1} if e=uxyore=zt
{k—1} ife=yz
cle) = {k} if e = sx

T, ife=xx; for 1 <i<p
L S; ife=yy; for 1 <i<gq.

Then d(s) = {k}, d(x) = [k], d(y) = [k = 1], d(z) = {L,k -1}, () = {1},
d(z;) =T; for 1 <i<pandd(y)=2S5; for 1 <i<gq. Since ¢ is rainbow, ¢ is a
strong royal k-edge coloring of T'.

Figure 2.12: Strong royal 4-edge colorings of two caterpillars of order 15 and
diameter 4 in Subcase 2.2

Case 3. FEach of x,y, and z has degree 3 or more. Suppose that = is adjacent
to the p vertices @1, 9, ..., 7, not on P, y is adjacent to the g vertices yi, y2, ..., ¥,

not on P, and z is adjacent to the r vertices 21, 23, ..., 2. not on P. Then p,q,r > 1
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and p4+ g+ 1r =n—>5. We consider three subcases, according to the values of p, ¢,

and r.
Subcase 3.1. 1 < p < q <r. Then

2k+1

28 —6)=2 —2and p+q<2(2F-6) =2~ 4.

1
p<3

Since |P([k — 2]) — {[k — 2]}| = 2F72 — 1, there are 2872 — 1 distinct subsets in
P([k — 2] U{k}) — {[k — 2] U {k}} that contain k. (Note that it is possible that
p>282) Let Sy, Sy, ..., S, be pdistinct subsets of P*([k—2]U{k})—{[k—2]U{k}}
such that S; = [2,k —2JU{k}, k € S; for 2 < i < pif p < 282 -1 and
kEeS;for2<i<2t2_1ifp>282 let T, Ts,... , Ty be ¢ distinct subsets of
P*([k — 1]) — {{1}, [k — 1]} different from S, Ss,..., S, such that 7} = [2,k — 1],
and let Ry, Rs, ..., R, be r distinct subsets of P*([k]) different from

(1}, [k — 20 ULk}, [k — 1], [k], {k — 1.k}, S1, So, ..., Sy Th, T, ... T,

such that R; = [2,k]. Since there are 2¥~2 — 1 distinct subsets in P*([k — 2] U
{k}) —{[k —2]U{k}} that contain k and |P*([k — 1]) — {{1}, [k — 1]}| = 2¥! -3,
it follows that at least

(22 1) 4 (261 —3) =3.2k2 4
subsets of P*([k]) are available for S, S, ..., Sy, 11,15, ..., T,. Because

2k+1

pta<t—4<3.207 -y,

these p + ¢ distinct subsets Sy, Sa, ..., Sy, 11, Th, ..., T, of P*([k]) exist. Define an
edge coloring ¢ : E(T) — P*([k]) by

( {1} if e € {sz,zy,yz}
{k—=1,k} ife=zt

c(e) = S; ife=xx; for 1 <i<p
T; ife=yy; for1 <i<gq
R; ife=zz forl<i<r.

Then c(s) = {1}, d(z) = [k —2]U{k}, d(y) = [k—1], ¢ (2) = [k], ¢(t) = {k—1,k},
d(x;))=S;for 1 <i<p d(y) =T, for1 <i<gandd(z)=R;forl <i<r.

Since ¢ is rainbow, ¢ is a strong royal k-edge coloring of 7.
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Figure 2.13: Illustrating strong royal edge colorings of caterpillars of order 2% — 1
for k = 4,5 in Subcase 3.1

For example, Figure 2.13 shows strong royal edge colorings of caterpillars of
order 2 — 1 for k = 4, 5.

Subcase 3.2. ¢ < min{p,r}. We may assume that ¢ < p < r. Then

2k+1

q< 3

(2" —6)=2 —2and p+q < 2(2"—6) =2~ —4.

1
3
Let Sy, S, . ..,S, be distinct subsets of P*([k —2]U{k}) — {[k —2]U{k}} such that
S;=12k—-2lU{k}, ke Sifor2<i<qifg<2¥2—1land ke S;for2<i<
28=2_1if ¢ > 282 let Ty, T, . . ., T, be distinct subsets of P*([k—1])—{{1}, [k—1]}
different from Sy, S, ..., S, such that 77 = [2,k — 1], and let Ry, Ry, ..., R, be
distinct subsets of P*([k]) different from

(1}, [k — 20 ULk}, [k — 1], [k], {k — 1.k}, S1, So, ... Sy Tty T, .., T,

such that Ry = [2,k]. Since there are 2¥72 — 1 distinct subsets in P*([k — 2] U
{k}) — {[k — 2] U{k}} that contain k and |P*([k —1]) — {{1}, [k — 1]}| = 2¥1 -3,
it follows that at least

(252 —1) 4 (2k1 —3) =3.2k2 4
subsets of P*([k]) are available for S1,Ss,...,S;, 11,5, ..., T,. Since

prq<Er —4<3.282 4

Y
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these p 4 ¢ distinct subsets 51, S, ...,Sg, 11,15, ..., T, exist. Define an edge col-
oring ¢ : E(T) — P*([k]) by

({1} if e € {sz, 2y, yz}
{k—=1,k} ife=zt

cle) = T, ife=xx;for 1 <i<p
Si ife=yy; for1 <i<gq
R; ife=zz forl <i<r.

Then (s) = {1}, ¢(x) = [k=1], ¢ (y) = [k—2]U{k}, ¢ (2) = [K], ¢(t) = {k—1,k},
d(x;)) =T, for 1 <i<p, d(y;) =8 forl <i<gandd(z)=R;forl <i<r.
Since ¢ is rainbow, ¢ is a strong royal k-edge coloring of 7.

Subcase 3.3. ¢ > max{p,r}. We may assume that p < r < ¢q. Then

2k+1
3

Let S1,5s,...,S, be distinct subsets of P*([k — 2] U {k}) — {[k — 2] U {k}} such
that S; = [2,k —2]U{k}, k € S;for 2 < i <pifp<2¥2—1and k € S for
2<i<282—1if p> 22 let Ty, Ty, ..., T, be distinct subsets of P*([k — 1]) —
{{1}, {1,k — 1}, [k — 1]} different from S;, S5, ..., S, such that T} = [2,k — 1], and
let Ry, Ry, ..., R, be distinct subsets of P*([k]) different from

(1), [k — 20U {k}, [k —1], [k], {1k =1}, S1, So ..y Sy, 1, T, .., T,

such that Ry = [2, k]. Since there are 2872 —1 distinct subsets in P*([k—2]U{k}) —
{[k—2]U{k}} that contain k and |P*([k—1])—{{1}, {1, k—1},[k—1]}| = 21 —4,
it follows that at least

—4.

p<i@F—6)=% —2andp+r<22F-6)=

(22 -1+ (21 —4)=3-2F2-5
subsets of P*(|k]) are available for Sy,S5,,...,S,,11,T5,...,T,. Since
p
ptr<¥ 4<3.22 5

these p 4 r distinct subsets 51, S, ...,Sy, 11,15, ..., T, exist. Define an edge col-
oring ¢ : E(T) — P*([k]) by

({1} if e € {sz,zy,yz}
{1,k—1} ife=zt

cle) = S; ife=xx;for 1 <i<p
R; ife=yy, for1 <i<gq
T; ife=2zz forl <i<r.
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Then ¢/(s) = {1}, ¢(x) = [k =2]U{k}, ¢(y) = [K], ¢(2) = [k=1], ¢(t) = {k =1, k},
d(x;)) =S;for 1 <i<p (y;))=R;forl <i<gand(z)=T forl <i<r.

Since ¢ is rainbow, ¢ is a strong royal k-edge coloring of 7. n

It has been verified in [8] that if G is a connected graph of order n > 4, then
sroy(G) < [logy(n + 1)]+2. On the other hand, if Conjecture 2.4.6 is true, then for
a connected graph G of order n > 4 there are only two possible values for sroy(G)
(namely [logy(n + 1)] and [logy(n + 1)]+1) by Propositions 2.3.3 and 2.4.1. Based

on these observations, we make the following conjecture.
Conjecture 2.4.8 If G is a connected graph of order n > 4, then
[logy(n + 1)] < sroy(G) < [logy(n+1)] + 1.

Since we know that the lower bound for sroy(G) is true in Conjecture 2.4.8,

the conjecture can be subsequently restated.

Conjecture 2.4.9 If G is a connected graph of order n > 4 where 2871 < n <
2% — 1 for some integer k, then there exists a strong royal (k + 1)-edge coloring

of G.

We have seen numerous examples of connected graphs G of order n > 4 where
sroy(G) = [logy(n + 1)]. Indeed, every tree of order n > 4 has either been shown
to have strong royal index [log,(n + 1)] or has been conjectured to have this
value for its strong royal index. By Proposition 2.3.2, if n > 4 is an integer
with 2¥ < n < 21 for some integer k > 2, then sroy(K,,) = [logy(n +1)] + 1.
Thus, both bounds in Conjecture 2.4.8 are attainable. Hence, if Conjectures 2.4.8
and 2.4.9 are true, then the resulting theorem cannot be improved. The only
question that would remain then is for a given connected graph G of order n > 4,

which of these two values is the strong royal index of G?
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Chapter 3

Royal-Zero & Royal-One Graphs

Abstract: It was conjectured that if G is a connected graph of order n > 4
where 2871 <n < 2% — 1 for a positive integer k, then the strong royal index of G
is either k or k+1. A connected graph G of order n > 3 where 2F~1 <n < 2F -1 is
a royal-zero graph if sroy(G) = k and is a royal-one graph if sroy(G) = k + 1. We
investigate this conjecture for several well-known classes of graphs along with other
information concerning royal-zero and royal-one graphs. A sufficient condition for

a graph to be royal-one is presented.

3.1 Introduction

We have conjectured that the strong royal index of every connected graph of order
n > 4 where 2871 < n < 28 — 1 is either k¥ or k + 1. A connected graph G of
order n > 3 where 2F~1 < n < 2% — 1 is a royal-zero graph if sroy(G) = k and is a
royal-one graph if sroy(G) = k+ 1. Using this framework, Conjecture 2.4.9 can be

rephrased using this terminology.

Conjecture 3.1.1 Fvery connected graph of order at least 4 is either royal-zero

or royal-one.

In this chapter, we investigate conditions concerning the size and minimum

degree for which a connected graph is royal-zero or royal-one.
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3.2 Some Well-Known Classes of Graphs

We begin by considering the strong royal index of every cycle C), of order n > 3.
Note that the size of C,, is n and §(C,,) = 2. While the strong royal index of each
cycle was stated in [8], we present a proof that provides a strong royal coloring of

each cycle C,, of order n > 3.

Theorem 3.2.1 For every integer n > 3,

sroy(C,) = { 1+ [logy(n+1)] ifn=3,7

Mogy(n+ 1)1 ifn#3,7.

That is, if C, is a cycle of length n > 3 where 2871 < n < 28 — 1 for some
integer k, then sroy(C,) = k unless n = 3 or n = 7, in which case, sroy(C3) = 3
and sroy(Cr) = 4.

Proof. Let k = [logy(n+1)] > 2. Then 271 < n < 2¥ — 1. We show that
sroy(C3) = 3, sroy(Cr) = 4, and sroy(C,,) = k if n # 3,7. Figure 3.1 shows a
strong royal 3-edge coloring of ('3 and a strong royal 4-edge coloring of C7, which
implies that sroy(C3) < 3 and sroy(C%7) < 4. (As before, we write the set {a} as a,
{a,b} as ab, and {a, b, c} as abc.) If sroy(C3) = 2, then because |P*([2])| = 3, there
are vertices of (3 colored 1 and 2, implying the existence of two edges that are
colored 1 and two edges that are colored 2, which is impossible. If sroy(C;) = 3,
then because |P*([3])| = 7, there are vertices of C7 colored 1, 2, and 3, implying
that these colors are each assigned to at least two edges of C;. Regardless of how
the seventh edge of C7 is colored, the resulting set of vertex colors is not P*([3]).
As a result, sroy(C3) = 3 and sroy(C7) = 4. By Proposition 2.3.3, it suffices to
show that C), has a strong royal k-edge coloring if n # 3,7. Figure 3.1 also shows
a strong royal 3-edge coloring for each of Cy, Cs5, and Cy yielding sroy(C,,) = 3 for
n=4,5,6.

Next, suppose that n > 8, where 2¢! < n < 2¥ — 1 for a unique integer
k > 4. We show that C), has a strong royal k-edge coloring by considering two
cases, depending on whether n is even or n is odd. Let P, = (v, vs,...,v,) where

e; = V01 for 1 <i<n—1.
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Figure 3.2: Strong royal 4-edge colorings of C,, for n = §,10, 12

Case 1. n > 8 is even. Figure 3.2 shows strong royal 4-edge colorings of Cs,
C1o, and Cpy. It follows that sroy(C,,) = 4 for n = 8,10, 12.

We may assume that n = 2r > 14 where r > 7 is an integer such that 2F=2 <
r <21 1. Ifr =7, then k — 1 = 3. However, if 8 < r < 15, then k — 1 = 4.
A strong royal (k — 1)-edge coloring ¢ for each path P. (7 < r < 15) is shown in
Figure 3.3.

For 7 < r < 15, let P, = (vy,v9,...,v,) and let P* = (uy,uq,...,u,). The
path P, is constructed from P, and P by adding the edge v,u, and the cycle
(s, is constructed from P, by adding the edge viu;. The edge coloring c is first
extended to an edge coloring ¢ of Py, by defining c(uu;r1) = c(vvip1) U {k}
(where k = 4if r = 7Tand £k = 5if 8 < r < 15) for 1 < ¢ < r —1 and
c(vpuy) = c(v—1v,). The resulting coloring is extended to an edge coloring ¢

of Cy,. by defining c(viu;) = c¢(vivy). Note that no vertex of P, is colored {k}.
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Figure 3.3: Strong royal (k — 1)-edge colorings of P, for 7 < r < 15

Since this edge coloring is a strong royal k-edge coloring of Cl,, it follows that
stoy(Py,) = sroy(Cy,) = k for 7 < r < 15, where k = 4 if r = 7 and k = 5 if

8 <r < 15. Figure 3.4 shows the construction of a strong royal 4-edge coloring of
(4 from the paths P; and Px.

O O 13 O 12 @ 2 /2\ 2 @ 3 @
] E
MO NGO

Figure 3.4: Constructing a strong royal 4-edge coloring of C',4

For each such path Py, (7 <r < 15), we construct the path Py, by adding a
new vertex ug and the edge ugu; and coloring the edge ugu; by {k}, where k = 4 if
r="T7and k =5if 8 < r < 15. Then wy is colored {k}, resulting in a strong royal k-
edge coloring of P, for 7 < r < 15. Next, we repeat this procedure by beginning
with the paths P4, Pis, ..., P33—that is, we use P4 and Pj5 to create strong royal
5-edge colorings of Csg and (g respectively and use Pig, . . ., P31 to create a strong
royal 6-edge coloring of Cy,. for 15 < r < 31. Iteratively applying this process

produces the desired coloring for all even cycles. Therefore, sroy(C,,) = k for all
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even integers n > 4 with 281 <n <2k — 1.

Case 2. n > 9 is odd. Figure 3.5 shows a strong royal 4-edge coloring for each
of Cy, C11, and C13 and so sroy(C,) = 4 for n = 9,11,13. We may assume that
n=2r-+12>15, where r > 7.

Figure 3.5: Strong royal 4-edge colorings of C,, for n =9,11,13

For each path P,, there is a subpath @ = (v;, Vi1, Vit2, Viys), where 3 < i <
i+ 4 < r such that

(vit1) = {1, 2}, c(vipvige) = {2}, and (viy2) = {2}

From the manner in which each even cycle C, was constructed and a strong royal
k-edge coloring ¢ of Cy, was defined in Case 1, the path Q* = (u;, wi1, Uir2, Uirs)

is a subapth in C5, such that
CI(UH_I) = {1, 2, k’}, C(UZ'+1UZ'+2) = {2,1{5}, and C/(Ui+2> = {2, k’}

Furthermore, ¢(x) # {k} for each vertex x of Cy,. We now construct the cy-
cle Cy,41 from Cs,. by deleting the edge w;y1u;12 from Cy,. and adding a new ver-
tex u along with the two new edges u;1u and uu; 5. We define an edge coloring ¢
of Cyr11 from the strong royal k-edge coloring of Cs, (as described in Case 1) by
assigning the color {k} to the edges u;,1u and uu;,» where the colors of remaining
edges of Cy,.11 are the same as in Cy,.. Thus, ¢(u) = {k} and ¢(x) is the same as
in Cs, for all other vertices x of Cy,.,1. Figure 3.6 shows the construction of such
a strong royal 4-edge coloring of (5 from the strong royal 4-edge coloring of Cy

of Figure 3.4. Since this edge coloring is a strong royal k-edge coloring of Cs, 1,
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Figure 3.6: Constructing a strong royal 4-edge coloring of C'5

it follows that sroy(C,) = k for all odd integers n > 3 with 2¥~1 <n < 2F —1 and

the exception of n =3 and n = 7. n

Theorem 3.2.1 demonstrates that C3 and C; are royal-one, but all other cy-
cles are royal-zero. For complete graphs, the following result is a consequence of

Proposition 2.3.2.

Proposition 3.2.2 For an integer n > 4, the complete graph K, is a royal-zero

graph if n is a power of 2 and royal-one otherwise.

The corona cor(G) of a graph G is the graph obtained from G by adding a
pendant edge at each vertex of G. Note that if the order of G is n, then the order
of cor(G) is 2n. The strong royal index of cor(G) never exceeds sroy(G) by more
than 1.

Proposition 3.2.3 If G is a connected graph of order n > 4, then
sroy(cor(G)) < sroy(G) + 1.
Consequently, if G is a royal-zero graph, then so is cor(G).

Proof. Let V(G) = {v1,va,...,v,} and let H = cor(G) be obtained from G by
adding the pendant edge u;v; at v; for 1 < i < n. Suppose that sroy(G) = k. Then
there is a strong royal k-edge coloring ¢ : E(G) — P*([k]) of G. Define an edge
coloring ¢y : E(H) — P*([k + 1]) by

en(e) :{ cale)U{k+1} ifee E(G)

ce(v;) if e =wv; for 1 <i<n.

Then the induced vertex coloring ¢/, is given by
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() = g (v;) and dy(v;) = cg(v;) U{k + 1} for 1 <i <mn.

Since ¢ is rainbow, it follows that cy is a strong royal (k + 1)-edge coloring
of cor(G) and so sroy(H) < k + 1 = sroy(G) + 1.

If G is a connected royal-zero graph of order n > 4 where sroy(G) = k, say,
then 2F~1 <n < 2% — 1. Since cor(G) is a connected graph of order 2n > 8 where
2k < 2n < 2R —2 it follows that sroy(cor(G)) > k+ 1. On the other hand, there
is a strong royal (k+ 1)-edge coloring of cor(G) and so sroy(cor(G)) = k+ 1, which
implies that cor(G) is royal-zero as well. ]

In fact, a stronger statement can be made, regarding the strong royal index of

the corona of any connected graph.

Proposition 3.2.4 If G is a connected graph of order n > 2, then cor(G) is

royal-zero.

Proof. Let V(G) = {v1,v2,...,v,} and let H = cor(G) be obtained from G by
adding the pendant edge w;v; at v; for 1 < ¢ < n. Let k be an integer such that
21 <p < 2F — 1. Then 2% < 2n < 281 — 1. Denote n distinct subsets of [k] by
S; with 1 <i < n. Define an edge coloring ¢ : E(H) — P*([k + 1]) by

S; if e = ww; for 1 <3 <n.

{ {k+1} ifee€ E(G)
c(e) =
Since G is a connected graph, the induced vertex coloring ¢’ is given by

d(u;) = S; and ¢(v;) = S; U{k + 1} for 1 <i <n.

Since ¢’ is rainbow, it follows that ¢ is a strong royal (k+ 1)-edge coloring of cor(G)
and so H = cor(G) is royal-zero. m
A tree T is called cubic if every vertex of T that is not an end-vertex has

degree 3. The following result makes use of the proof of Proposition 3.2.3.

Corollary 3.2.5 If T s a cubic caterpillar of order at least 4, then T is royal-

ZEero.
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Proof. Let T be a cubic caterpillar. Since the statement is true if 7" has four
vertices, we may assume that 7" has six or more vertices. For an integer n > 4 where
k-1 < p <28 —1,let H= P, = (v1,vs,...,v,) be a longest path in T, where
then diam(7") = n — 1 > 3 and the order of 7" is 2n — 2. As noted earlier, it was
shown in [17] that all paths of order 4 or more are royal-zero and so sroy(H) = k.
Let u;v; be the pendant edges at v; for 2 < ¢ < n — 1. We consider two cases,
according to whether 2871 < n < 2¥ — 1 or n = 2¥~1. In the first case, we apply

the same procedure used in the proof of Proposition 3.2.3.

Case 1. 2F"1 < n < 28 — 1. Then 2* < 2n — 2 < 281 — 4. Thus, it suffices
to show that sroy(7) < k + 1. Since sroy(H) = k, there is a strong royal k-edge
coloring ¢y : E(H) — P*([k]). Define an edge coloring ¢z : E(T') — P*([k+1]) by

() = cule)U{k+1} ifec E(H)
orie) = iy (v;) if e=wv; for2<i<n-—1.

Then the induced vertex coloring ¢ is given by
cr(u;) = cy(vy) for 2 <i <n—1and dp(v;) = dy(v;) U{k + 1} for 1 <i <mn.

Since ¢ is rainbow, it follows that ¢z is a strong royal (k 4 1)-edge coloring of T’
and sroy(7') < k + 1. Thus, T is royal-zero.

Case 2. n = 271 Then 2n — 2 = 2¥ — 2. Here, we show that sroy(T") =
sroy(H) = k. First, we consider the case where n = 4 and k = 3. A strong royal 3-
edge coloring ¢ of H = Py = (v, v, v3,v4) is shown in Figure 3.7, namely c(vvy) =
1, c(vous) = {1,2}, and c(vsvy) = {1,3}. Observe that the induced vertex colors
of the vertices of H are all subsets of [3] containing 1 and ¢(v;) = {1}. The tree T'
is constructed from H by attaching the pendant edges usvs and usvs to vy and vs,
respectively. The colors of w;v;, i = 2,3, are defined by c(uv;) = ¢(v;) — {1},
which results in a strong royal 3-edge coloring of T'. In the case where n = 8 and
k = 4, we begin with the path H = Py = (vy,v9,...,vs), where the edges vjvs,
v9v3, v3vy of Py are colored as in the case when n = 4, and define ¢(v4v5) = (vy)
and c(vivi1) = c(vs_ivg_;)U{4} for i = 5,6, 7. Again, each edge color and induced
vertex color contains 1 and ¢/(v1) = {1}. The tree T in this case is constructed
from H by attaching the pendant edges u;v; for 2 < ¢ < 7. The color of u;v; is
defined by c(uv;) = ¢/(v;) — {1} for 2 < ¢ < 7, which results in a strong royal
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4-edge coloring of T'. This is illustrated in Figure 3.7. Continuing in this manner

gives the desired result. [

SRR i) o
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Figure 3.7: Constructing strong royal colorings of the cubic caterpillars

As stated in Proposition 3.2.3, if G is a connected graph of order 4 or more,
then sroy(cor(G)) < sroy(G) + 1 and if G is a royal-zero graph, then cor(G) is a
royal-zero graph. On the other hand, it is possible that G is a royal-one graph and
cor(@) is a royal-zero graph. By Proposition 3.2.2, every complete graph K, where
n is not a power of 2 is a royal-one graph. Thus, if 2*71 +1 < n < 2¥ — 1 for some
integer k > 3, then sroy(K,) = k + 1. If one were to assign distinct nonempty
subsets of [k] to the n pendant edges of cor(K,) and assign the color {k + 1}
to the remaining (g’) edges of cor(K,), then we have a strong royal (k + 1)-edge
coloring of cor(K,) and so sroy(cor(K,)) = k + 1. Therefore, cor(K,) is a royal-
zero graph for each integer n > 5 where n is not a power of 2. For a more
interesting example, Figure 3.8 shows a strong royal 4-edge coloring of cor(C)
and so sroy(cor(C7)) = sroy(C7) = 4 (by Theorem 3.2.1). Thus, C7 is royal-one,
while cor(CY) is royal-zero.

A graph operation somewhat related to the corona of a graph G is the Cartesian
product of G with K,. In fact, we have the following result that corresponds to

Proposition 3.2.3.

Proposition 3.2.6 If G is a connected graph of order n > 4, then
sroy (G O K>) <sroy(G) + 1.
Consequently, if G is a royal-zero graph, then G O Ky is a royal-zero graph.

Proof. Let G be a connected graph of order n > 4 where sroy(G) = k for
some positive integer k. Let H = G [ K, where (G; and G5 are the two copies
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Figure 3.8: A strong royal 4-edge coloring of cor(C7)

of G. Suppose that V(Gy) = {uy,us,...u,} where u; is labeled v; in Gy. Thus,
V(Gs) = {v1,v2,...,v,} and E(H) = E(G1) U E(Gy) U{uw; : 1 <i <n}. Since
sroy(G) = k, there is a strong royal k-edge coloring cq, : E(G1) — P*([k]) of G;.
Define an edge coloring ¢y : E(H) — P*([k + 1]) by

ca, (e) if e € E(Gy)
cule) =% cq(uuj) U{k+1} ife=wvw; € E(Gy) for 1 <i,j5 <nandi#j
e, (u;) if e =wu;v; for 1 <i<n.

The induced coloring cf; : V(H) — P*([k + 1]) is then given by cj;(u;) = ¢, (u;)
and ¢y (v;) = ¢, (u;) U {k + 1}. Since ¢ is rainbow, it follows that c; is a strong
royal (k + 1)-edge coloring of H. Thus, sroy(H) < k+1 = sroy(G) + 1. Therefore,
if G is a royal-zero graph, then G [ K5 is a royal-zero graph. [

The hypercube Q. is Ky if k = 1, while for k£ > 2, (J is defined recursively as
the Cartesian product Q1 [J K5 of Qr_1 and Kj. Since Qs = C} is royal-zero by

Theorem 3.2.1, the following is a consequence of Proposition 3.2.6.
Corollary 3.2.7 For each integer k > 2, the hypercube Qi is a royal-zero graph.

As stated in Proposition 3.2.6, if G is a royal-zero graph, then G [0 K, is a
royal-zero graph. On the other hand, it is possible that G is a royal-one graph and
G O K, is aroyal-zero graph. To see an example of this, we return to the 7-cycle C,
which we saw (in Theorem 3.2.1) is a royal-one graph. Figure 3.9 shows a strong
royal 4-edge coloring of C7 O K, and so sroy(C5;) = sroy(C7; O Ks) =4 . Thus, Cf
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is royal-one, while C; [0 K, is royal-zero. Two other royal-one graphs G for which
G O K, are royal-zero are K5 and Kg; that is, sroy (K5 O K») = sroy (K O K») = 4.
A strong royal 4-edge coloring ¢ of H = Kg [0 K5 can be defined as follows.
Let Hy and Hy be two copies of Kg in H, where V(H;) = {uy,us,...us} and
V(H2) = {v1,v,...v6} such that w;v; € E(H). First, we define the rainbow
coloring ¢ : V(H) — P*([4]) by

¢(ur) = {1, 4}, d(ug) = {1}, (us) = {1,2,4},
(ug) = {1,2,3}, ¢(us) = {1,3}, ¢(ug) = {1,2},
(1) = {4}, ¢(va) = {1,3,4}, ¢(v5) = [4 ]
(va) = {2,4}, d(vs) = 3,4}, ¢(v6) = {2,3,4}.

The edge coloring ¢ : V(H) — P*([4]) is then defined by c(zy) = ¢(z) N (y) for
each edge xy € F(H). Since ¢ is the induced vertex coloring of ¢, it follows that

c is a strong royal 4-edge coloring of H. Thus, H is royal-zero.

Figure 3.9: A strong royal 4-edge coloring of C; [ K,

As noted in Proposition 3.2.2, the complete graph K7 is a royal-one graph.
However, H = K; [0 K, is royal-one as well. That there is a strong royal 5-edge
coloring of H is straightforward. To show that sroy(K; [0 K5) = 5, however, it is
necessary to show that there is no strong royal 4-edge coloring of H, for assume
that such an edge coloring ¢ of H exists. Since the order of H is 14, the induced
vertex colors of H must consist of 14 elements of P*([4]). In particular, at least
three of the four singleton subsets of [4] must be vertex colors of H. Suppose
that H; and H, are the two copies of K7 in the construction of H. Therefore, at

least one of H; and H, has at least two singleton subsets as its vertex colors, say
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d(uy) = {1} and /(ug) = {2} where uy,uy € V(H;), which is impossible since wu;
and usy are adjacent. Hence, sroy(K7; O Ky) = 5.

3.3 Conditions for Royal-One Graphs

We have seen that many graphs are royal-zero graphs. We now present a sufficient
condition for a connected graph G of order n > 4 to be a royal-one graph. Let
k be the unique integer such that 2¢=1 < n < 28 — 1. Recall that a graph G}, of
order 2 — 1 can be constructed as follows. The vertices of G} are labeled with
the 2% — 1 distinct elements of P*([k]). For each vertex v of Gy, let £(v) denote
its label. Thus, {¢(v) : v € V(G)} = P*([k]). Two vertices u and v of Gy are
adjacent in Gy if and only if £(u) N €(v) # (. The vertex set V(Gj) is partitioned
into k subsets Vi, Vs, ..., Vi where V; = {v € V(Gg) : [(v)] =i} for 1 < i < k.
Therefore, G[Vi] = K; and Gp[Vi] = K}, is empty. If k = 2p + 1 is odd, then
G [Vpr1 UV U UV, = Kyer. If k = 2p is even, then let V) be the subset
consisting of those elements S in V,, for which 1 € S. Then |V]| = %(z) and
Gy, [Vp’ UVpp1 UV U U Vk] = Kor-1. Let my, be the size of Gj.. The graph G3
of order 7= 2% — 1 has size mz = 15 and is shown in Figure 3.10. [Note that this
graph is the same graph shown in Figure 2.8.]

Figure 3.10: The graph G of order 7 = 23 — 1 and size ms = 15

There is an immediate condition under which a connected graph cannot be a

royal-zero graph.

Observation 3.3.1 Let G be a connected graph of order n > 4 and size m where
2F=1 < <28 — 1 for an integer k. If G is not a subgraph of the graph Gy, then
sroy(G) > k + 1. Consequently, if m > my + 1, then sroy(G) > k + 1.

40



Since sroy(7') = 3 for each tree T" of order n where 4 < n < 7, it follows by
Observation 2.4.1 that if GG is a connected graph of order n where 4 < n < 7, then
sroy(G) is either 3 or 4. If G is a connected graph of order 7 that is not isomorphic
to a subgraph of G of Figure 2.8, then sroy(G) # 3 and so sroy(G) = 4. Since the
size of (G5 is 15, it follows that if G is a connected graph of order 7 with size at
least 16, then sroy(G) = 4. Figure 3.11 shows the graphs Hy, Hs, and Hg of order 4,
5, and 6, respectively, of greatest size that are subgraphs of GG3. For each graph H;
where i = 4,5, 6, if every edge uv of H; is assigned the color c¢(uv) = £(u) N {(v),
then ¢'(v) = UeeEHi (v €(€) = {(v), resulting in a strong royal 3-edge coloring of H;.
Hence, sroy(H;) = 3 fori = 4,5,6. The graph Hy = K, while H; has size 9 and Hg
has size 12. So, if G is a connected graph of order 5 whose size is at least 10 (that
is, G = K3) or if G is a connected graph of order 6 whose size is at least 13, then
sroy (G) = 4.

Figure 3.11: Subgraphs of G3

By Observation 3.3.1, if G is a connected graph of order n > 4 and size m
where 2¥~1 < n < 2¥ — 1 such that m > my, which implies that G € G}, then
sroy(G) > k+1. In fact, if G possesses any property that implies that G Z G, then
sroy(G) > k+1. For example, if the order of G'is n = 2¥ —1 and 6(G) > 6(Gy) +1
or G has more than one vertex of degree n— 1, then sroy(G) > k+1. On the other
hand, even though C7; C G5 (where n = 2* — 1 and k = 3), |E(C7)| = 7 < m3, and
5(C7) < 6(G3), we saw that sroy(C7) = 4 = k + 1. Furthermore, for every chord
e of C7, sroy(C7 + e) = 3 (see Figure 3.12). Consequently, even though one might
suspect that sroy(G + uv) > sroy(G) for every connected graph G and every pair
u, v of nonadjacent vertices of (G, such is not the case.

What we have seen is that if G is a connected graph of order n > 4 where
21 < p < 2F — 1 having a sufficiently large size, then sroy(G) # k. However, if

G is a connected graph of order n > 4 where 287! < n < 2F — 1 having a small
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Figure 3.12: Showing that sroy(C7 4 ¢) = 3 for each e ¢ E(C7)

size, then we are not guaranteed that sroy(G) = k. Indeed, even the strong royal
index of trees is in doubt.

If Conjecture 3.1.1 is true, then for every connected graph G of order n > 4
where 2F-1 < n < 281 either sroy(G) = k or stoy(G) = k+1. In order to present
a sufficient condition for sroy(G) # k in terms of the size and minimum degree
of G, we describe an expression for the size my of the graph Gy, (as it is easier in
general to compare two numbers than to determine whether a graph contains a
subgraph isomorphic to a given graph).

Recall that we label the 2¥ — 1 vertices of Gj with the distinct elements of
P*([k]). The label of each vertex v of Gy, is denoted by ¢(v) and so {{(v) : v €
V(Gr)} = P*([k]). Let {V4,Va,...,Vi} be the partition of of V(Gy) described
earlier, where then V; = {v € V(Gy) : [{(v)] = i} for 1 < i < k. Let v € V; for
some integer ¢ with 1 < i < k. Then ¢(v) = S is some i-element subset of [k].
There are 2' — 1 nonempty subsets of S and 28~¢ subsets of [k] — S. For each
nonempty subset S’ of S and each subset T' of [k] — S, the vertex v is adjacent
to that vertex w of Gy for which ¢(w) = S"UT. Since v is not adjacent to itself,

however, it follows that deg,, v = (2' — 1)2¥=% — 1. Furthermore, there are (]f)
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vertices in V; for 1 <14 < k. Therefore,
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In particular, if £ = 3, then the size of G5 is m3 = 15, as we saw in Figure 2.8.

Proposition 3.3.2 Let G be a graph of order n > 4 and size m where 281 <
n < 28 —1 for some integer k > 3. If m > 1(4%—3F =2 41), then sroy(G) > k+1.

For each integer k > 3, the minimum degree §(G},) of the graph Gy, is 2F~1 — 1.
Consequently, if G is a graph of order n > 4 and size m where 2F"1 <n <2F —1
for which 6(G) > 2F7! then it may occur that m < my but yet G is not a
subgraph of Gy, and so (by Observation 3.3.1) sroy(G) > k + 1. However, in this
case, more can be said. It is useful to recall that every path P, for n > 4 is

royal-zero (see [8, 17]).

Proposition 3.3.3 Let G be a connected graph of order n > 4 where 281 <n <
2k — 1 for some integer k > 2. If §(G) > 271, then sroy(G) = k + 1.

Proof. We have already observed that sroy(G) > k + 1 for such a graph. Since
§(G) > 21t and n < 2F — 1, it follows that §(G) > (n + 1)/2 and therefore G has
a Hamiltonian path (in fact, a Hamiltonian cycle). Since sroy(P,) = k for every
path P, of order n, it follows by Observation 2.4.1 that sroy(G) < k + 1 and so
sroy(G) =k + 1. n
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3.4 Open Questions

We have seen that both K; and C7 (a spanning subgraph, or factor, of K7) are
royal-one graphs. The complement C; of C; is a 4-regular graph of order 7 and
so it is not a subgraph of the graph Gs shown in Figure 2.8. Hence, C7 is also
a royal-one graph. The size of C; is 14 which is less than the size 15 of G3 (the
graph of order 7 having the maximum size that is royal-zero). This brings up the
problem of determining for each integer n > 3, the minimum size of a graph of
order n that is royal-one. Of course, the minimum size is 7 when n = 7.

Another related concept is the minimum number xgo, (G) of elements of the
set P*([k]) for some integer k (where k could be very large) needed to color of
the edges of GG so that the resulting vertex coloring is rainbow. So, this concept
minimizes the number of edge colors in an edge coloring that produces a rainbow
vertex coloring. For example, if we only use 5 elements in the set P*([100]) as edge
colors in an edge coloring for some graph G to produce a rainbow vertex coloring,
then the minimum number of edge colors needed is at most 5 for G or xgroy(G) < 5.
But sroy(G) < 100. The natural question here is to investigate how the values of
these two parameters are related.

Consequently, there is a host of additional problems that arise with strong royal

colorings of graphs.
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Chapter 4

Rainbow Mean Colorings I

Abstract: For an edge coloring of a connected graph G of order 3 or more with
positive integers, the chromatic mean of a vertex v of G is the sum of the colors
of the edges incident with v divided by the degree of v. We only consider edge
colorings ¢ for which the chromatic mean of every vertex is a positive integer. If
distinct vertices have distinct chromatic means, then c is called a rainbow mean
coloring of G. The maximum vertex color in a rainbow mean coloring ¢ of G is the
rainbow chromatic mean index of ¢ and the rainbow chromatic mean index of the
graph G is the minimum chromatic mean index among all rainbow mean colorings
of G. It is shown that the rainbow chromatic mean index exists for every connected
graph of order 3 or more. The rainbow chromatic mean index is determined for

paths, cycles, complete graphs, and stars.

4.1 Introduction

It is a well-known fact in graph theory that in every nontrivial graph, there are
always two vertices having the same degree. Indeed, this fact is listed (indirectly)
among the 24 theorems in the article by David Wells [44], asking which of these
theorems is the most beautiful. A graph G was initially called perfect and then
called ¢rregular if the degrees of all vertices of GG are distinct. Consequently, no
nontrivial graph is perfect. While there is no nontrivial graph all of whose vertices
have distinct degrees, there are nontrivial graphs in which only two vertices have
the same degree. In fact, for every integer n > 2, there is exactly one connected
graph of order n having only two vertices of the same degree.

Over the years, “irregular graphs” have been looked at in a variety of ways
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(see [14, 15, 16, 23], for example). While no nontrivial graph is irregular, there are
irregular multigraphs of each order n > 3. A multigraph M can be looked at as a
labeled graph Gj; where each edge uv of Gy is labeled with the positive integer
equal to the number of parallel edges joining u and v in M. The degree of v in M
is then the sum of the labels of the edges in G, that are incident with v.

In 1986, at the 250th Anniversary of Graph Theory Conference held at Indi-
ana University-Purdue University Fort Wayne (now called Purdue University Fort
Wayne), the concept of “irregular strength” was introduced by Chartrand, which
is the smallest positive integer k£ for which an edge labeling from the set [k] =
{1,2,...,k} exists giving rise to vertex labels, all of which are distinct (see [21]).
Consequently, the problem was to determine the smallest positive integer k& such
that each edge of a graph can be labeled with an element of [£] in such a way that
the chromatic sum of all vertices are distinct. Later each edge label was considered
as an edge color and each chromatic sum was interpreted as a vertex color so that
a “rainbow vertex coloring” of the graph resulted. Rather than coloring edges so
that distinct vertices have distinct chromatic sums, we now consider coloring edges

so that distinct vertices have distinct integral averages.

4.2 Rainbow Mean Index

A mean coloring of a connected graph G of order 3 or more is an edge coloring

¢: E(G) — N of G such that for every vertex v of G, its vertex color

ZeGEu C(e>

, where F), is the set of edges incident with v,
degv

cm(v) =

is an integer, called the chromatic mean of v. Clearly, every nontrivial connected
graph G has mean colorings. For example, if every edge of GG is assigned the same
positive integer a, the resulting edge coloring is a mean coloring in which cm(v) = a
for every vertex v of GG. If distinct vertices have distinct chromatic means, then
the edge coloring c is called a rainbow mean coloring of G. The following result
shows that, for every connected graph of order 3 or more, such an edge coloring

always exists.
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Theorem 4.2.1 FEvery connected graph of order 3 or more has a rainbow mean

coloring.

Proof. Suppose that G is a connected graph with E(G) = {ey, e, ..., e, } where
m > 2. Thus, A(G) = A > 2. Let k = 2A and t = Alk™. Define the edge coloring
c: E(G) — [t] by

cle;) = Ak for 1 <i < m.

We show that the coloring ¢ has the desired property. Assume, to the contrary,
that there are two distinct vertices u and v of G such that cm(u) = cm(v). Let

degu = r and degv = s, where r < s say, and let
E,={ei, €, ..., } and B, = {e;,,€j,,...., €.}

where 1 <i; <ig < <i, <mand 1 <j; <jo < - <js<m. Ifuv ¢ E(G),
then E, N E, = 0; while if uv € F(G), then E, N E, = {uv}. Consequently,

Al . ‘
cm(u) = - (k“ + k24 4 kz”')

Al . .
Cm(v) — ?(k:ﬂ—kk”—}----—kkjs),

where both cm(u) and cm(v) are positive integers. We consider two cases, accord-

ing to whether r = s or r < s.

Case 1. r=ws. Then k" + k2 4+ ... 4 kir = k" 4 k2 ... |Ir,

e First, suppose that 7, # j.. We may assume that i, < j.. Let p = j,. > 2.
Since k = 2A > 4, it follows that

1> g5 +ms+ - +3
and so kP > k + k? + ...+ kP~1. However then,

BV k2 4 I > = BP > k4 k24 4 kP
> ki1+ki2+‘___|_kair’

which is a contradiction.
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e Next, suppose that 7, = j,.. Then
ki1_|_ki2+,,,+k-ir—1 = L +k-j2+,.,+k-jr—1

and i,_1 # j,_1. We can apply the argument above to produce a contradic-

tion.
Case 2. 1 <s. Then s[k" + k= + -+ k| =r [k + kP + - + k]

e First, suppose that i, < j,. Let p = j, > 2. Since

1> b oy +oo 4 L,
it follows that

1

2>kp—1 +kp_172++%+1>kp1,2+kp%3—|—+%_’_1

Hence, k = 2A > A (55 + 5 + -+ + 1). Because A > s/r, it follows
that

kj1+kj2+---+kjs > s :kp:k(kp_l)

1 1 .
> A(kp2+kp3+-..+1)kp

= Alk+E 4+ + k7
T )
,

Vv

\Y

S . . .
N R A
r

which is a contradiction.

e Next, suppose that i, > js. The argument in Case 1 shows that
A S e L e L
Since r < s, it follows that 1 > r/s and so
R e S o e R L LAl ALl Ry
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which is a contradiction. n

For a rainbow mean coloring ¢ of a graph G, the maximum vertex color is the
rainbow chromatic mean index (or simply, the rainbow mean indezx) rm(c) of c.
That is,

rm(c) = max{cm(v) : v e V(G)}.

The rainbow chromatic mean index (or the rainbow mean indez) rm(G) of the
graph G itself is defined as

rm(G) = min{rm(c) : ¢ is a rainbow mean coloring of G}.
First, we present some useful observations.

Observation 4.2.2 [If G is a connected graph of order n > 3, then rm(G) > n.

Observation 4.2.3 If ¢ is a rainbow mean coloring of a connected graph G, then

Z degv - cm(v) =2 Z c(e).

veEV(G) e€E(G)

n+1) )

Furthermore, if the order of G is n and rm(c) = n, then 3 (g cm(v) = ("3

4.3 The Rainbow Mean Index of Paths and Cy-
cles

First, we determine the rainbow mean index of every path P, of order n > 3. The

path Py is a special case.
Proposition 4.3.1 rm(F,) = 5.

Proof. The edge coloring in Figure 4.1 shows that rm(P;) < 5. Next, we show
that rm(Py) > 5. Assume, to the contrary, that there is a rainbow mean coloring ¢
of Py such that rm(c) = 4. Let Py = (vy,vq,v3,v4). Since {em(v;) 1 1 < i <4} =
[4], no two edges can be colored the same. Consequently, since only one vertex
is colored 1, this implies that cm(vy) = 1 or ecm(vy) = 1. We may assume that

cm(vy) = 1 and so ¢(v1v2) = 1. Hence, the edges of Py are colored with distinct odd
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Figure 4.1: A rainbow mean coloring of P,

integers. If some edge of P; is colored 7 or more, then some vertex of P, is colored 5
or more, which is impossible. Thus, {c(v;vi11) @ = 1,2,3} = {1,3,5} and so
{c(vau3), c(v3vyg)} = {3,5}. In either case, it follows that {cm(v;) : 1 <1i < 4} # [4],
a contradiction. Thus, rm(Py) > 5 and so rm(Py) = 5. ]

Theorem 4.3.2 For each integer n > 3 and n # 4, rm(P,) = n.

Proof. Since rm(F,) > n for all integers n > 3, it remains to show that there is
a rainbow mean coloring ¢ of P, such that rm(c) = n. First, suppose that n > 3
is odd. Define the edge coloring ¢ : E(P,) — [n] of P, by c(e) =i if e is incident
with v; where 1 < ¢ < n and 7 is odd. Figure 4.2 shows such an edge coloring of P,
for n =3,5,7. Since cm(v;) =i for 1 < i < n, it follows that ¢ is a rainbow mean

coloring of P, with rm(c) = n. Therefore, rm(P,) = n for each odd integer n > 3.

ne OLOL®

Figure 4.2: Rainbow mean colorings of P3, P5, and P;

We may therefore assume that n > 6 is even. Let P, = (vq,vg,...,v,) and
let e; = vv;0q for 1 <@ < n —1. Since n > 6 is even, it follows that either
n =2 (mod4) orn =0 (mod 4). We proceed by induction to prove the following

statements.

* If n =2 (mod 4), then there is a rainbow mean coloring ¢, of P, such that

cn(én—1) = 3 and rm(c,) = n.

* If n =0 (mod 4) and n > 8, then there is a rainbow mean coloring ¢, of P,

such that ¢,(e,—1) = 5 and rm(c,) = n.
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The edge colorings of Py and Py in Figure 4.3 show that the statements are
true for n = 6,8. Suppose that the statement is true for an arbitrary even integer
n > 6. Next, we show that the statement is true for n+4 by considering two cases,
according to whether n =2 (mod 4) or n =0 (mod 4). We use cm,(v) to denote

the chromatic mean of a vertex v with respect to an edge coloring ¢; of the path P,

Figure 4.3: Rainbow mean colorings of Py and P

of order t.

Case 1. n = 2 (mod 4). By the induction hypothesis, there is a rainbow
mean coloring ¢, of P, such that ¢,(e,_1) = cm(v,,¢,) = 3 and {em(v;,¢,) @ 1 <
i < n} = [n]. We now extend ¢, to an edge coloring ¢, 44 of P,.4 by defining
Cnialen) =2n+ 1, cpyalens1) = 1, cpra(ense) = 2n+ 5, and ¢,14(€,43) = 3. Then
emy,y4(v;) = emy,(v;) for 1 <4 <n—1and ecm,4(v,) =n+2, cmyq4(v,11) = n+1,
ey, 14(Vpp2) =1+ 3, cmyiq(vag3) = n+ 4, and emy,q4(v,44) = 3. It follows that
{empa(v;) : 1 <@ < n+4} = [n+4]. Figure 4.4 illustrates the construction
of such an edge coloring for n = 6, where a rainbow mean coloring cig of Py is

constructed from the given rainbow mean coloring cg of F.

AV

Figure 4.4: The construction of the rainbow mean coloring c;y of Pjg in Case 1

Case 2. n = 0 (mod 4) and n > 8. By the induction hypothesis, there
is a rainbow mean coloring ¢, of P, such that ¢,(e,—1) = cm(v,,c,) = 5 and
{em(v;,¢,) 1 <@ < n} = [n]. We now extend ¢, to an edge coloring ¢, 4 of
P4 by defining ¢, 4(e,) = 2n — 3, cpra(ens1) = 7, cnyalenia) = 2n 4+ 1, and

Cnia(€nts) = 5. Then cm,4(v;) = cmy(v;) for 1 <@ < n—1 and cmy,q4(v,) =
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n+ 1, emyyg(Vng1) = 7+ 2, cMyig(Vpgo) = 0+ 4, emyyg(vay3) = n + 3, and
ey 44(Vpta) = 5. Thus, {emy,i4(v;) 1 1 < i < n+4} = [n+ 4]. Figure 4.5 illus-

trates the construction of such an edge coloring for n = 8, where a rainbow mean

coloring cq5 of Pjy is constructed from the given rainbow mean coloring cg of Ps. m

VY
®» © @ G

Figure 4.5: The construction of the a rainbow mean coloring c¢;5 of P in Case 2
Next, we determine the rainbow mean index of every cycle.

Theorem 4.3.3 For each integer n > 4,

_ [ n ifn=0,1 (mod 4)
rm(Cn)—{ n+1 ifn=23 (mod 4)

Proof. We consider two cases, according to whether n = 0,1 (mod 4) orn = 2,3
(mod 4).

Case 1. n =0 (mod 4) orn =1 (mod 4). In this case, it suffices to show that
there is a rainbow mean coloring ¢ of C,, such that rm(c) = n. First, suppose that
n =0 (mod 4). Then n = 4k for some positive integer k. Let Cy be the cycle
obtained from the paths P = (uy,us, ..., usy) and P’ = (vy,va, ..., vy) by adding
the two edges ujv; and ug,ve,. The edge coloring ¢ : E(Cy) — [4k + 1] is defined

1 if e = w0y
4k +1 if e = ugpvo
cle)=1 2i+1 ife=wuy for 1 <i<2k—1
2i—1 ifee V(P') and e is incident with v; where
L iisoddand 1 <7 <2k —1.

A rainbow mean coloring ¢, of C,, is given in Figure 4.6 for n = 4,8,12. Note that

there is exactly one edge e = uwv colored n+1 in C,, and {cm(u),cm(v)} = {n—1,n}.
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Figure 4.6: Rainbow mean colorings of Cy, Cy, and C}»

Then cm(w;) = 2i for 1 < i < 2k and em(v;) = 2i — 1 for 1 < ¢ < 2k. Since cm is
rainbow, rm(Cy) = 4k for each positive integer k.

Next, suppose that n = 1 (mod 4). Thus, n = 4k+1 where k € N. Then C,, can
be obtained by subdividing exactly one edge of C},_1, where then n—1 = 0 (mod 4).
A rainbow mean coloring ¢, of C),, can be constructed from the rainbow mean
coloring ¢,,_1 of C,_; described above by subdividing the edge usgvar colored n by
a new vertex w and coloring the two edges uqiw and wuvg, in C,, by n. This is
illustrated in Figure 4.7 for n = 5,9,13. Therefore, rm(Cyy1) = 4k + 1 for each

positive integer k.

=0

1
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Figure 4.7: Rainbow mean colorings of C5, Cy, and C3

EN |

Case 2. n =2 (mod 4) orn =3 (mod 4). Let C' = (vy,v2,...,Un, Upy1 = V1)
where e; = v;v;41 for 1 < i < n. First, we show that rm(C,) > n + 1. Assume,
to the contrary, that rm(C,,) = n. Then there is a rainbow mean coloring ¢ of C,,
such that {cm(v) : v € V(C,,)} = [n]. Since the color of some vertex of C,, is 1,
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the color of each edge incident with said vertex is also 1. This implies that c(e)
is odd for each e € E(C,,). Thus, c(e;) = 2a; + 1 for some nonnegative integer a;
where 1 < ¢ < n. First, suppose that n = 2 (mod 4). Then n = 4k + 2 for some
positive integer k. We have that

4
2 Cm(v):2( k;?’) — (4k + 3)(4k +2) = 16k* + 20k + 6.

UEV(C’n)

Hence, 23 cy(c,)cm(v) =2 (mod 4). On the other hand,

4k+2 4k+2 4k+2
2 ) em(v) = 2 cle)=2) (20+1) =) (da;+2)
veEV(Cr) i=1 i=1 i=1

4k+2
= [Z da;| + 8k +4) =0 (mod 4),

which is impossible. Next, suppose that n = 3 (mod 4). Thus, n = 4k + 3 for

some positive integer k. Then

2 Z cem(v) = 2(4k2+ 4) = (4k +4)(4k + 3) = 4(k + 1)(4k + 3).
veV (Cr)

Hence, 23 (o, cm(v) =0 (mod 4). Contrariwise,

4k+3 4k+3 4k+3
2 Y emv) = 2) cle) =2 (a;i+1)=> (da;+2)
veV(Ch) i=1 i=1 i=1

+ (8k 4+ 6) =2 (mod 4),

4k+3
i=1

which is impossible. Therefore, rm(C,)) > n+1if n = 2 (mod 4) or n = 3
(mod 4).

o4



It remains to show that there exists a rainbow mean coloring ¢ of C,, such
that rm(c) = n 4+ 1. First, suppose that n = 4k + 2 for some positive integer k.
Define ¢ : E(C,,) — [n+ 1] by

© { i if e is incident with v;, 7 is odd and ¢ € [1, 2k — 1]
c(e) =

i+2 if eis incident with v;, ¢ is odd and i € [2k + 1,n — 1]

Consequently, the chromatic means of the vertices of C), are given by

(i if 7 is odd and i € [1,2k — 1]
i+2 ifiisodd andie€ [2k+1,n—1]
) if 7 is even, i € [2,2k — 2] and k > 2

(Vi) =N or 1 ifd — 2%

i+2 ifiisevenand i€ [2k+2,n — 2]
| 2k+2 ifi=n.

This is illustrated in Figure 4.8 for C'g where k£ = 4.
©1@3©3@505©_7.7.11@
1 11
) 19 © 19 .1_7@ 17 .1_5@ 15 D 13 B 13 L

Figure 4.8: A rainbow mean coloring of C'g

Next, suppose that n =3 (mod 4) and so n+1 =0 (mod 4). Then C,, can be
obtained from C,, ;1 (colored as described above) by deleting a vertex v and joining
the two neighbors u and w of v by the edge uw. A rainbow mean coloring ¢, of
C,, with rm(c,) = n + 1 can be constructed from the rainbow mean coloring ¢, 1
of Cpy1 with rm(c,41) = n+ 1 in Case 1 by deleting the vertex v colored 1 and
coloring the edge uww with 1. This is illustrated in Figure 4.7 for n =7, 11. [

4.4 The Rainbow Mean Index of Complete Graphs

Let G be a connected graph of order n > 3 with V(G) = {v1,vs,...,v,} and let
¢: E(G) — N be an edge coloring of G. The matriz representation M of G with
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Figure 4.9: Rainbow mean colorings of C7 and C1;

the edge coloring c is the n x n matrix [m; ;] where

_ clvw;)) f1<i#j<n
s 0 ifl<i=j<n

There are several observations that can be made about the matrix representation
M of a graph G of order n with an edge coloring c. First, all entries along the
main diagonal of M are 0 since no vertex of GG is adjacent to itself. Second, M is
a symmetric matrix, that is, row ¢ of M is identical to column ¢ of M for every
integer ¢ with 1 <1i < n. Also, if we were to add the entries in row i (equivalently,
in column ), then we obtain degv; - cm(v;) for 1 < i < n. Using this framework,
we determine the rainbow mean index for complete graphs. We begin with the

complete graphs K, where either n is odd or n is divisible by 4.
Theorem 4.4.1 For an integer n > 4 withn =0,1,3 (mod 4), rm(K,) = n.

Proof. By Observation 4.2.2, it suffices to show that there is a rainbow mean

coloring of K,, having rainbow mean index n. We consider three cases.

Case 1. n >4 and n =0 (mod 4). Thus, n = 4k for some positive integer k.
In order to describe a rainbow mean coloring ¢, of K, with rm(c,) = n, we
construct an n X n symmetric matrix M,,. First, we define, recursively, a sequence

Bi, By, ..., By of 4 x 4 symmetric matrices. For a =n — 1, let
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0 a a 2a 0 1 1 1
a 0 2a a 1 0 1 a+1
B=1 14 2 0 o |™B=]1 0 2a+1
2a¢ a a 0 1 a+1 2a+1 0
For 2 <i <k, define B, = B;_1+ B = B; + (i — 1)B. Thus,

[0 1 1 1 0 (i—1la (i—1)a 2(i—1)a
1o L atl |, | (i-1a 0  26i-1a (i—1)a
11 0 2a+1 (i—1)a 26—1a 0 (i—1)a

|1 a+1 2a+1 0 2@0—1a (i—1)a (i—1)a 0

[ 0 (i—1a+1 (i—1a+1 2(Gi—-1a+1
| =Da+1 0 2(i—Da+1  da+1
- (i—1Da+1 26i—1)a+1 0 (i+1)a+1

| 2(i—1)a+1 ia+ 1 (t+1a+1 0

To describe the n x n matrix M,, we begin with a k£ X k matrix A = [a; ;] and
then replace the entry a;; on the main diagonal of A by the 4 x 4 matrix B, for
1 <i < k and each entry off the main diagonal of A by the 4 x 4 matrix J, each of
whose entries is 1. That is, M, = [M, ;] is an n x n matrix, where M, ; is a 4 x 4
matrix such that
B, if1<i=j<k
M;; = . .,
’ J if1<i#£j<k.

Thus,
B B, J J
A@:&J@:[j B]@mmm: J By J
2 J J By

If we were to add the entries in row ¢ (or in column i) in M, then we obtain ia
for 1 <i <mn. That is, if M, = [m,;], then

Yy mij =ida=i(n—1) for 1 <i<n. (4.1)
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We now define an edge coloring ¢ : E(K,) — N by c¢(v;v;) = m;; for each pair
i,7 of integers with 1 < i < j < n and i # j. Since cm(v;) = ﬁzyﬂ mi; =1
for 1 < i < n by (4.1), it follows that ¢ is a rainbow mean coloring of K, with

rm(c) = n. For example,

001 1 1 1 1 1 17
101 8 1 1 1 1

0111 110 15 1 1 1 1
101 4 1815 0 1 1 1 1
Mi=1q1 77 |®™M=1797 797 1 ¢ 8 8 15
1470 11 1 1 8 0 15 15

11 1 1 8 15 0 22

(11 1 1 15 15 22 0 |

The matrices M, and My give rise to rainbow mean colorings of K4 and Ky as
shown in Figure 4.10, respectively, where each edge drawn in a thin line is colored
by 1.

Figure 4.10: Rainbow mean colorings of K, and Ky

Case 2. n > 5 andn = 1 (mod4). Then n = 4k + 1 for some positive
integer k. First, we define, recursively, a sequence B, Bs, ..., By of symmetric
matrices, where Bj is a 5 X 5 matrix and B; is a 4 X 4 matrix for 2 < ¢ < k. For

a =n — 1, define

0 1 1 1 1

1 0 a+1 1 1
Bi=|[1 a+1 0 1 a+1 and

1 1 1 0 3a+1

1 1 a+1 3a+1 0
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0 20+1 a+1 2a+1
2a + 1 0 2a+1 2a+1
a+1 2a+1 0 4a+1
204+1 2a+1 4a+1 0

By =

For 3 < i < k, define
Bi=B,1+B=DBy+(i—2)B

where

0 a a 2a
a 0 2a a
a 2a 0 a
2a¢ a a 0

was defined in Case 1. To describe the n x n matrix M, we begin with a k x k
matrix A = [a; ;] and then replace the entry a;; on the main diagonal of A by the
matrix B; for 1 < i < k and each entry off the main diagonal of A by the matrix J,
each of whose entries is 1. Thus, a1 is replaced by the 5 x 5 matrix By and a;;
for 2 <4 <k is replaced by the 4 x 4 matrix B;. That is, M,, = [M, ;] isan n x n

matrix, where

v B ifl1<i=j<k
LT if1<i#j<k.

Thus,
B, J J
M5:Bl,M9:[€l é],andMlg,: J By J
2 J J By

In particular,
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011 1 1 1 1 1 117

109 1 1 1 1 1 1

011 1 1 1901 9 1 1 1 1
105 1 1 1110251 1 1 1
Ms=]150 1 5 |andMyg=|119 2, 0 1 1 1 1
1 11 0 13 111 1 1 0 17 9 17

1 15 13 0 111 1 1 17 0 17 17
1111 1 9 17 0 33

111 1 1 17 17 33 0 |

We now define an edge coloring ¢ : E(K,) — N by ¢(v;v;) = m, ; for each pair i, j
of integers with 1 <i < 7 <n and 7 # j. Since

n—1

1 n
CII](Ui) = Z mi,j =1
7=1

for 1 < i < n, it follows that ¢ is a rainbow mean coloring of K,, with rm(c) = n.
For example, the matrices M5 and My give rise to rainbow mean colorings of K
and Ky as shown in Figure 4.11, respectively, where again each edge drawn in a

thin line is colored by 1.

Figure 4.11: Rainbow mean colorings of K5 and Ky

Case 3. n > 7 and n = 3 (mod 4). Thus, n = 4k + 3 for some positive

integer k. Again, we construct an n X n symmetric matrix M,,. For a = ”T_l, let
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0 2a 2a 4a

O — 2¢ 0 4a 2a
| 2a 4a 0 2a
4a 2a 2a 0
First, we define, recursively, a sequence Ci,C5,...,C} of symmetric matrices,

where C] is a 7 X 7 matrix and C; is a 4 x 4 matrix for 2 < 3 < k. Define

0 1 1 1 1 1 1
1 0 1 1 1 1 2a + 1
1 1 0 1 1 20+1 2a+1
Ci=11 1 1 0 204+1 2a+1 2a+1 | and
1 1 1 2a +1 0 3a+1 3a+1
1 1 20+1 2a+1 3a+1 0 3a+1
| 1 2a+1 2a+1 2a+1 3a+1 3a+1 0 |

0 3a+1 ba+1 6a+1
3a+1 0 6a+1 Ta+1
5a+1 6a+1 0 Ta+ 1
6a+1 7a+1 Ta+1 0

For 3 < ¢ < k, define C; = C;_; + C = Cy + (i — 2)C. To describe the n x n
matrix M, we begin with a k x k matrix A = [a; ;] and then replace the entry
a;; on the main diagonal of A by the matrix C; for 1 < i < k and each entry
off the main diagonal of A by the matrix J, each of whose entries is 1. That is,

M, = [M; ;] is an n X n matrix, where

P C;, ifl1<i=j<k
LT if1<i# <k

Thus, M; = C where a = 3, My, = { ?]1 C{ }, where a = 5, and
2

¢, JoJ
Mys=| J Cy J
J J O
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0111 1 1 1
1011 1 1 7
1101 1 7 7
where @ = 7. In particular, M= |1 1 1 0 7 7 7 | and
111 7 0 10 10
117 7 10 0 10
| 1 7 7 7 10 10 0 |
0 1 1 1 1 1 1 1 1 1 17
10 1 1 1 1 11 1 1 1 1
11 0 1 1 11 11 1 1 1 1
11 1 0 11 11 11 1 1 1 1
11 1 11 0 16 16 1 1 1 1
Mypuy=1|1 1 11 11 16 0 16 1 1 1 1
1 11 11 11 16 16 0 1 1 1 1
11 1 1 1 1 1 0 16 26 31
11 1 1 1 1 1 16 0 31 36
11 1 1 1 1 1 26 31 0 36
|11 1 1 1 1 1 31 36 36 0 |

We now define a rainbow mean coloring ¢ : E(K,) — N by ¢(v;v;) = m, ; for each
pair 2, j of integers with 1 < i < j < mn and ¢ # j. For example, the matrix M;
gives rise to the rainbow mean coloring of K7 as shown in Figure 4.11, where again
each edge drawn in a thin line is colored by 1. Since rm(c) = n, it follows that

rm(K,,) = n for each integer n > 7 with n = 3 (mod 4). ]

Figure 4.12: A rainbow mean coloring of K7

The rainbow mean index of each remaining complete graph of order n > 3

isn+ 1.
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Theorem 4.4.2 For an integer n > 6 with n = 2 (mod 4), rm(K,,) =n + 1.

Proof. Since n > 6 and n = 2 (mod 4), it follows that n = 4k + 2 for some
positive integer k. First, we show that rm(K,,) > n + 1. Assume, to the contrary,

that there is a rainbow mean coloring ¢ of K,, with rm(c) = n. Since

7]

for the coloring ¢, by Observation 4.2.3 we have that

> 2(e) (n—1) Y cm(v)

=)

is an odd integer, a contradiction. Therefore, rm(K,) > n + 1.

{ecm(v) : v € V(K,)}

1) — (2k + 1)(dk + 1)(4k + 3)

It remains to show that there is a rainbow mean coloring ¢, of K,, with rm(c,) =
n + 1. In order to do this, we construct an n x n symmetric matrix M, using a
sequence Aj, Ag, ..., Ap of symmetric matrices, where A is a 6 X 6 matrix and A;

is a 4 x 4 matrix for 2 <¢ < k. Fora=n —1, let

0 a a 2a
a 0 2a a
B = a 2a 0 a
20 a a O
Define
[0 1 1 1 1 1]
1 0 a+1 1 1 1
|1 a+1 0 1 1 a+1
A=17 1 0 a+1 2a+1 |2
1 1 1 a+1 0 3a+1
_1 1 a+1 2a+1 3a+1 0 ]
0 a+1 3a+1 3a+1
A — a+1 0 3a+1 4a-+1
27 1 3+1 3a+1 0 3a+1
3a+1 4a+1 3a+1 0
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For 3 <1 < k, define
Al:AZ_l—FB:AQ—F(Z—Q)B

To describe the n x n matrix M, we begin with a k& x k matrix A = [a; ;] and
then replace the entry a;; on the main diagonal of A by the matrix A; for 1 <: <k
and each entry off the main diagonal of A by the matrix .J, each of whose entries
is 1. Thus, a; ; is replaced by the 6 x 6 matrix A; and a;; for 2 <14 < k is replaced

by the 4 x 4 matrix A;. That is, M,, = [M, ;] is an n x n matrix where

o A ifl1<i=j<k
LT if1<i#j<k

Ay J

Thus, Mg = Ay, Mg = [ AvJ } and My, = J Ay J |. In particular,
J A,
JJ A

001 1 1 1 1 1 1 1 17
1010 1 1 1 1 1 1 1
0011 1 1 17 110 0 1 1 10 1 1 1 1
106 1 1 1 11 1 0 1019 1 1 1 1
160 1 1 6 11 110 0 28 1 1 1 1
Mi=11 1710 6 11 |®™Mo=17 1 101992 0 1 1 1 1
111 6 0 16 11 1 1 1 1 0 10 28 28
(116 11 16 0 | 1 1 1 1 1 1 10 0 28 37
11 1 1 1 1 2828 0 28
11 1 1 1 1 2837 28 0 |

We now define a rainbow mean coloring ¢ : E(K, ) — N by ¢(v;v;) = m, ; for each

pair 2, j of integers with 1 < i < j < mn and ¢ # j. For example, the matrix Mg

gives rise to the rainbow mean coloring of Kg as shown in Figure 4.13, where again

each edge drawn in a thin line is colored by 1. Since rm(c) = n + 1, it follows that

rm(K,) =n+ 1 for each integer n > 6 with n =2 (mod 4). ]
From Theorems 4.4.1 and 4.4.2, we then have the following result.

Corollary 4.4.3 For an integer n > 3,

n ifn>4andn=0,1,3 (mod 4)
n+1 ifn=3o0rn=2 (mod 4).

mm(K,) = {
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Vg 16 Vs

Figure 4.13: A rainbow mean coloring of Kjg

4.5 The Rainbow Mean Index of Stars

For each connected graph G of order n > 3 that we have considered thus far, either
rm(G) = n or rm(G) = n + 1. While this observation may suggest a conjecture,
the following result indicates that the value of rm(G) for a connected graph G of

order n > 3 can be one of at least three integers.

Theorem 4.5.1 If G is a star of order n > 3, then

rm(

G):{n if nis odd

n+2 ifn is even.

Proof. Let G = K ,_1 where V(G) = {v,v1,v2,...,0,1} and degv = n — 1.
First, suppose that n is odd. Thus, n = 2t + 1 for some positive integer ¢t. Define
the coloring ¢ : E(G) — [n] by c(vv;) =i for 1 < i < ¢ and c(vv;) = i + 1 for
t+1 < i < 2t. Since cm(v) = 5 [Zfﬂl i—(t+1)] =t+1and cm(v;) = ¢(vv;) for
1 < < 2t, it follows that ¢ is a rainbow mean coloring with rm(c) = n. Therefore,
rm(G) =n if n is odd.

Next, suppose that n > 4 is even. Then n = 2t for some integer ¢t > 2. First,
we show that there is a rainbow mean coloring ¢ of G with rm(c) = n + 2. Define

¢: E(G) — N such that {c(vv;) : 1 <i<2t—1} =2t +2] —{t+ 1,t +2,2t + 1}.
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Since

em(y) = —1 c(wi):%%lK%;S)—(t+1)_(t+2)_(2t+1)

_ ﬁ[(2t+3)(t+1)_(4t+4)]:t+1

and cm(v;) = c(vy;) for 1 < i < 2t —1, it follows that ¢ is a rainbow mean coloring
of G with rm(c) = 2t + 2. Therefore, rm(G) < n + 2.

It remains to show that rm(G) > n + 2 = 2t + 2. Assume, to the contrary,
that there is a rainbow mean coloring ¢ of G such that rm(c) € {2¢,2t + 1}. We
consider two cases, according to whether rm(c) = 2¢ or rm(c) = 2t + 1.

Case 1. tm(c) = 2t. Then {ecm(u) : u € V(G)} = [2t]. Since cm(v;) = c(vv;)
for 1 <4 <2t —1, it follows that {c(vv;) : 1 <i <2t — 1} = [2t] — {a} for some
integer a € [2t]. Thus,

em(v) = %L_l Kzt; 1) - a] _ %%1[75(2%% 1) = a] = ﬁ(zﬂ +t—a).

If a = 1, then cm(v) = t + 1; while if @ = 2¢, then cm(v) = ¢. In either case,
cm(v) = cm(v;) for some integer ¢ with 1 < ¢ < 2t — 1, which is impossible. On the
other hand, if 1 < a < 2¢, then cm(v) is not an integer, which is also impossible.

Case 2. rm(c) = 2t + 1. Then {cm(u) : v € V(G)} C [2¢ + 1]. Since cm(v;) =
c(vy;) for 1 <1 < 2t —1, it follows that {c(vv;) : 1 <71 <2t —1} = [2t+ 1] —{a, b}
for some a,b € [2t + 1] and a # b. Thus,

em(v) = LK””) —(a+b)} -

2t —1 2

[+ 1)t +1) — (a+b)

_ ﬁ[(zﬁ 434 1) — (a+b)]

*x If a =1 and b =2, then cm(v) =t + 2;
*x If a =2t and b = 2t + 1, then cm(v) = ¢;
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*x Ifem(v) =t+1,thena+b=2t+2 where l <a<t+1<b<2t+ 1.

In any of these situations, cm(v) = cm(v;) for some integer ¢ with 1 < i <2t — 1,
which is impossible. For any other choice of a and b, it follows that cm(v) is not

an integer, which is also impossible. [

Since each edge of a connected graph G of order at least 3 is to be assigned a
positive integer color in such a way that every vertex color is an integer and all
vertex colors are distinct, one may suspect that vertex colors considerably larger
than the order of the graph may be required for some graphs. However, no such
graph has been found yet. Indeed, the value of rm(G) has always been either n
or n+1 for connected graphs G of order n > 3 studied thus far, with the exception

of stars of even order n > 4. This observation suggests the following conjecture.

Conjecture 4.5.2 For every connected graph G of order n > 3,

n <rm(G) <n+2.
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Chapter 5

Rainbow Mean Colorings 11

Abstract: It was conjectured that if G is a connected graph of order n > 3, then
n < rm(G) < n+ 2. In this chapter, we investigate this conjecture for some well-
known classes of connected bipartite graphs and verify it for prisms, hypercubes,

and complete bipartite graphs.

5.1 Introduction

Let ¢ be a rainbow mean coloring of a connected graph . For a vertex v of G,
recall that the chromatic sum cs(v) of v is defined as the sum of the colors of the
edges incident with v. Hence, cs(v) = > .5 c(e) = degv - cm(v). Consequently,
Observation 4.2.3 can be thought of as an extension of the First Theorem of Graph
Theory when stated in the following way.

Observation 5.1.1 If ¢ is a rainbow mean coloring of a connected graph G, then

Z cs(v) =2 Z c(e).

veV(G) e€E(Q)

. . n+1
Furthermore, if the order of G is n and rm(c) = n, then ZveV(G) cm(v) = ( ;r )
A connected graph of order 3 or more with a rainbow mean coloring is referred
to as a mean-colored graph. A vertex v in a mean-colored graph G is chromatically
oddif cs(v) = degv-cm(v) is an odd integer; otherwise, v is chromatically even. The
following is an immediate consequence of Observation 5.1.1 and is a generalization

of the well-known fact that every graph has and an even number of odd vertices.
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Corollary 5.1.2 FEvery mean-colored graph contains an even number of chromat-

tcally odd vertices.

Corollary 5.1.3 If G is a connected graph of order n > 6 with n = 2 (mod 4)
all of whose vertices are odd, then rm(G) > n + 1.

Proof. Assume, to the contrary, that rm(G) = n. Then there exists a rainbow
mean coloring ¢ : F(G) — N of G such that {cm(v) : v € V(G)} = [n] =
{1,2,...,n}. Since n = 2 (mod 4), it follows that n = 4k + 2 for some positive
integer k. Thus, the set [n] contains 2k + 1 odd integers, namely 1,3, ..., 4k + 1.
Suppose that uj,usg,. .., usy1 are the vertices of G such that em(u;) = 2i — 1
for i = 1,2,...,2k + 1. Since every vertex of G has odd degree, the vertices
Uy, U, - . ., Ugky1 are the only chromatically odd vertices, implying that there is an

odd number of chromatically odd vertices, a contradiction. [

For example, the Petersen graph P is a connected cubic graph of order 10 = 2
(mod 4). Figure 5.1 shows a rainbow mean coloring ¢ of P with rm(c) = 11. Thus,
rm(P) = 11 by Corollary 5.1.3.

Figure 5.1: A rainbow mean coloring of the Petersen graph P

Here, we will be dealing primarily with connected bipartite graphs G of order 3
or more having partite sets U and W. Because each of ) ., cs(u) and )y cs(w)

counts the sum of the colors of the edges of GG, we have the following fact.

Observation 5.1.4 Let G be a connected bipartite graph with partite sets U

and W. If ¢ is a rainbow mean coloring of G, then

ch(u) = Z cs(w).

uelU weW
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Recall that the rainbow mean index was determined for each complete graph

and cycle, which we restate below.

Theorem 5.1.5 For an integer n > 3,

n ifn>4andn=0,1,3 (mod 4)
rm(K,) = L B

n+1 ifn=3o0rn=2 (mod4)
0,1 (mod 4)

B n ifn
m(Ch) - = { 2,3 (mod 4).

n+1 ifn

In this chapter, we determine the rainbow mean index of every prism, hyper-

cube, and complete bipartite graph as well as for some star-related trees.

5.2 Prisms, Hypercubes, and Complete Bipar-
tite Graphs

The prism C,, OO Ky, n > 3, is the Cartesian product of the n-cycle C,, and K.
Of course, C,, [0 K5 is bipartite if and only if n is even. The two smallest prisms

are shown in Figure 5.2.

O O

Figure 5.2: The prisms C3 [0 K5 and Cy U Ky
We now determine the rainbow mean index of every prism.

Theorem 5.2.1 For each integer n > 3,

2n if n1s even

m(C, O K) = { 2n+1  if n is odd.
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Proof. Let G = C,, O K be constructed from the two n-cycles (uy, ug, . .., Uy, Upp1 =
up) and (vi,ve, ..., Vs, Upyr1 = v1) and the edges u;v; for 1 < i < n. Thus, G is a
cubic graph of order 2n. We consider two cases depending on whether n is even

or n is odd.

Case 1. n is even. By Observation 4.2.2; it suffices to show that there is

a rainbow mean coloring ¢ of G with rm(¢) = 2n. Define the edge coloring ¢ :
E(G) — N by

(i if e € {uu;_1,u;u;41} where i is odd and 1 <i<n—1
it+14+n ife=wvw; whereiisoddand 1 <i<n-—1
cle)=<¢ i+2n if e = v;v;,1 whereiisevenand 1 <i<n—2
J if e =wu;v; where 1 <j<n-—1
L 2n if e is incident with v,,.

Since ecm(u;) =i for 1 <1i < n and cm(v;) =n+i for 1 < i < n, it follows that ¢
is a rainbow mean coloring of G with rm(c) = 2n. This is illustrated in Figure 5.3
for n = 4,6.

Figure 5.3: Rainbow mean colorings of Cy [0 K5 and Cg [ Ky

Case 2. n is odd. By Corollary 5.1.3, rm(G) > 2n + 1. It remains to show

that there is a rainbow mean coloring ¢ of G with rm(c) = 2n + 1. Define the edge
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coloring ¢ : E(G) — N by

1 if e =wu;u;1 1 whereiisodd and 1 <i<n
(¢) 4 if e =wu;u; 11 where 7 iseven and 2 <i<n—1
cle) =

3i—2 He=wuv;forl1 <i<n

3n+5

5 if e = v;v;11 where 1 < i < n.
Since cm(uy) = 1, em(u;) = i+ 1 for 2 < ¢ < n, and cm(v;) = n+ 1 + 4 for
1 <1 < mn, it follows that ¢ is a rainbow mean coloring of G with rm(c) = 2n + 1.

This is illustrated in Figure 5.4 for n = 3, 5. |

Figure 5.4: Rainbow mean colorings of C3 [0 K5 and C5 [ Ky

Another well-known class of bipartite graphs defined by means of Cartesian
products is that of the hypercubes. The hypercube @, is Ky if n = 1, while for
n > 2, @, is defined recursively as the Cartesian product @,,_; O K5 of (),,_; and
K,. For each integer n > 2, the hypercubes @),, is an n-regular bipartite graph of
order 2". In order to determine the rainbow mean index of every hypercube, we

first recall a well-known result (see [23]).

Theorem 5.2.2  FEvery regular bipartite graph contains a 1-factor (and is 1-
factorable).

Theorem 5.2.3 For each integer n > 2, rm(Q,,) = 2".
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Proof. By Observation 4.2.2, it suffices to show that there is a rainbow mean
coloring ¢ of @, with rm(c¢) = 2". We proceed by induction on n > 2. Since
rm(Q2) = rm(Cy) = 4 and rm(Q3) = rm(Cy O K3) = 8 by Theorems 5.1.5
and 5.2.1, it follows that the statement is true for n = 2, 3. Suppose that there is a
rainbow mean coloring of (J,, with rainbow mean index 2" for some integer n > 3.
We show that G = Q.41 = @, O K has a rainbow mean coloring ¢ with rm(c) =
2n+l,

Let H and H' be the two copies of @, in G where each vertex v in H is
adjacent to the vertex ' in H’'. Since @), is a regular bipartite graph, it follows
by Theorem 5.2.2 that @), has a 1-factor. Let F' be a 1-factor of H and let F’ be
the corresponding 1-factor in H'. By the induction hypothesis, there is a rainbow

mean coloring cy : E(H) — N of H with rm(cy) = 2". Thus,

{em,, (v) :v € V(H)} = [2"]. (5.1)
We now extend the coloring ¢y of H to an edge coloring ¢ : E(G) — N of G by
defining
cule) ifeec F(H)U[E(H") — E(F")]
cle) =1 cule)+(n+1)2" ifee E(F)
i if e = v and cm,,, (v) =i for 1 <7 <27

It remains to show that c is a rainbow mean coloring with rm(c) = 2",
* Let v € V(H), where cm,, (v) =i € [2"]. Since
(n+1)cm.(v) =ni +1 = (n+ 1)i,

it follows that cm(v) = cm.,(v). Hence, {cm.(v) : v € V(H)} = [2"]
by (5.1).

* Let o' € V(H’), where v is the neighbor of v' in H. Then cm,, (v) = i for
some integer ¢ € [2"]. By the defining property of ¢, it follows that

(n+ 1Deme(v') = neme,(v)+i+ (n+1)2" =ni+i+ (n+1)2"
— (n+ 1)+ 2"

Since deg, v' = n+1, it follows that cm.(v") = i 4+2". Hence, {cm,.(v') : v' €
V(H} = [2" + 1,2"1.
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This implies that ¢ is a rainbow mean coloring of G with rm(c) = 2"*1. Hence, by

mathematical induction, rm(Q),,) = 2" for each integer n > 2. ]

To illustrate the proof of Theorem 5.2.3, we construct a rainbow mean coloring ¢
of Q4 with rm(c) = 2* = 16 from a rainbow mean coloring cg of H = Q3 with
rm(cg) = 23 = 8. This coloring ¢ is shown in Figure 5.5, where the four edges in
the 1-factor F' in H and the four edges in the 1-factor F’ is H' are drawn in bold
and each edge ¢’ of I is colored by cpy(e) +4 - 2% = cy(e) + 32 where e € E(F).
Thus, {c(e) :e € E(F)} ={1,3,6,8} and {c(¢') : ¢ € E(F')} = {33, 35, 38,40}.

Figure 5.5: Constructing a rainbow mean coloring of ()4 from a rainbow mean
coloring of (Y3

A proof similar to that of Theorem 5.2.3 can be used to prove the following:

Theorem 5.2.4 If G is a connected regular bipartite graph of order n > 3 with
rm(G) = n, then rm(G O Ks) = 2n.

74



Recall the rainbow mean index was determined for all stars K¢, with ¢ > 2.

t+1 iftis even

Theorem 5.2.5 For an integer t > 2, rm(K; ;) = { t+3 iftis odd

We begin with an observation concerning rm(K;) when s and ¢ are both odd.

Proposition 5.2.6 If s and t are odd integers with s,t > 3, then

rm(K,,) > s+t+ 1.

Proof. Let G = K,; where s,t > 3. Since s and ¢ are both odd, it follows that
s = 2a+1 and t = 2b+1 for some nonnegative integers a and b with a+b > 2. Note
that if s =¢ (mod 4), then the statement follows by Corollary 5.1.3. However, we
verify the statement independently from this observation. Assume, to the contrary,

that there is a rainbow mean coloring ¢ : E(G) — N of G with rm(c¢) = s+t. Thus,

3 em() = (”;“) _ (5+t+21>(5”> — (2a+2b+3)(a+b+1).

Let {X,Y} be a partition of the set [s + t] where |X| = t and |Y| = s such
that the sum of elements in X is x and the sum of elements in Y is y. Since
r+y=(2a+2b+3)(a+b+1) and sz = ty, it follows that

st=ty=t[(2a+2b+3)(a+b+1)—z]=t(2a+2b+3)(a+ b+ 1) — xt.

Thus, st +txr =x(s+1t) =t(2a+2b+3)(a+b+1) or (2a+2b+2)x = t(2a+ 2b+
3)(a+ b+ 1). However then, 2z = ¢(2a + 2b + 3), which is an odd integer. This is
a contradiction. Therefore, rm(G) > s+t + 1. ]

Proposition 5.2.6 establishes lower bounds on the rainbow mean index for many
complete bipartite graphs. However, the construction of a rainbow mean coloring
for these graphs resulting in the desired upper bound involves extensive case by
case analysis and so we simply state the value of this parameter for this class of

graph without proof.
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Theorem 5.2.7 If s and t are positive integers with min{s,t} > 2, then

s+t if at least one of s and t is even
s+t+1 if both s andt are odd

(k) = {

Figure 5.6 exhibits minimizing rainbow mean colorings with respect to the
rainbow mean indexes for K, and K47. These examples represent the pattern

involved in constructing such a coloring for a few general cases.

Figure 5.6: Rainbow mean colorings of K46 and K47

As we saw, it was conjectured in that if G is a connected graph of order n > 3,
then rm(G) < n+2. All of the bipartite graphs considered in this article substan-
tiate this conjecture. Indeed, the only connected bipartite graphs G of order n > 3
found thus far having rm(G) = n+2 are stars of even order. Consequently, not only
may this conjecture be true but those connected graphs G for which rm(G) = n+2

may be rare.

5.3 Star-Related Trees

Since only stars of even order n > 4 have been shown to have rainbow mean index

different from n or n + 1, this suggests studying the rainbow mean index of trees
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related to stars in some manner. In this section, we determine the rainbow mean
index of three classes of trees, namely cubic caterpillars, subdivided stars, and

double stars.

5.3.1 Cubic Caterpillars

A tree T is referred to as r-regular for some integer r > 2 if every non-leaf of T'
has degree r. A caterpillar T is a tree of order 3 or more, the removal of whose
leaves produces a path called the spine of T. A star is therefore a caterpillar with
a trivial spine. A caterpillar T is cubic if degv = 3 for every non-leaf v of T. We
now consider the class of cubic caterpillars 7}, of even order n = 2¢ > 6 consisting
of the path (ug,uq,...,u,) of order £+ 1 and ¢ — 1 additional pendent edges u;v;
where 1 < ¢ < ¢ — 1. The vertices u;, 1 < i < ¢, thus have degree 3 and all other

vertices of T,, are leaves.

Theorem 5.3.1 For each integer n > 6,

[ n if n =0 (mod 4)
rm(T) —{ n+1 ifn=2(mod 4).

Proof. Assume first that n = 0 (mod 4). Then n = 4k for some integer k > 2. To
show that rm(7,,) = n in this case, it suffices to show that there is a rainbow mean
coloring ¢ of T,, with rm(¢) = n. Then T,, consists of the path P = (ug, uq, . .., uzg)
of order 2k + 1 and 2k — 1 additional pendent edges w;v; where 1 < 7 < 2k — 1.
Let ¢ be the edge coloring of T, defined by

(2 fe=wuw; forl1 <i<2k-—2
4k — 3  if e = ugp_1V9k_1
ele) = 1 if e = upuy
2i+4 if e = wju;q where 1 <¢ <2k — 3 and ¢ is odd
2i+1 if e = wju;1 where 2 < ¢ <2k — 4 and i is even
| 4k if e = Uop_oUog_1, Usk—1Us.
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Then the chromatic means of the vertices of T}, are given by

2+1 f0<i<2%k—3ori=2k—1
em(u) = { 242 ifi=2k—2
2 ifi=2k

em(v;) = 2i if1<i<2k-—2
Yo 21—1 ifi=2k—1.

Hence, ¢ is a rainbow mean coloring with rm(c) = n and so rm(7;,) = n if n =
0 (mod 4). This coloring is illustrated in Figure 5.7 for the cubic caterpillar T'g
where k = 4.

V1 v2 v3 V4 U7 = V2k—1

®

@1@655U10\J9> l’mm 16.

uo ul u2 Ug = Uk

()

Figure 5.7: A rainbow mean coloring of Ti4

Next, suppose that n = 2 (mod 4). Then n = 4k + 2 for a positive integer k.
Then T, consists of the path P = (ug,uy, ..., us+1) of order 2k + 2 and 2k addi-
tional pendent edges u;v; where 1 <1 < 2k. Since n = 2 (mod 4) and each vertex
of T,, is odd, it follows by Corollary 5.1.3 that rm(7,,) > n + 1. It suffices to show
that there is a rainbow mean coloring ¢ of T, with rm(c¢) = n + 1. Let ¢ be the

edge coloring of T, defined by

2 if e = w1
21+ 1 if e =ww,; for 2 < <2k
cle) = 1 if e = uguy

2i+4 if e = w;u;q where 1 <4 <2k —1 and ¢ is odd
2t +3 if e = u;u;4q where 2 <4 < 2k and 7 is even.
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Then the chromatic means of the vertices of T}, are given by

em(u) = 2%i+1 ifi=0,1,2k+1
T 242 if2<i<2k

em(v) = 2 ifi=1
VT 2041 if2<i<ok

Hence, ¢ is a rainbow mean coloring with rm(c¢) = n + 1 and so rm(7,,) = n + 1 if

n = 2 (mod 4). This coloring is illustrated in Figure 5.7 for the cubic caterpillar

Ti6 where k = 4. [
V1 v2 U3 V4 V5 V6 V7 Vg = U2k
2 5 7 9 11 ‘13 15 17
@1_ 6 7101114‘1518 19
uo ul u2 us Uuq us ue uyz ug U9 = U2k41

Figure 5.8: A rainbow mean coloring of Tig

5.3.2 Subdivided Stars

The subdivision graph S(G) of a graph G is the graph obtained from G by subdi-
viding each edge of G exactly once (that is, by replacing each edge e = wv of G
by a new vertex w, and the two new edges uw, and vw,., where w, is called the
subdivision vertez of e). If G is a graph of order n and size m, then the order of

S(G) is n + m and its size is 2m.
Theorem 5.3.2 For each integer t > 3, rm(S(K;4)) = 2t + 1.

Proof. Let G = S(K;;) be the subdivision graph of the star K, where ¢t > 3.
Then the order of G is n = 2t + 1. By Observation 4.2.2, it suffices to show that
there is a rainbow mean coloring ¢ of G with rm(c) = n. We consider two cases,

according to whether t is even or ¢ is odd.

Case 1. t > 4 is even. Then t = 2k for some integer k > 2. Let
V(Kiok) = {ur,ug, ..., upy U{xy, 20, .., 25} U{w},
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where w is the central vertex of K 9. For each integer ¢ with 1 <7 <k, let v; be
the subdivision vertex of u;w and let y; be the subdivision vertex of x;w. Define
the edge coloring ¢ : E(G) — [4k + 1] as follows: For 1 < i <k,

c(uwy) = 2i — 1, e(vyw) = 2i + 1,
c(xiy;) = 2k +2i+ 1, and c(y;w) = 2k + 2i — 1.

Then the chromatic means of the vertices of G are given by

em(u;) =20 — 1 and cm(v;) = 2i for 1 <@ <k,
cm(w) =2k + 1,
cm(x;) = 2k + 20+ 1 and em(y;) = 2k + 2i for 1 < < k.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 4k + 1. This coloring is
illustrated in Figure 5.9 for the subdivision graph S(Kj g) of the star K s.

Figure 5.9: A rainbow mean coloring of S(K )

Case 2. t > 3 is odd. Then t = 2k 4 1 for some positive integer k. Let

V(K 9k41) = {ur, us, ..., upf U{zr, 29, ..., 251} U {wr, 21} U {w},

where w is the central vertex of Kjor41. For each integer ¢ with 1 <7 <k, let v;
be the subdivision vertex of w;w for 1 < i < k, let y; be the subdivision vertex of
z;w for 1 <i < k —1, let wy be the subdivision vertex of wyw, and let z5 be the

subdivision vertex of zjw. Define the edge coloring ¢ : E(G) — [4k + 3] by
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c(uw;) =2t — 1 and c(vw) =2i+ 1 for 1 <i <k
clunwe) = 2k + 3, c(wow) = 2k — 1,
c(z1220) = 2k + 4, c(zw) = 2k + 6,
c(xy;) =2k + 20+ 5, and c(y;w) =2k +2i+ 3 for 1 <i<k—1.

Then the chromatic means of the vertices of G are given by

cem(u;) =20 — 1 and cm(v;) = 2i for 1 <@ <k,
cm(w) = 2k + 2, em(wy) = 2k + 3, ecm(wq) = 2k + 1,
cm(z) =2k +4, cm(ze) =2k +6
em(z;) =2k +2i+5and em(y;) =2k +2i+4for 1 <i<k-—1.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 4k + 3. This coloring is
illustrated in Figure 5.10 for the subdivision graph S(/Kg) of the star K o. n

(10
& / 't e
:

Figure 5.10: A rainbow mean coloring of S(Kj )

5.3.3 Double Stars

We saw in Theorem 5.2.7 that the rainbow mean index of the star K, ¢ > 2,ist+1
if t even and is t + 3 if ¢ is odd. In fact, the stars of even order 4 or more are the
only connected graphs whose rainbow mean index has been shown to be neither
the order nor one plus the order of the graph. This suggests investigating the
rainbow mean index of the related double stars class of graphs. For integers a and
b with 2 < a < b, the double star S, is that tree of order a +b (and size a+b—1)
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and diameter 3 whose central vertices v and v have degrees a and b, respectively.

The vertex u is thus adjacent to a — 1 end-vertices, denoted by uq,us, ..., uqs 1,
while v is adjacent to b — 1 end-vertices, denoted by vy, v9, ..., vp_1.
ul v1
ug Vg
U v
Ug—2 Vp—2
Ug—1 Vp—1

Figure 5.11: The double star S, ; of order a 4 b where a,b > 2

First, we determine rm(S,;) where @ = b. Since rm(S;2) = rm(Py) = 5 by

Theorem 4.3.2, we may assume that a > 3.

Theorem 5.3.3 For each integer a > 3,

| 2a if a 1s even
rm(S.a) = { 2a+1 ifa is odd.

Proof. Suppose that v and v are the central vertices of G = S,, where u is

adjacent to the a — 1 end-vertices uy, us, ..., u,_1 and v is adjacent to the a — 1
end-vertices v, Vo, ..., v,_1. We consider two cases, according to whether a is even
or a is odd.

Case 1. a > 4 is even. Then a = 2k for some integer k > 2. Since the order
of G is 4k, it suffices to show that there is a rainbow mean coloring ¢ of G with

rm(c) = 4k by Observation 4.2.2. Define the edge coloring ¢ such that

{c(uw;) : 1 <i <2k} = [K]U[3k+ 1,4k —1]
clww) = k
{c(vv;) : 1 <i <2k} = ([k+1,3k]U{4k}) — {2k — 1,2k + 1}.

Then the chromatic means of the vertices of G are given by

em(u;) = e(uw;) and ecm(v;) = c(vwy;) for 1 < i < 2k,
cm(u) = 2k — 1 and cm(v) = 2k + 1.
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13 11
14 |15 16| 12 @

Figure 5.12: A rainbow mean coloring of Sgg

This coloring c is illustrated in Figure 5.12 for the double star Sgg where £ = 4.

Thus, c¢ is a rainbow mean coloring of G with rm(c) = 4k.

Case 2. a > 3 is odd. Then a = 2k + 1 for some positive integer k. Since the
order of G is 4k + 2 and every vertex of G is odd, it follows by Corollar 5.1.3 that
rm(G) > 4k + 3. Thus, it remains to show that there is a rainbow mean coloring ¢
of G with rm(c) = 4k + 3. Define the edge coloring ¢ as follows:

cluu) =2i—1for 1 <i<kand c(uu) =2i+1for k+1<1i<2k
clvw)=2ifor 1 <i<kandc(vw)=2i+2for k+1<i<2k—1,
c(uv) = 2k + 1 and c(vov) = 4k + 3.

Then the chromatic means of the vertices of G are given by

em(u;) = c(wu) for 1 <14 < 2k and em(v;) = c(vw) for 1 <i <k,
cm(u) = 2k + 1 and cm(v) = 2k + 2.

This coloring c is illustrated in Figure 5.13 for the double star S99 where k£ = 4.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 4k + 3. ]

@7
11
@1315
® &

Figure 5.13: A rainbow mean coloring of Sg g
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If a,b > 3 are odd and @ = b (mod 4), then it follows by Corollary 5.1.3 that
rm(Sep) > a+ b+ 1. In fact, rm(S,,) = a + b+ 1 as we show next.

Theorem 5.3.4 If a and b are odd integers with a,b > 3 and a = b (mod 4),
then

rm(S,p) =a+b+ 1.

Proof. By Theorem 5.3.3, we may assume that a < b. Since a and b are odd
integers and a = b (mod 4), it follows that either a and b are both congruence
to 1 modulo 4 or a and b are both congruence to 3 modulo 4. In each case,
a+b =2 (mod 4) and every vertex of G is odd. Hence, rm(G) > a+ b+ 1 by
Corollary 5.1.3. Thus, it remains to show that there is a rainbow mean coloring ¢
of G with rm(c) = a+ b+ 1. We consider these two cases.

Case 1. a =1 (mod 4) and b =1 (mod 4). Then a =45+ 1 and b = 4k + 1
for some integers j, k with 1 < j < k. Let u and v be the central vertices of G =
Saji1,4541 Where u is adjacent to the a — 1 = 4j + 2 end-vertices uy, ug, ... u4; and
v is adjacent to the b — 1 = 4k + 2 end-vertices vy, vs, ..., v4. Define the edge

coloring ¢ by

{e(uug) : 1< <25} =[45+1] — {25 + 1},
cluv) =25 +1
{c(vvy) : 1 <i<2j+2} =45+ 2,45 + 4k + 3] — {2k + 2j + 2,2k + 45 + 2}.

Then the chromatic means of the vertices of G are given by

em(u;) = c(uwy) for 1 < i < 4y,
cm(u) =25 + 1, em(v) = 2k + 45 + 2.
cem(v;) = c(vy;) for 1 < i < 4k.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 45 + 4k + 3.
Case 2. a = 3 (mod 4) and b = 3 (mod 4). Then a = 45 + 3 and b = 4k + 3

for some integers j, k with 0 < 7 < k. Let u and v be the central vertices of G =
Sajrsai+s Where u is adjacent to the a — 1 = 45 + 2 end-vertices uy, ug, . . . Ugjt2
and v is adjacent to the b — 1 = 4k + 2 end-vertices vy, vy, ..., Uspro. Define the

edge coloring ¢ by
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2k+4j+1 O

%143 .

O

1 2j+1 2+1 2k+4j+2 Ak+4j+3
Figure 5.14: A rainbow mean coloring of Syji1 k41
{c(uw;) : 1 <i <25} =145+ 3] — {25 + 2},

c(uv) =25 +2
{c(oo)) 1 1< i <25 +2) = [4) + 4,45 + 4k + 7] — {2k + 2 + 4,2k + 45 + 5}

Then the chromatic means of the vertices of G' are given by

cm(u;) = c(uy;) for 1 <i <45 +2,
cm(u) = 25 + 2, cm(v) = 2k + 45 + 5.
cem(v;) = e(vy;) for 1 < i < 4k + 2.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 4j + 4k + 7. ]

O

1 2j+2 2j+2 2K+Aj+5 A+4j+7

Figure 5.15: A rainbow mean coloring of Syj13 4543

We now turn our attention to the double stars S,; where 2 < a < b and at

least one of ¢ and b is even.

Theorem 5.3.5 Ifa and b are integers with 2 < a < b such that ab is even, then
rm(Sep) = a + b.

Proof. Let G = S, where 2 < a < b and ab is even. By Observation 4.2.2, it
suffices to show that there is a rainbow mean coloring ¢ of G with rm(c) = a + b.

We consider three cases, according to the parities of a and b.

Case 1. a and b are both even. Then a = 2j and b = 2k where j and k are

integers and 1 < 57 < k. Let u and v be the central vertices of G = Sy;9, wWhere
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u is adjacent to the a — 1 = 25 — 1 end-vertices uy, ug, ... us;—1 and v is adjacent
to the b — 1 = 2k — 1 end-vertices vy, va, ..., v9r_1. It suffices to show that there

exists a rainbow mean coloring ¢ with rm(c) = a+b. Define the edge coloring ¢ by

{c(uu):1<i<2j—1}=[j+1,3j - 1],
c(uww) = 2j(j + 1)
{c(vv;) 11 <i <2k —1}=[j]U[35+ 1,25 + 2k] — {27 + k}.

Then the chromatic means of the vertices of G are given by

cluu;) for 1 <i <25 —1,
= 3j, cm(v) = 2j + k.
em(v;) = e(vy;) for 1 <i <2k — 1.

cm(u;)

~—

cm(u

Since j+1 < k, it follows that cm(u) # cm(v). Thus, ¢ is a rainbow mean coloring
of G with rm(c) = 25 + 2k.

Figure 5.16: A rainbow mean coloring of Sy; o1 where j < k

Case 2. a > 3 is odd and b > 4 is even. Then a = 25 + 1 and b = 2k for some
integers 7,k with 1 < j < k. Let v and v be the central vertices of G where u
is adjacent to the a — 1 = 27 end-vertices w1, us, ..., us; and v is adjacent to the

b—1 =2k — 1 end-vertices vy, vs, ..., vy_1. Define the edge coloring ¢ by

cluuy) =i for 1 <1 <24, c(uv) =25k + 25+ k+1
{e(vv) 11 <i<2k =1} =2+ 1,2k +2j + 1] = {k+j+ 1,k +3j + 1}.

Then the chromatic means of the vertices of G are given by

em(u;) = c(uy;) for 1 <i <25, em(u) =k +j+ 1, ecm(v) =k + 35 + 1.
cm(v;) = c(vy;) for 1 <i <2k — 1.
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k+3j+2

\/

2jk+2j+k+1 k+3j+1 2k+2j+1

k+j+1

Figure 5.17: A rainbow mean coloring of Ss; 125 Where j < k

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 2j + 2k + 1.

Case 3. a > 2 is even, and b > 3 is odd. Then a = 25 and b = 2k + 1 where
1 <7 < k. Let u and v be the central vertices of G where u is adjacent to the
a—1 = 2j — 1 end-vertices uj, us,...uzj—; and v is adjacent to the b — 1 = 2k

end-vertices vy, vg, ..., v9,. Define the edge coloring ¢ by

{cluw;) 1 1<i<2j—1}=[j+k+2,3j+k|
c(uww) =25(j+1) +k+1
{c(vv;) 11 <1 <2k} =[j+kU[Bj+k+2,2] +2k+1].

Then the chromatic means of the vertices of G are given by

em(u;) = c(uw;) for 1 < <25 —1,
em(u) =37 +k+1, cm(v) =5+ k+ 1
cem(v;) = e(vy;) for 1 < i < 2k.

Thus, ¢ is a rainbow mean coloring of G with rm(c) = 2j + 2k + 1. n

3J+k / ‘.
% 2]+2N /O
2
jrk+2 2j(j+1)+k+1 4\ 1 Q
31+k+1 j+k+1

Figure 5.18: A rainbow mean coloring of Sj o1 where j <k

The one remaining class of double stars S, ; for which the rainbow mean index
has not yet been determined is that where a and b are both odd and a # b (mod 4).
In order to present a result dealing with this class, it is convenient to establish the

following two lemmas.
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Lemma 5.3.6 For positive integers a and b with a < b and the set

X =[4da+4b+4] —{2a+2b0+1,2a +2b+ 3},

4a 4a
let 81 = Z@ and s9 = 2(41) + 4+ 1). For every integer s with s; < s < sq, there
i=1 i=1

exists a (4a)-element subset S of X such that Z r=Ss.

zeSs

Proof. First, we show that there exists a (4a)-element subset S C [4a + 4b + 4]
such that ) oo = s. If s = 51 or s = s, then the result holds. Thus, we may

assume that s; < s < s5. Let m be the minimum integer in [4b + 4] such that
m+m+1)+--+(m+da—1D]<s<[(m+1)+ (m+2)+- -+ (m+4a).

Lett = (m+1)+(m+2)+---+ (m+4a—1). Therefore, m+t < s < t+(m+4a).
Thus, s = m + t + r for some integer r with 1 < r < 4a — 1. Consequently, by
adding 1 to the last r terms in the sum m+ (m+1)+- .-+ (m+4a—1), we obtain
the (4a)-element set

T={mm+1,... m+da—r—1}U{m+4da—r+1,m+4a—r+2,...,m+4a}

such that ) .z =s.

It remains to show that there are 4a distinct integers in X whose sum is s. Of
course, if neither 2a + 2b 4+ 1 nor 2a + 2b + 3 belongs to T, then T has the desired
property. Thus, we may assume that at least one of 2a + 2b+ 1 and 2a + 2b + 3
belongs to T, say 2a +2b+1 € T.

* If 2a+2b+3 € T as well, then we remove 2a 4 2b+ 1 and 2a + 20+ 3 from T
and replace them by 1 and 4a + 4b + 3, obtaining the set 77 C X such that

the sum of elements in 7] is s.

x If 2a42b+3 ¢ T, then either 2a+2b € T or 2a+2b+2 € T, say the former.
Hence, we remove 2a + 2b and 2a 4 2b+ 1 from 7" and replace them by 1 and
4a + 4b, obtaining the set 75 C X such that the sum of elements in T3 is s. m

Lemma 5.3.7 For positive integers a and b with a < b and the set
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X =[4a+4b+4] —{2a+2b+1,2a +2b+ 3},

4a+2 4a+2
let s1 = Zz and S9 = Z(4b—|— 2+41). For every integer s with s; < s < s,
i=1 i=1

there exists a (4a + 2)-element subset S of X such that Zx =s.
zeS

Proof. First, we show that there exists a (4a+2)-element subset S C [4a+4b+4)]
such that > oo = s. If s = 51 or s = s, then the result holds. Thus, we may

assume that s; < s < s5. Let m be the minimum integer in [4b + 2] such that
m+(m+1)+--+(m+da+1l)]<s<[m+1)+(m+2)+---+ (m+4a+2)].

Let t = (m+1)+(m+2)+---+(m+4a+1). Therefore, m+t < s < t+(m+4a+2).
Thus, s = m + t + r for some integer r with 1 < r < 4a + 1. Consequently, by
adding 1 to the last r terms in the sum m+ (m+1)+---+ (m+4a+ 1), we obtain
the (4a + 2)-element set

T={m,m+1,... m+da—r+1}U{m+4da—r+3,m+4da—r+4,...,m+4a+2}

such that 3

It remains to show that there are 4a + 2 distinct integers in X whose sum is s.
Of course, if neither 2a 4 2b+ 1 nor 2a+ 2b+ 3 belongs to T', then T has the desired
property. Thus, we may assume that at least one of 2a + 2b+ 1 and 2a + 2b + 3
belongs to T, say 2a +2b+1 € T.

xGTx =S.

* If 2a+2b+ 3 € T as well, then we remove 2a +2b+1 and 2a + 2b+ 3 from T'
and replace them by 1 and 4a + 40 + 3, obtaining the set T} C X such that

the sum of elements in 77 is s.

*x If 2a+2b+3 ¢ T, then either 2a+2b € T or 2a+2b+2 € T, say the former.
Hence, we remove 2a + 2b and 2a 4 2b+ 1 from 7" and replace them by 1 and
4a + 4b, obtaining the set 75 C X such that the sum of elements in T3 is s. m

We are now prepared to present the following result.

Theorem 5.3.8 If a and b are odd integers with 3 < a < b such that a #
b (mod 4), then rm(S,) = a + b.

89



Proof. Let G = S,;. We show that there is a rainbow mean coloring ¢ : E(G) —
[a+b] of G with rm(c) = a+ b such that cm(u) and cm(v) have certain prescribed

values. We consider two cases. In each case, we let

a—1 a—1

A = cluu;) = cm(u;)
i=1 =1
b—1 b—1

B = c(vy;) = Zcm(vi)
i=1 =1

r = c(uw).

Observe that A+ 2z = cm(u) - @ and B 4+ x = cm(v) - b. Furthermore,
A+ B+em(u) +em(v) =142+ + (a+b) = (“70F).

Casel. a =3 (mod4) andb =1 (mod 4). Then a = 4j+3 and b = 4k+1 where
0 < j < k. We show that there is a rainbow mean coloring ¢ : F(G) — [4k+4j+4]
of G with rm(c) = 4j+4k+4 such that cm(u) = 2k+2j+1 and cm(v) = 2k+25+3.

For such an edge coloring ¢ of GG, we have

Atz = (2k+2j+1)(4j +3) =8kj+85% 4+ 6k + 105 + 3
B4z = (2k+2j+3)(4k +1) = 8kj + 85% + 14k + 25 + 3
A+B = 142+ -+ (4k+4j+5) — (cm(u) + cm(v))
= (16kj + 8k* + 85 + 18k + 185 + 10) — (4k + 45 + 4)
= 16kj + 8k* 4+ 852 + 14k + 145 + 6.
Hence,
A = 8kj+8j°+3k+9j+3
B = 8kj+8k*+11k+3j+3
x = 3k—j.
Therefore, such an edge coloring ¢ of GG exists if there are 4a + 2 distinct elements
in the set X = [4k +4j + 4] — {2k + 25 + 1,2k + 25 + 3} whose sum is A =
8kj+872+3k+9j+3. The sum of the 4;+2 smallest integers in the set [4k+4j+4]

1S
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(V%) = (25 + 1)(45 + 3) = 852 + 105 + 3;
while the sum of the 4; + 2 largest integers in the set [4k + 45 + 4] is
(25 +1)(8k + 45 +7) = 16kj + 85 + 8k + 185 + 7.
Since
852 +10j +3 < A< 16kj + 852+ 8k + 185 + 7,

it follows by Lemma 5.3.7 that there is a (4a + 2)-element subset S of X such that
Y wes® = S. Observe that the sum of integers in X — S is therefore B.

Case2. a =1 (mod 4) andb = 3 (mod 4). Then a = 4j+1 and b = 4k+3 where
1 < j < k. We show that there is a rainbow mean coloring ¢ : E(G) — [4k+4j+4]
of G with rm(c) = 4j+4k+4 such that cm(u) = 2k+2j+1 and cm(v) = 2k+2;5+3.
For such an edge coloring ¢ of GG, we have
A+z = (2k+2j+1)(4j+1)=8kj+ 85> +2k+6j+1
B+x = (2k+2j+3)(4k+3) =8kj+ 85+ 18k +65 +9
A+ B = 16kj+ 8k* + 85% + 14k + 145 + 6.
Hence,
A = 8kj+87—k+7j—1
B = 8kj+8k*+15k+7j+7
xr = 3k—75+2
Therefore, such an edge coloring c of GG exists if there are 4a distinct elements in the
set X = [4k+4j+4]—{2k+2j+1,2k+2j+3} whose sum is A = 8kj+852—k+7j—1.
The sum of the 45 smallest integers in the set [4k + 47 + 4] is
("57) =2i(45 +1) = 85° + 25
while the sum of the 4j largest integers in the set [4k + 45 + 4] is
2j(8k +4j +9) = 16kj + 852 + 18j.

Since 852 +2j < A < 16kj + 852 + 187, it follows by Lemma 5.3.6 that there is
a 4a-element subset S of X such that ) .o = A. Again, the sum of integers
in X — § is therefore B. [

In summary, we have the following result.
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Theorem 5.3.9 For integers a and b where a,b > 2,

a+b if ab is even or ab is odd and a + b # 2 (mod 4)

Sap) =
rm(S,) {a+b+1 if ab is odd and a +b =2 (mod 4).

All trees that have been studied thus far lead us to the following conjecture.

Conjecture 5.3.10 Let T be a tree of order n > 5 that is not a star. Then
rm(7T") = n if and only if (i) n # 2 (mod 4) or (ii) n =2 (mod 4) and T has at
least one even vertex; while rm(T) =n+1 if n =2 (mod 4) and all vertices of T

have odd degrees.
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Chapter 6

Proper Mean Colorings

Abstract: For an edge coloring of a connected graph G of order 3 or more with
positive integers, the chromatic mean of a vertex v of G is the sum of the colors
of the edges incident with v divided by the degree of v. Only edge colorings ¢ are
considered for which the chromatic mean of every vertex is a positive integer. If
adjacent vertices have distinct chromatic means, then c is a proper mean coloring
of G. The maximum vertex color in a proper mean coloring ¢ of GG is the proper
mean index of ¢ and the proper mean index p(G) of G is the minimum proper mean
index among all proper mean colorings of G. The proper mean index is determined
for complete graphs, cycles, stars, double stars, and paths. The non-leaf minimum
degree 0*(T) of a tree T' is the minimum degree among the non-leaves of 7. Tt
is shown that if T" is tree with 6*(7") > 10 or a caterpillar with 6*(T") > 6, then
wu(T) < 4. Furthermore, it is conjectured that x(G) < u(G) < x(G) + 2 for every

connected graph G of order 3 or more.

6.1 Introduction

First, we recall some basic definitions and notation on mean colorings of a graph.
For every connected graph GG of order 3 or more, there are edge colorings ¢ with
positive integers that induce a positive integer vertex coloring cm defined for each

vertex v of G by

ZeeEv C(e)

, where F, is the set of edges incident with v.
degv

cm(v) =
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Edge colorings with this property are called mean colorings. The induced vertex
color cm(v) of a vertex v of G is called the chromatic mean of v. Consequently,
only edge colorings ¢ are considered for which cm(v) is a positive integer for every
vertex v of GG. For a vertex v in a graph G with a mean coloring ¢, the chromatic
sum of v is defined as cs(v) = ) . c(e). Note that cs(v) = degv - cm(v). Thus,

the sum of the chromatic sums of all vertices in a graph satisfies the identity

> es(o)=2 ) cle).

veV(G) e€E(Q)

Also, recall that if distinct vertices have distinct chromatic means, then the edge
coloring c is called a rainbow mean coloring of G. 1t was shown that every connected
graph of order 3 or more has a rainbow mean coloring. For a rainbow mean
coloring ¢ of a graph GG, the maximum vertex color is the rainbow mean index rm(c)
of e¢. That is, rm(c) = max{cm(v) : v € V(G)}. The rainbow mean index rm(QG)
of G itself is defined as rm(G) = min{rm(c) : ¢ is a rainbow mean coloring of G'}.
We saw that if G is a connected graph of order n > 3, then rm(G) > n.

A mean coloring of a connected graph G of order 3 or more is defined to be a
proper mean coloring of G if no two adjacent vertices in G have the same chromatic
mean. The maximum vertex color in a proper mean coloring c is the proper mean
index p(c) of ¢ and the minimum proper mean index among all proper mean
colorings of G is the proper mean index u(G) of G. Since every such graph has a
rainbow mean coloring, each such graph has a proper mean coloring as well. In
addition, the proper mean index of a graph G is at least its chromatic number x(G).
Thus, x(G) < u(G) < rm(G) for every connected graph G of order at least 3. As
an illustration of these concepts, Figure 6.1 shows proper meaning colorings of the
cycles Cy and Cg. In fact, u(Cs) =4 = x(C5) + 1 and u(Cg) = 4 = x(Cs) + 2.

Figure 6.1: Proper mean colorings of C5 and Cg
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While x(G) = 2 for every nontrivial connected bipartite graph G, u(G) # x(G)
for every bipartite graph G. Indeed, u(G) # 2 for every connected graph G of order

at least 3. In order to verify this fact, we first present a useful observation.

Observation 6.1.1 Let G be a connected bipartite graph with partite sets U
and W. If ¢ is an edge coloring of G, then

ch(u) = Z cs(w).

uelU weW

Proposition 6.1.2 If G is a connected graph of order at least 3, then u(G) > 3.

Furthermore, if ¢ is a proper mean coloring of G with u(c) = 3, then
{em(v) : v € V(G)} = [3].

Proof. We show that if ¢ is a proper mean coloring of (G, then the induced vertex
coloring cm of ¢ uses at least three distinct colors. Assume, to the contrary, that
the chromatic mean cm obtained from ¢ uses only two distinct colors a,b € [3].
Then G is a connected bipartite graph. Let U and W be the partite sets of G. We

may assume that cm(u) = a for each v € U and cm(w) = b for each w € W. Since

Yower es(u) =ad”, oy degu = a|E(G)| and
Yowew cs(w) =b>" y degw = b|E(G)],

it follows by Observation 6.1.1 that a = b, which is a contradiction. As a result,

w(G) > p(c) > 3. Moreover, if p(c) = 3, then cm must use all three colors in [3]. m

6.2 The Proper Mean Index of Some Well-Known
Graphs

As we saw, the rainbow mean indexes of complete graphs were determined. Since

w(K,) =rm(K,) for each integer n > 3, we have the following result.

Theorem 6.2.1 For an integer n > 3,

n ifn>4 and n # 2 (mod 4)

M(Kn)—rm(K”)_{ n+1 ifn=3o0orn=2 (mod4).
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Theorem 6.2.1 also shows that there are graphs G for which u(G) = x(G).
We now determine the proper mean index of all paths and cycles, beginning with

paths.

Theorem 6.2.2 For each integer n > 3,

| 3 ifnis odd
plFn) = { 4 if n is even.

Proof. First, suppose that n is odd. By Proposition 6.1.2; it suffices to show
that there is a proper mean coloring ¢ such that p(c) = 3. Let P = (uq, ua, . .. uy).

For each integer ¢ with 1 < i < n, define

© { 1 if e is incident with w; for i =1 (mod 4)
cle) =

3 if e is incident with u; for i = 3 (mod 4).
Then the vertex color ecm(u;), 1 < i < n, is given by

1 ifi=1 (mod 4)
em(u;)) =< 2 ifi=0,2 (mod 4)
3 if i =3 (mod 4).

This edge coloring is illustrated in Figure 6.2 for P, when n = 3,5,7. Since cm is

a proper coloring of P, it follows that u(c) = 3. Thus, u(P,) = 3 for every odd
integer n > 3.

Ps: @L(:)—3@
P @1@3@3@1@

O O O OR S OE 0RO
Uy U2 Uy Ug ur

us Us

Figure 6.2: Proper mean colorings of P, for n = 3,5,7

Next, suppose that n is even. We show that u(P,) = 4. First, we show that

w(P,) > 4. Assume, to the contrary, that there is a proper mean coloring ¢ of P,
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with p(c) = 3. By Proposition 6.1.2, there is a vertex v in P, such that cm(v) = 1.
Hence, each edge incident with v is colored 1, which implies that ¢(e) is odd for all
e € E(P,). Suppose that there is an edge e such that c(e) = 5. If e is a pendant
edge of P,, then u(c) > 5, which is a contradiction. Thus, we may assume that e is
adjacent to two edges e; and ey of P,. Since c(e1) # c(ez) and c(e1) and c(eq) are
both odd, at least one of c¢(e;) and c(ez) is 3 or more. However then, cm(u) > 4
for at least one vertex u incident with e, which is a contradiction. Thus, all edges
are colored 1 or 3. We may assume, without loss of generality, that c(ujus) = 1.
This implies that c(e) = 1 if e is incident with u; where i = 1 (mod 4) and ¢(e) = 3
if e is incident with u; where i = 3 (mod 4). Since n > 4 is even, it follows that
cem(u,—1) = cm(uy,,) € {1,3}, which is a contradiction. Hence, u(P,) > 4.

To verify that u(P,) < 4, it remains to show that there is a proper mean
coloring ¢ with p(c) = 4 for each even integer n > 4. For the path P, ; =
(v1,v9,V3,...,0,_1), where n — 1 > 3 is odd, let ¢y be the proper mean coloring
of P,y with u(cy) = 3 defined in Case 1. Subdividing the edge vovs of P, 1,
we obtain the path P, = (v, ve, w,vs,...,v,_1) of order n. Now, define the edge

coloring ¢ of P, by c(vow) = 5, c(wvz) = 3, and c(e) = ¢y(e) if e is not incident

with w. If we denote P, by (uy,us, ..., u,), then the vertex color cm(u;), 1 < i < n,
is given by
1 ifi=1ori=2 (mod4) fori# 2
2 ifi=1,3 (mod4) for5<i<n-—1
cem(u;) = e .
3 ifi=2o0ri=0 (mod 4)
4 ifi=3.

This edge coloring is illustrated in Figure 6.3 for P, when n = 4,6,8. Since cm is
a proper coloring of P,, it follows that p(c) = 4. Therefore, u(P,) = 4 for each

even integer n > 4. ]

Theorem 6.2.3 For each integer n > 4,

[ 3 ifn=0 (mod 4)
’U(Cn)_{4 if n Z0 (mod 4).

Proof. Let C, = (uy,ug,...,up, upr1 = up) be a cycle of order n > 3, where

e; = ujuiyq for 1 < ¢ < n. First, suppose that n > 4 and n = 0 (mod 4). By
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OG>0

L NS ;3 )3 1
O—0E—0O—06-0—0
1 5 3 N 3 1 1 3
O—0-~0—0O—->G
us3 Ug Us Ug uz us

Figure 6.3: Proper mean colorings of P, for n =4,6,8

Proposition 6.1.2, it suffices to show that there exists a proper mean coloring ¢

with p(c) = 3. Define the edge coloring ¢ by

cle) =

{ 1 if e is incident with u; where i = 2 (mod 4) (6.1)

3 if e is incident with u; where ¢ =0 (mod 4).
Then the vertex color ecm(u;), 1 < i < n, is given by

1 ifi=2 (mod 4)
cm(u;) =< 2 if iis odd
3 ifi=0 (mod 4).

Since the vertex coloring cm is proper, it follows that u(c) = 3 and so u(C,) = 3
if n =0 (mod 4).

Next, suppose that n # 0 (mod 4). First, we show that u(C,) > 4. Assume,
to the contrary, that there exists a proper mean coloring ¢ of C,, with pu(c) = 3.
By Proposition 6.1.2, there is a vertex v such that cm(v) = 1. Hence, each edge
incident with v of (), is colored 1, which implies that c(e) is odd for all e € E(C,,).
First, suppose that there is an edge e such that c¢(e) = 5. Let e; and ey be the
two edges adjacent to e. Since c(e;) # c(e2) and c¢(e1) and c(ey) are both odd, at
least one of ¢(e;) and ¢(ez) is 3 or more. However then, cm(u) > 4 for at least one
vertex u incident with e, which is a contradiction. Hence, we may assume that
each edge of C, is colored 1 or 3. Since the resulting vertex coloring c¢m is proper,
no edge is adjacent to two edges having the same color. Without loss of generality,
we may conclude that the edges incident with u; with i = 1 (mod 4) are colored 1
and the edges incident with w; with ¢ = 3 (mod 4) are colored 3. This, in turn,

implies that n = 0 (mod 4), a contradiction.
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It remains then to show that there is a proper mean coloring ¢ of C;, with u(c) =

4. We consider three cases.

Case 1. n =1 (mod 4). Then n —1 =0 (mod 4) and so u(C,—1) = 3. Let ¢
be the proper mean coloring of C,,_1 = (uy, ug, ..., uy_1,u;) defined in (6.1) with
w(co) = 3. Now, let C), be obtained from C,_; by subdividing the edge u, _ju;
with the vertex wu,. We now extend the coloring ¢y to a proper mean coloring c
of C,, by defining c(u,_1u,) = 3 and c(u,u;) = 5. This is illustrated in Figure 6.4
forn =5,9.

Figure 6.4: Proper mean colorings of C5 and Cy

Case 2. n = 2 (mod 4). Then n — 1 = 1 (mod 4). Let ¢; be the proper
mean coloring of Cy,_1 = (uy,ug,...,Up_1,u;) defined in Case 1 and let C,, be
obtained from C),_; by subdividing the edge u,,_>u,_3 with the vertex w. We now
extend the coloring ¢; to a proper mean coloring ¢ of C,, with p(c) = 4 by defining

c(up_ow) = 3 and c(wu,_3) = 5. This is illustrated in Figure 6.5 for n = 10.

ul uz us Uq

Figure 6.5: A proper mean coloring of Cig

Case 3: n =3 (mod 4). Then n — 3 =0 (mod 4) and so u(C,_3) = 3. Let ¢
be the proper mean coloring of C,,_3 = (u1,us, ..., U, 3,u;) defined in (6.1) with
w(co) = 3. Now, let C,, be obtained from C,,_3 by replacing the edge uju,_3 (a 2-

path) by the 5-path (uy, u,, Up_1, Up_2, U,—3). We now extend the coloring ¢y to a
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proper mean coloring ¢ of C,, with u(c) = 4 by defining c¢(uju,) = 3, c¢(uyun_1) =5,

c(Up_1Up_2) = 1 and c(u,_su,_3) = 3. This is illustrated in Figure 6.6 forn = 11. m

[\

54301@1@3@

O —O—
w7 ug

ug ug

u1o0

us

Figure 6.6: A proper mean coloring of C1;
Next, we determine the proper mean index of all complete bipartite graphs.

Theorem 6.2.4 For positive integers s and t with s+t > 3,

| 3 if st is even
Hsr) = { 4 f st is odd.

Proof. Let G = K, with partite sets U = {uy, ug, ..., us} and W = {wy, wa, ..., w}.
First, suppose that st is even. We may assume that s is even. Then s = 2a for
some positive integer a. By Proposition 6.1.2, it suffices to show that there is a

proper mean coloring ¢ : E(G) — N such that u(c) = 3. For each w € W, define

1 f1<i<a
c(uw) = _ .

3 Hfa+1<i<2a.
Then cm(u;) =1 for 1 < i < a, em(u;) = 3 for a+1 < i < 2a, and cm(w) = 2
for each w € W. Since cm is a proper coloring of G, it follows that pu(c) = 3. This
implies that u(G) = 3 if st is even.

Next, suppose that st is odd. We may assume that 1 < s <t¢. Then s =2a+1
and t = 2b+ 1 for some integers a and b with 0 < a < b and b > 1. First, we show
that there is a proper mean coloring ¢ of G with u(c) = 4. If a = 0, then define

1 if1<:<b+1
cluqw;)) =< 3 ifb+2<i<2b
4 if¢=2b+1.

100



Then cm(uy) = 2, em(w;) = 1 for 1 < i <b+ 1, cm(w;) = 3 for b+ 2 < i < 2b,
and cm(wgy) = 4. If @ = 1, then define

(1) = 1 ifi=1,2
ATV =,
Then cm(uy) = cm(ug) = 1, cm(ug) = 4, and cm(w) = 2 for each w € W. If a > 2,
then define
1 f1<i<a+1
cluw)=¢ 3 ifa+2<i<2a
4 iti=2a+1.

Then cm(w;) =1 for 1 <i<a+ 1, em(u;) = 3 for a + 2 < i < 2a, cm(ug,y1) = 4,
and cm(w) = 2 for each w € W. Therefore, u(G) < 4.

It remains to show that u(G) # 3. Assume, to the contrary, that there is a
proper mean coloring ¢ of G with u(G) = 3. Thus, {cm(v) : v € V(G)} = {1,2,3}
by Observation 6.1.2. First, suppose that s = 1. Since cm(uy) # 1, it follows that

cm(ug) = 2 or em(uy) = 3.

* First, suppose that cm(uy) = 2. Thus, cm(w) € {1,3} for each w € W. Let
x be the number of the vertices w € W such that cm(w) = 1. Then there
are 2b + 1 — x vertices w € W such that cm(w) = 3. By Observation 6.1.1,

x-1+2b4+1—2)-3=2(2b+1).

However then, 2x = 2b + 1, which is impossible.

* Next, suppose that cm(uy) = 3. Thus, ecm(w) € {1,2} for each w € W. Let
x be the number of the vertices w € W such that cm(w) = 1. Then there
are 2b + 1 — x vertices w € W such that cm(w) = 2. By Observation 6.1.1,

-1+ 2b4+1—2)-2=3(20+1).

However then, 20 + 1 + x = 0, which is impossible.
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Next, suppose that s > 3. We may assume that cm(u;) = 1 (as the argument for
cm(w,) = 1 is similar). Hence, there is u € U such that cm(u) # 1; if this were not
the case, then c(e) = 1 for every edge e of G and so cm(v) = 1 for every vertex v
of G. Since G is a complete bipartite graph, it follows that cm(u) # cm(w) for
every u € U and w € W. Thus, either {cm(u) : uw € U} = {1,2} or {em(u) : u €
U} ={1,3}.
* If {em(u) :w e U} = {1, 2}, then cm(w) = 3 for each w € W. Let = be the
number of the vertices u € U such that cm(u) = 1. Then there are 2a+1—=x

vertices u € U such that cm(u) = 2. By Observation 6.1.1,
z(2b+1)- 14+ (2a+1—2)(2b+1)-2=(20+1)(2a+1) - 3.
However then, 2a + z + 1 = 0, which is impossible.

* If {em(u) : w € U} = {1, 3}, then cm(w) = 2 for each w € W. Let z be the
number of vertices v € U such that cm(u) = 1. Then there are 2a + 1 — x

vertices u € U such that cm(u) = 3. By Observation 6.1.1,
z(20+1)-14+(2a+1—-2)(2b+1)-3=(20+1)(2a+1) - 2.

However then, 2a + 1 = 2z, which is impossible. [

In each of the examples we’ve seen, the proper mean index of a graph has
not exceeded its chromatic number by more than 2. This leads to the following

conjecture.

Conjecture 6.2.5 For every connected graph G of order 3 or more,

X(G) < (@) < x(G) +2.

6.3 Trees

In the case of trees, Conjecture 6.2.5 states that p(7") < 4 for every tree T' of order
at least 3. We thus turn our attention to investigate this conjecture for various
classes of trees. By Theorems 6.2.2 and 6.2.4, Conjecture 6.2.5 is true for paths
and stars. We now show that if the edges of a nontrivial star are subdivided in any
manner, then the proper mean index of the resulting tree is at most 4. In order to

verify this fact, we first present a lemma.
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Lemma 6.3.1 If P, is a path of order n > 3, then there is a proper mean col-
oring ¢ of P, such that u(c) < 4 and the chromatic mean of an end-vertex of P,

18 3.

Proof. Let G =P, = (v1,vs,...,v,). We consider two cases based on the parity

of n.

Case 1. n is odd. We handle the cases of n = 1 (mod 4) and n = 3 (mod 4)

separately.

Subcase 1.1. n = 1 (mod 4). We may assume that n > 5. Notice that
|E(G)| = 0 (mod 4). Let a proper mean coloring ¢ : E(P,) — N be given by the

color sequence
S.(P,) =(3,1,1,3,3,1,1,3,...,3,1,1,3).
The vertex coloring cm induced by c is given by the sequence
Sem(Pn) = (3,2,1,2,3,2,1,2,3,...,2,1,2,3).

It follows that p(c) = 3 and so cm(vy) = 3.

Subcase 1.2. n = 3 (mod 4). We may assume that n > 3. Notice that
|E(G)| = 2 (mod 4). Let a proper mean coloring ¢ : E(P,) — N be given by the

color sequence
S.(P,) =(3,1,1,3,3,1,1,3,3,1...,1,3,3,1).
The vertex coloring cm induced by ¢ is given by the sequence
Sem(Pn) =(3,2,1,2,3,2,1,2,3,2,1...,2,3,2,1).

It follows that p(c) = 3 and so cm(vy) = 3.
Case 2. n is even. We handle the cases of n = 0 (mod 4) and n = 2 (mod 4)

separately.

Subcase 2.1. n = 0 (mod 4). We may assume that n > 4. Notice that
|E(G)| = 3 (mod 4). Let a proper mean coloring ¢ : E(P,) — N be given by the

color sequence
S.(P,) =(3,5,1,1,3,3,1,1,3,3,1...,1,3,3,1).
The vertex coloring cm induced by c is given by the sequence
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Sem(Pn) = (3,4,3,1,2,3,2,1,...,2,3,2,1).

It follows that p(c) = 4 and so cm(v;) = 3.

Subcase 2.2. n = 2 (mod 4). We may assume that n > 6. Notice that
|E(G)| = 1 (mod 4). Let a proper mean coloring ¢ : E(P,) — N be given by the

color sequence
S.(P,) =(3,5,1,1,3,3,1,1,3,...,3,1,1,3).
The vertex coloring cm induced by ¢ is given by the sequence
Sem(Pn) = (3,4,3,1,2,3,2,1,2,3...,2,1,2,3).
It follows that p(c) = 4 and so cm(vy) = 3. n

Theorem 6.3.2 If T is a subdivided nontrivial star, then pu(T) < 4.

Proof. Let T be the tree obtained from the star K ; by subdividing at least one
edge of K;. Since the proper mean index of every path of order 3 or more is at
most 4, we may assume that ¢ > 3. Suppose, in constructing the tree T, that r
edges of K, are subdivided and s edges of K, are not subdivided, where then
r>1,52>0,and r+ s =t. We show that there is a proper mean coloring ¢ of T’
with cm(c) < 4.

Let v be the central vertex of K4, let U = {vy, va,...,v,} be the set of vertices
adjacent to v with degree at least 2 in T, and let W = {wy,ws, ..., ws} be the set

of end-vertices adjacent to v in T. We consider two cases.

Case 1. s is even. Then define a proper mean coloring ¢ : E(T) — N by
clvw;) = 2 if 7 is even, c(vw;) = 4 if i is odd, and color each subpath of of T
starting at v with order at least 3 using the coloring defined in Lemma 6.3.1, with
c(vv;) = 3 for all i where 1 <4 < r. It follows that cm(v) = 3 and cm(w;) € {2,4},
which implies that cm is a proper k-coloring of 7" where k£ < 4 and so u(c) < 4.

Case 2. s is odd. We consider the case of s = 1 separately.

Subcase 2.1. s = 1. Then define a proper mean coloring ¢ : E(T) — N as
follows. First let ¢(vw;) = 1. Consider a subpath starting at v with order at
least 3, say the subpath containing v;. Let c¢(vv;) = 5. If the path has odd
order, let c(vjve) = 3. Then iteratively color the remaining edges of the path by
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alternating between the color sequences (3, 1) and (1, 3). If the path has even order,
iteratively color the remaining edges starting with e = v;v9 by alternating between
the color sequences (3,1) and (1,3). Color the edges of any remaining subpaths
using the coloring described in Lemma 6.3.1 so that c¢(vv;) = 3 for 2 < i < r.
Then cm(v) = 3, em(w;) = 1, em(vy) = 4, and each subpath starting at v is
colored properly by cm. It follows that cm is a proper k-coloring of T" where k < 4,
implying that p(c) < 4.

Subcase 2.2. s > 3. Then define a proper mean coloring ¢ : E(T) — N by
clvwy) = 1, c¢(vw;) = 4 if i is odd, and c(vw;) = 2 if i is even for ¢ > 4, and
color each subpath of of T starting at v with order at least 3 using the coloring
defined in Lemma 6.3.1, with ¢(vv;) = 3 for all i where 1 < i < r. It follows that
cm(v) = 3 and cm(w;) € {1,2,4}, which implies that cm is a proper k-coloring of
T where k < 4 and so pu(c) < 4. n

By Theorems 6.2.2, 6.2.4, and 6.3.2, Conjecture 6.2.5 is true for all trees having
at most one vertex of degree greater than 2. We now show that Conjecture 6.2.5
is true as well for trees all of whose non-leaves have sufficiently large degree. The
non-leaf minimum degree 6*(T) of a tree T' of order 3 or more is the minimum

degree among the non-leaves of T

Lemma 6.3.3 Let x be a vertexr in a tree T' such that degx > 10.

(a) There exists a coloring of the edges of T  incident with x using colors from [4]
such that cm(x) = 2, where (i) exactly one edge incident with x is colored 2

or (ii) no edges incident with x are colored 2.

(b) There ezists a coloring of the edges of T  incident with x using colors from [4]
such that cm(x) = 3, where (i) exactly one edge incident with x is colored 3

or (it) no edges incident with x are colored 3.

Proof. We begin with (a). First, suppose that x has even degree. Then degz =
10 + 2k where k > 0. For (i), we color k + 5 edges incident with z by 1, one edge
by 2, k + 3 edges by 3, and one edge by 4. For (ii), we color k + 6 edges incident
with = by 1, k + 2 edges by 3, and two edges by 4. If (i) occurs, then z is referred
to as a Type 2.1 vertex; while if (ii) occurs, then z is referred to as a Type 2.2
vertex. It is convenient to represent these colorings of the edges incident with x as

follows:
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k+5|1|k+3|1 E+6|0k+2]|2

Type 2.1: Type 2.2:

Now suppose that x has odd degree. Then degx = 11 4+ 2k where k£ > 0. The
following colorings of the edges incident with x have the desired properties (i)
or (ii). Here, the vertex z is referred to as a Type 2.3 vertez if (i) occurs or as a

Type 2.4 vertex if (ii) occurs.

k+6|1|k+2]|2 E+6|0|k+4]1

Type 2.3: 1 5 3 1 Type 2.4:

Next, we verify (b). First, suppose that  has even degree. Then degx = 10+2k
where k£ > 0. The following colorings of the edges incident with x have the desired
properties (i) or (ii) and the vertex x is referred to as a Type 3.1 vertez if (i) occurs

or as a Type 3.2 vertex if (ii) occurs.

11k+3|1]E+5 2/k+2]0|k+6

Type 3.1: 1 7 3T 4 Type 3.2:

Next, suppose that z has odd degree. Then degx = 11 + 2k where £ > 0. The
following colorings of the edges incident with x have the desired properties (i)
or (ii). Similarly, the vertex x is called a Type 3.3 vertex if (i) occurs or a Type 3.4

vertex if (ii) occurs.

k+2|1|k+6 1|k+4|0]|k+6
Type 3.3: 1 5 1 Type 3.4: 1 5 131 1 |
Therefore, (a) and (b) both hold. n

Theorem 6.3.4 If T is a tree with §*(T) > 10, then u(T) < 4.

Proof. By Theorem 6.2.4, the statement is true if 7" is a star. Hence, we may
assume that T is not a star. Let v be a vertex of 1" that is not a leaf. Thus,
degv = d > 10. Let T be a tree rooted at v, where V; = {u € V(T : d(u,v) = i}

fori = 0,1,...,e(v), where e(v) is the eccentricity of v. Hence, Vy = {v}, Vi =
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N(v), and V; # 0 for 0 < i < e(v). Furthermore, for each vertex x € Vj, where
1 <i < e(v), there is exactly one vertex y € V;_; such that zy € E(T). Next, we
construct a proper mean coloring ¢ of T' recursively such that p(c) = 4.

Let Vi = {v1,v9,...,v4}. Since T is not a star, at least one vertex of V; has
degree 10 or more. By Lemma 6.3.3, we can color the edges incident with v so that
v is a Type 2.2 vertex if v has even degree or a Type 2.4 vertex if v has odd degree.
Thus, cm(v) = 2 and no edge incident with v is colored 2. Hence, if v; € V7,
1 <i<d, is a leaf, then cm(v;) # 2. On the other hand, one or more vertices in
Vi has degree 10 or more. Let v; € Vi, 1 < j < d, such that degv; > 10. Then
c(vv) € {1,3,4}. If c(vv;) € {1,4}, then we color the edges incident with v; so
that v; is a Type 3.2 vertex if degv; is even or color these edges so that v; is a
Type 3.4 vertex if degv; is odd. If ¢(vv;) = 3, then we color the edges incident
with v; so that v; is a Type 3.1 vertex if degv; is even or color these edges so that
v; is a Type 3.3 vertex if degv; is odd. In either case, cm(v;) = 3 and for any leaf
x (necessarily in V3) adjacent to v, it follows that cm(x) # 3. We perform such a
coloring for each vertex v; € V; of degree 10 or more such that cm(v;) = 3 where
no edge joining v; and a vertex in V5 is colored 3.

Next, suppose that y is a vertex in V5 such that degy > 10. Let x be the vertex
of V} such that zy € E(T). Then ¢(zy) € {1,2,4}. If ¢(xy) € {1,4}, then we color
the remaining degy — 1 edges incident with y so that y is a Type 2.2 vertex if
degy is even or color these edges so that y is a Type 2.4 vertex if degy is odd. If
c(zy) = 2, then we color the remaining degy — 1 edges incident with y so that v,
is a Type 2.1 vertex if degy is even or color these edges so that y is a Type 2.3
vertex if degy is odd. In either case, cm(y) = 2 and cm(z) # 2 for all leaves z € V3
adjacent to y. We perform such a coloring for each vertex y € V5 of degree 10 or
more such that cm(y) = 2 where no edge joining y and a vertex in V3 is colored 2.

Proceeding in this manner for each vertex x in V; for 3 < i < e(v) — 1 with
degx > 10, we arrive at a proper mean coloring ¢ of T with u(c) = 4. Therefore,
w(T) < 4. ]

If the tree T being considered is a caterpillar (the removal of all leaves produces
a path, called the spine of T'), then a result similar to Theorem 6.3.4 can be

obtained with a weaker hypothesis. Once again, we begin with a lemma.

Lemma 6.3.5 Let x be a vertex in a caterpillar T" such that degx > 6.
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(a) There exists a coloring of the edges of T incident with x with colors from [4]
such that cm(x) = 2, where (1) exactly one edge incident with x is colored 2

or (i1) exactly two edges incident with x are colored 2.

(b) There exists a coloring of the edges of T incident with x with colors from [4]

for which cm(z) = 3 such that no edges incident with x are colored 3.

Proof. We begin with (a). First, suppose that = has even degree. Then degz =
6 + 2k where k > 0. For (i), we color k + 3 edges incident with = by 1, one edge
by 2, k+ 1 edges by 3, and one edge by 4. For (ii), we color k + 2 edges incident
with x by 1, two edges by 2, and k + 2 edges by 3. If (i) occurs, then x is referred

to as a Type 2a vertezr; while if (ii) occurs, then x is referred to as a Type 2b vertex.

F3[U[R+1[1] o o [k+2[2[k+2]0
1 2] 3 YPe b T 3 4

Type 2a:

Next, suppose that x has odd degree. Then degx = 7 + 2k where k£ > 0. The
following colorings of the edges incident with x have the desired properties (i)
or (ii). Here, the vertex z is referred to as a Type 2c¢ vertez if (i) occurs or as a

Type 2d vertex if (ii) occurs.

E+3|1]k+3]|0 | E+32|kE+1 1
1 5T 3 14 Type 2d: )

Type 2c:

Next, we verify (b). If 2 has even degree, then degx = 6+ 2k where k > 0. The
following coloring of the edges incident with x (labeled Type 3a) has the desired
properties and the vertex x is referred to as a Type 3a vertex. If x has odd degree,
then degx = 7 + 2k where k > 0. The following coloring of the edges incident
with « (labeled Type 3b) has the desired properties and the vertex z is referred to
as a Type 3b vertex.

[0Tk+3[0[k+3 [1Tk+2[0[k+4
Type 3a: 1 5 3T 1 Type 3b: 1 5 3 1t
Therefore, (a) and (b) hold. n
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Theorem 6.3.6 IfT is a caterpillar with 6*(T) > 6, then u(T) < 4.

Proof. Let (vq1,vs,...,v4) be the spine of T'. Since the statement is true if 7" is
a star, we may assume that d > 2. With the aid of Lemma 6.3.5, we construct a
proper mean coloring ¢ of T" such that u(c) = 4.

First, we color the edges incident with v; so that v is a Type 2a vertex if v,
has even degree or a Type 2c¢ vertex if v; has odd degree where v vy is colored 2.
Thus, cm(v;) = 2 and no leaf incident with v; is colored 2. Next, we color the
remaining deg v, — 1 edges incident with vy so that vy is a Type 3a vertex if deg v
is even or color these edges so that v, is a Type 3b vertex if deg vy is odd. If d > 3,
then vyvg is colored 2. Thus, cm(vy) = 3 and no leaf incident with v is colored 3.

We now proceed to vs if d > 3. First, suppose that d = 3. Since c¢(vv3) = 2
and vz is adjacent to degwvs — 1 leaves, we color the edges incident with v3 so that
vy is a Type 2a vertex if vz has even degree or a Type 2c¢ vertex if v has odd
degree. Thus, cm(vz) = 2 and no leaf incident with vs is colored 2. Next, suppose
that d > 4. We color the remaining degwvs — 1 edges incident with v3 so that vs is
a Type 2b vertex if v has even degree or a Type 2d vertex if v has odd degree.
If d > 4, then v3vy is colored 2. Thus, cm(vz) = 2 and no leaf incident with vg is
colored 2.

We now proceed to vy if d > 4. Since ¢(vzvy) = 2 and cm(v3) = 2, we color the
remaining deg vy — 1 edges incident with v, so that vy is a Type 3a vertex if deg v,
is even or color these edges so that vy is a Type 3b vertex if deg v, is odd so that
cm(vy) = 3 and no leaf incident with v, is colored 3. Furthermore, if d > 5, we
color the edge v4v5 by 2.

In general, if 7 is odd and 5 < ¢ < d, then we color the remaining deg v; —1 edges
incident v; in the same manner as the coloring of the edges incident with vs; while
if 7 is even and 6 < i < d, then we color the remaining degv; — 1 edges incident v;
in the same manner as the coloring of the edges incident with vs. Proceeding in
this manner, we arrive at a proper mean coloring ¢ of T" with p(c) = 4. Therefore,
w(T) < 4. ]

If the caterpillar T being considered has small diameter, then it can be shown

that (7)) < 4 regardless of the non-leaf minimum degree of T

Theorem 6.3.7 IfT is a caterpillar of diameter 4, then u(T) < 4.
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Proof. Let T be a caterpillar of diameter 4 whose spine is (u,v,w). We may
assume that 2 < degu < degw. We consider two cases, according to the parities

of the degrees of u and w.

Case 1. Both degu and degw are odd. First, suppose that T is one of the trees
T" and T" shown in Figure 6.7. Since each of 7" and 7" has a proper mean coloring
with proper mean index 3 (as shown in Figure 6.7), it follows that u(7) = 3 if
T e {T",T"}. Next, suppose that 7" ¢ {I",7"}. Then T contains either 7" or 17"
as a subtree. We show that the proper mean coloring of 7" or of 7" in Figure 6.7

can be extended to a proper mean coloring ¢ of 7" such that u(c) = 3.

1 @ @

Figure 6.7: Proper mean colorings of 7" and T"”

1

* If degv > 4 is even, say degv = 2 + 2k for some positive integer k, then
we begin with the coloring of T and color each of the additional k& pairs of
pendant edges at v by 2 and 4. If degv > 5 is odd, say degv = 3 + 2k for
some positive integer k, then we begin with the coloring of 7" and color each

of the additional k pairs of pendant edges at v by 2 and 4.

* If degu > 5 or degw > 5, say degu = 3+ 2¢ for some positive integer ¢, then
we begin with the coloring of T" (if degwv is even) or the coloring of T (if
degv is odd) and color each of the additional ¢ pairs of pendant edges at u
by 1 and 3.

Since the resulting coloring ¢ of T' is a proper mean coloring with pu(c) = 3, it
follows that p(7) = 3 if both degu and degw are odd.

Case 2. At least one of degu and degw is even, say degu is even. There are
two subcases, according to whether degu = 2 or degu > 4.

Subcase 2.1. degu = 2. First, suppose that T is one of the seven caterpillars T,
Ty, ..., T; of diameter 4 shown in Figure 6.8. Since each of these seven caterpil-
lars has a proper mean coloring with proper mean index at most 4 (as shown in
Figure 6.8), it follows that u(7;) <4 for 1 <i < 7.
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Figure 6.8: Proper mean colorings of T; for 1 < <7

Next, suppose that T'# T; for 1 < i < 7. Then T contains T; as a subtree for
some i € [7]. We show that the proper mean coloring ¢; of T; in Figure 6.8 can be

extended to a proper mean coloring ¢ of T" such that u(c) = p(c).

* Suppose that degv and degw are both even. Then degv = 2 + 2k and
degw = 2 + 2¢ for some nonnegative integers k£ and (. Since T # Tj, it
follows that max{k, ¢} > 1. Beginning with the coloring of T3, we color each
of the additional k pairs of pendant edges at v (not in 7}) by 2 and 4 and
color each of the additional ¢ pairs of pendant edges at w (not in 73) by 1
and 3.

* Suppose that degv and degw are both odd. Then degv = 3 + 2k and
degw = 3 + 2¢ for some nonnegative integers k and ¢ with max{k,(} > 1
(since T # Ts). Beginning with the coloring of Tj, we color each of the
additional k pairs of pendant edges at v (not in 7g) by 2 and 4 and color
each of the additional ¢ pairs of pendant edges at w (not in 7s) by 1 and 3.

* Suppose that degwv is even and degw is odd. Then degv = 2 4 2k and
degw = 3+ 2¢, where £k > 1 and ¢ > 0. If £ = 0, then we may assume that
k > 2 (since T # T,,T7). Beginning with the coloring of 77, we color each
of the additional & — 1 pairs of pendant edges at v (not in T%) by 2 and 4.
If £ > 1, then we begin with the coloring of T3, color each of the additional
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k pairs of pendant edges at v (not in 73) by 1 and 3, and color each of the
additional ¢ — 1 pairs of pendant edges at w (not in 73) by 2 and 4.

* Suppose that degv is odd and degw is even. Then degv = 3 + 2k and
degw = 2 + 2¢ where k,¢ > 0. If £ = 0, then we may assume that ¢ > 1
(since T # T,). Beginning with the coloring of T}, we color each of the
additional ¢ pairs of pendant edges at w (not in 7y) by 2 and 4. If £ > 1,
then we begin with the coloring of T5, color each of the additional £ — 1 pairs
of pendant edges at v (not in 75) by 1 and 3, and color each of the additional
¢ pairs of pendant edges at w (not in T5) by 2 and 4.

In each situation, the resulting coloring c¢ is a proper mean coloring of T with
plc) < 4.

Subcase 1.2. degu > 4 is even. Let degu = 2 + 2p for some positive integer p.
Then T is obtained from a caterpillar 7j of diameter 4 of Subcase 2.1 by adding 2p
pendant edges at u. We begin with the coloring ¢y of T as described in Subcase 2.1.
Then cm,, (u) € {2,3}. If e, (u) = 2, then we color each of the additional p pairs
of the pendant edges at u (not in 7) by 1 and 3; while if cm,,(u) = 3, then we
color each of the additional p pairs of the pendant edges at u (not in Tp) by 2
and 4. In each case, the resulting coloring ¢ is a proper mean coloring of T" with

cm(c) = cm(cp) < 4. m

For caterpillar of diameter 3 (that is double stars), the proper mean index has

been determined exactly.

Theorem 6.3.8 Ifa and b are integers with 2 < a < b, then

(Sap) = { i ZZZ i 2

Proof. Let G = S, where 2 < a < b. Suppose that v and v are the central
vertices of G with degu = a and degv = b where u is adjacent to the a — 1 end-
vertices uq, us, ..., Uu,—1 and v is adjacent to the b — 1 end-vertices vy, vs, ..., vp_1.
First assume a # b. It suffices to show that there exists a proper mean coloring ¢
of S,p with p(c) = 3. Since a — 1 < b — 1, there exist integers ¢ and r such that
b—1=¢q(a—1)+r where 0 <r <b—1and ¢ > 1. We consider two cases.
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Case 1. q is odd. We handle the case of ¢ = 1 separately.
Subcase 1.1. ¢ = 1. Since a # b it follows that r > 0. Partition the end-vertices

adjacent to w into sets Uy = {uy,ug,...,u.} and Uy = {tpy1,Upso,. ., Ug_1}
and partition the end-vertices adjacent to v into sets Vi = {wvy,vq,..., 0.}, Vo =
{Vr41, U2y« Va1 }, and V3 = {v,,...,v5_1}. Since r > 0, U; is nonempty. De-

fine ¢: F(G) — N by

1 if e = ww for w € Uy — {uy} and w € V;, for i € [3]
cle) =4¢ 2 if e = ww for w € Uy and w = uy
a+r+1 ife=uwv.

Then cm(u) = 3, cm(v) = 2, em(u;) € {1,2} for 1 <i <a—1, and cm(v;) = 1 for
1 << b—1. Since cm is a proper coloring of G, it follows that p(c) = 3.
Subcase 1.2. q > 3. Let ¢ = 2k + 1. Partition the end-vertices adjacent to u
into sets Uy = {uy,us,...,u} and Uy = {41, Upya, - ,Uqe—1} and partition the
end-vertices adjacent to v into g sets Vi, Vs, ...V, each containing a —1 end-vertices

and W containing r end-vertices. Let x € V5 and let y € Usy. Define ¢ : E(G) - N

1 if e = uw for w € {z,y}, w € Uy, w € W, and w € V; for odd i
() = 2 if e = uw for w € Uy with w # y
“e = 3 if e = uw for w € V; for even ¢ with w # x

a+r+3 if e=uw.

Then cm(u) = 3, em(v) = 2, em(u;) € {1,2} for 1 <i <a—1, and em(v;) € {1, 3}
for 1 <7 <b—1. Since cm is a proper coloring of G, it follows that u(c) = 3.
Case 2. q is even. Let ¢ = 2k with k > 1. Partition the end-vertices adjacent
to u into sets Uy = {uy, us, ..., u,} and Uy = {41, Ury2, -+ ,us_1} and partition
the end-vertices adjacent to v into g sets Vi, Vs, ...V, each containing a — 1 end

vertices and W containing r end-vertices. Let x € U,. Define ¢ : E(G) — N by

1 if e = ww for w € Uy — {x} or w € V; for i € {1,2} or odd ¢ with ¢ > 3
() = 2 if e=wuw forw=2xorwe U
e = 3 if e =wuw for w e W or w € V, for even ¢ with ¢ > 2

2a —r if e = uw.
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Then cm(u) = 3, cm(v) = 2, em(u;) € {1,2} for 1 <i <a—1, and em(v;) € {1, 3}
for 1 <4 <b— 1. Since cm is a proper coloring of G, it follows that u(c) = 3.

Next, assume that a = b. First, we show u(G) > 4. Assume, to the contrary,
that there exists a proper mean coloring ¢ : V(G) — N of G with u(c) = 3. Since
cm(u) > 2 and cm(v) > 2, we may assume that cm(u) = 3 and cm(v) = 2. Let
A=39"e(u;) and B = Y07 ¢(v;). Since cm is proper, c(u;) < 2 for all 7 with
1 <i<a—1. Note that ¢(v;) > 1 for all i with 1 <+ < a — 1. Observe that

3a = A+ c(uww) <2(a—1) + c(uw)

and
2a = B+ c(uv) > (a — 1) + c(uv).
It follows that a + 2 < ¢(uv) < a + 1, which is impossible.

Next we exhibit a proper mean coloring ¢ of G with u(c) = 4. We consider two

cases.

Case 1. a is even. Then b = a = 2k for some positive integer k. We may
assume that k& > 2. Define ¢ : E(G) — N by

1 fe=wugore=oy,forl <i<k

2 fe=wuu; for2<i<k—1whenk >3
3 He=uwwore=vy;fork+1<:¢<2k—-1
4 fe=uu; fork <i<2k-—1.

cle) =

Then cm(u) = 3, cm(v) = 2, em(u;) € {1,2,4} for 1 < i < a—1, and cm(v;) €
{1,3} for 1 <i < a—1. Since cm is a proper coloring of G, it follows that u(c) = 4.

Case 2. a is odd. Then b = a = 2k + 1 for some positive integer k. We may
assume that & > 1. Define ¢ : E(G) — N by

fe=uwwore=ovy, for2<i<k+1
ife=wuu; for k+2 <7 <2k when k > 2
ife=ov; for k+2 <4 <2k when k > 2

ife=wvv ore=uu; for 1 <i<k-+1.

c(e) =

=W NN =

Then cm(u) = 3, cm(v) = 2, em(u;) € {2,4} for 1 < i < a — 1, and cm(v;) €
{1,3,4} for 1 < i < a — 1. Since cm is a proper coloring of G, it follows that
p(e) = 4. ]
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