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APPLICATIONS OF IMAGE PROCESSING TECHNIQUES AND SPATIAL DATA
ANALYTICS FOR PRESSURE MAPPING ANALYSIS

Joan Yamil Martinez, Ph.D.

Western Michigan University, 2020

The technological advancements in sensors, monitoring systems, and tracking devices are
changing how we study our environment; big data sets are becoming more and more prevalent due
to the increase of information gathered with ease. One system benefiting from these technological
improvements is pressure mapping technology, an easy-to-use and cost-effective solution for
assessing contact pressure distributions. Pressure mapping systems generally produce data sets of
very large volume, especially when used for continuous tracking and monitoring, and are widely
used for research in fields of ergonomics, sports, industries, and health disciplines.

Pressure mapping systems are particularly important in the study of human-chair seating
interactions. Researchers have widely used pressure mapping systems to study these interactions
and their relationship with comfort/discomfort across different conditions. The analysis of seating
pressure maps usually consists in evaluating descriptive pressure measures and using visual
feedback for assessing pressure distributions. Unfortunately, current analytical techniques do not
provide clear insights about pressure distribution patterns nor spatial relationships within seating
pressure maps; these are needed to further understand human-chair interactions. The need for
additional pressure distribution measures, along with quantitative techniques for assessing and
comparing pressure maps, have also been emphasized in literature.

This work studies the applications of machine learning, spatial data analytics, digital image

processing, and optimal image registration as new techniques for pressure mapping analysis, with



the objective of implementing these techniques to pre-process, analyze, and compare seating
pressure map images. The results of this study demonstrate the practicality and effectiveness of
using these techniques for (1) removing extrinsic pressure artifacts (outliers) by using density-
based spatial clustering, (2) measuring distribution patterns and spatial relationships by using
spatial autocorrelation and statistical features of images, and (3) aligning and comparing pressure
map by using image registration and similarity/dissimilarity coefficients.

The use of DBSCAN and DENCLUE clustering algorithms were found to be suitable for
identifying and eliminating extrinsic pressure artifacts (outliers), with obtained overall accuracies
over ninety-nine percent. Moran’s I spatial autocorrelation measure, and image statistical features
of Skewness, Correlation (GLSD), Gradient Contrast/Mean (GLD), Gradient Second Moment
(GLD), and Homogeneity (GLSD) were found to be appropriate for measuring unique aspects of
pressure distributions within pressure maps. Image registration based on the minimization of the
Mean Square Error (MSE) was also suitable for aligning pressure map images, with similarity and
dissimilarity coefficients of Pearson Correlation Coefficient, Minimum Ratio, L; Norm, and
Intensity Ratio Variance being particularly unique when comparing aligned pressure maps.

These methodologies can help future seating research by providing additional analytical
tools for a better understanding of user-chair interactions and their relationships with sitting
comfort/discomfort, in both static and dynamic sitting environments. While findings in this study
are in the context of task seating (i.e. mousing and typing), these techniques can also be tailored
and employed in other seating research applications (e.g., automobile seating, aircraft pilot seats,
and paraplegic seating), non-seating pressure map research (e.g., gait analysis, industrial
applications, and sports fields), or research studies using spatially related three-dimensional

datasets (e.g., surface topography, contour data, and heat maps).
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CHAPTER |

INTRODUCTION

The technological advancements in sensors, monitoring systems, tracking devices, and the
growth of Internet of Things (I0T) are changing how we interact and study our environment. Big
data sets are becoming more and more prevalent due to the increase of information gathered with
ease. A demanding emphasis in the analysis of such data sets is currently in place to help and
support the decision-making process. One of the technologies benefiting from these improvements
IS pressure mapping systems, a practical and convenient solution for assessing contact pressure
distributions. Pressure mapping systems generally produce data sets of very large volume,
especially when used for continuous tracking and monitoring, and are widely used for research in
fields of ergonomics, sports, industries, and health disciplines (Fredericks et al., 2016; Makhsous
et al., 2012; Misiewicz et al., 2015; Nagel et al., 2008).

Pressure mapping systems are particularly important in the study of human-chair sitting
interactions. Researchers have widely used pressure mapping systems to study these interactions
and their relationship with sitting comfort/discomfort (Zemp et al., 2016). With employees
spending more time than ever in a seated position, studies of sitting comfort/discomfort have been
prevalent (Cascioli et al., 2011; De Looze et al., 2003; Openshaw, 2011; Zemp et al., 2015). The
advent of computers and visual display units (VDUS) lead to high demands in jobs where tasks are
mostly sedentary, with prolonged computer use being now common and expected in current

working environments (Afanuh & Johnson, 2017; Studebaker & Murphy, 2014). Office-based



workers, in particular, have been reported to spend between four to six hours of their working
hours performing sedentary sitting tasks, with a high proportion of their sitting times accrued in
bouts of at least 20 or 30 minutes of prolonged sitting (Hadgraft et al., 2016; Thorp et al., 2012).

Prolonged sitting time has been associated with workers’ discomfort, dissatisfaction,
fatigue and reduced performance (Chester et al., 2002; M. H. Liao & Drury, 2000; Pitman & Ntuen,
1996; Waongenngarm et al., 2015). The decrease in performance, as a result of prolonged sitting
and the environmental stressors associated with it, has been a subject of study. As fatigue and
discomfort levels increase, workers may shift their attention from the task at hand to the mitigation
of discomfort, especially when high levels of discomfort are reported (M. H. Liao & Drury, 2000;
Pitman & Ntuen, 1996). Prolonged sitting time may also have a drastic effect in workers’ health.
Several health issues have been reported due to improper sitting postures and prolonged sitting
time with low levels of seating comfort. Musculoskeletal disorders in the back, neck, shoulders,
arms and legs have been reported with Low Back Pain (LBP) being particularly common (Zemp
et al., 2015, 2016). Lis et al. (2007) remarked that sitting by itself does not increase the likelihood
of having LBP but rather the combination of awkward postures and sitting for more than half a
workday. A comfortable and ergonomic-oriented working environment should be provided and
aimed at promoting employees’ health and well-being. Additionally, when considering the task
and users’ characteristics, matching a proper task chair with an ergonomics training program can
be beneficial to worker’s comfort and productivity. Studies have documented improvements in
productivity and overall efficiency of over nine percent when investing in appropriate and
comfortable chairs (Miles, 2001; Peck, 1992).

Researchers and chair manufacturers have constantly studied human-chair interactions

across different conditions (Cascioli et al., 2016; Fenety et al., 2000; Makhsous et al., 2012;



Stinson et al., 2002). Many of these studies have used objective measures, such as measurements
of postures, body movements, electromyography, foot volume change, magnet resonance imaging
and motion tracking systems (Zemp et al., 2015); however, the use of pressure measuring systems
has been predominant in seating research for being an easy and cost-effective solution to assess

the pressure measurements of seat pans and backrests (Zemp et al., 2016).

Pressure Mapping

Pressure mapping is an evaluation tool for assessing pressure distributions. A pressure
mapping system consists of a pressure interface, a data acquisition unit, and a computer software.
Different technologies are currently available for pressure measurement systems, with their
differences lying in the type of sensor used: capacitive, resistive, piezoelectric, or piezoresistive
(Ashruf, 2005; Bloss, 2011). Even if sensor technologies are manufactured under different
principles, the underlying concept is the same: to output an electrical signal proportional to the
measured pressure (Ashruf, 2005). The sensors in the pressure interface can be arranged as a grid-
based mat, as single-point sensors, or designed for specific pressure solutions (see Fig. 1). The
sensors’ output signals are sent to the data acquisition electronics for sampling and processing, and
then sent to a computer (via wired or wireless connection) for collection and analysis using the
proprietary software solution provided by the pressure mapping manufacturer.

A pressure mapping system measures the uniaxial pressure loads applied to the sensors,
and records them as the interface pressure between two surfaces. Pressure mapping systems do not
measure shear or contour forces (Fenety et al., 2000; A. R. Kumar, 2007). The reliability and
accuracy of pressure mapping systems have been questioned by researchers. A calibration

procedure, where a uniform pressure is applied across the interface, has been recommended by



researchers before a pressure mapping system is used. This procedure minimizes sensors’ output
variations and system errors, and it also mitigates problems of pressure drift, repeatability, linearity
and hysteresis (Misiewicz et al., 2015). Researchers have also concluded that measures of pressure
mapping systems are accurate, repeatable, and reliable (Misiewicz et al., 2015; Stinson et al., 2002,

2003).

Figure 1. Pressure mapping systems. Left: Mat (NexGen Ergonomics), Right: Glove (BodiTrak)

There is no defined protocol for using pressure mapping systems in seating research;
however, many researchers agree that pressure measures should be collected after a set amount of
sitting time to avoid pressure drift. Several studies have shown that pressure values from pressure
mapping systems will increase over time for the first few minutes of sitting time (Crawford et al.,
2005; Stinson et al., 2002; Zemp et al., 2016). This increase in pressure has been partially attributed
to a phenomenon known as pressure creep, where pressure values increase over time while the
load on sensors remain constant (Stinson et al., 2002). Researchers recommend recording pressure

maps after the first 2 to 8 minutes of sitting time, where values of pressure measures tend to



stabilize after that period (Crawford et al., 2005; Stinson et al., 2002). Grid-based interfaces, or
pressure sensing mats, are generally used in seating research. Their main purpose is to assess the
contact pressure between a chair and its user. Figure 2 shows an example of a subject’s seating
pressure map obtained using a pressure sensing mat. This figure shows values of pressure

represented using a colormap, with the center of pressure displayed as a black cell.
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Figure 2. Example of a subject’s pressure map (mmHg) during sitting

Pressure sensing mats are commercially available in many sizes and resolutions.
Researchers have used pressure sensing mats with sensors configured in a 15 x 15 array, a 16 x 16
array, or a 32 x 32 array (Crawford et al., 2005; Fredericks et al., 2016; Stinson et al., 2002; Zemp
et al., 2016). Measurements of pressure obtained from pressure sensing mats are generally given

in units of millimeters of mercury (mmHg) and are generally outputted as stacked columns, with



each column representing a pressure map frame. The maximum sampling frequencies are a
function of the number of sensing elements, the sensors’ technologies, and the data acquisition
system’s capabilities. Sampling frequencies are generally set between 1 Hz and 10 Hz (Makhsous
etal., 2012; Zemp et al., 2016). While more detail is provided when using high-resolution pressure
mats (e.g., 32 x 32) and high-frequency data acquisition units (e.g., 10Hz sampling), it is important
to note that this combination can easily produce large amounts of data in a short period of time.
Grid-base pressure mapping interfaces such as pressure mats are also prone to interferences
due to torque forces, shear forces, pinches, and/or creases; these can create false or unwanted
pressure readings in non-contact regions of the pressure interface (see Fig. 3). The detection of
these unwanted readings (i.e., extrinsic pressure artifacts) is essential before running any further
analysis. Many of the pressure measures depicted in the next section are sensitive to these pressure

artifacts, and the removal of these is of vital importance to obtain true and accurate results.

00-60
@60-120

@120-180
0180-240
B 240-300

Figure 3. Example of a subject’s pressure map frame with marked pressure artifacts



Seating Pressure Measures

Researchers have used various seating pressure measures when assessing user-chair
interactions during sitting (Butt et al., 2005; Fenety et al., 2000; Titus & Polgar, 2009; Zemp et al.,
2015, 2016). Table 1 shows a comprehensive list of pressure measures commonly used in seating

research along with their definitions.

Table 1. Seating pressure measures commonly used in seating research studies

Seating pressure measure Definition
Sum of pressure Total amount of pressure of all sensors
Mean pressure Average of all non-zero sensor values
Maximum pressure Highest individual sensor value
Contact area Number of sensors with non-zero values

Point of application of the resultant forces of
all non-zero sensor values

Ratio of the standard deviation of pressure to
the average pressure

Change in pressure per unit distance for each
individual non-zero sensor value

Maximum pressure gradient Highest pressure gradient

Mean pressure gradient Average of pressure gradients

Ratio of sum of pressure under ischial
tuberosities in relation to sum of pressure

Center of pressure

Coefficient of Variation

Pressure gradient

IT* dispersion index

*Ischial Tuberosities

Pressure measures described in Table 1 were shown to be useful in describing human-chair
interactions (Zemp et al., 2015). Most of these measures rely on basic measures of pressure map
readings (e.g., average, maximum, and standard deviation), while others require expert knowledge
to locate specific regions of interest (e.g., IT dispersion index). Unfortunately, many of these
seating pressure measures have some limitations when describing the spatial relationship or

pressure distribution patterns within a pressure map. Figure 4 shows examples of pressure maps



from two different subjects during sitting. This figure shows significant differences between
respective pressure maps in terms of the shape, location, and pressure distribution patterns.
However, when calculating commonly used pressure measures, such as sum of pressure, contact
area, or coefficient of variations, there are no substantial differences between these measures (see
Table 2). Due to information loss, one might incorrectly conclude that no significant differences
are present between these pressure maps from the perspective of these objective measures. New

pressure mapping measures are needed to detect these differences by recovering information loss.

"

. i

Figure 4. Example of subjects’ pressure map differences during sitting

Table 2. Seating pressure measures for pressure maps shown in Figure 4

Pressure measure Sample 117-1-958 | Sample 109-1-1141 | Relative

(Left) (Right) A (%)
Sum of pressure (mmHg) 10,246.31 10,237.17 -0.09 %
Contact area 384 398 3.65%

Coefficient of Variation 0.71 0.72 1.41 %




Researchers have used the visual feedback provided by the pressure mapping systems’
software as a way to identify differences or similarities between pressure maps (Stinson et al.,
2003; Titus & Polgar, 2009). However, visual feedback assessment is not a practical approach
when comparing numerous subjects’ pressure maps, of when assessment of continuous pressure
maps is needed during dynamic sitting. The need for new seating pressure measures and
comparative techniques for pressure maps have also been emphasized in current literature (Zemp
etal., 2015, 2016). These new techniques should be cross-functional for applications in static (i.e.,
single map) and dynamic (i.e., sequential temporal maps) environments.

The focus of this research is to study the applications of unsupervised machine learning
techniques, spatial data analytics, digital image processing, and optimal image registration
methods as additional analytical tools for pressure mapping analysis. The objectives are to (1)
introduce new techniques for pre-processing pressure maps (data cleansing), (2) introduce new
pressure measures, and (3) introduce a toolset for aligning and comparing pressure maps. New
analytical tools are discussed and presented in the context of seating research, but extensions to
other potential applications in research using non-seating pressure maps are briefly discussed in
the conclusions.

A literature review is presented in the next chapter where the use and practicality of current
seating pressure measures are discussed. A review of current analytical techniques used in dynamic
sitting research and methods for pressure map aggregation/comparison is also presented. Literature
on the use of interdisciplinary tools and their application in the context of seating research is also

examined.
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CHAPTER II

LITERATURE REVIEW

Pressure Measures

Researchers, along with chair manufacturers, have conducted sitting research using
pressure mapping systems across different conditions (Crawford et al., 2005; Fenety et al., 2000;
Fredericks et al., 2016; Makhsous et al., 2012; Stinson et al., 2002; Zemp et al., 2016). Zemp et al.
(2015) examined the relationship between subjective comfort/discomfort and pressure
measurements while sitting in office chairs. In their literature review, the authors identified several
pressure measures used by researchers in their studies: sum of pressure, average pressure, peak
pressure, contact area, and center of pressure. While some of these measures were suggested as
suitable measures for assessing comfort/discomfort when sitting in office chairs, the authors
emphasized the importance of using different parameters of pressure distribution, with applications
in both static and dynamic environments, to further evaluate human-chair interactions.

Zemp et al. (2016) also evaluated the relationships between specific pressure measures and
their usefulness in differentiating pressure distributions between office chairs. The authors listed
several pressure measures such as mean pressure, pressure standard deviation, contact area,
mass/force, peak pressure and transverse pressure gradients as commonly used among researchers.
Measures of peak and mean pressures were particularly highlighted as the only measures used for

evaluating and identifying different among the different office chairs and seating positions. The
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authors also emphasized the need for suitable pressure measurements and/or methodologies in
order to compare office chairs or seating positions.

In the study conducted by Zemp et al. (2016), another main objective was to understand
the inter-relationships and correlation between pressure measures during sitting. To achieve this,
the authors conducted a study using 20 subjects (15 males, 5 females), nine selected office chairs
from six different manufacturers, and two pressure sensor mats placed on both the backrest and
seat pan of each chair. The study task simulated the use of a visual display unit (VDU) in a
workplace environment by requesting subjects to choose a sitting posture and place their fingers
on a keyboard while fixing their eyes on the screen. After a one-minute sitting settling time, the
authors obtained the average pressure readings collected during a 5-second time interval and
proceeded to calculate various common measures of pressure distribution.

Early in the study, Zemp et al. (2016) emphasized the need of new pressure measures;
however, the authors calculated seating pressure measures commonly used in the literature: peak
pressure, mean pressure, standard deviation of pressure, total contact area, and force. The authors
also included measures of pressure gradient, and defined the gradient as the geometrical addition
of the pressure derivate of the two sensor mat directions (x,y) resultinginam—1 X n—1
matrix (Zemp et al., 2016, p. 4). With the gradient matrix, the authors calculated measures of
maximum gradient, mean gradient and standard deviation of the gradient. Partial correlation
analysis was used as a dimension reduction technique to isolate possible meaningful pressure
measures for evaluating office chairs. The authors found that four measures (contact area, force,
maximum gradient, and mean gradient) could describe pressure distributions on the seat pan, and
three measures were needed for the backrest (standard deviation of pressure, force, and standard

deviation of gradient).
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As one of the key objectives in the study was to evaluate the effectiveness of the pressure
measures in comparing pressure distributions between office chairs, the use of the reduced set of
measures — found during partial correlation analyses — to measure their effectiveness in comparing
pressure distribution among different office chairs would have been insightful. However, the
authors decided to use the entire set of calculated pressure measures during their analysis. Results
from the study indicated that office chair differences were meaningful when evaluating the seat
pan measures of max gradient, mean gradient, and standard deviation of gradient. The study also
found that all measures, with the exception of contact area, were meaningful in finding differences
between the backrests of the office chairs during a reclined position — when subjects where in full
contact with the backrest. Zemp et al. (2016) acknowledged that differences in seat pan and
backrest pressure measures among office chairs can be caused by many unknown factors, and that
studied pressure measures were also limited to static evaluations of pressure distributions within

their research work.

Dynamic Sitting

Research has also shown that sitting is a dynamic activity (Fenety, 1995; Fleischer et al.,
1987). Seated subjects move continuously and more often according to tasks demands (Fenety et
al., 2000). Dynamic sitting is considered a natural behavior for prolonged sitting subjects. It is
common for subjects to constantly move to: (1) avoid undesirable static work postures, (2) reduce
the discomfort from static loadings, and/or (3) increase the blood flow in weight bearing regions
of the buttocks (Butt et al., 2005; Winkel, 1986). The use of dynamic sitting pressure measures,
for analysis in continuous sitting applications, could be useful in understanding subjects’ sitting

behavior and user-chair dynamic interactions.
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Bhatnager et al. (1985) and Fenety et al. (2000) have studied, to some extent, the
relationship between discomfort and movement; both suggesting that sitting discomfort and seated
movements are time dependent, where movements increase over time possibly due to discomfort.
Others researchers have successfully incorporated continuous pressure measures, such as center of
pressure, during in-chair-movement in their studies (Cascioli et al., 2016; Fenety et al., 2000).
Unfortunately, relying solely on tracking and monitoring of the movement of the center of pressure
does not provide clear insights about pressure distribution patterns during dynamic sitting (e.g.,
positional shifts, dynamic pressure redistributions, and/or postural changes).

Fujimaki & Mitsuya (2002) proposed the use of neural networks as an evaluation method
for dynamic body pressure distributions. The authors found that it was possible to evaluate
dynamic pressure mapping data by measuring the changes in ignited neurons over time. These
neurons were then used as input for a clustering algorithm to identify pressure patterns related to
discomfort. A drawback of tracking changes in neurons is that neural networks are created in a
subject-by-subject basis and cannot be used as a generalizable measure of dynamic pressure

redistributions.

Pressure Maps Aggregation

Standardizing and aggregating pressure maps have also been discussed in the literature.
Interfaces in pressure mapping systems are usually configured for high sensitivity, making them
capable of recording minor variations of pressure during a testing period. Some pressure mapping
systems include data acquisition units that are also capable of recording many readings over a short
period of time when using high frequency sampling. Nevertheless, results from pressure mapping

analyses are often based on few pressure map readings collected in a short period of time. Some



14

researchers have used a single pressure map frame for their analyses, while others have used the
average of pressure maps collected in less than a five seconds period — a technique commonly used
for aggregating pressure maps (Butt et al., 2005; Zemp et al., 2016).

Since pressure mapping systems record raw pressure, direct comparison between subjects’
pressure maps is often not appropriate due to differences in subjects’ anthropometry. Butt et al.
(2005) proposed a methodology for aggregating multiple pressure map readings into a
standardized composite pressure map. The methodology described in the study use averages of
multiple pressure maps frames, from an individual’s recording session, to create an aggregate map.
The aggregate maps were then normalized using the maximum pressure value recorded in the map.
The resulting aggregate pressure maps are unitless and used to compare pressure maps between
subjects. This aggregation method could also be useful when comparing within-subject pressure
maps (e.g., different time intervals, different chairs used, or a pre- and post- clinical intervention).
A composite pressure map method was also proposed by the authors where the unitless pressure

maps were combined using unweighted averages.

Image Processing

Tan et al. (2001) speculated that pattern recognition algorithms developed for computer
vision could be applied for interpreting sitting postures from the analysis of pressure distribution
data. The authors introduced pattern recognition techniques using principal components analysis
on grayscale images of pressure maps. Techniques such as these have been previously applied to
the problem of computer face recognition (Pentland et al., 1994; Turk & Pentland, 1991). Tan et

al. (2001) described that one of the disadvantages of using principal component analysis, in the
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context of seating pressure distributions, is the lack of physical interpretations associated with
eigen-posture spaces (p. 267).

Techniques from computer vision and image registration fields have been extensively
applied to medical imaging (Kurani et al., 2004; Oliveira & Tavares, 2014; Tang & Chen, 2012);
these techniques are primarily used to find matching alignments of medical images (Fig. 5).
Alignment of medical images is required when working with different imaging sources (e.g.,
tomography, magnetic resonance imaging, and positron emission tomography) or when working
with spatiotemporal image sequences. Image processing techniques are also used to measure the
similarity relationship between sets of images, extract global image descriptors, and/or apply

image transformation functions (Goshtasby, 2012).

Figure 5. Magnetic resonance scan (left), Scanned brain tissue section (right)

Source: Left (Januschka, 2006) CC BY-SA 3.0, Right (Dilmen, 2005) CC BY-SA 3.0.

Bogie et al. (2008) introduced a multistage Longitudinal Analysis and Self-Registration
(LASR) technique that emphasizes in real-time within-subject seating pressure image analysis.
Unfortunately, the LASR algorithm requires certain conditions to be met for it to be implemented

successfully. The algorithm assumes that the imaging scale is constant over time and that a
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symmetric pressure map is present. Pressure map symmetry is particularly important as the
algorithm uses the midline of the pressure map image as a registration landmark. Other
requirements include a replication of the seating position between evaluations, and collecting
pressure maps with easily-identified pressure landmarks. Even with proper conditions in place,
authors could see misalignments between pressure map images after applying the LASR algorithm.

While the benefits of introducing image processing techniques in the analysis of pressure
mapping are evident, no other additional studies have been found to date where extensive use of

image processing techniques are used for evaluating sitting pressure maps.

Spatial Data Analytics

The evolution of Geographic Information Systems (GIS) has been possible thanks to
advancements and developments in the field of spatial data analytics (Goodchild & Haining, 2003).
Spatial data analysis is dynamically integrated with GIS to allow the manipulation of raw
geographical, topological, and geometric information to analyze possible spatial relationships
(Anselin, 1992). Many geographically-based studies require use of spatial analytics to find such
relationships, with many implementing spatial dependency or autocorrelation measures in their
studies (Banerjee, 2016; Menafoglio & Secchi, 2017; Reibel, 2007).

Applications and techniques used in spatial data analytics can be extended for evaluating
and analyzing the spatial relationships in pressure maps. Grid-base pressure interfaces (i.e.,
pressure mats) measure and record pressure readings in a two-dimensional space. The resulting
pressure maps can then be rendered as three-dimensional (3D) topographic surfaces by using the
measured values of pressure on the z-axis (see Fig. 6). To date, no studies have been found where

spatial data analytics have been introduced for evaluating pressure maps.
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Implementing spatial data analytics in pressure mapping analysis, while manipulating
pressure maps as geographical and/or topographical surfaces, could help in identifying spatial
relationships or space features descriptors. In particular, the use of spatial clustering can be a viable
pre-processing technique for cleaning extrinsic pressure artifacts and outliers in raw pressure maps.
To date, no studies were found where spatial outlier detection techniques are used in pressure

mapping applications.
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Figure 6. Example of a 3D surface representation of a subject’s pressure map frame
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CHAPTER Il

RATIONALE AND OBJECTIVES

Problem Statement

Researchers have relied on pressure mapping systems to study human-chair-comfort
interactions under various sitting conditions (Cascioli et al., 2016; Crawford et al., 2005; Fenety,
1995; Fenety et al., 2000; Fredericks et al., 2016; Higer & James, 2016; Stinson et al., 2003; Zemp
et al., 2016). These systems collect pressure maps readings and analyze pressure measures such as
sum of pressure, average pressure, peak pressure, contact area, coefficient of variation, and center
of pressure. While some pressure measures have been considered suitable for assessing human-
chair interactions and their relations to seating comfort/discomfort, researchers have emphasized
the importance of using different measures of pressure distribution to further understand these
interactions (Zemp et al., 2015).

Many of the analytical tools used in sitting research rely on simplified measures of
pressure, such as calculating basic descriptive measures of pressure (see Table 1) or tracking of
the center of pressure during dynamic sitting. These measures do not provide clear insights about
spatial relationships (e.g., pressure correlation, location, and orientation) or pressure distribution
patterns (e.g., pressure continuity, localized gradients, and homogeneity) in static or dynamic
pressure maps. Furthermore, there are very few studies examining comparative techniques for
seating research using pressure mapping technology; these techniques are important for the

analysis and comparison of within-subject or between-subjects pressure maps.
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Butt et al. (2005) proposed aggregation and normalization methods for comparing pressure
maps, however, the described methods required pressure maps to be invariant to a maps’ position
and orientation. One important factor that needs to be considered when comparing or measuring
similarities between pressure maps is scaling. Differences in subjects’ anthropometry not only
affect the magnitude of pressure readings, but the size and shape of the pressure maps is also
affected by anthropometric differences. While scaling algorithms can be implemented for
comparing pressure maps, it is not appropriate for research involving human subjects (e.g., seating
research). Scaling algorithms will distort subject’s anthropometry and cover dissimilarities due to
true differences in size between subjects.

The need for new analytical tools for pressure mapping is clear. The following is a list
summarizing some of the drawbacks of currently used pressure mapping measures and
comparative techniques in the context of seating research.

(1) Common pressure measures, such as sum of pressure, contact area, and coefficient of
variation, lack information in regard to spatial relationships, pressure distribution patterns,
localized gradients, or homogeneity within pressure levels.

(2) Current dynamic measures, including center of pressure, do not provide clear insights about
changes in pressure distribution patterns during positional shifts and/or postural changes.

(3) The use of visual feedback assessment is not a practical approach for comparing pressure
maps. Current quantitative comparative techniques expect pressure maps to be in a similar
location and orientation, while other require certain conditions such as pressure maps
symmetry and identifiable pressure landmarks to be met (e.g., LARS). Additionally, these
quantitative techniques mostly rely on calculating individual differences between pressure

readings; there is a need for global comparative measures with undemanding assessment.
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Research Objective

To address many of the drawbacks of current pressure mapping analysis, this study sought
to evaluate new potential pressure measures and new methodologies for comparing pressure maps
by using interdisciplinary tools from image processing and spatial data analytics. In a specific

manner, the objectives of this study were to:

(1) introduce methods for detecting and removing extrinsic pressure artifacts (i.e., pressure
reading outliers) by implementing unsupervised machine learning and spatial data
clustering as a pre-preprocessing data cleansing technique;

(2) introduce new pressure measures, for both static and dynamic settings, by evaluating
measures in spatial data analytics, digital image processing, and use of statistical features
of images as new pressure measures; and

(3) introduce a toolset for aligning and comparing static and dynamic pressure maps by using

optimal image registration methods and similarity/dissimilarity coefficients.

Proposed pressure measures and analytical tools are discussed and presented in this study
in the context of seating research, but extensions to other potential applications in research using

non-seating pressure maps are briefly discussed in the conclusions.

Study Significance

Findings from this study are aimed to providing researchers additional analytical tools for
a better understanding of user-chair interactions, in both static and dynamic sitting environments,
and to help further evaluate sitting comfort/discomfort. Concurrent validation of potential pressure
measures is investigated by studying their relationship to commonly used pressure measures, with

possible use and interpretations in the context of human-chair interactions.
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CHAPTER IV

METHODS AND PROCEDURES

To evaluate potential techniques for pre-processing, measuring, and comparing pressure
maps, a previously collected dataset containing a number of seating pressure maps is used in this
study. Information about the participants, apparatus, and data collection procedures used for
creating this dataset is discussed early in this chapter.

This chapter also introduces the spatial data analytics and image processing techniques
that were evaluated as new methodologies for pressure mapping analysis. Presented techniques
will be grouped according to their discipline and purpose as per the following categories: (1) spatial
clustering, (2) spatial autocorrelation, (3) image statistical features, and (4) image registration and
similarity/dissimilarity coefficients. In alignment with these categories, this study is divided in the
following four research steps:

(1) Evaluate the use of density-based spatial clustering techniques as pre-processing
techniques for detecting and removing extrinsic pressure artifacts (i.e., outliers) within

seating pressure maps.

(2) Evaluate the use of spatial autocorrelation measures as new pressure measures for static

and dynamic seating pressure map applications.

(3) Evaluate the use of first-order and second-order image statistical features as new pressure

measures for static and dynamic seating pressure map applications.
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(4) Evaluate the application of image registration techniques as a pre-processing technique for
aligning and matching pressure maps, and the subsequent use of similarity and dissimilarity

coefficients as global comparative measures between registered pressure map images.

Thorough descriptions of the techniques and methodologies used in this study are presented
in this chapter Details about data sampling strategies, testing procedures, and research outcomes
are also presented for each research step. A case study is also used to demonstrate the use and

application of selected techniques and methodologies under a dynamic sitting environment.

Dataset

As explained earlier in this chapter, the dataset used in this study was collected previously,
and it was used in studies where results from an applied-research perspective were reported
(Hammond et al., 2018; Martinez et al., 2018). This dataset was originally collected to evaluate
human-chair interactions under user-defined seat pan contours. These studies were approved by
Human Subjects Institutional Review Board at Western Michigan University (see Appendix A).

This research uses the information of the pressure maps included in the dataset as a testing
and validation platform for the various techniques presented in this chapter. A brief description of
the participants, testing apparatus, and collection protocol used to create the dataset is described

in the following subsections.

Participants

Continuous pressure maps collected from 82 volunteers (35 males/47 females) are included
in the dataset. Participants were recruited through word-of-mouth and classroom announcements
among the WMU community. All participants indicated no pre-existing musculoskeletal disorders.

Descriptive statistics of selected anthropometric measurements are presented in Table 3.
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Table 3. Selected anthropometric measurements for 82 participants

Variable Mean SD Min Max
Age (years) 23.33 6.03 18.00 58.00
Height (mm) 1689.03 77.00 1552.00 1874.00
Mass (kg) 67.05 1250 44.00 105.69
BMI (kg/m?) 23.46 3.88 17.08 35.24
Hip Breadth (mm) 365.38 66.80 210.00 495.00

Buttock-Popliteal Length (Right) (mm)  486.60 32.42 410.00 600.00

Apparatus

Participants used a custom test chair able to accommodate 95" percentile users with no
armrests, a mesh backrest, and an adjustable seat pan. The adjustable seat pan used 49 electric
linear actuators placed beneath a 1” PORON® padding foam in a 7 x 7 grid configuration. Each
actuator provided a vertical stroke of 6 inches, with a swiveling plate attachment of 2.5 inches in
diameter set at the clevis end for contouring purposes. By using these adjustable actuators, subjects
created various contours and shapes in the seat pan. The pressure maps included in the dataset
were recorded under the various user-defined seat pan contours given the adjustability of the
actuators. This is particularly valuable to this study as new methodologies and potential pressure
measures must be valid and reliable under various sitting contours (i.e., different chairs).

Interface contact pressure was measured using a pressure mapping interface attached on
top of the chair’s padding foam (FSA Industrial Seat and Back Systems, Verg Inc., USA). The
pressure interface mat consisted of 1024 (32 x 32) rectangular pressure elements (sensors), each
15 mm x 15 mm in size, with a maximum pressure response of 300 mmHg. The distance between
each sensor was approximately 19.37 mm in the horizontal (lateral) direction and 16.56 mm in the
vertical (anterior-posterior) direction. The sampling frequency was set at an approximate rate of 5

Hz.
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Data Collection Procedure

This dataset contains continuous pressure mapping data for each participant recorded in
three different sessions. A session, lasting up to 2 hours, consisted of activities where subjects
performed simulated office-related tasks (typing and mousing) using a desktop computer. At the
start of each session, participants were randomly exposed to a pre-defined starting pattern and were
allowed to change the height of the actuators after each interval (5 minutes). Participants made the

necessary changes to the seat pan according to their levels of comfort/discomfort.

Spatial Clustering

The first application of spatial data analytics is integrating unsupervised spatial clustering
algorithms for the analysis and evaluation of pressure maps. Numerous unsupervised clustering
algorithms have been developed over time (Amini et al., 2014; N. Kumar & Sivasathya, 2014; Xu
etal., 1997). The goal of clustering techniques is to group data streams into meaningful classes or
groups. Unsupervised clustering algorithms can discover and cluster data without prior knowledge
(training) of the number of clusters or types of groups. Among unsupervised clustering algorithms,
density-based clustering algorithms have favorable characteristics due to their ability to identify
arbitrary shapes and detection of outliers (Amini et al., 2014).

Application of density-based clustering algorithms can result in potential pre-processing
techniques for the detection and removal of unwanted pressure readings that are caused by extrinsic
pressure artifacts such as torque forces, shear forces, pinches, and/or creases in the pressure
mapping interface. These pressure artifacts are considered “outliers” for the purpose of this study.
Five potential pressure mapping outlier detection techniques are evaluated in this study based on

the following unsupervised density-based clustering algorithms:
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e DBSCAN (Ester et al., 1996):
o Clustering according to density-based connectivity analysis
e OPTICS (Ankerst et al., 1999):
o Extension of DBSCAN with a wider range of parameter settings
e DBCLASD (Xiaowei Xu et al., 1998):
o Clustering based on probability distribution of neighbor’s distances
e DENCLUE (Hinneburg & Keim, 1998):
o Clustering based on sets of density distribution functions
e HDBSCAN (Campello et al., 2015):

o Clustering according to variations of local densities

Table 4 shows the list of parameters used for each density-based clustering algorithms
being studied. As choosing correct combinations of parameters settings is crucial for the
performance of any clustering method, appropriate ranges and/or combinations of parameter
settings are also studied for each clustering method. The purpose of this step is to choose a density-
based clustering algorithm where the correct identification of extrinsic pressure artifacts and true
contact pressure readings is maximized; in other words, increase the outlier and non-outlier

detection accuracies.

Table 4. Parameters of Spatial Clustering Methods

Method Parameters

DBSCAN Epsilon Minimum samples

OPTICS Xi Minimum samples Minimum Size Epsilon
HDBSCAN Minimum Size Minimum samples Leaf Size

DENCLUE Epsilon Minimum density

DBCLASD Nearest Neighbors
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The following list shows a brief description of each parameter shown in Table 4:

Epsilon: The maximum convergence threshold parameter (e.g. distance)
between two samples for one to be considered as in the
neighborhood of the other.

= Minimum samples: The number of samples in a neighborhood for a point to be

considered as a core point.

= Xi: Determines the minimum steepness on the reachability plot that

constitutes a cluster boundary.

= Minimum size: Minimum number of samples in a cluster.
= |eafsize: The number of points in a leaf node of the tree.
= Minimum density: The minimum kernel density required for a cluster attractor to be

considered a cluster and not noise.
= Nearest neighbors: Number of K-neighbors to find from a given point.

Clustering methods are primarily evaluated in their ability to correctly identify outlying
and non-outlying pressure readings from a selection of pressure maps included in the dataset with
known outlier readings. The computational demands of these algorithms are also examined when
evaluating a single pressure map (i.e., static clustering) and continuous pressure maps (i.e.,

dynamic clustering).

Data Sampling

To evaluate the outlier-detection accuracies of these clustering methods, a subset of the
dataset consisting of twenty-eight samples (28) of pressure maps with known pre-identified
outliers and twenty-eight samples (28) of pressure maps without outliers is used (named cluster
data subset). Selected samples of pressure maps with and without outliers are shown in Appendix
F and Appendix G respectively. The selection criteria for these pressure map samples were based

on the different levels of contact area (i.e., number of contact cells). Additionally, pressure map
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samples were obtained from different subjects to measure accuracies of clustering methods when
considering pressure maps of different sizes and shapes.

Two variations of the cluster data subset are used as input for the clustering methods: (1) a
subset with only the information of the locations of pressure readings (referred to as “location input
data), and (2) a subset with information about the locations and standardized pressure data of the
pressure readings (referred to as “location-pressure input data”). All clustering algorithms are
instructed to only consider non-zero pressure cells during computation.

A case study is also conducted where selected clustering methodologies are evaluated in a
dynamic environment by using a 5-minute sitting interval sample that includes a number of
sequential spatio-temporal pressure images from one of the subjects in the dataset (named dynamic

data subset).

Testing Procedures

Using the cluster data subset with location input data, different combinations of parameter
settings are tested for each clustering method with the goal of achieving the best outliers/non-
outliers detection performance (parameter settings are shown in Table 9, Chapter 5). Each
clustering method is evaluated based on their accuracies score (percent [%] of correctly classified
outliers and percent [%] of correctly classified non-outliers). In a similar fashion, different
combinations of parameter settings are tested for each clustering method when using the location-
pressure input data (see Table 9, Chapter 5). The objective is the identify cluster methods that can
select naturally occurring pressure clusters from subjects’ pressure maps. Validation of the
performance of these clustering methods was also made via visual feedback.

The first section in the case study includes an evaluation of the applications of selected

clustering methods to pre-process continuous seating pressure maps (i.e., detection and removal
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of outliers) while examining overall accuracies and computational demands. This pre-processed
dynamic data subset is used for subsequent case study analyses.

Algorithms for clustering methods were coded and implemented using the Python
programming language. A condensed form of the Python script used for running clustering

algorithms and data visualization routines can be seen in Appendix C.

Outcomes

The following outcomes were pursued for this step: (1) Recommendations of clustering
methods and suggested parameters settings, given cluster performance accuracies, for identifying
outliers and non-outliers pressure readings in the context of sitting pressure maps, and (2) to
examine the computational demands of using recommended algorithms for detecting outliers/non-

outliers pressure readings.

Spatial Autocorrelation

The second application of spatial data analytics is integrating spatial autocorrelation
measures for the analysis and evaluation of pressure maps. While many statistical approaches often
assume that measured outcomes are independent of each other, measures of a spatial nature often
exhibit some degree of spatial autocorrelation (UCLA: Statistical Consulting Group, 2020). Spatial
autocorrelation measures the relationship of variable outcomes as related to their distance; more
specifically, it measures the correlation between variable values that is strictly due to their
proximity in a geographical space (Kalogirou, 2019).

In seating pressure maps, measures of pressure at different locations are generally not
independent. The pressure readings in a seating pressure map are generally spatially related as the

pressure measures at neighboring locations are usually similar to one another. For example,
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measurements in proximity to a prominent bony region, such as an ischial tuberosity, are closer in
their pressure values than measurements made at other distant locations in the pressure map. The
degree of the similarity among proximate pressure readings can be measured using spatial
autocorrelation measures.

One important aspect when calculating spatial autocorrelation is defining the relationship
between locations, which is generally based on the proximities and distances between them. A
weight matrix w;; is generally constructed to define the distance relationship between locations.
This weight matrix, often row-standardized (i.e., sum of row weights is one), can be specified in
many ways, but values in the weight matrix are generally up to the researcher’s decision.
Gunaratna et al. (2005) presented examples of the approaches used by researchers to calculating

and specifying the spatial weight matrix; these are presented as follows:

e The weight for any two different locations is constant
e A constant weight for observations within a specified distance
e K nearest neighbors have a fixed weight, all others are zero

e Weight is proportional to the inverse distance (absolute, squared, or truncated)

Based on these examples, this study used three variations of contiguity-based weight
matrices to evaluate the sensitivities of spatial autocorrelation measures to extreme values and/or
variances in small neighborhoods. The weight matrices used in this study are described below with

a graphical representation of the weight values shown in Figure 7.

1. Constant weight for the eight nearest observations (Queen)
2. Constant weight for observations within a 2v/2 cell distance (Constant Distance)

3. Weight is inversely proportional within a 2v/2 cell distance (Inverse Distance)
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0 0.45
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(@) Queen (b) Constant Distance (c) Inverse Distance

Figure 7. Contiguity-based weight matrices for spatial autocorrelation measures

This study evaluated the selected weighting approaches using two different measures of
spatial autocorrelation: Moran’s I (Moran, 1950) and Geary's C (Geary, 1954). Given a weight
matrix w;; and a two-dimensional matrix X with n elements, the mathematical definitions of the

spatial autocorrelation measures used in this study are as follow:

Eg. 1 - Moran’s I

n ¥ ¥ wi;(x; — %) (x; — %) Z Z
I =— - : where S, = w; ;
So 2i(x; —%)? ? i daj

Eq. 2 - Geary’s C

n—1%; % w;x — x)?
C = 25, S0 — )2 ; where S, = Zizj Wi;

The main objective in this step is to evaluate measures of spatial autocorrelation — such as
Moran’s I and Geary’s C —to be used as global pressure map descriptors in a static (single pressure
maps) and dynamic (continuous pressure maps) environments. In the context of seating pressure

mapping, measures of spatial correlation could help measure the presence of localized high/low
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pressure clusters (i.e., hot spots), measure pressure readings interconnectedness, and/or surface

map smoothness and continuity.

Data Sampling
To evaluate the application of spatial autocorrelation measures as global pressure map
descriptors, a subset of the dataset consisting of twenty samples (20) of pressure maps from

different subjects was used (named static data subset). To gain a better insight about the uniqueness

and usefulness of spatial autocorrelation measures, selecting pressure maps exhibiting different
levels of pressure variability was desired. Out the currently used pressure measures, the coefficient
of variation is a good indicator of pressure variances within a pressure map; for this reason, the
selection criteria used for obtaining the pressure map samples was based on various levels of

coefficient of variation. Selected samples are shown in Appendix H.

Testing Procedures

For each pressure map sample included in the static data subset, measures of Moran’s I and

Geary’s C were calculated using all three different weight matrices. To evaluate their statistical
association, correlation analyses — using the Pearson product-moment correlation — were
completed for all six variations of spatial autocorrelation measures, and also between some of the
known pressure measures (Table 1). When strong correlations (R? > 0.8) appeared during the
correlation analysis, regression models were conducted with emphasis in finding unusual
observations (i.e., points with large leverage values or extreme standardized residuals). If a
pressure map was marked as an unusual observation, a comparative visual feedback was used
between the pressure map and a chosen reference pressure map with a similar predictor value. The
objective was to identify possible differences — as global pressure map descriptors — between the

highly correlated measures. Differences in terms of each measures’ ability to detect presence of
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localized high/low pressure clusters, surface map smoothness, and pressure level contiguity were
considered.
A section of the case study also includes an evaluation of spatial autocorrelation measures

under a dynamic environment (i.e., dynamic sitting). The (pre-processed) dynamic data subset

(after removing outliers with spatial clustering techniques) will be used to assess the practicality
of using spatial autocorrelation as dynamic pressure measures. Using time series plots, emphasis
is given in evaluating sequential indexes where considerable changes in measures of spatial
autocorrelation occur. Comparative visual feedback of selected sequences of pressure maps is used
to confirm detected in-chair-movements.

Algorithms for calculating spatial autocorrelation measures were coded and implemented
using the Python programming language. A condensed form of the Python script used for
calculating commonly known pressure measures, spatial autocorrelation measures, and data
visualization routines can be seen in Appendix D. The python script also contains correlation
algorithms used to generate correlograms based on the Pearson product-moment correlation. The
correlograms are created applying hierarchical clustering techniques and were used to visually

identify clusters of correlated and non-correlated measures.

Outcomes

The following outcomes were pursued for this step: (1) Recommendations for selecting a
weight matrix for calculating spatial autocorrelation measures in the context of seating pressure
maps, (2) use and interpretation of spatial autocorrelation measures in the context of human-
seating interaction, and (3) to examine the computational demands of using various combinations

of weight matrices and spatial autocorrelation measures.
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Image Statistical Features

Pressure mapping systems measure and collect information about contact pressure between
a subject (or object) and a pressure interface, either using a single grid-based flexible mat or
individual sensor pads. Collected data from such systems are recorded in common manometric
units such as pound per square inch (PSI) or millimeters of mercury (mmHg). Using re-scaling
techniques, contact pressure measures can be transformed into picture elements (pixels) with
intensities ranging from 0 (black) to 255 (white) (Tan et al., 2001). Unfortunately, a consequence
of this re-scaling technique is information loss. For pressure maps included in the dataset, range
of possible pressure values will be reduced from 0 - 300 mmHg to 0 - 255 pixel intensities. To
avoid information loss, this study modified image processing algorithms to accommodate discrete
value ranges from 0 - 300 pixel intensities (see Appendix D).

After transforming pressure readings into pixels, the location of the sensors in the pressure
interface are used to project these pixels into a scaled two-dimensional space. This results in a
grayscale-image representation of the pressure map in raster graphics. This transformation ensures
that the resolution of the resulting images matches the resolution of the pressure interface (i.e., 32
x 32). Obtaining these low-resolution images was favorable to this study given their low
computational demand requirements. Image processing techniques, such as image statistical
features, are now able to be applied to resulting grayscale images of the dataset” pressure maps.

Statistical features of images were evaluated as potential global descriptors of pressure
maps, with the objective of supplementing pressure measures commonly used in seating research
(Table 1). The first- and second-order statistics of image intensities (i.e., pressure readings)
characterize the statistical properties of an image. First-order statistics are based on the

probabilities that pixels will have particular intensities in an image, while second-order statistics
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consider the probabilities that pixel pairs — in predefined positions with respect to each other — will

have particular intensities in an image (Goshtasby, 2012).

First-Order Statistical Features. The probability distribution of intensities in an image
needs to be defined first to be able to calculate first-order statistical features. Letting H (i) denote

the number of pixels with discrete intensity i, and S the total number of pixels in an image, then

Eq. 3 - Intensities probability distribution
p(i) = @ ; i =0,..,300 (maxcell pressure)

First-order statistical features, such as peak pressure, average pressure (), and pressure
variation (o), are already being used in seating research (see Table 1), but other unique features
used to characterize images can also be calculated from the probability distributions shown in
Equation 3. The skewness (see Eq. 4) is a statistical feature that measures the asymmetry of pixel
intensities, while the kurtosis (see Eq. 5) is a statistical feature that measures the degree of

similarity of the pixel intensity distribution to a normal distribution.

EqQ. 4 - Skewness

255

1
y = ;;(i -1 p(®

Eqg. 5 - Kurtosis

255

1
K== (=0 p® -3
i=0



35

Other first-order statistical features that could be helpful in describing properties of
pressure map images are the ones based on Gray-Level Differences (GLD) of adjacent pixels.
Intensity variations from adjacent pixels can be obtained from calculating gray-level differences
in different directions (Goshtasby, 2012). If H(g|8) denotes the number of adjacent pixels in
direction 6 that have an absolute intensity g = |i; — i,|, and h(g|8) = H(g|6)/ X4 H(g|0) isthe
probability that adjacent pixels have absolute intensity difference g when scanned in direction

0 (0°,45°,90° or 135°), the following statistical features can be calculated:

Eq. 6 - Gradient contrast

GLD,(6) = )" g*h(gl6)
)

Eq. 7 - Gradient second moment

GLD,(8) = Z[h(glﬁ)]2

g

Eq. 8 - Gradient entropy

GLD;(0) = — )" h(gl6) logh(g10)
g

Eq. 9 - Gradient mean

GLD,(8) = ) h(gl0)g
9

Eqg. 10 - Inverse-difference moment

h(gl6)

GLD:(6) = Y ———
- g2+ 1)
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Second-Order Statistical Features. To determine second-order statistical features, a
Gray-Level Spatial-Dependence (GLSD) or co-occurrence matrix (GLCM) (h(il, i, |9)) is created
with entries (i,, i,) showing the number of adjacent pixels at direction 6 with intensity i; and i, in
the first and second pixel respectively. Since h(iy,i,|0 + @) = h(i,, i;]6), and the co-occurrence
matrix for 8 and 6 + m contain the same information, a co-occurrence matrix for direction 6
(0°,45°,90° or 135°) can be calculated as the sum of h(i;,i,|0) and its transpose h(i,,i,|6)
(Goshtashy, 2012). Letting M be the number of columns in an image and N be the number of rows

in an image, the Joint Conditional Probability Density (JCPD) can be obtained as follow:

Eq. 11 - GLSD joint conditional probability density

h(iy, i210) + h(iy, i116)
(M — 1N

p(iy, i,]60) =

The following features can be calculated using the JCPD of the co-occurrence matrix:

Eqg. 12 - Energy

GLSD,(0) = Z Z[p(il, i,16)]2

Eqg. 13 - Contrast

GLSD,(8) = > > (1 = 12w (i1, 216)

i
Eq. 14 - Correlation

GLSD;(6) = ZZ (6 = 44,) (62 ~ 1) p(iy, i,10),

O'i10'i2

iy

where u; and o; denote the mean and std.dev of Z h(iy, i,10)
i3—n
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Eqg. 15 - Entropy

GLSD,(0) == > > p(ir, 216) 1ogp(is, 1216
ip

i
Eg. 16 - Homogeneity

B p(ll,lzlg)
GLSD5(0) = Z Z 1+ (iy —iy)?

In a similar manner to the spatial autocorrelation research step, the main objective in this
step is to evaluate first- and second-order statistical features as global descriptors of pressure maps
images, with specific properties and applications in both static (single pressure maps) and dynamic
(continuous pressure maps) environments. This step focuses in determining what each statistical
feature is measuring, from a seating pressure mapping perspective, that commonly used sitting
pressure measures (Table 1) are not able to and, more importantly, how to interpret these statistical
features in the context of human-chair interactions.

The common pressure measures shown in Table 5 were calculated to find their association
with the first-order and second-order statistical features presented in this section. Measures of
spatial autocorrelation are additionally considered during correlation analyses to also find their

relationship with measures of statistical features.

Table 5. First-order statistical features

Contact Cells* Sum of Pressure* Standard Deviation*
Coefficient of Variation* Skewness Kurtosis
* Common Pressure Measures

A scanning direction 6 (e. g.,0° 45°,90° or 135°) needs to be defined for calculating the

first-order statistical features based on Gray-Level Differences (GLD). Table 6 shows the two
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directions that are considered in this study, where 8 = 0° measures differences in the horizontal
or lateral direction (X) of the pressure map image, and & = 90° measures differences in the
vertical or anterior-posterior direction (Y) of the pressure map image. These same directions were
also used for calculating the second-order statistical features based on Gray-Level Spatial-

Dependence (GLSD) (see Table 7).

Table 6. Gray-Level Differences (GLD) statistical features

Direction: 8§ = 0°

Direction: & = 90°

Gradient Contrast X

Gradient Second Moment X
Gradient Entropy X

Gradient Mean X
Inverse-Difference Moment X

Gradient Contrast Y

Gradient Second Moment Y
Gradient Entropy Y

Gradient Mean Y
Inverse-Difference Moment Y

Table 7. Gray-Level Spatial-Dependence (GLSD) statistical features

Direction: 8 = 0°

Direction: 8 = 90°

Energy X
Contrast X
Correlation X
Entropy X
Homogeneity X

Energy Y
Contrast Y
Correlation Y
Entropy Y
Homogeneity Y

Data Sampling

The static data subset obtained in the spatial autocorrelation step is again used for this

research step. The static data subset is used to evaluate these statistical features as global pressure
map descriptors. An extra subset was also created consisting of ten (10) paired samples of static
pressure maps from different subjects where no significant differences (JA] < 5%) are seen

between common pressure measures (named paired data subset). Figure 4 and Table 2 (Chapter 1)
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shows an example of a paired sample from two different subjects where no significant differences
are seen between common pressure measures. The selection criteria for these paired-pressure maps
samples were based on different levels of contact area (i.e., number of contact cells), sum of

pressure, and coefficient of variation. Selected sample pairs are shown in Appendix J.

Testing Procedures
All first-order and second-order statistical features were calculated for each pressure map

sample in the static data subset. While calculating these statistical features, only non-zero pressure

cells were considered. As with the previous step (i.e., spatial autocorrelation), correlation analyses
using the Pearson product-moment correlation were performed within all statistical feature
measures and known pressure measures (Table 5) to evaluate their statistical association. All six
variations of spatial autocorrelation measures were also included during correlation analyses.

It was expected that some of these features and measures were highly correlated in the
context of seating pressure maps; dimension reduction techniques focused on feature selections
(e.g., high correlation filters) were used to select features that can explain different user-chair
interaction phenomenon. Hierarchical clustering was used in the resulting correlation matrix to
find clusters of measures that have strong correlations (R? > 0.8). Regression models within these
correlated clusters were conducted with emphasis in finding unusual observations (i.e., points with
large leverage values or extreme standardized residuals) between clustered measures.

For pressure maps marked as unusual observations, comparative visual feedback was used
between the pressure maps and selected reference pressure maps (with a similar predictor values).
The objective was again to identify possible differences — as global pressure map descriptors —
between these highly correlated measures. Differences in terms of each measures’ ability to detect

presence of localized high/low pressure clusters, acute pressure points, surface map smoothness
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and texture, and pressure level contiguity were considered. In addition, research evaluated these
unusual observations by expanding their respective regression models with other clustered and
non-clustered measures to find possible supplemental explanatory variables.

After dimension reduction techniques, selected spatial autocorrelation measures and
selected first-order and second-order statistical features were evaluated to find any significant
differences (|A| > 5%) between corresponding paired samples of pressure maps included in the

paired data subset. The main focus while doing this analysis is to determine — if significant

differences are found — what each statistical feature is measuring, from a pressure mapping
perspective, that common seating pressure measures are not able to by means of visual feedback.

For studying the dynamic application of measures of statistical features of images, first-
order and second-order statistical features were calculated for each continuous sitting interval

sample included in the (pre-processed) dynamic data subset during the case study. Using time

series plots, emphasis is given in evaluating sequential indexes where considerable changes in
measures of statistical features occur. Comparative visual feedback of selected sequences of
pressure maps was also used to confirm detected in-chair-movements.

Algorithms for calculating first-order and second-order statistical features were also coded
and implemented using the Python programming language. A condensed form of the Python script
used for calculating statistical features of pressure map images is also included in Appendix D.
The same python code used to generate the correlation correlograms based on hierarchical

clustering techniques also include these image statistical features.

Outcomes
The following outcomes were pursued for this step: (1) Selection of unique and meaningful

measures of statistical features in the context of seating pressure map, (2) validation of pressure
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map statistical features as complementary measures to common pressure measures, and (3) use
and interpretation of selected statistical features of pressure map images in the context of human-

seating interaction.

Image Registration and Similarity/Dissimilarity Coefficients

A similarity (dissimilarity) measure between two sequences of measurements X =
{x;, i=1,..,n}andY = {y;, i = 1,..,n}quantifies the dependency (independency) between the
sequences. If X and Y represent pixel intensities from resulting rasterized images of pressure
mapping data, measures of the similarity (dissimilarity) between pressure maps can be obtained.
In seating pressure maps, similarity measures can be useful when evaluating and comparing
pressure maps between subjects (comparison of pressure readings and spatial distributions) or for
within-subject assessments (evaluation of dynamic sitting or clinical intervention effects).
Implementing similarity and dissimilarity measures, as global comparative measure for pressure
mapping analysis, could potentially eliminate current requirements of using comparative visual
feedback with a set of objective measures for undemanding assessment.

Similarity/dissimilarity measures have been studied and formulated for many years. Some
measures use raw intensities from images, while other apply transformations to image intensities
(e.g., normalization, ranking, or joint probability functions). Goshtasby (2012) evaluated the
accuracies and speeds of 16 similarity measures and 11 dissimilarity measures using both synthetic
and real images. Goshtasby also evaluated the sensitivity of the measures using combinations of
intensity variations and noise. Goshtasby concluded that absolute superiority of one measure
against others cannot be reached; however, better performances — using percent of correct matches

between images — were found when using the following similarities and dissimilarities measures:
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Similarity Measures

Eq. 17 - Pearson correlation coefficient

L B E-DG-)
(O, Gy — DI, O - 97

Eqg. 18 - Tanimoto measure

B XTy
T IX =YI2 + XTY

St

Eqg. 19 - Minimum ratio

1n S (xit+e oy te
m, = —z T, where r; = mln{ },and

n L yi+e x+e
1=

¢ = small number (e.g.,1).

Dissimilarity Measures

Eqg. 20 - L, norm

n
Ly = lei — vl
i=1

Eq. 21 - Square L, norm

n
L; = Z(xi —yi)?
i=1

EqQ. 22 - Intensity-ratio variance

n n

1 5 x;+e _ 1
Ry = —Z(ri —7)%; wherer; = , T = —Zri ,and
ni=1 y;+ & ni=1

e = small number (e.g.,1).
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Image Registration

One major drawback of the similarity/dissimilarity measures is that, to accurately measure
the relationship between images, images should be invariant to location and orientation. If the
images to be compared are not generally located in the same x-y regions of space or the orientation
and angular position of the images are significantly different, using similarity/dissimilarity
coefficients without applying transformation functions to the images might not be appropriate.

Sitting is a dynamic activity. Subjects constantly shift the location and orientation of their
pressure contact area with the purpose of relieving discomfort. Preferences in terms of sitting
postures and sitting placement in the seat pan are common issues when comparing seating pressure
maps. There is a need for implementing repositioning algorithms in pressure mapping analysis.

Various parametric and non-parametric spatial transformation techniques have been
developed for image registration. Modersitzki (2004) evaluated several of these transformation
techniques with mixed results. Landmark-based techniques require placements of “soft markers”
in images (see Fig. 8). The registration process in landmark-based techniques is governed by the
placement and correspondence of these user-defined landmarks. These markers generally require
expert knowledge for manual marking and/or sophisticated image analysis tools for automatic
detection (Modersitzki, 2004, p. 27); one major drawback when using landmark-based techniques.

As the evaluation of continuous dynamic pressure maps or comparison of multiple-subject
pressure maps is desired, the automatic detection of image features is a desired approach for
repositioning and reorienting pressure maps. Registration techniques such as Principal Axes

Transformations (PAT) and optimal parametric registrations work under this principle.



44

Figure 8. Examples of “soft markers” required for landmark-based techniques.

(Modersitzki, 2004, p. 31). Reproduced with permission of the Licensor through PLSclear.

PAT can have different approaches according to the distribution assumption; a standard
approach — more sensitive to data perturbation — generally uses a Gaussian distribution, while a
more robust approach is achieved by using a Cauchy distribution (Modersitzki, 2004). PAT works
by initially calculating the center of mass and the eigen decomposition of the covariance matrix.
These calculated measures are used as matching features between images.

PAT registration is accomplished by translating the center of mass and then rotating and
scaling the resulting orthogonal axis to match the reference image (Alpert etal., 1990). An example
of the application of this technique can be seen in Figure 9. The problem of using the center of
mass of the images (i.e., center of pressure) for aligning pressure images is that it often results in
misalignments and/or mismatches of the pressure distribution shapes between pressure maps.
Figure 10 shows an example where a PAT transformation would be not appropriate, as the
translation and alignment of the center of pressures would results in an incorrect image registration.

Another issue of using PAT registration is that it applies scaling transformations for
matching the orthogonal axis of the images. While scaling algorithms can be implemented for

comparing pressure maps, it is not appropriate for research involving human subjects (e.g., seating
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research). Scaling algorithms will distort subject’s anthropometry and cover the dissimilarities of

true differences between subjects due to their size.

Figure 9. PAT example. Reference (left). Template (center). PAT Transformation (right).

(Modersitzki, 2004, p. 53). Reproduced with permission of the Licensor through PLSclear.

CPgoo = (15.209, 14.550) g CP1oso = (14.378, 17.087)

g g

Figure 10. CP locations for pressure maps samples 120-1-900 (left) vs 120-1-1050 (right).

In a different manner, optimal registration techniques use parameterized finite-dimensional
optimization routines (e.g., Steepest descent, Gauss-Newton, or Levenberg-Marquardt) to

minimize differentiability between images (Modersitzki, 2004). Selection of the
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minimalization/maximization objective function defines the optimization approach used for image
registration. A straightforward approach is the minimization of Sums of Squared Differences
(SSD) or Mean Squared Error (MSE) of pixel intensities; while another approach, Mutual
Information (MI), maximizes the entropy of the images’ joint density. Using the same reference
and template images shown in Figure 9, results of applying MI and MSE affine transformation to

the template image can be seen in Figure 11.

Figure 11. Reference (left). Affine Linear MI (center). Affine Linear MSE (right)

(Modersitzki, 2004, p. 71). Reproduced with permission of the Licensor through PLSclear.

This study evaluated the performances of optimal parametric registrations techniques based
on MSE and MI registrations in the context of seating pressure mapping images. Rigid
transformations with rotational and translational capabilities were considered during registration.
Affine linear transformation, like the ones used in Figure 11, are not considered in this study as
shear and scaling transformations are not desired for contact pressure maps with human subjects.
As explained earlier, scaling and shear transformations are not appropriate for research involving
human subjects (e.g., seating research) as they distort the subject’s anthropometry and cover

dissimilarities due to true differences in size between pressure maps.
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The following are the mathematical definitions of the MSE and MI image registration
techniques given a reference image (X) and a template image (Y) with pixel intensities Iy; and
Iy, respectively, a transformation function a, image density p, and image entropy E (Modersitzki,

2004; Pataky et al., 2009):

Eqg. 23 - Optimal Linear Registration (MSE)

1 2
Min (MSE) ; MSE = EZ(IX,( — Iy i)
k

Eq. 24 - Optimal Linear Registration (MI)

Max (MI); MI=—E, llog Pty l
wa Px Py,

By applying random transformations to randomly selected seating pressure maps, the
accuracies of the translational and rotational capabilities of each image registration method can be
measured by using the similarity and dissimilarity measures described in the previous section. At
optimality, the similarity (dissimilarity) measures should be relatively close to 100% (0) if a good
registration or image match is made by the registration method.

The main objectives in this research step are to (1) introduce image registration as an
alignment technique, and (2) use similarity and dissimilarity measures as way of comparing
registered pressure maps. Image registration techniques of optimal linear registration based on
minimization of the Mean Squared Errors (MSE) and optimal linear registration based on

maximization of the Mutual Information (MI) were evaluated in this study.

Data Sampling
To evaluate the translational and rotational capabilities of the image registration

techniques, a subset of the dataset consisting of ten (10) samples of pressure maps was used. The
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selection criteria for these pressure map samples were based on different levels of contact area
(i.e., number of contact cells). Two random transformations, each with a random translational and

rotational shift, were then applied to each pressure map to create the synthetic transformed data

subset. Selected samples with applied random transformations are shown in Appendix L.
Conditional sampling was also used for extracting sets of images exhibiting significant

pressure map shifts. These samples are used for evaluating the feasibility of using image

registration techniques and similarity/dissimilarity measures for analyzing and comparing pressure

maps during dynamic sitting movements. As the distance needed for the center of pressure to travel

one pressure map cell is approximately one inch (v19.372 + 16.562 = 25.5mm), a significant
location shift was considered as a distance greater than one inch between the pressure maps’
centers of pressures (A CP > 1 in). Twenty (20) paired-samples were selected where potentially

significant sitting movements were detected (named registration data subset), with each paired

sample being selected from indexes within a continuous sitting interval (same subject). Distances
between the center of pressure of selected paired-samples can be seen in Appendix N, while the

pressure maps for the selected paired-samples can be seen in Appendix O.

Testing Procedures

Using the transformed data subset, the accuracies of the translational and rotational

capabilities of image registration techniques are evaluated using proposed similarity/dissimilarity
coefficients (¢ = 1 is used when required). Because the transformed pressure maps included in
this subset are in fact the same pressure maps as the reference maps (with very small differences
due to the random transformation being applied), the resulting values of the similarity and
dissimilarity coefficients can be used to benchmark registrations optimality. Visual feedback is

also used to identify differences at optimality between image registration techniques.
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When calculating similarities and dissimilarities coefficients between pressure maps, two
scenarios were considered: (1) Only pairwise non-zero pressure cells between pressure maps are
considered (referred to as masked), and (2) unbalanced pairwise pressure cells (i.e., a non-zero
pressure cell and a zero pressure cell data pair) are accepted (referred to as non-masked).

The regqistration data subset was used to evaluate the performances of image registration

techniques under dynamic sitting. Visual feedback was used to assess the image correspondence
at optimality by using pressure map overlays and visual differences in pressure map images.
Because pressure maps in this subset are inherently different, similarity and dissimilarity
coefficients are only used as comparative measures post-registration. Improved values in measures
of similarity/dissimilarity do not necessarily indicate a better registration, but if pressure maps
images indeed share a number of commonalities and features, an increase (decrease) in similarity
(dissimilarity) measures is usually obtained. Difference in applications of masked and non-masked
variations of measures of similarity and dissimilarity coefficients were also evaluated.

To study the dynamic application of proposed comparative techniques, the case study
includes a section where continuous and sequential pressure maps are registered and compared
(using similarities and dissimilarities coefficients) to the initial pressure map frame. The objective
is to evaluate the feasibility of using continuous similarities and dissimilarities coefficients as
comparative dynamic pressure measures after image registration techniques are applied.

Due to the temporal nature of the (pre-processed) dynamic data subset, it is expected that

the overall location and orientation of sequential pressure maps to not be significantly different
over time, especially if significant in-chair movements do not occur. But if otherwise, any
significant pressure redistribution, postural change, and/or positional shift made by the subject

could potentially be captured by the continuous similarities and dissimilarities coefficients. Time
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series plots were used to assess the changes in continuous values of similarities and dissimilarities
coefficients during the 5-minute dynamic sitting interval sample.

For the dynamic case study, an additional dynamic pressure measure was also examined
by comparing the distance traveled by the center of pressure (CP) of the template image (i.e. the
one being transformed) at registration optimality. Comparing the distance of the locations of the
centers of pressure between images is often not appropriate (see Fig. 10), but tracking the distance
traveled by the center of pressure of the template image after registration could be a good indicator
of in-chair movement, particularly for positional shifts in the seat pan. Assessments of CPoriginal VS
CPransformed distances were done using time series plots. The objective was to evaluate significant
registration translations of the CP during the dynamic sitting interval sample.

Visual feedback was also used during the case study to validate the image correspondence
when significant changes in similarities coefficients, dissimilarities coefficients, or CPtransformed
translations were seen in their respective time series plots. Visual feedback assessment was made
using pressure maps overlays to highlight differences in pressure between pressure map images at
registration optimality.

Algorithms for applying random transformations to pressure map images, implementing
MI and MSE image registration, calculating similarities and dissimilarities coefficients (masked
and non-masked), and data visualization routines were coded and executed using the Python

programming language. A condensed form of the Python script can be seen in Appendix E.

Outcomes
The following outcomes were pursued for this last step: (1) Recommendations of
registration techniques for transforming and aligning pressure maps in the context of seating

pressure maps, (2) use and interpretation of similarity and dissimilarity coefficients as global
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comparative measures in the context of seating pressure maps, and (3) examining the
computational demands of using proposed comparative techniques for transforming and
comparing pressure maps in both static (paired-samples) and dynamic (continuous pressure maps)

environments.

Summary of Methods and Procedures
Various subsets of the main dataset were used for the research steps in this study. The

cluster data subset was used to evaluate density-based spatial clustering techniques as pre-

processing methods for detecting and removing extrinsic pressure artifacts (i.e., outliers) in seating

pressure maps. The static data subset and paired data subset were used to evaluate the uniqueness,

feasibilities, and interpretations of seating pressure measures based on spatial autocorrelation, first-

order image statistical features, and second-order image statistical features. The transformed data

subset and registration data subset were used to evaluate the application of image registration

techniques for aligning and matching pressure maps, and also to evaluate the use of similarity and
dissimilarity coefficients as global comparative measures between registered pressure map images.

The dynamic data subset was used as a case study for evaluating the dynamic applications

of selected methods and measures. The subset was initially pre-processed using spatial clustering
to remove extrinsic pressure artifacts (i.e. outliers). Measures of spatial autocorrelation and image
statistical features were then calculated, and their dynamic behavior was assessed using time series
plots. At the end, image registrations were performed between each pressure map frame and the
initial frame, with assessments of similarity and dissimilarity coefficients using time series plots.

A summary table of the research objectives, along with the methodologies, research

procedures, and outcome goals for each research step is shown in Table 8.
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The following chapters [Chapter 5 (Results) and Chapter 6 (Case Study)] show the results
obtained from completing the research steps in this study (Table 8). The results of the applications
of spatial clustering methods, measures of spatial autocorrelation, image statistical features, and
image registration and similarity and dissimilarity coefficients are presented in Chapter 5. The
feasibilities, uniqueness, and practicalities of the proposed methods are discussed within the
following chapter subsection: (1) Spatial Clustering, (2) Spatial Autocorrelation and Image
Statistical Features, and (3) Image Registration and Similarity/Dissimilarity Coefficients.
Summaries of the findings obtained from applying proposed methodologies to each data subset
are also included in their respective chapter subsection, along with research notes and
recommendations.

Results of using selected methodologies in a 5-minute interval of sequential pressure map
images (dynamic data subset) are presented in Chapter 6 as a case study. This case study initially
evaluates the feasibility and practicality of using selected density-based spatial clustering
techniques for detecting and removing extrinsic pressure artifacts (outliers) under a continuous
setting (dynamic pressure map samples). Using the pre-processed dynamic data subset, the results
of selected measures of spatial autocorrelation and image statistical features are also shown in this
chapter, with discussions of their evaluations as potential dynamic pressure measures. The pre-
processed dynamic data subset is also used to evaluate the applications of image registration and
similarity/dissimilarity coefficients as comparative pressure mapping techniques under a dynamic
sitting environment. Results and evaluations of the feasibility and practicality of using continuous
dynamic registration and the use of similarity/dissimilarity coefficients as potential dynamic

pressure measures are also presented and discussed in the chapter.
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CHAPTER V

RESULTS

Python, a high-level, general-purpose, scripting programming language, was used to obtain
the results presented in this chapter . The scripts shown in Appendix C, Appendix D , and Appendix
E were executed with Python 3.7 under the Spyder 3.3.4 Integrated Development Environment
(IDE), using a desktop computer with a quadcore Intel i7-4770K CPU clocked at 3.90 Ghz, 16 GB
of DD3 RAM at 1600 Mhz, and running the Windows 10 operating system. These same algorithms
were also used to obtain the results presented in the following chapter (Chapter 6).

In this study, the numerical naming convention used for the pressure maps samples are in
the format “Subject-Trial-Index”. The dataset used in this study contains continuous seating
pressure readings collected from eighty-two different subjects. Three different trials, each up to 2
hours of collection time, are included for each subject, with a number of sequential indexes
constituting a trial. As indexes are recorded sequentially, these have a direct relation to time. In
this dataset, the pressure map readings were captured at approximately one-second intervals, each
being recorded as an Index. As a naming convention example, the sample “109-2-1” represents
the first pressure map captured (Index 1) during the second recording session (Trial 2) for Subject
109. The eighty-two subjects are labeled sequentially from Subject 109 to Subject 190 as originally
named in the dataset.

The results in this chapter are presented in three sections, each following the main

objectives of this study: (1) Spatial Clustering, where methods for detecting and removing extrinsic



56

pressure artifacts are evaluated, (2) Spatial Autocorrelation and Image Statistical Features, where
new potential pressure measures are studied, and (3) Image Registration and Similarity and
Dissimilarity Coefficients, where methods for aligning and comparing pressure maps are

examined.

Spatial Clustering
To evaluate the outlier-detection accuracies of the studied clustering methods, a subset of

the dataset (cluster data subset) was created using stratified sampling of subjects’ pressure maps

based on the distribution of contact areas (i.e., contact cells) (see Fig. 12). The cluster data subset

consists of twenty-eight samples (28) of pressure maps with unwanted pressure artifacts and
twenty-eight samples without pressure artifacts (see Appendix F and Appendix G). Expert
knowledge was used for selecting and marking the extrinsic pressure artifacts (i.e. outliers), if any,

in each seating pressure map sampled.

Histogram of Contact Cells
Subjects' Sitting Trials Average Contact Cells

20

Frequency

250 275 300 325 350 375 400 425 450
Contact Cells

Figure 12. Histogram of subjects’ average contact cells.
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Two variations of the OPTICS clustering algorithm were considered: (1)
OPTICS_DBSCAN where clusters are extracted using a DBSCAN-like method with an epsilon
parameter (eps), and (2) OPTICS_XI where clusters are extracted using automatic technique, as
specified by Ankerst et al. (1999), with a Xi parameter.

A sensitivity analysis for the parameters of each clustering algorithm (Table 4) was carried
out to find possible ranges of values (minimum to maximum) where clustering algorithms where
able to detect outliers while retaining the non-outliers as true pressure readings. Ten random

samples with outliers where chosen from the cluster data subset to carry out the sensitivity analysis.

Eight different combinations or sets of parameter settings were chosen to be evaluated for the
DBSCAN, OPTICS_DBSCAN, OPTICS_XI, and HDBSCAN clustering methods, using possible
values of Epsilon (eps), Minimum samples (min_samples), Xi (xi), Minimum size (min_size), and
Leaf size (leaf _size) from the ranges of values found during the sensitivity analysis (see Table 9).

In a similar manner, five different combinations or sets of parameter settings were
evaluated for DENCLUE and DBCLASD clustering methods, using possible values of Epsilon
(eps), Minimum density (min_density), and Nearest Neighbors (as a % of pressure map Area) from
the ranges of values found during the sensitivity analysis (see Table 10).

Note that combinations or sets of parameter settings are chosen according to the input data
used for the clustering method. Findings during the sensitivity analysis typically resulted in
different ranges of values (minimum to maximum) for each clustering method’s parameters when

using either the location input data or location-pressure input data.
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Table 10. Clustering methods parameters sets 9-13, location and location-pressure input data

Set DENCLUE DENCLUE (NP)  DBCLASD DBCLASD (NP)
o mifd%i-gfy:S.Oe-M msr;id%igtly:l.Oe-os Area:28.5% Area:50%

10 (r;F)isridoe?;S?y:5.0e-o4 (r;ﬂsr;id%i_g%y:z.Oe-os Area:33% Area:67%

1 Erfi?wﬁzl%nsity:4.0e-04 (:ﬁsr;fa%nsityzl.Se-% Area:40% Area:80%

12 (ri?isn:fd%nsity:B.Oe-M (ranpisn:i.j(t)ansityzl.Se-O3 Area:20% Area:33%

13 L eps:1.0 Area:12% Area:20%

min_density:2.0e-04

min_density:1.3e-03

Note: NP = No Pressure = Location input data

The following subsections show the results for each clustering method when using these
defined sets of parameters. The best combinations of input data plus parameter settings are chosen
for each method in terms of outlier and non-outlier accuracies, that is, their abilities to detect
extrinsic pressure artifacts (outliers) and true contact pressure readings (non-outliers). Measure of
“Qutliers accuracy” calculate the proportion of pre-identified outliers being detected as outliers,
while measure of “Non-Outliers accuracy” calculate the proportion of true contact pressure
readings being detected as non-outliers. “Overall accuracy” is the calculated weighted average of
both Outliers and Non-Outliers accuracies. A set of clustering method’s parameters are considered

for further evaluation if both average Outliers and Non-Outliers accuracies results are above 0.90.

DBSCAN

DBSCAN algorithms were implemented from the Python module Scikit-learn (v0.20.3)
(Pedregosa et al., 2011). A graphical summary of the average accuracies obtained when using
DBSCAN, with both location and location-pressure data input, is presented in Figure 13. The top-

left panel show overall average accuracies for each set of parameters and input data. The bottom-
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left panel shows average non-outlier accuracies when using seating pressure map samples without
outliers. Right panels show average outliers (top-right) and non-outliers (bottom-right) accuracies
when using seating pressure map samples with pre-identified outliers. Results indicate that
DBSCAN algorithms generally show higher average accuracies for detecting outliers when the
pressure reading locations are used as input data as compared to using the location-pressure

information as input data.

Average Accuracy: Overall, Outliers, Non-Outliers
Method = DBSCAN

12345678 123456738

Overall Accuracy Outliers Accuracy, Outliers = Yes

1.00 Input
[ Location
,,,,,,,,,,,,,,,,,,,,,, o075 M Location-Pressure

~ poa. IR O N BN [ | e A
§ 0.50
T oor- NI D R - 0.25
)
=
S o 0.00
< 1.00 Non-Outliers Accuracy, Outliers = No Non-Outliers Accuracy, Outliers = Yes
o M
g
CRRAEES | 1 B OB B O mil B B B mae
>
<

09— L L B

0.7 -SSR - SN | -SRI SR

0.96

Set 12345678 12345678

Figure 13. DBSCAN — Overall, Outliers, Non-Outliers average accuracy by set

Table 11 and Table 12 show descriptive statistics of accuracies results for all sets of
parameters used in DBSCAN algorithms when using both location and location-pressure input
data respectively, with sets of parameter chosen for further evaluation in bold. DBSCAN
parameters sets 2 and 4, using location input data, yielded the same accuracy results in each
sample; similarly, sets 5 and 8 also yielded the same accuracy results for each sample (see Table

11). A good combination of high outlier and non-outlier average accuracies were also obtained by
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these sets (2, 4, 5 and 8). Other sets either marked many pressure readings as outliers (e.g., Set 6)

or are somewhat conservative in marking outliers (e.g., Sets 1, 3, and 7).

Table 11. DBSCAN — Accuracies results by set (location input data)

Variable Set Mean StDev  Minimum Maximum
Overall Accuracy 7 0997 0.008 0.953 1.000
3 099 0.010 0.953 1.000
1 099 0.011 0.941 1.000
5/8 0.994  0.009 0.964 1.000
2/4 0.988  0.010 0.961 1.000
6 0011 0014 0.000 60659
Outliers Accuracy 6 1000 0000 1000 1860
214 0949 0.194 0.111 1.000
5/8 0925 0.179 0.333 1.000
7 0817 0.262 0.000 1.000
3 0815 0.284 0.000 1.000
1 0772 0334 0.000 1.000
Non-Outliers Accuracy 1 0999 0.003 0.985 1.000
3 0999 0.004 0.975 1.000
7 0.999 0.004 0.975 1.000
5/8 0.995  0.008 0.964 1.000
2/4 0989  0.010 0.959 1.000
6 068086 0000 6-008 6-000

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

Table 12 shows that, when using the location-pressure information as input data, higher

average outlier accuracies were obtained by sets of parameters 6 and 7. Unfortunately, these high

average outlier accuracies were obtained at the expense of lower average non-outlier accuracies

when compared to results using location input data (Table 11). By comparing the average outliers

and non-outlier accuracy results obtained when using parameters set 5 (or 8) with location input

data (0.925 and 0.995 respectively) to the average accuracy results obtained when using parameters

set 6 with location-pressure data (0.920 and 0.977 respectively), we see that higher outlier and
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non-outlier accuracies were obtained when using the location of pressure reading as input data

with suitable DBSCAN parameters (e.g., Sets 5 or 8).

Table 12. DBSCAN — Accuracy results by set (location-pressure input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 8 0994 0.010 0.941 1.000
2 0991 0.013 0.941 1.000
5 099 0.012 0.941 1.000
1 0989 0.014 0.941 1.000
3 0989 0.013 0.941 1.000
7 0986 0.012 0.950 1.000
4 0983 0.016 0.924 1.000
6 0.976 0.018 0.918 1.000
Outliers Accuracy 6 0920 0.227 0.000 1.000
7 0.907 0.233 0.000 1.000
4 0.787 0.315 0.000 1.000
5 0.782 0.318 0.000 1.000
8 0706 0.335 0.000 1.000
3 0349 0.329 0.000 1.000
2 0230 0.276 0.000 1.000
1 0.000 0000 6-000 6-600
Non-Outliers Accuracy 4+ 4000 0000 1.000 1.060
2 1000 0.001 0.994 1.000
3 0.998 0.003 0.986 1.000
8 0.998 0.003 0.985 1.000
5 0.993 0.006 0.976 1.000
7 0.988 0.009 0.970 1.000
4 0987 0.011 0.942 1.000
6 0977 0.016 0.928 1.000

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

Out of all the combinations of parameter settings and input data, DBSCAN parameters
used in sets 2/4 and 5/8 with location input data resulted in high average outlier accuracies (0.949
and 0.925 respectively) and high average non-outlier accuracies (0.989 and 0.995 respectively).
Figure 14 shows boxplots for DBSCAN outlier accuracies for all parameter sets when using

location input data. Results from sets 2 and 5 are highlighted to show points of individual pressure
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maps where Outliers accuracies were not 1 (100%). Figure 15 shows examples of the outlier
reference maps where Outliers accuracies below 0.80 were found in any of these sets (2/4 and 5/8).
The figure also shows cross-referenced clustering results between sets 2/4 and 5/8 for these outlier
reference maps. DBSCAN failed to detect a significant number of outliers in pressure map samples
172-2-1047 and 144-1-779 when using parameter sets 2/4; but it was otherwise successful in
detecting outliers in all other maps at the expense of marking some non-outlier readings as outliers.
In contrast, DBSCAN successfully detected the group of outliers in sample 172-2-1047 when using
parameter sets 5/8, but it was more conservative in marking outliers in all other maps presented in
the figure. All DBSCAN sets (location or pressure-location) failed to mark the group of outliers

referenced in sample 144-1-779 (see Fig. 15, 2" row).

Outliers Accuracy
Method = DBSCAN, Input = Location

0 == — == — —

+
o

0.8

o

0.6

Accuracy (%)

02

0.0
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Figure 14. DBSCAN — Outliers accuracy boxplots by set (location input data)
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Outliers Reference
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Figure 15. DBSCAN — Low outlier accuracy samples in sets 2/4 and 5/8 (location input data)
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Figure 16 shows boxplots for DBSCAN Non-Outlier accuracies for all parameter sets when
using location input data. Results from sets 2 and 5 are highlighted to show points of individual
pressure maps where Non-Outliers accuracies were not 1 (100%). Non-Outliers accuracies results
when using parameters sets 5/8 where generally higher compared to results when using parameters
sets 2/4. It is important to note that the Non-Outliers accuracies results obtained from these sets
(2, 4, 5, or 8) were above 0.95 for all samples. Figure 17 show examples where Non-Outliers
accuracies between 0.95 and 0.98 were found in any of these sets (2/4 and 5/8). Here we see that
DBSCAN algorithms, when using parameters settings from either of these sets, mostly marked
pressure readings as outliers when a significant departure from the main contiguous pressure

cluster is found (e.g., samples 175-3-1142 and 175-2-1208).

Non-Outliers Accuracy
Method = DBSCAN, Input = Location

# . *

0.99

* *

Kok skx

0.98
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k ok o=

0.96

F bk ok

0.95

Set

Figure 16. DBSCAN — Non-outliers accuracy boxplots by set (location input data)

In summary, using the location information as input data, parameters of epsilon between

1.60 - 1.8 with minimum samples at 8 (sets 2/4), or epsilon parameters between 2.00 - 2.20 with
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minimum samples at 10 (sets 5/8) were found as adequate when using DBSCAN algorithms for
detecting outlier/non-outliers seating pressure readings in a 32x32 pressure map. If preservation
of all true pressure readings is of utmost importance, using DBSCAN with the epsilon parameter
at 2.5 with minimum samples at 10 (set 7) resulted in an acceptable average Outliers accuracy
(0.817), while maintaining a very high average Non-Outliers accuracy (0.999); only four out of
the fifty-six pressure map samples did not show a perfect Non-Outliers accuracy score, all were at

least 0.9751 when using location input data and DBSCAN parameters from set 7 (see Fig. 16).
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Figure 17. DBSCAN — Sets 2/4 and 5/8 samples, non-outlier accuracy <0.98 (location input data)
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OPTICS_XI

OPTICS_XI algorithms were also implemented from the Python module Scikit-learn
(v0.20.3) (Pedregosa et al., 2011). A graphical summary of OPTICS_XI average accuracies, with
both location and location-pressure data input, is presented in Figure 18. As with similar figures,
the top-left panel show average overall accuracies for each set of parameters and input data. Right
panels show average outliers (top-right) and non-outliers (bottom-right) accuracies for each set of
parameters when using seating pressure map samples with pre-identified outliers. The bottom-left
panel shows average non-outlier when using seating pressure map samples without outliers.
Results indicate that OPTICS_XI algorithms generally show higher average accuracies for
detecting outliers when using both pressure readings and location information as input data. When
using only pressure readings location as input data, lower average outlier accuracies (<0.9) but
higher average non-outlier accuracies (>0.9) were obtained, indicating a more conservative

approach when marking outliers.
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Figure 18. OPTICS_XI — Overall, Outliers, Non-Outliers average accuracy by set
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Table 13 show descriptive statistics of accuracies results for all sets of parameters used in

OPTICS_XI algorithms when using both pressure readings and location information as input data.

Results from using parameters settings in set 3 resulted in high average Outliers accuracy (0.905)

and high average Non-Outlier accuracy (0.915).

Table 13. OPTICS_XI — Accuracy results by set (location-pressure input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 8 0981 0.074 0.446 1.000
4 0968 0.124 0.241 1.000
2 0920 0.193 0.241 1.000
3 0916 0.197 0.241 1.000
1 0873 0.239 0.241 1.000
5 0818 0.308 0.207 1.000
7 0.782 0.299 0.051 1.000
6 0.661 0.380 0.101 1.000
Outliers Accuracy 7 0907 0.260 0.000 1.000
3 0905 0.233 0.000 1.000
1 0863 0.320 0.000 1.000
2 0844 0.319 0.000 1.000
4 0799 0.353 0.000 1.000
8 0.799 0.353 0.000 1.000
6 0.650 0.462 0.000 1.000
5 0.602 0.465 0.000 1.000
Non-Outliers Accuracy 8 0.983  0.076 0.435 1.000
4 0969 0.126 0.227 1.000
2 0920 0.195 0.227 1.000
3 0915 0.199 0.227 1.000
1 0873 0.242 0.227 1.000
5 0819 0.313 0.207 1.000
7 0.781 0.302 0.051 1.000
6 0.660 0.387 0.101 1.000

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

Figures 19 and 20 show boxplots for OPTICS_XI Outliers and Non-Outliers accuracies,

respectively, for all parameter sets when using the location-pressure input data. Set 3 is highlighted
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to show points of individual pressure maps where Outliers and Non-Outliers accuracies were not

1 (100%). Note that non-outlier accuracies were very low on many samples
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Figure 19. OPTICS_XI — Qutliers accuracy boxplots by set (location-pressure input data)
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Figure 20. OPTICS_XI — Non-outliers accuracy boxplots by set (location-pressure input data)
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Figure 21 shows examples of outlier reference maps where Outlier accuracies below 0.50
were found when using parameter settings in set 3 (location-pressure input data). Similarly, Figure
22 shows examples of seating pressure maps where Non-Outliers accuracies were below 0.50 for
the same set (3). OPTICS_XI is shown to be somewhat inconsistent when detecting outliers; in
some instances it was conservative in marking pressure readings as outliers (see Fig. 21), while in
other cases, the majority of true contact pressure readings were being marked as outliers (see Fig.
22). This inconsistency in the accuracies results makes the use of OPTICS_XI an unreliable

technique for detecting outlier and non-outliers seating pressure readings in a 32x32 pressure map.
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Figure 21. OPTICS_XI — Low outlier accuracy samples in set 3 (location-pressure input data)
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Pressure Maps Set 3 Results
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Figure 22. OPTICS_XI — Low non-outliers accuracy samples in set 3 (location-pressure input)

OPTICS _DBSCAN

OPTICS_DBSCAN algorithms were also implemented from the Python module Scikit-
learn (v0.20.3) (Pedregosa et al., 2011). A graphical summary of the average accuracies obtained
when using OPTICS_DBSCAN, with both location and location-pressure data input, is presented
in Figure 23. As with similar figures, the top-left panel show average overall accuracies for each
set of parameters and input data. Right panels show average outliers (top-right) and non-outliers
(bottom-right) accuracies for each set of parameters when using seating pressure map samples with
pre-identified outliers. The bottom-left panel shows average non-outlier when using seating
pressure map samples without outliers. Results indicate that OPTICS_DBSCAN algorithms
generally show acceptable outlier and non-outlier accuracies either when using only the location

information as input data or both pressure readings and location information as input data.
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Average Accuracy: Overall, Outliers, Non-Outliers
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Figure 23. OPTICS_DBSCAN - Overall, Outliers, Non-Outliers average accuracy by set

Table 14 show descriptive statistics of accuracies results for all sets of parameters used in
OPTICS_XI algorithms when using the location information as input data. OPTICS_DBSCAN
parameters from sets 2 and 4, using location input data, yielded the same accuracy results in each
sample (see Table 14). A good combination of high outlier and non-outlier average accuracies
were obtained by sets 2, 4 and 8. Other sets either marked all readings as outliers (e.g., set 6) or
were more conservative in marking outliers (e.g., sets 1, 3, 5, and 7). Using location input data and
OPTICS_DBSCAN with parameters in sets 2/4 and 8, resulted in high average outlier accuracies
(0.968 and 0.933 respectively) and high average non-outlier accuracies (0.964 and 0.97
respectively). Figure 24 shows boxplots for OPTICS DBSCAN outlier accuracies for all
parameter sets when using location input data. Results from sets 2 and 8 are highlighted to show
points of individual pressure maps where Outliers accuracies were not 1 (100%). Some of these

individual pressure maps are presented in Figure 25.



Table 14. OPTICS_DBSCAN — Accuracy results by set (location input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 7 0994 0.012 0.941 1.000
1 0993 0.011 0.941 1.000
3 0993 0.012 0.941 1.000
5 0991 0.010 0.943 0.998
8 0.970 0.012 0.941 0.992
214 0.964 0.012 0.939 0.989
6 0011 5014 0.000 0059
Outliers Accuracy 6 1000 0000 1000 1860
214 0968 0.122 0.444 1.000
8 0.933 0.160 0.333 1.000
5 0.853 0.223 0.333 1.000
1 0786 0.320 0.000 1.000
7 0.734 0.349 0.000 1.000
3 0560 0.381 0.000 1.000
Non-Outliers Accuracy 3 0.999  0.002 0.985 1.000
7 0.998 0.003 0.982 1.000
1 099% 0.004 0.982 1.000
5 0.993 0.008 0.965 0.998
8 0970 0.011 0.943 0.991
214 0.964 0.012 0.937 0.989

6 0.000 0.000 0.000 0.000
Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)
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Figure 24. OPTICS_DBSCAN — Outliers accuracy boxplots by set (location input data)
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Outliers Reference
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Figure 25. OPTICS_DBSCAN — Low outlier accuracy samples in sets 2 and 8 (location input)
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Using the location information as input data, Figure 25 shows examples of outlier reference
maps where outlier accuracies below 0.80 were found when using OPTICS _DBSCAN with set 2
or set 8 parameters. While results obtained from set 2 generally show higher accuracies in detecting
outliers, set 8 correctly detected the group of outliers present in sample 172-2-1047 (Fig. 25, 1%
row), whereas set 2 did not. In both sets (2 and 8), many true contact pressure readings (non-
outliers) are being marked as outliers, particularly in the first rows of pressure readings under the
legs. Figure 26 confirms that using OPTICS_DBSCAN with parameters from either set (2 or 8)
always resulted in a number of non-outlier pressure readings being marked as outliers, as none of

the individual map results showed a 100% Non-Outliers accuracy within these sets (see Table 14).
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Figure 26. OPTICS_DBSCAN — Non-outliers accuracy boxplots by set (location input data)

Table 15 show descriptive statistics of accuracies results for all sets of parameters used in
OPTICS_DBSCAN algorithms when using the location-pressure data input. In this scenario,

OPTICS_DBSCAN parameters used in set 2 resulted in high average outlier accuracy (0.925) and
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high average non-outlier accuracy (0.982). Figure 27 and Figure 28 show boxplots for
OPTICS_DBSCAN outlier and non-outlier accuracies, respectively, for all parameter sets when
using location-pressure input data. Set 2 is again highlighted to show results of individual pressure

maps where low outlier and non-outlier accuracies were detected.

Table 15. OPTICS_DBSCAN — Accuracy results by set (location-pressure input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 3 0991 0.013 0.941 1.000
2 0981 0.014 0.940 0.998
8 0981 0.013 0.950 0.998
1 0980 0.017 0.924 1.000
6 0.968 0.021 0.903 1.000
4 0964 0.023 0.895 1.000
7 0.879 0.042 0.756 0.952
5 0019 5018 0.000 6.074
Outliers Accuracy 5 1000 0000 1.000 1000
7 0968 0.122 0.444 1.000
2 0925 0.178 0.333 1.000
8 0891 0.195 0.333 1.000
4 0830 0.264 0.111 1.000
1 0.804 0.300 0.000 1.000
6 0.774 0.312 0.000 1.000
3 0245 0.282 0.000 1.000
Non-Outliers Accuracy 3 1.000  0.001 0.994 1.000
1 0983 0.013 0.939 1.000
2 0982 0.012 0.942 0.998
8 0982 0.012 0.949 0.998
6 0971 0.018 0.918 1.000
4 0966 0.021 0.895 1.000
7 0.878 0.043 0.751 0.951
5 0008 6613 0-000 0042

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

When introducing pressure information, OPTICS_DBSCAN results from using parameter
settings in set 2 showed a higher average Non-Outlier accuracy (0.982) than results from the best

location-only sets (0.964 or 0.98, from sets 2 and 8 respectively). Unfortunately, a lower average
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outlier accuracy (0.925) was seen when using the location-pressure input data with this set (2)
when compared to the best location-only sets (0.933 or 0.968, from sets 2 and 8 respectively),
indicating a more conservative approach when marking outliers. However, there were only five
instances (out of twenty-eight) where outlier accuracies were below 0.80, with all other samples

having outlier accuracies at 100% (see Fig. 27).
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Figure 27. OPTICS_DBSCAN — Outliers accuracy by set (location-pressure input data)
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Figure 28. OPTICS_DBSCAN — Non-outliers accuracy by set (location-pressure input data)
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Figure 29 shows examples of outlier reference maps where outlier accuracies below 0.80
were found when using OPTICS_DBSCAN with location-pressure input data and set 2 parameters.
The results shown in this figure indicate that OPTICS_DBSCAN (set 2) was unable to properly
mark outliers when a cluster of outliers separate from the main group of true contact pressure
readings is present in the pressure map. Additionally, a number of true pressure readings are also
being marked as outliers in these samples. Results indicate that the use of OPTICS_DBSCAN as
outlier dectection method comes at the expense of marking true pressure readings as outliers when

either using location-only or location-pressure input data (see Figs. 25, 29).
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Figure 29. OPTICS_DBSCAN — Low outlier accuracy samples in set 2 (location-pressure input)
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HDBSCAN

HDBSCAN algorithms were implemented from the Python module hdbscan (v0.8.20)
(Mclnnes et al., 2017). A graphical summary of the average accuracies obtained when using
HDDBSCAN, with both location and location-pressure data input, is presented in Figure 30. As
with similar figures, the top-left panel show average overall accuracies for each set of parameters
and input data. Right panels show average outliers (top-right) and non-outliers (bottom-right)
accuracies for each set of parameters when using seating pressure map samples with pre-identified
outliers. The bottom-left panel shows average non-outlier when using seating pressure map
samples without outliers. Results indicate that HDBSCAN algorithms behave somewhat similar
in terms of average outlier and non-outlier accuracies when either using the location information

as input data or both pressure and location information as input data.
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Figure 30. HDBSCAN — Overall, Outliers, Non-Outliers average accuracy by set

Table 16 show descriptive statistics of accuracies results for all sets of parameters used in

HDBSCAN algorithms when using the location information as input data. Only results obtained
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when using set 4 show average Outlier and Non-Outlier accuracies above 0.90. When using the

location-pressure input data, none of the sets showed paired accuracies above 0.90 (see Table 17).

Table 16. HDBSCAN — Accuracy results by set (location input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 1 0992 0.013 0.941 1.000
6 0990 0.014 0.941 1.000
7 0985 0.014 0.941 1.000
3 0981 0.018 0.929 1.000
5 0979 0.021 0.929 1.000
2 0920 0.034 0.845 0.997
4 0907 0.033 0.833 1.000
8 0905 0.034 0.816 0.996
Outliers Accuracy 4 0904 0.285 0.000 1.000
8 0.895 0.296 0.000 1.000
5 0843 0.323 0.000 1.000
3 0776 0.379 0.000 1.000
1 0746 0.366 0.000 1.000
2 0.674 0.452 0.000 1.000
7 0.631 0.468 0.000 1.000
6 0.247 0.364 0.000 1.000
Non-Outliers Accuracy 6  0.999  0.002 0.988 1.000
1 099 0.009 0.968 1.000
7 0990 0.011 0.957 1.000
3 098 0.017 0.929 1.000
5 0982 0.021 0.929 1.000
2 0925 0.043 0.842 1.000
4 0909 0.038 0.831 1.000
8 0.907 0.039 0.816 1.000

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

Figure 31 show boxplots for HDBSCAN outlier accuracies for all parameter sets when

using the location input data. Set 4 is highlighted to show points of individual pressure maps where

Outliers accuracies were not 1 (100%). This figure shows only three instances (out of twenty-

eight) where outlier accuracies were below 0.4. These instances are shown in Figure 32, where it

can be seen that HDBSCAN, when using set 4 parameters and location input data, had issues
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detecting outliers when in the presence of large group of outliers. Instead, the clustering algorithm

marked them as a secondary pressure cluster group. In all other cases, the clustering algorithm

detected the outliers in all other pressure maps successfully (see Fig. 31).

Table 17. HDBSCAN — Accuracy results by set (location-pressure input data)

Variable Set Mean StDev Minimum Maximum

Outliers Accuracy 8 0929 0.254 0.000 1.000
5 0879 0.301 0.000 1.000
4 0826 0.347 0.000 1.000
1 0812 0.363 0.000 1.000
3 0792 0.382 0.000 1.000
2 0.693 0.439 0.000 1.000
7 0.651 0.444 0.000 1.000
6 0217 0.347 0.000 1.000

Non-Outliers Accuracy 6  0.988  0.020 0.896 1.000
1 0.960 0.040 0.834 1.000
7 0.952 0.052 0.813 1.000
3 0.947 0.050 0.822 1.000
5 0.933 0.059 0.789 1.000
4 0921 0.063 0.755 1.000
2 0833 0.127 0.549 1.000
8 0.821 0.116 0.527 1.000
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Figure 31

. HDBSCAN — Outliers’ accuracy boxplots (location input data)
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Outliers Reference Set 4 Results
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Figure 32. HDBSCAN — Samples with low outlier accuracy in set 4 (location input data)

Figure 33 show non-outlier accuracies boxplots for all HDBSCAN parameter sets when
using the location input data. Set 4 (highlighted in figure) show many instances where non-outlier
accuracies are low (<0.9). Examples of these instances can be seen in Figure 34, where outlier
reference maps and cluster results are shown. When using set 4 parameters with location input
data, HDBSCAN appears to be somewhat sensitive to pressure readings outlining the main

pressure cluster (marking them as outliers). The algorithm also marks a number of internal non-
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outlier pressure readings as outliers. Due to these low non-outlier accuracies, HDBSCAN appears

to be unreliable for detecting outlier/non-outliers pressure readings in a 32x32 pressure map.
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Figure 33. HDBSCAN — Non-outliers’ accuracy boxplots (location input data)
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Figure 34. HDBSCAN — Samples with low non-outlier accuracy in set 4 (location input data)
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DENCLUE

DENCLUE algorithms were implemented from the Python module denclue (v2.0)
(Mgarrett, 2017). A graphical summary of the average accuracies obtained when using
DENCLUE, with both location and location-pressure data input, is presented in Figure 35. As with
similar figures, the top-left panel show average overall accuracies for each set of parameters and
input data. Right panels show average outliers (top-right) and non-outliers (bottom-right)
accuracies for each set of parameters when using seating pressure map samples with pre-identified
outliers. The bottom-left panel shows average non-outlier when using seating pressure map
samples without outliers. Unbalanced Outliers and Non-Outliers average accuracies are seen in
some sets using the location-pressure input data, indicating that one accuracy increases at the
expense of the other. DENCLUE algorithms generally show higher average accuracies for
detecting outliers when using only the location information of pressure readings as input data.
Table 18 show descriptive statistics of accuracy results for all sets of parameters used in

DENCLUE algorithms when using the location information as input data.
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Figure 35. DENCLUE — Overall, Outliers, Non-Outliers average accuracy by set
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Table 18. DENCLUE — Accuracy results by set (location input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 11 0996 0.009 0.953 1.000
13 0996 0.010 0.941 1.000
9 0.993 0.012 0.941 1.000
12 0972 0.088 0.494 1.000
10 0.874 0.287 0.000 1.000
Outliers Accuracy 10 0962 0.154 0.200 1.000
12 0952 0.155 0.200 1.000
11 0.850 0.282 0.000 1.000
13 0.806 0.306 0.000 1.000
9 0443 0.383 0.000 1.000
Non-Outliers Accuracy 9  1.000  0.000 1.000 1.000
13 0.999 0.004 0.975 1.000
11 0.998 0.005 0.975 1.000
12 0973 0.090 0.476 1.000
10 0874 0.291 0.000 1.000

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90)

Results in Table 18 show that, when using DENCLUE algorithms with the location
information as input data, parameters settings from set 12 resulted in high average outlier
accuracies (0.952) and high average non-outlier accuracies (0.973). Figure 36 shows boxplots for
DENCLUE outlier accuracies for all parameter sets when using location input data. Set 12 is
highlighted to show points of individual pressure maps where Outliers accuracies were not 1
(100%).

Figure 37 shows examples of outlier reference maps where Outlier accuracies were 0.20
(Fig. 37, top) and 0.83 (Fig. 37, bottom) when using location input data with DENCLUE and set
12 parameters. While DENCLUE algorithms generally create multiple clusters from the pressure
readings within a pressure map, it is still favorable for detecting outliers (marked as noise); only
one sample (out of twenty-eight) had an outlier accuracy less than 0.80 due to the presence of a

large group of outliers (see Fig. 37, top).
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Figure 36. DENCLUE — Outliers accuracy boxplots by set (location input data)
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High non-outlier accuracies (average of 0.973) were also obtained when using the
parameters settings from set 12 with the location information as data input. Figure 38 shows
boxplots for DENCLUE non-outlier accuracies for all parameter sets when using the location input
data. Set 12 is highlighted to show points of individual pressure maps where Non-Outliers
accuracies were not 1 (100%). Out of the twenty-eight samples with pre-identified outliers, only
three showed Non-Outliers accuracies less than 0.90 when using this DENCLUE set (2) and the
location data input. Figure 39 shows outlier reference maps of all instances where non-outlier
accuracies were less than 0.90 when using DENCLUE with set 12 parameters and location data
input. This figure shows how using the DENCLUE algorithm with set 12 parameters and location
data input create instances where true contact pressure readings outlining the main pressure cluster
are being identified as outliers (noise). While this outlier detection behavior is only seen in three
samples, the number of true contact pressure readings being marked as outliers is significant in

these samples.
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Figure 38. DENCLUE — Non-outliers accuracy boxplots by set (location input data)
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Figure 39. DENCLUE — Samples with low non-outlier accuracy in set 12 (location input data)

To maximize the non-outlier accuracies found in set 12 (Table 18), additional runs were

performed using the DENCLUE clustering algorithm with the location information as input data.

The DENCLUE parameter for minimum density (min_density) was found to be influential in

marking pressure readings as outliers, and it was fine-tuned to reduce instances such as the ones

depicted in Figure 39. The additional sets of DENCLUE parameters evaluated in this study are

shown in Table 19, these are again used with the location input data.



89

Non-outlier accuracies increased by reducing the minimum density value (from the value
of 1.8e-03 used in set 12). Unfortunately, this increasing in non-outlier accuracies were at the
expense of lower outlier accuracies. However, acceptable tradeoffs were found where increased
non-outlier accuracies were obtained while still maintaining a high average outlier accuracy
(>0.90). Table 20 shows accuracies results for the additional DENCLUE sets. Results from sets
14 and 15 show an increase in average non-outliers accuracies when compared to the results

obtained from set 12; also, the minimum non-outliers accuracies are also significantly higher.

Table 19. DENCLUE additional parameter sets for location input data

Set DENCLUE (NP)
14 - epsi2

min_density:1.7e-03
15 eps:0.01

min_density:1.65e-03
Note: NP = No Pressure - Location input data

Table 20. DENCLUE — Accuracy results for additional sets (location input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 15 0995 0.010 0.953 1.000
14 0.992 0.020 0.868 1.000
12 0972 0.088 0.494 1.000
Outliers Accuracy 12 0.952 0.155 0.200 1.000
14 0926 0.175 0.200 1.000
15 0.907 0.187 0.200 1.000
Non-Outliers Accuracy 15 0.997  0.008 0.952 1.000
14 0.993 0.020 0.864 1.000
12 0.973 0.090 0.476 1.000

Figure 40 shows outlier accuracy boxplots for these additional DENCLUE sets (14 and

15). Even if lower outlier accuracies are seen when compared to set 12, high outlier accuracies
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(i.e., greater than 0.90) are still obtained in most of the samples, notably for results obtained from
set 14. Figure 41 shows non-outlier accuracy boxplots for these additional sets. A signicant

increase in non-outlier accuracies were obtained when using parameters from sets 14 and 15, when

compared to results from set 12.
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Figure 40. DENCLUE — Additional outliers accuracy boxplots (location input data)
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Figure 41. DENCLUE — Additional non-outliers accuracy boxplots (location input data)
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Figure 42 shows a comparative visual analysis between the results from sets 12, 14 and 15
in instances where low outlier accuracies (Fig. 37) or low non-outlier accuracies (Fig. 39) were
found in set 12. Examples of low outlier accuracies among these sets (12, 14, and 15) are shown
in Figure 42 (first and second row in the figure). Generally, using parameter settings from set 12
result in detecting and marking outlier with higher accuracy by correcly detecting more scattered
outliers than results when using parameter settings from sets 14 or set 15 (e.g., 2" row in Figure
42). But in other instances, results obtained from all sets were similar in their inability to detect a
distinct cluster group of outliers as extrinsic pressure artifacts (e.g., 1% row in Figure 42).

The benefits of running the additional sets (14 and 15) are seen in their improvement of
non-outlier accuriaces when compared to set 12 results. Instances where low non-outlier accuracies
were seen when using parameter settings in set 12 are now greatly improved when using parameter
settings from either set 14 or set 15 (e.g., see rows 3-5 in Figure 42). While the DENCLUE
algorithm is more relaxed when using parameter settings from set 14 or 15 (in terms of detecting
and marking outliers), it still offers high outlier accuracies (>0.90) in most of the pressure map
samples (see Fig. 40) with greatly improved non-outlier accuracies (see Fig. 41).

In summary, using the location information as input data, parameters of minimum density
between 1.65e-03 to 1.7e-03, and epsilon parameters between 0.01 to 2, as used in sets 14 and 15,
were shown to be adequate when using DENCLUE algorithms for detecting outlier/non-outliers

sitting pressure readings in a 32x32 pressure map.
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Set 12 Results

144-1-1779 (O) - DENCLUE (NP) [Clusters: 330, Noise: 4]
0

300400
frin_density:1 8603

sees:
Sees

»550]

!
o

4

s

0 4 8 12 16 20 24 28 32

131-2-3821 (O) - DENCLUE (NP) [Clusters: 406, Noise: 5]
0

P e 5200400
o oo @ 80 min_density:1.0¢-03.
4 f oorn
§ seae
< y g 3
8 t 3 e 3
12 sascs ) R
IS seossclilccces 3
¢ o 33 3
16 L C yaee ] «
S eoaacoNeana 3
160000000080
20 o
24 e e aeaccanscaasas)
(60600000 cesssse)
Jesseaseccsaccas]
(¢ecaaccascacs)
28 esee) 3
32 Lol

0 4 8 12 16 20 24 28 32

183-2-2489 (O) - DENCLUE (NP) [Clusters: 248, Noise: 291]
0

op52.00400
rin_density:1. 0603

0 4 8 12 16 20 24 28 32

137-3-3465 (0) - DENCLUE (NP) [Clusters: 276, Noise: 215]
o

® |(ws20e400
min_density:1.8e-03

o a 8 12 16 20 24 28 32

137-3-2640 (N) - DENCLUE (NP) [Clusters: 375, Noise: 99]
0

360360
min_Gensity'1 8e-03
4
03 2
& 2
8 & ] ®
& ‘e
&
12
16
20
24
ost s 1
f aessass e
28 St o]
h® )
55 gose
0 4 8 12 16 20 24 28 3

Set 14 Results

144-1-1779 (O) - DENCLUE (NP) [Clusters: 330, Noise: 4]
0

ps:2.0e400
min_density:1.7e-03;

IS
>00.0)
yoael
yon'6]
000

20

24

28

32

0o 4 8 12

16 20 24 28 32

131-2-3821 (O) - DENCLUE (NP) [Clusters: 407, Noise: 4]
09

o000 oo @ ps:2.0400
o oo © e min_density:1 7e-03
44 § sase
e
¢ Jae ol
e ) o s 0
8 ¢ 3 a8
12 sasse
¢ 5 3
164 e % 3 o
2! >
20 8!
247 Recsccecseccsssond
fossasasanansasel
(easasscansans)
284 ssceyesece)
324 Q . .
0 4 8 12 16 20 24 28 32

eps:2.0e 400
min_density:1.7e-03

137-3-3465 (O) - DENCLUE (NP) [Clusters: 457, Noise: 34]
0

® | (eps20e400
2 min_density:1.7e-03
4 o 00
SR
8 y feassas:
] [esscsso
3
12 ssesss
16 sesseecccasesesasoas)
[sacecacccccacasecacssas
Josacecosasassassassanae]l
[esescsoccsccasssssasscsl
20 (eavesacasasanasanan
24 Y 0
(o o
28 ( )
B S e —
0 4 8 12 16 20 24 28 32

137-3-2640 (N) - DENCLUE (NP) [Clusters: 468, Noise: 6]
0

eps:2.0e+00
l min_density:1.7e-03
4 Q
Je Y
& 3
8 ke e 5
Jocs
12 Suag
16 yessaas]
esess]
esees]
20 LIXX
24 pe o)
33 o
28 (§§ o}
GO )
2l SOMCESS .
0 4 8 12 16 20 24 28 32

Set 15 Results

144-1-1779 (O) - DENCLUE (NP) [Clusters: 330, Noise: 4]
04

eps:L.0e-02
min_density:L 6e-03

29.0.0)

00

sess.
sees:
09

20
244

0o 4 8 12 16 20 24

324

28 32

131-2-3821 (O) - DENCLUE (NP) [Clusters: 408, Noise: 3]
0

aco. © eps:L0e-02
ose) min_density:1.6e.03
i o
sae
o vol
o ol
8 !
12 o 55
¢ 3 3
IS 3
16 le 3 ‘
7 J
20 o
[seccecscascasaas
24 (0eesecsoscoeses)
Jesacassasssaace]
(saeasssassses)
28 ssceyecece)
32 Q

183-2-2489 (0) - DENCLUE (NP) [Clusters: 496, Noise: 43]
0
®

- 0 eps:1.0e-02
2o . . densiy:L 6003

4 (-

’

:
8 sses
12
1 ,

.

6 )

( ,
20

g

_

0 4 8 12 16 20 24 28 32

137-3-3465 (0) - DENCLUE (NP) [Clusters: 481, Noise: 10]
0

L 1.0e-02
° min_density:1.6e 03

4

¢ )

< 3
8 n

¢ vol
12
16 Jocs e yaseassees)

Jocaseas yaseaseoee]

joeavas yasoasscan]

[eecve yecocssesel
20 13T AT
4 ax 0

B to
28 ( >
evasse)

32 O eeoe

16 20 24 28 32

137-3-2640 (N) - DENCLUE (NP) [Clusters: 473, Noise: 1]
0-

eps:1 0e-02
min_density1.6e-03.

yo 0ol
»

0
o
X

000l

s eeses

2ee0)

164

0800
90909

201

244

284

24,

24 28 32

Figure 42. DENCLUE — Samples with low accuracies in sets 12, 14 and 15 (location input data)
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DBCLASD

DBCLASD algorithms were implemented from the Python module py-dbclasd (Palacio,
2015). A graphical summary of the average accuracies obtained when using DBCLASD, with both
location and location-pressure data input, is presented in Figure 43. As with similar figures, the
top-left panel show average overall accuracies for each set of parameters and input data. Right
panels show average outliers (top-right) and non-outliers (bottom-right) accuracies for each set of
parameters when using seating pressure map samples with pre-identified outliers. The bottom-left
panel shows average non-outlier when using seating pressure map samples without outliers.

Results indicate that DBCLASD algorithms generally show higher average outlier and

non-outlier accuracies when using the pressure readings’ location as input data, as compared to

using location-pressure as input data.
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Figure 43. DBCLASD - Overall, Outliers, Non-Outliers average accuracy by set
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Table 21 show descriptive statistics of accuracy results for all sets of parameters used in
DBCLASD algorithms when using location information as input data. Unfortunately, none of these
sets show both average outlier and non-outlier accuracies above 0.90. The highest Outliers
accuracy is seen when using the parameter settings in set 13 with a 0.819 accuracy in detecting

pre-defined outlier pressure readings (i.e., extrinsic pressure artifacts).

Table 21. DBCLASD — Accuracy results by set (location input data)

Variable Set Mean StDev Minimum Maximum
Overall Accuracy 12 0.987 0.036 0.826 1.000
13 0.987 0.030 0.838 1.000
9 0985 0.051 0.650 1.000
11 0979 0.039 0.851 1.000
10 0.974 0.065 0.755 1.000
Outliers Accuracy 13 0819 0.236 0.167 1.000
12 0.764 0.294 0.000 1.000
9 0.725 0.342 0.000 1.000
10 0.716 0.353 0.000 1.000
11 0.685 0.366 0.000 1.000
Non-Outliers Accuracy 12 0.989  0.036 0.826 1.000
13 0.989 0.030 0.842 1.000
9 0.988 0.051 0.650 1.000
11 0982 0.039 0.851 1.000
10 0.976 0.066 0.755 1.000

Figure 44 shows boxplots for DBCLASD outlier accuracies for all parameter sets when
using the location input data. Set 13 is highlighted to show points of individual pressure maps
where Outliers accuracies were not 1 (100%). While results of using parameter setting described
in set 13 show many samples with high outlier accuracy (median = 0.944), there are many instances
where the detection of outliers was poor. Figure 45 show examples where low outlier accuracies
were obtained. In some instances, the DBCLASD algorithm appears to have issues in detecting

scattered outliers points within seating pressure maps (see Fig. 45, top).
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Some of the results obtained while using DBCLASD algorithms with location input data
and parameter settings in set 13 were unusual. Figure 46 show some examples were low non-
outlier accuracies were obtained. This figure shows a number of true contact pressure readings
(i.e., non-outliers) being incorrectly marked as outliers in an unusual manner. Due to algorithms’
inability to detect outliers and non-outliers with high accuracies, DBCLASD appears to be an

inadequate technique for detecting unwanted pressure readings in a 32x32 pressure map.
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Figure 46. DBCLASD — Samples with low non-outlier accuracy in set 13 (location input data)

Spatial Clustering Summary
Many spatial clustering methods were shown to be adequate for detecting outlier/non-
outliers seating pressure readings in a 32x32 pressure map. DBSCAN and DENCLUE algorithms,

in particular, showed superior average outlier and non-outlier accuracies among the various
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clustering methods evaluated. Given the results obtained from these clustering algorithms,
recommended parameters for DBSCAN and DENCLUE algorithms are shown in Table 22.

An absolute superiority of a particular combination of clustering method/parameter settings
against others cannot be reached. Irrespective of the clustering method used, a tradeoff between
outlier and non-outlier accuracies is usually seen when trying to increase one or the other. While
a particular method/parameter combination cannot be chosen as the best, results indicate that better
outlier/non-outlier accuracies are typically obtained when only using location information of the

pressure readings as input data in most of the evaluated clustering algorithms.

Table 22. Summary of analysis results for recommended clustering methods

Average Accuracy Avg.
Method Parameters Input ] ] Proc
Outliers ~ Non-Outliers ~ Overall  Time
DBSCAN  ©Ps: 1.60, 1.80 Location  0.949 0.989 0.988  5.8ms
min_samples: 8
DENCLUE ©PS:2 Location  0.926 0.993 0992  11.1s
min_density: 1.7e-03 ' ' ' '
DBSCAN  ©Ps:2:00,2.20 Location  0.925 0.995 0.994  5.8ms
min_samples: 10
eps: 0.01 .
DENCLUE min_density: 1.65-03 Location 0.907 0.997 0.995 11.5s
DBSCAN  ©PS: 25 Location  0.817 0.999 0997  5.7ms

min_samples: 10

Among the recommended methods (Table 22), the highest average outlier accuracy was
achieved by DBSCAN when using parameters of epsilon between 1.6-1.8 and setting minimum
samples at 8. This combination produced a 94.9% average outlier accuracy rating while
maintaining an average non-outlier accuracy close to 99% (0.989). The highest average non-outlier
accuracy, while maintaining an average outlier accuracy greater than 90%, is achieved by

DENCLUE when using a minimum density of 1.65e-03, with a 99.7% average non-outlier
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accuracy rating. A good balance between average outlier and non-outlier accuracies were achieved
by DENCLUE when using a minimum density of 1.7e-03, with 92.6% and 99.3% respectively.

If preservation of all true contact pressure readings is of utmost importance, a DBSCAN
algorithm with parameters epsilon parameter minimum samples set at 2.5 and 10, respectively,
showed very high non-outlier accuracies when using the location input data (see Table 22). This
particular combination produced 52 out of 56 samples with 100% non-outlier accuracy scores, and
the remaining samples with non-outlier accuracy scores greater than 97.51%. Considering its high
non-outlier accuracies, an acceptable average outlier accuracy score of 81.7% was also achieved
by these DBSCAN settings. Another alternative for preserving most of the true contact pressure
readings is to use a DENCLUE algorithm with minimum density set at 1.65e-0.3 and use the
location information as input data. This DENCLUE combination showed very high average non-
outlier accuracies (0.997), and an improved average outlier accuracy (0.907) when compared to
the previously discussed DBSCAN combination (epsilon at 2.5 and minimum samples at 10).

The processing times for each clustering method were also recorded. Table 22 show
DBSCAN algorithms with average processing times of around 5.8ms when detecting outliers/non-
outliers in 32x32 pressure maps, while DENCLUE showed average processing times of around
11s. DBSCAN algorithms implemented in this research come from the module scikit-learn
(Pedregosa et al., 2011), a well-known fully-optimized machine learning python package. On the
other hand, the DENCLUE module available for python and used in this research is non-optimized.
This DENCLUE module has also been used in other research studies (L. Liao et al., 2017). The
need for a fully optimized DENCLUE python package (introducing multiprocessing optimization
during hill climb algorithms) will be beneficial for future pressure mapping analyses using the

python programming language.
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Spatial Autocorrelation and Image Statistical Features

The following subsections show results of the analysis of spatial autocorrelation measures
and image statistical features for the following datasets: (1) static data subset, and (2) paired data
subset. Results of correlation and regression analysis are discussed with the aim of finding
meaningful differences between highly correlated variables, and eliminating correlated variables
via dimension reduction techniques (e.g., high correlation filters). Computation demands for

calculating various measures are also discussed.

Static Data Subset

An average coefficient of variation was calculated for each subject using seating pressure
maps collected during their sitting session trials. Stratified sampling of subjects’ pressure maps
was used following the distribution of the average coefficient of variation by subject (see Fig. 47).

Twenty (20) samples of seating pressure maps were selected to create the static data subset (see

Appendix H).
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Figure 47. Histogram of subjects’ average coefficient of variation
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Spatial Autocorrelation. Measures of Moran’s I and Geary’s C were calculated using
modules from the Python Spatial Analysis Library (PySAL v1.14.4) (Rey & Anselin, 2007). The
results showed that the measures are inversely identical to each other within the context of seating
pressure mapping (using the static data subset). Regardless of the weight matrix used, both
measures showed a very strong correlation between each other with correlation values of r = -1,
r=-0.998, andr = —0.999 for the queen, constant-distance, and inverse-distance weight
matrices respectively. By having very similar behavior to Gearys’ C and easier interpretability
(with a defined autocorrelation range from -1 to 1), Moran’s I spatial correlation measure appears
to be a better candidate as a new pressure measure.

On the other hand, computational demands using the PySAL python package were very
different between these measures, even if formulas have a similar degree of complexity (see Eq. 1
and Eq. 2). Figure 48 shows the average processing times when calculating the spatial

autocorrelation measures in the static data subset samples.

Spatial Autocorrelation Measures

Average Processing Time
= Weight
[T Constant-Distance
400 M Inverse-Distance
| Queen
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Figure 48. Spatial autocorrelation measures average processing time (static data subset)
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Average processing time for calculating Moran’s I was under 25ms in all weight matrices;
Geary’s C, on the other hand, showed an average processing time of around 150ms when using
the queen matrix (3x3), and around 400ms when using other larger weight matrices (5x5) (see Fig.
48). The effect of choosing different weight matrices not only affected the computing time, but
also the magnitude of the spatial autocorrelation measure. Figure 49 shows Moran’s I spatial
autocorrelation measures using different weight matrices for all samples in the static data subset.
Moran’s | results show moderate to very strong positive spatial autocorrelation within all pressure
map samples, with consistently higher measures when using the queen weight matrix (Q). Using
weight matrices with a larger area (5x5 instead of 3x3) affected the Moran’s I values. When using
the Inverse-Distance weight matrix (ID) and Constant-Distance weight matrix (CD), both using a
5x5 matrix, Moran’s I values are reduced by approximately 10.6% and 15.1% respectively,

compared to results obtained when using the Queen weight matrix (Q) (3x3) (see Fig. 49).

Moran's | Spatial Autocorrelation Measure by Weight Matrix
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Figure 49. Moran’s I spatial autocorrelation by weight matrix (static data subset)
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A correlation analysis using Pearson product-moment was used to assess the relationship
between all known and proposed pressure map measures using the samples in the static data subset.
Figure 50 shows the results of the correlation matrix presented as a hierarchical clustered
correlogram.

Focusing on the correlated clusters where spatial autocorrelation measures are included
(Fig. 50, top left), other meaningful correlations besides the ones between themselves (Moran’s I
and Geary’s C) are also seen. The correlation measures obtained from Gray-Level Spatial-
Dependence (GLSD) statistical features in the Y direction (GLSD — Correlation Y) and Moran’s I
(Q) (queen matrix) show a strong positive correlation (R? = 0.891). Figures 51 and 52 show the
regression model, fitted line plot, and standardized residual plots between these measures. An
unusual observation (std.residual > |2|) detected while fitting the regression model can also be
seen in these figures. Figure 53 shows the pressure map of this unusual observation (Fig. 53a),

along with calculated Moran’s I and GLSD Correlation Y measures.

Fitted Line Plot
Morans | (Q) = 0.3520 + 0.5886 GLSD - Correlation Y
0.90 s 0.0187338
R-5q 89.1%
g R-Sq(adj) 88.5%
o
L P
0.85 ‘/i'
Unusual Observation /./
.
0.80 S
5 ® o
- // *
g 075 e
A
e
~
0.70 e
e
//
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0.65 ///
[ ]
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0.5 0.6 0.7 0.8 0.9
GLSD - Correlation Y

Figure 51. Moran’s I vs GLSD Correlation Y regression (static data subset)
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Moran's | (Q) vs GLSD - Correlation Y
Normal Probability Plot (Response is Morans | (Q))
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Figure 52. Moran’s I vs GLSD Correlation Y residuals (static data subset)
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(d) 161-1-1833 Second Gradient Map

Sample 117-1-1193* 161-1-1833
Moran’s I (Q) 0.79220 0.798580
GLSD — Correlation Y 0.67993 0.759185

*Unusual Observation

Figure 53. Moran’s I vs GLSD Correlation Y unusual observation (static data subset)
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For comparative purposes, Figure 53 also shows a secondary pressure map (Fig. 53b) with
a similar Moran’s I measure, but with a GLSD Correlation Y result close to the expected value
(std.residual = —0.01). Second gradient maps along the Y-axis (90°) are also presented in this
figure for each one of the pressure maps; these are calculated by using second order accurate
central differences in the interior points of the images, and first order accurate one-sides (forward
or backwards) differences at the image boundaries at a given direction. By comparing the second
gradient maps between these samples, more scaterring of positive/negative gradients are seen in
Figure 53c, while Figure 53d has more defined gradient clusters. GLSD Correlation measures
appear to be sensitive to these pressure gradient variations at a given direction (e.g., 90°), while
measures of Moran’s I appear to give more emphasis in measuring presence of correlated pressure
cluster with more robustness to these pressure gradient variations.

It is also important to highlight that measures of correlation using GLSD do not require
any weight matrix. The magnitude of Moran’s I spatial autocorrelation measure was significantly
affected by defining weight matrices with different areas of interest (i.e., moving window) (see
Fig. 49). For the seating pressure maps evaluated in this study, the use of a queen weight matrix
appears to be a more conservative approach when calculating Moran’s 1 spatial autocorrelation
measures. As the max-min size of autocorrelated high pressure clusters (e.g., ischial tuberosities)
are usually within a 3 x 3 region of pressure cells (see Appendix H), higher Moran’s 1 spatial
autocorrelations values are obtained due to matching the size of these high-pressure clusters to the
size of the queen weight matrix. Therefore, there appears to be a relationship between the expected
max-min size of pressure correlated regions and selecting the size of the regions of interest in a
weight matrix. A weight matrix with a region of interest greater than the max-min size of

autocorrelated high-pressure clusters could potentially weaken the spatial autocorrelation values.
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While Moran’s I and GLSD Correlation measures showed similar behaviors (R? =
0.891), they were found to be unique pressure map descriptors, and are adequate measures of
spatial autocorrelation of pressure maps. In the context of seating pressure maps, high spatial
autocorrelation values indicate presence of distinct pressure clusters of various levels formed by
contiguous pressure readings, while low values indicate scattered low/high pressure readings or
distinct low-area high-pressure points (e.g., acute pressure points). Appendix | include results of
measures of spatial autocorrelation (Moran’s I and GLSD Correlation) for all samples in the static
data subset (Appendix H).

Researchers have the option to measure spatial autocorrelation within pressure maps using
Moran’s I, which allows them to choose the size/weight of the area of interest (i.e., moving
window) and is more robust to gradient variations, or use GLSD Correlation, which does not

require a described weight matrix and is more sensitive to localized pressure gradient variations.

Image Statistical Features. Results from the correlation matrix and clustered correlogram
also show instances where many image statistical features and known pressure measures are
grouped into highly positive or negative correlated clusters (see Fig. 50). Measures of Gradient
Contrast (GLD) and Contrast (GLSD) behave almost identically (R? ~ 100%) regardless of the
measure’s direction [0° (X) or 90°(Y)]. Other measures, such as Gradient Contrast (GLD) and
Gradient Mean (GLD), also behave similarly at either direction with R? ~ 84.5% at 90°, and R? ~
90.3% at 0°. Despite this, there were some instances where unusual observations were observed
during regression analyses in both directions [0° (X) and 90°(Y)], these are shown in Figures 54

to 57.
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Figure 54. GLD Gradient Contrast Y vs GLD Gradient Meant Y regression (static data subset)
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Figure 55. GLD Gradient Contrast Y vs GLD Gradient Meant Y residuals (static data subset)
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Fitted Line Plot
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Figure 56. GLD Gradient Contrast X vs GLD Gradient Meant X regression (static data subset)
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Figure 57. GLD Gradient Contrast X vs GLD Gradient Meant X residuals (static data subset)

Figure 58 shows pressure maps of the samples where measures of GLD Gradient Contrast

[in 0° (X) or 90°(Y)] were unusual and higher than predicted. The figure shows that Gradient
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Contrast values are significantly higher, considering values of Gradient Mean, when pressure maps
have either a single or small group(s) of acute high-pressure cells. These instances are captured
better by measures of GLD Gradient Contrast due their sensitivities for high gradients (see Eq. 6
and Eq. 9). These two measures (GLS Gradient Contrast and GLD Gradient Mean) are considered
adequate as global measures of pressure gradients within a pressure map due to their uniqueness

as pressure map descriptors.

190-3-755, Pressure Map (mmHg) [CV = 0.877] 140-3-3396, Pressure Map (mmHg) [CV = 1.103]
0 = 300 0 300
54 250 54 * 250
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(a) 190-3-755 Pressure Map (b) 140-3-3396 Pressure Map

Sample 190-3-755 140-3-3396

GLD - Gradient Contrast X 962.358 *1943.149

GLD - Gradient Mean X 20.475 25.279

GLD - Gradient Contrast Y *1062.769 *1417.125

GLD - Gradient Mean Y 16.962 22.803

*Unusual Observation

Figure 58. GLD Gradient Contrast vs Gradient Mean unusual observations (static data subset)

Results from the correlation matrix and clustered correlogram presented in Figure 50 also
show other sets of statistical features that are grouped in strongly positive or negative correlated
clusters. Measures of Homogeneity (GLSD), Inverse-Difference Moment (GLD), and Gradient

Second Moment (GLD) are shown as positively correlated, and are measures commonly used to
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quantify an image texture. An image texture measures the variations of the surface intensity and
quantifies properties of smoothness, coarseness and regularity (Kurani et al., 2004, p. 1). Measures
of Homogeneity (GLSD) and Inverse-Difference Moment (GLD) behave similarly when measured
at 90° (R? =~ 94.5%) or 0° (R? ~ 94.2%) with no unusual observations in the regression models.
A strong negative correlation was found between Gradient Second Moment (GLD) and
Gradient Entropy (GLD) in both 90° (R? ~ 96.5%) and 0° (R? ~ 92.2%) directions. GLD
measures of Gradient Mean and Gradient Entropy also behave similarly when measured either at
90° (R? =~ 95%) or 0° (R? =~ 90%). The Gradient Second Moment (GLD) measure looks for
lack of noise (or disorder) in pixel intensities, whereas Gradient Entropy (GLD) increases with
noise/disorder; both of these measures are being affected, in opposite directions, by an overall
increase in pressure gradients (i.e., an increase in pressure gradients [Gradient Mean (GLD)] is
usually associated with an increase in image noise [Gradient Entropy (GLD)] and, thus, a decrease
in surface smoothness [Gradient Second Moment (GLD)] within a pressure map image).
Statistical features of Gradient Second Moment (GLD) and Homogeneity (GLSD) do not
show a very strong correlation between themselves (R? ~ 61% at 90°,and R? ~ 50% at 0°),
even when both are measures of a pressure map texture and/or smoothness. Figure 59 shows line
plots for values of both of these measure at 90° (Y) for all samples in the static data subset. Two
samples are highlighted to indicate where significant differences or unusual observations were
seen during regression analyses (std.residuals > |2.29]). Figure 60 shows pressure maps,
gradient maps, and values of Gradient Second Moment (GLD) and Homogeneity (GLSD) for these
unusual observations. First-order gradient maps are calculated as absolute differences in pressure

in a given direction.
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First-order gradient map from sample 122-2-2954 (Fig. 60c) shows low variations in the
magnitudes of absolute gradients (low texture), reflected as a high Gradient Second Moment
(GLD) value due to this. On the other hand, a higher texture is seen in gradient map from sample
145-1-1601 (Fig. 60d), resulting in a lower Gradient Second Moment (GLD) value. In contrast,
the measure of Homogeneity (GLSD) in sample 122-2-2954 is higher than expected due to the
presence of pressure clusters with identical high-pressure readings (300 mmHg), a consequence of
the pressure interface mat limits (max. pressure response). Results indicate that Homogeneity
(GLSD) measures are sensitive when a number of contiguous equal-value pressure readings are
present in the pressure maps (i.e., homogeneity within various pressure cluster levels), while
measures of Gradient Second Moment (GLD) are more sensitive to gradient transitions.

Both Gradient Second Moment (GLD) and Homogeneity (GLSD) measures are adequate,
and complementary, measures of pressure map texture and homogeneity. Higher values on these
measures will generally indicate a pressure map with smoother transitions between pressure levels,

with less coarseness within the pressure map, and more homogeneous pressure cluster levels.

GLD Gradient Second Moment Y vs GLSD Homogeneity Y
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Figure 59. GLD Gradient Second Moment Y vs GLSD Homogeneity Y (static data subset)
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Sample 122-2-2954 145-1-1601
GLD - Gradient Second Moment X 0.0336 0.0174
GLSD - Homogeneity X 0.0786 0.0593
GLD - Gradient Second Moment Y *0.0436 0.0305
GLSD - Homogeneity Y 0.0775 *0.1062

*Unusual Observation

Figure 60. GLD Gradient Second Moment vs GLSD Homogeneity unusual observations

(static data subset)

Other sets of statistical features that also show strong correlations are Energy (GLSD),

Entropy (GLSD), and Contact Cells (see Fig. 50). An initial assessment found that the direction of

measurement does not significantly affect the behavior of Entropy (GLSD) [R? ~ 96.1% between

90°(Y) and 0°(X)]. Similarly, measures of Energy (GLSD) are also generally not affected by the
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direction of measurement (R2 ~ 92% between 90°(Y) and 0°(X)). Measures of Energy (GLSD)
and Entropy (GLSD) are almost inversely identical to each other with R? > 97.7% in either
90°(Y) or 0°(X). Regression results for measures of Energy (GLSD) and Entropy (GLSD) were
obtained by excluding sample 145-1-1601 (see Fig. 60b). Figure 61 shows the relationship between
these image statistical features while highlighting measures’ discrepancies found in sample 145-
1-1601. Note that the measure scale for Energy (GLSD) is in inverse proportion. Energy (GLSD)
and Entropy (GLSD) are significantly affected when a pressure map shows pressure clusters at
max pressure response readings (300 mmHg) (see Fig. 60b). A higher entropy (e.g. ~9.25), and
much lower energy (e.g. ~1/582.67), is to be expected for this sample if the max pressure response
of the pressure mat interface was higher than subject’s true maximum exerted pressure in a given
cell. For this reason, sample 145-1-1601 was excluded during regression analysis. With the use of
a proper pressure mapping interface with no capped-pressure readings and clusters, single measure

such as Entropy (GLSD) at 0°(X) is representative of the second-order map texture.
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Figure 61. GLSD Energy X vs GLSD Entropy X (static data subset)
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Measures of Entropy (GLSD) [at 0°(X)] and Contact Cells also show a strong positive
correlation (R? =~ 89.3%) when considering all samples included in the static data subset. Two
unusual observations were found during regression analyses where the observed entropy values

were lower than expected (see Figs. 62, 63).

Fitted Line Plot
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Figure 62. GLDS Entropy X vs Contact Cells regression (static data subset)
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Figure 63. GLDS Entropy X vs Contact Cells residuals (static data subset)
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By considering localized pressure changes to identify randomness (noise) in the pairwise
pressure distribution at a given direction, GLSD Entropy values are expected to increase when the
number of contact cells increase as a higher diversity of pressure readings is expected. But presence
of homogeneous regions within a pressure map, relative to the contact pressure area, are also
affecting the entropy value. Figure 64 shows pressure maps where measures of Entropy (GLSD)

were unusual and lower than expected considering the size of the pressure maps.
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Sample 111-2-2878 189-3-3818
Contact Cells 497 297
GLSD - Entropy X 9.5496* 8.7443*
GLSD - Energy X 0.001434 0.002479

*Unusual Observation

Figure 64. Contact Cells vs GLSD Entropy unusual observations (static data subset)
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Common pressure measures, such as Sum of Pressure or Coefficient of Variation, do not
show high correlations with proposed pressure measures; with measures of Skewness and Kurtosis
only relating to each other (R? ~ 79.7%). On the other hand, Standard Deviation shows high
correlations with various contrast measures, being the highest with the measure of Gradient
Contrast X (GLD) (R? ~ 86.5%). But while the relationship between these measures is high, their
approach for measuring contrast and variability is fundamentally different. Measures of Gradient
Contrast are dependent on the spatial relationship of pressure readings, whereas Standard
Deviation do not take this spatial relationship into consideration. Illustrative examples can be seen
in Figure 65. The measure of Gradient Contrast in sample 186-1-3161 is high due to the presence
of a spatially-related high-pressure region located among low pressure readings (see Fig. 65b),
while measures of Standard Deviation are very similar for both of the pressure maps shown in this

figure (i.e., no spatial relationships are considered).
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(a) 161-1-1833 Pressure Map (b) 186-1-3161 Pressure Map
Sample 161-1-1833 186-1-3161
Sum of Pressure 19,865.39 19,567.5
Contact Cells 386 393
Standard Deviation 41.44064 40.77126
GLD - Gradient Contrast X 1278.728863 1562.537572

Figure 65. Standard Deviation vs GLD Gradient Contrast X example (static data subset)
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Static Data Subset Summary. In terms of spatial correlation measures, Morans’ I appears
to be more convenient to use than Geary’s C. While they both behave similarly, Moran’s 1 is easier
to interpret. Analysis of the selection of the weight matrix for spatial autocorrelation measures
indicate that higher spatial autocorrelations are obtained if area of interest (matrix moving window)
is similar to the max-min size of expected autocorrelated high-pressure clusters. GLSD Correlation
is also an acceptable measure of spatial autocorrelation; it does not require a described weight
matrix and is more sensitive to localized pressure gradient variations. Higher GLSD Correlation
values are usually obtained when measured in the anterior-posterior sitting direction [90°(Y)].

Many of the introduced image statistical features were also strongly correlated. In terms of
measures of variability and gradients, Gradient Contrast (GLD) and Contrast (GLSD) are relatively
the same measure, but the former is easier to compute and interpret. The same can be stated for
Gradient Mean (GLD) and Gradient Entropy (GLD), being the former easier to compute and
interpret. Measures of Gradient Contrast (GLD) and Gradient Mean (GLD) are both acceptable
global measures of pressure map gradients. While they share many similarities, the Gradient
Contrast (GLD) is more sensitive to pressure maps exhibiting a single or small group(s) of acute
pressure points, while the Gradient Mean (GLD) is more robust to these high-pressure points. For
these contrast measures, higher contrast values are usually obtained when measured in the lateral
sitting direction [0°(X)]. Compared to common measures of pressure variability such as Standard
Deviation or Coefficient of Variation, Gradient Contrast (GLD) and Gradient Mean (GLD) also
consider the spatial relationship of the pressure readings when assessing pressure map’s variability.

Measures of Gradient Second Moment (GLD) and Homogeneity (GLSD) are unique and
complementary measures for evaluating pressure maps’ texture, smoothness and pressure

regularity. Their differences lie in that Gradient Second Moment (GLD) is more sensible to
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changes in pressure gradients, while Homogeneity (GLSD) emphasizes more in measuring the
transition and similarities within various pressure levels. Higher values in both measures are
usually obtained when measured in the anterior-posterior sitting direction [90°(Y)].

Measures of Entropy (GLSD) and Energy (GLS) were found to be relatively the same.
These measures are also correlated with Contact Cells (i.e., number of non-zero pressure readings),
but they react differently if pressure maps exhibit high or low homogeneity given the size of the
contact area. Using measures of Entropy (GLSD) or Energy (GLS) as global pressure descriptors
is somewhat redundant if information on the number of contact cells and measures of homogeneity,
such as Gradient Second Moment (GLD), are available. The information provided by contact cells
and homogeneity can predict entropy/energy values with high accuracy (R? =~ 95%).

A dimensional reduction process focused on feature selection was followed by using high
correlation filters (R? > 0.8) in combination with analyses of regression models an evaluation of
unusual observations. The goal was to select a set of measures where each selected feature is able
to explain a unique user-chair interaction phenomenon. The selected pressure measures resulting
from this analysis can be seen in Table 23. Important common pressure measures are also included
in this set. Each proposed measure has been categorized according to its potential use in pressure
mapping analysis, along with important notes and recommendations for their applications.

In the following section, this reduced set of meaningful pressure measures are evaluated
using paired-samples of static pressure maps from different subjects. As a result of information
loss, these paired samples show no significant differences among common pressure measures (e.g.
Contact Cells, Sum of Pressure, and Coefficient of Variation). These new measures are analyzed
in their ability to discriminate and find differences (if any) among these paired samples, with the

goal of effectively recovering the information loss.
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Table 23. Set of meaningful pressure measures

Type Measure Notes
Indicates size of pressure area. A small high-pass
Contact Cells pressure filter (e.g. 5 mmHg) is recommended to
remove low pressure artifacts
General Measures the total amount of exerted pressure in
Sum of Pressure
contact area
Skewness Measures high-low distribution of pressure readings
, Recommended area of weight matrix similar to max-
Moran’s I S .
Spatial min size of expected correlated high-pressure clusters
Relation Correlation Sensitive to localized pressure gradient variations.
(GLSD) Higher values obtained along sitting direction axis (Y).
Coefficient of . —
Variation Non-spatial global measure of pressure variability
Pressure . i . .
S Gradient Contrast ~ Sensitive when pressure maps have either a single or
Variability

and Contrast

(GLD)

small group(s) of acute pressure points

Gradient Mean
(GLD)

Robust to high-pressure points.

Smoothness
and Texture

Gradient Second

Sensitive to changes in pressure gradients

Moment (GLD)
Homogeneity Emphasizes in measuring the similarities within various
(GLSD) pressure levels

Paired Data Subset

Similar to the sampling strategy used for creating the static data subset, stratified sampling

of subjects’ pressure maps was used following the distribution of the average coefficient of

variation by subject (see Fig. 47). For each level of coefficient of variation, random paired samples

were chosen if no significant differences (A < 5%) were found across the following common

pressure measures: Contact Cells, Sum of Pressure, and Coefficient of Variation. Ten (10) paired-

samples of pressure maps with various degrees of coefficient of variations were selected to create

the paired data subset (see Appendix J).
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Paired-Samples Analysis. To evaluate the discriminant power of newly proposed pressure
measures, a meaningful difference between paired-samples is considered when a relative
difference of at least ten percent is found between values of the proposed pressure measures
(A= 10%). For calculating Moran’s I, an appropriate weight matrix (i.e., Queen, Constant-
Distance, or Inverse-Distance) is selected for each paired-sample according to max-min size of the
correlated high-pressure clusters in the samples. GLD and GLSD measures are also considered at
both direction [90°(Y) and 0°(X)]. Results of common pressure measures are presented along
with any significant finding from the new pressure measures in each paired-sample.

As global descriptors of pressure distributions, the set of meaningful pressure measures in
Table 23 are unable to find differences in terms of shape, orientation, or position between pressure
maps; their emphasis is in describing pressure distribution patterns and spatial relationships within
pressure maps. Their results are useful in identifying differences and similarities of the within-map
intra-relationships of the pressure readings. Figures 66 and 67 are good examples of these
restrictions; where differences in terms of shape, location, and spatial position of pressure clusters
can be seen between paired samples. But focusing on the pressure distribution patterns and the
overall relationship of the pressure readings and clusters, some similarities can be seen between
these paired maps.

Figure 66 shows a number of small high-pressure clusters in both maps, along with
similarities in the spatial relationship between pressure levels. The main difference between these
maps is seen in the pressure transitions between the legs and buttocks, where Figure 66b shows a
more homogeneous transition than Figure 66a. These small differences are being successfully

detected by differences in the measures of pressure texture in the 90°(Y) direction.
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(b) 144-3-1841 Pressure Map

Sample Relative
Type Pressure Measure o A Plot
150-2-1968 |144-3-1841 %
© |ContactCells 288 293 1.74%
[J]
c
& [Sum of Pressure 17411.35 | 17503.15 | 0.53%
Z
% Coefficient of Variation 0.7959 0.7978 0.25%
&
>
‘l:’ GLD - Gradient Second Moment Y 0.0276 0.0320 16.00% U
& |GLSD - Homogeneity Y 0.0615 0.0709 |15.19% ﬂ

Figure 66. Pressure measures for samples 150-2-1968 vs 144-3-1841 (paired data subset)

*Red highlight: No meaningful differences are found (A < 10%)
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With respect to Figure 67, many similarities are also seen between the paired maps. These

maps show similar pressure distribution patterns and similar high-pressure clusters in terms of size

and magnitude (albeit in different locations). Minor differences can be seen in terms of pressure

scattering as Figure 67b shows more texture and roughness in the right leg regions and Figure 67a

shows more delineated acute pressure points close to the right ischial tuberosity. These minor

differences are being successfully detected by differences in the values of gradient contrast

(detecting acute points) and homogeneity (detecting texture differences).
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*Red highlight: No meaningful differences are found (A < 10%)

Figure 67. Pressure measures for samples 120-2-1719 vs 128-3-1298 (paired data subset)

In general, paired-samples from Figures 66 and 67 are somewhat similar, with only minor
differences seen in their pressure distributions. Only few of the reduced set of meaningful measures
(Table 23) were able to effectively capture these slight differences. The following selected
examples show paired-samples where more significant differences were detected by the newly
proposed pressure measures. A recurrent theme in these analyses is to also highlight the limitations
of common pressure measures. All figures presented in this section show differences in measures
of Contact Cells, Sum of Pressure, and Coefficient of Variation to be less than 5% (A < 5%),
highlighting the information loss due to their inability to detect certain pressure distribution

patterns. The full set of results for all paired-samples are shown in Appendix K.
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Figure 68 shows paired-samples were significant differences are seen between maps’
pressure distributions. The pressure map in Figure 68a shows better spatial relationship among
pressure readings, with distinct presences of clusters of low- and high-pressure levels, smoother
transitions between pressure levels, and greater homogeneity within the pressure levels. On the
other hand, Figure 68b shows high-pressure readings being scattered throughout the map (e.g.,

upper legs and tuberosities), and higher variability among contiguous readings.

122-3-51, Pressure Map (mmHg) [CV = 0.767] 170-2-2787, Pressure Map (mmHg) [CV = 0.752]
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(a) 122-3-51 Pressure Map (b) 170-2-2787 Pressure Map
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Type Pressure Measure o A Plot
122-3-51 |170-2-2787 %
— |Contact Cells 305 307 0.66% |
@ [sum of Pressure 11340.58 | 11345.89 | 0.05%
(]
©  |Skewness 1.7478 2.2060 26.22% ﬂ
= |GLSD - Correlation X 0.6824 0.4327 -36.60% I:i
= ]
& |GLSD - Correlation Y 0.8530 0.6351 -25.54% I]
Coefficient of Variation 0.7669 0.7525 -1.89% E
2 |GLD - Gradient Contrast X 535.50 927.20 73.15% ’
2 |GLD - Gradient Mean X 15.94 2003 | 25.65% ﬂ
S |GLD - Gradient Contrast Y 234.37 541.71 |131.14% |
GLD - Gradient Mean Y 10.04 15.53 54.65% E
GLD - Gradient Second Moment X 0.0345 0.0283 -17.77% [l
g GLSD - Homogeneity X 0.0782 0.0617 -21.07% [‘
E GLD - Gradient Second Moment Y 0.0553 0.0378 -31.62% |]
GLSD - Homogeneity Y 0.1026 0.0753 -26.61% |1

*Red highlight: No meaningful differences are found (A < 10%)

Figure 68. Pressure measures for samples 122-3-51 vs 170-2-2787 (paired data subset)
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The information loss while relying in common pressure measures is evident. Proposed
pressure measures were able to effectively detect differences between the pressure maps shown in
Figure 68. The scatteredness of high-pressure readings and the high-variability among contiguous
readings in Figure 68b translate to lower spatial measures, higher gradient measures, and lower
smoothness measures (i.e., increased texture) when compared to Figure 68a. Figure 69 shows

another set of samples to further illustrate the discriminability of the new pressure measures.
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Sample Relative
Type Pressure Measure o A Plot
118-2-61 [188-2-2491| % .
T |Contact Cells 368 364 | -1.09%
& [sum of Pressure 25704.47 | 25628.04 | -0.30%
_ [Moran's I (CD) 0.7905 0.5501 |[-30.41% |]
'%_ GLSD - Correlation X 0.8539 0.6808 -20.28% [l
¥ |GLSD - Correlation Y 0.8646 0.7400 -14.41% [‘
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% GLD - Gradient Mean X 25.11 38.17 52.01% D
‘;’ GLD - Gradient Contrast Y 1471.59 2819.38 [ 91.59% D
GLD - Gradient Mean Y 22.29 31.86 | 42.93% I
o |GLD - Gradient Second Moment X 0.0255 0.0180 (-29.41% |]
2 |6LSD - Homogeneity X 0.0797 00559 |[-29.94%| [B
= GLD - Gradient Second Moment Y 0.0317 0.0231 -27.17% |]

*Red highlight: No meaningful differences are found (A < 10%)

Figure 69. Pressure measures for samples 118-2-61 vs 188-2-2491 (paired data subset)
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By comparing the pressure maps shown in Figure 69, the scattered high-pressure clusters
seen in Figure 69b significantly influence the measures of spatial relationship, pressure gradients,
and map’s texture when compared to Figure 69a. Sample 188-2-2491 (Fig. 69b) also shows higher
variability among contiguous readings and presence of acute pressure points in the upper legs. On
the other hand, Figure 69a shows smoother transitions between pressure levels and more
homogenous readings within clusters of various pressure levels. The coefficient of variation,
commonly used to measure how evenly is the pressure distributed across the surface map, was
unable to detect these differences in terms of the number of high-pressure clusters in Figure 69b.

Figure 70 shows another example with similar results to the ones shown in Figures 68 and
69. In this figure, the pressure map in Figure 70b shows higher texture and variability, and an
increased number of disconnected high-pressure points/clusters. This leads to significant
differences in measures of spatial relationship, gradients, and pressure homogeneity.

With the common pressure measures still showing similar values for the pressure maps in
Figure 70, the measure of skewness is also indicating differences between the maps. Figure 70b is
more positively skewed, that is, higher frequencies in the lower side of the pressure spectrum (0-
300 mmHg) is seen in the distribution of pressure readings. Seating pressure maps are expected to
show positive skewness, as the number of relative low-pressure readings is usually significantly
higher than the number of relative high-pressure readings. The skewness measure is able to
quantify the degree of this relationship.

A visual representation of the distribution of the pressure readings for the pressure maps in
Figure 70 is shown in Figure 71. The presence of a higher frequency of low-mid pressure readings
(50-110 mmHg) in sample 158-3-3717 (Fig. 70b) is traduced as a higher skewness value when

compared to sample 137-2-922 (Fig. 70a). Sample 137-2-922 shows a higher frequency of mid-
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pressure readings (110-180 mmHg), and lower frequency of low-mid pressure readings (50-110
mmHg) when compared to sample 158-3-3717, making the pressure distributions more negatively
skewed. Note that measures of sum of pressure (i.e., the total exerted pressure in the pressure

sensing area) and number of contact cells are relatively almost the same.
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‘;" GLD - Gradient Contrast Y 1065.68 1762.09 | 65.35% D

GLD - Gradient Mean Y 22.69 29.31 29.16% [|
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= GLSD - Homogeneity Y 0.0672 0.0503 |[-25.22% |1

*Red highlight: No meaningful differences are found (A < 10%)

Figure 70. Pressure measures for samples 137-2-922 vs 158-3-3717 (paired data subset)
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Histograms of Pressure Readings. Samples 137-2-922 vs 158-3-3717.
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Figure 71. Pressure histograms for samples 137-2-922 vs 158-3-3717 (paired data subset)

Paired Data Subset Summary. Comparative results of the samples included in the paired
data subset emphasize the importance of introducing new pressure measures to recover the
information loss by current common pressure measures. The proposed measures of spatial
relationship, variability, gradients, and smoothness and texture are useful complements to
commonly used pressure measures; these new pressure measures are able to detect specific and
unique pressure distribution patterns that commonly used pressure measures are unable to. The
results in this section confirm that the set of meaningful pressure measures (Table 23) are valid
and feasible to be used as global descriptors of pressure distribution within pressure maps. If used
for comparative purposes, note that these measures are unable to identify differences in terms of
shape, location and/or spatial position of pressure clusters. To overcome these limitations, image

registration techniques are implemented and evaluated in the following section.
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Image Registration and Similarity/Dissimilarity Coefficients

The following subsections show the results of applying image registration techniques to
compare pressure maps where significant changes are seen in terms of the shape, orientation,
position and/or location of the pressure readings. Results from the following datasets are presented
accordingly: (1) transformed data subset, used for evaluating performance and accuracy of
registration techniques, and (2) registration data subset, used to analyze feasibility and practicality
of proposed comparative techniques (image registration and similarity/dissimilarity coefficients)
when significant movements occur (e.g., pressure map shifts, sitting reorientation or relocations).

While analyzing the transformed data subset, the similarity and dissimilarity coefficients
are initially used as a supplementary benchmark to evaluate the accuracies and performances of
the image registration techniques. Because the transformed pressure maps included in transformed
data subset are in fact the same pressure maps as the reference maps (with very small differences
due to the random transformation being applied), the resulting values of the similarity and
dissimilarity coefficients at registration optimality can be used to benchmark the registrations
procedure. A good registration procedure should result in approximately 1 in measures of
similarity and 0 in measures of dissimilarity.

It is important to note that for pressure maps that are inherently different, such as the ones
included in the registration data subset, the roles of the similarity and dissimilarity coefficients are
changed to post-hoc comparative measures instead of benchmarking measures. In these instances,
similarity and dissimilarity coefficients are only used to evaluate differences between registered
maps at optimality. Higher (lower) values in measures of similarity (dissimilarity) do not
necessarily indicate that a better registration was achieved by a particular registration method; but

in cases where pressure map images share a number of commonalities and features, a proper
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correspondence between registered pressure map images generally results in an increase (decrease)

of the similarities (dissimilarities) measures.

Transformed Data Subset

To evaluate the translational and rotational capabilities of the image registration
techniques, a subset of the dataset consisting of ten (10) samples of pressure maps was used.
Stratified sampling based on different levels of contact area was used to select the pressure map

samples and create the transformed data subset (see Fig. 12). Two random transformations, each

with a random translational and rotational shift, were applied to each pressure map sampled; these
were also included in the transformed data subset. Selected samples with applied random
transformations are shown in Appendix L.

Before running the optimal linear registration techniques [i.e., maximization of the Mutual
Information (MI), or minimization of the Mean Square Errors (MSE)], the pressure map samples
were upscaled to a factor of 10 (i.e., from a 32 x 32 map to a 320 x 320 map) to allow fine
adjustments of the position and orientation of the pressure maps during image registration
procedures.

Image registration algorithms were implemented from the SimplelTK (v1.2.0) python
package, which was developed at the US National Institutes of Health (NIH) and also available in
multiple programming languages (Yaniv et al., 2018). Before the registration process starts, an
initial transformation is applied to center the images, and is defined by the geometric moments of
gray level values computed from both images. This approach assumes that the moments of both
pressure maps are similar, and hence the best initial guess for registering the images is to

superimpose both mass centers (i.e., center of pressures).
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After the initial centering, a number of transformations occur during the registration
process. The transform used in this study applies a rigid transformation in 2D space with rotations
represented by a Euler angle, and are specified as a rotation around an arbitrary center, followed
by a translation. Linear interpolations are used to calculate resulting pressure map images during
these transformations. Both registration method (M1 and MSE) use the same acceleration settings,
convergence settings, and optimality parameters during the registration process. Gradient descent
is being used as the optimization algorithm during image registration.

Initial centering based on the geometric moments significantly reduced any translation and
location differences between pressure maps. Unfortunately, significant rotational differences
between pressure maps were found to have meaningful effects during registration procedures.
After applying Mutual Information (MI) image registrations to the transformed data subset, results
showed instances where large initial rotation differences between the maps significantly affected
the registration performance and accuracy. An example is shown in Figure 72 where pre-registered
pressure maps for sample 126-2-2177 are shown. The template image shown is the resulting map

after applying a random transformation (60° rotation, and horizontal and vertical translations).

MI Image Registration: 126-2-2177 vs 126-2-2177T, Scaling Factor: 10
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Figure 72. Sample 126-2-2177, original and transformed maps (transformed data subset)
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Figure 73 shows the results of registering the pressure maps presented in Figure 72 with
both registration methods (M1 and MSE). Results of the Mutual Information (M) registration were
not appropriate at optimality (25 iterations), as additional rotation transformations are needed for
better images’ correspondence (see Fig. 73, top). Similarity and dissimilarity coefficients are also
shown in the figure. Note that non-standardized metrics such as L; Norm and Squared L, Norm
are in magnitude of 102 due to scaling factors. The registration error obtained at Ml registration
optimality led to a non-scaled L, Norm measure (non-masked) of 10,983.49 mmHg, representing

approximately a 90.45% pressure error in pressure maps’ correspondence.

MI Image Registration: 126-2-2177 vs 126-2-2177T, Iteration 25
Metric: -0.8112565578452797
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MSE Image Registration: 126-2-2177 vs 126-2-2177T, Iteration 292
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Figure 73. Sample 126-2-2177, optimal MI and MSE registration (transformed data subset)
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Figure 73 also shows the results of registering the pressure maps presented in Figure 72
with the Mean Square Error (MSE) registration method (see Fig. 73, bottom). MSE results shows
an improvement in the registration procedure by obtaining better images’ correspondence when
compared to MI results. MSE registration shows a non-scaled L, Norm (non-masked) of 783.11
mmHg, representing approximately a 6.45% pressure error between images, with optimality being
achieved after 292 iterations (3.2s processing time).

Figure 74 shows pressure map differences at MSE optimality (see Fig. 73, bottom). These
pressure map differences are calculated by subtracting the pressure readings of the transformed
template pressure map (i.e. moving map) to the pressure readings in the reference pressure map
(i.e. fixed map). This figure shows a low-pressure lattice pattern for the pressure differences across
the pressure maps with some slight pressure differences around the left ischial tuberosity. This

lattice pattern is expected if a proper and successful registration is made on equal pressure maps.

MSE Image Registration: 126-2-2177 vs 126-2-2177T, Iteration 292
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Figure 74. Sample 126-2-2177, optimal MSE registration differences (transformed data subset)
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Another example where the registration procedure was affected by the significant rotation
difference between pre-registered pressure map is shown in Figure 75. This figure shows the
reference pressure map for sample 175-3-1142 along the template image resulting after applying

a random transformation (35° rotation, and horizontal and vertical translations).

MI Image Registration: 175-3-1142 vs 175-3-1142T, Scaling Factor: 10
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Figure 75. Sample 175-3-1142, original and transformed maps (transformed data subset)

Figure 76 shows the results of registering the pressure maps presented in Figure 75 with
both registration methods (MI and MSE). Results of using Ml registration were again unsuccessful
between these pressure maps, with additional rotation transformations still needed for better
images’ correspondence (see Fig. 76, top). An 83.27% pressure error in images’ correspondence
is detected by the L, Norm measure (non-masked) at M1 optimality. On the other hand, a successful
and proper registration was achieved when using MSE registration, with a 6.37% pressure error as
per the L; Norm measure (non-masked). Figure 77 shows pressure map differences at MSE
optimality. This figure shows the expected low-pressure lattice pattern of the pressure differences
between the pressure maps, with slight pressure differences around the mid-ischial tuberosities

region.
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Ml Image Registration: 175-3-1142 vs 175-3-1142T, Iteration 15
Metric: -0.8457956617867095
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MSE Image Registration: 175-3-1142 vs 175-3-1142T, Iteration 124
Metric: 18.426114469712083
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Figure 76. Sample 175-3-1142, optimal MI and MSE registration (transformed data subset)

MSE Image Registration: 175-3-1142 vs 175-3-1142T, Iteration 124
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Figure 77. Sample 175-3-1142, optimal MSE registration differences (transformed data subset)
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Previous examples demonstrate how significant differences in rotation between pressure
map images can have adverse effects when performing MI registration procedures; however, this
is not always the case. Figure 78 shows pre-registered pressure maps for sample 109-2-265 along
with the template image resulting from applying a random transformation (36° rotation, and
vertical and horizontal translation). While this transformation is similar to the one applied in Figure
75, the registration results were successful when using both registration methods. Figure 79 shows
proper registrations when using MI or MSE, with better results being obtained when using the

latter (10.55% and 5.59% L, Norm (non-masked) pressure error for MI and MSE respectively).

MI Image Registration: 109-2-265 vs 109-2-265T, Scaling Factor: 10
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Figure 78. Sample 109-2-265, original and transformed pressure maps (transformed data subset)

MI Image Registration: 109-2-265 vs 109-2-265T, Iteration 31
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Figure 79. Sample 109-2-265, optimal MI and MSE registration (transformed data subset)
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Excluding unsuccessful registrations for samples 126-2-2177 (Fig. 73) and 175-3-1142
(Fig. 76), proper registrations where generally achieved by MI for all other samples, with an
average L; Norm (non-masked) pressure error of 8.92% and non-masked Pearson Correlation
Coefficients of at least 0.9 (r = 0.9). However, using optimal linear registration based on Mean
Square Errors (MSE) minimization generally results in more accurate registration procedures.

Excluding unsuccessful registrations, Figure 80 shows the non-masked similarity and non-
masked dissimilarity scores at registration method’s optimality for all other samples in the
transformed data subset. A total of twenty registrations (ten pressure map samples, each with two
applied random transformations) were completed by each registration method. Individual points
in the figure represents the similarity/dissimilarity score achieved by the registration method in
each registered sample. Tanimoto similarity scores are not shown in the figure as their behavior
was almost the same as the Pearson similarity scores (R? = 99.85%). As seen in the figure, higher

similarities scores and lower dissimilarities scores are generally obtained with MSE registration.

Transformed data subset: Similarity and Dissimilarity Scores (Non-Masked)
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Figure 80. Non-masked similarity and dissimilarity scores plots (transformed data subset)
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As explained earlier in this section, the similarity and dissimilarity coefficients are being
used as a supplementary benchmark to evaluate the accuracies and performances of the image
registration techniques while evaluating the transformed data subset. Due to the fact that registered
pressure maps are almost identical to the reference maps, with differences being due to random
applied transformations, a registration method achieving a high similarity and low dissimilarity is
desired. The similarity and dissimilarity coefficient results obtained at MSE optimality generally
outperform the ones obtained at MI optimality. Visual feedback of the registration process also
confirms that MSE generally achieves optimal registrations with higher accuracies and better
images’ correspondences. Table 24 shows the results of one-sided Wilcoxon signed-rank tests,
including results from all samples, of the similarity and dissimilarity metric scores between MI
and MSE optimalities. These paired difference tests show that MSE registration achieves
significantly better results than Ml registration at @ = 0.05. The results of samples’ similarity and

dissimilarity coefficients obtained at MI and MSE optimalities are shown in Appendix M.

Table 24. M1 vs MSE: Wilcoxon signed-rank tests for similarity and dissimilarity results

(transformed data subset)

Hypothesis |  Hy: iy = pmse Ho: hmr < Humsk

Metric | Pearson | Min-Ratio | L; Norm | Sq L, Norm | Int-Ratio VVar

P-Value 0.001 0.003 0.002 0.001 0.004

Transformed Data Subset Summary. Image registration methods based on optimal linear
models of Mutual Information (MI maximization) or Mean Square Errors (MSE minimization)
were, for most samples, suitable for aligning the pressure map images in the transformed data

subset (i.e., mostly identical pressure maps). The pressure map resolutions obtained with these
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samples (32x32) required upscaling (e.g., factor of 10) to allow fine rotation and translation
adjustments during the registration process. Initial centering using image moments (i.e., center of
pressures) and subsequent 2D rigid transformation were generally adequate to achieve good
registration for both MI and MSE registration methods.

In some instances, Mutual Information exhibited registration issues when significant
rotation differences are present among pressure map images. On the other hand, results using MSE
provided proper and accurate registration for all samples included in the transformed data subset.
While Mutual Information generally reached optimality at a faster rate (53 less iterations on
average when compared to MSE registration), MSE provided significantly higher accuracy and
better images’ correspondence at optimality (see Fig. 80 and Table 24).

Similarity and dissimilarity coefficients, which quantify the relationship between pressure
images, generally confirmed good registrations at optimality, particularly for MSE. Use of MSE
registration resulted in an average Pearson Correlation Coefficient of r = 0.9966 and a 6.11%

average pressure error from L; Norm among all registered samples.

Registration Data Subset
This section shows the results and evaluations of using image registration techniques and
similarity and dissimilarity measures for analyzing and comparing pressure maps during dynamic

sitting. For this purpose, the registration data subset was created using twenty (20) samples of pairs

of pressure maps selected by stratified sampling based on the different levels of contact area (Fig.
12). Each sample pair was selected from indexes in a continuous sitting interval (within-subject)
where a potential significant positional shift or movement is detected. A potential significant
movement is considered as a translation of the center of pressure greater than one inch (A CP >

1 in) within a twenty seconds time window. Sample pairs selection was done while screening the
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dynamic movement to confirm that pressure maps selected are not within-movement, but rather to
select pre-movement pressure maps (with relative pre-movement stability) and a post-movement
pressure maps (with relative post-movement stability). Appendix N shows the selected pressure
map indexes from various sitting intervals (within-subjects) with the translation distances of the
Center of Pressure (CP) and the time window in frames (1 index ~ 1 second). Sampled pressure
maps were again upscaled by a factor of 10 for registration purposes. Upscaled pressure maps of
selected sample pairs are shown in Appendix O.

Given that MI and MSE registrations have different optimality metrics, and that the use of
similarity and dissimilarity coefficients as a registration benchmark is not appropriate for pressure
maps that are inherently different, visual feedback was used to assess images’ registrations and
correspondences results for MI and MSE registration optimality in all pairs of pressure map
samples. Subjective assessments of the seating pressure map alignments completed by each
registration method was done using expert knowledge. Iterative pressure map overlays and maps
with highlights of pressure differences during registrations were used for visual feedback
assessments. The results of MI and MSE registration optimalities for all pairs of pressure map
samples, along with notes from the subjective visual feedback assessments, can be seen in
Appendix Q.

Assessments via visual feedback found that in twelve out of the twenty registered samples,
there were no visually noticeable differences between the optimality results of Ml registration and
MSE registration, with both registration methods producing proper and accurate alignments
between the seating pressure maps. Visual assessments also showed that optimal results from MI
and MSE were found to be visually distinguishable in six others of the registered samples (see

notes in Appendix Q), with MSE producing better image correspondences in all of these samples.
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Figures 81 and 82 show some of the examples where visually distinct registrations are
found between image registrations (Ml and MSE). In both of these examples, MSE registration
was able to identify and correctly align the locations of the ischial tuberosities and legs regions
during the registration, greatly improving the images’ correspondence. The improvement in the
images’ correspondence achieved by MSE registration results in some measures showing higher
(lower) similarities (dissimilarities) when compared to results from the Ml registration (e.g., Figure
81 shows MSE results of 0.904 and 7,778.48 mmHg for non-masked variations of Pearson and
non-scaled L; Norm respectively, while MI shows results of 0.851 and 7,802.28 mmHg for these
same measures). Note that not every similarity or dissimilarity coefficient improves when using
MSE registration over MI registration (e.g., Figure 82 shows higher non-masked Pearson values
when using MSE over MI [0.819 vs 0.786], but lower non-masked non-scaled L, Norm values are
obtained when using M1 [6,631.85 mmHg vs 7,778.48 mmHg]).

Visual feedback assessments also found two pairs of samples where misalignments of the
pressure map images are present at optimality when using either registration (Ml or MSE). Figures
83 and 84 show the pressure maps for these pairs of samples along with optimal registration results
from MI and MSE, where evidence of incorrect alignments at registration optimalities are seen.

For the pressure map samples obtained from subject 169 (Fig. 83), both MI and MSE
registrations attempted to align the pressure clusters in the ischial tuberosities from the template
image (moving image) with the pressure clusters in the mid-tights regions of the reference image
(fixed image). In this instance, the lack of distinct high-pressure clusters around the ischial
tuberosities in the reference image and the significant difference in the size between pressure maps

greatly affected the images’ correspondence during both MI and MSE registration procedures.



Image Registration: 114-2-1826 vs 114-2-1836, Scaling Factor: 10
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MI Image Registration: 114-2-1826 vs 114-2-1836, Iteration 11
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Figure 81. Subject 114, optimal image registration: Ml vs MSE (registration data subset)



Image Registration: 152-1-1986 vs 152-1-1990, Scaling Factor: 10
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Figure 82. Subject 152, optimal image registration: M1 vs MSE (registration data subset)



Image Registration: 169-2-1993 vs 169-2-2009, Scaling Factor: 10
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Figure 83. Subject 169, optimal image registration: Ml vs MSE (registration data subset)
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Image Registration: 174-3-958 vs 174-3-970, Scaling Factor: 10
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Figure 84. Subject 174, optimal image registration: Ml vs MSE (registration data subset)
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In samples obtained from subject 174 (Fig. 84), the differences in the seating pressure maps
from index 958 to 970 (approximately twelve seconds) shows a complete re-orientation of the legs.
Image registration methods have to account for a rotational difference of around 70° to be able to
provide an adequate registration with proper images’ correspondence. Compared to MSE
registration results, MI registration was able to detect the need for significant rotational
transformations by showing registered pressure maps with better alignments, particularly in the
legs regions, but more rotation transformations are still needed for a proper registration. On the
other hand, MSE registration focused on aligning the mid- and high-level pressure clusters around
the mid-regions of the pressure maps, where most of the pressure is located. The pressure readings
under the leg regions were possibly not significantly considered by the MSE registration
procedures due to having relatively low-pressure values, with the rotational transformations
applied by the MSE registration actually being made in the opposite direction (not in alignment
with the legs orientation).

Findings from the visual feedback assessments indicate that using image registration
methods based on the minimization of the Mean Square Errors (MSE) results in alignments of
seating pressure map images that are equal to or better than the ones obtained when using Ml
image registration. In twelve out of the twenty registered samples (60%), no visually noticeable
differences were seen between the registration methods, but significantly improved alignments and
images’ correspondences where seen in Six of out of the twenty registered samples (30%) when
using MSE registration.

As explained earlier in this section, higher (lower) values in measures of similarity
(dissimilarity) do not necessarily indicate that a better registration is achieved by a particular

registration method. Nonetheless, an increase (decrease) in similarity (dissimilarity) measures is
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generally seen if proper correspondences are obtained at registration optimality between images
that truly share a number of commonalities and features. In the pairs of samples where the MSE
registration resulted in better pressure map alignments and images’ correspondence, significant
improvements in the measures of similarity such as Pearson and Tanimoto and dissimilarity
measures such as L; Norm and Squared L, Norm were seen, possibly due to the better image
correspondences achieved by MSE (see Appendix P). Measures of similarity and dissimilarity
were not significantly different in instances where the registration results from MI and MSE were
not visually distinguishable; but values of these coefficients where marginally better, in most cases,
when using MSE registration due to slightly better images’ correspondences (see Appendix P).

Different approaches for measuring similarities and dissimilarities (masked vs non-
masked) were used in this study. Differences of their use and application are now more evident
when using the registration data subset; this is due to the pressure maps images included in this
dataset being inherently different (as opposed to the ones used in the transformed dataset). When
calculating similarities and dissimilarities coefficients using the masked approach, only non-zero
pressure readings sharing the same locations in both pressure map images are considered, while
the non-masked approach considers these unbalanced pressure readings (i.e., for a particular
pressure map location, one pressure map has a non-zero pressure reading while the other pressure
map does not).

When using the non-masked approach, a penalty while calculating the similarity and
dissimilarity coefficients was expected due to unbalanced pressure readings being considered.
Most of the similarity and dissimilarity measures concur with this logic, as measures such as
Tanimoto, Minimum Ratio, L; Norm, and Squared L, Norm show lower (higher) similarities

(dissimilarities) when using the non-masked approach. But a contrasting behavior is seen for the



147

Pearson Correlation Coefficient and Intensity-Ratio Variance measures, as these improve when
considering unbalanced paired readings (see Appendix P).

The improvements obtained by the Pearson Correlation Coefficient and Intensity-Ratio
Variance measures when considering a non-masked approach are possibly due to the fact that most
pressure readings’ location mismatches (i.e., non-overlapping pressure readings) occur around the
outlines of the pressure maps, where readings with low-pressure values are mainly present. These
mismatches in the outlines of the pressure maps (e.g., a low-pressure reading in a pressure map
matched with a zero pressure readings in the other pressure map) can result to a higher Pearson
Correlation Coefficient or lower Intensity-Ratio Variance due to their approach in calculating Sum
of Squares Error (SSE) (see Equations 17 and 22).

The non-masked and masked approaches for measuring the similarities and dissimilarities
between pressure map images have their unique purpose and use. A research study where the goal
is measuring the similarity/dissimilarity of only shared features (i.e. overlaps) between pressure
map images might be inclined on evaluating the masked variation of these coefficients. While a
research study where the goal is measuring all true differences between pressure map images might
be inclined to evaluate the non-masked variation of the similarity/dissimilarity coefficients.

Throughout this study, the non-masked variation was the favored approach as it considers
all pressure readings differences between pressure map images. The following analysis evaluates
the differences in the similarity and dissimilarity coefficient values obtained for each registration
method when using the non-masked approach.

Figure 85 shows the paired differences in the similarity and dissimilarity values between
image registration optimalities. These paired differences are calculated by subtracting the results

obtained when using MSE registration to the ones obtained when using MI registration. In this
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figure, similarity measures from Pearson and Tanimoto and dissimilarity measures from L; Norm
and Square L, Norm indicate that higher (lower) similarities (dissimilarities) are seen between
registered pressure map samples when using MSE registration, again, possibly due to better images
correspondences’ of pressure map samples. Ratio based measures (i.e., Minimum-Ratio and
Intensity-Ratio Variance) indicate that similarities/dissimilarities seen between registered pressure

map samples are very similar when using Ml registration or MSE registration (see Fig. 85).
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Figure 85. MI vs MSE non-masked similarity/dissimilarity differences (registration data subset)

Table 25 shows descriptive statistics for all similarity and dissimilarity coefficients along
with one-way Wilcoxon signed-rank tests to compare results from the image registration methods

(MI vs MSE). At @ = 0.05, significant differences are generally seen between the similarity and
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dissimilarity values obtained by each registration method. These results indicate that significantly
higher (lower) similarities (dissimilarities) are generally seen between registered pressure map
when using MSE registration as compared to Ml registration. Again, it is important to emphasize
that higher similarities or lower dissimilarities do not necessarily indicate that a better registration
or alignment between pressure maps was found by a particular registration method. These
differences in values of similarity and dissimilarity coefficients between the registration methods
are possibly due to the fact that pressure map alignments attained by MSE generally resulted in
better registrations and correspondences of the pressure readings (as confirmed via visual feedback
assessments). On the other hand, values for ratio-based measures indicate that the similarities
(dissimilarities) seen between the registered pressure map samples are not significantly different
when using MI or MSE registration. The ratio-based measures are somewhat unique compared to
other coefficients, with them being particularly sensitive to pressure map shapes and/or scale

differences; more details on their sensitivities are presented in the case study (Chapter 6).

Table 25. Non-masked similarity/dissimilarity coefficients: descriptive statistics, one-sided

Wilcoxon signed-rank tests (registration data subset)

Coefficient Method Mean StDev Min Median Max p-value

Ml 0.8543 0.0764 0.6286 0.8522 0.9616
Pearson 0.001 =
o MSE 0.8726 0.055 0.7416 0.8688 0.9675 §
_‘—E’ Tanimoto Ml 0.7564 0.1183 0.495 0.773 0.9366 0.001 Al
£ MSE 0.7764 0.1022 0.5342 0.7815 0.9457 5
wn .
Min-Ratio Ml 0.5832 0.093 0.3793 0.5867 0.7472 0743 =

MSE 0.5805 0.1018 0.3201 0.5791 0.7463
L, Norm Ml 854,234 298,948 547,894 730,774 1,498,689 0.032 .
? MSE 833,580 271,001 538,889 713,017 1,357,217 5
= Sq L, MI 4.2E+07 29E+07 1.1E+07 3.6E+07 1.2E+08 0.001 Vi
% Norm MSE 3.8E+07 2.3E+07 1.1E+07 3.3E+07 1.0E+08 ' 5
[a _Rati 'S
Int-Ratio Ml 2.063 4.034 0.164 0.766 17.881 0204 T

Var MSE 1.48 1.848 0.165 0.536 6.525
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Information about the number of iterations and processing time for each pairs of registered
samples are shown in Appendix P. When using the SimplelTK (v1.2.0) python package, it is
important to emphasize that the stopping criteria for the registration procedures do not necessarily
trigger during the optimal iteration. Multiple points of interest are generally found during
registration procedures, and a single optimal point is chosen by the algorithm among the points of
interest. As an example, Figure 86 shows a time series plot of the Mutual Information (MI) values

during the registration process for paired-samples 110-2-1065 and 110-2-1073.

MI Image Registration: 110-2-1065 vs 110-2-1073
Iterations of Interest [10, 14, 21]. % (Transformation change)

_1.1 .
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Figure 86. Ml iteration values, samples 110-2-1065 vs 110-2-1073 (registration data subset)

In addition to the initial transformation (iteration 0), two other preliminary transformations
where used by the M1 registration process of these paired-samples. These transformations occurred
in iterations 11 and 15, and are represented as blue stars in the figure (see Fig. 86). Transformations
following each preliminary transformation attempted to increase the mutual information values
between registered pressure map images, by using the minimization of the negative mutual

information as the objective function during gradient descent optimization. This same principle is
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used for MSE transformations using the minimization of the mean squared errors as the objective
function during gradient descent optimization. For the example shown in Figure 86, three points
of interest were found in this registration process [10, 14, 21], with the tenth iteration (10) being
chosen as the optimal iteration due its lower negative mutual information value.

Figure 87 shows boxplots of the processing times when using MI and MSE registrations
for the pressure map samples in the registration data subset. On average, MSE registration requires
approximately 28 more iterations than MI registration, which translates to an additional time of
1.93 seconds. The highest processing time observed was 2.58 seconds (52 iterations) using Ml
registration and 15.59 seconds (171 iterations) using MSE registration. For the sample with the
highest processing time using MSE registration (171 iterations), the registration process actually
reached local optimality at iteration 17, with subsequent iterations trying different transformations
to improve registration results (generally the case for MSE registrations). On average, Ml required

1.14 seconds to complete the registration process while MSE required 3.07 seconds.

Registration Data Subset: Ml vs ME Computational Demand
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Figure 87. MI vs MSE computing time (registration data subset)
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Registration Data Subset Summary. Results of the implementation of image registration
techniques and similarity and dissimilarity measures for analyzing and comparing pressure maps
during dynamic sitting (e.g., A CP>1 in) were generally successful. M1 image registration methods
were found to provide adequate alignments of pressure map images in most cases, but MSE image
registration results were found to be equal to or better than the ones obtained by MI registrations.
In twelve out of the twenty registered samples (60%), no visually noticeable differences were seen
between the registration methods, but significantly improvements in alignments and images’
correspondences where seen in six of out of the twenty registered samples (30%) when using MSE
registration. Pearson and Tanimoto similarity measures, and L; Norm and Square L, Norm
dissimilarity measures indicate that significantly higher (lower) similarities (dissimilarities) are
observed between registered pressure map samples when using MSE image registration compared
to MI image registration, possibly due to the better images correspondences’ of pressure map
samples achieved by the MSE registrations.

Evidence of incorrect alignments of the pressure map images at registration optimalities
were found in two pairs of samples (10%) when using either MI or MSE image registration
methods. Pressure maps commonalities, such as shared delineated shapes and similar locations of
high- and low-pressure cluster, significantly improves the registration procedures; a significant
lack of any of these could possibly result in inadequate optimal registrations (see Figs. 83, 84).
The lack of distinct high-pressure clusters (e.g., those normally found around the ischial
tuberosities), significant differences in pressure map sizes, and/or significant re-orientations of
relatively low-pressure readings (e.g., changes in facing of the legs) were possible factors that

attributed to inaccurate registration for these misaligned samples.
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Measures of similarity and dissimilarity using proposed coefficients were found to be
adequate for measuring and comparing differences between pressure map images. Variations when
calculating the similarity and dissimilarity coefficients (i.e., masked or non-masked approach)
provided different comparison basis. The masked approach is aimed at research studies where the
goal is to compare pressure map images while only considering common pressure regions (i.e.
overlaps), while the non-masked approach is aimed at research studies where the goal is to measure
all true differences between pressure map images.

In the context of seating pressure map images, similarity measures of Tanimoto and
Minimum Ratio were found to be generally lower when using the non-masked approach, while
dissimilarity measures of L; Norm and Squared L, Norm were generally higher. This is due to the
non-masked approach taking into consideration all true differences between the pressure map
images. But a contrasting behavior is seen for the Pearson Correlation Coefficient and Intensity-
Ratio Variance measures, as these improve when using the non-masked approach. This is possibly
due to the fact that most pressure readings’ location mismatches (i.e., hon-overlapping pressure
readings) occur around the outlines of the pressure maps, where readings with low-pressure values
are mainly present.

In regard to computational times, MSE image registrations, on average, required
approximately 28 more iterations than MI image registrations, which translates in requiring and
average time of 3.07 seconds to complete the registration process while MI image registrations
only required 1.14 seconds on average. Both were implemented using the SimplelTK (v1.2.0)

python package.
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CHAPTER VI

CASE STUDY

Results from Chapter 5 show that a number of spatial data analytics and image processing
techniques are useful and effective for cleansing, evaluating, aligning, and comparing pressure
map images. In this case study, the applications of selected techniques are evaluated in terms of
continuous sitting, where subjects’ pressure maps are constantly captured within a given time

interval. A 5-minute sitting interval sample (referred as to dynamic data subset) with a number of

sequential spatio-temporal pressure images from one of the subjects in the dataset is used for this
case study. As seating subject’s frequently change their seating postures during prolonged sitting,
changes in pressure distributions and location and orientation of the pressure readings are made
constantly. The main goal in this case study is to evaluate the real-life applications of these
methods and techniques under dynamic sitting.

The effectiveness of selected spatial clustering methods as pre-processing techniques for
continuous pressure mapping are initially examined. Selected spatial clustering methods are
evaluated by their performances in continuous data cleansing (i.e., removing unwanted pressure
artifacts from continuous pressure maps). The density-based spatial clustering technique providing
the highest overall accuracies in detecting extrinsic pressure artifacts (outliers) and true contact
pressure readings (non-outliers) is selected as the pre-processing techniques applied to the dynamic

data subset for subsequent analyses.
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After the extraneous pressure maps artifacts are removed, the set of meaningful pressure
measures featured in Table 23 were calculated and evaluated in terms of their practicality and
feasibility as measures of dynamic pressure. The application of sequential image registration
(using minimization of the Mean Squared Errors [MSE]) as a tool to align dynamic pressure map
images is also evaluated. Similarity and dissimilarity coefficients are also evaluated as comparative
dynamic measures for post-registered continuous pressure maps. Comparisons to the initial
reference index (Index 1) are used as a way of measuring continuous pressure map changes over
time. Computation demands for continuous pre-processing (data cleansing) and sequential image

registrations (pressure map alignments) are also discussed in this chapter.

Data Sample
To evaluate the applications of selected spatial data analytics and image processing
techniques under continuous dynamic sitting, a single 5-minute sitting interval sample of

continuous pressure maps was used (dynamic data subset). The sampled interval includes a number

of within-subject sequential spatio-temporal pressure maps, and was selected from the first sitting
interval during the second data collection session (Trial 2) of Subject 109. This 5-minute interval
contains 281 individual frames with extrinsic pressure artifacts continuously present within the
recorded pressure maps. Significant pressure redistributions and potential evidence of dynamic

sitting are also present in the sampled interval.

Pre-Processing: Spatial Clustering
The results compiled in Table 22 (Chapter 5) show that algorithms based on DBSCAN and

DENCLUE, when using only the pressure readings’ location information as input data, were
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suitable for pre-processing seating pressure maps. With proper parameter settings, these algorithms
exhibited high accuracies when discriminating extrinsic pressure artifacts (outliers) and true
contact pressure readings (non-outliers) in seating pressure maps. These density-based spatial
clustering algorithms are evaluated in this case study for their abilities in detecting extrinsic
pressure readings artifacts in continuous pressure map.

Unwanted pressure readings and extrinsic artifacts were defined and selected via expert
knowledge for all 281 pressure maps withing the dynamic data subset. Selected density-based
spatial clustering algorithms (see Table 26) were then executed while calculating measures of
outliers and non-outlier accuracies for all continuous pressure maps. The aim is to select the best-
performing combination (i.e., clustering methods and parameter settings) from Table 26 by using
the overall accuracy (i.e., calculated weighted average of both outliers and non-outliers accuracies)
as the measuring criteria. The best-performing combination was used as the pre-processing

techniques applied to the dynamic data subset for subsequent analyses.

Table 26. Parameter settings and clustering methods evaluated (dynamic data subset)

Method Parameters Input Data
DBSCAN-1  ©PS:1.60,1.80 Location
min_samples: 8
i eps: 2 .
DENCLUE-1 min_density: 1.7e-03 Location
DBSCAN-2  ©PS:2.00,2.20 Location
min_samples: 10
i eps: 0.01 .
DENCLUE-2 min_density: 1.65e-03 Location
DBSCAN-3 eps: 2.5 Location

min_samples: 10
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The pressure map samples included in the dynamic data subset show high consistency in
the locations of extrinsic pressure artifacts cluster and locations of scattered unwanted pressure
readings. Figure 88 shows original pressure maps (non-cleansed) of some of the samples where
various extrinsic pressure artifacts (outliers) are present. This figure also shows the expert-created
outliers references maps where these outliers are being pre-identified as noise (black dots); these

served as basis for calculating clustering algorithms’ accuracies.
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(c) Original 109-2-115 Pressure Map (d) 109-2-115 pre-identified outliers (black)
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Figure 88. Examples of original pressure maps from interval sample 109-2 with marked outliers

The original pressure maps presented in Figure 88 show clearly demarked regions of
pressure outliers caused by extrinsic artifacts at the bottom of the pressure map images, with other
pressure reading outliers being scattered throughout these pressure maps. Pre-processing
techniques for continuous data cleansing are needed for eliminating these unwanted pressure
readings and artifacts.

For most of the pressure maps in the dynamic data subset, the selected density-based spatial
clustering algorithms (Table 26) were able to correctly identify and classify pressure artifacts
(outliers) and true contact pressure readings (non-outliers). However, the algorithms were not able
to correctly discriminate these extrinsic artifacts from the true pressure readings in some of the
pressure maps. Figure 89 shows the pressure map sample (109-2-203) where the lowest overall
accuracies were observed for the DBSCAN-1 and DBSCAN-2 clustering methods, both marking
a number of non-outlier pressure readings as outliers. Clustering algorithms results from
DBSCAN-3, DENCLUE-1, and DENCLUE-2 showed a 100% overall accuracy while classifying

outlier and non-outliers for this specific sample.
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Figure 89. Clustering results for sample 109-2-203 (location-only data)
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The lowest overall accuracies observed for the DBSCAN-3, DENCLUE-1, and
DENCLUE-2 clustering algorithms were seen in sample 102-2-208 (see Fig. 90). While these
clustering algorithms were able to identify the cluster of outliers at the bottom of the pressure map,
Figure 90 shows their inefficacy in correctly identifying some of the pre-identified outliers in the
leg regions, thus significantly affecting their outlier accuracy scores. DBSCAN-1 and DBSCAN-
2 clustering algorithms were able to classify all the pre-identified outliers included in this pressure
map sample. Unfortunately, their more aggressive approach in marking pressure readings as
outliers resulted in a number of true contact pressure readings (non-outliers) being incorrectly

classified as extrinsic pressure artifacts (outliers).
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Figure 90. Clustering results for sample 109-2-208 (location-only data)

A summary of the results obtained by using the selected clustering methods to pre-process
the dynamic data subset can be seen in Table 27. Results of the performances and accuracies of
these clustering method are generally high, with average Outliers and average Non-Outliers
accuracies greater than 90% for any of methods. Results also show tradeoffs between these
accuracies, with some methods being more aggressive in classifying pressure readings as outliers,

while others exhibiting a more conservative approach when marking outliers.

Table 27. Dynamic data subset clustering methods results of accuracies and processing times

Average (Min) Accuracy Avg.
Method Parameters Input ] ] (Max)
Outliers  Non-Outliers ~ Overall  pyoc Time
. eps: 1.60 . 100% 99.431%  99.440%  3.285ms
DBSCAN-1 1in_samples: 8 Location 0006y (96.918%)  (96.959%) (15.991ms)
L eps:2 _ 95.035% 100% 99.914%  8.597s
DENCLUE-L i density: 1.7e-03  S0€4UON (71 45006)  (100%)  (99.379%)  (11.764s)
. eps:2.00 . 100% 99.909%  99.910%  2.895ms
DBSCAN-2 1in_samples: 10 Location  10096)  (99.315%)  (99.324%)  (7.995ms)
. eps:0.01  92.900% 100% 99.879%  8.493s
DENCLUE-2 i density: 1.65¢-03  -0%AUOM  (71°42906)  (100%)  (99.379%)  (10.370s)
oBScAN.g  €PS 25 Location 92298%  99.999%  99.866%  2.870ms

min_samples: 10 (71.429%)  (99.685%)  (99.379%)  (4.997ms)
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Results from Table 27 show that only DBSCAN-1 and DBSCAN-2 were able to correctly
classify all extrinsic pressure artifacts as outliers, however, they also show the lowest Non-Outlier
average accuracies among the clustering methods’ results. This indicate that these variations of
DBSCAN favor a more aggressive approach when detecting outliers, by incorrectly classifying
true contact pressure readings as outliers. It is important to note that, in spite of having the lowest
non-outlier accuracies among the clustering methods, average non-outlier accuracies are above
99% for any of the selected methods. Results from the table also show that both clustering methods
using DENCLUE algorithms were able classify all true contact pressure readings as non-outliers,
indicating a more conservative approach when marking pressure readings as outliers.

A good balance between average Outliers and Non-Outliers accuracies were obtained by
most of the clustering methods being evaluated, with two clustering methods excelling over the
others. Clustering results (Table 27) show DENCLUE-1 having an average Overall accuracy of
99.914% which resulted from a very high average Outliers accuracy score (95.04%) and a perfect
Non-Outliers accuracy score (100%) in all pressure maps, and DBSCAN-2 having an average
Overall accuracy of 99.910% which resulted from with a very high average Non-Outliers accuracy
score (99.91%) and a perfect Outliers accuracy score (100%) in all pressure maps.

While all clustering methods were found to be adequate for pre-processing the pressure
maps included in the dynamic data subset, this case study selected DENCLUE-1 due to having a
slight edge in the Overall accuracy score and also for being able to keep all true contact pressure
readings for subsequent analyses. Unfortunately, the non-optimized python package use in this
study (Mgarrett, 2017, n. DENCLUE 2.0) resulted in very high computational demands while

processing all samples in the dynamic data subset (see Table 27).
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The average processing time when using DENCLUE-1 was around 8.6 seconds per frame
on average, and the total processing time required to pre-process all 281 individual pressure maps
was around 40 minutes. In contrast, the processing times obtained from any of the DBSCAN
algorithms, implemented from a fully-optimized python package, were around 3 milliseconds per
frame on average, with the total time required to pre-process all 281 individual pressure maps
being less than 1 second. These drastic differences in the processing times between these clustering
methods can be attributed to many factors (e.g., programming optimizations, multiprocessing
capabilities, and/or clustering algorithm complexities), and need to be considered for real-life
applications. Fully optimized DBSCAN algorithms are available in many commercially available
packages and programming languages, and they generally achieve very good results when using
seating pressure maps (see Table 27). As an example, DBSCAN-3 clustering was still able to achieve
very high Non-Ouliers accuracies (average of 99.999%) and reasonable Outliers accuracies
(average of 92.298%) while still required less than a second; this could be an alternative method
to DENCLUE algorithms if preservation of the true contact pressure readings is of utmost
importance.

For the purpose of this study, the algorithm’s performance in classifying outliers and non-
outliers outweighs their required computation time, therefore, the density-based clustering
algorithm DENCLUE-1 is used as the pre-processing technique applied to the dynamic data subset
due to the high overall accuracies obtained while cleaning the pressure map images included in the
dataset. The (pre-processed) dynamic data subset is now ready for subsequent analyses using
measures of spatial autocorrelation, image statistical features, and comparative techniques using

image registration and similarity/dissimilarity coefficients.
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Dynamic Measures: Spatial Autocorrelation and Image Statistical Features

Meaningful pressure measures featured in Table 23 (Chapter 5) were calculated and
evaluated in terms of their practicality and feasibility as measures of dynamic pressure using the
pre-processed dynamic data subset. Validation of their use as dynamic measures was done via
visual feedback of time series plots. Emphasis is given in selecting and evaluating a sequence of
indexes where significant changes in these measures occur in a short period of time. Comparative
visual feedback between pressure maps within a sequence of indexes is used to confirm in-chair-
movements (i.e., dynamic sitting), while evaluating measures’ sensitivities and changes over time.

Figure 91 shows the time series plots for the general pressure measures of Contact Cells,

Sum of Pressure, and Skewness for the full 5-minute interval length of this sample (281 indexes).
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Figure 91. Pressure measures: general overview, dynamic data subset (sample 109-2)
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Results in Figure 91 show a consistent increase in Sum of Pressure during the first minutes
of the sitting interval (approximately 2.5 min), indicating a possible pressure creep effect. It also
shows that the number of contact cells increased slightly in the same period of time. The pressure
creep effect was confirmed via visual feedback, where pressure readings in the ischial tuberosities
were consistently increasing over time. This increase in pressure and somewhat stability in contact
cells is also being detected by the skewness measure. The skewness is decreasing over time within
the same time frame due the increase in the relative frequency of cells with high-pressure and mid-
pressure values.

At around index 150, considerable changes in the values across all measures are also seen
in the time series plots in Figure 91, possibly indicating an In-Chair-Movement (ICM). These
measures are also identifying possible ICMs (i.e., dynamic sitting) occurring around indexes 200
and 250; with measures of skewness also identifying continuous changes in the pressure between
indexes 180 and 200 that other measures are less sensitive to it.

Figure 92 shows a sequence of pressure maps between indexes 148 and 156 (elapsed time
of approximately 8 seconds) where the first considerable changes in the values of the general
pressure measures are seen. The sequences of indexes presented in this case study generally show
a pre-movement pressure map (with relative pre-movement stability) and a post-movement
pressure map (with relative post-movement stability). The figure also show values and trendlines
for all meaningful pressure measures featured in Table 23 (Chapter 5) along a comparison between
the pre-movement index (148) and post-movement index (156) as relative changes in percentage
(%) across these measures.

A significant reduction of the overall pressure can be seen in the sequence of indexes shown

in Figure 92. The magnitudes and cluster sizes of the high-pressure regions exerted by the ischial
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Figure 92. Changes in pressure measures between indexes 148 and 156 (sample interval 109-2)
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tuberosities, along with the pressure in the buttock regions, have decreased in the latter frames. A
slight increase in the pressure map size is also seen post-movement, with the number of contact
cells increasing by around 5%. This decrease in the overall pressure and increase in contact cells
also affect the skewness measure considerably. A larger relative presence of low and low-mid
pressure reading values are seen within the post-movement pressure map (109-2-156), this being
indicated as a relative increase of the skewness value of around 50%.

Figure 92 also shows a considerable higher contrast is pre-movement frames, mainly due
to the presence of larger high-pressure clusters under the ischial tuberosities and increased pressure
in buttocks region, with both Gradient Contrast and Gradient Means measures indicating so. Note
that the Coefficient of Variation (CV) measure, while changing its values in the within-movement
frames, does not show any significant difference between the pre-movement pressure map (Index
148) and post-movement pressure map (Index 156) with a 0.07% relative difference.

An increase in pressure homogeneity is also obtained after the ICM in Figure 92. Measures
of Gradient Second Moment and Homogeneity (YY) show considerable increases in their values,
generally indicating a seating pressure map with more congruent pressure readings and with
smoother pressure transitions (e.g., less pronounced gradients) between pressure levels.

Time series plots shown in Figure 93 are of measures of spatial relationship for the 5-
minute interval length included in the dynamic data subset. The effect of pressure creep around
the ischial tuberosities can also be seen for measures of spatial relationship, as they increase
consistently over time until the first considerable ICM (Index 148) occurs. Spatial relationship
measures, just like general pressure measures (Fig. 91), are also able to capture dynamic sitting

with considerable changes in their values occurring specially around indexes 150 and 200.
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For the ICM around Index 150 (see Fig. 92), decreases between five to ten percent are seen
across the spatial relationship measures. While the pressure map obtained after the in-chair-
movement is more homogeneous and with less pressure variability/contrast, the pre-movement
pressure map actually exhibits pressure readings with higher spatial relationship. This pre-
movement map (Fig. 92, top left) shows a higher number of distinct cluster of various pressure
levels, with similar-value pressure readings usually found in contiguity among themselves;

indicating a higher spatial relationship compared to latter frames.
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Figure 93. Pressure measures: spatial relationship, dynamic data subset (sample 109-2)
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Figure 94 shows the time series plots for measures of pressure variability and contrast for
all indexes included in the dynamic data subset. In the indexes previous to the first considerable
ICM (Index 148), measures of Gradient Contrast and Gradient Mean are also constantly increasing
due to the pressure creep factor around the ischial tuberosities. It has already been established, as
in the case with other meaningful pressure measures, that significant changes in pressure map
contrast and variability also occurred between indexes 148 and 156 mainly due to the decrease in
size of the large high-pressure clusters and decrease pressure in buttocks region in the latter frames
(see Fig. 92). Additionally, measures of variability and contrast, just as many other meaningful

measures, are also reacting to potential in-chair-movement around Index 200.
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Figure 94. Pressure measures: variability and contrast, dynamic data subset (sample 109-2)

Figure 95 shows a sequence of pressure maps between indexes 186 and 209 (elapsed time
of approximately 23 seconds) where the second considerable shifts in the values of meaningful
pressure measures are seen. As with similar figures, the figure also show values and trendlines for
all meaningful pressure measures featured in Table 23 (Chapter 5) along with a comparison
between the pre-movement index (186) and post-movement index (209) as relative changes in
percentage (%) across these measures.

The sequence of seating pressure maps presented in Figure 95 indicate an occurrence of
In-Chair-Movement (ICM). While the total pressure (Sum of Pressure) exerted into the pressure
interface stayed relatively the same before and after the ICM, significant differences on how
pressure is distributed are seen. Areas under the legs show overall reductions in exerted pressure
after movement (Index 209), but gains are otherwise seen in areas around the ischial tuberosities
and buttock regions. These differences in relative pressure distribution are being detected by the

measures of skewness, being significantly lower in the latter frames. This increase in the exerted
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DCLNP-1 | 109-2-186, Pressure Map (mmHg) [CV = 13;(())069] DCLNP-1 | 109-2-192, Pressure Map (mmHg) [CV = 03&?6]
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Figure 95. Changes in pressure measures between indexes 186 and 209 (sample interval 109-2)
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pressure around the ischial tuberosities and buttock regions are also affecting the values of
measures of contrast and variability during and after the in-chair-movement, with measures of
Gradient Contrast, Gradient Mean, and Coefficient of Variation being considerably higher in the
latter frames.

The changes in the pressure distributions between the pre-movement pressure map (Index
186) and post-movement pressure map (Index 209) in Figure 95 have also significantly affected
measures of texture and smoothness. There is a considerable increase in the uniformity of the
pressure readings at the post-movement seating pressure map (Fig. 95, bottom right), which is
translated as an increase in measures of Gradient Second Moment and Homogeneity (X). This
increase in post-movement homogeneity is also strengthened by the higher spatial relationship
seen among the pressure readings within various levels of pressure, with the late frame (Index 209)
showing less variability within these clusters of pressure levels and increase contiguity between
similar-value pressure readings. Moran’s I and the GLSD Correlation measures are detecting this
increase in the spatial relationships among similar-value pressure readings.

Figure 96 shows the time series plots for the measures of texture, smoothness, and
homogeneity for all indexes included in the dynamic data subset. The changes in smoothness (e.g.,
less texture) and homogeneity occurring during the in-chair-movement around Index 200 (Fig. 95)
were the highest relative changes among sequential indexes in the dynamic data subset.

In the indexes previous to the first considerable ICM (Index 148), measures of Gradient
Second Moment (GLD) are decreasing over time due to the pressure creep factor in the ischial
tuberosities and buttock regions. Gradient Second Moment measures are known to be sensitive to
changes in pressure levels and gradients when measuring smoothness and texture, while measures

of Homogeneity are somewhat more robust to these pressure variations and have more emphasis
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in measuring the similarities of the pressure readings within various pressure levels. Measures of
Homogeneity show more stability in their values for the indexes prior to the first considerable ICM
(Index 148). This indicate that, while the total pressure exerted to the pressure interface is
increasing over this period of time, the homogeneity within the pressure cluster levels is relatively
stable, that is, the contiguity and grouping aspect of similar-value pressure readings are relatively
similar across these indexes.
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Figure 96. Smoothness and texture pressure measures (sample interval 109-2)

Most meaningful measures are also detecting a possible in-chair-movement around Index

250 (see Figs. 91, 93, 94, 96). In most of these time series plots, a defined spike in their values
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(upward or downward) is generally seen, with most of the measures’ values returning close to they
were before the movement (spike) occurred.

Figure 97 shows the sequence of pressure maps between indexes 246 and 252 (elapsed
time of approximately 6 seconds) where the last considerable changes in the values of the
meaningful pressure measures are seen. These measures are mostly reacting to a side-to-side in-
chair-movement as detected from the seating pressure maps presented in Figure 97. Pressure is
seen tilting, particularly around the ischial tuberosities and buttock regions, from one side to the
other within this time interval. Some changes in meaningful pressure measures’ values are seen in
the resulting post-movement seating pressure map (Index 252). While all meaningful pressure
measures are changing and reacting to the in-chair-movement between these indexes accordingly,
the post-movement seating pressure map (Index 252), contrary to previously detected in-chair-
movements, does not show large differences to the pre-movement (Index 246) seating pressure
map; this is in agreement to the spikes seen in the time series plots where values of the meaningful
pressure measures are somewhat returning back to pre-movement values (see Figs. 91, 93, 94, 96).

The post-movement seating pressure map in Figure 97 (bottom, right) does show some
slight differences when compared to the pre-movement seating pressure map (top, left). The total
pressure exerted to the pressure interface is reduced, particularly around the buttocks area. This
modifies the values of skewness (more positive due to higher frequency of relatively low- and mid-
low pressure readings) and variability/contrast measures (less pressure in the buttock regions and
tuberosities). The spatial relationships are not significantly different between these maps (Index
246 vs Index 252), but a slightly higher homogeneity is obtained in the late frames due to a

reduction of the gradients between pressure levels.
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DCLNP-1 | 109-2-246, Pressure Map (mmHg) [CV = 13;&(?5] DCLNP-1 | 109-2-247, Pressure Map (mmHg) [CV = 138538]
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Figure 97. Changes in pressure measures between indexes 246 and 252 (sample interval 109-2)
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When calculating measures of Gray-Level Differences (GLD) and Gray-Level Spatial-
Dependence (GLSD), a significance effect in measures’ values when considering a different axis
direction is seen for the time series plots in Figures 93, 94, and 96. GLD measures of Gradient
Contrast and Gradient Mean are identifying higher variabilities when measured in the horizontal
or lateral direction (6 = 0°, X) (see Fig. 94), while GLSD measures of Correlation, Gradient
Second Moment, and Homogeneity show higher values when measured in the vertical or anterior-
posterior direction (8 = 90°, Y) (see Figs. 93, 96).

While the direction when calculating pressure map gradients have significant effects in
GLD and GLSD measures, there is a strong dynamic relationship between both directions (8 = 0°
and 6 = 90°) among the indexes included in the dynamic data subset. The dynamic behavior of
GLD and GLSD measures are very similar in both directions with the most notable difference
being in significant offsets in the measures’ values between both directions (8 = 0°and 6 = 90°).
Figure 98 shows the pressure map for the first index of the 5-minute sitting interval (Sample 109-
2-1), along with the first-order and second-order gradient maps for the same sample. Seating
pressure maps usually have an elongated shape towards the anterior-posterior direction (6 = 90°)
due to the fact that buttock-popliteal lengths are generally greater than hip breadths (see Table 3).

First-order and second-order gradient maps in Figure 98 also show how seating pressure
maps generally exhibit higher pressure gradients in the lateral direction (6 = 0°) due to closeness
of high-pressure clusters (e.g., ischial tuberosities) to lateral edges. When measured in the anterior-
posterior direction (8 = 90°), pressure transitions are smoother and with less gradients as pressure
in the leg regions increase gradually when approximating to high-pressure clusters in the
tuberosities. This is translated as an increase in homogeneity, smoothness, and spatial relationship

when measured in the anterior-posterior direction (8 = 90°) (see Fig. 98, bottom right).
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Figure 98. First-order and second-order gradient maps, directions 8 = 0°,90° (sample 109-2-1)
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In this section, many examples of the potential use of spatial relationship measures and
image statistical features as dynamic pressure measures are shown. It has been shown that these
meaningful pressure measures can be used as global pressure map descriptors in a static
environment (within a single pressure map) and dynamic environments (continuous pressure
maps) to measure distinct and unique phenomena within seating pressure maps.

While spatial relationship measures and image statistical features can help in identifying
in-chair-movements, these measures are not able to track changes in terms of shape, location and/or
spatial position of pressure readings. To evaluate these changes, continuous comparative
techniques using image registration and dynamic similarity/dissimilarity coefficients are

implemented and studied in the following section.

Sequential Image Registration and Similarity/Dissimilarity Coefficients

In this case study, a sequential image registration technique (using minimization of the
Mean Squared Errors [MSE]) is evaluated as a tool to align the dynamic pressure map images
included in the dynamic data subset. Given the results of the image registration methods in the
previous chapter (Chapter 5), MSE registration was chosen due to the higher accuracy and
improved image correspondence achieved when aligning various seating pressure map images.
Similarity and dissimilarity coefficients are also evaluated as comparative dynamic measures for
post-registered continuous pressure maps. Comparisons to the initial reference index (Index 1) are
used as a way of measuring continuous pressure map changes over time.

Figure 99 shows the reference pressure map that will be used as a comparison basis (sample
109-2-1). A visual feedback assessment of the pressure maps following this first frame confirmed

the use of sample 109-2-1 to be an appropriate basis for comparison. The pressure map images



179
following sample 109-2-1 showed relative stability in the pressure distributions and locations of

pressure readings when compared to the first sampled index.

Image Registration: 109-2-1
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Figure 99. Image registration reference map (Sample 109-2-1)

MSE registrations were completed to align all indexes in the dynamic dataset to the
reference index (Fig. 99). Similarity and dissimilarity coefficients were calculated using a non-
masked approach (unbalanced pairwise pressure cells are allowed) with an epsilon parameter equal
to one (e = 1) for ratio-based measures. The non-masked approach was used in this case study as
the goal is to measure all true differences between the initial sitting pressure map and consecutive
pressure map images. Results of the similarities and dissimilarities coefficients of the post-
registration comparisons are shown in Appendix R

As the indexes included in the dynamic data subset were sampled from an interval where
the subject used a fixed sitting surface (i.e., same seat pan contour), similarities and dissimilarities

coefficients were expected to indicate a high correspondence between the successive pressure map
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images and the initial pressure map image (Index 1). It was expected that the overall shapes and
sizes of the continuous pressure maps to not be significantly different from one another unless
significant In-Chair-Movements (ICM) occurred. Results in general show high correspondence
between the pressure map images following the reference frame (Index 1). Figure 100 shows time
series plots of the similarity measures (compared to the reference pressure map) for all indexes in

the dynamic data subset.

MSE Dynamic Registration: Similarity Coefficients (Sample 109-2)
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Figure 100. Similarity coefficients (non-masked): MSE registration (sample interval 109-2)

Values of Pearson Correlation Coefficient (PCC) show relative stability in the similarities
of images between Index 1 and Index 149 (see Fig. 100), a behavior somewhat similar to measures
of GSLD Homogeneity during this same interval (see Fig. 96). Other similarity measures are
indicating a decrease in the similarities of successive pressure maps when compared to the initial

seating pressure map. Measures of Tanimoto and Minimum Ratio are more sensitive to the
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pressure differences in pair-wise pressure readings when comparing seating pressure map images.
This decrease in similarities throughout Index 1 and Index 149 is due to the pressure creep
phenomenon found when evaluating measures of Sum of Pressure (see Fig. 91) and contrast
measures (see Fig. 94). The Minimum Ratio measure is more sensible to the increase in pressure
seen in some of the pairwise readings (the ratio is lower when greater differences are found).
Meanwhile, the Tanimoto measures consider these pressure differences as well, but also considers
their relationships (similar to Pearson), making the values of Tanimoto similarities somewhere in
between the PCC and Minimum Ratio values.

Measures of dissimilarity are also reacting to the pressure creep phenomenon occurring
between indexes 1 and 149. Figure 101 shows time series plots of the dissimilarity measures

(compared to the reference pressure map) for all indexes in the dynamic data subset.

MSE Dynamic Registration: Dissimilarity Coefficients (Sample 109-2)
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Figure 101. Dissimilarity coefficients (non-masked): MSE registration (sample interval 109-2)
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The results in Figure 101 show measures of L; Norm and Squared L, Norm increasing in
their dissimilarity values due to differences in pressure between the initial reference index (Index
1) and successive indexes before index 150. Similar to Tanimoto and Minimum Ratio measures,
this behavior is due to the pressure creep phenomenon during this time frame. To evaluate the
pressure creep effect, the registration results between the initial frame (Index 1) and Index 149
(before the first considerable in-chair-movement) are presented in Figure 102, along with measures

of similarity/dissimilarity and a visual highlights of pressure differences between these images.

Image Registration: 109-2-1 vs 109-2-149, Scaling Factor: 10
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Figure 102. Optimal MSE image registration: Index 1 vs Index 149 (sample interval 109-2)
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MSE registration achieved appropriate alignments and image correspondence between the
seating pressure maps presented in Figure 102. The pressure distributions in terms of location and
spatial relationship of pressure readings are similar, but the magnitudes of the pressure readings at
Index 149 are considerable increased (see Fig. 102 bottom right). Larger high-pressure clusters are
seen under the ischial tuberosities in the latter frame, with higher pressures also being exerted in
the top buttock regions. Given these pressure differences, a decrease (increase) in pressure map
similarities (dissimilarities) are seen by the Tanimoto, Minimum Ratio, L; Norm and Squared L,
Norm measures; all being sensitive to those pairwise differences in pressure. Measures such as
Pearson, not being sensitive to differences in pressure scale, finds the relationship among pressure
maps somewhat similar (non-masked r = 0.977) The Intensity Ratio Variance also show low
dissimilarities between these maps due to the robustness of this measure to pressure scaling
differences (non-masked R, = 0.018). Intensity Ratio Variance is more sensitive to overlapping
differences in terms of shapes (when using the non-masked approach). The overall shapes of these
pressure maps from Index 1 to Index 149 were very consistent and similar (see Fig. 102, top row).

Another important measure obtained when using sequential image registration procedures
(i.e., alignment of continuous images) is the distance traveled by the center of mass [Center of
Pressure (CP)] of the template image (i.e. moving image) to reach registration optimality. The
template pressure maps (i.e. moving maps) were all registered according to the initial reference
pressure map (i.e. fixed map). The translation required to align these pressure map images to the
reference map can be calculated as the distance traveled by the center of pressure during
registration. A CP to CP distance is calculated as the Euclidean distance between the CP locations
of the of the pre-registered map and post-registered map. Note that this distance between CP

locations are not calculating differences in the CP locations between the template map and
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reference maps, but the translation of CP within the template map after registration. Figure 103
shows the CP translation results of the registration process for aligning each subsequent pressure

map to the reference map (Index 1).

CP to CP distances: Original Map vs Transformed Map (Sample 109-2)

149 159 180 217 246 259

10x upscaled distance (cells)

1 25 50 75 100 125 150 175 200 225 250 275
Index

Figure 103. Original vs Transformed CP locations: Cells distances (sample interval 109-2)

The required translations to align the pressure maps from index 1 through 149 were
minimum, with most registrations doing CP translations of less than 1 cell (see Fig. 103). It is
important to emphasize that pressure maps were scaled by a factor of ten to allow fine-tuning
transformations during registrations. Therefore, the resulting CP to CP distances (in units of cells)
presented in Figure 103 are also in factor of ten. To obtain real distances (in units of cells) between
the original and transformed CP locations, the cell distances need to be divided by 10. It is also
important to highlight that meaningful differences in CP movement were considered when

translations of CP were greater than one inch (CP > 1 in); one inch being the approximate
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distance required to travel one unit of cell. Hence, a distance of 10 cells in the current scale of CP
to CP distances roughly equates to a 1-inch movement in CP location. Figure 103 only show one
instance (Index 192) where a translation greater than 1 inch (10 upscaled cells) was needed to align
the template pressure map to the reference pressure map, indicating that the subject was sitting in
a relative stable location throughout the entire 5-minute sitting interval.

Time series plots in Figures 100, 101 and 103 also show highlights of index ranges where
possible in-chair-movement is detected. The first region shows a considerable shift in values of
similarities and dissimilarities between indexes 149 and 159. Figure 104 shows a close
examination of the similarity measures for this range of indexes. This figure shows that similarity
measures had a considerable decrease in Index 152 during an in-chair-movement. This same in-
chair-movement was also detected using values of meaningful pressure measures as dynamic

pressure measures (see Fig. 92).

MSE Dynamic Registration: Similarity Coefficients (Sample 109-2)
149 159 180

Variable
Pearson

Tanimoto
\/\‘\/\ Min-Ratio

j96 vs 200

09 “/\

0.8

152

N\/M/\/\/

192 —7

A

0.7

Data
L ]

0.6

0.5

150 175 200
Index

Figure 104. Similarity coefficients highlights: MSE registration (sample interval 109-2)
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To evaluate the pressure map differences during the first considerable in-chair-movement,
the registration results between the initial frame (Index 1) and Index 152 are presented in Figure
105, with measures of similarity/dissimilarity and a visual highlights of pressure differences

between these images also being presented.

Image Registration: 109-2-1 vs 109-2-152, Scaling Factor: 10

[Reference Image] [Template Image] Al
0
250
50 A 50 A
100 100 A 200
150 A 150 A L 150
200 A 200 A
- 100
250 A 250 1
50
300 A 300 A
0 100 200 300 0 100 200 300
MSE Image Registration: 109-2-1 vs 109-2-152, Iteration 14
Metric: 238.02993121467014 [Reference & Transformed] (mmHg)
MASKED, 0 .
pcC: 0.822 -
Tanimoto: 0.823 150
Min-Ratio:  0.666 50 1
L1 Norm:  606585.66
L2 Norm:  24128690.59 100
|Int-Ratio Var: 0.180 100 A
50
[ NON-MASKED '
PCC:—  0.884 150 b s* 0
(b .S
L1 Norm: 623902.40 -50
L2 Norm: 24334532.38 | 200
Irnt-Ratio Var: 0.147 ) L ~100
Gormetoit. 77| 250 _150
CP-CP Distance: 13.11)
300 A
0 160 2(I)0 3(l)0 0 1(')0 260 360

Figure 105. Optimal MSE image registration: Index 1 vs Index 152 (sample interval 109-2)

Figure 105 shows considerable changes in pressure distributions at index 152 when

compared to the initial seating pressure map. The reference index (109-2-1) shows a distinct
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presence of high-pressure clusters under the ischial tuberosities while the pressure map in index
152 shows higher pressure being exerted under the leg regions (see Fig. 105, bottom right). These
pressure differences are still being accounted by the Tanimoto, Minimum Ratio, L; Norm and
Squared L, Norm similarity and dissimilarity measures, but now measures of Pearson Correlation
Coefficient (PCC) and Intensity Ratio Variance are also indicating considerable changes. A
decrease in non-masked PCC similarity is now seen from 0.977 in the pre-movement index 149 to
0.884 during the in-chair-movement at index 152 (see Figs. 102, 105). Likewise, the non-masked
Intensity Ratio Variance dissimilarity measures increased from 0.018 in pre-movement index 149
to 0.147 during the in-chair-movement at index 152 (see Figs. 102, 105). These changes in these
two similarity/dissimilarity measures are due to significant differences in pressure distributions
(e.g., pressure under ischial tuberosities) and differences in shape (e.g., no overlaps or intersections
between pressure readings in the top left leg region).

Other possible in-chair-movements are detected within the highlighted regions of interest
shown in Figures 100, 101 and 103. The second region of interest show a number of possible in-
chair-movement between indexes 180 and 217. A close examination of the similarity measures for
this range of indexes is also shown in Figure 104. The first index to be evaluated for this region is
Index 192, where considerable decreases in similarities are seen during the in-chair-movements.
This same in-chair-movement was also detected using values of meaningful pressure measures as
dynamic pressure measures (see Fig. 95).

Figure 106 shows the registration results between the initial frame (Index 1) and Index 192,
along with measures of similarity/dissimilarity and visual highlights of pressure differences
between these images. Pronounced pressure differences are now seen between the reference map

and Index 192 when compared to differences between the reference map and Index 152 (Fig. 105).
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Image Registration: 109-2-1 vs 109-2-192, Scaling Factor: 10

[Reference Image] [Template Image] A0
0
250
50 - 50 -
100 100 [ 200
150 - 150 - L 150
200 - 200 -
- 100
250 - 250 -
50
300 - 300 - l
0 100 200 300 0 100 200 300

MSE Image Registration: 109-2-1 vs 109-2-192, Iteration 10

Metric: 552.1005247719643 [Reference - Transformed] (mmHg)
300 0 — — a T 0
b PCC: 0.489 200
250 50 1 ' MinRatio: 0300 50 '
=] i L1Norm:  982879.14 .
= L2 Norm:  53368691.63 ‘
200 - 100 - Int-Ratio Var: 2.282 100 - ‘ 100
‘ NON-MASKED. v ..
. pCC: 0.697 ]
150 A 150 Tanimoto:  0.586 150 ‘ q , 0
Min-Ratio: 0.480
100 4 200 L2 Norm: 5409762043 200 1 -
Int-Ratio Var: 1.494 \ —~100
] . g OTHER METRICS, ]
50 250 - Contact Diff: I Toss | 290
— CP-CP Distance: 25.81
£ 3001 300 - —200
0 100 200 300 0 100 200 300

Figure 106. Optimal MSE image registration: Index 1 vs Index 192 (sample interval 109-2)

Differences in the pressure distributions between Index 192 and the reference map (Index
1) are seen in the high-pressure cluster under the ischial tuberosities and higher-pressure values
around the buttocks area in the reference map, while the pressure map in Index 192 shows more
pressure in both leg regions (see Fig. 106, bottom right). According to similarity values, these
pronounced differences are the highest seen among compared indexes (see Fig. 104). A close
examination of the dissimilarity measures for this range of indexes, seen in Figure 107, also shows

that Index 192 is where the highest dissimilarities are obtained according to most of the measures.
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MSE Dynamic Registration: Dissimilarity Coefficients (Sample 109-2)

180 217 246 259
- L1 Norm
1000K [\

0 =196 vs 200
Sq L2 Norm

40M

20M

al

Int-Ratio Var
2 203 <208
258~
| ‘M/\_F/ka/\
0
175 200 225 250
Index

Figure 107. Dissimilarity coefficients highlights: MSE registration (sample interval 109-2)

Index 192 is also where the distance traveled by the Center of Pressure (CP) is the largest
(13.24 cells) among the translations needed to reach registration optimality across all indexes (see
Fig. 103). The registered pressure map overlays in Figure 106 (bottom left) shows how the
template image (Index 192) had to be slightly moved down in the Y-axis (anterior-posterior
direction) to have a better match of the pressure map shape and correspondence of the locations of
high-pressure within each map.

In addition, a significant number of potentials in-chair-movements are also seen within the
second region of interest (indexes 180 and 217). Figures 104 and 107 show close examination of
the similarity and dissimilarity measures for this range of indexes respectively, where differences
in the behavior or sensitivities between similarity/dissimilarity measures are seen between indexes
196 and 200. Measures such as Pearson, Tanimoto, and Squared L, Norm show higher (lower)

similarity (disimilarity) between Index 200 and the reference index, than the ones obtained when
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comparing Index 196 to the reference index. Other measures such as L; Norm and Minimum Ratio
show opposite results, by detecting higher (lower) similarity (disimilarity) between Index 196 and
the reference index than the ones obtained when comparing Index 200 to the reference index. To
evaluate these discrepancies between similarity and dissimilarity measures, the registration results
between the initial frame (Index 1) and Index 196, and between the initial frame (Index 1) and
Index 200 are presented in Figures 108 and 109 respectively. Measures of similarity/dissimilarity

and visual highlights of pressure differences between images are also presented in these figures.

Image Registration: 109-2-1 vs 109-2-196, Scaling Factor: 10

[Reference Image] [Template Image] 200
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50 - 50 -
100 - 100 - [ 200
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0 100 200 300 0 100 200 300

MSE Image Registration: 109-2-1 vs 109-2-196, Iteration 19
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CP-CP Distance: 10.12 —200
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T T T T T T
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Figure 108. Optimal MSE image registration: Index 1 vs Index 196 (sample interval 109-2)
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Image Registration: 109-2-1 vs 109-2-200, Scaling Factor: 10
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100 100 200
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- 100
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MSE Image Registration: 109-2-1 vs 109-2-200, Iteration 15
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Figure 109. Optimal MSE image registration: Index 1 vs Index 200 (sample interval 109-2)

Differences between the reference index (Index 1) and Index 196 show lower differences
in pairwise pressure readings than the ones between the reference index (Index 1) and Index 200
(see Figs. 108, 109, bottom right). The lower overall differences in pressure among the pairwise
pressure readings seen when registering Index 196 (Fig. 108), compared to the ones obtained when
registering Index 200 (Fig. 109), are being detected by measures of L; Norm and Minimum Ratio.

Values of non-masked L; Norm and Minimum Ratio are at 6,788.77 mmHg and 0.613 respectively
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when registering Index 196, compared to values of 8,190.81 mmHg and 0.544 respectively when
registering Index 200.

While lower overall pressure differences (L, Norm values) are obtained when registering
Index 196, compared to the ones obtained when registering Index 200, the differences in pressure
in specific regions are greater when registering Index 196. The map of pressure differences seen
in Figure 108 (bottom right) shows higher pressure differences around the ischial tuberosities
(differences between 200-250 mmHg between pairwise cells), compared to map of pressure
differences seen in Figure 109 (bottom right) where the pressure differences around the ischial
tuberosities are lower (differences between 150-175 mmHg between pairwise cells). These large
pairwise pressure differences seen when registering Index 196 (Fig. 108) affects the measures of
Pearson, Tanimoto, and Squared L, Norm, with these measures agreeing that higher (lower)
similarities (dissimilarities) are seen when registering Index 200, instead of 196. This is a good
example of the differences and sensitivities of various similarity and dissimilarity coefficients.

Compared to other similarity and dissimilarity measures, the Intensity Ratio Variance has
a unique behavior and sensitivity when comparing pressure map images. The Intensity Ratio
Variances do not show major significant shifts when comparing all indexes to the reference map,
but spikes in their values are seen in the time series plot in Figure 101, indicating a reaction to
specific differences between pressure maps.

Figure 107 shows particular instances where changes in Intensity Ratio Variance values
are considerable higher when compared to other similarity and dissimilarity coefficients. Indexes
203, 208, and 258 are instances where unique spikes are seen in the values of Intensity Ratio
Variance. Other similarity and dissimilarity coefficients do not react in a similar way when these

indexes are compared, suggesting that Intensity Ratio VVariance measures are sensitive to specific
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differences between pressure maps. To evaluate the uniqueness of the Intensity Ratio Variance

measure, the registration results and similarity and dissimilarity coefficients obtained when

comparing these indexes [203, 208, and 258] to the reference maps are presented in Figure 110.

MSE Image Registration: 109-2-1 vs 109-2-203, Iteration 6
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MSE Image Registration: 109-2-1 vs 109-2-208, Iteration 14
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(b) 109-2-1 vs 109-2-208

MSE Image Registration: 109-2-1 vs 109-2-258, Iteration 7
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(c) 109-2-1 vs 109-2-258

Figure 110. Optimal MSE image registration: Indexes 203, 208, and 258 (sample interval 109-2)

Figure 110a shows the results when comparing Index 203 to the reference map. For this

particular index, all similarity and dissimilarity coefficients detect considerable differences

between the maps (e.g., non-masked Pearson Correlation Coefficient = 0.861), but measures of

Intensity Ratio Variance show a considerable change when compared to results from other indexes.

As an indicator, 92.88% of compared indexes show values of non-masked Intensity Ratio Variance
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less than 0.5, with the average value being 0.16; due to this, a non-masked Intensity Ratio Variance
value greater than one is considered significant for this dynamic data subset sample.

In all three indexes, measures of Intensity Ratio Variance indicated considerable pressure
map differences (see Fig. 107). Index 203 (Fig. 110a) shows a significant non-masked Intensity
Ratio Variance value of 1.929, while indexes 208 (Fig. 110b) and 258 (Fig. 110c) show non-
masked Intensity Ratio Variance values of 1.987 and 1.306 respectively. The high values of
Intensity Ratio Variance are due to differences in the shapes between the pressure maps;
considerable regions with non-overlapping pressure readings are found, particularly in the leg
regions. Also note that similarity and dissimilarity coefficients other than Intensity Ratio Variance
are indicating relatively high (low) similarities (dissimilarities), particularly when comparing
indexes 208 and 258 (e.g., non-masked Pearson Correlation Coefficient are set at 0.980 and 0.981
respectively). The examples shown in Figure 110 indicate that measures of Intensity Ratio
Variance are particularly sensitive to these differences in shapes (i.e., non-overlapping pressure
readings) when compared to sensitivities from other similarity and dissimilarity coefficients.

The last section in this case study is devoted to evaluating the computational demands for
continuous dynamic image registration. To register all 281 indexes in the dynamic data subset, the
total MSE registration process was executed in 676.33 seconds (approximately 11 minutes). Figure
111 shows a histogram of the processing time for all indexes. Results show that alignment of
pressure maps was done in one second or less for 66.5% of the indexes included in the dynamic
data subset, with MSE registration taking longer than 5 seconds in just 10% of the indexes when
aligning them to the reference map. The maximum recorded processing time for a particular index

was 45 seconds (Index 256, with total of 235 iterations and optimality at iteration 13).
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MSE Registration: Processing Time Histogram
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Figure 111. MSE image registration processing times (Sample 109-2)

The results in this section show the potential of using similarity and dissimilarity
coefficients as complementary dynamic pressure measures for identifying and evaluating in-chair-
movements (ICM). Sequential image registration using MSE attained the intended results for the
5-minute sitting interval sample evaluated in this case study; proper alignments, centering, and
correspondences in pressure maps’ image features were achieved. While the method chosen for
this case study is based on comparisons of all pressure maps to the initial reference map (Index 1),
other comparison basis could have been chosen (e.g., other pressure maps index or an aggregate
map) with different interpretable results.

Similarities and dissimilarities coefficients were suitable comparative techniques between
post-registered pressure maps with potential uses for dynamic sitting applications. These
coefficients can evaluate differences in the pressure distributions between pressure maps and be
used as global comparative measures, each with a unique take, while the use of new proposed

pressure measures in Table 23 (Chapter 5) can highlight the features that makes each map different.
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CHAPTER VII

CONCLUSIONS

This work evaluated the applications of machine learning, spatial data analytics, digital
image processing, and optimal image registration as new techniques for analyzing pressure maps.
The applications, feasibilities, and practicalities of introduced techniques were made within the
context of seating research. Results obtained in this study indicate that many of these techniques
are suitable for analyzing pressure maps, with applications for pre-processing, analysis and
evaluation, and comparisons of seating pressure map images. These techniques were found to also
be cross-functional for applications in static (i.e., single map) and dynamic (i.e., sequential
temporal maps) environments.

The research objectives were successfully fulfilled by achieving the following:

(1) The study introduced appropriate methods for detecting and removing extrinsic
pressure artifacts (i.e., pressure reading outliers), with overall accuracies over ninety-
nine percent (99%), by using density-based spatial clustering techniques. The
feasibility and practicality of applying these techniques for cleansing continuous
pressure maps (e.g., dynamic sitting) was also demonstrated.

(2) Various pressure measures based on spatial autocorrelation and image statistical
features were introduced and validated as new pressure measures. These new measures
were found to be appropriate and suitable for measuring certain aspects of the pressure

maps, such as specific pressure distribution patterns (e.g., homogeneity, acute points,
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and low-high distributions), overall spatial relationships, and pressure contrasts that
commonly used pressure measures were not able to describe due to information loss.
Their values and usefulness as dynamic pressure measures were also demonstrated.
(3) A toolset for aligning and comparing pressure maps is introduced by using optimal
image registration methods and similarity and dissimilarity coefficients. Accurate and
appropriate alignments were obtained via image registration, particularly by using the
MSE metric. The uniqueness of each similarity/dissimilarity coefficient was explained
when comparing pressure patterns between pressure maps, along with demonstrating
the feasibility and practicality of applying these techniques for aligning and comparing

continuous pressure maps (e.g., dynamic sitting).

A summary of the results obtained in the study is presented in Table 28. This table presents
concise findings for each introduced methodology along with their applications and interpretations
in the context of seating pressure mapping analysis. One major benefit in introducing these
techniques is the increase in objectivity through quantitative evaluation, with no dependence of
visual feedback assessments for understanding seating pressure map characteristics, features, and,
particularly, dynamic behavior. The human information-processing system is overloaded by
sensorial information, with constraints placed in cognitive processes such as attention, perception,
recognition, judging, reasoning, and problem solving (Payne, 2003; Smith & Kelly, 2015). Such
constraints make the human information-processing system prone to errors and misjudgments.

By assessing values of meaningful pressure measures and similarity/dissimilarity
coefficients, particularly during dynamic evaluation of time series plots, a general idea of the
seating activity and behavior of the seating pressure distributions is generally obtained without

recurring to constant visual feedback —a more-demanding cognitive activity.
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While the introduced techniques for pressure mapping analysis were evaluated in a task
seating environment (i.e. mousing and typing), the applications of these methodologies, along with
their use and interpretation, should be transferable to other seating research environments. For
example, research in automobile seating could be enhanced by the analytical capabilities of the
introduced methodologies. The automobile seating environment provides certain restrictions in
terms of seating postures and movements, thus making seating pressure behavior to be generally
stable. Therefore, pressure redistributions during driving activities are important indicators of
sitting discomfort, and enhancements in monitoring, tracking, and analysis of seating pressure
maps can help in a better understanding of these movement-discomfort relationships (Sammonds
etal., 2017).

Other implementations of the introduced methodologies can be in the ergonomic evaluation
of aircraft pilot seats, where factors such as inappropriate seat dimensions and improper sitting
postures are possible contributors to discomfort. Pilot discomfort due to sitting conditions can lead
to distractions and reduction in pilot performance during an air flight, causing concerns in flight
safety (Andrade, 2013). By use of pressure mapping interfaces, the introduced techniques could
help in evaluating pilot seat designs and seating postures, while helping in further understanding
their relation to seating comfort-discomfort.

Another example where introduced methodologies can help expand the analytical
capabilities is in paraplegic seating research, where the monitoring of pressures between the soft
tissues of the body and the support surface is important in assessing tissue viability (Aissaoui et
al., 2001). While body tissues can generally tolerate high pressures for short periods of time, the
lack of sitting movement or pressure redistribution is of concern. Blood supply and lymphatic

drainage are impaired if high seating pressures are maintained (Aissaoui et al., 2001). The
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additional information provided by the introduced methodologies can help in identifying
unfavorable pressure distribution patterns or stagnant sitting behavior.

In all aforementioned examples, the analysis of the relationships between user-chair
interactions and seating comfort-discomfort could be expanded by the introduced pressure
mapping techniques; these can help in objectively identifying the seating conditions that can lead
to discomfort. While many of the findings in this study are in the context of seating pressure
mapping evaluation, the applications of these techniques can also be tailored and employed in non-
seating research using pressure map images (e.g., gait analysis, industrial applications, and sports
fields), or for research studies using spatially related three-dimensional datasets (e.g., surface

topography, contour data, and heat maps).

Limitations

Some of the limitations in this study are in terms of the pressure mapping interface used to
collect the pressure maps included in the studied dataset. There were instances where many
pressure sensor cells in the pressure mat were maxed out (i.e., 300 mmHg), usually around high-
pressure regions such as the ischial tuberosities. Some of the introduced pressure measures, such
as homogeneity and spatial relationships measures, were sensitive to clusters of maxed out
readings. To obtained more accurate results with introduced measures, the use of pressure mapping
interfaces with pressure limits higher than the expected max pressure reading is required.

Introduced methodologies were validated for a grid-base pressure mat interface with 1024
(32 x 32) contiguous pressure elements (sensors). While the applications of many of the introduced
measures, techniques, and methodologies should scale well with grid-base pressure mat interfaces

with different configurations (e.g., 16 x 16, or 32 x 80 [used in mattress research]), proposed
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techniques for data cleansing (using density-based spatial clustering) might not be adequate for
other pressure mapping applications. This study implemented density-based spatial clustering on
the assumption that seating pressure maps generally exhibit a single-body (or a number of large
bodies) of contiguous pressure readings. This assumption could be violated in other human-subject
pressure mapping applications (e.g., gait analysis, mattress mapping, or dental mapping). In
controlled pressure mapping environments, particularly in industrial applications (e.g., sealing
packaging, robotic assembly, and ultrasonic welding), extrinsic pressure artifacts might not even
be present; making the pre-processing (data cleansing) of collected pressure maps not a
requirement.

For the dynamic evaluation of continuous pressure maps, the 5-minute interval sample used
in this study provided sufficient dynamic pressure redistributions to evaluate the feasibility of
introduced dynamic pressure measures. Unfortunately, significant seat pan repositions did not
occur during this sitting time interval. More seating repositions could potentially be observed in
longer sitting sessions, where the potential use of measures of registered CP translation distances
could be better evaluated. The dynamic evaluation conclusions presented in this study assume that
all introduced methodologies and measures are scalable (different pressure map resolutions) and
extendable (longer collection of continuous pressure maps).

Evaluations of introduced comparative techniques were limited to comparisons of pressure
maps with no significant orientation differences (e.g., rotational differences of more than 90°), or
significant scaling differences (e.g., differences in number of contact cells more than 20%).
Significant scaling differences can occur when comparing pressure maps between subjects due to
differences in subjects’ anthropometry, or when comparing within-subject pressure maps where

different seating surfaces are examined (e.g., different seating area and/or contour). These scaling
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differences can have meaningful effects during image registration procedures. While scaling
algorithms can be also implemented for comparing pressure maps, it is generally not appropriate
for research involving human subjects (e.g., seating research). Scaling algorithms will distort
subject’s anthropometry and cover dissimilarities due to true differences in size between subjects,
and therefore not considered in this study. But other potential pressure mapping research
applications where objects are naturally scalable (e.g., tire footprint analysis) might benefit from
scaling algorithms during image registrations.

Another major limitation is that seating pressure maps were used as the testing and
validation platform for introducing new methods and techniques for pressure mapping analysis.
While other pressure mapping applications could benefit from many of the proposed
methodologies, their applications and interpretations could possibly change according to what is

being researched (human or object) and which contact interaction (surface) is being studied.

Future Research

Possible avenues for future research are in terms of pre-processing (data cleansing)
techniques. Additional input data can be provided to density-based clustering algorithms with the
purpose of enhancing detection and classification accuracies of extrinsic pressure artifacts
(outliers). One possibility could be incorporating pressure distances between individual pressure
reading and the map’s center of pressure (with appropriate weights) as a way to identify closeness
to the main pressure body. Other techniques could include forward or backwards propagation
analysis in continuous pressure maps to detect common areas and locations where outliers are

detected across sequential pressure maps, or use of multi-phase algorithms (e.g., using
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combinations of clustering methods, pressure magnitudes, locations, and distances information) to
provide outlier scores to pressure readings within a pressure map.

With the introduction of new pressure measures and comparative techniques, future studies
in seating research can implement these to further study human-chair interactions. Research can
be aimed at determining appropriate ranges of values for the proposed pressure measures in
relation to sitting comfort-discomfort. These measures can also be used to understand subjects’
anthropometry influences during extended sitting bouts, and further help in understanding the
relationships to comfort-discomfort during dynamic sitting.

As one of the limitations in this study is the use of seating pressure maps as the testing and
validation platform for introduced methodologies, is also of importance that applications,
evaluations, feasibilities, and practicalities of proposed methodologies are studied in other pressure

mapping application fields.
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# -*- coding: utf-8 -*-

VoONOTUVTSA WNBR

51.
52.
53.
54.

Created on Thu Mar 7 ©09:13:08 2019

@author: Joan Martinez

import numpy as np
import pandas as pd

. from sklearn.cluster import DBSCAN, OPTICS

. from hdbscan import HDBSCAN

. from sklearn import metrics

. from sklearn.preprocessing import StandardScaler
. import matplotlib.pyplot as plt

. import sys, time, glob, os

. import matplotlib as mpl

. from skimage.external import tifffile

. sys.path.append(os.getcwd()+"'\\DENCLUE-master")
. from denclue import DENCLUE # mgarrett, 2017 (github.com/mgarrett57/DENCLUE)

. sys.path.append(os.getcwd()+"'\\py-dbclasd-master")
. from dbclasd2 import dbclasd # Sebastian Palacio, 2015 (github.com/spalaciob/py-dbclasd)

. # create colormap

. upper = mpl.cm.jet(np.arange(int(256/4.5),256))

. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])

o BRI R LOAD DATA i e

. sheet = 'Seatpan’

. # Pressure Mat Info

. resl = 32
. res2 = 32
. pmax = 300

. Y1 = pd.read_excel('Data\\Cluster data subset.xlsx', sheet_name=sheet)
. Ylab = pd.read_excel('Data\\Cluster data subset.xlsx', sheet name=sheet + ' Outliers')

. nindex = np.size(Y1l.iloc[1,:])

.Y = np.float32(Yl.values.reshape(resl,res2,nindex))
. Ym = np.ma.masked_where(Y == 0, Y) ## Inactive cells = @ mmHg

. indexlist = list(range(56))
. #Setting up column/rows/pressure array

. X1 = np.array(np.meshgrid(np.arange(1,resl+l),np.arange(1l,res2+1))).T.reshape(-1,2)
. X1 = pd.DataFrame(np.hstack((X1,np.zeros(resl*res2).reshape(1,1))),columns=["Row', 'Column

, 'Pressure'])

#Setting up cluster label variables
cluvarlist = ['db', 'dbnp', 'op', 'opnp', 'opdb', 'opdbnp', 'hdb', 'hdbnp'
,'dcl', ‘'dclnp', 'dbcl', ‘'dbclnp']



Sl

56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
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labvarlist = ['DBSCAN', 'DBSCAN (NP)', 'OPTICS XI','OPTICS XI (NP)', 'OPTICS_DBSCAN',
'OPTICS_DBSCAN (NP)', 'HDBSCAN', 'HDBSCAN (NP)', 'DENCLUE', 'DENCLUE (NP)', 'DBCLASD',
CLASD (NP)']

props = dict(boxstyle='round', facecolor='wheat', alpha=0.3)

Results = pd.DataFrame(columns=['File', 'Sheet', 'Method', 'Parameters', 'Clusters’,
'Noise Pts','Cluster Accuracy','Overall Accuracy','Outliers Accuracy’,

'Non-Outliers Accuracy', 'Homogeneity', 'Completeness','V-measure','Adj RI', 'Adj MI',
'Silhouette Coefficient', 'Proc Time'])

start = time.time()
S START INDEXING ####HH##HH#
for i in indexlist:

filename = Y1.columns[i]
os.makedirs('Data\\Cluster data subset\\' + filename, exist_ok=True)

#Plot pressure map

plt.figure(figsize=(5, 4), dpi=200)

plt.imshow(Ym[:,:,i], cmap=cmap);

plt.clim(@, pmax)

plt.colorbar()

plt.title(f'{filename} - Pressure Map (mmHg)')

plt.savefig(f'Data\Cluster data subset\{filename}\Pressure Map - {filename}.tif',
bbox_inches="tight")

plt.clf()

X=X1
X[ 'Pressure'] = np.array(Yl.iloc[:,i]).reshape(-1,1)
labels_true = np.array(Ylab.iloc[:,i])

#Eliminating non-pressure elements

X = X.drop(X[X.Pressure == 0].index)

labels_true = np.array([labels_true[j] for j in X.index])
X = X.reset_index(drop=True)

# Standardization (Z)
X[ 'Pressure'] = StandardScaler().fit_transform(X[ 'Pressure’].values.reshape(-1,1))

###### NO PRESSURE DATA #######
Xnp = X.drop('Pressure', axis=1)
Xnpreord=X[["'Column', "Row"]]

#Marking all as non-outliers
core_samples_mask = np.zeros(len(X.iloc[:,0]), dtype=bool)
core_samples_mask[:] = True

#Plotting Reference Outlier Map
real n _noise = list(labels_true).count(-1)
real non_outliers = list(labels_true).count(9)

unique_labels = set(labels_true)
colors = [plt.cm.Set3(each)
for each in np.linspace(®, 1, len(unique_labels))]

fig, ax = plt.subplots()
pstr = ('Outliers: %i' %real_n_noise + '\nNon-Outliers: %i' %real_non_outliers)
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ax.text(resl + 1.5, 1, pstr, fontsize=7,verticalalignment="top', bbox=props)

# Black removed and is used for noise instead.
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]

class_member_mask = (labels_true == k)

xy = X[class_member_mask & core_samples_mask]
ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),
markeredgecolor="k"', markersize=7)

xy = X[class_member_mask & ~core_samples_mask]
ax.plot(xy[ 'Column'], xy['Row'], 'o', markerfacecolor=tuple(col),
markeredgecolor="k', markersize=5)

plt.xticks(np.arange(®, resl+l, resl/8))

plt.yticks(np.arange(®, resl+l, resl/8))

plt.title(f'{filename} - Outliers Reference [Noise: {real_n_noise}]")
ax.axis([-0.5, res1+0.5, -0.5, res2+0.5])

ax.set_aspect(1)

ax.invert_yaxis()

plt.savefig(f'Data\Cluster data subset\{filename}\Reference - {filename}.tif',
dpi=200, bbox_inches="tight")
plt.clf()

# Compute DBSCAN

proctime = time.time()

db = DBSCAN(eps=2.5, min_samples=8, metric='euclidean', algorithm="brute').fit(X)
dbtime = time.time() - proctime

proctime = time.time()

dbnp = DBSCAN(eps=2.2, min_samples=10, metric='euclidean',
algorithm="brute").fit(Xnp)

dbnptime = time.time() - proctime

# Compute OPTICS XI

proctime = time.time()

op = OPTICS(min_samples= 3 , metric='euclidean', cluster_method='xi', xi= 0.1,
min_cluster_size = 0.4, algorithm='brute').fit(X)

optime = time.time() - proctime

proctime = time.time()

opnp = OPTICS(min_samples= 3 , metric='euclidean', cluster_method='xi', xi= 0.03,
min_cluster_size = 0.4, algorithm="brute').fit(Xnp)

opnptime = time.time() - proctime

# Compute OPTICS DBSCAN

proctime = time.time()

opdb = OPTICS(min_samples= 8, max_eps= 2.2, metric='euclidean',
cluster_method="dbscan', algorithm='brute').fit(X)

opdbtime = time.time() - proctime

proctime = time.time()
opdbnp = OPTICS(min_samples= 10, max_eps= 2, metric='euclidean',
cluster_method="dbscan', algorithm="'brute').fit(Xnp)
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opdbnptime = time.time() - proctime

# Compute HDBSCAN
proctime = time.time()
hdb = HDBSCAN(min_cluster_size=12, min_samples=3, metric='euclidean', alpha=1.0,
algorithm="best', leaf_size=5,

gen_min_span_tree=True, cluster_selection_method="'eom"',
allow_single_ cluster=False).fit(X)
hdbtime = time.time() - proctime

proctime = time.time()

hdbnp = HDBSCAN(min_cluster_size=12, min_samples=3, metric='euclidean', alpha=1.0,
algorithm="best', leaf_size=5, gen_min_span_tree=True,
cluster_selection_method="eom', allow_single_cluster=False).fit(Xnp)

hdbnptime = time.time() - proctime

# Compute DENCLUE

proctime = time.time()

dcl = DENCLUE(h=None, eps=1, min_density=2e-04, metric='euclidean').fit(X.values)
dcltime = time.time() - proctime

proctime = time.time()

dclnp = DENCLUE(h=None, eps=1, min_density=1.3e-03,
metric="'euclidean').fit(Xnp.values)

dclnptime = time.time() - proctime

# Compute DBCLASD

proctime = time.time()

dbcldiv = 8

dbcl = dbclasd(n_neighbors = int(len(X)/dbcldiv)).fit(X.values)
dbcltime = time.time() - proctime

proctime = time.time()

dbclnpdiv = 5

dbclnp = dbclasd(n_neighbors = int(len(X)/dbclnpdiv)).fit(Xnp.values)
dbclnptime = time.time() - proctime

for var, lab in zip(cluvarlist,labvarlist):

# Number of clusters in labels, ignoring noise if present.
labels = eval(var).labels_

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

cmatrix = metrics.confusion_matrix(labels_true, labels)

if real_n_noise + n_noise_ == 0:
outacc =1
noutacc =
ovacc =1

else:
correct_n_noise = cmatrix[0][Q]
incorrect_non_outliers = cmatrix[1][0]
outacc = (correct_n_noise/real_n_noise)
noutacc = ((real_non_outliers-incorrect_non_outliers)/real_non_outliers)
ovacc = (correct_n_noise+(real_non_outliers-

incorrect_non_outliers))/(real_n_noise + real_non_outliers)

1

if n_clusters_+ n_noise_ == 1:
silhouette=1



215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.

226.
227.

228.

229.

230.
231.

232.

233.

234.

235.
236.

237.

238.

239.
240.
241.
242.
243.
244
245.

246.
247.
248.

249.
250.
251.
252.

253.
254.
255.

256.
257.

234

elif n_clusters_+ n_noise_ == len(labels):
silhouette=-1

else:
silhouette=metrics.silhouette_score(X, labels)

proctime = eval(var+'time')

print(f'{filename} , Index: {i}\n {lab} RESULTS ")
print('No of clusters:\t\t\t %d' % n_clusters_)

print('No of noise points:\t\t %d' % n_noise_)

print("Cluster Accuracy:\t\t %0.4f" % metrics.accuracy_score(labels_true,
labels)) #fraction of correctly classified samples (ALL)

print("Overall Accuracy:\t\t %0.4f" %ovacc) #fraction of correctly classified
samples (ALL)

print("Outliers Accuracy:\t\t %0.4f" %outacc) #fraction of correctly classified
outliers (-1)

print("Non-Outliers Accuracy:\t\t %@.4f" %noutacc) #fraction of correctly
classified non-outliers (non -1)

print("Homogeneity:\t\t\t %0.4f" % metrics.homogeneity_score(labels_true,
labels)) #fraction of correctly classified members of a single class.
print("Completeness:\t\t\t %0.4f" % metrics.completeness_score(labels_true,
labels)) #data points that are members of a given class are elements of the
same cluster.
print("V-measure:\t\t\t %0.4f" % metrics.v_measure_score(labels_true, labels))
#harmonic mean between homogeneity and completeness
print("Adjusted Rand Index:\t\t %0.4f" #counting pairs that are assigned in the
same or different clusters in the predicted and true clusterings.

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information:\t %@.4f" #measure of the similarity between
two labels of the same data

% metrics.adjusted_mutual_info_score(labels_true, labels, average_method=

"arithmetic'))
print("Silhouette Coefficient:\t\t %0.4f" #mean relationship between mean
intra-cluster and mean nearest-cluster distances for each sample.

% silhouette)
print('Confusion Matrix\n', cmatrix)

pstr = "Params = None"

if (var == 'db' or var == 'dbnp'):
pstr = ('eps:%.2f"' %eval(var).eps + '\nmin_samples:%.0f"'
%eval(var).min_samples)

if (var == 'op' or var == 'opnp'):
pstr = ('xi:%.3f" %eval(var).xi + '\nmin_samples:%.0f"'
%eval(var).min_samples
+ '\nmin_size:%.2f"' %eval(var).min_cluster_size)

if (var == 'opdb' or var == ‘'opdbnp'):
pstr = ('eps:%.2f"' %eval(var).max_eps + '\nmin_samples:%.0f"'
%eval(var).min_samples)

if (var == 'hdb' or var == 'hdbnp'):
pstr = ('min_size:%.2f' %eval(var).min_cluster_size + '\nmin_samples:%.0f"'
%eval(var).min_samples
+ '\nleaf_size:%.2f' %eval(var).leaf_size)
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if (var == 'dcl' or var == ‘'dclnp'):
pstr = ('eps:%.1le' %eval(var).eps + '\nmin_density:%.1e’
%eval(var).min_density)

if (var == 'dbcl'):
pstr = ('n_neighbors:%i' %eval(var).n_neighbors + '\nArea%%:%.2f'
%(1/dbcldiv))
if (var == 'dbclnp'):
pstr = ('n_neighbors:%i' %eval(var).n_neighbors + '\nArea%%:%.2f'
%(1/dbclnpdiv))

Results.loc[len(Results)] = np.array([filename, sheet, lab, pstr, n_clusters_,
n_noise_,metrics.accuracy_score(labels_true, labels),ovacc, outacc,noutacc,
metrics.homogeneity_score(labels_true, labels),
metrics.completeness_score(labels_true, labels),
metrics.v_measure_score(labels_true, labels),
metrics.adjusted_rand_score(labels_true, labels),
metrics.adjusted_mutual_info_score(labels_true, labels,
average_method="arithmetic'), silhouette, proctime])

unique_labels = set(labels)
colors = [plt.cm.Set3(each)
for each in np.linspace(@, 1, len(unique_labels))]

fig, ax = plt.subplots()
ax.text(resl + 1.5, 1, pstr, fontsize=7,verticalalignment='top', bbox=props)

# BHEHEHEHE RS RESULTS PLOT #H###H8HH
# Black removed and is used for noise instead.
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]
ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),
markeredgecolor="k', markersize=7)

xy = X[class_member_mask & ~core_samples_mask]
ax.plot(xy[ 'Column'], xy['Row'], 'o', markerfacecolor=tuple(col),
markeredgecolor="k"', markersize=5)

plt.xticks(np.arange(®, resl+l, resl/8))

plt.yticks(np.arange(0, resl+l, resl/8))

plt.title(f'{filename} - {lab} [Clusters: {n_clusters_}, Noise: {n_noise_}]")
ax.axis([-0.5, resl+0.5, -0.5, res2+0.5])

ax.set_aspect(1)

ax.invert_yaxis()

plt.savefig(f'Data\Cluster data subset\{filename}\{lab} - {filename}.tif',
dpi=200, bbox_inches="tight'")
plt.clf()

#i#H## Create TIF files
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with tifffile.TiffWriter(f'Data\Cluster data subset\{filename} {sheet} -
Cluster Plots.tif') as stack:
for fname in sorted(glob.glob(f'Data\Cluster data subset\{filename}\*.tif'),
key=o0s.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

# Write Results in Excel

from excelappend import append df_to_excel

append_df_to_excel(f'Data\Cluster data subset\Cluster Results.xlsx',Results,
sheet_name="Results")

print('Processing Time: ', (time.time() - start))

I A A END i S A T A A R
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Appendix D

Python Code: Spatial Autocorrelation and Statistical Features



VWoONOTUVTE WNPR

VVTUTUVUVUVUVTUVTUVURSDDNDNDNENDNDAEDNDRNDNWWWWWWWWWWNNNNNNNNNNRPRPRPRRPRPRPRRPRLRR
ONOUVDBWNROUOVONOUDNWNROUOVONOCUDNRWNROOLONOUDNWNROOLONOTUDNWNRO® -

# -*- coding: utf-8 -*-

Created on Thu Apr 4 13:22:31 2019

@author: Joan Martinez

import numpy as np
import pandas as pd

. import scipy as sp

. import pysal

. import matplotlib.pyplot as plt

. import matplotlib as mpl

. import skimage.feature as sf

. import sys

. import time

. import glob

. import os

. from skimage.external import tifffile

. sys.path.append(os.getcwd()+"\\biokit\\viz")
. import corrplot

. # create colormap

. upper = mpl.cm.jet(np.arange(int(256/4.5),256))
. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])

o b e e b e
. # Load data

. sheet = 'Seatpan’

. Dataset = 'Static’

. #Dataset = 'Paired’

. Y1l = pd.read_excel('Data\\{Dataset} data subset.xlsx', sheet_name=sheet)

. os.makedirs('Data\\{Dataset} data subset\\' + sheet + '\\Results' , exist_ok=True)
. os.makedirs('Data\\{Dataset} data subset\\' + sheet + '\\Plots', exist_ok=True)

. nindex = np.size(Yl.iloc[1,:])

. resl = 32
. res2 = 32
. pmax = 300

.Y = np.float32(Yl.values.reshape(resl,res2,nindex))
. Ym = np.ma.masked_where(Y == 0, Y) ## unactive cells = @ mmHg
. Ylm = np.ma.masked_where(Y1l == 0, Y1) ## unactive cells = @ mmHg

R S S
R R S S

. #Spatial Autocorrelation Variales
. miarrq, gcarrq, miarrc, gcarrc, miarrid, gcarrid = (np.zeros(nindex) for

in range(6))

. # Weight Matrix for Autocorrelation
. wg = pysal.lat2W(resl,res2, rook = False)
59.

X = np.array(np.meshgrid(np.arange(1,resl+l),np.arange(1,res2+1))).T.reshape(-1,2)
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60. wid = pysal.threshold_continuousW_from_array(X,2*2**9.5)

61. wc = pysal.threshold_continuousW_from_array(X,2*2**0.5, alpha = @)
628

63. #First Order Statistics Variables

64. ctarr, sumarr, meanarr,sdarr,cvarr, skewarr,kurtarr = (np.zeros(nindex) for _ in range(7))

65. histarr = np.zeros(shape=(pmax+1l, nindex))

66.

67. #Gradient Variables

68. diffx = np.ma.array(np.zeros(shape = (resl,res2-1,nindex)))

69. diffy = np.ma.array(np.zeros(shape = (resl-1,res2,nindex)))

70. gradx,grady = (np.ma.array(np.zeros(shape = (resl,res2,nindex))) for _ in range(2))
71. histdiffxarr, histdiffyarr = (np.zeros(shape=(pmax+1l, nindex)) for _ in range(2))
72.

73. #GLD Variables

74. gradprobdistrx,gradprobdistry = (np.zeros(shape=(pmax+1, nindex)) for
75. [gradcontrastx,gradcontrasty, gradsecmomentx, gradsecmomenty,

76. gradentropyx,gradentropyy, gradmeanx, gradmeany,
77. invdiffmomx, invdiffmomy] = (np.zeros(nindex) for
78.

79. #GLSD Variables

80. [glsd_energyx,glsd_energyy,glsd_contrastx,glsd_contrasty,

81. glsd_correlationx,glsd_correlationy,glsd_homogeneityx,glsd_homogeneityy,
82. glsd_entropyx,glsd_entropyy] = (np.zeros(nindex) for _ in range(10))

83.

84.

85. start = time.time()

86. #INDEX LOOP

in range(2))

in range(10))

87.1 =20

88. for i in range(nindex):

89.

90. miarrq[i] = "%.5f" %pysal.Moran(Y[:,:,i], wq, permutations=2).I

91. gcarrq[i] = "%.5f" %pysal.Geary(Y[:,:,i], wq, permutations=2).C

92.

93. miarrc[i] = "%.5f" %pysal.Moran(Y[:,:,i], wc, permutations=2).I

94. gcarrc[i] = "%.5f" %pysal.Geary(Y[:,:,i], wc, permutations=2).C

95.

96. miarrid[i] = "%.5f" %pysal.Moran(Y[:,:,i], wid, permutations=2).I

97. gcarrid[i] = "%.5f" %pysal.Geary(Y[:,:,i], wid, permutations=2).C

98.

99. histarr[:,[i]] = np.histogram([Ym[:,:,1i]],pmax+1)[0].reshape(pmax+1,1)

100.

101. ## Only active cells

102. ctarr[i] = np.ma.MaskedArray.count(Yim[:,i])

103. sumarr[i] = np.ma.MaskedArray.sum(YIm[:,i])

104. meanarr[i] = "%.5f"%sp.stats.mstats.describe(Y1m[:,i]).mean

105. sdarr[i] = "%.5f"%np.sqrt(sp.stats.mstats.describe(Y1im[:,i]).variance

106. cvarr[i] = "%.5f"%sp.stats.mstats.variation(Yim[:,i])

107. skewarr[i] = "%.5f"%sp.stats.mstats.skew(YIm[:,i])

108. kurtarr[i] = "%.5f"%sp.stats.mstats.kurtosis(Yim[:,i])

109.

110. ## FIRST ORDER GRADIENT

111. diffy[:,:,i] = abs(np.diff(¥Ym[:,:,i], axis=0))

112. diffx[:,:,i] = abs(np.diff(Ym[:,:,i], axis=1))

113.

114. histdiffxarr[:,[i]] = np.histogram(diffx[:,:,i].compressed(),pmax+1l, [0©,pmax])[0].
reshape(pmax+1,1)

115. histdiffyarr[:,[i]] = np.histogram(diffy[:,:,i].compressed(),pmax+1l, [0,pmax])[@].

reshape(pmax+1,1)
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levels=pmax+1,

gradprobdistrx[:,[
gradprobdistry[:,[

gradcontrastx[i] =
gradcontrasty[i] =
gradsecmomentx[i]
gradsecmomenty[i]

gradentropyx[i] =
gradentropyy[i] =

gradmeanx[1i] np.
gradmeany[i] = np.

invdiffmomx[i] = n

invdiffmomy[i] = n

## SECOND ORDER CE

grady[:,:,1i] = np.
gradx[:,:,1i] = np.
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i]] histdiffxarr[:,[i]]/np.sum(histdiffxarr[:,[i]])
i]] = histdiffyarr[:,[i]]/np.sum(histdiffyarr[:,[i]])

np.sum(gradprobdistrx[:,[i]]*(np.arange(pmax+1).

reshape(pmax+1,1))**2)

np.sum(gradprobdistry[:,[i]]*(np.arange(pmax+1).

reshape(pmax+1,1))**2)

= np.sum(gradprobdistrx[:,[1]]**2)
= np.sum(gradprobdistry[:,[1]]**2)

sp.stats.entropy(gradprobdistrx[:,[1]], base=2)[0]
sp.stats.entropy(gradprobdistry[:,[i]], base=2)[0]

sum(gradprobdistrx[:,[1i]]*(np.arange(pmax+1).reshape(pmax+1,1)))
sum(gradprobdistry[:,[1]]*(np.arange(pmax+1).reshape(pmax+1,1)))

p.sum(gradprobdistrx[:,[1i]]/((np.arange(pmax+1).

reshape(pmax+1,1))**2+1))

p.sum(gradprobdistry[:,[1]]/((np.arange(pmax+1).

reshape(pmax+1,1))**2+1))

NTRAL GRADIENT
gradient(Ym[:,:,i], edge_order=1, axis=0)
gradient(Ym[:,:,i], edge_order=1, axis=1)

HHHHH A SECOND ORDER STAT FEATURES  ##########

#Removing first ©
gcm2 = np.float64(

gem2[:,:,0,0] = gc
gem2[:,:,0,1] = gc

glsd_energyx[i] =
glsd_energyy[i] =

glsd_contrastx[i]
glsd_contrasty[i]

glsd_correlationx[
glsd_correlationy|[

glsd_entropyx[i] =
[np.newaxis][0,0]
glsd_entropyy[i] =
[np.newaxis][0,1]

glsd_homogeneityx[
glsd_homogeneityy[

filenames = Y1.columns

pressure column
sf.greycomatrix(np.uint16(np.round(Ym[:,:,i])),[1],[@, np.pi/2],

symmetric=True)[1:,1:,:,:])

m2[:,:,0,0]/np.sum(gcm2[:,:,0,0])
m2[:,:,0,1]/np.sum(gcm2[:,:,0,1])

(sf.greycoprops(gcm2, "energy")**2)[0,0]
(sf.greycoprops(gcm2, "energy")**2)[0,1]

sf.greycoprops(gcm2, "contrast")[e,0]
sf.greycoprops(gcm2, "contrast")[0,1]

i] = sf.greycoprops(gcm2, "correlation")[0,0]
i] = sf.greycoprops(gcm2, "correlation")[0,1]

sp.stats.entropy(np.reshape(gcm2,(-1,2)), base=2)
sp.stats.entropy(np.reshape(gcm2,(-1,2)), base=2)

i] = sf.greycoprops(gcm2, "homogeneity")[0,0]
i] = sf.greycoprops(gcm2, "homogeneity")[0,1]

print('Processing Indexes Time: ', (time.time() - start))

#### WRITE RESULTS IN EXCEL ##ttHHHH
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resvarlist = ['filenames', 'miarrq', 'gcarrq', 'miarrc', ‘'gcarrc', ‘'miarrid’,
‘gcarrid', 'ctarr', 'sumarr', 'meanarr', 'sdarr', 'cvarr', 'skewarr', 'kurtarr']

labvarlist = ['Sample', "Moran's I (Q)", "Geary's C (Q)", "Moran's I (CD)",
"Geary's C (CD)", "Moran's I (ID)", "Geary's C (ID)", 'Contact Cells"',
'Sum of Pressure', 'Mean Pressure', 'Standard Deviation', 'Coefficient of Variation',
'Skewness', 'Kurtosis']

resvarlistx = ['gradcontrastx', 'gradsecmomentx', 'gradentropyx', 'gradmeanx',
"invdiffmomx', 'glsd_energyx', 'glsd_contrastx', 'glsd_correlationx', 'glsd_entropyx',
sd_homogeneityx']

labvarlistx = ['GLD - Gradient Contrast X', 'GLD - Gradient Second Moment X',
'GLD - Gradient Entropy X', 'GLD - Gradient Mean X',
'GLD - Inverse-Difference Moment X', 'GLSD - Energy X', 'GLSD - Contrast X',
'GLSD - Correlation X', 'GLSD - Entropy X', 'GLSD - Homogeneity X']

resvarlisty = ['gradcontrasty', 'gradsecmomenty', 'gradentropyy', 'gradmeany',
"invdiffmomy', 'glsd_energyy', 'glsd_contrasty', 'glsd_correlationy', 'glsd_entropyy',
'glsd_homogeneityy']

labvarlisty = ['GLD - Gradient Contrast Y', 'GLD - Gradient Second Moment Y',
'GLD - Gradient Entropy Y', 'GLD - Gradient Mean Y',
'GLD - Inverse-Difference Moment Y', 'GLSD - Energy Y', 'GLSD - Contrast Y',
'GLSD - Correlation Y', 'GLSD - Entropy Y', 'GLSD - Homogeneity Y']

Results = pd.DataFrame(columns=labvarlist + labvarlistx + labvarlisty)

for var, lab in zip(resvarlist + resvarlistx + resvarlisty,labvarlist + labvarlistx
+ labvarlisty):
Results[lab] = eval(var)

from excelappend import append_df_to_excel
append_df_to_excel(f'Data\\{Dataset} data subset\\{sheet}\Results\{Dataset}
Pressure Parameteres Results.xlsx',Results,sheet_name=sheet)

corr = Results.corr(method="'pearson')

c = corrplot.Corrplot(corr)

c.plot(method="ellipse', shrink=0.8, rotation=45, upper='text', lower='pie')

fig = plt.gcf()

fig.set_size_inches(20, 16);

plt.title(f'{Dataset} Data Subset - Pressure Parameters Correlations')
plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\\{Dataset} Pressure Parameters
Correlations.tif', dpi=200, bbox_inches="tight")

append_df_to_excel(f'Data\\{Dataset} data subset\\{sheet}\Results\{Dataset} Pressure
Parameteres Correlations.xlsx',corr,sheet_name=sheet)

##HHHEH INDEXES MAPS & PLOTS #####H#HHHEHH
start = time.time()

dpishow = 100

dpisave = 200

i=20
for i in range(nindex):
plt.clf()

plt.figure(figsize=(5, 4), dpi=200)
plt.imshow(Ym[:,:,i], cmap=cmap);
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plt.clim(@,pmax)

plt.colorbar()

plt.title(f'%s, Pressure Map (mmHg) [CV = %.3f]"' %(filenames[i],cvarr[i]))
#plt.show()

plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Pressure Map -
Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches="'tight")

plt.clf()

plt.figure(figsize=(5, 2), dpi=dpishow)
plt.hist(Yim[:,i].compressed(),pmax+1,[0,pmax])

plt.xlabel('Pressure (mmHg)', fontsize=12)

plt.title(f'%s, {sheet} Pressure Histogram' %filenames[i])
#plt.show()

plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Histogram -
Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')

plt.clf()

fig, (ax1, ax2) = plt.subplots(l, 2, dpi=dpishow)

iml=ax1.imshow(gradx[:,:,i], cmap='seismic', vmin=-pmax, vmax=pmax);
axl.set_title('[0°, X-axis]')

im2=ax2.imshow(grady[:,:,i], cmap="seismic', vmin=-pmax, vmax=pmax);
ax2.set_title('[90°, Y-axis]')

fig.subplots_adjust(right=1.2)

cbar_ax = fig.add_axes([1, 0.15, 0.05, 0.7])

fig.colorbar(im2, cax=cbar_ax)

plt.suptitle(f'%s, {sheet} Second Order Central Gradient Map (mmHg)' %filenames[i],
horizontalalignment="'center")

fig.tight_layout(rect=[0, 0.03, 1, 0.95])

#plt.show()

plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Central Gradient Map -
Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches="tight")

plt.clf()

fig, (axl, ax2) = plt.subplots(1,2, dpi=dpishow)

giml=ax1l.imshow(diffx[:,:,1i], cmap='Y1OrRd', vmin=0, vmax=pmax);
axl.set_title('[0°, X-axis]")

im2=ax2.imshow(diffy[:,:,i], cmap='Y1lOrRd', vmin=0, vmax=pmax);
ax2.set_title('[90°, Y-axis]')

fig.subplots_adjust(right=1.2)

cbar_ax = fig.add_axes([1, ©.15, ©.05, 0.7])

fig.colorbar(im2, cax=cbar_ax)

plt.suptitle(f'%s, {sheet} First Order Absolute Gradient Map (mmHg)' %filenames[i],
horizontalalignment="center")

fig.tight_layout(rect=[0, ©.03, 1, 0.95])

#plt.show()

plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute Gradient Map -
Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')

plt.clf()

fig, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3), dpi=dpishow, sharey=True)
iml=ax1l.hist(diffx[:,:,i].compressed(),pmax+1l,[0,pmax]);

axl.set_title('[0°, X-axis]')

axl.set_xticks(np.arange(@, pmax+1l, 50))

axl.set_xlabel('Pressure (mmHg)', fontsize=10)
im2=ax2.hist(diffy[:,:,i].compressed(),pmax+1l,[0,pmax]);
ax2.set_title('[90°, Y-axis]')

ax2.set_xticks(np.arange(9, pmax+l, 50))

ax2.set_xlabel('Pressure (mmHg)', fontsize=10)
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plt.suptitle(f'%s, {sheet} First Order Absolute Gradient Histogram (mmHg)'
%filenames[i], horizontalalignment='center')

fig.tight_layout(rect=[0, 0.03, 1, 0.95])

#plt.show()

plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute Gradient
Histogram - Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches="'tight")
plt.clf()

#i#t## Create TIF files
with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset
Pressure Maps.tif') as stack:
for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\
Pressure Map - Sample*.tif'), key=os.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset
Pressure Histograms.tif') as stack:
for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\
Histogram - Sample*.tif'), key=os.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset,
Central Gradient Map.tif') as stack:
for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\
Central Gradient Map - Sample*.tif'), key=os.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset
Absolute Gradient Map.tif') as stack:
for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute
Gradient Map - Sample*.tif'), key=os.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset
Absolute Gradient Histogram.tif') as stack:
for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\
Absolute Gradient Histogram - Sample*.tif'), key=os.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

print('Processing Plots Time: ', (time.time() - start))
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Appendix E

Python Code: Image Registration and Similarity/Dissimilarity Coefficients
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.Yl
. Y2

. Ylm
. Y2m

# -*- coding: utf-8 -*-

Created on Mon Aug 5 10:22:04 2019

@author: Joan Martinez

import numpy as np
import pandas as pd

. import scipy as sp

. import matplotlib.pyplot as plt

. import matplotlib as mpl

. import time

. import glob

. import os

. from skimage.external import tifffile

. from scipy.ndimage import rotate, shift
. import SimpleITK as sitk

. # create colormap
. upper = mpl.cm.jet(np.arange(int(256/4.5),256))
. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])

. HSHE S S
. # Load data

. Dataset = "Synthetic"
. sheet = 'Seatpan’
. sheet2 = 'Template'

pd.read_excel(f'Data\\{Dataset} data subset.xlsx', sheet name=sheet)
pd.read_excel(f'Data\\{Dataset} data subset.xlsx', sheet_name=sheet2)

np.ma.masked_where(Y1l == 0, Y1) ## unactive cells = @ mmHg
np.ma.masked_where(Y2 == @, Y2) ## unactive cells = 0@ mmHg

. nindexl = np.size(Yl.iloc[1,:])
. nindex2 = np.size(Y2.iloc[1,:])

. resl = 32
. res2 = 32
. pmax = 300

. X1 = np.float32(Yl.values.reshape(resl,res2,nindexl))
. Xdm = np.ma.masked_where(X1 == 0, X1) ## unactive cells = @ mmHg

. X2 = np.float32(Y2.values.reshape(resl,res2,nindex2))
. X2m = np.ma.masked_where(X2 == 0, X2) ## unactive cells = @ mmHg

B R S S
B R S S

i=o290

j=20

eps =1
. filenamel = Y1.columns[i]
. filename2 = Y2.columns[j]
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if Dataset == "Synthetic":
# Apply transformation
hloc = 1
vloc = -1
rot = -15

template = shift(X2[:,:,j], [-vloc,hloc],order=0,prefilter=False)
template = rotate(template, rot, reshape=False)

else:
[hloc,vloc,rot] = (@ for
template = X2[:,:,7]

in range(3))

plt.imshow(X1[:,:,1i])
plt.show()
plt.imshow(template)
print("\n",filenamel," vs

, filename2)

os.makedirs(f'Data\{Dataset} data subset\\' + filenamel + ' vs ' + filename2 ,
exist_ok=True)

100
200

dpishow
dpisave

for method in ["MI","MSE"]:

# Callback invoked when the StartEvent happens, sets up our new data.
def start_plot():
global metric_values, multires_iterations

metric_values = []
multires_iterations = []

# Callback invoked when the EndEvent happens, do cleanup of data and figure.
def end_plot():
global metric_values, multires_iterations

del metric_values

del multires_iterations

# Close figure, we don't want to get a duplicate of the plot latter on.
plt.close()

# Callback invoked when the IterationEvent happens, update our data and

# save an image that includes a visualization of the registered images and

# the metric value plot.

def save_plot(registration_method, fixed, moving, transform, file_name_prefix):

#

# Plotting the similarity metric values, resolution changes are marked with
# a blue star.

#

global metric_values, multires_iterations, ref, trans, regmetric, iterreg

metric_values.append(registration_method.GetMetricVvalue())
moving_transformed = sitk.Resample(moving, fixed, transform,

sitk.sitkLinear, 0.0,
moving_image.GetPixelIDValue())



118.
119.
120.
121.
122.
123.

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

138.

139.
140.
141.

142.
143.

144.
145.
146.
147.
148.

149.
150.

151.
152.
153.
154.
155.
156.
157.
158.
159.

160.
161.
162.
163.

164.
165.
166.

247

ref = np.dstack((ref, sitk.GetArrayFromImage(fixed)))

trans = np.dstack((trans,sitk.GetArrayFromImage(moving_transformed)))
regmetric = np.append(regmetric,registration_method.GetMetricValue())
iterreg = [index for index in multires_iterations]

# Callback invoked when the sitkMultiResolutionIterationEvent happens, update the
Index into the metric_values list.
def update_multires_iterations():
global metric_values, multires_iterations
multires_iterations.append(len(metric_values))

if __name__ == '__main__':

# Read the images

factor = 10

ref = np.zeros(shape = (resl*factor,res2*factor,0))
trans = np.zeros(shape = (resl*factor,res2*factor,9))
regmetric = np.zeros(®)

iterreg = np.zeros(0)

fixed_image = sitk.Expand(sitk.GetImageFromArray(X1[:,:,i]),[factor]*2, sitk.s
itkLinear)

moving_image = sitk.Expand(sitk.GetImageFromArray(template),[factor]*2, sitk.si
tkLinear)

fig, (ax1, ax2) = plt.subplots(l, 2, dpi=dpishow)
iml = ax1l.imshow(np.ma.masked_where(sitk.GetArrayFromImage(fixed_image) < 1, si
tk.GetArrayFromImage(fixed_image)), cmap=cmap, vmax = pmax)
axl.set_title(f'[Reference Image]')
ax2.imshow(np.ma.masked_where(sitk.GetArrayFromImage(moving_image) < 1, sitk.Ge
tArrayFromImage(moving_image)), cmap=cmap, vmax = pmax)
ax2.set_title(f'[Template Image]')
fig.subplots_adjust(right=1.2)
cbar_ax = fig.add_axes([1, ©.15, 0.05, 0.7])
fig.colorbar(iml, cax=cbar_ax)
plt.suptitle(f'{method} Image Registration: {filenamel} vs {filename2}, Scaling
Factor: {factor}', horizontalalignment='center')
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig(f'Data\{Dataset} data subset\{filenamel} vs {filename2}\{method} Im
age Registration, {filenamel} vs {filename2} Template.tif', dpi=200,
bbox_inches="tight")

# Multi-resolution rigid registration
registration_method = sitk.ImageRegistrationMethod()

# Initial alignment of the two volumes

transform = sitk.CenteredTransformInitializer(fixed_image,
moving_image,
sitk.Euler2DTransform(),
sitk.CenteredTransformInitializer
Filter.MOMENTS)

if method == "MI":
registration_method.SetMetricAsJointHistogramMutualInformation(numberOfHisto
gramBins=50, varianceForJointPDFSmoothing = 1.5)
elif method == "MSE":
registration_method.SetMetricAsMeanSquares()
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registration_method.SetInterpolator(sitk.sitkLinear)

registration_method.SetOptimizerAsGradientDescent(learningRate=1.0,
numberOfIterations=300,
convergenceMinimumValue=1e-
5, convergenceWindowSize=5)

registration_method.SetOptimizerScalesFromPhysicalShift()
registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1]) #1,1,1
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[0,0,0])
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
registration_method.SetInitialTransform(transform)

# Add all the callbacks responsible for ploting
registration_method.AddCommand(sitk.sitkStartEvent, start_plot)
registration_method.AddCommand(sitk.sitkEndEvent, end_plot)
registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, update_m
ultires_iterations)

registration_method.AddCommand(sitk.sitkIterationEvent, lambda: save_plot(regis
tration_method, fixed_image, moving_image, transform, f'Data/{Dataset} data su
bset/{filenamel} vs {filename2}/{method} iteration_plot'))

start = time.time()

registration_method.Execute(fixed_image, moving_image)
#sitk.WriteTransform(transform, 'Data/Similarities/ct2mrT1l.tfm")
print(time.time()-start)

refm2d = np.ma.masked_where(ref < 1, ref)

transm2d = np.ma.masked_where(trans < 1, trans)

refmld = refm2d.reshape(resl*factor*res2*factor,len(ref[0,0,:]))

transmld = transm2d.reshape(resl*factor*res2*factor,len(trans[0,0,:]))

diffm2d = np.ma.array(refm2d.data-transm2d.data,
mask=np.logical_and(refm2d.mask,transm2d.mask))

[pcc2imgreg, pcc3imgreg, tmlimgreg, tm2imgreg, minrlimgreg, minr2imgreg,
11lnlimgreg, lln2imgreg, 1l2nlimgreg, 12n2imgreg, irvarlimgreg, irvar2imgreg,
ct_ireg, ct_jreg, sum_ireg, sum_jreg, mean_ireg, mean_jreg, cv_ireg, cv_jreg,
cpx_ireg, cpx_jreg, cpy_ireg, cpy_jreg, ct_regdiff, cp_regdiff] =
(np.zeros(len(ref[0,0,:])) for _ in range(26))

# Plot the similarity metric values
plt.clf()
plt.plot(regmetric, 'r')
plt.plot(iterreg, [regmetric[index] for index in iterreg], 'b*")
plt.xlabel('Iteration Number',fontsize=12)
plt.ylabel(f'{method} Metric Value',fontsize=12)
if max(regmetric)>1000:
plt.axis([©@, len(regmetric), min(regmetric)-0.1*1000, 1000])
else:
plt.axis([©@, len(regmetric), min(regmetric)-abs(@.1*max(regmetric)),
abs(0.1*max(regmetric))+max(regmetric)])
plt.suptitle(f'{method} Image Registration: {filenamel} vs {filename2}, Iterations
of Interest {np.array(iterreg[1:])-1})', horizontalalignment='center")
plt.savefig(f'Data\{Dataset} data subset\{filenamel} vs {filename2}\{method} Image
Registration, {filenamel} vs {filename2} Iteration Metric Plot.tif', dpi=200,
bbox_inches="tight")
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props = dict(boxstyle='round', facecolor='wheat', alpha=0.3)
for x in range(len(ref[0,0,:])):

## PRESSURE PARAMETERS

ct_ireg[x] = np.ma.MaskedArray.count(refmld[:,x])

sum_ireg[x] = np.ma.MaskedArray.sum(refmld[:,x])

mean_ireg[x] = sp.stats.mstats.describe(refmld[:,x]).mean ## Only active cells
cv_ireg[x] = sp.stats.mstats.variation(refmid[:,x])

cpx_ireg[x] = sp.ndimage.measurements.center_of _mass(refm2d[:,:,x])[0]
cpy_ireg[x] sp.ndimage.measurements.center_of_mass(refm2d[:,:,x])[1]

ct_jreg[x] = np.ma.MaskedArray.count(transmld[:,x])

sum_jreg[x] = np.ma.MaskedArray.sum(transmld[:,x])

mean_jreg[x] = sp.stats.mstats.describe(transmld[:,x]).mean # Only active cells
cv_jreg[x] = sp.stats.mstats.variation(transmild[:,x])

if ct_jreg[x]>0:
cpx_jreg[x] = sp.ndimage.measurements.center_of_mass(transm2d[:,:,x])[0]
cpy_jreg[x] sp.ndimage.measurements.center_of_mass(transm2d[:,:,x])[1]

ct_regdiff[x]=abs(ct_ireg[x]-ct_jreg[x])
cp_regdiff[x]=((cpx_ireg[x]-cpx_jreg[x])**2+(cpy_ireg[x]-
cpy_jreg[x])**2)**0.5

# SIMILARITY MEASURES #####H#H###

#Person Correlation Coefficient

pcc2imgreg[x] = np.ma.corrcoef(refmld[:,x],transmld[:,x])[0,1] #Masked

pcc3imgreg[x] = np.corrcoef(refmld[:,x].data,transmid[:,x].data)[0,1] #Non-
Masked

#Tanimoto Measure

tmlimgreg[x] = np.ma.sum(refmld[:,x]*transmld[:,x])/(np.ma.sum((refmld[:,x]-
transmld[:,x])**2)+np.ma.sum(refmld[:,x]*transmld[:,x])) #Masked

tm2imgreg[x] = np.sum(refmld[:,x].data*transmid[:,x].data)/(np.sum((refmld[:,x]
.data-transmld[:,x].data)**2)+np.sum(refmld[:,x].data*
transmld[:,x].data)) #Non-Masked

#Min-Ratio
minrlreg = np.ma.minimum([refmld[:,x]/transmid[:,x]], [transmld[:,x]/refmld[:,x]
1) .reshape(-1,1)
minrlreg = np.ma.array(minrlreg,mask=np.logical_or(refmld[:,x].mask,transmid[:,
x].mask))
minrlimgreg[x] = np.ma.mean(minrlreg) #Masked

Ylepsreg = refmld[:,x]+eps

Y2epsreg = transmld[:,x]+eps

minr2reg = np.minimum([Ylepsreg/Y2epsreg],[Y2epsreg/Ylepsreg]).reshape(-1,1)
minr2reg = np.ma.array(minr2reg, mask = np.logical_and(Ylepsreg.mask,

Y2epsreg.mask))
minr2imgreg[x] = np.mean(minr2reg) #Non-Masked ()

# DISSIMILARITY MEASURES ####H#H#H

#L1 Norm
linlimgreg[x] = np.ma.sum(abs(refmld[:,x]-transmld[:,x])) #Masked
11n2imgreg[x] = np.sum(abs(refmld[:,x].data-transmld[:,x].data)) #Non-Masked
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#L2 Norm
12nlimgreg[x] np.ma.sum((refmld[:,x]-transmld[:,x])**2) #Masked
12n2imgreg[x] = np.sum((refmld[:,x].data-transmld[:,x].data)**2) #Non-Masked

#Intensity-Ratio Variance
irvarlimgreg[x] = np.ma.var(refmld[:,x]/transmld[:,x]) #Masked

irvar2reg = np.ma.array(Ylepsreg/Y2epsreg, mask = np.logical_and(Ylepsreg.mask,
Y2epsreg.mask))
irvar2imgreg[x] = np.var(irvar2reg) #Non-Masked

plt.clf()
fig = plt.figure()
axl = fig.add_subplot(111)
#fig, (ax1l, ax2) = plt.subplots(l, 2, dpi=dpishow)
iml=ax1.imshow(refm2d[:,:,x], cmap=cmap,alpha=.5,vmax=pmax);
#taxl.set_title(f'{filenamel}, Index %i, [Reference Image]' %i)
im2=ax1.imshow(transm2d[:,:,x], cmap=cmap, alpha=.5, vmax=pmax);
pstrm = (f' MASKED \nPCC:\t\t {pcc2imgreg[x]:.3f}\nTanimoto:
\t{tmlimgreg[x]:.3f}"'
f'\nMin-Ratio:\t {minrlimgreg[x]:.3f}\nL1 Norm:\t{llnlimgreg[x]:.2f}
\nL2 Norm:\t{1l2nlimgreg[x]:.2f}"
f'\nInt-Ratio Var:\t{irvarlimgreg[x]:.3f}"').expandtabs()
pstrnm = (f' NON-MASKED \nPCC:\t\t {pcc3imgreg[x]:.3f}\nTanimoto:
\t{tm2imgreg[x]:.3f}"
f'\nMin-Ratio:\t {minr2imgreg[x]:.3f}\nL1 Norm:\t{lln2imgreg[x]:.2f}
\nL2 Norm:\t{1l2n2imgreg[x]:.2f}"
f'\nInt-Ratio Var:\t{irvar2imgreg[x]:.3f}"').expandtabs()
pstrmet = (f'___ OTHER METRICS \nContact Diff:\t\t {ct_regdiff[x]:.0f}"'
f'\nCP-CP Distance:\t\t {cp_regdiff[x]:.2f}"').expandtabs()
plt.text((resl + 1.5)*factor, 1*factor, pstrm, fontsize=7,verticalalignment="to
p', bbox=props)
plt.text((resl + 1.5)*factor, 13*factor, pstrnm, fontsize=7,verticalalignment="
top', bbox=props)
plt.text((resl + 1.5)*factor, 24*factor, pstrmet, fontsize=7,verticalalignment=
"top', bbox=props)
plt.title(f'{method} Image Registration: {filenamel} vs {filename2}, Iteration
{x}\nMetric: {regmetric[x]}\n', horizontalalignment='center')
cbar_ax = fig.add_axes([0, 0.145, 0.04, 0.6])
cbar = plt.colorbar(iml, cax=cbar_ax)
cbar.ax.yaxis.set_ticks_position('left")
fig.tight_layout(rect=[-0.2, 0.03, 1, 0.95])
plt.savefig(f'Data\{Dataset} data subset\{filenamel} vs {filename2}\{method}
Image Registration, {filenamel} vs {filename2}, Iteration {x}.tif',
dpi=200, bbox_inches="tight")

x in range(len(ref[0,0,:])):

plt.clf()

fig = plt.figure()

axl = fig.add_subplot(111)

clim = max(np.abs(np.min(diffm2d[:,:,x])),np.max(diffm2d[:,:,x]))

iml=ax1.imshow(diffm2d[:,:,x], cmap='seismic', vmin=-clim, vmax=clim)

plt.title(f'{method} Image Registration: {filenamel} vs {filename2}, Iteration
{x}\n[Reference - Transformed] (mmHg)\n', horizontalalignment="center"')

cbar_ax = fig.add_axes([0.70, ©0.145, 0.04, 0.6])

fig.colorbar(iml, cax=cbar_ax)

fig.tight_layout(rect=[-0.2, 0.03, 1, 0.95])
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plt.savefig(f'Data\{Dataset} data subset\{filenamel} vs {filename2}\{method} Im
age Registration, {filenamel} vs {filename2} Differences, Iteration {x}.tif',
dpi=200, bbox_inches="'tight")

#i### Create TIF files
with tifffile.TiffWriter(f'Data\{Dataset} data subset\{filenamel} vs {filename2}\
{method} Image Registration Results, {filenamel} vs {filename2}.tif') as stack:
for fname in sorted(glob.glob(f'Data\{Dataset} data subset\{filenamel} vs {file
name2}\{method} Image Registration, {filenamel} vs {filename2}*.tif'),
key=o0s.path.getmtime):
stack.save(tifffile.imread(fname), compress=6)

ResultsReg = pd.DataFrame(data = np.transpose([np.repeat(sheet,x+1),np.repeat
(filenamel,x+1),np.repeat(i,x+1), np.repeat(filename2,x+1),np.repeat(j,x+1),
np.repeat(method, x+1),np.repeat(f'{hloc},{vloc},{rot}',x+1),1list(range(x+1)),

regmetric, ct_ireg, ct_jreg, ct_regdiff, sum_ireg, sum_jreg, mean_ireg, mean_jreg,

cv_ireg, cv_jreg, cpx_ireg, cpy_ireg, cpx_jreg, cpy_jreg, cp_regdiff,
pcc3imgreg, pcc2imgreg, tm2imgreg, tmlimgreg, minr2imgreg, minrlimgreg,
11n2imgreg, llnlimgreg, 1l2n2imgreg, 1l2nlimgreg, irvar2imgreg, irvarlimgreg]),
columns=[ 'Sheet','Filel', 'Index1','File2', 'Index2', 'Reg Method', 'H,V,ROT',

'Iteration', 'Metric Score', ‘Contact Cells 1', 'Contact Cells 2',

'Contact Cells Diff', 'Pressure Sum 1', 'Pressure Sum 2°',

'Mean Pressure 1', 'Mean Pressure 2', 'CV 1', 'Cv 2', 'CPX 1', 'CPY 1',

'CPX 2', 'CPY 2', 'CP Diff', 'Pearson', 'Pearson (M)', 'Tanimoto',

'Tanimoto (M)', 'Min-Ratio', 'Min-Ratio (M)',

'L1 Norm', 'L1 Norm (M)', 'Sq L2 Norm', 'Sq L2 Norm (M)','Int-Ratio Var',

"Int-Ratio Var (M)'])

# Write Results in Excel

from excelappend import append_df_ to_excel

append_df_to_excel(f'Data\{Dataset} data subset\\' + filenamel + ' vs ' +
filename2 + '\Image Registration Results.xlsx',ResultsReg,sheet_name=method)
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Appendix F

Cluster Data Subset: Samples with Outliers
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Appendix G

Cluster Data Subset: Samples without Outliers



109-2-265 (N) - Pressure Map (mmHg)

0

54

10

15 A

20 A

25 A

30 A

113-2-2142 (N) - Pressure Map (mmHg)

04

54

10 A

15

20 A

25 1

o

30

117-1-1193 (N) - Pressure Map (mmHg)

0

54

10

15 A

20 A

25 A

30 A

o

121-3-2593 (N) - Pressure Map (mmHg)

04

54

10 A

15

20 A

25 1

30

o

300

250

200

150

100

50

300

250

200

150

100

50

300

250

200

150

100

50

300

250

200

150

100

50

111-2-2158 (N) - Pressure Map (mmHg)

0

54

10

15 A

20 A

25 A

30 A

115-1-852 (N) - Pressure Map (mmHg)

04

54

10 A

15

20 A

25 1

30

119-3-2320 (N) - Pressure Map (mmHg)

0

54

10

15 A

20 A

25 A

30 A

o

o

124-3-3885 (N) - Pressure Map (mmHg)

o

w 4

04

54

10 A

15

20 A

25 1

30

o

w4

300

250

200

150

100

50

300

250

200

150

100

50

300

250

200

150

100

50

300

250

200

150

100

50

261



126-2-2177 (N) - Pressure Map (mmHg)
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155-2-1484 (N) - Pressure Map (mmHg) 158-3-2200 (N) - Pressure Map (mmHg)
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Appendix H

Static Data Subset: Samples based on CV levels



117-1-1193, Pressure Map (mmHg) [CV = 0. 598]
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171-1-2033, Pressure Map (mmHg) [CV = 0. 702]
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169-3-1597, Pressure Map (mmHg) [CV = 0. 772]

0

5

10

154

20

25 A

301

10

15

25

30

i

250

200

150

100

50

161-1-1833, Pressure Map (mmHg) [CV = 0. 805]
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122-2-2954, Pressure Map (mmHg) [CV = 0. 627]
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110-1-2031, Pressure Map (mmHg) [CV = 0. 757]
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156-3-3819, Pressure Map (mmHg) [CV = 0. 794]
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186-1-3161, Pressure Map (mmHg) [CV = 0. 819]
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144-2-3295, Pressure Map (mmHg) [CV = 0. 821]
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149-1-3299, Pressure Map (mmHg) [CV = 0.964
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189-3-3818, Pressure Map (mmHg) [CV = 1.006]
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Appendix |

Static Data Subset: Spatial Autocorrelation
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Appendix J

Paired Data Subset: Samples based on Contact, Pressure and CV levels



122-3-51, Pressure Map (mmHg) [CV = 0.767]
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183-3-3613, Pressure Map (mmHg) [CV = 0.837
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118-2-61, Pressure Map (mmHg) [CV = 1.045]
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Appendix K

Paired Data Subset: Pressure Measures Results



Sample Relative
Type Pressure Measure o A Plot
122-3-51 |170-2-2787 %
~ |Contact Cells 305 307 0.66% §
§ Sum of Pressure 11340.58 11345.89 0.05% :
(]
©  |Skewness 1.7478 22060 | 26.22% Fl
= |GLSD - Correlation X 0.6824 0.4327 -36.60% |]
= ]
& |GLSD - Correlation Y 0.8530 0.6351 -25.54% I]
Coefficient of Variation 0.7669 0.7525 -1.89% E
Z |GLD - Gradient Contrast X 535.50 927.20 73.15% ;
g GLD - Gradient Mean X 15.94 20.03 25.65% ﬂ
§ GLD - Gradient Contrast Y 234.37 541.71 |131.14% ! |
GLD - Gradient Mean Y 10.04 15.53 54.65% D
GLD - Gradient Second Moment X 0.0345 0.0283 -17.77% |}
“!5’ GLSD - Homogeneity X 0.0782 0.0617 -21.07% |}
E GLD - Gradient Second Moment Y 0.0553 0.0378 -31.62% |]
GLSD - Homogeneity Y 0.1026 0.0753 -26.61% |]
Sample Relative
Type Pressure Measure o A Plot
150-2-1968 | 144-3-1841 %
© [Contact Cells 288 293 1.74%
(]
c
& |Sum of Pressure 1741135 | 17503.15 | 0.53%
oy
% Coefficient of Variation 0.7959 0.7978 0.25%
5
>
Fs’ GLD - Gradient Second Moment Y 0.0276 0.0320 16.00% U
E GLSD - Homogeneity Y 0.0615 0.0709 15.19% U
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Sample Relative
Type Pressure Measure o A Plot
137-2-922 (158-3-3717 %

~ |Contact Cells 501 503 0.40% ;

§ Sum of Pressure 43027.83 | 42878.06 | -0.35% :

(]

O [skewness 0.9667 1.5394 | 59.25% -

= [Moran's | (CD) 0.8281 0.6828 |[-17.54% I]

®

& |GLSD - Correlation X 0.8557 0.7699 -10.02% II

Coefficient of Variation 0.8102 0.8168 0.82%

Z |6Lb - Gradient Contrast X 1381.04 2290.37 65.84% ; |

g GLD - Gradient Mean X 26.02 32.50 24.91% ﬂ

E GLD - Gradient ContrastY 1065.68 1762.09 65.35% i |

GLD - Gradient Mean Y 22.69 29.31 29.16% E

o |GLD - Gradient Second Moment X 0.0212 0.0179 |[-15.52% |]

é GLD - Gradient Second Moment Y 0.0241 0.0197 -18.20% |1

(]

= |GLSD - Homogeneity Y 0.0672 00503 |[-25.22%| [E
Sample Relative

Type Pressure Measure o A Plot
120-2-1719|128-3-1298 %

© [Contact Cells 388 386 -0.52%

(]

[

& |Sumof Pressure 16877.71 | 16871.47 | -0.04%

£ |Coefficient of Variation 0.8247 0.8249 0.03%

=

©

r>’3 GLD - Gradient ContrastY 664.2320 | 592.9861 [-10.73%

g

é GLSD - Homogeneity X 0.1026 0.0891 -13.10%

(]

'_
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Type Pressure Measure Sample Relitive A Plot
183-3-3613 | 123-3-2437 %

_ |contact cells 488 482 -1.23%

@ [Sum of Pressure 16311.05 | 16440.84 | 0.80% §

& Skewness 2.9147 2.5989 -10.84% ﬂ

g Moran's | (CD) 0.5220 0.6802 30.30% D

c% GLSD - Correlation Y 0.6588 0.7377 11.98% H

Z Coefficient of Variation 0.8367 0.8327 -0.48%

% GLD - Gradient ContrastY 548.94 428.37 -21.96% [I

§ GLD - Gradient Mean Y 15.27 12.01 -21.35% [’
GLD - Gradient Second Moment X 0.0397 0.0455 14.55% ﬂ

“g GLSD - Homogeneity X 0.0911 0.1035 13.70% ﬂ

5 GLD - Gradient Second Moment Y 0.0359 0.0479 33.40% D
GLSD - Homogeneity Y 0.0642 0.1255 | 95.57% B |

Type Pressure Measure Sample Relitive A Plot
116-1-512 |180-1-1487 %

_ |Contact Cells 303 294 | -2.97% [

2 [Sum of Pressure 14273.5 14200.87 | -0.51% ,

8 Skewness 2.2856 2.0434 -10.60% [E

'(é_ Moran's | (CD) 0.7010 0.6037 -13.88%

»
Coefficient of Variation 0.9328 0.9369 0.44%

% GLD - Gradient Contrast X 1123.4829 | 1465.3984 | 30.43% ﬂ

% GLD - Gradient Mean X 20.90 26.78 28.15% E

> GLD - Gradient Mean Y 16.96 20.10 18.54% ﬂ
GLD - Gradient Second Moment X 0.0294 0.0222 (-24.40% |]

g GLSD - Homogeneity X 0.0673 0.0520 -22.74% [!

§ GLD - Gradient Second Moment Y 0.0398 0.0294 (-26.00% |]
GLSD - Homogeneity Y 0.1003 0.0684 -31.75% |1
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Sample Relative
Type Pressure Measure o A Plot
111-2-3218|118-2-3479 %
— |Contact Cells 388 392 1.03% §
‘E Sum of Pressure 22778.76 | 22877.61 0.43%
(]
O [Skewness 156029 | 1.89197 |21.26% 1
£ [Coefficient of Variation 0.9330 0.9384 0.58%
=
3 -
r>’3 GLD - Gradient Contrast X 1123.53 1407.48 | 25.27% |
g GLD - Gradient Second Moment Y 0.0260 0.0310 19.08% U
E GLSD - Homogeneity Y 0.0669 0.0773 15.50% U
Sample Relative
Type Pressure Measure o A Plot
133-3-1804 |147-3-2982 %
— |Contact Cells 279 281 0.72% |
§ Sum of Pressure 12629.66 12567.88 | -0.49% '
(]
©  |Skewness 1.7632 2.4782 40.55% D
= [Moran's 1 (Q) 0.8238 0.7364 |-10.61% |l
©
& |GLSD - Correlation X 0.7340 0.5978 [-18.55% I]
Coefficient of Variation 1.0103 1.0199 0.95%
>
% GLD - Gradient Contrast X 1169.28 1837.02 |57.11% D
% GLD - Gradient Mean X 22.50 26.54 17.98% ﬂ
= GLD - Gradient ContrastY 919.11 1135.76 | 23.57% ﬂ
GLD - Gradient Second Moment X 0.0299 0.0255 -14.71% [!
g GLSD - Homogeneity X 0.0733 0.0593 -19.08% [‘
E GLD - Gradient Second Moment Y 0.0380 0.0334 |[-11.89% E
GLSD - Homogeneity Y 0.1053 0.0868 -17.65% [!
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Type Pressure Measure Sample Reli\tive A Plot
118-2-61 |188-2-2491 %

T |Contact Cells 368 364 | -1.09%

éc’ Sum of Pressure 25704.47 | 25628.04 | -0.30% :

_ |Moran's 1 (cD) 07905 | 05501 [-30.41%| [%

‘E_ GLSD - Correlation X 0.8539 0.6808 -20.28% |1

“ |GLSD - Correlation Y 08646 | 07400 |-14.41%| [
Coefficient of Variation 1.0451 1.0441 -0.10% :

2 |GLD - Gradient Contrast X 1622.49 3663.97 |125.82% D

% GLD - Gradient Mean X 25.11 38.17 52.01% D

§ GLD - Gradient ContrastY 1471.59 2819.38 | 91.59% D
GLD - Gradient Mean Y 22.29 31.86 42.93% B

o |GLD - Gradient Second Moment X 0.0255 0.0180 [-29.41% |}

; GLSD - Homogeneity X 0.0797 0.0559 -29.94% |]

= GLD - Gradient Second Moment Y 0.0317 0.0231 |[-27.17% |]

Type Pressure Measure Sample Relitive A Plot
148-1-2914(170-1-1363| %

_ |contact cells 302 301 -0.33%

2 |Sum of Pressure 15917.33 15918.89 0.01% :

& Skewness 2.1262 2.6473 24.51% ﬂ

Z Coefficient of Variation 1.1210 1.1259 0.44%

% GLD - Gradient ContrastY 1150.61 1622.08 | 40.98% D

§ GLD - Gradient Mean Y 19.32 21.99 13.80% ﬂ
GLD - Gradient Second Moment X 0.0330 0.0240 |(-27.40% |j

£ |GLSD - Homogeneity X 0.0929 0.0590 |-36.53% I]

5 GLD - Gradient Second Moment Y 0.0414 0.0317 ([-23.51% |1
GLSD - Homogeneity Y 0.0990 0.0672 -32.12% |]
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Appendix L

Transformed Data Subset: Upscaled Samples and Transformations
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Original Non-Scaled Pressure Map

115-1-852 (N) - Pressure Map (mmHg)
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Original Non-Scaled Pressure Map

126-2-2177 (N) - Pressure Map (mmHg)
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Original Non-Scaled Pressure Map

145-1-2589 (N) - Pressure Map (mmHg)
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MI Image Registration: 145-1-2589 vs 145-1-2589T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

175-3-1142 (N) - Pressure Map (mmHg)
0_

Transformation 1 [Horizontal: —1, Vertical: —6, Rotation: +35°]

MI Image Registration: 175-3-1142 vs 175-3-1142T, Scaling Factor: 10
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Transformation 2 [Horizontal: +3, Vertical:—2, Rotation: —5°]

MI Image Registration: 175-3-1142 vs 175-3-1142T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

109-2-265 (N) - Pressure Map (mmHg)
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Transformation 1 [Horizontal: —1, Vertical: —3, Rotation: +36°]

MI Image Registration: 109-2-265 vs 109-2-265T, Scaling Factor: 10
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Transformation 2 [Horizontal: +4, Vertical:—1, Rotation: —5°]

MI Image Registration: 109-2-265 vs 109-2-265T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

304
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Transformation 1 [Horizontal: —2, Vertical: —3, Rotation: +22°]

MI Image Registration: 117-1-1193 vs 117-1-1193T, Scaling Factor: 10
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Transformation 2 [Horizontal: +3, Vertical:0, Rotation: —9°]

MI Image Registration: 117-1-1193 vs 117-1-1193T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

158-3-2200 (N) - Pressure Map (mmHg)
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Transformation 1 [Horizontal: +2, Vertical: —5, Rotation: +25°]

MI Image Registration: 158-3-2200 vs 158-3-2200T, Scaling Factor: 10
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Transformation 2 [Horizontal: 0, Vertical:—3, Rotation: —10°]

MI Image Registration: 158-3-2200 vs 158-3-2200T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

137-3-2640 (N) - Pressure Map (mmHg)
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Transformation 1 [Horizontal: +2, Vertical: —1, Rotation: +30°]

MI Image Registration: 137-3-2640 vs 137-3-2640T, Scaling Factor: 10
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Transformation 2 [Horizontal: —3, Vertical:+1, Rotation: —6°]

MI Image Registration: 137-3-2640 vs 137-3-2640T, Scaling Factor: 10
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Original Non-Scaled Pressure Map

183-2-599 (N) - Pressure Map (mmHg)
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Transformation 1 [Horizontal: —1, Vertical: —4, Rotation: —12°]

MI Image Registration: 183-2-599 vs 183-2-599T, Scaling Factor: 10
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Transformation 2 [Horizontal: +4, Vertical:0, Rotation: +9°]

MI Image Registration: 183-2-599 vs 183-2-599T, Scaling Factor: 10
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Appendix M

Transformed Data Subset: Registration Results
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Appendix N

Registration Data Subset: Center of Pressure Distances



295

c0e'T L 98'068°8 174 CreEC-E-€8T Sv'L20'0T 84S GEEC-E-€8T
8¢C'T [4" L8°087°0T 86V ¢00¢-T-C€T 7991901 0S 066T-T-CE€T
€6L°T 0¢ 01'698°L L6Y vese-1-€¢1 06°€88°9 98v 70S¢-1-€¢T
¢00°¢ 8 GO TVETT Ty €L0T-¢-0TT 90°CTTVT 13517 S90T-¢-0T1
VET'T 0T VL ovT'eET LOV IvveE-T-T8T 09°LTT9T (447 9EVeE-T-181
90S°¢ 9T 8S'WS'L T€E 600¢-¢-69T1 0°0SY'TT 81V €661-C-691
168'T 4" LY'vLY'6 96¢ 80LT-¢-CTT 96°798°6 (4% 969T-¢-CT1
6TS'T i G8'9TT9 (00]7 6TL-T-vCT 66'8St'L 80v SO0L-T-vC1
9¢S'1 0T 6€°STT'L 0s€ ¢S8T-¢-6C1 ¥0°'SSE’'6 L6€ Cv81-¢-6C1
S8¢€'¢C 4" I8'TEE'L LT€E 0L6-€-VLT 08'€¥9°0T LLE 8G96-€-vLT
€0L'T 0T 0 TEL'0T TG€E 850¢-T-¢8T 9T'¥9LCT €LE 870¢-T-¢81
9891 (0] 6C9S7°0T (0133 968¢-€-v91 0C'8¥8aT 0L¢ 988¢-¢-v91
VET'C 0T 70'79t’s 86¢ cve-T1-0€1 99°LTT'S L9€ CECT-0€1
8941 0T 00'¥170‘8 vLE 0¢9T1-1-S8T g€ceee’s GGE OT9T-T-S8T
¢SE'T 14 9€'020CT T6¢ 6vv1-T-Sv1 8'0OVTET 6¢C¢€ Svv1-T-Sv1
€0S'T 9 IT'IVE'S [443 LSSE-T-8VT 19°79L°6 €Ce TSSE-T-8V1
167’1 0T I8'LTL'S (0133 899¢-T-TvT 16'889°8 v6¢ 8G99¢-T-Tv1
¢09'1T 8 6v°L8Y'E 6S¢ ¢65¢-¢-08T €8°LTT9 98¢ ¥89¢-¢-08T
SY1'T 0T 8€'CCS’S 98¢ 9€8T-C-VTT 95°LCT'8 €8¢ 9¢8T-¢-v11
099’1 14 6ECTIT'S €4¢ 0661-T-¢ST 1L°6€6°S 9¢ 9861-T-¢ST
(u1) 31a dd Ja@ xapu] | Twnsainssald T S||3) 19EIUO) Z 9|dwes T wns ainssald T S||2) 19elu0) T 9|dwes




296

Appendix O

Registration Data Subset: Upscaled Sample Pairs



Image Registration: 152-1-1986 vs 152-1-1990, Scaling Factor: 10
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Image Registration: 114-2-1826 vs 114-2-1836, Scaling Factor: 10
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Image Registration: 180-2-2584 vs 180-2-2592, Scaling Factor: 10
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Image Registration: 141-1-2658 vs 141-1-2668, Scaling Factor: 10
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Image Registration: 148-1-3551 vs 148-1-3557, Scaling Factor: 10
[Reference Image] . [Template Image] 300
250
50 50 A
100 - 100 - 200
150 - 150 150
200 A 200
100
250 A 250 A
300 A 300 A
0 100 200 300 0 100 200 300

Image Registration: 145-1-2811 vs 145-1-1449, Scaling Factor: 10
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Image Registration: 185-1-1610 vs 185-1-1620, Scaling Factor: 10
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Image Registration: 130-1-232 vs 130-1-242, Scaling Factor: 10
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Image Registration: 164-3-3886 vs 164-3-3896, Scaling Factor: 10
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Image Registration: 182-1-2048 vs 182-1-2058, Scaling Factor: 10
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Image Registration: 174-3-958 vs 174-3-970, Scaling Factor: 10
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Image Registration: 129-2-1842 vs 129-2-1852, Scaling Factor: 10
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Image Registration: 124-1-705 vs 124-1-719, Scaling Factor: 10
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Image Registration: 112-2-1696 vs 112-2-1708, Scaling Factor: 10
300
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Image Registration: 169-2-1993 vs 169-2-2009, Scaling Factor: 10
300
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Image Registration: 181-1-3436 vs 181-1-3446, Scaling Factor: 10
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Image Registration: 110-2-1065 vs 110-2-1073, Scaling Factor: 10
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Image Registration: 123-1-2504 vs 123-1-2524, Scaling Factor: 10
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Image Registration: 132-1-1990 vs 132-1-2002, Scaling Factor: 10
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Image Registration: 183-3-2335 vs 183-3-2342, Scaling Factor: 10
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Appendix P

Registration Data Subset: Registration Results
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Appendix Q

Registration Data Subset: Optimality Registration Results Maps
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 152-1-1986 vs 152-1-1990, Scaling Factor: 10

[Reference Image] " [Template Image] 0o
250

50 50 A
100 A 100 1 200
150 A 150 A 150

200 A 200 A
100

250 A 250 A

50
300 A 300 A
0 100 200 300 0 100 200 300

MI Image Registration: 152-1-1986 vs 152-1-1990, Iteration 5

Metric: -0.49757507430865633 [RErstarics - Transtortaed] (mHE)

 MAskeD____ | 0
PCC: 0.663
Tanimoto: 0.685
Min-Ratio: ~ 0.579 50 150
|[L1 Norm:  616292.69
3|L2tr;o¥nzv ] 3733221973.7& 100
| Int-Ratio Var: 2. 100 -
NON-MASKED 3 50
PCC: 0.786
Tanimoto:  0.679 150 7 0
Min-Ratio: 0.511
L1 Norm:  663184.68
L2 Norm:  38212451.87 200 - -50
Int-Ratio Var: 1.289
____OTHER METRICS______ —-100
?Contact Diff: 131, 250 1
|CP-CP Distance: 6.02 _150
300 A
0 100 200 300 0 100 200 300
MSE Image Registration: 152-1-1986 vs 152-1-1990, Iteration 15
Metric: 317.74378949193886 [Reference - Transformed] (mmHg)
0 ) 0
300 MASKED
PCC: 0.761
Tanimoto:  0.763 i
250 50 1 Min-Ratio: 0595 50
L1 Norm: 552143.70 100
L2 Norm:  25998702.99 |
200 - 100 - Int-Ratio Var: 2.514 100 0
T NONM ) .
NON-MASKED
J 150 A PCC: 0.819 150 ~ - "
150 Tanimoto:  0.721 ‘ 0
Min-Ratio: 0,511 ‘ ()
200 1 L1 Norm:  671008.12 200 - ’
100 1 L2 Norm:  32448731.61 -50
Int-Ratio Var: 1.381
H OTHER METRICS ] A
50 1 250 Contact Diff: 1090 250 —100
| CP-CP Distance: 21.05
% 300 A 300 A
0 100 200 300 0 100 200 300

Visual feedback: MSE registration produced better correspondence in tuberosities and legs.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 114-2-1826 vs 114-2-1836, Scaling Factor: 10

[Reference Image] [Template Image] 300
250

50 50 A
100 100 200
150 150 A 150

200 A 200 A
100

250 A 250 A

50
300 - 300 A
0 100 200 300 0 100 200 300
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MI Image Registration: 114-2-1826 vs 114-2-1836, Iteration 11
Metric: -0.6400619801951719

[Reference - Transformed] (mmHg)

300 0 MASKED, 0
PCC: 0781
250 50 1 Min-Ratio:  0.952 50 1 200
L1 Norm:  761490.47
' 1001 int-Ratio Var: 1483 | 100
200 A JNERALIO N Ar S o ) 100
NON-MASKED ]
e PCC: 0.851 J
150 ~ 130 Tanimoto:  0.714 150 0
Min-Ratio: 0.534 -
L1 Norm:  780227.64
100 - 200 C2Norm: 5091261118 200 B ‘.\
Int-Ratio Var: 0.817 ‘ 100
i [ OTHER METRICS ] i
50 A 250 Contact Diff: 153 | 250 ,
= CP-CP Distance: 7.51 ~200
% 300 A 300 A
0 100 200 300 0 100 200 300
MSE Image Registration: 114-2-1826 vs 114-2-1836, Iteration 26
Metric: 366.45105250150675 [Reference - Transformed] (mmHg)
0
340 0 MASKED,
Tonimoto: 0.785 150
250 ] T
(2Norm:  36622072.84 . 100
200 A 100 A jnt—Ratio Var: 6.221 100 A v
———— 50
NON-MASKED ] 150
E PCC: 0.904 E
150 150 Tanimoto:  0.782 0
U 'Nomm: 77784812 .
100 - 200 G Norm:  37311766.25 | 200 7] . ~ -50
Int-Ratio Var: 2.894
——— 4
i [____OTHER METRICS, i _
50 A 250 | Contact Diff: 160 250 ‘ - 100
— | CP-CP Distance: 15.44|
% 300 A 300 - —-150
0 l(l)O 260 360 0 100 200 300

Visual feedback: MSE registration produced better correspondence in tuberosities and legs.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 180-2-2584 vs 180-2-2592, Scaling Factor: 10

[Reference Image] [Template Image] 300
0
250
50 A 50 A
100 - 100 - 200
150 A 150 A 150
200 A 200 A
100
250 A 250 1
50
300 A 300 -
0 100 200 300 0 100 200 300
MI Image Registration: 180-2-2584 vs 180-2-2592, Iteration 44
Metric: -0.6872122544332432 [Reference - Transformed] (mmHg)
300 Q MASKED. 0
PCC: 0733
250 50 1 MinRatior  0.360 50 1 200
L1 Norm:  639928.15
= L2 Norm:  41501737.68
200 - 100 A Int-Ratio Var: 2.201 /100 A
T — 100
NON-MASKED.
1 pcC: 0.844 iy
150 30 Tanimoto: ~ 0.530 150 0
Min-Ratio:  0.518
100 - 200 1 2 Norm: 4104434655 | 200 1
Int-Ratio Var: 1.025 —-100
504 2501 Cont:c?l‘)?f?:METRlcs 35er | 250
E CP-CP Distance: 15.19] —200
% 300 1 300 1
0 100 200 300 0 100 200 300
MSE Image Registration: 180-2-2584 vs 180-2-2592, Iteration 35
Metric: 417.1289682029448 [Reference - Transformed] (mmHg)
0
340 0 MASKED
PCC 0743
250 50 1 MinRatio: 0572 501 200
L1 Norm:  630717.72
L2 Norm:  41001770.30
200 100 1 Int-Ratio Var: 1.943 100 A 100
____ NON-MASKED____| q5t
i pCC: 0.849 1
150 150 Tanimoto:  0.534 ) 0
Min-Ratio: 0.525 —
wof | 200 dhesr gimen| 200
Int-Ratio Var: 0.912 -100
[ OTHER METRICS | |
5 250 - e 2| 250
| CP-CP Distance: 18.01| —200
300 300
0 1(I)0 260 3(’)0 0 100 200 300

Visual feedback: Both MI and MSE did similar and appropriate registrations.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 141-1-2658 vs 141-1-2668, Scaling Factor: 10

[Reference Image]

[Template Image]

50 50

100 1 100 1

150 1 150

200 A 200 A

250 1 250 1
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0 160 2(')0 360 0 160 2(')0 360

300

250

200
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50
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Ml Image Registration: 141-1-2658 vs 141-1-2668, Iteration 42
Metric: -0.6389882740034561

300
50]!!'
200{ | 100
150 1307
100 AR
so Jl 250
B 300
0

100 200

[Reference - Transformed] (mmHg)

e
*3

-

..‘

.

0
MASKED
PCC: 0.718
Tanimoto: 0.769 50 4
Min-Ratio: 0.564
L1 Norm: 837841.24
L2 Norm: 41138078.86
Int-Ratio Var: 13.329 100 A
—_ NON- MASKED ]
pcc 150
Tanimoto: 0 747
Min-Ratio: 0.489
L1 Norm: 963637.50 ]
(2 Norm:  46517267.48 200
Int-Ratio Var: 5.893 J
OTHER METRICS | 4
Contact Diff: 4825 | 250
CP-CP Distance: 14.54
300 A
T
300 0

100

200

300

MSE Image Registration: 141-1-2658 vs 141-1-2668, Iteration 65
Metric: 421.1983560491936

300 0
250 4 50 1
200 100 A
150 150 4
100 200 A
50 250 A
300
0

100 200

[Reference - Transformed] (mmHg)

R 0
MASKED '
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Tanimoto: 0.792 50 A
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L2 Norm:  36496904.44
Int-Ratio Var: 15.166 100 A B
s EEONCTR Sy °
NON-MASKED______ ; .
pcC: 0.848 150 A v
Tanimoto: 0.768 * - I
Min-Ratio:  0.499 " «
L1Norm:  911342.90 200 4 - 4
L2 Norm:  42063924.12
Int-Ratio Var: 6.525
OTHER METRICS____| i
tContact Diff: 4811 250
;CP -CP Distance: 18.69)
300 A
T T T T
300 0 100 200 300

200

100
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—200

Visual feedback: MSE registration produced slightly better correspondence in the left tuberosity.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 148-1-3551 vs 148-1-3557, Scaling Factor: 10

[Reference Image]

[Template Image]

50 50

100 1 100 1

150 1 150
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50
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MI Image Registration: 148-1-3551 vs 148-1-3557, Iteration 38

Metric: -0.8400356586330583

300 0
250 50 1
200 100
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% 300 1
0

100

200

300

MASKED
PCC: 0.872
Tanimoto: 0.859
Min-Ratio: 0.700
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Int-Ratio Var: 0.748
NON-MASKED. ]

{0 0.916
Tanimoto: 0.856
Min-Ratio: 0.662
L1 Norm: 649329.93
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Int-Ratio Var: 0.426

OTHER METRICS_____
Contact Diff: 57
CP-CP Distance:

[Reference - Transformed] (mmHg)
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50

MSE Image Registration: 148-1-3551 vs 148-1-3557, Iteration 12
Metric: 296.7339329343426

100 A

150 A

200

250 +

300 A

MASKED,

PCC: 0.872
Tanimoto: 0.859
Min-Ratio: 0.700

L1 Norm: 621104.93
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Int-Ratio Var: 0.776

NON-MASKED
PCC: 0.916
Tanimoto: 0.856
Min-Ratio: 0.663
L1 Norm: 651471.33
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Int-Ratio Var: 0.432
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Contact Diff: 5
CP-CP Distance: 17.29

0

100

200

300

[Reference - Transformed] (mmHg)

0

50 A

100 ~

150 A

200 1

250 1

300

0

100

200

300

100

50

-50

-100

Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 145-1-2811 vs 145-1-1449, Scaling Factor: 10

4 [Reference Image] 5 [Template Image] 200
250

50 50 A
100 - 100 - 200

200 A 200 A
100

250 A1 250 A1

50
300 A 300 A
0 100 200 300 0 100 200 300

MI Image Registration: 145-1-2811 vs 145-1-1449, Iteration 8
Metric: -1.0625566136390234
[Reference - Transformed] (mmHg)

300 0 MASKED, 0
PCC: 0940
250 50 1 MinRatio:  0.675 50 - 100
L1Norm:  655134.67
| 1001 Int Ratio Var: 0.235 "
2001 S — (1 50
NON-MASKED, ] \ - ‘
e CC: 0.962 '
150 1 150 Tanimoto:  0.937 150 4 k ’ 0
Min-Ratio: 0.602 |
200 e s w
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J ___ OTHER METRICS_____ - "
501 250 Contact Diff: 7562 | 250 A
— CP-CP Distance: 11.85
. -100
% 300 1 300 A
0 100 200 300 0 100 200 300
MSE Image Registration: 145-1-2811 vs 145-1-1449, Iteration 23
Metric: 193.98973170359204 [Reference - Transformed] (mmHg)
300 g ; . _ mAskeD______| 0
/ PCC: 01951
250 50 1 VinRatio: 0682 50 1 7
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= L2 Norm:  18178586.05 50
200 - 100 + Int-Ratio Var: 0.288 100 4
— — 25
-/
— 150 - = 150 - - -
Tanimoto: 0.946 L 0
[ﬂf"&ﬁ?ﬁ‘-’: §73008.36 - ‘
100 4 200 1 L2 Norm: 1967800026 | 200 7 ‘ ’ -25
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J " OTHER METRICS J =50
50 1 250 . Contact Diff: 4551 250
| CP-CP Distance: 15.78 -75
= 300 A 300 A
0 100 200 300 0 100 200 300

Visual feedback: MSE produced slightly better correspondence in tuberosities and top buttocks.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 185-1-1610 vs 185-1-1620, Scaling Factor: 10

[Reference Image] [Template Image] 300
250

50 50 A
100 - 100 - 200
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100
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50
300 - 300 -
0 100 200 300 0 100 200 300

M| Image Registration: 185-1-1610 vs 185-1-1620, Iteration 17
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MSE Image Registration: 185-1-1610 vs 185-1-1620, Iteration 29
Metric: 155.58457493703472

300
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Contact Diff: 2131
CP-CP Distance: 20.76

0

100

200

300

MASKED
ECC: 0.883
Tanimoto: 0.822
Min-Ratio: 0.573
L1 Norm: 618136.04
L2 Norm: 15701606.77
Int-Ratio Var: 1.934

PCE: 0.926
Tanimoto: 0.821
Min-Ratio: 0.561

L1 Norm: 634821.37
L2 Norm: 15811222.17
Int-Ratio Var: 1.024
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 130-1-232 vs 130-1-242, Scaling Factor: 10

[Reference Image] [Template Image] 300
250

50 50 A
100 - 100 - 200
150 150 A 150

200 A 200 A
100

250 A 250 1

50
300 - 300 -
0 100 200 300 0 100 200 300

MI Image Registration: 130-1-232 vs 130-1-242, Iteration 15

Metric: -0.7654423273067463 [Reference - Transformed] (mmHg)

200 0 MASKED 0 — e
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250 50 1 Ill?ﬂ-ernaottlg g;gg 50 A 150
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MSE Image Registration: 130-1-232 vs 130-1-242, Iteration 33
Metric: 246.93081385073114 [Reference - Transformed] (mmHg)
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 164-3-3886 vs 164-3-3896, Scaling Factor: 10

300
[Reference Image] [Template Image]
0
250
50 A1 50 A
100 1 100 A 200
150 - 150 150
200 A 200 A
100
250 A 250 A
50
300 A 300 A
0 100 200 300 0 100 200 300
MI Image Registration: 164-3-3886 vs 164-3-3896, Iteration 11
Metric: -0.908445765719499 [Reference - Transformed] (mmHg)
300 0 MASKED, 0
Tanimoto: 0,687
250 50 1 Min-Ratio:  0.562 50 1 200
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% | CP-CP Distance: 4.88 | —200
300 1 300 A
0 100 200 300 0 100 200 300
MSE Image Registration: 164-3-3886 vs 164-3-3896, Iteration 22
Metric: 1028.0708733939682 [Referenee - Teansfaimed] (mimkig)
300 07 MASKED °
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250 50 1 Min-Ratio: 0,631 -
L1 Norm: 125173355 | - 200
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200 A
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Visual feedback: MSE registration produced better correspondence in tuberosities and legs.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 182-1-2048 vs 182-1-2058, Scaling Factor: 10
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[Template Image]
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MI Image Registration: 182-1-2048 vs 182-1-2058, Iteration 50
Metric: -0.8594337492537268
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MSE Image Registration: 182-1-2048 vs 182-1-2058, Iteration 15
Metric: 455.7476465676757
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Visual feedback: MSE produced better correspondence in tuberosities, legs, and top buttocks.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 174-3-958 vs 174-3-970, Scaling Factor: 10
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Ml Image Registration: 174-3-958 vs 174-3-970, Iteration 31
Metric: -0.484230916354979
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MSE Image Registration: 174-3-958 vs 174-3-970, Iteration 119
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Visual feedback: While neither M1 nor MSE produced a successful registration, Ml is better.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 129-2-1842 vs 129-2-1852, Scaling Factor: 10
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[Template Image]
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MI Image Registration: 129-2-1842 vs 129-2-1852, Iteration 22
Metric: -0.7230135169192975
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MSE Image Registration: 129-2-1842 vs 129-2-1852, Iteration 11
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 124-1-705 vs 124-1-719, Scaling Factor: 10
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MI Image Registration: 124-1-705 vs 124-1-719, Iteration 21
Metric: -1.107574333691444
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MSE Image Registration: 124-1-705 vs 124-1-719, Iteration 20
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 112-2-1696 vs 112-2-1708, Scaling Factor: 10

[Reference Image] [Template Image] 300
250
50 - 50 1
100 - 100 - 200
150 A 150 A 150
200 A 200 1
100
250 1 250 1
50
300 A 300 A
0 100 200 300 0 100 200 300
MI Image Registration: 112-2-1696 vs 112-2-1708, Iteration 7
Metric: -1.2536677966857874 [Reference - Transformed] (mmHg)
=00 07 o MASKeD_____ 017
PCC': ) 0.673
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MSE Image Registration: 112-2-1696 vs 112-2-1708, Iteration 13 R
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Visual feedback: Both MI and MSE did similar and appropriate registrations.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 169-2-1993 vs 169-2-2009, Scaling Factor: 10
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MI Image Registration: 169-2-1993 vs 169-2-2009, Iteration 40
Metric: -0.7002281213721496
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MSE Image Registration: 169-2-1993 vs 169-2-2009, Iteration 7
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Visual feedback: Neither MI nor MSE produced a successful registration.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 181-1-3436 vs 181-1-3446, Scaling Factor: 10

[Reference Image] [Template Image] 300
- - - 0
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MI Image Registration: 181-1-3436 vs 181-1-3446, Iteration 20
Metric: -1.0797010927283663 [Reference - Transformed] (mmHg)
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MSE Image Registration: 181-1-3436 vs 181-1-3446, Iteration 21
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Visual feedback: Both Ml and MSE did similar and appropriate registrations.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 110-2-1065 vs 110-2-1073, Scaling Factor: 10
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MI Image Registration: 110-2-1065 vs 110-2-1073, Iteration 10
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MSE Image Registration: 110-2-1065 vs 110-2-1073, Iteration 17
Metric: 558.0103395043798
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Visual feedback: Both Ml and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 123-1-2504 vs 123-1-2524, Scaling Factor: 10
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MI Image Registration: 123-1-2504 vs 123-1-2524, Iteration 22
Metric: -1.1833787635740491 [Reference - Transformed] (mmHg)
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MSE Image Registration: 123-1-2504 vs 123-1-2524, Iteration 39
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Visual feedback: Both MI and MSE did similar and appropriate registrations.



Reference (fixed) and Template (moving) pressure maps

Image Registration: 132-1-1990 vs 132-1-2002, Scaling Factor: 10
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MI Image Registration: 132-1-1990 vs 132-1-2002, Iteration 29
Metric: -1.301905231466185
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MSE Image Registration: 132-1-1990 vs 132-1-2002, Iteration 63
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Reference (fixed) and Template (moving) pressure maps

Image Registration: 183-3-2335 vs 183-3-2342, Scaling Factor: 10
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MI Image Registration: 183-3-2335 vs 183-3-2342, Iteration 24
Metric: -1.145456671219107 [Reference - Transformed] (mmHg)
300 0 MASKED G -
PCC: 0.867
250 50 1 MinRatio: 0751 50 » e
i L1 Norm:  558923.04 v
L2 Norm: 11234030.30
200 100 Int-Ratio Var: 0.211 100 A i
156 e | 5. A o
. e 8o
in-Ratio: 1
200 A L1 No:mi 565240.11 200 - -
100 GeRatover Gi6h -
50 2501 ettt ggo-| 2501
CP-CP Distance: 18.22
300 A 300 A
0 100 200 300 0 100 200 300

MSE Image Registration: 183-3-2335 vs 183-3-2342, Iteration 19
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Visual feedback: Both MI and MSE did similar and appropriate registrations.
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Appendix R

Case Study: Sequential Registration and Comparative Results



Template C[F;f(;P Pearson Tanimoto let?; L1 Norm Sq L2 Norm Int;/liartlo ;::Z
109-2-1 0 1 1 1 0.00 0.00 0 0
109-2-2 0.1965 0.9995 0.9982 0.9479 62,000.53 227,841.49 0.0022 0.5887
109-2-3 0.1486 0.9991 0.9957 0.9274 93,892.10 561,214.08 0.0037 0.9744
109-2-4 0.1420 0.9983 0.9910 0.9044 137,321.15 1,200,237.43 0.0050 1.2533
109-2-5 0.1912 0.9980 0.9883 0.8973 157,662.23 1,580,425.12 0.0040 0.4887
109-2-6 0.2962 0.9971 0.9833 0.8741 192,627.88 2,308,566.96 0.0060 1.2893
109-2-7 0.2889 0.9966 0.9805 0.8639 210,233.39 2,731,405.03 0.0062 0.8835
109-2-8 0.4328 0.9964 0.9805 0.8604 212,712.12 2,723,526.09 0.0074 0.5587
109-2-9 0.4175 0.9958 0.9760 0.8477 238,079.86 3,415,251.42 0.0065 1.4772
109-2-10 0.3456 0.9960 0.9773 0.8533 229,342.14 3,213,429.02 0.0062 1.0304
109-2-11 0.3810 0.9961 0.9777 0.8571 226,961.76 3,155,578.15 0.0060 0.6316
109-2-12 0.6728 0.9966 0.9853 0.8688 179,536.13 1,992,752.48 0.0104 0.6057
109-2-13 0.6026 0.9957 0.9771 0.8447 231,895.62 3,238,896.46 0.0105 0.6137
109-2-14 0.1305 0.9946 0.9715 0.8369 258,227.00 4,108,337.76 0.0096 1.3772
109-2-15 0.3775 0.9942 0.9675 0.8395 273,149.78 4,754,045.33 0.0078 0.5867
109-2-16 0.3225 0.9929 0.9607 0.8258 302,995.07 5,874,813.41 0.0084 0.4467
109-2-17 0.2519 0.9935 0.9633 0.8281 290,116.12 5,449,490.24 0.0071 0.5767
109-2-18 0.0911 0.9901 0.9594 0.8327 289,272.22 6,007,286.25 0.0103 0.7446
109-2-19 0.3397 0.9898 0.9682 0.8292 264,672.59 4,494,050.03 0.0140 0.5877
109-2-20 0.4329 0.9914 0.9662 0.8332 266,727.21 4,892,842.84 0.0108 0.4797
109-2-21 0.3447 0.9896 0.9556 0.8163 309,365.97 6,655,635.01 0.0116 0.5077
109-2-22 0.2591 0.9909 0.9544 0.8084 320,083.84 6,921,572.37 0.0098 0.3238
109-2-23 0.5650 0.9908 0.9544 0.8049 329,519.96 6,916,756.31 0.0110 0.3128
109-2-24 0.3713 0.9890 0.9413 0.7856 379,187.06 9,290,573.64 0.0110 0.4557
109-2-25 0.2999 0.9903 0.9441 0.7877 371,628.49 8,803,556.80 0.0096 0.4218
109-2-26 0.3126 0.9886 0.9378 0.7866 387,521.47 9,937,806.99 0.0210 1.1613
109-2-27 0.4614 0.9886 0.9380 0.7878 385,342.64 9,901,964.98 0.0226 2.2497
109-2-28 0.2954 0.9882 0.9358 0.7826 392,225.94 10,323,479.52 0.0215 0.2828
109-2-29 0.0670 0.9872 0.9344 0.7697 407,855.18 10,550,953.65 0.0221 6.5533
109-2-30 0.0392 0.9865 0.9325 0.7657 411,181.21 10,889,107.36 0.0208 0.6346
109-2-31 0.0220 0.9871 0.9320 0.7722 412,184.02 11,018,266.91 0.0187 0.4178
109-2-32 0.7373 0.9858 0.9304 0.7678 410,755.86 11,285,542.13 0.0234 3.5740
109-2-33 0.0999 0.9860 0.9253 0.7611 439,117.98 12,343,076.28 0.0180 1.4232
109-2-34 0.2767 0.9848 0.9251 0.7556 438,815.03 12,314,604.31 0.0206 3.5930
109-2-35 0.1717 0.9842 0.9159 0.7457 476,652.96 14,242,191.83 0.0200 0.4827
109-2-36 0.0721 0.9852 0.9192 0.7589 457,211.91 13,572,534.60 0.0216 0.5017
109-2-37 1.3022 0.9817 0.9058 0.7343 504,007.54 16,311,355.74 0.0260 0.3218
109-2-38 0.2166 0.9837 0.9070 0.7341 511,214.62 16,169,554.72 0.0198 0.5307
109-2-39 0.0818 0.9842 0.9173 0.7546 465,801.46 13,931,907.86 0.0187 0.6057
109-2-40 0.1483 0.9852 0.9251 0.7638 433,759.04 12,339,135.93 0.0195 1.3892
109-2-41 0.0585 0.9848 0.9159 0.7439 477,924.01 14,270,228.64 0.0192 0.7006
109-2-42 0.1061 0.9846 0.9119 0.7350 492,972.20 15,128,198.49 0.0196 0.6107
109-2-43 0.1243 0.9840 0.9082 0.7276 511,894.36 15,932,884.54 0.0204 0.5617
109-2-44 0.0940 0.9829 0.9001 0.7159 541,005.65 17,708,500.49 0.0198 1.6691
109-2-45 0.1695 0.9840 0.9094 0.7336 499,534.02 15,663,254.63 0.0179 0.5987
109-2-46 0.0909 0.9837 0.9049 0.7246 520,390.73 16,659,594.57 0.0214 0.6256
109-2-47 0.2707 0.9833 0.8996 0.7174 542,430.23 17,851,270.95 0.0202 0.6596
109-2-48 0.1870 0.9833 0.8999 0.7233 535,972.38 17,798,425.37 0.0184 0.5297
109-2-49 0.1105 0.9824 0.8959 0.7145 553,028.28 18,672,321.57 0.0210 1.4942
109-2-50 0.1663 0.9819 0.8939 0.7106 563,537.26 19,114,063.24 0.0190 0.6117
109-2-51 0.2207 0.9825 0.9025 0.7248 528,533.12 17,121,651.30 0.0195 0.7796
109-2-52 0.2522 0.9824 0.9009 0.7140 542,714.27 17,498,992.32 0.0206 0.5607
109-2-53 0.1398 0.9814 0.8969 0.7162 554,385.11 18,361,993.43 0.0196 0.6626
109-2-54 0.2145 0.9809 0.8911 0.7101 575,629.36 19,716,547.36 0.0190 0.6966
109-2-55 0.0985 0.9832 0.9069 0.7271 513,260.15 16,175,911.60 0.0190 0.5447
109-2-56 0.1184 0.9816 0.8937 0.7080 564,191.58 19,149,147.83 0.0191 0.4997
109-2-57 0.2087 0.9815 0.8948 0.7061 559,727.22 18,886,059.36 0.0191 0.6976
109-2-58 0.1328 0.9832 0.9038 0.7170 528,137.06 16,877,957.51 0.0186 0.6147
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109-2-59 0.2107 0.9815 0.8949 0.7114 556,675.71 18,844,673.53 0.0193 0.6456
109-2-60 0.1958 0.9822 0.8967 0.7107 550,617.87 18,464,483.74 0.0185 0.6846
109-2-61 0.1669 0.9822 0.8950 0.7060 560,628.81 18,867,385.82 0.0182 0.6656
109-2-62 0.1630 0.9809 0.8842 0.6903 603,617.26 21,425,775.11 0.0185 0.8175
109-2-63 0.2252 0.9812 0.8895 0.7000 577,725.38 20,143,442.64 0.0185 0.7086
109-2-64 0.1841 0.9806 0.8846 0.6925 601,563.62 21,303,732.10 0.0186 0.6586
109-2-65 0.1471 0.9806 0.8829 0.6925 605,806.03 21,749,848.70 0.0191 0.5147
109-2-66 0.1877 0.9803 0.8793 0.6889 617,780.19 22,641,968.59 0.0190 0.4507
109-2-67 0.1699 0.9799 0.8783 0.6857 623,162.66 22,849,906.94 0.0191 0.8485
109-2-68 0.1392 0.9802 0.8803 0.6899 613,348.37 22,380,424.70 0.0190 0.5517
109-2-69 0.1728 0.9799 0.8765 0.6835 630,205.39 23,316,402.68 0.0188 0.4957
109-2-70 0.1668 0.9789 0.8714 0.6790 647,708.35 24,589,363.55 0.0192 0.4198
109-2-71 0.1650 0.9794 0.8739 0.6833 637,932.34 23,973,980.79 0.0189 0.4398
109-2-72 0.1770 0.9787 0.8681 0.6742 662,838.79 25,465,066.25 0.0196 0.4948
109-2-73 0.1745 0.9792 0.8710 0.6790 649,791.41 24,718,158.47 0.0189 0.4687
109-2-74 0.1825 0.9786 0.8681 0.6753 661,446.63 25,436,621.69 0.0191 0.4407
109-2-75 0.1893 0.9789 0.8694 0.6761 658,058.29 25,138,609.91 0.0190 0.4697
109-2-76 0.1725 0.9791 0.8717 0.6792 645,362.27 24,518,916.44 0.0188 0.7086
109-2-77 0.1776 0.9785 0.8680 0.6745 662,394.00 25,470,120.54 0.0190 0.4018
109-2-78 0.1847 0.9793 0.8739 0.6812 637,081.60 23,952,453.75 0.0186 0.6706
109-2-79 0.1580 0.9799 0.8783 0.6869 618,923.76 22,859,867.66 0.0183 0.6606
109-2-80 0.2134 0.9791 0.8714 0.6787 647,708.79 24,592,891.53 0.0186 1.6690
109-2-81 0.2171 0.9787 0.8697 0.6773 650,332.72 25,029,721.03 0.0188 0.6816
109-2-82 0.1988 0.9790 0.8720 0.6820 638,718.31 24,434,411.42 0.0185 0.6756
109-2-83 0.1855 0.9786 0.8696 0.6772 653,189.57 25,033,922.21 0.0188 0.6866
109-2-84 0.2353 0.9786 0.8691 0.6772 653,508.95 25,192,312.04 0.0188 2.3547
109-2-85 0.1885 0.9786 0.8675 0.6735 661,131.99 25,614,237.08 0.0188 0.7046
109-2-86 0.1899 0.9778 0.8634 0.6694 676,017.88 26,668,524.81 0.0192 0.7506
109-2-87 0.2043 0.9781 0.8649 0.6735 667,113.95 26,269,976.01 0.0186 0.5867
109-2-88 0.1956 0.9778 0.8627 0.6691 679,049.68 26,849,971.28 0.0188 0.6566
109-2-89 0.1974 0.9775 0.8608 0.6665 686,108.97 27,363,314.69 0.0188 0.6107
109-2-90 0.1773 0.9774 0.8592 0.6677 688,667.07 27,794,921.00 0.0189 0.4337
109-2-91 0.1976 0.9780 0.8649 0.6693 673,124.04 26,272,467.04 0.0187 0.7925
109-2-92 0.2034 0.9775 0.8604 0.6701 682,850.61 27,480,347.20 0.0188 0.5477
109-2-93 0.1710 0.9790 0.8751 0.6792 639,788.97 23,609,730.48 0.0184 0.8465
109-2-94 0.2031 0.9783 0.8675 0.6736 663,986.52 25,573,558.12 0.0185 0.5407
109-2-95 0.1955 0.9778 0.8638 0.6723 673,940.08 26,557,581.33 0.0186 0.6886
109-2-96 0.2201 0.9778 0.8639 0.6706 678,776.23 26,526,792.42 0.0186 0.5257
109-2-97 0.2931 0.9783 0.8706 0.6771 648,513.83 24,743,544.48 0.0192 0.8465
109-2-98 0.1880 0.9793 0.8770 0.6837 624,345.80 23,142,670.95 0.0184 0.8115
109-2-99 0.2079 0.9791 0.8723 0.6785 644,736.57 24,361,990.27 0.0178 0.9005
109-2-100 0.2335 0.9787 0.8718 0.6788 644,327.93 24,473,077.63 0.0181 0.9744
109-2-101 0.2335 0.9784 0.8698 0.6763 649,207.81 24,961,162.42 0.0183 0.7646
109-2-102 0.2300 0.9779 0.8645 0.6723 670,047.31 26,363,347.29 0.0184 0.7436
109-2-103 0.2425 0.9780 0.8675 0.6748 656,234.36 25,562,249.57 0.0185 0.8215
109-2-104 0.2263 0.9779 0.8651 0.6725 666,810.00 26,205,688.84 0.0183 0.7316
109-2-105 0.2314 0.9781 0.8651 0.6730 667,969.63 26,216,043.85 0.0183 0.8455
109-2-106 0.2405 0.9779 0.8658 0.6743 662,251.38 26,032,612.71 0.0184 0.7776
109-2-107 0.1984 0.9778 0.8633 0.6692 676,343.78 26,687,590.41 0.0182 0.7776
109-2-108 0.2132 0.9773 0.8596 0.6673 686,881.73 27,667,680.90 0.0183 0.9325
109-2-109 0.1997 0.9774 0.8609 0.6694 680,900.92 27,338,830.19 0.0182 0.7086
109-2-110 0.2053 0.9778 0.8622 0.6689 681,874.37 26,996,254.49 0.0180 0.8165
109-2-111 0.2334 0.9772 0.8588 0.6649 692,565.89 27,909,461.64 0.0177 0.6496
109-2-112 0.2061 0.9772 0.8602 0.6685 686,780.68 27,508,219.94 0.0185 0.6107
109-2-113 0.1872 0.9774 0.8612 0.6691 682,913.44 27,233,915.67 0.0194 0.6456
109-2-114 0.2532 0.9771 0.8590 0.6682 689,344.66 27,822,677.58 0.0192 0.6936
109-2-115 0.1496 0.9777 0.8653 0.6699 675,237.56 26,131,635.56 0.0176 0.6236
109-2-116 0.1571 0.9772 0.8620 0.6656 683,558.34 26,993,311.39 0.0179 1.0254
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109-2-117 0.1797 0.9776 0.8641 0.6723 671,584.88 26,462,576.02 0.0178 0.4447
109-2-118 0.2084 0.9771 0.8597 0.6678 690,816.13 27,630,505.09 0.0181 0.9694
109-2-119 0.1700 0.9774 0.8631 0.6713 674,725.35 26,719,139.64 0.0178 0.8295
109-2-120 0.2071 0.9773 0.8616 0.6699 679,964.42 27,103,813.62 0.0177 0.7566
109-2-121 0.2700 0.9770 0.8581 0.6666 695,855.29 28,070,239.14 0.0180 0.4338
109-2-122 0.2758 0.9767 0.8574 0.6678 695,691.55 28,250,602.68 0.0180 0.4647
109-2-123 0.2261 0.9775 0.8623 0.6701 681,475.06 26,935,633.43 0.0176 0.4877
109-2-124 0.1312 0.9781 0.8704 0.6750 656,811.97 24,795,152.21 0.0187 0.5917
109-2-125 0.2000 0.9768 0.8611 0.6699 683,366.22 27,210,917.73 0.0188 0.8155
109-2-126 0.1687 0.9766 0.8595 0.6661 692,447.82 27,650,017.66 0.0190 0.8115
109-2-127 0.1585 0.9769 0.8611 0.6680 683,703.10 27,203,981.12 0.0179 0.4607
109-2-128 0.1568 0.9764 0.8568 0.6634 701,492.75 28,383,995.10 0.0184 0.6456
109-2-129 0.1807 0.9767 0.8594 0.6664 692,987.61 27,662,110.46 0.0181 1.1753
109-2-130 0.1235 0.9774 0.8675 0.6737 660,264.82 25,511,766.94 0.0179 0.8475
109-2-131 0.1617 0.9771 0.8657 0.6717 667,638.58 25,973,508.78 0.0185 0.8545
109-2-132 0.0998 0.9762 0.8585 0.6652 693,940.79 27,884,952.38 0.0186 0.7296
109-2-133 0.1175 0.9767 0.8626 0.6691 677,610.37 26,768,747.24 0.0182 0.8515
109-2-134 0.1086 0.9765 0.8592 0.6662 691,274.29 27,712,103.94 0.0178 0.8225
109-2-135 0.1030 0.9759 0.8569 0.6622 699,907.61 28,311,388.07 0.0194 0.6506
109-2-136 0.1453 0.9768 0.8625 0.6713 677,623.87 26,823,159.96 0.0178 0.4737
109-2-137 0.1826 0.9766 0.8589 0.6664 691,452.65 27,794,580.47 0.0180 0.5147
109-2-138 0.1530 0.9768 0.8614 0.6695 679,933.23 27,124,626.41 0.0178 0.8575
109-2-139 0.2083 0.9761 0.8570 0.6631 697,195.06 28,306,886.24 0.0211 1.8420
109-2-140 0.0527 0.9776 0.8697 0.6761 658,753.07 24,919,729.75 0.0177 0.5647
109-2-141 0.0568 0.9771 0.8659 0.6746 664,171.96 25,898,960.92 0.0176 0.7356
109-2-142 0.0540 0.9771 0.8669 0.6753 657,545.55 25,647,116.94 0.0177 0.9355
109-2-143 0.0912 0.9765 0.8612 0.6708 682,434.80 27,138,652.28 0.0182 0.7196
109-2-144 0.2236 0.9773 0.8693 0.6788 648,549.80 25,000,333.09 0.0185 0.8685
109-2-145 0.1381 0.9773 0.8677 0.6757 657,195.13 25,450,403.25 0.0185 0.8305
109-2-146 0.0960 0.9768 0.8643 0.6707 667,071.85 26,307,141.50 0.0183 0.8935
109-2-147 0.0815 0.9771 0.8674 0.6791 651,054.06 25,513,247.73 0.0183 0.7946
109-2-148 0.0511 0.9770 0.8629 0.6723 672,018.43 26,728,351.31 0.0188 0.7106
109-2-149 0.1286 0.9769 0.8621 0.6733 672,915.42 26,945,564.48 0.0182 0.4817
109-2-150 1.4304 0.9802 0.9248 0.7518 442,689.54 12,098,316.68 0.0309 0.8055
109-2-151 1.1416 0.9266 0.8831 0.7402 452,095.37 15,477,984.15 0.1176 7.2849
109-2-152 3.2833 0.8836 0.8216 0.6485 623,902.40 24,334,532.38 0.1469 4.5154
109-2-153 3.2028 0.9381 0.8946 0.6496 528,217.95 14,707,069.15 0.1060 27.8482
109-2-154 2.9640 0.9518 0.9174 0.6750 442,223.89 9,928,467.12 0.1297 18.3176
109-2-155 1.7837 0.9717 0.9520 0.6979 349,581.73 6,113,663.32 0.0907 17.7829
109-2-156 2.4463 0.9766 0.9582 0.6937 333,273.59 5,464,037.07 0.0918 0.7916
109-2-157 2.7084 0.9777 0.9623 0.6933 325,956.55 4,685,832.21 0.1153 0.5367
109-2-158 2.5824 0.9616 0.9300 0.6878 380,026.51 8,193,219.54 0.1316 8.6771
109-2-159 4.0594 0.9677 0.9451 0.6768 371,565.43 6,688,413.65 0.1472 6.4723
109-2-160 3.7926 0.9701 0.9498 0.6804 359,970.57 6,349,583.85 0.1294 7.7846
109-2-161 3.5167 0.9707 0.9498 0.6799 364,898.96 6,496,509.04 0.1186 4.7753
109-2-162 3.4491 0.9716 0.9496 0.6784 370,339.61 6,674,497.31 0.1106 0.8845
109-2-163 3.4697 0.9720 0.9486 0.6762 377,341.99 6,908,500.27 0.1076 0.9355
109-2-164 3.4910 0.9719 0.9462 0.6696 394,145.61 7,354,888.00 0.0990 2.5086
109-2-165 3.4264 0.9718 0.9443 0.6659 404,862.54 7,711,529.85 0.0998 2.0678
109-2-166 2.7979 0.9687 0.9420 0.6692 403,592.12 7,889,935.49 0.0959 3.0752
109-2-167 3.7177 0.9728 0.9500 0.6800 370,118.12 6,690,794.79 0.0993 3.1032
109-2-168 3.9747 0.9710 0.9425 0.6616 411,417.51 7,975,347.02 0.0988 2.1987
109-2-169 3.7919 0.9722 0.9390 0.6537 433,868.63 8,744,200.08 0.0975 9.8274
109-2-170 3.7025 0.9717 0.9348 0.6466 453,775.07 9,505,759.65 0.0865 14.7876
109-2-171 3.7307 0.9813 0.9646 0.6863 333,129.69 4,663,447.62 0.0998 5.3819
109-2-172 3.9309 0.9716 0.9493 0.6695 380,371.33 6,685,048.62 0.1139 1.2903
109-2-173 3.6043 0.9721 0.9484 0.6698 382,825.20 6,945,035.50 0.1144 25.4345
109-2-174 3.5332 0.9714 0.9467 0.6675 389,109.59 7,218,678.04 0.1126 1.3312
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109-2-175 2.5924 0.9695 0.9378 0.6600 428,474.02 8,793,746.65 0.0938 0.6296
109-2-176 2.5578 0.9709 0.9342 0.6579 442,697.80 9,593,890.09 0.0867 1.3123
109-2-177 2.9833 0.9641 0.9303 0.6598 438,696.06 9,855,009.46 0.1094 0.6317
109-2-178 3.6925 0.9657 0.9307 0.6557 446,172.31 9,906,333.97 0.1164 0.6246
109-2-179 3.9010 0.9654 0.9296 0.6532 451,484.01 10,096,955.64 0.1103 1.3123
109-2-180 3.3463 0.9656 0.9287 0.6497 457,275.25 10,294,157.84 0.1020 1.4942
109-2-181 7.8654 0.9057 0.8494 0.6213 556,070.83 18,672,499.48 0.4075 3.6389
109-2-182 6.5447 0.9260 0.8713 0.6398 497,656.21 15,085,892.26 0.3102 5.5059
109-2-183 4.2701 0.9572 0.9291 0.6732 405,519.86 8,912,997.86 0.1728 1.6301
109-2-184 5.6732 0.9139 0.8612 0.6504 511,335.32 17,141,713.52 0.2547 1.8739
109-2-185 3.3176 0.9753 0.9563 0.7035 328,431.81 5,224,131.25 0.1124 14.3858
109-2-186 3.2500 0.9684 0.9470 0.6865 362,019.05 6,756,749.56 0.1221 3.0493
109-2-187 6.5742 0.9184 0.8629 0.6434 506,508.00 16,361,562.91 0.2934 5.0681
109-2-188 5.6131 0.9501 0.9181 0.6640 432,743.80 10,403,257.04 0.2045 1.9639
109-2-189 7.4210 0.8225 0.7345 0.6146 651,084.85 33,611,357.61 0.4330 3.2531
109-2-190 5.8420 0.9540 0.9238 0.6622 422,941.28 9,510,541.43 0.2142 8.5012
109-2-191 3.6464 0.8977 0.8396 0.6412 609,495.22 20,480,627.60 0.2668 6.5743
109-2-192 13.2381 0.6970 0.5865 0.4799 1,020,801.63 54,097,620.43 1.4943 45774
109-2-193 5.2403 0.8719 0.8015 0.5923 667,066.93 25,075,145.30 0.5349 2.1238
109-2-194 3.9862 0.9097 0.8560 0.6218 550,352.62 18,013,753.66 0.3130 1.1134
109-2-195 4.6708 0.9324 0.8901 0.6410 496,936.85 13,771,678.91 0.2221 0.8555
109-2-196 6.7538 0.7742 0.6682 0.6135 678,877.29 41,491,398.49 0.6116 1.5751
109-2-197 5.9931 0.8835 0.8197 0.5950 652,185.13 23,642,337.08 0.2357 1.7190
109-2-198 6.4901 0.9057 0.8425 0.5853 620,923.48 18,864,376.04 0.5466 4.2516
109-2-199 6.2919 0.9191 0.8701 0.5899 599,178.69 16,491,721.02 0.3597 12.2710
109-2-200 9.0868 0.8197 0.7383 0.5442 819,082.85 35,644,135.89 0.6335 3.9937
109-2-201 4.0434 0.9089 0.8513 0.6225 547,426.71 17,981,789.70 0.5154 0.7526
109-2-202 0.1108 0.9733 0.8874 0.6661 393,309.59 11,457,981.18 0.4623 8.3042
109-2-203 1.9841 0.8613 0.7526 0.4928 648,475.61 28,205,542.64 1.9291 1.4092
109-2-204 0.0301 0.9531 0.9229 0.6500 405,608.11 9,999,153.37 0.8211 2.4191
109-2-205 0.7681 0.9598 0.9133 0.6607 445,762.04 13,013,642.83 0.6894 0.6007
109-2-206 1.3122 0.9604 0.8965 0.6739 492,883.37 16,789,312.53 0.5656 4.4665
109-2-207 0.8588 0.9873 0.9765 0.7243 243,082.18 3,011,510.48 0.4773 0.5617
109-2-208 1.0505 0.9803 0.9613 0.6814 303,028.64 5,163,251.80 1.9868 1.5831
109-2-209 1.1634 0.9841 0.9496 0.7329 343,947.70 7,476,011.10 0.4455 1.0804
109-2-210 1.0412 0.9832 0.9449 0.7254 360,856.86 8,310,767.55 0.4469 2.7103
109-2-211 1.0301 0.9807 0.9327 0.7057 411,073.89 10,514,166.04 0.5272 2.6126
109-2-212 0.8183 0.9810 0.9354 0.7050 403,991.32 10,011,088.34 0.4971 0.4118
109-2-213 0.5002 0.9325 0.8839 0.6472 481,097.92 16,603,483.46 0.7937 11.4588
109-2-214 0.7043 0.9839 0.9595 0.7166 314,775.33 5,718,354.36 0.5245 1.4012
109-2-215 0.8590 0.9629 0.8904 0.6890 509,799.40 18,428,152.15 0.4916 0.5902
109-2-216 1.0509 0.9854 0.9637 0.7353 283,181.79 5,061,066.36 0.4479 1.3138
109-2-217 1.1104 0.9863 0.9584 0.7463 301,995.99 6,017,154.21 0.3809 0.7985
109-2-218 1.1149 0.9853 0.9488 0.7400 340,616.69 7,690,280.54 0.3416 1.8709
109-2-219 1.0912 0.9837 0.9393 0.7334 376,008.23 9,405,414.10 0.3486 1.3124
109-2-220 1.0822 0.9832 0.9369 0.7282 387,832.45 9,832,182.12 0.4118 1.8955
109-2-221 1.0622 0.9810 0.9260 0.7202 424,733.09 11,901,814.69 0.3588 0.8355
109-2-222 1.0463 0.9826 0.9300 0.7148 418,556.98 11,181,041.48 0.3727 1.7780
109-2-223 0.8551 0.9825 0.9242 0.7081 442,918.52 12,345,753.09 0.3996 0.4178
109-2-224 0.8715 0.9813 0.9188 0.7133 463,139.74 13,421,744.32 0.3307 1.1304
109-2-225 0.7578 0.9801 0.9274 0.7098 427,990.64 11,542,908.18 0.8333 29.1255
109-2-226 0.8425 0.9839 0.9414 0.7297 374,161.11 9,011,502.79 0.3639 1.0035
109-2-227 0.9751 0.9840 0.9381 0.7316 383,529.14 9,641,442.77 0.3290 19.8965
109-2-228 1.0215 0.9832 0.9291 0.7271 414,263.03 11,393,399.16 0.3144 38.7839
109-2-229 1.0499 0.9828 0.9250 0.7228 428,538.78 12,202,600.11 0.3105 13.5126
109-2-230 0.6993 0.9822 0.9313 0.7350 389,761.55 10,890,384.41 0.3158 0.5017
109-2-231 0.7445 0.9833 0.9338 0.7355 383,312.10 10,444,120.87 0.3064 0.5767
109-2-232 0.5358 0.9817 0.9323 0.7167 405,416.92 10,670,076.21 0.3434 0.4787
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109-2-233 0.6253 0.9806 0.9332 0.7156 402,532.48 10,430,281.80 0.3434 0.3348
109-2-234 0.6769 0.9819 0.9484 0.7163 351,690.11 7,595,047.58 1.0606 0.4038
109-2-235 0.7516 0.9824 0.9424 0.7235 367,532.45 8,740,055.45 0.4735 0.6406
109-2-236 0.7537 0.9821 0.9358 0.7242 389,655.02 9,994,200.16 0.3623 0.5267
109-2-237 0.8588 0.9813 0.9253 0.7211 426,142.91 12,065,557.56 0.3344 0.4417
109-2-238 0.8496 0.9811 0.9206 0.7196 443,229.31 13,026,332.23 0.3213 0.5447
109-2-239 0.5615 0.9793 0.9193 0.7048 454,296.21 13,178,086.90 0.3707 0.3768
109-2-240 0.5436 0.9780 0.9135 0.6997 474,052.22 14,355,969.15 0.3628 0.4118
109-2-241 0.8745 0.9812 0.9254 0.7034 434,009.81 12,030,182.05 0.3559 0.9285
109-2-242 0.7867 0.9816 0.9198 0.7077 452,664.62 13,230,067.54 0.3090 0.8505
109-2-243 0.8245 0.9814 0.9162 0.7071 471,657.56 14,000,203.17 0.2904 0.3798
109-2-244 0.8345 0.9810 0.9112 0.7047 489,928.68 15,056,888.58 0.2821 0.3566
109-2-245 0.8833 0.9794 0.9005 0.6987 521,921.88 17,368,288.32 0.2829 0.4158
109-2-246 0.8624 0.9803 0.9108 0.7078 482,896.33 15,102,029.28 0.2881 0.5457
109-2-247 0.7810 0.8840 0.8188 0.6867 511,713.55 22,817,530.44 0.5596 0.6027
109-2-248 0.4029 0.9471 0.9095 0.6570 436,270.68 12,401,863.42 0.5973 4.2456
109-2-249 0.6181 0.9818 0.9629 0.6684 299,369.94 4,301,015.71 0.5557 2.3272
109-2-250 0.3359 0.9868 0.9759 0.7344 237,770.90 3,062,046.60 0.3293 12.7042
109-2-251 0.3321 0.9873 0.9701 0.7485 254,110.27 4,069,329.04 0.3002 2.3367
109-2-252 0.3873 0.9873 0.9655 0.7593 264,555.75 4,821,947.44 0.2419 1.8020
109-2-253 0.4549 0.9870 0.9598 0.7615 283,747.99 5,782,514.29 0.2330 1.7200
109-2-254 0.4140 0.9870 0.9561 0.7625 297,504.56 6,435,188.16 0.2306 1.2803
109-2-255 0.2866 0.9880 0.9612 0.7628 287,371.68 5,589,643.35 0.2284 5.3342
109-2-256 0.3208 0.9865 0.9572 0.7627 296,680.84 6,228,702.81 0.2454 44.6619
109-2-257 0.3504 0.9859 0.9473 0.7627 331,096.51 7,997,641.40 0.2274 4.3213
109-2-258 0.6898 0.9810 0.9341 0.6874 410,936.13 10,238,106.77 1.3059 0.5170
109-2-259 0.5559 0.9848 0.9357 0.7427 384,539.83 10,149,671.93 0.2710 0.4083
109-2-260 0.5677 0.9829 0.9224 0.7386 428,041.04 12,756,783.76 0.2525 0.3728
109-2-261 0.4551 0.9827 0.9195 0.7352 441,491.91 13,353,105.84 0.2440 0.3728
109-2-262 0.5823 0.9820 0.9147 0.7298 458,139.40 14,341,651.08 0.2495 0.3573
109-2-263 0.6435 0.9835 0.9210 0.7387 433,814.07 13,091,032.14 0.2369 0.3588
109-2-264 0.6310 0.9823 0.9131 0.7368 458,203.45 14,710,205.93 0.2250 0.3768
109-2-265 0.5945 0.9824 0.9139 0.7370 457,633.62 14,556,929.45 0.2248 0.4108
109-2-266 0.5760 0.9832 0.9316 0.7401 400,395.14 10,881,386.56 0.2352 0.4368
109-2-267 0.5906 0.9828 0.9242 0.7419 423,914.77 12,383,351.60 0.2118 0.4078
109-2-268 0.6074 0.9829 0.9234 0.7441 425,094.94 12,542,388.78 0.2119 0.5117
109-2-269 0.5615 0.9825 0.9201 0.7406 437,872.12 13,213,568.53 0.2166 0.3580
109-2-270 0.5989 0.9823 0.9174 0.7389 445,572.87 13,777,164.99 0.2042 0.3588
109-2-271 0.5793 0.9815 0.9121 0.7361 462,622.60 14,880,049.22 0.2041 0.3668
109-2-272 0.5935 0.9811 0.9088 0.7360 473,490.06 15,600,132.91 0.2026 0.3700
109-2-273 0.5012 0.9829 0.9367 0.7574 374,030.06 9,861,505.08 0.2007 0.4395
109-2-274 0.5238 0.9839 0.9289 0.7473 412,133.19 11,471,299.39 0.1870 0.5451
109-2-275 0.5353 0.9822 0.9157 0.7408 456,168.31 14,143,743.76 0.1875 1.8929
109-2-276 0.5854 0.9832 0.9169 0.7412 452,647.96 13,947,883.17 0.1898 0.4200
109-2-277 0.6543 0.9833 0.9161 0.7397 453,953.36 14,133,047.57 0.1908 0.4058
109-2-278 0.6479 0.9819 0.9076 0.7363 480,402.04 15,915,639.20 0.1829 0.4088
109-2-279 0.6466 0.9813 0.9025 0.7335 496,323.81 17,038,751.52 0.1787 0.4602
109-2-280 0.6208 0.9819 0.9045 0.7344 490,892.03 16,623,143.60 0.1847 0.4068
109-2-281 0.6268 0.9809 0.8989 0.7321 508,296.72 17,865,931.90 0.1818 28.3385
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