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The technological advancements in sensors, monitoring systems, and tracking devices are 

changing how we study our environment; big data sets are becoming more and more prevalent due 

to the increase of information gathered with ease. One system benefiting from these technological 

improvements is pressure mapping technology, an easy-to-use and cost-effective solution for 

assessing contact pressure distributions. Pressure mapping systems generally produce data sets of 

very large volume, especially when used for continuous tracking and monitoring, and are widely 

used for research in fields of ergonomics, sports, industries, and health disciplines. 

Pressure mapping systems are particularly important in the study of human-chair seating 

interactions. Researchers have widely used pressure mapping systems to study these interactions 

and their relationship with comfort/discomfort across different conditions. The analysis of seating 

pressure maps usually consists in evaluating descriptive pressure measures and using visual 

feedback for assessing pressure distributions. Unfortunately, current analytical techniques do not 

provide clear insights about pressure distribution patterns nor spatial relationships within seating 

pressure maps; these are needed to further understand human-chair interactions. The need for 

additional pressure distribution measures, along with quantitative techniques for assessing and 

comparing pressure maps, have also been emphasized in literature. 

This work studies the applications of machine learning, spatial data analytics, digital image 

processing, and optimal image registration as new techniques for pressure mapping analysis, with 



the objective of implementing these techniques to pre-process, analyze, and compare seating 

pressure map images. The results of this study demonstrate the practicality and effectiveness of 

using these techniques for (1) removing extrinsic pressure artifacts (outliers) by using density-

based spatial clustering, (2) measuring distribution patterns and spatial relationships by using 

spatial autocorrelation and statistical features of images, and (3) aligning and comparing pressure 

map by using image registration and similarity/dissimilarity coefficients.  

The use of DBSCAN and DENCLUE clustering algorithms were found to be suitable for 

identifying and eliminating extrinsic pressure artifacts (outliers), with obtained overall accuracies 

over ninety-nine percent. Moran’s I spatial autocorrelation measure, and image statistical features 

of Skewness, Correlation (GLSD), Gradient Contrast/Mean (GLD), Gradient Second Moment 

(GLD), and Homogeneity (GLSD) were found to be appropriate for measuring unique aspects of 

pressure distributions within pressure maps. Image registration based on the minimization of the 

Mean Square Error (MSE) was also suitable for aligning pressure map images, with similarity and 

dissimilarity coefficients of Pearson Correlation Coefficient, Minimum Ratio, 𝐿1 Norm, and 

Intensity Ratio Variance being particularly unique when comparing aligned pressure maps.  

These methodologies can help future seating research by providing additional analytical 

tools for a better understanding of user-chair interactions and their relationships with sitting 

comfort/discomfort, in both static and dynamic sitting environments. While findings in this study 

are in the context of task seating (i.e. mousing and typing), these techniques can also be tailored 

and employed in other seating research applications (e.g., automobile seating, aircraft pilot seats, 

and paraplegic seating), non-seating pressure map research (e.g., gait analysis, industrial 

applications, and sports fields), or research studies using spatially related three-dimensional 

datasets (e.g., surface topography, contour data, and heat maps). 
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CHAPTER I 

 

INTRODUCTION 

 

The technological advancements in sensors, monitoring systems, tracking devices, and the 

growth of Internet of Things (IoT) are changing how we interact and study our environment. Big 

data sets are becoming more and more prevalent due to the increase of information gathered with 

ease. A demanding emphasis in the analysis of such data sets is currently in place to help and 

support the decision-making process. One of the technologies benefiting from these improvements 

is pressure mapping systems, a practical and convenient solution for assessing contact pressure 

distributions. Pressure mapping systems generally produce data sets of very large volume, 

especially when used for continuous tracking and monitoring, and are widely used for research in 

fields of ergonomics, sports, industries, and health disciplines (Fredericks et al., 2016; Makhsous 

et al., 2012; Misiewicz et al., 2015; Nagel et al., 2008). 

Pressure mapping systems are particularly important in the study of human-chair sitting 

interactions. Researchers have widely used pressure mapping systems to study these interactions 

and their relationship with sitting comfort/discomfort (Zemp et al., 2016). With employees 

spending more time than ever in a seated position, studies of sitting comfort/discomfort have been 

prevalent (Cascioli et al., 2011; De Looze et al., 2003; Openshaw, 2011; Zemp et al., 2015). The 

advent of computers and visual display units (VDUs) lead to high demands in jobs where tasks are 

mostly sedentary, with prolonged computer use being now common and expected in current 

working environments (Afanuh & Johnson, 2017; Studebaker & Murphy, 2014). Office-based 
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workers, in particular, have been reported to spend between four to six hours of their working 

hours performing sedentary sitting tasks, with a high proportion of their sitting times accrued in 

bouts of at least 20 or 30 minutes of prolonged sitting (Hadgraft et al., 2016; Thorp et al., 2012).  

Prolonged sitting time has been associated with workers’ discomfort, dissatisfaction, 

fatigue and reduced performance (Chester et al., 2002; M. H. Liao & Drury, 2000; Pitman & Ntuen, 

1996; Waongenngarm et al., 2015). The decrease in performance, as a result of prolonged sitting 

and the environmental stressors associated with it, has been a subject of study. As fatigue and 

discomfort levels increase, workers may shift their attention from the task at hand to the mitigation 

of discomfort, especially when high levels of discomfort are reported (M. H. Liao & Drury, 2000; 

Pitman & Ntuen, 1996). Prolonged sitting time may also have a drastic effect in workers’ health. 

Several health issues have been reported due to improper sitting postures and prolonged sitting 

time with low levels of seating comfort. Musculoskeletal disorders in the back, neck, shoulders, 

arms and legs have been reported with Low Back Pain (LBP) being particularly common (Zemp 

et al., 2015, 2016). Lis et al. (2007) remarked that sitting by itself does not increase the likelihood 

of having LBP but rather the combination of awkward postures and sitting for more than half a 

workday. A comfortable and ergonomic-oriented working environment should be provided and 

aimed at promoting employees’ health and well-being. Additionally, when considering the task 

and users’ characteristics, matching a proper task chair with an ergonomics training program can 

be beneficial to worker’s comfort and productivity. Studies have documented improvements in 

productivity and overall efficiency of over nine percent when investing in appropriate and 

comfortable chairs (Miles, 2001; Peck, 1992).  

Researchers and chair manufacturers have constantly studied human-chair interactions 

across different conditions (Cascioli et al., 2016; Fenety et al., 2000; Makhsous et al., 2012; 
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Stinson et al., 2002). Many of these studies have used objective measures, such as measurements 

of postures, body movements, electromyography, foot volume change, magnet resonance imaging 

and motion tracking systems (Zemp et al., 2015); however, the use of pressure measuring systems 

has been predominant in seating research for being an easy and cost-effective solution to assess 

the pressure measurements of seat pans and backrests (Zemp et al., 2016). 

 

Pressure Mapping 

Pressure mapping is an evaluation tool for assessing pressure distributions. A pressure 

mapping system consists of a pressure interface, a data acquisition unit, and a computer software. 

Different technologies are currently available for pressure measurement systems, with their 

differences lying in the type of sensor used: capacitive, resistive, piezoelectric, or piezoresistive 

(Ashruf, 2005; Bloss, 2011). Even if sensor technologies are manufactured under different 

principles, the underlying concept is the same: to output an electrical signal proportional to the 

measured pressure (Ashruf, 2005). The sensors in the pressure interface can be arranged as a grid-

based mat, as single-point sensors, or designed for specific pressure solutions (see Fig. 1). The 

sensors’ output signals are sent to the data acquisition electronics for sampling and processing, and 

then sent to a computer (via wired or wireless connection) for collection and analysis using the 

proprietary software solution provided by the pressure mapping manufacturer. 

A pressure mapping system measures the uniaxial pressure loads applied to the sensors, 

and records them as the interface pressure between two surfaces. Pressure mapping systems do not 

measure shear or contour forces (Fenety et al., 2000; A. R. Kumar, 2007). The reliability and 

accuracy of pressure mapping systems have been questioned by researchers. A calibration 

procedure, where a uniform pressure is applied across the interface, has been recommended by 
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researchers before a pressure mapping system is used. This procedure minimizes sensors’ output 

variations and system errors, and it also mitigates problems of pressure drift, repeatability, linearity 

and hysteresis (Misiewicz et al., 2015). Researchers have also concluded that measures of pressure 

mapping systems are accurate, repeatable, and reliable (Misiewicz et al., 2015; Stinson et al., 2002, 

2003). 

 

  

Figure 1. Pressure mapping systems. Left: Mat (NexGen Ergonomics), Right: Glove (BodiTrak) 

 

 There is no defined protocol for using pressure mapping systems in seating research; 

however, many researchers agree that pressure measures should be collected after a set amount of 

sitting time to avoid pressure drift. Several studies have shown that pressure values from pressure 

mapping systems will increase over time for the first few minutes of sitting time (Crawford et al., 

2005; Stinson et al., 2002; Zemp et al., 2016). This increase in pressure has been partially attributed 

to a phenomenon known as pressure creep, where pressure values increase over time while the 

load on sensors remain constant (Stinson et al., 2002). Researchers recommend recording pressure 

maps after the first 2 to 8 minutes of sitting time, where values of pressure measures tend to 
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stabilize after that period (Crawford et al., 2005; Stinson et al., 2002). Grid-based interfaces, or 

pressure sensing mats, are generally used in seating research. Their main purpose is to assess the 

contact pressure between a chair and its user. Figure 2 shows an example of a subject’s seating 

pressure map obtained using a pressure sensing mat. This figure shows values of pressure 

represented using a colormap, with the center of pressure displayed as a black cell. 

 

 

Figure 2. Example of a subject’s pressure map (mmHg) during sitting 

 

Pressure sensing mats are commercially available in many sizes and resolutions. 

Researchers have used pressure sensing mats with sensors configured in a 15 x 15 array, a 16 x 16 

array, or a 32 x 32 array (Crawford et al., 2005; Fredericks et al., 2016; Stinson et al., 2002; Zemp 

et al., 2016). Measurements of pressure obtained from pressure sensing mats are generally given 

in units of millimeters of mercury (mmHg) and are generally outputted as stacked columns, with 
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each column representing a pressure map frame. The maximum sampling frequencies are a 

function of the number of sensing elements, the sensors’ technologies, and the data acquisition 

system’s capabilities. Sampling frequencies are generally set between 1 Hz and 10 Hz (Makhsous 

et al., 2012; Zemp et al., 2016). While more detail is provided when using high-resolution pressure 

mats (e.g., 32 x 32) and high-frequency data acquisition units (e.g., 10Hz sampling), it is important 

to note that this combination can easily produce large amounts of data in a short period of time. 

Grid-base pressure mapping interfaces such as pressure mats are also prone to interferences 

due to torque forces, shear forces, pinches, and/or creases; these can create false or unwanted 

pressure readings in non-contact regions of the pressure interface (see Fig. 3). The detection of 

these unwanted readings (i.e., extrinsic pressure artifacts) is essential before running any further 

analysis. Many of the pressure measures depicted in the next section are sensitive to these pressure 

artifacts, and the removal of these is of vital importance to obtain true and accurate results. 

 

 

Figure 3. Example of a subject’s pressure map frame with marked pressure artifacts 
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Seating Pressure Measures 

Researchers have used various seating pressure measures when assessing user-chair 

interactions during sitting (Butt et al., 2005; Fenety et al., 2000; Titus & Polgar, 2009; Zemp et al., 

2015, 2016). Table 1 shows a comprehensive list of pressure measures commonly used in seating 

research along with their definitions. 

Table 1. Seating pressure measures commonly used in seating research studies 

Seating pressure measure Definition 

Sum of pressure Total amount of pressure of all sensors 

Mean pressure Average of all non-zero sensor values 

Maximum pressure Highest individual sensor value 

Contact area Number of sensors with non-zero values 

Center of pressure 
Point of application of the resultant forces of 

all non-zero sensor values  

Coefficient of Variation 
Ratio of the standard deviation of pressure to 

the average pressure 

Pressure gradient 
Change in pressure per unit distance for each 

individual non-zero sensor value 

Maximum pressure gradient Highest pressure gradient 

Mean pressure gradient Average of pressure gradients 

IT* dispersion index 
Ratio of sum of pressure under ischial 

tuberosities in relation to sum of pressure 

*Ischial Tuberosities 

 

Pressure measures described in Table 1 were shown to be useful in describing human-chair 

interactions (Zemp et al., 2015). Most of these measures rely on basic measures of pressure map 

readings (e.g., average, maximum, and standard deviation), while others require expert knowledge 

to locate specific regions of interest (e.g., IT dispersion index). Unfortunately, many of these 

seating pressure measures have some limitations when describing the spatial relationship or 

pressure distribution patterns within a pressure map. Figure 4 shows examples of pressure maps 
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from two different subjects during sitting. This figure shows significant differences between 

respective pressure maps in terms of the shape, location, and pressure distribution patterns. 

However, when calculating commonly used pressure measures, such as sum of pressure, contact 

area, or coefficient of variations, there are no substantial differences between these measures (see 

Table 2). Due to information loss, one might incorrectly conclude that no significant differences 

are present between these pressure maps from the perspective of these objective measures. New 

pressure mapping measures are needed to detect these differences by recovering information loss. 

 

 

Figure 4. Example of subjects’ pressure map differences during sitting 

 

Table 2. Seating pressure measures for pressure maps shown in Figure 4 

Pressure measure 
Sample 117-1-958 

(Left) 

Sample 109-1-1141 

(Right) 

Relative 

Δ (%) 

Sum of pressure (mmHg) 10,246.31 10,237.17 -0.09 % 

Contact area 384 398 3.65 % 

Coefficient of Variation 0.71 0.72 1.41 % 
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Researchers have used the visual feedback provided by the pressure mapping systems’ 

software as a way to identify differences or similarities between pressure maps (Stinson et al., 

2003; Titus & Polgar, 2009). However, visual feedback assessment is not a practical approach 

when comparing numerous subjects’ pressure maps, or when assessment of continuous pressure 

maps is needed during dynamic sitting. The need for new seating pressure measures and 

comparative techniques for pressure maps have also been emphasized in current literature (Zemp 

et al., 2015, 2016). These new techniques should be cross-functional for applications in static (i.e., 

single map) and dynamic (i.e., sequential temporal maps) environments. 

The focus of this research is to study the applications of unsupervised machine learning 

techniques, spatial data analytics, digital image processing, and optimal image registration 

methods as additional analytical tools for pressure mapping analysis. The objectives are to (1) 

introduce new techniques for pre-processing pressure maps (data cleansing), (2) introduce new 

pressure measures, and (3) introduce a toolset for aligning and comparing pressure maps. New 

analytical tools are discussed and presented in the context of seating research, but extensions to 

other potential applications in research using non-seating pressure maps are briefly discussed in 

the conclusions.  

A literature review is presented in the next chapter where the use and practicality of current 

seating pressure measures are discussed. A review of current analytical techniques used in dynamic 

sitting research and methods for pressure map aggregation/comparison is also presented. Literature 

on the use of interdisciplinary tools and their application in the context of seating research is also 

examined. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Pressure Measures 

Researchers, along with chair manufacturers, have conducted sitting research using 

pressure mapping systems across different conditions (Crawford et al., 2005; Fenety et al., 2000; 

Fredericks et al., 2016; Makhsous et al., 2012; Stinson et al., 2002; Zemp et al., 2016). Zemp et al. 

(2015) examined the relationship between subjective comfort/discomfort and pressure 

measurements while sitting in office chairs. In their literature review, the authors identified several 

pressure measures used by researchers in their studies: sum of pressure, average pressure, peak 

pressure, contact area, and center of pressure. While some of these measures were suggested as 

suitable measures for assessing comfort/discomfort when sitting in office chairs, the authors 

emphasized the importance of using different parameters of pressure distribution, with applications 

in both static and dynamic environments, to further evaluate human-chair interactions.  

Zemp et al. (2016) also evaluated the relationships between specific pressure measures and 

their usefulness in differentiating pressure distributions between office chairs. The authors listed 

several pressure measures such as mean pressure, pressure standard deviation, contact area, 

mass/force, peak pressure and transverse pressure gradients as commonly used among researchers. 

Measures of peak and mean pressures were particularly highlighted as the only measures used for 

evaluating and identifying different among the different office chairs and seating positions. The 
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authors also emphasized the need for suitable pressure measurements and/or methodologies in 

order to compare office chairs or seating positions. 

In the study conducted by Zemp et al. (2016), another main objective was to understand 

the inter-relationships and correlation between pressure measures during sitting. To achieve this, 

the authors conducted a study using 20 subjects (15 males, 5 females), nine selected office chairs 

from six different manufacturers, and two pressure sensor mats placed on both the backrest and 

seat pan of each chair. The study task simulated the use of a visual display unit (VDU) in a 

workplace environment by requesting subjects to choose a sitting posture and place their fingers 

on a keyboard while fixing their eyes on the screen. After a one-minute sitting settling time, the 

authors obtained the average pressure readings collected during a 5-second time interval and 

proceeded to calculate various common measures of pressure distribution. 

Early in the study, Zemp et al. (2016) emphasized the need of new pressure measures; 

however, the authors calculated seating pressure measures commonly used in the literature: peak 

pressure, mean pressure, standard deviation of pressure, total contact area, and force. The authors 

also included measures of pressure gradient, and defined the gradient as the geometrical addition 

of the pressure derivate of the two sensor mat directions (𝑥, 𝑦) resulting in a 𝑚 − 1 ×  𝑛 − 1 

matrix (Zemp et al., 2016, p. 4). With the gradient matrix, the authors calculated measures of 

maximum gradient, mean gradient and standard deviation of the gradient. Partial correlation 

analysis was used as a dimension reduction technique to isolate possible meaningful pressure 

measures for evaluating office chairs. The authors found that four measures (contact area, force, 

maximum gradient, and mean gradient) could describe pressure distributions on the seat pan, and 

three measures were needed for the backrest (standard deviation of pressure, force, and standard 

deviation of gradient).  
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As one of the key objectives in the study was to evaluate the effectiveness of the pressure 

measures in comparing pressure distributions between office chairs, the use of the reduced set of 

measures – found during partial correlation analyses – to measure their effectiveness in comparing 

pressure distribution among different office chairs would have been insightful. However, the 

authors decided to use the entire set of calculated pressure measures during their analysis. Results 

from the study indicated that office chair differences were meaningful when evaluating the seat 

pan measures of max gradient, mean gradient, and standard deviation of gradient. The study also 

found that all measures, with the exception of contact area, were meaningful in finding differences 

between the backrests of the office chairs during a reclined position – when subjects where in full 

contact with the backrest. Zemp et al. (2016) acknowledged that differences in seat pan and 

backrest pressure measures among office chairs can be caused by many unknown factors, and that 

studied pressure measures were also limited to static evaluations of pressure distributions within 

their research work.  

 

Dynamic Sitting 

Research has also shown that sitting is a dynamic activity (Fenety, 1995; Fleischer et al., 

1987). Seated subjects move continuously and more often according to tasks demands (Fenety et 

al., 2000). Dynamic sitting is considered a natural behavior for prolonged sitting subjects. It is 

common for subjects to constantly move to: (1) avoid undesirable static work postures, (2) reduce 

the discomfort from static loadings, and/or (3) increase the blood flow in weight bearing regions 

of the buttocks (Butt et al., 2005; Winkel, 1986). The use of dynamic sitting pressure measures, 

for analysis in continuous sitting applications, could be useful in understanding subjects’ sitting 

behavior and user-chair dynamic interactions. 
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Bhatnager et al. (1985) and Fenety et al. (2000) have studied, to some extent, the 

relationship between discomfort and movement; both suggesting that sitting discomfort and seated 

movements are time dependent, where movements increase over time possibly due to discomfort. 

Others researchers have successfully incorporated continuous pressure measures, such as center of 

pressure, during in-chair-movement in their studies (Cascioli et al., 2016; Fenety et al., 2000). 

Unfortunately, relying solely on tracking and monitoring of the movement of the center of pressure 

does not provide clear insights about pressure distribution patterns during dynamic sitting (e.g., 

positional shifts, dynamic pressure redistributions, and/or postural changes). 

Fujimaki & Mitsuya (2002) proposed the use of neural networks as an evaluation method 

for dynamic body pressure distributions. The authors found that it was possible to evaluate 

dynamic pressure mapping data by measuring the changes in ignited neurons over time. These 

neurons were then used as input for a clustering algorithm to identify pressure patterns related to 

discomfort. A drawback of tracking changes in neurons is that neural networks are created in a 

subject-by-subject basis and cannot be used as a generalizable measure of dynamic pressure 

redistributions.  

 

Pressure Maps Aggregation 

Standardizing and aggregating pressure maps have also been discussed in the literature. 

Interfaces in pressure mapping systems are usually configured for high sensitivity, making them 

capable of recording minor variations of pressure during a testing period. Some pressure mapping 

systems include data acquisition units that are also capable of recording many readings over a short 

period of time when using high frequency sampling. Nevertheless, results from pressure mapping 

analyses are often based on few pressure map readings collected in a short period of time. Some 
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researchers have used a single pressure map frame for their analyses, while others have used the 

average of pressure maps collected in less than a five seconds period – a technique commonly used 

for aggregating pressure maps (Butt et al., 2005; Zemp et al., 2016).  

Since pressure mapping systems record raw pressure, direct comparison between subjects’ 

pressure maps is often not appropriate due to differences in subjects’ anthropometry. Butt et al. 

(2005) proposed a methodology for aggregating multiple pressure map readings into a 

standardized composite pressure map. The methodology described in the study use averages of 

multiple pressure maps frames, from an individual’s recording session, to create an aggregate map. 

The aggregate maps were then normalized using the maximum pressure value recorded in the map. 

The resulting aggregate pressure maps are unitless and used to compare pressure maps between 

subjects. This aggregation method could also be useful when comparing within-subject pressure 

maps (e.g., different time intervals, different chairs used, or a pre- and post- clinical intervention). 

A composite pressure map method was also proposed by the authors where the unitless pressure 

maps were combined using unweighted averages. 

 

Image Processing 

Tan et al. (2001) speculated that pattern recognition algorithms developed for computer 

vision could be applied for interpreting sitting postures from the analysis of pressure distribution 

data. The authors introduced pattern recognition techniques using principal components analysis 

on grayscale images of pressure maps. Techniques such as these have been previously applied to 

the problem of computer face recognition (Pentland et al., 1994; Turk & Pentland, 1991). Tan et 

al. (2001) described that one of the disadvantages of using principal component analysis, in the 
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context of seating pressure distributions, is the lack of physical interpretations associated with 

eigen-posture spaces (p. 267). 

Techniques from computer vision and image registration fields have been extensively 

applied to medical imaging (Kurani et al., 2004; Oliveira & Tavares, 2014; Tang & Chen, 2012); 

these techniques are primarily used to find matching alignments of medical images (Fig. 5). 

Alignment of medical images is required when working with different imaging sources (e.g., 

tomography, magnetic resonance imaging, and positron emission tomography) or when working 

with spatiotemporal image sequences. Image processing techniques are also used to measure the 

similarity relationship between sets of images, extract global image descriptors, and/or apply 

image transformation functions (Goshtasby, 2012). 

 

 

Figure 5. Magnetic resonance scan (left), Scanned brain tissue section (right) 

 Source: Left (Januschka, 2006) CC BY-SA 3.0, Right (Dilmen, 2005) CC BY-SA 3.0. 

 

Bogie et al. (2008) introduced a multistage Longitudinal Analysis and Self-Registration 

(LASR) technique that emphasizes in real-time within-subject seating pressure image analysis. 

Unfortunately, the LASR algorithm requires certain conditions to be met for it to be implemented 

successfully. The algorithm assumes that the imaging scale is constant over time and that a 
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symmetric pressure map is present. Pressure map symmetry is particularly important as the 

algorithm uses the midline of the pressure map image as a registration landmark. Other 

requirements include a replication of the seating position between evaluations, and collecting 

pressure maps with easily-identified pressure landmarks. Even with proper conditions in place, 

authors could see misalignments between pressure map images after applying the LASR algorithm.  

While the benefits of introducing image processing techniques in the analysis of pressure 

mapping are evident, no other additional studies have been found to date where extensive use of 

image processing techniques are used for evaluating sitting pressure maps. 

 

Spatial Data Analytics 

The evolution of Geographic Information Systems (GIS) has been possible thanks to 

advancements and developments in the field of spatial data analytics (Goodchild & Haining, 2003). 

Spatial data analysis is dynamically integrated with GIS to allow the manipulation of raw 

geographical, topological, and geometric information to analyze possible spatial relationships 

(Anselin, 1992). Many geographically-based studies require use of spatial analytics to find such 

relationships, with many implementing spatial dependency or autocorrelation measures in their 

studies (Banerjee, 2016; Menafoglio & Secchi, 2017; Reibel, 2007).  

Applications and techniques used in spatial data analytics can be extended for evaluating 

and analyzing the spatial relationships in pressure maps. Grid-base pressure interfaces (i.e., 

pressure mats) measure and record pressure readings in a two-dimensional space. The resulting 

pressure maps can then be rendered as three-dimensional (3D) topographic surfaces by using the 

measured values of pressure on the z-axis (see Fig. 6). To date, no studies have been found where 

spatial data analytics have been introduced for evaluating pressure maps.  
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Implementing spatial data analytics in pressure mapping analysis, while manipulating 

pressure maps as geographical and/or topographical surfaces, could help in identifying spatial 

relationships or space features descriptors. In particular, the use of spatial clustering can be a viable 

pre-processing technique for cleaning extrinsic pressure artifacts and outliers in raw pressure maps. 

To date, no studies were found where spatial outlier detection techniques are used in pressure 

mapping applications. 

 

 

Figure 6. Example of a 3D surface representation of a subject’s pressure map frame 
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CHAPTER III 

 

RATIONALE AND OBJECTIVES 

 

Problem Statement 

Researchers have relied on pressure mapping systems to study human-chair-comfort 

interactions under various sitting conditions (Cascioli et al., 2016; Crawford et al., 2005; Fenety, 

1995; Fenety et al., 2000; Fredericks et al., 2016; Higer & James, 2016; Stinson et al., 2003; Zemp 

et al., 2016). These systems collect pressure maps readings and analyze pressure measures such as 

sum of pressure, average pressure, peak pressure, contact area, coefficient of variation, and center 

of pressure. While some pressure measures have been considered suitable for assessing human-

chair interactions and their relations to seating comfort/discomfort, researchers have emphasized 

the importance of using different measures of pressure distribution to further understand these 

interactions (Zemp et al., 2015). 

Many of the analytical tools used in sitting research rely on simplified measures of 

pressure, such as calculating basic descriptive measures of pressure (see Table 1) or tracking of 

the center of pressure during dynamic sitting. These measures do not provide clear insights about 

spatial relationships (e.g., pressure correlation, location, and orientation) or pressure distribution 

patterns (e.g., pressure continuity, localized gradients, and homogeneity) in static or dynamic 

pressure maps. Furthermore, there are very few studies examining comparative techniques for 

seating research using pressure mapping technology; these techniques are important for the 

analysis and comparison of within-subject or between-subjects pressure maps.  
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Butt et al. (2005) proposed aggregation and normalization methods for comparing pressure 

maps, however, the described methods required pressure maps to be invariant to a maps’ position 

and orientation. One important factor that needs to be considered when comparing or measuring 

similarities between pressure maps is scaling. Differences in subjects’ anthropometry not only 

affect the magnitude of pressure readings, but the size and shape of the pressure maps is also 

affected by anthropometric differences. While scaling algorithms can be implemented for 

comparing pressure maps, it is not appropriate for research involving human subjects (e.g., seating 

research). Scaling algorithms will distort subject’s anthropometry and cover dissimilarities due to 

true differences in size between subjects. 

The need for new analytical tools for pressure mapping is clear. The following is a list 

summarizing some of the drawbacks of currently used pressure mapping measures and 

comparative techniques in the context of seating research. 

(1) Common pressure measures, such as sum of pressure, contact area, and coefficient of 

variation, lack information in regard to spatial relationships, pressure distribution patterns, 

localized gradients, or homogeneity within pressure levels.  

(2) Current dynamic measures, including center of pressure, do not provide clear insights about 

changes in pressure distribution patterns during positional shifts and/or postural changes. 

(3) The use of visual feedback assessment is not a practical approach for comparing pressure 

maps. Current quantitative comparative techniques expect pressure maps to be in a similar 

location and orientation, while other require certain conditions such as pressure maps 

symmetry and identifiable pressure landmarks to be met (e.g., LARS). Additionally, these 

quantitative techniques mostly rely on calculating individual differences between pressure 

readings; there is a need for global comparative measures with undemanding assessment. 
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Research Objective 

To address many of the drawbacks of current pressure mapping analysis, this study sought 

to evaluate new potential pressure measures and new methodologies for comparing pressure maps 

by using interdisciplinary tools from image processing and spatial data analytics. In a specific 

manner, the objectives of this study were to:  

(1) introduce methods for detecting and removing extrinsic pressure artifacts (i.e., pressure 

reading outliers) by implementing unsupervised machine learning and spatial data 

clustering as a pre-preprocessing data cleansing technique; 

(2) introduce new pressure measures, for both static and dynamic settings, by evaluating 

measures in spatial data analytics, digital image processing, and use of statistical features 

of images as new pressure measures; and 

(3) introduce a toolset for aligning and comparing static and dynamic pressure maps by using 

optimal image registration methods and similarity/dissimilarity coefficients. 

Proposed pressure measures and analytical tools are discussed and presented in this study 

in the context of seating research, but extensions to other potential applications in research using 

non-seating pressure maps are briefly discussed in the conclusions.  

 

Study Significance 

Findings from this study are aimed to providing researchers additional analytical tools for 

a better understanding of user-chair interactions, in both static and dynamic sitting environments, 

and to help further evaluate sitting comfort/discomfort. Concurrent validation of potential pressure 

measures is investigated by studying their relationship to commonly used pressure measures, with 

possible use and interpretations in the context of human-chair interactions.
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CHAPTER IV 

 

METHODS AND PROCEDURES 

 

To evaluate potential techniques for pre-processing, measuring, and comparing pressure 

maps, a previously collected dataset containing a number of seating pressure maps is used in this 

study. Information about the participants, apparatus, and data collection procedures used for 

creating this dataset is discussed early in this chapter.  

 This chapter also introduces the spatial data analytics and image processing techniques 

that were evaluated as new methodologies for pressure mapping analysis. Presented techniques 

will be grouped according to their discipline and purpose as per the following categories: (1) spatial 

clustering, (2) spatial autocorrelation, (3) image statistical features, and (4) image registration and 

similarity/dissimilarity coefficients. In alignment with these categories, this study is divided in the 

following four research steps:  

(1) Evaluate the use of density-based spatial clustering techniques as pre-processing 

techniques for detecting and removing extrinsic pressure artifacts (i.e., outliers) within 

seating pressure maps. 

(2) Evaluate the use of spatial autocorrelation measures as new pressure measures for static 

and dynamic seating pressure map applications.  

(3) Evaluate the use of first-order and second-order image statistical features as new pressure 

measures for static and dynamic seating pressure map applications.  
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(4) Evaluate the application of image registration techniques as a pre-processing technique for 

aligning and matching pressure maps, and the subsequent use of similarity and dissimilarity 

coefficients as global comparative measures between registered pressure map images. 

Thorough descriptions of the techniques and methodologies used in this study are presented 

in this chapter Details about data sampling strategies, testing procedures, and research outcomes 

are also presented for each research step. A case study is also used to demonstrate the use and 

application of selected techniques and methodologies under a dynamic sitting environment.  

 

Dataset 

As explained earlier in this chapter, the dataset used in this study was collected previously, 

and it was used in studies where results from an applied-research perspective were reported 

(Hammond et al., 2018; Martinez et al., 2018). This dataset was originally collected to evaluate 

human-chair interactions under user-defined seat pan contours. These studies were approved by 

Human Subjects Institutional Review Board at Western Michigan University (see Appendix A). 

This research uses the information of the pressure maps included in the dataset as a testing 

and validation platform for the various techniques presented in this chapter. A brief description of 

the participants, testing apparatus, and collection protocol used to create the dataset is described 

in the following subsections. 

Participants 

Continuous pressure maps collected from 82 volunteers (35 males/47 females) are included 

in the dataset. Participants were recruited through word-of-mouth and classroom announcements 

among the WMU community. All participants indicated no pre-existing musculoskeletal disorders. 

Descriptive statistics of selected anthropometric measurements are presented in Table 3. 



23 

 

  

Table 3. Selected anthropometric measurements for 82 participants 

Variable Mean SD Min Max 

Age (years) 23.33 6.03 18.00 58.00 

Height (mm) 1689.03 77.00 1552.00 1874.00 

Mass (kg) 67.05 12.50 44.00 105.69 

BMI (kg/m2) 23.46 3.88 17.08 35.24 

Hip Breadth (mm) 365.38 66.80 210.00 495.00 

Buttock-Popliteal Length (Right) (mm) 486.60 32.42 410.00 600.00 

 

Apparatus 

Participants used a custom test chair able to accommodate 95th percentile users with no 

armrests, a mesh backrest, and an adjustable seat pan. The adjustable seat pan used 49 electric 

linear actuators placed beneath a 1” PORON® padding foam in a 7 x 7 grid configuration. Each 

actuator provided a vertical stroke of 6 inches, with a swiveling plate attachment of 2.5 inches in 

diameter set at the clevis end for contouring purposes. By using these adjustable actuators, subjects 

created various contours and shapes in the seat pan. The pressure maps included in the dataset 

were recorded under the various user-defined seat pan contours given the adjustability of the 

actuators. This is particularly valuable to this study as new methodologies and potential pressure 

measures must be valid and reliable under various sitting contours (i.e., different chairs). 

Interface contact pressure was measured using a pressure mapping interface attached on 

top of the chair’s padding foam (FSA Industrial Seat and Back Systems, Verg Inc., USA). The 

pressure interface mat consisted of 1024 (32 × 32) rectangular pressure elements (sensors), each 

15 mm x 15 mm in size, with a maximum pressure response of 300 mmHg. The distance between 

each sensor was approximately 19.37 mm in the horizontal (lateral) direction and 16.56 mm in the 

vertical (anterior-posterior) direction. The sampling frequency was set at an approximate rate of 5 

Hz.  
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Data Collection Procedure 

This dataset contains continuous pressure mapping data for each participant recorded in 

three different sessions. A session, lasting up to 2 hours, consisted of activities where subjects 

performed simulated office-related tasks (typing and mousing) using a desktop computer. At the 

start of each session, participants were randomly exposed to a pre-defined starting pattern and were 

allowed to change the height of the actuators after each interval (5 minutes). Participants made the 

necessary changes to the seat pan according to their levels of comfort/discomfort.  

 

Spatial Clustering  

The first application of spatial data analytics is integrating unsupervised spatial clustering 

algorithms for the analysis and evaluation of pressure maps. Numerous unsupervised clustering 

algorithms have been developed over time (Amini et al., 2014; N. Kumar & Sivasathya, 2014; Xu 

et al., 1997). The goal of clustering techniques is to group data streams into meaningful classes or 

groups. Unsupervised clustering algorithms can discover and cluster data without prior knowledge 

(training) of the number of clusters or types of groups. Among unsupervised clustering algorithms, 

density-based clustering algorithms have favorable characteristics due to their ability to identify 

arbitrary shapes and detection of outliers (Amini et al., 2014). 

Application of density-based clustering algorithms can result in potential pre-processing 

techniques for the detection and removal of unwanted pressure readings that are caused by extrinsic 

pressure artifacts such as torque forces, shear forces, pinches, and/or creases in the pressure 

mapping interface. These pressure artifacts are considered “outliers” for the purpose of this study. 

Five potential pressure mapping outlier detection techniques are evaluated in this study based on 

the following unsupervised density-based clustering algorithms: 
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• DBSCAN (Ester et al., 1996):  

o Clustering according to density-based connectivity analysis 

• OPTICS (Ankerst et al., 1999):  

o Extension of DBSCAN with a wider range of parameter settings 

• DBCLASD (Xiaowei Xu et al., 1998):  

o Clustering based on probability distribution of neighbor’s distances 

• DENCLUE (Hinneburg & Keim, 1998):  

o Clustering based on sets of density distribution functions 

• HDBSCAN (Campello et al., 2015):  

o Clustering according to variations of local densities 

Table 4 shows the list of parameters used for each density-based clustering algorithms 

being studied. As choosing correct combinations of parameters settings is crucial for the 

performance of any clustering method, appropriate ranges and/or combinations of parameter 

settings are also studied for each clustering method. The purpose of this step is to choose a density-

based clustering algorithm where the correct identification of extrinsic pressure artifacts and true 

contact pressure readings is maximized; in other words, increase the outlier and non-outlier 

detection accuracies. 

Table 4. Parameters of Spatial Clustering Methods 

Method Parameters 

DBSCAN Epsilon Minimum samples     

OPTICS Xi Minimum samples Minimum Size Epsilon 

HDBSCAN Minimum Size Minimum samples Leaf Size  
DENCLUE Epsilon Minimum density     

DBCLASD Nearest Neighbors     
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The following list shows a brief description of each parameter shown in Table 4: 

▪ Epsilon:   The maximum convergence threshold parameter (e.g. distance) 

between two samples for one to be considered as in the 

neighborhood of the other.  

▪ Minimum samples: The number of samples in a neighborhood for a point to be  

considered as a core point. 

▪ Xi:    Determines the minimum steepness on the reachability plot that  

constitutes a cluster boundary.  

▪ Minimum size:   Minimum number of samples in a cluster. 

▪ Leaf size:  The number of points in a leaf node of the tree. 

▪ Minimum density: The minimum kernel density required for a cluster attractor to be  

considered a cluster and not noise. 

▪ Nearest neighbors:  Number of K-neighbors to find from a given point. 

 

Clustering methods are primarily evaluated in their ability to correctly identify outlying 

and non-outlying pressure readings from a selection of pressure maps included in the dataset with 

known outlier readings. The computational demands of these algorithms are also examined when 

evaluating a single pressure map (i.e., static clustering) and continuous pressure maps (i.e., 

dynamic clustering).  

 

Data Sampling  

To evaluate the outlier-detection accuracies of these clustering methods, a subset of the 

dataset consisting of twenty-eight samples (28) of pressure maps with known pre-identified 

outliers and twenty-eight samples (28) of pressure maps without outliers is used (named cluster 

data subset). Selected samples of pressure maps with and without outliers are shown in Appendix 

F and Appendix G respectively. The selection criteria for these pressure map samples were based 

on the different levels of contact area (i.e., number of contact cells). Additionally, pressure map 
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samples were obtained from different subjects to measure accuracies of clustering methods when 

considering pressure maps of different sizes and shapes.  

Two variations of the cluster data subset are used as input for the clustering methods: (1) a 

subset with only the information of the locations of pressure readings (referred to as “location input 

data”), and (2) a subset with information about the locations and standardized pressure data of the 

pressure readings (referred to as “location-pressure input data”). All clustering algorithms are 

instructed to only consider non-zero pressure cells during computation.  

A case study is also conducted where selected clustering methodologies are evaluated in a 

dynamic environment by using a 5-minute sitting interval sample that includes a number of 

sequential spatio-temporal pressure images from one of the subjects in the dataset (named dynamic 

data subset).  

Testing Procedures 

Using the cluster data subset with location input data, different combinations of parameter 

settings are tested for each clustering method with the goal of achieving the best outliers/non-

outliers detection performance (parameter settings are shown in Table 9, Chapter 5). Each 

clustering method is evaluated based on their accuracies score (percent [%] of correctly classified 

outliers and percent [%] of correctly classified non-outliers). In a similar fashion, different 

combinations of parameter settings are tested for each clustering method when using the location-

pressure input data (see Table 9, Chapter 5). The objective is the identify cluster methods that can 

select naturally occurring pressure clusters from subjects’ pressure maps. Validation of the 

performance of these clustering methods was also made via visual feedback. 

The first section in the case study includes an evaluation of the applications of selected 

clustering methods to pre-process continuous seating pressure maps (i.e., detection and removal 
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of outliers) while examining overall accuracies and computational demands. This pre-processed 

dynamic data subset is used for subsequent case study analyses. 

 Algorithms for clustering methods were coded and implemented using the Python 

programming language. A condensed form of the Python script used for running clustering 

algorithms and data visualization routines can be seen in Appendix C.  

Outcomes 

The following outcomes were pursued for this step: (1) Recommendations of clustering 

methods and suggested parameters settings, given cluster performance accuracies, for identifying 

outliers and non-outliers pressure readings in the context of sitting pressure maps, and (2) to 

examine the computational demands of using recommended algorithms for detecting outliers/non-

outliers pressure readings. 

 

Spatial Autocorrelation 

The second application of spatial data analytics is integrating spatial autocorrelation 

measures for the analysis and evaluation of pressure maps. While many statistical approaches often 

assume that measured outcomes are independent of each other, measures of a spatial nature often 

exhibit some degree of spatial autocorrelation (UCLA: Statistical Consulting Group, 2020). Spatial 

autocorrelation measures the relationship of variable outcomes as related to their distance; more 

specifically, it measures the correlation between variable values that is strictly due to their 

proximity in a geographical space (Kalogirou, 2019).  

In seating pressure maps, measures of pressure at different locations are generally not 

independent. The pressure readings in a seating pressure map are generally spatially related as the 

pressure measures at neighboring locations are usually similar to one another. For example, 
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measurements in proximity to a prominent bony region, such as an ischial tuberosity, are closer in 

their pressure values than measurements made at other distant locations in the pressure map. The 

degree of the similarity among proximate pressure readings can be measured using spatial 

autocorrelation measures. 

One important aspect when calculating spatial autocorrelation is defining the relationship 

between locations, which is generally based on the proximities and distances between them. A 

weight matrix 𝑤𝑖𝑗 is generally constructed to define the distance relationship between locations. 

This weight matrix, often row-standardized (i.e., sum of row weights is one), can be specified in 

many ways, but values in the weight matrix are generally up to the researcher’s decision. 

Gunaratna et al. (2005) presented examples of the approaches used by researchers to calculating 

and specifying the spatial weight matrix; these are presented as follows: 

• The weight for any two different locations is constant 

• A constant weight for observations within a specified distance 

• K nearest neighbors have a fixed weight, all others are zero 

• Weight is proportional to the inverse distance (absolute, squared, or truncated) 

Based on these examples, this study used three variations of contiguity-based weight 

matrices to evaluate the sensitivities of spatial autocorrelation measures to extreme values and/or 

variances in small neighborhoods. The weight matrices used in this study are described below with 

a graphical representation of the weight values shown in Figure 7. 

1. Constant weight for the eight nearest observations (Queen) 

2. Constant weight for observations within a 2√2 cell distance (Constant Distance) 

3. Weight is inversely proportional within a 2√2 cell distance (Inverse Distance) 
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(a) Queen              (b) Constant Distance   (c) Inverse Distance  

Figure 7. Contiguity-based weight matrices for spatial autocorrelation measures 

 

This study evaluated the selected weighting approaches using two different measures of 

spatial autocorrelation: 𝑀𝑜𝑟𝑎𝑛’𝑠 𝐼 (Moran, 1950) and 𝐺𝑒𝑎𝑟𝑦′𝑠 𝐶 (Geary, 1954). Given a weight 

matrix 𝑤𝑖𝑗 and a two-dimensional matrix 𝑋 with 𝑛 elements, the mathematical definitions of the 

spatial autocorrelation measures used in this study are as follow: 

Eq. 1 - Moran’s I 

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̄)(𝑥𝑗 − 𝑥̄)𝑗𝑖

∑ (𝑥𝑖 − 𝑥̄)2
𝑖

   ;   𝑤ℎ𝑒𝑟𝑒   𝑆𝑜 = ∑ ∑ 𝑤𝑖𝑗
𝑗𝑖

 

Eq. 2 - Geary’s C 

𝐶 =
𝑛 − 1

2𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2
𝑗𝑖

∑ (𝑥𝑖 − 𝑥̄)2
𝑖

   ;   𝑤ℎ𝑒𝑟𝑒   𝑆𝑜 = ∑ ∑ 𝑤𝑖𝑗
𝑗𝑖

 

 

The main objective in this step is to evaluate measures of spatial autocorrelation – such as 

Moran’s I and Geary’s C – to be used as global pressure map descriptors in a static (single pressure 

maps) and dynamic (continuous pressure maps) environments. In the context of seating pressure 

mapping, measures of spatial correlation could help measure the presence of localized high/low 
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pressure clusters (i.e., hot spots), measure pressure readings interconnectedness, and/or surface 

map smoothness and continuity. 

Data Sampling 

To evaluate the application of spatial autocorrelation measures as global pressure map 

descriptors, a subset of the dataset consisting of twenty samples (20) of pressure maps from 

different subjects was used (named static data subset). To gain a better insight about the uniqueness 

and usefulness of spatial autocorrelation measures, selecting pressure maps exhibiting different 

levels of pressure variability was desired. Out the currently used pressure measures, the coefficient 

of variation is a good indicator of pressure variances within a pressure map; for this reason, the 

selection criteria used for obtaining the pressure map samples was based on various levels of 

coefficient of variation. Selected samples are shown in Appendix H. 

Testing Procedures 

For each pressure map sample included in the static data subset, measures of Moran’s I and 

Geary’s C were calculated using all three different weight matrices. To evaluate their statistical 

association, correlation analyses – using the Pearson product-moment correlation – were 

completed for all six variations of spatial autocorrelation measures, and also between some of the 

known pressure measures (Table 1). When strong correlations (𝑅2 ≥ 0.8) appeared during the 

correlation analysis, regression models were conducted with emphasis in finding unusual 

observations (i.e., points with large leverage values or extreme standardized residuals). If a 

pressure map was marked as an unusual observation, a comparative visual feedback was used 

between the pressure map and a chosen reference pressure map with a similar predictor value. The 

objective was to identify possible differences – as global pressure map descriptors – between the 

highly correlated measures. Differences in terms of each measures’ ability to detect presence of 
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localized high/low pressure clusters, surface map smoothness, and pressure level contiguity were 

considered. 

A section of the case study also includes an evaluation of spatial autocorrelation measures 

under a dynamic environment (i.e., dynamic sitting). The (pre-processed) dynamic data subset 

(after removing outliers with spatial clustering techniques) will be used to assess the practicality 

of using spatial autocorrelation as dynamic pressure measures. Using time series plots, emphasis 

is given in evaluating sequential indexes where considerable changes in measures of spatial 

autocorrelation occur. Comparative visual feedback of selected sequences of pressure maps is used 

to confirm detected in-chair-movements. 

Algorithms for calculating spatial autocorrelation measures were coded and implemented 

using the Python programming language. A condensed form of the Python script used for 

calculating commonly known pressure measures, spatial autocorrelation measures, and data 

visualization routines can be seen in Appendix D. The python script also contains correlation 

algorithms used to generate correlograms based on the Pearson product-moment correlation. The 

correlograms are created applying hierarchical clustering techniques and were used to visually 

identify clusters of correlated and non-correlated measures. 

Outcomes 

The following outcomes were pursued for this step: (1) Recommendations for selecting a 

weight matrix for calculating spatial autocorrelation measures in the context of seating pressure 

maps, (2) use and interpretation of spatial autocorrelation measures in the context of human-

seating interaction, and (3) to examine the computational demands of using various combinations 

of weight matrices and spatial autocorrelation measures. 
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Image Statistical Features 

Pressure mapping systems measure and collect information about contact pressure between 

a subject (or object) and a pressure interface, either using a single grid-based flexible mat or 

individual sensor pads. Collected data from such systems are recorded in common manometric 

units such as pound per square inch (PSI) or millimeters of mercury (mmHg). Using re-scaling 

techniques, contact pressure measures can be transformed into picture elements (pixels) with 

intensities ranging from 0 (black) to 255 (white) (Tan et al., 2001). Unfortunately, a consequence 

of this re-scaling technique is information loss. For pressure maps included in the dataset, range 

of possible pressure values will be reduced from 0 - 300 mmHg to 0 - 255 pixel intensities. To 

avoid information loss, this study modified image processing algorithms to accommodate discrete 

value ranges from 0 - 300 pixel intensities (see Appendix D).  

After transforming pressure readings into pixels, the location of the sensors in the pressure 

interface are used to project these pixels into a scaled two-dimensional space. This results in a 

grayscale-image representation of the pressure map in raster graphics. This transformation ensures 

that the resolution of the resulting images matches the resolution of the pressure interface (i.e., 32 

x 32). Obtaining these low-resolution images was favorable to this study given their low 

computational demand requirements. Image processing techniques, such as image statistical 

features, are now able to be applied to resulting grayscale images of the dataset’ pressure maps. 

 Statistical features of images were evaluated as potential global descriptors of pressure 

maps, with the objective of supplementing pressure measures commonly used in seating research 

(Table 1). The first- and second-order statistics of image intensities (i.e., pressure readings) 

characterize the statistical properties of an image. First-order statistics are based on the 

probabilities that pixels will have particular intensities in an image, while second-order statistics 
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consider the probabilities that pixel pairs – in predefined positions with respect to each other – will 

have particular intensities in an image (Goshtasby, 2012). 

First-Order Statistical Features. The probability distribution of intensities in an image 

needs to be defined first to be able to calculate first-order statistical features. Letting 𝐻(𝑖) denote 

the number of pixels with discrete intensity 𝑖, and 𝑆 the total number of pixels in an image, then 

Eq. 3 - Intensities probability distribution 

 
𝑝(𝑖) =

𝐻(𝑖)

𝑆
   ;        𝑖 = 0, … , 300 (max 𝑐𝑒𝑙𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)  

First-order statistical features, such as peak pressure, average pressure (𝜇), and pressure 

variation (𝜎), are already being used in seating research (see Table 1), but other unique features 

used to characterize images can also be calculated from the probability distributions shown in 

Equation 3. The skewness (see Eq. 4) is a statistical feature that measures the asymmetry of pixel 

intensities, while the kurtosis (see Eq. 5) is a statistical feature that measures the degree of 

similarity of the pixel intensity distribution to a normal distribution.  

 

Eq. 4 - Skewness 

 

𝛾 =
1

𝜎3
∑(𝑖 − 𝜇)3 𝑝(𝑖)

255

𝑖=0

  

Eq. 5 - Kurtosis 

 

𝜅 =
1

𝜎4
∑(𝑖 − 𝜇)4 𝑝(𝑖) − 3

255

𝑖=0
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Other first-order statistical features that could be helpful in describing properties of 

pressure map images are the ones based on Gray-Level Differences (GLD) of adjacent pixels. 

Intensity variations from adjacent pixels can be obtained from calculating gray-level differences 

in different directions (Goshtasby, 2012). If 𝐻(𝑔|𝜃) denotes the number of adjacent pixels in 

direction 𝜃 that have an absolute intensity 𝑔 = |𝑖1 − 𝑖2|, and ℎ(𝑔|𝜃) = 𝐻(𝑔|𝜃)/ ∑ 𝐻(𝑔|𝜃)𝑔  is the 

probability that adjacent pixels have absolute intensity difference 𝑔 when scanned in direction 

𝜃 (0°, 45°, 90° 𝑜𝑟 135°), the following statistical features can be calculated: 

Eq. 6 - Gradient contrast 

 𝐺𝐿𝐷1(𝜃) = ∑ 𝑔2ℎ(𝑔|𝜃)

𝑔

  

Eq. 7 - Gradient second moment 

 𝐺𝐿𝐷2(𝜃) = ∑[ℎ(𝑔|𝜃)]2

𝑔

  

Eq. 8 - Gradient entropy 

 𝐺𝐿𝐷3(𝜃) = − ∑ ℎ(𝑔|𝜃) log ℎ(𝑔|𝜃)

𝑔

  

Eq. 9 - Gradient mean 

 𝐺𝐿𝐷4(𝜃) = ∑ ℎ(𝑔|𝜃)𝑔

𝑔

  

Eq. 10 - Inverse-difference moment 

 
𝐺𝐿𝐷5(𝜃) = ∑

ℎ(𝑔|𝜃)

(𝑔2 + 1)
𝑔
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Second-Order Statistical Features. To determine second-order statistical features, a 

Gray-Level Spatial-Dependence (GLSD) or co-occurrence matrix (GLCM) (ℎ(𝑖1, 𝑖2|𝜃)) is created 

with entries (𝑖1,  𝑖2) showing the number of adjacent pixels at direction 𝜃 with intensity 𝑖1 and 𝑖2 in 

the first and second pixel respectively. Since ℎ(𝑖1, 𝑖2|𝜃 + 𝜋) = ℎ(𝑖2, 𝑖1|𝜃), and the co-occurrence 

matrix for 𝜃 and 𝜃 + 𝜋 contain the same information, a co-occurrence matrix for direction 𝜃 

(0°, 45°, 90° 𝑜𝑟 135°) can be calculated as the sum of ℎ(𝑖1, 𝑖2|𝜃) and its transpose ℎ(𝑖2, 𝑖1|𝜃) 

(Goshtasby, 2012). Letting 𝑀 be the number of columns in an image and 𝑁 be the number of rows 

in an image, the Joint Conditional Probability Density (JCPD) can be obtained as follow: 

Eq. 11 - GLSD joint conditional probability density 

 
𝑝(𝑖1, 𝑖2|𝜃) =  

ℎ(𝑖1, 𝑖2|𝜃) + ℎ(𝑖2, 𝑖1|𝜃)

(𝑀 − 1)𝑁
  

The following features can be calculated using the JCPD of the co-occurrence matrix: 

Eq. 12 - Energy 

 𝐺𝐿𝑆𝐷1(𝜃) = ∑ ∑[𝑝(𝑖1, 𝑖2|𝜃)]2

𝑖2𝑖1

  

Eq. 13 - Contrast 

 𝐺𝐿𝑆𝐷2(𝜃) = ∑ ∑(𝑖1 − 𝑖2)2𝑝(𝑖1, 𝑖2|𝜃)

𝑖2𝑖1

  

Eq. 14 - Correlation 

 
𝐺𝐿𝑆𝐷3(𝜃) = ∑ ∑

(𝑖1 − 𝜇𝑖1
)(𝑖2 − 𝜇𝑖2

)

𝜎𝑖1
𝜎𝑖2

𝑝(𝑖1, 𝑖2|𝜃),

𝑖2𝑖1

  

𝑤ℎ𝑒𝑟𝑒 𝜇𝑖𝑛
𝑎𝑛𝑑 𝜎𝑖𝑛

𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑠𝑡𝑑. 𝑑𝑒𝑣 𝑜𝑓 ∑ ℎ(𝑖1, 𝑖2|𝜃)
𝑖3−𝑛
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Eq. 15 - Entropy 

 𝐺𝐿𝑆𝐷4(𝜃) = − ∑ ∑ 𝑝(𝑖1, 𝑖2|𝜃) log 𝑝(𝑖1, 𝑖2|𝜃)

𝑖2𝑖1

  

Eq. 16 - Homogeneity 

 
𝐺𝐿𝑆𝐷5(𝜃) = ∑ ∑

𝑝(𝑖1, 𝑖2|𝜃)

1 + (𝑖1 − 𝑖2)2

𝑖2𝑖1

  

In a similar manner to the spatial autocorrelation research step, the main objective in this 

step is to evaluate first- and second-order statistical features as global descriptors of pressure maps 

images, with specific properties and applications in both static (single pressure maps) and dynamic 

(continuous pressure maps) environments. This step focuses in determining what each statistical 

feature is measuring, from a seating pressure mapping perspective, that commonly used sitting 

pressure measures (Table 1) are not able to and, more importantly, how to interpret these statistical 

features in the context of human-chair interactions.  

The common pressure measures shown in Table 5 were calculated to find their association 

with the first-order and second-order statistical features presented in this section. Measures of 

spatial autocorrelation are additionally considered during correlation analyses to also find their 

relationship with measures of statistical features. 

Table 5. First-order statistical features 

Contact Cells* Sum of Pressure* Standard Deviation* 

Coefficient of Variation* Skewness  Kurtosis  

    * Common Pressure Measures 

 

A scanning direction 𝜃 (𝑒. 𝑔. , 0°, 45°, 90° 𝑜𝑟 135°) needs to be defined for calculating the 

first-order statistical features based on Gray-Level Differences (GLD). Table 6 shows the two 
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directions that are considered in this study, where 𝜃 = 0° measures differences in the horizontal 

or lateral direction (𝑋) of the pressure map image, and 𝜃 = 90° measures differences in the 

vertical or anterior-posterior direction (𝑌) of the pressure map image. These same directions were 

also used for calculating the second-order statistical features based on Gray-Level Spatial-

Dependence (GLSD) (see Table 7). 

Table 6. Gray-Level Differences (GLD) statistical features 

Direction: 𝜃 = 0° Direction: 𝜃 = 90° 

Gradient Contrast X Gradient Contrast Y 

Gradient Second Moment X Gradient Second Moment Y 

Gradient Entropy X Gradient Entropy Y 

Gradient Mean X Gradient Mean Y 

Inverse-Difference Moment X Inverse-Difference Moment Y 

 

Table 7. Gray-Level Spatial-Dependence (GLSD) statistical features 

Direction: 𝜃 = 0° Direction: 𝜃 = 90° 

Energy X Energy Y 

Contrast X Contrast Y 

Correlation X Correlation Y 

Entropy X Entropy Y 

Homogeneity X Homogeneity Y 

 

Data Sampling 

The static data subset obtained in the spatial autocorrelation step is again used for this 

research step. The static data subset is used to evaluate these statistical features as global pressure 

map descriptors. An extra subset was also created consisting of ten (10) paired samples of static 

pressure maps from different subjects where no significant differences (|∆| < 5%) are seen 

between common pressure measures (named paired data subset). Figure 4 and Table 2 (Chapter 1) 
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shows an example of a paired sample from two different subjects where no significant differences 

are seen between common pressure measures. The selection criteria for these paired-pressure maps 

samples were based on different levels of contact area (i.e., number of contact cells), sum of 

pressure, and coefficient of variation. Selected sample pairs are shown in Appendix J. 

Testing Procedures 

All first-order and second-order statistical features were calculated for each pressure map 

sample in the static data subset. While calculating these statistical features, only non-zero pressure 

cells were considered. As with the previous step (i.e., spatial autocorrelation), correlation analyses 

using the Pearson product-moment correlation were performed within all statistical feature 

measures and known pressure measures (Table 5) to evaluate their statistical association. All six 

variations of spatial autocorrelation measures were also included during correlation analyses. 

It was expected that some of these features and measures were highly correlated in the 

context of seating pressure maps; dimension reduction techniques focused on feature selections 

(e.g., high correlation filters) were used to select features that can explain different user-chair 

interaction phenomenon. Hierarchical clustering was used in the resulting correlation matrix to 

find clusters of measures that have strong correlations (𝑅2 ≥ 0.8). Regression models within these 

correlated clusters were conducted with emphasis in finding unusual observations (i.e., points with 

large leverage values or extreme standardized residuals) between clustered measures. 

For pressure maps marked as unusual observations, comparative visual feedback was used 

between the pressure maps and selected reference pressure maps (with a similar predictor values). 

The objective was again to identify possible differences – as global pressure map descriptors – 

between these highly correlated measures. Differences in terms of each measures’ ability to detect 

presence of localized high/low pressure clusters, acute pressure points, surface map smoothness 
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and texture, and pressure level contiguity were considered. In addition, research evaluated these 

unusual observations by expanding their respective regression models with other clustered and 

non-clustered measures to find possible supplemental explanatory variables. 

After dimension reduction techniques, selected spatial autocorrelation measures and 

selected first-order and second-order statistical features were evaluated to find any significant 

differences (|∆| > 5%) between corresponding paired samples of pressure maps included in the 

paired data subset. The main focus while doing this analysis is to determine – if significant 

differences are found – what each statistical feature is measuring, from a pressure mapping 

perspective, that common seating pressure measures are not able to by means of visual feedback. 

For studying the dynamic application of measures of statistical features of images, first-

order and second-order statistical features were calculated for each continuous sitting interval 

sample included in the (pre-processed) dynamic data subset during the case study. Using time 

series plots, emphasis is given in evaluating sequential indexes where considerable changes in 

measures of statistical features occur. Comparative visual feedback of selected sequences of 

pressure maps was also used to confirm detected in-chair-movements. 

Algorithms for calculating first-order and second-order statistical features were also coded 

and implemented using the Python programming language. A condensed form of the Python script 

used for calculating statistical features of pressure map images is also included in Appendix D. 

The same python code used to generate the correlation correlograms based on hierarchical 

clustering techniques also include these image statistical features. 

Outcomes 

The following outcomes were pursued for this step: (1) Selection of unique and meaningful 

measures of statistical features in the context of seating pressure map, (2) validation of pressure 
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map statistical features as complementary measures to common pressure measures, and (3) use 

and interpretation of selected statistical features of pressure map images in the context of human-

seating interaction. 

 

Image Registration and Similarity/Dissimilarity Coefficients 

A similarity (dissimilarity) measure between two sequences of measurements 𝑋 =

{𝑥𝑖 , 𝑖 = 1, . . , 𝑛} and 𝑌 = {𝑦𝑖 , 𝑖 = 1, . . , 𝑛} quantifies the dependency (independency) between the 

sequences. If 𝑋 and 𝑌 represent pixel intensities from resulting rasterized images of pressure 

mapping data, measures of the similarity (dissimilarity) between pressure maps can be obtained. 

In seating pressure maps, similarity measures can be useful when evaluating and comparing 

pressure maps between subjects (comparison of pressure readings and spatial distributions) or for 

within-subject assessments (evaluation of dynamic sitting or clinical intervention effects). 

Implementing similarity and dissimilarity measures, as global comparative measure for pressure 

mapping analysis, could potentially eliminate current requirements of using comparative visual 

feedback with a set of objective measures for undemanding assessment. 

Similarity/dissimilarity measures have been studied and formulated for many years. Some 

measures use raw intensities from images, while other apply transformations to image intensities 

(e.g., normalization, ranking, or joint probability functions). Goshtasby (2012) evaluated the 

accuracies and speeds of 16 similarity measures and 11 dissimilarity measures using both synthetic 

and real images. Goshtasby also evaluated the sensitivity of the measures using combinations of 

intensity variations and noise. Goshtasby concluded that absolute superiority of one measure 

against others cannot be reached; however, better performances – using percent of correct matches 

between images – were found when using the following similarities and dissimilarities measures: 
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Similarity Measures 

Eq. 17 - Pearson correlation coefficient 

 
𝑟 =

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

{∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 }

1
2{∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1 }
1
2

  

Eq. 18 - Tanimoto measure 

 
𝑆𝑇 =

𝑋𝑇𝑌

‖𝑋 − 𝑌‖2 + 𝑋𝑇𝑌
  

Eq. 19 - Minimum ratio 

 
𝑚𝑟 =

1

𝑛
∑ 𝑟𝑖

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 = min { 
𝑥𝑖 + 𝜀

𝑦𝑖 + 𝜀
  ,   

𝑦𝑖 + 𝜀

𝑥𝑖 + 𝜀
 } , 𝑎𝑛𝑑  

 𝜀 = 𝑠𝑚𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑒. 𝑔. , 1). 

 

Dissimilarity Measures 

Eq. 20 - 𝐿1 norm 

 
𝐿1 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

  

Eq. 21 - Square 𝐿2 norm 

 
𝐿2

2 = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

  

Eq. 22 - Intensity-ratio variance 

 
𝑅𝑉 =

1

𝑛
∑(𝑟𝑖 − 𝑟̅)2

𝑛

𝑖=1

 ;   𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 =
𝑥𝑖 + 𝜀

𝑦𝑖 + 𝜀
 ,   𝑟̅ =

1

𝑛
∑ 𝑟𝑖 

𝑛

𝑖=1

, 𝑎𝑛𝑑    

 𝜀 = 𝑠𝑚𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑒. 𝑔. , 1). 
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Image Registration 

One major drawback of the similarity/dissimilarity measures is that, to accurately measure 

the relationship between images, images should be invariant to location and orientation. If the 

images to be compared are not generally located in the same x-y regions of space or the orientation 

and angular position of the images are significantly different, using similarity/dissimilarity 

coefficients without applying transformation functions to the images might not be appropriate. 

Sitting is a dynamic activity. Subjects constantly shift the location and orientation of their 

pressure contact area with the purpose of relieving discomfort. Preferences in terms of sitting 

postures and sitting placement in the seat pan are common issues when comparing seating pressure 

maps. There is a need for implementing repositioning algorithms in pressure mapping analysis.  

Various parametric and non-parametric spatial transformation techniques have been 

developed for image registration. Modersitzki (2004) evaluated several of these transformation 

techniques with mixed results. Landmark-based techniques require placements of “soft markers” 

in images (see Fig. 8). The registration process in landmark-based techniques is governed by the 

placement and correspondence of these user-defined landmarks. These markers generally require 

expert knowledge for manual marking and/or sophisticated image analysis tools for automatic 

detection (Modersitzki, 2004, p. 27); one major drawback when using landmark-based techniques. 

As the evaluation of continuous dynamic pressure maps or comparison of multiple-subject 

pressure maps is desired, the automatic detection of image features is a desired approach for 

repositioning and reorienting pressure maps. Registration techniques such as Principal Axes 

Transformations (PAT) and optimal parametric registrations work under this principle.  
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Figure 8. Examples of “soft markers” required for landmark-based techniques.  

(Modersitzki, 2004, p. 31). Reproduced with permission of the Licensor through PLSclear. 

 

PAT can have different approaches according to the distribution assumption; a standard 

approach – more sensitive to data perturbation – generally uses a Gaussian distribution, while a 

more robust approach is achieved by using a Cauchy distribution (Modersitzki, 2004). PAT works 

by initially calculating the center of mass and the eigen decomposition of the covariance matrix. 

These calculated measures are used as matching features between images.  

PAT registration is accomplished by translating the center of mass and then rotating and 

scaling the resulting orthogonal axis to match the reference image (Alpert et al., 1990). An example 

of the application of this technique can be seen in Figure 9. The problem of using the center of 

mass of the images (i.e., center of pressure) for aligning pressure images is that it often results in 

misalignments and/or mismatches of the pressure distribution shapes between pressure maps. 

Figure 10 shows an example where a PAT transformation would be not appropriate, as the 

translation and alignment of the center of pressures would results in an incorrect image registration. 

Another issue of using PAT registration is that it applies scaling transformations for 

matching the orthogonal axis of the images. While scaling algorithms can be implemented for 

comparing pressure maps, it is not appropriate for research involving human subjects (e.g., seating 
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research). Scaling algorithms will distort subject’s anthropometry and cover the dissimilarities of 

true differences between subjects due to their size.  

 

 

Figure 9. PAT example. Reference (left). Template (center). PAT Transformation (right). 

(Modersitzki, 2004, p. 53). Reproduced with permission of the Licensor through PLSclear.  

 

 

  

Figure 10. CP locations for pressure maps samples 120-1-900 (left) vs 120-1-1050 (right). 

 

In a different manner, optimal registration techniques use parameterized finite-dimensional 

optimization routines (e.g., Steepest descent, Gauss-Newton, or Levenberg-Marquardt) to 

minimize differentiability between images (Modersitzki, 2004). Selection of the 

CP1050 = (14.378, 17.087) CP900 = (15.209, 14.550) 
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minimalization/maximization objective function defines the optimization approach used for image 

registration. A straightforward approach is the minimization of Sums of Squared Differences 

(SSD) or Mean Squared Error (MSE) of pixel intensities; while another approach, Mutual 

Information (MI), maximizes the entropy of the images’ joint density. Using the same reference 

and template images shown in Figure 9, results of applying MI and MSE affine transformation to 

the template image can be seen in Figure 11. 

 

 

Figure 11. Reference (left). Affine Linear MI (center). Affine Linear MSE (right) 

 (Modersitzki, 2004, p. 71). Reproduced with permission of the Licensor through PLSclear. 

 

This study evaluated the performances of optimal parametric registrations techniques based 

on MSE and MI registrations in the context of seating pressure mapping images. Rigid 

transformations with rotational and translational capabilities were considered during registration. 

Affine linear transformation, like the ones used in Figure 11, are not considered in this study as 

shear and scaling transformations are not desired for contact pressure maps with human subjects. 

As explained earlier, scaling and shear transformations are not appropriate for research involving 

human subjects (e.g., seating research) as they distort the subject’s anthropometry and cover 

dissimilarities due to true differences in size between pressure maps. 
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The following are the mathematical definitions of the MSE and MI image registration 

techniques given a reference image (𝑋) and a template image (𝑌) with pixel intensities 𝐼𝑋𝑘 and 

𝐼𝑌𝑘 respectively, a transformation function 𝑎, image density 𝜌, and image entropy 𝔼 (Modersitzki, 

2004; Pataky et al., 2009): 

Eq. 23 - Optimal Linear Registration (MSE) 

 
𝑀𝑖𝑛 (𝑀𝑆𝐸) ;  𝑀𝑆𝐸 =

1

𝑛
∑(𝐼𝑋𝑘 − 𝐼𝑌𝑎𝑘)

2

𝑘

     

Eq. 24 - Optimal Linear Registration (MI) 

 
𝑀𝑎𝑥 (𝑀𝐼) ;   𝑀𝐼 = −𝔼𝜌𝑋,𝑌𝑎

[log
𝜌𝑋,𝑌𝑎

𝜌𝑋𝜌𝑌𝑎

 ] 

 

 

By applying random transformations to randomly selected seating pressure maps, the 

accuracies of the translational and rotational capabilities of each image registration method can be 

measured by using the similarity and dissimilarity measures described in the previous section. At 

optimality, the similarity (dissimilarity) measures should be relatively close to 100% (0) if a good 

registration or image match is made by the registration method. 

 The main objectives in this research step are to (1) introduce image registration as an 

alignment technique, and (2) use similarity and dissimilarity measures as way of comparing 

registered pressure maps. Image registration techniques of optimal linear registration based on 

minimization of the Mean Squared Errors (MSE) and optimal linear registration based on 

maximization of the Mutual Information (MI) were evaluated in this study. 

Data Sampling  

To evaluate the translational and rotational capabilities of the image registration 

techniques, a subset of the dataset consisting of ten (10) samples of pressure maps was used. The 
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selection criteria for these pressure map samples were based on different levels of contact area 

(i.e., number of contact cells). Two random transformations, each with a random translational and 

rotational shift, were then applied to each pressure map to create the synthetic transformed data 

subset. Selected samples with applied random transformations are shown in Appendix L. 

Conditional sampling was also used for extracting sets of images exhibiting significant 

pressure map shifts. These samples are used for evaluating the feasibility of using image 

registration techniques and similarity/dissimilarity measures for analyzing and comparing pressure 

maps during dynamic sitting movements. As the distance needed for the center of pressure to travel 

one pressure map cell is approximately one inch (√19.372 + 16.562 = 25.5𝑚𝑚), a significant 

location shift was considered as a distance greater than one inch between the pressure maps’ 

centers of pressures (∆ 𝐶𝑃 > 1 𝑖𝑛). Twenty (20) paired-samples were selected where potentially 

significant sitting movements were detected (named registration data subset), with each paired 

sample being selected from indexes within a continuous sitting interval (same subject). Distances 

between the center of pressure of selected paired-samples can be seen in Appendix N, while the 

pressure maps for the selected paired-samples can be seen in Appendix O.  

Testing Procedures 

Using the transformed data subset, the accuracies of the translational and rotational 

capabilities of image registration techniques are evaluated using proposed similarity/dissimilarity 

coefficients (𝜀 =  1 is used when required). Because the transformed pressure maps included in 

this subset are in fact the same pressure maps as the reference maps (with very small differences 

due to the random transformation being applied), the resulting values of the similarity and 

dissimilarity coefficients can be used to benchmark registrations optimality. Visual feedback is 

also used to identify differences at optimality between image registration techniques. 
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When calculating similarities and dissimilarities coefficients between pressure maps, two 

scenarios were considered: (1) Only pairwise non-zero pressure cells between pressure maps are 

considered (referred to as masked), and (2) unbalanced pairwise pressure cells (i.e., a non-zero 

pressure cell and a zero pressure cell data pair) are accepted (referred to as non-masked). 

The registration data subset was used to evaluate the performances of image registration 

techniques under dynamic sitting. Visual feedback was used to assess the image correspondence 

at optimality by using pressure map overlays and visual differences in pressure map images. 

Because pressure maps in this subset are inherently different, similarity and dissimilarity 

coefficients are only used as comparative measures post-registration. Improved values in measures 

of similarity/dissimilarity do not necessarily indicate a better registration, but if pressure maps 

images indeed share a number of commonalities and features, an increase (decrease) in similarity 

(dissimilarity) measures is usually obtained. Difference in applications of masked and non-masked 

variations of measures of similarity and dissimilarity coefficients were also evaluated. 

To study the dynamic application of proposed comparative techniques, the case study 

includes a section where continuous and sequential pressure maps are registered and compared 

(using similarities and dissimilarities coefficients) to the initial pressure map frame. The objective 

is to evaluate the feasibility of using continuous similarities and dissimilarities coefficients as 

comparative dynamic pressure measures after image registration techniques are applied.  

Due to the temporal nature of the (pre-processed) dynamic data subset, it is expected that 

the overall location and orientation of sequential pressure maps to not be significantly different 

over time, especially if significant in-chair movements do not occur. But if otherwise, any 

significant pressure redistribution, postural change, and/or positional shift made by the subject 

could potentially be captured by the continuous similarities and dissimilarities coefficients. Time 
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series plots were used to assess the changes in continuous values of similarities and dissimilarities 

coefficients during the 5-minute dynamic sitting interval sample.  

For the dynamic case study, an additional dynamic pressure measure was also examined 

by comparing the distance traveled by the center of pressure (CP) of the template image (i.e. the 

one being transformed) at registration optimality. Comparing the distance of the locations of the 

centers of pressure between images is often not appropriate (see Fig. 10), but tracking the distance 

traveled by the center of pressure of the template image after registration could be a good indicator 

of in-chair movement, particularly for positional shifts in the seat pan. Assessments of CPoriginal vs 

CPtransformed distances were done using time series plots. The objective was to evaluate significant 

registration translations of the CP during the dynamic sitting interval sample.  

Visual feedback was also used during the case study to validate the image correspondence 

when significant changes in similarities coefficients, dissimilarities coefficients, or CPtransformed 

translations were seen in their respective time series plots. Visual feedback assessment was made 

using pressure maps overlays to highlight differences in pressure between pressure map images at 

registration optimality. 

Algorithms for applying random transformations to pressure map images, implementing 

MI and MSE image registration, calculating similarities and dissimilarities coefficients (masked 

and non-masked), and data visualization routines were coded and executed using the Python 

programming language. A condensed form of the Python script can be seen in Appendix E.  

Outcomes 

The following outcomes were pursued for this last step: (1) Recommendations of 

registration techniques for transforming and aligning pressure maps in the context of seating 

pressure maps, (2) use and interpretation of similarity and dissimilarity coefficients as global 
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comparative measures in the context of seating pressure maps, and (3) examining the 

computational demands of using proposed comparative techniques for transforming and 

comparing pressure maps in both static (paired-samples) and dynamic (continuous pressure maps) 

environments. 

Summary of Methods and Procedures 

Various subsets of the main dataset were used for the research steps in this study. The 

cluster data subset was used to evaluate density-based spatial clustering techniques as pre-

processing methods for detecting and removing extrinsic pressure artifacts (i.e., outliers) in seating 

pressure maps. The static data subset and paired data subset were used to evaluate the uniqueness, 

feasibilities, and interpretations of seating pressure measures based on spatial autocorrelation, first-

order image statistical features, and second-order image statistical features. The transformed data 

subset and registration data subset were used to evaluate the application of image registration 

techniques for aligning and matching pressure maps, and also to evaluate the use of similarity and 

dissimilarity coefficients as global comparative measures between registered pressure map images. 

The dynamic data subset was used as a case study for evaluating the dynamic applications 

of selected methods and measures. The subset was initially pre-processed using spatial clustering 

to remove extrinsic pressure artifacts (i.e. outliers). Measures of spatial autocorrelation and image 

statistical features were then calculated, and their dynamic behavior was assessed using time series 

plots. At the end, image registrations were performed between each pressure map frame and the 

initial frame, with assessments of similarity and dissimilarity coefficients using time series plots. 

A summary table of the research objectives, along with the methodologies, research 

procedures, and outcome goals for each research step is shown in Table 8.
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The following chapters [Chapter 5 (Results) and Chapter 6 (Case Study)] show the results 

obtained from completing the research steps in this study (Table 8). The results of the applications 

of spatial clustering methods, measures of spatial autocorrelation, image statistical features, and 

image registration and similarity and dissimilarity coefficients are presented in Chapter 5. The 

feasibilities, uniqueness, and practicalities of the proposed methods are discussed within the 

following chapter subsection: (1) Spatial Clustering, (2) Spatial Autocorrelation and Image 

Statistical Features, and (3) Image Registration and Similarity/Dissimilarity Coefficients. 

Summaries of the findings obtained from applying proposed methodologies to each data subset 

are also included in their respective chapter subsection, along with research notes and 

recommendations. 

Results of using selected methodologies in a 5-minute interval of sequential pressure map 

images (dynamic data subset) are presented in Chapter 6 as a case study. This case study initially 

evaluates the feasibility and practicality of using selected density-based spatial clustering 

techniques for detecting and removing extrinsic pressure artifacts (outliers) under a continuous 

setting (dynamic pressure map samples). Using the pre-processed dynamic data subset, the results 

of selected measures of spatial autocorrelation and image statistical features are also shown in this 

chapter, with discussions of their evaluations as potential dynamic pressure measures. The pre-

processed dynamic data subset is also used to evaluate the applications of image registration and 

similarity/dissimilarity coefficients as comparative pressure mapping techniques under a dynamic 

sitting environment. Results and evaluations of the feasibility and practicality of using continuous 

dynamic registration and the use of similarity/dissimilarity coefficients as potential dynamic 

pressure measures are also presented and discussed in the chapter. 
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CHAPTER V 

 

RESULTS 

 

Python, a high-level, general-purpose, scripting programming language, was used to obtain 

the results presented in this chapter . The scripts shown in Appendix C, Appendix D , and Appendix 

E were executed with Python 3.7 under the Spyder 3.3.4 Integrated Development Environment 

(IDE), using a desktop computer with a quadcore Intel i7-4770K CPU clocked at 3.90 Ghz, 16 GB 

of DD3 RAM at 1600 Mhz, and running the Windows 10 operating system. These same algorithms 

were also used to obtain the results presented in the following chapter (Chapter 6). 

In this study, the numerical naming convention used for the pressure maps samples are in 

the format “Subject-Trial-Index”. The dataset used in this study contains continuous seating 

pressure readings collected from eighty-two different subjects. Three different trials, each up to 2 

hours of collection time, are included for each subject, with a number of sequential indexes 

constituting a trial. As indexes are recorded sequentially, these have a direct relation to time. In 

this dataset, the pressure map readings were captured at approximately one-second intervals, each 

being recorded as an Index. As a naming convention example, the sample “109-2-1” represents 

the first pressure map captured (Index 1) during the second recording session (Trial 2) for Subject 

109. The eighty-two subjects are labeled sequentially from Subject 109 to Subject 190 as originally 

named in the dataset. 

The results in this chapter are presented in three sections, each following the main 

objectives of this study: (1) Spatial Clustering, where methods for detecting and removing extrinsic 
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pressure artifacts are evaluated, (2) Spatial Autocorrelation and Image Statistical Features, where 

new potential pressure measures are studied, and (3) Image Registration and Similarity and 

Dissimilarity Coefficients, where methods for aligning and comparing pressure maps are 

examined. 

 

Spatial Clustering 

To evaluate the outlier-detection accuracies of the studied clustering methods, a subset of 

the dataset (cluster data subset) was created using stratified sampling of subjects’ pressure maps 

based on the distribution of contact areas (i.e., contact cells) (see Fig. 12). The cluster data subset 

consists of twenty-eight samples (28) of pressure maps with unwanted pressure artifacts and 

twenty-eight samples without pressure artifacts (see Appendix F and Appendix G). Expert 

knowledge was used for selecting and marking the extrinsic pressure artifacts (i.e. outliers), if any, 

in each seating pressure map sampled. 

 

 

Figure 12. Histogram of subjects’ average contact cells. 
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Two variations of the OPTICS clustering algorithm were considered: (1) 

OPTICS_DBSCAN where clusters are extracted using a DBSCAN-like method with an epsilon 

parameter (eps), and (2) OPTICS_XI where clusters are extracted using automatic technique, as 

specified by Ankerst et al. (1999), with a Xi parameter.  

A sensitivity analysis for the parameters of each clustering algorithm (Table 4) was carried 

out to find possible ranges of values (minimum to maximum) where clustering algorithms where 

able to detect outliers while retaining the non-outliers as true pressure readings. Ten random 

samples with outliers where chosen from the cluster data subset to carry out the sensitivity analysis. 

Eight different combinations or sets of parameter settings were chosen to be evaluated for the 

DBSCAN, OPTICS_DBSCAN, OPTICS_XI, and HDBSCAN clustering methods, using possible 

values of Epsilon (eps), Minimum samples (min_samples), Xi (xi), Minimum size (min_size), and 

Leaf size (leaf_size) from the ranges of values found during the sensitivity analysis (see Table 9). 

In a similar manner, five different combinations or sets of parameter settings were 

evaluated for DENCLUE and DBCLASD clustering methods, using possible values of Epsilon 

(eps), Minimum density (min_density), and Nearest Neighbors (as a % of pressure map Area) from 

the ranges of values found during the sensitivity analysis (see Table 10).  

Note that combinations or sets of parameter settings are chosen according to the input data 

used for the clustering method. Findings during the sensitivity analysis typically resulted in 

different ranges of values (minimum to maximum) for each clustering method’s parameters when 

using either the location input data or location-pressure input data. 
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Table 10. Clustering methods parameters sets 9-13, location and location-pressure input data 

Set DENCLUE DENCLUE (NP) DBCLASD DBCLASD (NP) 

9 
eps:1.0e-06 

min_density:5.0e-04 

eps:1.0e-01 

min_density:1.0e-03 
Area:28.5% Area:50% 

10 
eps:1.0e-03 

min_density:5.0e-04 

eps:1.0e-01 

min_density:2.0e-03 
Area:33% Area:67% 

11 
eps:2.0 

min_density:4.0e-04 

eps:2.0 

min_density:1.5e-03 
Area:40% Area:80% 

12 
eps:2.0  

min_density:3.0e-04 

eps:2.0 

min_density:1.8e-03 
Area:20% Area:33% 

13 
eps:1.0 

min_density:2.0e-04 

eps:1.0 

min_density:1.3e-03 
Area:12% Area:20% 

Note: NP = No Pressure → Location input data 

 

The following subsections show the results for each clustering method when using these 

defined sets of parameters. The best combinations of input data plus parameter settings are chosen 

for each method in terms of outlier and non-outlier accuracies, that is, their abilities to detect 

extrinsic pressure artifacts (outliers) and true contact pressure readings (non-outliers). Measure of 

“Outliers accuracy” calculate the proportion of pre-identified outliers being detected as outliers, 

while measure of “Non-Outliers accuracy” calculate the proportion of true contact pressure 

readings being detected as non-outliers. “Overall accuracy” is the calculated weighted average of 

both Outliers and Non-Outliers accuracies. A set of clustering method’s parameters are considered 

for further evaluation if both average Outliers and Non-Outliers accuracies results are above 0.90.  

DBSCAN 

 DBSCAN algorithms were implemented from the Python module Scikit-learn (v0.20.3) 

(Pedregosa et al., 2011). A graphical summary of the average accuracies obtained when using 

DBSCAN, with both location and location-pressure data input, is presented in Figure 13. The top-

left panel show overall average accuracies for each set of parameters and input data. The bottom-
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left panel shows average non-outlier accuracies when using seating pressure map samples without 

outliers. Right panels show average outliers (top-right) and non-outliers (bottom-right) accuracies 

when using seating pressure map samples with pre-identified outliers. Results indicate that 

DBSCAN algorithms generally show higher average accuracies for detecting outliers when the 

pressure reading locations are used as input data as compared to using the location-pressure 

information as input data.  

 

 

Figure 13. DBSCAN – Overall, Outliers, Non-Outliers average accuracy by set 

 

Table 11 and Table 12 show descriptive statistics of accuracies results for all sets of 

parameters used in DBSCAN algorithms when using both location and location-pressure input 

data respectively, with sets of parameter chosen for further evaluation in bold. DBSCAN 

parameters sets 2 and 4, using location input data, yielded the same accuracy results in each 

sample; similarly, sets 5 and 8 also yielded the same accuracy results for each sample (see Table 

11). A good combination of high outlier and non-outlier average accuracies were also obtained by 
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these sets (2, 4, 5 and 8). Other sets either marked many pressure readings as outliers (e.g., Set 6) 

or are somewhat conservative in marking outliers (e.g., Sets 1, 3, and 7).  

Table 11. DBSCAN – Accuracies results by set (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy 7 0.997 0.008 0.953 1.000 

 3 0.996 0.010 0.953 1.000 

 1 0.995 0.011 0.941 1.000 

 5/8 0.994 0.009 0.964 1.000 

 2/4 0.988 0.010 0.961 1.000 

 6 0.011 0.014 0.000 0.059 

      

Outliers Accuracy 6 1.000 0.000 1.000 1.000 

 2/4 0.949 0.194 0.111 1.000 

 5/8 0.925 0.179 0.333 1.000 

 7 0.817 0.262 0.000 1.000 

 3 0.815 0.284 0.000 1.000 

 1 0.772 0.334 0.000 1.000 

      

Non-Outliers Accuracy 1 0.999 0.003 0.985 1.000 

 3 0.999 0.004 0.975 1.000 

 7 0.999 0.004 0.975 1.000 

 5/8 0.995 0.008 0.964 1.000 

 2/4 0.989 0.010 0.959 1.000 

 6 0.000 0.000 0.000 0.000 

 Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

Table 12 shows that, when using the location-pressure information as input data, higher 

average outlier accuracies were obtained by sets of parameters 6 and 7. Unfortunately, these high 

average outlier accuracies were obtained at the expense of lower average non-outlier accuracies 

when compared to results using location input data (Table 11). By comparing the average outliers 

and non-outlier accuracy results obtained when using parameters set 5 (or 8) with location input 

data (0.925 and 0.995 respectively) to the average accuracy results obtained when using parameters 

set 6 with location-pressure data (0.920 and 0.977 respectively), we see that higher outlier and 
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non-outlier accuracies were obtained when using the location of pressure reading as input data 

with suitable DBSCAN parameters (e.g., Sets 5 or 8).  

Table 12. DBSCAN – Accuracy results by set (location-pressure input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  8 0.994 0.010 0.941 1.000 

  2 0.991 0.013 0.941 1.000 

  5 0.990 0.012 0.941 1.000 

 1 0.989 0.014 0.941 1.000 

  3 0.989 0.013 0.941 1.000 

  7 0.986 0.012 0.950 1.000 

  4 0.983 0.016 0.924 1.000 

  6 0.976 0.018 0.918 1.000 

       

Outliers Accuracy  6 0.920 0.227 0.000 1.000 

  7 0.907 0.233 0.000 1.000 

  4 0.787 0.315 0.000 1.000 

  5 0.782 0.318 0.000 1.000 

  8 0.706 0.335 0.000 1.000 

  3 0.349 0.329 0.000 1.000 

  2 0.230 0.276 0.000 1.000 

 1 0.000 0.000 0.000 0.000 

       

Non-Outliers Accuracy 1 1.000 0.000 1.000 1.000 

  2 1.000 0.001 0.994 1.000 

  3 0.998 0.003 0.986 1.000 

  8 0.998 0.003 0.985 1.000 

  5 0.993 0.006 0.976 1.000 

  7 0.988 0.009 0.970 1.000 

  4 0.987 0.011 0.942 1.000 

  6 0.977 0.016 0.928 1.000 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

Out of all the combinations of parameter settings and input data, DBSCAN parameters 

used in sets 2/4 and 5/8 with location input data resulted in high average outlier accuracies (0.949 

and 0.925 respectively) and high average non-outlier accuracies (0.989 and 0.995 respectively). 

Figure 14 shows boxplots for DBSCAN outlier accuracies for all parameter sets when using 

location input data. Results from sets 2 and 5 are highlighted to show points of individual pressure 
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maps where Outliers accuracies were not 1 (100%). Figure 15 shows examples of the outlier 

reference maps where Outliers accuracies below 0.80 were found in any of these sets (2/4 and 5/8). 

The figure also shows cross-referenced clustering results between sets 2/4 and 5/8 for these outlier 

reference maps. DBSCAN failed to detect a significant number of outliers in pressure map samples 

172-2-1047 and 144-1-779 when using parameter sets 2/4; but it was otherwise successful in 

detecting outliers in all other maps at the expense of marking some non-outlier readings as outliers. 

In contrast, DBSCAN successfully detected the group of outliers in sample 172-2-1047 when using 

parameter sets 5/8, but it was more conservative in marking outliers in all other maps presented in 

the figure. All DBSCAN sets (location or pressure-location) failed to mark the group of outliers 

referenced in sample 144-1-779 (see Fig. 15, 2nd row).  

 

 

Figure 14. DBSCAN – Outliers accuracy boxplots by set (location input data) 
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Figure 15. DBSCAN – Low outlier accuracy samples in sets 2/4 and 5/8 (location input data) 

Outliers Reference Set 2/4 Results Set 5/8 Results 
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Figure 16 shows boxplots for DBSCAN Non-Outlier accuracies for all parameter sets when 

using location input data. Results from sets 2 and 5 are highlighted to show points of individual 

pressure maps where Non-Outliers accuracies were not 1 (100%). Non-Outliers accuracies results 

when using parameters sets 5/8 where generally higher compared to results when using parameters 

sets 2/4. It is important to note that the Non-Outliers accuracies results obtained from these sets 

(2, 4, 5, or 8) were above 0.95 for all samples. Figure 17 show examples where Non-Outliers 

accuracies between 0.95 and 0.98 were found in any of these sets (2/4 and 5/8). Here we see that 

DBSCAN algorithms, when using parameters settings from either of these sets, mostly marked 

pressure readings as outliers when a significant departure from the main contiguous pressure 

cluster is found (e.g., samples 175-3-1142 and 175-2-1208). 

 

 

Figure 16. DBSCAN – Non-outliers accuracy boxplots by set (location input data) 

 

In summary, using the location information as input data, parameters of epsilon between 

1.60 - 1.8 with minimum samples at 8 (sets 2/4), or epsilon parameters between 2.00 - 2.20 with 
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minimum samples at 10 (sets 5/8) were found as adequate when using DBSCAN algorithms for 

detecting outlier/non-outliers seating pressure readings in a 32x32 pressure map. If preservation 

of all true pressure readings is of utmost importance, using DBSCAN with the epsilon parameter 

at 2.5 with minimum samples at 10 (set 7) resulted in an acceptable average Outliers accuracy 

(0.817), while maintaining a very high average Non-Outliers accuracy (0.999); only four out of 

the fifty-six pressure map samples did not show a perfect Non-Outliers accuracy score, all were at 

least 0.9751 when using location input data and DBSCAN parameters from set 7 (see Fig. 16). 

 

   

   

   

Figure 17. DBSCAN – Sets 2/4 and 5/8 samples, non-outlier accuracy <0.98 (location input data) 

Outliers Reference Set 2/4 Results Set 5/8 Results 
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OPTICS_XI 

OPTICS_XI algorithms were also implemented from the Python module Scikit-learn 

(v0.20.3) (Pedregosa et al., 2011). A graphical summary of OPTICS_XI average accuracies, with 

both location and location-pressure data input, is presented in Figure 18. As with similar figures, 

the top-left panel show average overall accuracies for each set of parameters and input data. Right 

panels show average outliers (top-right) and non-outliers (bottom-right) accuracies for each set of 

parameters when using seating pressure map samples with pre-identified outliers. The bottom-left 

panel shows average non-outlier when using seating pressure map samples without outliers. 

Results indicate that OPTICS_XI algorithms generally show higher average accuracies for 

detecting outliers when using both pressure readings and location information as input data. When 

using only pressure readings location as input data, lower average outlier accuracies (<0.9) but 

higher average non-outlier accuracies (>0.9) were obtained, indicating a more conservative 

approach when marking outliers. 

 

 

Figure 18. OPTICS_XI – Overall, Outliers, Non-Outliers average accuracy by set 
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Table 13 show descriptive statistics of accuracies results for all sets of parameters used in 

OPTICS_XI algorithms when using both pressure readings and location information as input data. 

Results from using parameters settings in set 3 resulted in high average Outliers accuracy (0.905) 

and high average Non-Outlier accuracy (0.915).  

Table 13. OPTICS_XI – Accuracy results by set (location-pressure input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  8 0.981 0.074 0.446 1.000 

  4 0.968 0.124 0.241 1.000 

  2 0.920 0.193 0.241 1.000 

 3 0.916 0.197 0.241 1.000 

  1 0.873 0.239 0.241 1.000 

  5 0.818 0.308 0.207 1.000 

  7 0.782 0.299 0.051 1.000 

  6 0.661 0.380 0.101 1.000 

            

Outliers Accuracy  7 0.907 0.260 0.000 1.000 

  3 0.905 0.233 0.000 1.000 

  1 0.863 0.320 0.000 1.000 

  2 0.844 0.319 0.000 1.000 

  4 0.799 0.353 0.000 1.000 

  8 0.799 0.353 0.000 1.000 

  6 0.650 0.462 0.000 1.000 

 5 0.602 0.465 0.000 1.000 

            

Non-Outliers Accuracy 8 0.983 0.076 0.435 1.000 

  4 0.969 0.126 0.227 1.000 

  2 0.920 0.195 0.227 1.000 

  3 0.915 0.199 0.227 1.000 

  1 0.873 0.242 0.227 1.000 

  5 0.819 0.313 0.207 1.000 

  7 0.781 0.302 0.051 1.000 

  6 0.660 0.387 0.101 1.000 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

Figures 19 and 20 show boxplots for OPTICS_XI Outliers and Non-Outliers accuracies, 

respectively, for all parameter sets when using the location-pressure input data. Set 3 is highlighted 
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to show points of individual pressure maps where Outliers and Non-Outliers accuracies were not 

1 (100%). Note that non-outlier accuracies were very low on many samples 

 

 

Figure 19. OPTICS_XI – Outliers accuracy boxplots by set (location-pressure input data) 

 

 

Figure 20. OPTICS_XI – Non-outliers accuracy boxplots by set (location-pressure input data) 
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Figure 21 shows examples of outlier reference maps where Outlier accuracies below 0.50 

were found when using parameter settings in set 3 (location-pressure input data). Similarly, Figure 

22 shows examples of seating pressure maps where Non-Outliers accuracies were below 0.50 for 

the same set (3). OPTICS_XI is shown to be somewhat inconsistent when detecting outliers; in 

some instances it was conservative in marking pressure readings as outliers (see Fig. 21), while in 

other cases, the majority of true contact pressure readings were being marked as outliers (see Fig. 

22). This inconsistency in the accuracies results makes the use of OPTICS_XI an unreliable 

technique for detecting outlier and non-outliers seating pressure readings in a 32x32 pressure map.  

 

   

   

Figure 21. OPTICS_XI – Low outlier accuracy samples in set 3 (location-pressure input data) 

 

 

 

Outliers Reference Set 3 Results 
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Figure 22. OPTICS_XI – Low non-outliers accuracy samples in set 3 (location-pressure input) 

 

OPTICS_DBSCAN 

OPTICS_DBSCAN algorithms were also implemented from the Python module Scikit-

learn (v0.20.3) (Pedregosa et al., 2011). A graphical summary of the average accuracies obtained 

when using OPTICS_DBSCAN, with both location and location-pressure data input, is presented 

in Figure 23. As with similar figures, the top-left panel show average overall accuracies for each 

set of parameters and input data. Right panels show average outliers (top-right) and non-outliers 

(bottom-right) accuracies for each set of parameters when using seating pressure map samples with 

pre-identified outliers. The bottom-left panel shows average non-outlier when using seating 

pressure map samples without outliers. Results indicate that OPTICS_DBSCAN algorithms 

generally show acceptable outlier and non-outlier accuracies either when using only the location 

information as input data or both pressure readings and location information as input data.  

Set 3 Results Pressure Maps 
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Figure 23. OPTICS_DBSCAN – Overall, Outliers, Non-Outliers average accuracy by set 

 

Table 14 show descriptive statistics of accuracies results for all sets of parameters used in 

OPTICS_XI algorithms when using the location information as input data. OPTICS_DBSCAN 

parameters from sets 2 and 4, using location input data, yielded the same accuracy results in each 

sample (see Table 14). A good combination of high outlier and non-outlier average accuracies 

were obtained by sets 2, 4 and 8. Other sets either marked all readings as outliers (e.g., set 6) or 

were more conservative in marking outliers (e.g., sets 1, 3, 5, and 7). Using location input data and 

OPTICS_DBSCAN with parameters in sets 2/4 and 8, resulted in high average outlier accuracies 

(0.968 and 0.933 respectively) and high average non-outlier accuracies (0.964 and 0.97 

respectively). Figure 24 shows boxplots for OPTICS_DBSCAN outlier accuracies for all 

parameter sets when using location input data. Results from sets 2 and 8 are highlighted to show 

points of individual pressure maps where Outliers accuracies were not 1 (100%). Some of these 

individual pressure maps are presented in Figure 25. 
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Table 14. OPTICS_DBSCAN – Accuracy results by set (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  7 0.994 0.012 0.941 1.000 

  1 0.993 0.011 0.941 1.000 

  3 0.993 0.012 0.941 1.000 

 5 0.991 0.010 0.943 0.998 

  8 0.970 0.012 0.941 0.992 

  2/4 0.964 0.012 0.939 0.989 

  6 0.011 0.014 0.000 0.059 

            

Outliers Accuracy  6 1.000 0.000 1.000 1.000 

  2/4 0.968 0.122 0.444 1.000 

  8 0.933 0.160 0.333 1.000 

  5 0.853 0.223 0.333 1.000 

  1 0.786 0.320 0.000 1.000 

  7 0.734 0.349 0.000 1.000 

 3 0.560 0.381 0.000 1.000 

            

Non-Outliers Accuracy 3 0.999 0.002 0.985 1.000 

  7 0.998 0.003 0.982 1.000 

  1 0.996 0.004 0.982 1.000 

  5 0.993 0.008 0.965 0.998 

  8 0.970 0.011 0.943 0.991 

  2/4 0.964 0.012 0.937 0.989 

  6 0.000 0.000 0.000 0.000 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

 

Figure 24. OPTICS_DBSCAN – Outliers accuracy boxplots by set (location input data) 
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Figure 25. OPTICS_DBSCAN – Low outlier accuracy samples in sets 2 and 8 (location input) 

Outliers Reference Set 2 Results Set 8 Results 
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Using the location information as input data, Figure 25 shows examples of outlier reference 

maps where outlier accuracies below 0.80 were found when using OPTICS_DBSCAN with set 2 

or set 8 parameters. While results obtained from set 2 generally show higher accuracies in detecting 

outliers, set 8 correctly detected the group of outliers present in sample 172-2-1047 (Fig. 25, 1st 

row), whereas set 2 did not. In both sets (2 and 8), many true contact pressure readings (non-

outliers) are being marked as outliers, particularly in the first rows of pressure readings under the 

legs. Figure 26 confirms that using OPTICS_DBSCAN with parameters from either set (2 or 8) 

always resulted in a number of non-outlier pressure readings being marked as outliers, as none of 

the individual map results showed a 100% Non-Outliers accuracy within these sets (see Table 14). 

 

 

Figure 26. OPTICS_DBSCAN – Non-outliers accuracy boxplots by set (location input data) 

 

Table 15 show descriptive statistics of accuracies results for all sets of parameters used in 

OPTICS_DBSCAN algorithms when using the location-pressure data input. In this scenario, 

OPTICS_DBSCAN parameters used in set 2 resulted in high average outlier accuracy (0.925) and 
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high average non-outlier accuracy (0.982). Figure 27 and Figure 28 show boxplots for 

OPTICS_DBSCAN outlier and non-outlier accuracies, respectively, for all parameter sets when 

using location-pressure input data. Set 2 is again highlighted to show results of individual pressure 

maps where low outlier and non-outlier accuracies were detected.  

Table 15. OPTICS_DBSCAN – Accuracy results by set (location-pressure input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  3 0.991 0.013 0.941 1.000 

  2 0.981 0.014 0.940 0.998 

  8 0.981 0.013 0.950 0.998 

 1 0.980 0.017 0.924 1.000 

  6 0.968 0.021 0.903 1.000 

  4 0.964 0.023 0.895 1.000 

  7 0.879 0.042 0.756 0.952 

  5 0.019 0.018 0.000 0.074 

            

Outliers Accuracy  5 1.000 0.000 1.000 1.000 

  7 0.968 0.122 0.444 1.000 

  2 0.925 0.178 0.333 1.000 

  8 0.891 0.195 0.333 1.000 

  4 0.830 0.264 0.111 1.000 

  1 0.804 0.300 0.000 1.000 

  6 0.774 0.312 0.000 1.000 

 3 0.245 0.282 0.000 1.000 

            

Non-Outliers Accuracy 3 1.000 0.001 0.994 1.000 

  1 0.983 0.013 0.939 1.000 

  2 0.982 0.012 0.942 0.998 

  8 0.982 0.012 0.949 0.998 

  6 0.971 0.018 0.918 1.000 

  4 0.966 0.021 0.895 1.000 

  7 0.878 0.043 0.751 0.951 

  5 0.008 0.013 0.000 0.042 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

When introducing pressure information, OPTICS_DBSCAN results from using parameter 

settings in set 2 showed a higher average Non-Outlier accuracy (0.982) than results from the best 

location-only sets (0.964 or 0.98, from sets 2 and 8 respectively). Unfortunately, a lower average 
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outlier accuracy (0.925) was seen when using the location-pressure input data with this set (2) 

when compared to the best location-only sets (0.933 or 0.968, from sets 2 and 8 respectively), 

indicating a more conservative approach when marking outliers. However, there were only five 

instances (out of twenty-eight) where outlier accuracies were below 0.80, with all other samples 

having outlier accuracies at 100% (see Fig. 27).  

 

 

Figure 27. OPTICS_DBSCAN – Outliers accuracy by set (location-pressure input data) 

 

Figure 28. OPTICS_DBSCAN – Non-outliers accuracy by set (location-pressure input data) 
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Figure 29 shows examples of outlier reference maps where outlier accuracies below 0.80 

were found when using OPTICS_DBSCAN with location-pressure input data and set 2 parameters. 

The results shown in this figure indicate that OPTICS_DBSCAN (set 2) was unable to properly 

mark outliers when a cluster of outliers separate from the main group of true contact pressure 

readings is present in the pressure map. Additionally, a number of true pressure readings are also 

being marked as outliers in these samples. Results indicate that the use of OPTICS_DBSCAN as 

outlier dectection method comes at the expense of marking true pressure readings as outliers when 

either using location-only or location-pressure input data (see Figs. 25, 29). 

 

  

  

    

Figure 29. OPTICS_DBSCAN – Low outlier accuracy samples in set 2 (location-pressure input) 

Pressure Maps Set 2 Results 
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HDBSCAN 

HDBSCAN algorithms were implemented from the Python module hdbscan (v0.8.20) 

(McInnes et al., 2017). A graphical summary of the average accuracies obtained when using 

HDDBSCAN, with both location and location-pressure data input, is presented in Figure 30. As 

with similar figures, the top-left panel show average overall accuracies for each set of parameters 

and input data. Right panels show average outliers (top-right) and non-outliers (bottom-right) 

accuracies for each set of parameters when using seating pressure map samples with pre-identified 

outliers. The bottom-left panel shows average non-outlier when using seating pressure map 

samples without outliers. Results indicate that HDBSCAN algorithms behave somewhat similar 

in terms of average outlier and non-outlier accuracies when either using the location information 

as input data or both pressure and location information as input data.  

 

 

Figure 30. HDBSCAN – Overall, Outliers, Non-Outliers average accuracy by set 

 Table 16 show descriptive statistics of accuracies results for all sets of parameters used in 

HDBSCAN algorithms when using the location information as input data. Only results obtained 
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when using set 4 show average Outlier and Non-Outlier accuracies above 0.90. When using the 

location-pressure input data, none of the sets showed paired accuracies above 0.90 (see Table 17). 

Table 16. HDBSCAN – Accuracy results by set (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  1 0.992 0.013 0.941 1.000 

  6 0.990 0.014 0.941 1.000 

  7 0.985 0.014 0.941 1.000 

 3 0.981 0.018 0.929 1.000 

  5 0.979 0.021 0.929 1.000 

  2 0.920 0.034 0.845 0.997 

  4 0.907 0.033 0.833 1.000 

  8 0.905 0.034 0.816 0.996 

            

Outliers Accuracy  4 0.904 0.285 0.000 1.000 

  8 0.895 0.296 0.000 1.000 

  5 0.843 0.323 0.000 1.000 

  3 0.776 0.379 0.000 1.000 

  1 0.746 0.366 0.000 1.000 

  2 0.674 0.452 0.000 1.000 

  7 0.631 0.468 0.000 1.000 

 6 0.247 0.364 0.000 1.000 

            

Non-Outliers Accuracy 6 0.999 0.002 0.988 1.000 

  1 0.996 0.009 0.968 1.000 

  7 0.990 0.011 0.957 1.000 

  3 0.985 0.017 0.929 1.000 

  5 0.982 0.021 0.929 1.000 

  2 0.925 0.043 0.842 1.000 

  4 0.909 0.038 0.831 1.000 

  8 0.907 0.039 0.816 1.000 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

Figure 31 show boxplots for HDBSCAN outlier accuracies for all parameter sets when 

using the location input data. Set 4 is highlighted to show points of individual pressure maps where 

Outliers accuracies were not 1 (100%). This figure shows only three instances (out of twenty-

eight) where outlier accuracies were below 0.4. These instances are shown in Figure 32, where it 

can be seen that HDBSCAN, when using set 4 parameters and location input data, had issues 
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detecting outliers when in the presence of large group of outliers. Instead, the clustering algorithm 

marked them as a secondary pressure cluster group. In all other cases, the clustering algorithm 

detected the outliers in all other pressure maps successfully (see Fig. 31).  

Table 17. HDBSCAN – Accuracy results by set (location-pressure input data) 

Variable Set Mean StDev Minimum Maximum 

Outliers Accuracy  8 0.929 0.254 0.000 1.000 

  5 0.879 0.301 0.000 1.000 

  4 0.826 0.347 0.000 1.000 

  1 0.812 0.363 0.000 1.000 

  3 0.792 0.382 0.000 1.000 

  2 0.693 0.439 0.000 1.000 

  7 0.651 0.444 0.000 1.000 

 6 0.217 0.347 0.000 1.000 

            

Non-Outliers Accuracy 6 0.988 0.020 0.896 1.000 

  1 0.960 0.040 0.834 1.000 

  7 0.952 0.052 0.813 1.000 

  3 0.947 0.050 0.822 1.000 

  5 0.933 0.059 0.789 1.000 

  4 0.921 0.063 0.755 1.000 

  2 0.833 0.127 0.549 1.000 

  8 0.821 0.116 0.527 1.000 

 

 

Figure 31. HDBSCAN – Outliers’ accuracy boxplots (location input data) 
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Figure 32. HDBSCAN – Samples with low outlier accuracy in set 4 (location input data) 

 

Figure 33 show non-outlier accuracies boxplots for all HDBSCAN parameter sets when 

using the location input data. Set 4 (highlighted in figure) show many instances where non-outlier 

accuracies are low (<0.9). Examples of these instances can be seen in Figure 34, where outlier 

reference maps and cluster results are shown. When using set 4 parameters with location input 

data, HDBSCAN appears to be somewhat sensitive to pressure readings outlining the main 

pressure cluster (marking them as outliers). The algorithm also marks a number of internal non-

Outliers Reference Set 4 Results 
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outlier pressure readings as outliers. Due to these low non-outlier accuracies, HDBSCAN appears 

to be unreliable for detecting outlier/non-outliers pressure readings in a 32x32 pressure map.  

 

 

Figure 33. HDBSCAN – Non-outliers’ accuracy boxplots (location input data) 

 

  

   

Figure 34. HDBSCAN – Samples with low non-outlier accuracy in set 4 (location input data) 

Outliers Reference Set 4 Results 
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DENCLUE 

DENCLUE algorithms were implemented from the Python module denclue (v2.0) 

(Mgarrett, 2017). A graphical summary of the average accuracies obtained when using 

DENCLUE, with both location and location-pressure data input, is presented in Figure 35. As with 

similar figures, the top-left panel show average overall accuracies for each set of parameters and 

input data. Right panels show average outliers (top-right) and non-outliers (bottom-right) 

accuracies for each set of parameters when using seating pressure map samples with pre-identified 

outliers. The bottom-left panel shows average non-outlier when using seating pressure map 

samples without outliers. Unbalanced Outliers and Non-Outliers average accuracies are seen in 

some sets using the location-pressure input data, indicating that one accuracy increases at the 

expense of the other. DENCLUE algorithms generally show higher average accuracies for 

detecting outliers when using only the location information of pressure readings as input data. 

Table 18 show descriptive statistics of accuracy results for all sets of parameters used in 

DENCLUE algorithms when using the location information as input data.  

 

 

Figure 35. DENCLUE – Overall, Outliers, Non-Outliers average accuracy by set 
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Table 18. DENCLUE – Accuracy results by set (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  11 0.996 0.009 0.953 1.000 

  13 0.996 0.010 0.941 1.000 

  9 0.993 0.012 0.941 1.000 

 12 0.972 0.088 0.494 1.000 

  10 0.874 0.287 0.000 1.000 

            

Outliers Accuracy  10 0.962 0.154 0.200 1.000 

  12 0.952 0.155 0.200 1.000 

  11 0.850 0.282 0.000 1.000 

  13 0.806 0.306 0.000 1.000 

  9 0.443 0.383 0.000 1.000 

            

Non-Outliers Accuracy 9 1.000 0.000 1.000 1.000 

  13 0.999 0.004 0.975 1.000 

  11 0.998 0.005 0.975 1.000 

  12 0.973 0.090 0.476 1.000 

  10 0.874 0.291 0.000 1.000 

Note: Sets in bold are chosen for further evaluation (accuracies > 0.90) 

 

Results in Table 18 show that, when using DENCLUE algorithms with the location 

information as input data, parameters settings from set 12 resulted in high average outlier 

accuracies (0.952) and high average non-outlier accuracies (0.973). Figure 36 shows boxplots for 

DENCLUE outlier accuracies for all parameter sets when using location input data. Set 12 is 

highlighted to show points of individual pressure maps where Outliers accuracies were not 1 

(100%).  

Figure 37 shows examples of outlier reference maps where Outlier accuracies were 0.20 

(Fig. 37, top) and 0.83 (Fig. 37, bottom) when using location input data with DENCLUE and set 

12 parameters. While DENCLUE algorithms generally create multiple clusters from the pressure 

readings within a pressure map, it is still favorable for detecting outliers (marked as noise); only 

one sample (out of twenty-eight) had an outlier accuracy less than 0.80 due to the presence of a 

large group of outliers (see Fig. 37, top). 
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Figure 36. DENCLUE – Outliers accuracy boxplots by set (location input data) 

 

 

  

  

Figure 37. DENCLUE – Samples with low outlier accuracy in set 12 (location input data) 

 

Outliers Reference Set 12 Results 
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High non-outlier accuracies (average of 0.973) were also obtained when using the 

parameters settings from set 12 with the location information as data input. Figure 38 shows 

boxplots for DENCLUE non-outlier accuracies for all parameter sets when using the location input 

data. Set 12 is highlighted to show points of individual pressure maps where Non-Outliers 

accuracies were not 1 (100%). Out of the twenty-eight samples with pre-identified outliers, only 

three showed Non-Outliers accuracies less than 0.90 when using this DENCLUE set (2) and the 

location data input. Figure 39 shows outlier reference maps of all instances where non-outlier 

accuracies were less than 0.90 when using DENCLUE with set 12 parameters and location data 

input. This figure shows how using the DENCLUE algorithm with set 12 parameters and location 

data input create instances where true contact pressure readings outlining the main pressure cluster 

are being identified as outliers (noise). While this outlier detection behavior is only seen in three 

samples, the number of true contact pressure readings being marked as outliers is significant in 

these samples. 

 

 

Figure 38. DENCLUE – Non-outliers accuracy boxplots by set (location input data) 
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Figure 39. DENCLUE – Samples with low non-outlier accuracy in set 12 (location input data) 

 

 To maximize the non-outlier accuracies found in set 12 (Table 18), additional runs were 

performed using the DENCLUE clustering algorithm with the location information as input data. 

The DENCLUE parameter for minimum density (min_density) was found to be influential in 

marking pressure readings as outliers, and it was fine-tuned to reduce instances such as the ones 

depicted in Figure 39. The additional sets of DENCLUE parameters evaluated in this study are 

shown in Table 19, these are again used with the location input data. 

Outliers Reference Set 12 Results 
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Non-outlier accuracies increased by reducing the minimum density value (from the value 

of 1.8e-03 used in set 12). Unfortunately, this increasing in non-outlier accuracies were at the 

expense of lower outlier accuracies. However, acceptable tradeoffs were found where increased 

non-outlier accuracies were obtained while still maintaining a high average outlier accuracy 

(>0.90). Table 20 shows accuracies results for the additional DENCLUE sets. Results from sets 

14 and 15 show an increase in average non-outliers accuracies when compared to the results 

obtained from set 12; also, the minimum non-outliers accuracies are also significantly higher. 

Table 19. DENCLUE additional parameter sets for location input data 

Set DENCLUE (NP) 

14 
eps:2 

min_density:1.7e-03 

15 
eps:0.01 

min_density:1.65e-03 

   Note: NP = No Pressure → Location input data 

 

Table 20. DENCLUE – Accuracy results for additional sets (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  15 0.995 0.010 0.953 1.000 

  14 0.992 0.020 0.868 1.000 

  12 0.972 0.088 0.494 1.000 

            

Outliers Accuracy  12 0.952 0.155 0.200 1.000 

  14 0.926 0.175 0.200 1.000 

  15 0.907 0.187 0.200 1.000 

            

Non-Outliers Accuracy 15 0.997 0.008 0.952 1.000 

  14 0.993 0.020 0.864 1.000 

  12 0.973 0.090 0.476 1.000 

 

 Figure 40 shows outlier accuracy boxplots for these additional DENCLUE sets (14 and 

15). Even if lower outlier accuracies are seen when compared to set 12, high outlier accuracies 
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(i.e., greater than 0.90) are still obtained in most of the samples, notably for results obtained from 

set 14. Figure 41 shows non-outlier accuracy boxplots for these additional sets. A signicant 

increase in non-outlier accuracies were obtained when using parameters from sets 14 and 15, when 

compared to results from set 12. 

 

 

Figure 40. DENCLUE – Additional outliers accuracy boxplots (location input data) 

 

 

Figure 41. DENCLUE – Additional non-outliers accuracy boxplots (location input data) 
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Figure 42 shows a comparative visual analysis between the results from sets 12, 14 and 15 

in instances where low outlier accuracies (Fig. 37) or low non-outlier accuracies (Fig. 39) were 

found in set 12. Examples of low outlier accuracies among these sets (12, 14, and 15) are shown 

in Figure 42 (first and second row in the figure). Generally, using parameter settings from set 12 

result in detecting and marking outlier with higher accuracy by correcly detecting more scattered 

outliers than results when using parameter settings from sets 14 or set 15 (e.g., 2nd row in Figure 

42). But in other instances, results obtained from all sets were similar in their inability to detect a 

distinct cluster group of outliers as extrinsic pressure artifacts (e.g., 1st row in Figure 42).  

The benefits of running the additional sets (14 and 15) are seen in their improvement of 

non-outlier accuriaces when compared to set 12 results. Instances where low non-outlier accuracies 

were seen when using parameter settings in set 12 are now greatly improved when using parameter 

settings from either set 14 or set 15 (e.g., see rows 3-5 in Figure 42). While the DENCLUE 

algorithm is more relaxed when using parameter settings from set 14 or 15 (in terms of detecting 

and marking outliers), it still offers high outlier accuracies (>0.90) in most of the pressure map 

samples (see Fig. 40) with greatly improved non-outlier accuracies (see Fig. 41). 

In summary, using the location information as input data, parameters of minimum density 

between 1.65e-03 to 1.7e-03, and epsilon parameters between 0.01 to 2, as used in sets 14 and 15, 

were shown to be adequate when using DENCLUE algorithms for detecting outlier/non-outliers 

sitting pressure readings in a 32x32 pressure map.  
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Figure 42. DENCLUE – Samples with low accuracies in sets 12, 14 and 15 (location input data) 

Set 12 Results Set 14 Results Set 15 Results 
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DBCLASD 

DBCLASD algorithms were implemented from the Python module py-dbclasd (Palacio, 

2015). A graphical summary of the average accuracies obtained when using DBCLASD, with both 

location and location-pressure data input, is presented in Figure 43. As with similar figures, the 

top-left panel show average overall accuracies for each set of parameters and input data. Right 

panels show average outliers (top-right) and non-outliers (bottom-right) accuracies for each set of 

parameters when using seating pressure map samples with pre-identified outliers. The bottom-left 

panel shows average non-outlier when using seating pressure map samples without outliers.  

 Results indicate that DBCLASD algorithms generally show higher average outlier and 

non-outlier accuracies when using the pressure readings’ location as input data, as compared to 

using location-pressure as input data.  

 

 

Figure 43. DBCLASD – Overall, Outliers, Non-Outliers average accuracy by set 
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Table 21 show descriptive statistics of accuracy results for all sets of parameters used in 

DBCLASD algorithms when using location information as input data. Unfortunately, none of these 

sets show both average outlier and non-outlier accuracies above 0.90. The highest Outliers 

accuracy is seen when using the parameter settings in set 13 with a 0.819 accuracy in detecting 

pre-defined outlier pressure readings (i.e., extrinsic pressure artifacts).  

Table 21. DBCLASD – Accuracy results by set (location input data) 

Variable Set Mean StDev Minimum Maximum 

Overall Accuracy  12 0.987 0.036 0.826 1.000 

  13 0.987 0.030 0.838 1.000 

  9 0.985 0.051 0.650 1.000 

 11 0.979 0.039 0.851 1.000 

  10 0.974 0.065 0.755 1.000 

            

Outliers Accuracy  13 0.819 0.236 0.167 1.000 

  12 0.764 0.294 0.000 1.000 

  9 0.725 0.342 0.000 1.000 

  10 0.716 0.353 0.000 1.000 

  11 0.685 0.366 0.000 1.000 

            

Non-Outliers Accuracy 12 0.989 0.036 0.826 1.000 

  13 0.989 0.030 0.842 1.000 

  9 0.988 0.051 0.650 1.000 

  11 0.982 0.039 0.851 1.000 

  10 0.976 0.066 0.755 1.000 

 

Figure 44 shows boxplots for DBCLASD outlier accuracies for all parameter sets when 

using the location input data. Set 13 is highlighted to show points of individual pressure maps 

where Outliers accuracies were not 1 (100%). While results of using parameter setting described 

in set 13 show many samples with high outlier accuracy (median = 0.944), there are many instances 

where the detection of outliers was poor. Figure 45 show examples where low outlier accuracies 

were obtained. In some instances, the DBCLASD algorithm appears to have issues in detecting 

scattered outliers points within seating pressure maps (see Fig. 45, top). 
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Figure 44. DBCLASD – Outliers accuracy boxplots by set (location input data) 

 

 

   

   

Figure 45. DBCLASD – Samples with low outlier accuracy in set 13 (location input data) 

 

Outliers Reference Set 13 Results 
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Some of the results obtained while using DBCLASD algorithms with location input data 

and parameter settings in set 13 were unusual. Figure 46 show some examples were low non-

outlier accuracies were obtained. This figure shows a number of true contact pressure readings 

(i.e., non-outliers) being incorrectly marked as outliers in an unusual manner. Due to algorithms’ 

inability to detect outliers and non-outliers with high accuracies, DBCLASD appears to be an 

inadequate technique for detecting unwanted pressure readings in a 32x32 pressure map. 

 

 

  

   

Figure 46. DBCLASD – Samples with low non-outlier accuracy in set 13 (location input data) 

 

Spatial Clustering Summary 

Many spatial clustering methods were shown to be adequate for detecting outlier/non-

outliers seating pressure readings in a 32x32 pressure map. DBSCAN and DENCLUE algorithms, 

in particular, showed superior average outlier and non-outlier accuracies among the various 

Outliers Reference Set 13 Results 
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clustering methods evaluated. Given the results obtained from these clustering algorithms, 

recommended parameters for DBSCAN and DENCLUE algorithms are shown in Table 22.  

An absolute superiority of a particular combination of clustering method/parameter settings 

against others cannot be reached. Irrespective of the clustering method used, a tradeoff between 

outlier and non-outlier accuracies is usually seen when trying to increase one or the other. While 

a particular method/parameter combination cannot be chosen as the best, results indicate that better 

outlier/non-outlier accuracies are typically obtained when only using location information of the 

pressure readings as input data in most of the evaluated clustering algorithms.  

Table 22. Summary of analysis results for recommended clustering methods  

Method Parameters Input 
Average Accuracy Avg. 

Proc 

Time Outliers Non-Outliers Overall 

DBSCAN 
eps: 1.60, 1.80 

min_samples: 8 
Location 0.949 0.989 0.988 5.8ms 

DENCLUE 
eps: 2 

min_density: 1.7e-03 
Location 0.926 0.993 0.992 11.1s 

DBSCAN 
eps: 2.00, 2.20 

min_samples: 10 
Location 0.925 0.995 0.994 5.8ms 

DENCLUE 
eps: 0.01 

min_density: 1.65e-03 
Location 0.907 0.997 0.995 11.5s 

DBSCAN 
eps: 2.5 

min_samples: 10 
Location 0.817 0.999 0.997 5.7ms 

 

Among the recommended methods (Table 22), the highest average outlier accuracy was 

achieved by DBSCAN when using parameters of epsilon between 1.6-1.8 and setting minimum 

samples at 8. This combination produced a 94.9% average outlier accuracy rating while 

maintaining an average non-outlier accuracy close to 99% (0.989). The highest average non-outlier 

accuracy, while maintaining an average outlier accuracy greater than 90%, is achieved by 

DENCLUE when using a minimum density of 1.65e-03, with a 99.7% average non-outlier 
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accuracy rating. A good balance between average outlier and non-outlier accuracies were achieved 

by DENCLUE when using a minimum density of 1.7e-03, with 92.6% and 99.3% respectively.  

If preservation of all true contact pressure readings is of utmost importance, a DBSCAN 

algorithm with parameters epsilon parameter minimum samples set at 2.5 and 10, respectively, 

showed very high non-outlier accuracies when using the location input data (see Table 22). This 

particular combination produced 52 out of 56 samples with 100% non-outlier accuracy scores, and 

the remaining samples with non-outlier accuracy scores greater than 97.51%. Considering its high 

non-outlier accuracies, an acceptable average outlier accuracy score of 81.7% was also achieved 

by these DBSCAN settings. Another alternative for preserving most of the true contact pressure 

readings is to use a DENCLUE algorithm with minimum density set at 1.65e-0.3 and use the 

location information as input data. This DENCLUE combination showed very high average non-

outlier accuracies (0.997), and an improved average outlier accuracy (0.907) when compared to 

the previously discussed DBSCAN combination (epsilon at 2.5 and minimum samples at 10). 

 The processing times for each clustering method were also recorded. Table 22 show 

DBSCAN algorithms with average processing times of around 5.8ms when detecting outliers/non-

outliers in 32x32 pressure maps, while DENCLUE showed average processing times of around 

11s. DBSCAN algorithms implemented in this research come from the module scikit-learn 

(Pedregosa et al., 2011), a well-known fully-optimized machine learning python package. On the 

other hand, the DENCLUE module available for python and used in this research is non-optimized. 

This DENCLUE module has also been used in other research studies (L. Liao et al., 2017). The 

need for a fully optimized DENCLUE python package (introducing multiprocessing optimization 

during hill climb algorithms) will be beneficial for future pressure mapping analyses using the 

python programming language. 
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Spatial Autocorrelation and Image Statistical Features 

 The following subsections show results of the analysis of spatial autocorrelation measures 

and image statistical features for the following datasets: (1) static data subset, and (2) paired data 

subset. Results of correlation and regression analysis are discussed with the aim of finding 

meaningful differences between highly correlated variables, and eliminating correlated variables 

via dimension reduction techniques (e.g., high correlation filters). Computation demands for 

calculating various measures are also discussed.  

Static Data Subset 

An average coefficient of variation was calculated for each subject using seating pressure 

maps collected during their sitting session trials. Stratified sampling of subjects’ pressure maps 

was used following the distribution of the average coefficient of variation by subject (see Fig. 47). 

Twenty (20) samples of seating pressure maps were selected to create the static data subset (see 

Appendix H). 

 

 

Figure 47. Histogram of subjects’ average coefficient of variation 
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 Spatial Autocorrelation. Measures of Moran’s I and Geary’s C were calculated using 

modules from the Python Spatial Analysis Library (PySAL v1.14.4) (Rey & Anselin, 2007). The 

results showed that the measures are inversely identical to each other within the context of seating 

pressure mapping (using the static data subset). Regardless of the weight matrix used, both 

measures showed a very strong correlation between each other with correlation values of 𝑟 = −1 ,

𝑟 = −0.998 , and 𝑟 = −0.999 for the queen, constant-distance, and inverse-distance weight 

matrices respectively. By having very similar behavior to Gearys’ C and easier interpretability 

(with a defined autocorrelation range from -1 to 1), Moran’s I spatial correlation measure appears 

to be a better candidate as a new pressure measure. 

On the other hand, computational demands using the PySAL python package were very 

different between these measures, even if formulas have a similar degree of complexity (see Eq. 1 

and Eq. 2). Figure 48 shows the average processing times when calculating the spatial 

autocorrelation measures in the static data subset samples.  

 

 

Figure 48. Spatial autocorrelation measures average processing time (static data subset) 
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Average processing time for calculating Moran’s I was under 25ms in all weight matrices; 

Geary’s C, on the other hand, showed an average processing time of around 150ms when using 

the queen matrix (3x3), and around 400ms when using other larger weight matrices (5x5) (see Fig. 

48). The effect of choosing different weight matrices not only affected the computing time, but 

also the magnitude of the spatial autocorrelation measure. Figure 49 shows Moran’s I spatial 

autocorrelation measures using different weight matrices for all samples in the static data subset. 

Moran’s I results show moderate to very strong positive spatial autocorrelation within all pressure 

map samples, with consistently higher measures when using the queen weight matrix (Q). Using 

weight matrices with a larger area (5x5 instead of 3x3) affected the Moran’s I values. When using 

the Inverse-Distance weight matrix (ID) and Constant-Distance weight matrix (CD), both using a 

5x5 matrix, Moran’s I values are reduced by approximately 10.6% and 15.1% respectively, 

compared to results obtained when using the Queen weight matrix (Q) (3x3) (see Fig. 49). 

 

 

Figure 49. Moran’s I spatial autocorrelation by weight matrix (static data subset) 
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 A correlation analysis using Pearson product-moment was used to assess the relationship 

between all known and proposed pressure map measures using the samples in the static data subset. 

Figure 50 shows the results of the correlation matrix presented as a hierarchical clustered 

correlogram. 

Focusing on the correlated clusters where spatial autocorrelation measures are included 

(Fig. 50, top left), other meaningful correlations besides the ones between themselves (Moran’s I 

and Geary’s C) are also seen. The correlation measures obtained from Gray-Level Spatial-

Dependence (GLSD) statistical features in the Y direction (GLSD – Correlation Y) and Moran’s I 

(Q) (queen matrix) show a strong positive correlation (𝑅2 = 0.891). Figures 51 and 52 show the 

regression model, fitted line plot, and standardized residual plots between these measures. An 

unusual observation (𝑠𝑡𝑑. 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 > |2|) detected while fitting the regression model can also be 

seen in these figures. Figure 53 shows the pressure map of this unusual observation (Fig. 53a), 

along with calculated Moran’s I and GLSD Correlation Y measures. 

 

 

Figure 51. Moran’s I vs GLSD Correlation Y regression (static data subset) 
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Figure 52. Moran’s I vs GLSD Correlation Y residuals (static data subset) 

   
(a) 117-1-1193 Pressure Map          (b) 161-1-1833 Pressure Map  

               
 (c) 117-1-1193 Second Gradient Map             (d) 161-1-1833 Second Gradient Map  

Sample 117-1-1193* 161-1-1833 

Moran’s I (Q) 0.79220 0.798580 

GLSD – Correlation Y 0.67993 0.759185 
        *Unusual Observation 

Figure 53. Moran’s I vs GLSD Correlation Y unusual observation (static data subset) 
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For comparative purposes, Figure 53 also shows a secondary pressure map (Fig. 53b) with 

a similar Moran’s I measure, but with a GLSD Correlation Y result close to the expected value 

(𝑠𝑡𝑑. 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −0.01). Second gradient maps along the Y-axis (90°) are also presented in this 

figure for each one of the pressure maps; these are calculated by using second order accurate 

central differences in the interior points of the images, and first order accurate one-sides (forward 

or backwards) differences at the image boundaries at a given direction. By comparing the second 

gradient maps between these samples, more scaterring of positive/negative gradients are seen in 

Figure 53c, while Figure 53d has more defined gradient clusters. GLSD Correlation measures 

appear to be sensitive to these pressure gradient variations at a given direction (e.g., 90°), while 

measures of Moran’s I appear to give more emphasis in measuring presence of correlated pressure 

cluster with more robustness to these pressure gradient variations.  

It is also important to highlight that measures of correlation using GLSD do not require 

any weight matrix. The magnitude of Moran’s I spatial autocorrelation measure was significantly 

affected by defining weight matrices with different areas of interest (i.e., moving window) (see 

Fig. 49). For the seating pressure maps evaluated in this study, the use of a queen weight matrix 

appears to be a more conservative approach when calculating Moran’s I spatial autocorrelation 

measures. As the max-min size of autocorrelated high pressure clusters (e.g., ischial tuberosities) 

are usually within a 3 x 3 region of pressure cells (see Appendix H), higher Moran’s I spatial 

autocorrelations values are obtained due to matching the size of these high-pressure clusters to the 

size of the queen weight matrix. Therefore, there appears to be a relationship between the expected 

max-min size of pressure correlated regions and selecting the size of the regions of interest in a 

weight matrix. A weight matrix with a region of interest greater than the max-min size of 

autocorrelated high-pressure clusters could potentially weaken the spatial autocorrelation values. 
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While Moran’s I and GLSD Correlation measures showed similar behaviors (𝑅2 =

0.891), they were found to be unique pressure map descriptors, and are adequate measures of 

spatial autocorrelation of pressure maps. In the context of seating pressure maps, high spatial 

autocorrelation values indicate presence of distinct pressure clusters of various levels formed by 

contiguous pressure readings, while low values indicate scattered low/high pressure readings or 

distinct low-area high-pressure points (e.g., acute pressure points). Appendix I include results of 

measures of spatial autocorrelation (Moran’s I and GLSD Correlation) for all samples in the static 

data subset (Appendix H).  

Researchers have the option to measure spatial autocorrelation within pressure maps using 

Moran’s I, which allows them to choose the size/weight of the area of interest (i.e., moving 

window) and is more robust to gradient variations, or use GLSD Correlation, which does not 

require a described weight matrix and is more sensitive to localized pressure gradient variations. 

Image Statistical Features. Results from the correlation matrix and clustered correlogram 

also show instances where many image statistical features and known pressure measures are 

grouped into highly positive or negative correlated clusters (see Fig. 50). Measures of Gradient 

Contrast (GLD) and Contrast (GLSD) behave almost identically (𝑅2 ≈ 100%) regardless of the 

measure’s direction [0° (𝑋) or 90°(𝑌)]. Other measures, such as Gradient Contrast (GLD) and 

Gradient Mean (GLD), also behave similarly at either direction with 𝑅2 ≈ 84.5% at 90°, and 𝑅2 ≈

90.3% at 0°. Despite this, there were some instances where unusual observations were observed 

during regression analyses in both directions [0° (𝑋) and 90°(𝑌)], these are shown in Figures 54 

to 57.  
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Figure 54. GLD Gradient Contrast Y vs GLD Gradient Meant Y regression (static data subset) 

 

 

Figure 55. GLD Gradient Contrast Y vs GLD Gradient Meant Y residuals (static data subset) 
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Figure 56. GLD Gradient Contrast X vs GLD Gradient Meant X regression (static data subset) 

 

 

Figure 57. GLD Gradient Contrast X vs GLD Gradient Meant X residuals (static data subset) 

 

Figure 58 shows pressure maps of the samples where measures of GLD Gradient Contrast 

[in 0° (𝑋) or 90°(𝑌)] were unusual and higher than predicted. The figure shows that Gradient 



109 

 

 

Contrast values are significantly higher, considering values of Gradient Mean, when pressure maps 

have either a single or small group(s) of acute high-pressure cells. These instances are captured 

better by measures of GLD Gradient Contrast due their sensitivities for high gradients (see Eq. 6 

and Eq. 9). These two measures (GLS Gradient Contrast and GLD Gradient Mean) are considered 

adequate as global measures of pressure gradients within a pressure map due to their uniqueness 

as pressure map descriptors. 

 

   
(a) 190-3-755 Pressure Map          (b) 140-3-3396 Pressure Map  

Sample 190-3-755 140-3-3396 

GLD - Gradient Contrast X 962.358 *1943.149 

GLD - Gradient Mean X 20.475 25.279 

GLD - Gradient Contrast Y *1062.769 *1417.125 

GLD - Gradient Mean Y 16.962 22.803 

         *Unusual Observation 

Figure 58. GLD Gradient Contrast vs Gradient Mean unusual observations (static data subset) 

 

Results from the correlation matrix and clustered correlogram presented in Figure 50 also 

show other sets of statistical features that are grouped in strongly positive or negative correlated 

clusters. Measures of Homogeneity (GLSD), Inverse-Difference Moment (GLD), and Gradient 

Second Moment (GLD) are shown as positively correlated, and are measures commonly used to 
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quantify an image texture. An image texture measures the variations of the surface intensity and 

quantifies properties of smoothness, coarseness and regularity (Kurani et al., 2004, p. 1). Measures 

of Homogeneity (GLSD) and Inverse-Difference Moment (GLD) behave similarly when measured 

at 90° (𝑅2 ≈ 94.5%) or 0° (𝑅2 ≈ 94.2%) with no unusual observations in the regression models.  

A strong negative correlation was found between Gradient Second Moment (GLD) and 

Gradient Entropy (GLD) in both 90° (𝑅2 ≈ 96.5%) and 0° (𝑅2 ≈ 92.2%) directions. GLD 

measures of Gradient Mean and Gradient Entropy also behave similarly when measured either at 

90o (𝑅2 ≈ 95%) or 0𝑜 (𝑅2 ≈ 90%). The Gradient Second Moment (GLD) measure looks for 

lack of noise (or disorder) in pixel intensities, whereas Gradient Entropy (GLD) increases with 

noise/disorder; both of these measures are being affected, in opposite directions, by an overall 

increase in pressure gradients (i.e., an increase in pressure gradients [Gradient Mean (GLD)] is 

usually associated with an increase in image noise [Gradient Entropy (GLD)] and, thus, a decrease 

in surface smoothness [Gradient Second Moment (GLD)] within a pressure map image). 

Statistical features of Gradient Second Moment (GLD) and Homogeneity (GLSD) do not 

show a very strong correlation between themselves (𝑅2 ≈ 61% at 90°, and 𝑅2 ≈ 50% at 0°), 

even when both are measures of a pressure map texture and/or smoothness. Figure 59 shows line 

plots for values of both of these measure at 90° (Y) for all samples in the static data subset. Two 

samples are highlighted to indicate where significant differences or unusual observations were 

seen during regression analyses (𝑠𝑡𝑑. 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 > |2.29|). Figure 60 shows pressure maps, 

gradient maps, and values of Gradient Second Moment (GLD) and Homogeneity (GLSD) for these 

unusual observations. First-order gradient maps are calculated as absolute differences in pressure 

in a given direction. 
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First-order gradient map from sample 122-2-2954 (Fig. 60c) shows low variations in the 

magnitudes of absolute gradients (low texture), reflected as a high Gradient Second Moment 

(GLD) value due to this. On the other hand, a higher texture is seen in gradient map from sample 

145-1-1601 (Fig. 60d), resulting in a lower Gradient Second Moment (GLD) value. In contrast, 

the measure of Homogeneity (GLSD) in sample 122-2-2954 is higher than expected due to the 

presence of pressure clusters with identical high-pressure readings (300 mmHg), a consequence of 

the pressure interface mat limits (max. pressure response). Results indicate that Homogeneity 

(GLSD) measures are sensitive when a number of contiguous equal-value pressure readings are 

present in the pressure maps (i.e., homogeneity within various pressure cluster levels), while 

measures of Gradient Second Moment (GLD) are more sensitive to gradient transitions. 

Both Gradient Second Moment (GLD) and Homogeneity (GLSD) measures are adequate, 

and complementary, measures of pressure map texture and homogeneity. Higher values on these 

measures will generally indicate a pressure map with smoother transitions between pressure levels, 

with less coarseness within the pressure map, and more homogeneous pressure cluster levels. 

 

 

Figure 59. GLD Gradient Second Moment Y vs GLSD Homogeneity Y (static data subset) 
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(a) 122-2-2954 Pressure Map          (b) 145-1-1601 Pressure Map  

             
(c) 122-2-2954 Gradient Map          (d) 145-1-1601 Gradient Map 

Sample 122-2-2954 145-1-1601 

GLD - Gradient Second Moment X 0.0336 0.0174 

GLSD - Homogeneity X 0.0786 0.0593 

GLD - Gradient Second Moment Y *0.0436 0.0305 

GLSD - Homogeneity Y 0.0775 *0.1062 

    *Unusual Observation 

Figure 60. GLD Gradient Second Moment vs GLSD Homogeneity unusual observations 

(static data subset) 

 

Other sets of statistical features that also show strong correlations are Energy (GLSD), 

Entropy (GLSD), and Contact Cells (see Fig. 50). An initial assessment found that the direction of 

measurement does not significantly affect the behavior of Entropy (GLSD) [𝑅2 ≈ 96.1% between 

90°(𝑌) and 0°(𝑋)]. Similarly, measures of Energy (GLSD) are also generally not affected by the 
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direction of measurement (𝑅2 ≈ 92% between 90°(𝑌) and 0°(𝑋)). Measures of Energy (GLSD) 

and Entropy (GLSD) are almost inversely identical to each other with 𝑅2 > 97.7% in either 

90°(𝑌) or 0°(𝑋). Regression results for measures of Energy (GLSD) and Entropy (GLSD) were 

obtained by excluding sample 145-1-1601 (see Fig. 60b). Figure 61 shows the relationship between 

these image statistical features while highlighting measures’ discrepancies found in sample 145-

1-1601. Note that the measure scale for Energy (GLSD) is in inverse proportion. Energy (GLSD) 

and Entropy (GLSD) are significantly affected when a pressure map shows pressure clusters at 

max pressure response readings (300 mmHg) (see Fig. 60b). A higher entropy (e.g. ~9.25), and 

much lower energy (e.g. ~1/582.67), is to be expected for this sample if the max pressure response 

of the pressure mat interface was higher than subject’s true maximum exerted pressure in a given 

cell. For this reason, sample 145-1-1601 was excluded during regression analysis. With the use of 

a proper pressure mapping interface with no capped-pressure readings and clusters, single measure 

such as Entropy (GLSD) at 0°(𝑋) is representative of the second-order map texture. 

 

 

Figure 61. GLSD Energy X vs GLSD Entropy X (static data subset) 
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Measures of Entropy (GLSD) [at 0°(𝑋)] and Contact Cells also show a strong positive 

correlation (𝑅2 ≈ 89.3%) when considering all samples included in the static data subset. Two 

unusual observations were found during regression analyses where the observed entropy values 

were lower than expected (see Figs. 62, 63). 

 

 

Figure 62. GLDS Entropy X vs Contact Cells regression (static data subset) 

 

 

Figure 63. GLDS Entropy X vs Contact Cells residuals (static data subset) 
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By considering localized pressure changes to identify randomness (noise) in the pairwise 

pressure distribution at a given direction, GLSD Entropy values are expected to increase when the 

number of contact cells increase as a higher diversity of pressure readings is expected. But presence 

of homogeneous regions within a pressure map, relative to the contact pressure area, are also 

affecting the entropy value. Figure 64 shows pressure maps where measures of Entropy (GLSD) 

were unusual and lower than expected considering the size of the pressure maps.  

 

   
(a) 111-2-2878 Pressure Map          (c) 189-3-3818 Pressure Map  

             

              (b) 111-2-2878 Second Gradient Map            (d) 189-3-3818 Second Gradient Map 

Sample 111-2-2878 189-3-3818 

Contact Cells 497 297 

GLSD – Entropy X 9.5496* 8.7443* 

GLSD – Energy X 0.001434 0.002479 

   *Unusual Observation 

Figure 64. Contact Cells vs GLSD Entropy unusual observations (static data subset) 
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Common pressure measures, such as Sum of Pressure or Coefficient of Variation, do not 

show high correlations with proposed pressure measures; with measures of Skewness and Kurtosis 

only relating to each other (𝑅2 ≈ 79.7%). On the other hand, Standard Deviation shows high 

correlations with various contrast measures, being the highest with the measure of Gradient 

Contrast X (GLD) (𝑅2 ≈ 86.5%). But while the relationship between these measures is high, their 

approach for measuring contrast and variability is fundamentally different. Measures of Gradient 

Contrast are dependent on the spatial relationship of pressure readings, whereas Standard 

Deviation do not take this spatial relationship into consideration. Illustrative examples can be seen 

in Figure 65. The measure of Gradient Contrast in sample 186-1-3161 is high due to the presence 

of a spatially-related high-pressure region located among low pressure readings (see Fig. 65b), 

while measures of Standard Deviation are very similar for both of the pressure maps shown in this 

figure (i.e., no spatial relationships are considered). 

 

   
(a) 161-1-1833 Pressure Map          (b) 186-1-3161 Pressure Map  

Sample 161-1-1833 186-1-3161 

Sum of Pressure 19,865.39 19,567.5 

Contact Cells 386 393 

Standard Deviation 41.44064 40.77126 

GLD - Gradient Contrast X 1278.728863 1562.537572 

 

Figure 65. Standard Deviation vs GLD Gradient Contrast X example (static data subset) 
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Static Data Subset Summary. In terms of spatial correlation measures, Morans’ I appears 

to be more convenient to use than Geary’s C. While they both behave similarly, Moran’s I is easier 

to interpret. Analysis of the selection of the weight matrix for spatial autocorrelation measures 

indicate that higher spatial autocorrelations are obtained if area of interest (matrix moving window) 

is similar to the max-min size of expected autocorrelated high-pressure clusters. GLSD Correlation 

is also an acceptable measure of spatial autocorrelation; it does not require a described weight 

matrix and is more sensitive to localized pressure gradient variations. Higher GLSD Correlation 

values are usually obtained when measured in the anterior-posterior sitting direction [90°(𝑌)]. 

Many of the introduced image statistical features were also strongly correlated. In terms of 

measures of variability and gradients, Gradient Contrast (GLD) and Contrast (GLSD) are relatively 

the same measure, but the former is easier to compute and interpret. The same can be stated for 

Gradient Mean (GLD) and Gradient Entropy (GLD), being the former easier to compute and 

interpret. Measures of Gradient Contrast (GLD) and Gradient Mean (GLD) are both acceptable 

global measures of pressure map gradients. While they share many similarities, the Gradient 

Contrast (GLD) is more sensitive to pressure maps exhibiting a single or small group(s) of acute 

pressure points, while the Gradient Mean (GLD) is more robust to these high-pressure points. For 

these contrast measures, higher contrast values are usually obtained when measured in the lateral 

sitting direction [0°(𝑋)]. Compared to common measures of pressure variability such as Standard 

Deviation or Coefficient of Variation, Gradient Contrast (GLD) and Gradient Mean (GLD) also 

consider the spatial relationship of the pressure readings when assessing pressure map’s variability.  

Measures of Gradient Second Moment (GLD) and Homogeneity (GLSD) are unique and 

complementary measures for evaluating pressure maps’ texture, smoothness and pressure 

regularity. Their differences lie in that Gradient Second Moment (GLD) is more sensible to 
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changes in pressure gradients, while Homogeneity (GLSD) emphasizes more in measuring the 

transition and similarities within various pressure levels. Higher values in both measures are 

usually obtained when measured in the anterior-posterior sitting direction [90°(𝑌)]. 

Measures of Entropy (GLSD) and Energy (GLS) were found to be relatively the same. 

These measures are also correlated with Contact Cells (i.e., number of non-zero pressure readings), 

but they react differently if pressure maps exhibit high or low homogeneity given the size of the 

contact area. Using measures of Entropy (GLSD) or Energy (GLS) as global pressure descriptors 

is somewhat redundant if information on the number of contact cells and measures of homogeneity, 

such as Gradient Second Moment (GLD), are available. The information provided by contact cells 

and homogeneity can predict entropy/energy values with high accuracy (𝑅2 ≈ 95%). 

A dimensional reduction process focused on feature selection was followed by using high 

correlation filters (𝑅2 ≥ 0.8) in combination with analyses of regression models an evaluation of 

unusual observations. The goal was to select a set of measures where each selected feature is able 

to explain a unique user-chair interaction phenomenon. The selected pressure measures resulting 

from this analysis can be seen in Table 23. Important common pressure measures are also included 

in this set. Each proposed measure has been categorized according to its potential use in pressure 

mapping analysis, along with important notes and recommendations for their applications. 

In the following section, this reduced set of meaningful pressure measures are evaluated 

using paired-samples of static pressure maps from different subjects. As a result of information 

loss, these paired samples show no significant differences among common pressure measures (e.g. 

Contact Cells, Sum of Pressure, and Coefficient of Variation). These new measures are analyzed 

in their ability to discriminate and find differences (if any) among these paired samples, with the 

goal of effectively recovering the information loss. 
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Table 23. Set of meaningful pressure measures  

Type Measure Notes 

General 

Contact Cells 

Indicates size of pressure area. A small high-pass 

pressure filter (e.g. 5 mmHg) is recommended to 

remove low pressure artifacts 

Sum of Pressure 
Measures the total amount of exerted pressure in 

contact area 

Skewness Measures high-low distribution of pressure readings 

Spatial 

Relation 

Moran’s I 
Recommended area of weight matrix similar to max-

min size of expected correlated high-pressure clusters 

Correlation 

(GLSD) 

Sensitive to localized pressure gradient variations. 

Higher values obtained along sitting direction axis (Y). 

Pressure 

Variability 

and Contrast 

Coefficient of 

Variation 
Non-spatial global measure of pressure variability 

Gradient Contrast 

(GLD) 

Sensitive when pressure maps have either a single or 

small group(s) of acute pressure points 

Gradient Mean 

(GLD) 
Robust to high-pressure points. 

Smoothness 

and Texture 

Gradient Second 

Moment (GLD) 
Sensitive to changes in pressure gradients 

Homogeneity 

(GLSD) 

Emphasizes in measuring the similarities within various 

pressure levels 

 

Paired Data Subset 

Similar to the sampling strategy used for creating the static data subset, stratified sampling 

of subjects’ pressure maps was used following the distribution of the average coefficient of 

variation by subject (see Fig. 47). For each level of coefficient of variation, random paired samples 

were chosen if no significant differences (∆ < 5%) were found across the following common 

pressure measures: Contact Cells, Sum of Pressure, and Coefficient of Variation. Ten (10) paired-

samples of pressure maps with various degrees of coefficient of variations were selected to create 

the paired data subset (see Appendix J). 
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Paired-Samples Analysis. To evaluate the discriminant power of newly proposed pressure 

measures, a meaningful difference between paired-samples is considered when a relative 

difference of at least ten percent is found between values of the proposed pressure measures 

(∆ ≥ 10%). For calculating Moran’s I, an appropriate weight matrix (i.e., Queen, Constant-

Distance, or Inverse-Distance) is selected for each paired-sample according to max-min size of the 

correlated high-pressure clusters in the samples. GLD and GLSD measures are also considered at 

both direction [90°(𝑌) and 0°(𝑋)]. Results of common pressure measures are presented along 

with any significant finding from the new pressure measures in each paired-sample. 

As global descriptors of pressure distributions, the set of meaningful pressure measures in 

Table 23 are unable to find differences in terms of shape, orientation, or position between pressure 

maps; their emphasis is in describing pressure distribution patterns and spatial relationships within 

pressure maps. Their results are useful in identifying differences and similarities of the within-map 

intra-relationships of the pressure readings. Figures 66 and 67 are good examples of these 

restrictions; where differences in terms of shape, location, and spatial position of pressure clusters 

can be seen between paired samples. But focusing on the pressure distribution patterns and the 

overall relationship of the pressure readings and clusters, some similarities can be seen between 

these paired maps.  

Figure 66 shows a number of small high-pressure clusters in both maps, along with 

similarities in the spatial relationship between pressure levels. The main difference between these 

maps is seen in the pressure transitions between the legs and buttocks, where Figure 66b shows a 

more homogeneous transition than Figure 66a. These small differences are being successfully 

detected by differences in the measures of pressure texture in the 90°(𝑌) direction.  
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 (a) 150-2-1968 Pressure Map          (b) 144-3-1841 Pressure Map  

 
*Red highlight: No meaningful differences are found (∆ ≤ 10%) 

Figure 66. Pressure measures for samples 150-2-1968 vs 144-3-1841 (paired data subset) 

 

With respect to Figure 67, many similarities are also seen between the paired maps. These 

maps show similar pressure distribution patterns and similar high-pressure clusters in terms of size 

and magnitude (albeit in different locations). Minor differences can be seen in terms of pressure 

scattering as Figure 67b shows more texture and roughness in the right leg regions and Figure 67a 

shows more delineated acute pressure points close to the right ischial tuberosity. These minor 

differences are being successfully detected by differences in the values of gradient contrast 

(detecting acute points) and homogeneity (detecting texture differences).  
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 (a) 120-2-1719 Pressure Map          (b) 128-3-1298 Pressure Map  

 
*Red highlight: No meaningful differences are found (∆ ≤ 10%) 

Figure 67. Pressure measures for samples 120-2-1719 vs 128-3-1298 (paired data subset) 

 

In general, paired-samples from Figures 66 and 67 are somewhat similar, with only minor 

differences seen in their pressure distributions. Only few of the reduced set of meaningful measures 

(Table 23) were able to effectively capture these slight differences. The following selected 

examples show paired-samples where more significant differences were detected by the newly 

proposed pressure measures. A recurrent theme in these analyses is to also highlight the limitations 

of common pressure measures. All figures presented in this section show differences in measures 

of Contact Cells, Sum of Pressure, and Coefficient of Variation to be less than 5% (∆ < 5%), 

highlighting the information loss due to their inability to detect certain pressure distribution 

patterns. The full set of results for all paired-samples are shown in Appendix K. 

120-2-1719 128-3-1298

Contact Cells 388 386 -0.52%

Sum of Pressure 16877.71 16871.47 -0.04%

Coefficient of Variation 0.8247 0.8249 0.03%

GLD - Gradient Contrast Y 664.2320 592.9861 -10.73%

GLSD - Homogeneity X 0.1026 0.0891 -13.10%
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 Figure 68 shows paired-samples were significant differences are seen between maps’ 

pressure distributions. The pressure map in Figure 68a shows better spatial relationship among 

pressure readings, with distinct presences of clusters of low- and high-pressure levels, smoother 

transitions between pressure levels, and greater homogeneity within the pressure levels. On the 

other hand, Figure 68b shows high-pressure readings being scattered throughout the map (e.g., 

upper legs and tuberosities), and higher variability among contiguous readings.  

 

   
(a) 122-3-51 Pressure Map          (b) 170-2-2787 Pressure Map  

 
        *Red highlight: No meaningful differences are found (∆ ≤ 10%) 

Figure 68. Pressure measures for samples 122-3-51 vs 170-2-2787 (paired data subset) 

122-3-51 170-2-2787

Contact Cells 305 307 0.66%

Sum of Pressure 11340.58 11345.89 0.05%

Skewness 1.7478 2.2060 26.22%

GLSD - Correlation X 0.6824 0.4327 -36.60%

GLSD - Correlation Y 0.8530 0.6351 -25.54%

Coefficient of Variation 0.7669 0.7525 -1.89%

GLD - Gradient Contrast X 535.50 927.20 73.15%

GLD - Gradient Mean X 15.94 20.03 25.65%

GLD - Gradient Contrast Y 234.37 541.71 131.14%

GLD - Gradient Mean Y 10.04 15.53 54.65%

GLD - Gradient Second Moment X 0.0345 0.0283 -17.77%

GLSD - Homogeneity X 0.0782 0.0617 -21.07%

GLD - Gradient Second Moment Y 0.0553 0.0378 -31.62%

GLSD - Homogeneity Y 0.1026 0.0753 -26.61%
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The information loss while relying in common pressure measures is evident. Proposed 

pressure measures were able to effectively detect differences between the pressure maps shown in 

Figure 68. The scatteredness of high-pressure readings and the high-variability among contiguous 

readings in Figure 68b translate to lower spatial measures, higher gradient measures, and lower 

smoothness measures (i.e., increased texture) when compared to Figure 68a. Figure 69 shows 

another set of samples to further illustrate the discriminability of the new pressure measures. 

 

   
(a) 118-2-61 Pressure Map          (b) 188-2-2491 Pressure Map  

 
        *Red highlight: No meaningful differences are found (∆ ≤ 10%) 

Figure 69. Pressure measures for samples 118-2-61 vs 188-2-2491 (paired data subset) 

118-2-61 188-2-2491

Contact Cells 368 364 -1.09%

Sum of Pressure 25704.47 25628.04 -0.30%

Moran's I (CD) 0.7905 0.5501 -30.41%

GLSD - Correlation X 0.8539 0.6808 -20.28%

GLSD - Correlation Y 0.8646 0.7400 -14.41%

Coefficient of Variation 1.0451 1.0441 -0.10%

GLD - Gradient Contrast X 1622.49 3663.97 125.82%

GLD - Gradient Mean X 25.11 38.17 52.01%

GLD - Gradient Contrast Y 1471.59 2819.38 91.59%

GLD - Gradient Mean Y 22.29 31.86 42.93%

GLD - Gradient Second Moment X 0.0255 0.0180 -29.41%

GLSD - Homogeneity X 0.0797 0.0559 -29.94%

GLD - Gradient Second Moment Y 0.0317 0.0231 -27.17%
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By comparing the pressure maps shown in Figure 69, the scattered high-pressure clusters 

seen in Figure 69b significantly influence the measures of spatial relationship, pressure gradients, 

and map’s texture when compared to Figure 69a. Sample 188-2-2491 (Fig. 69b) also shows higher 

variability among contiguous readings and presence of acute pressure points in the upper legs. On 

the other hand, Figure 69a shows smoother transitions between pressure levels and more 

homogenous readings within clusters of various pressure levels. The coefficient of variation, 

commonly used to measure how evenly is the pressure distributed across the surface map, was 

unable to detect these differences in terms of the number of high-pressure clusters in Figure 69b. 

Figure 70 shows another example with similar results to the ones shown in Figures 68 and 

69. In this figure, the pressure map in Figure 70b shows higher texture and variability, and an 

increased number of disconnected high-pressure points/clusters. This leads to significant 

differences in measures of spatial relationship, gradients, and pressure homogeneity.  

With the common pressure measures still showing similar values for the pressure maps in 

Figure 70, the measure of skewness is also indicating differences between the maps. Figure 70b is 

more positively skewed, that is, higher frequencies in the lower side of the pressure spectrum (0-

300 mmHg) is seen in the distribution of pressure readings. Seating pressure maps are expected to 

show positive skewness, as the number of relative low-pressure readings is usually significantly 

higher than the number of relative high-pressure readings. The skewness measure is able to 

quantify the degree of this relationship.  

A visual representation of the distribution of the pressure readings for the pressure maps in 

Figure 70 is shown in Figure 71. The presence of a higher frequency of low-mid pressure readings 

(50-110 mmHg) in sample 158-3-3717 (Fig. 70b) is traduced as a higher skewness value when 

compared to sample 137-2-922 (Fig. 70a). Sample 137-2-922 shows a higher frequency of mid- 
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pressure readings (110-180 mmHg), and lower frequency of low-mid pressure readings (50-110 

mmHg) when compared to sample 158-3-3717, making the pressure distributions more negatively 

skewed. Note that measures of sum of pressure (i.e., the total exerted pressure in the pressure 

sensing area) and number of contact cells are relatively almost the same. 

 

   
(a) 137-2-922 Pressure Map          (b) 158-3-3717 Pressure Map  

 
        *Red highlight: No meaningful differences are found (∆ ≤ 10%) 

Figure 70. Pressure measures for samples 137-2-922 vs 158-3-3717 (paired data subset) 

 

 

137-2-922 158-3-3717

Contact Cells 501 503 0.40%

Sum of Pressure 43027.83 42878.06 -0.35%

Skewness 0.9667 1.5394 59.25%

Moran's I (CD) 0.8281 0.6828 -17.54%

GLSD - Correlation X 0.8557 0.7699 -10.02%

Coefficient of Variation 0.8102 0.8168 0.82%

GLD - Gradient Contrast X 1381.04 2290.37 65.84%

GLD - Gradient Mean X 26.02 32.50 24.91%

GLD - Gradient Contrast Y 1065.68 1762.09 65.35%

GLD - Gradient Mean Y 22.69 29.31 29.16%

GLD - Gradient Second Moment X 0.0212 0.0179 -15.52%

GLD - Gradient Second Moment Y 0.0241 0.0197 -18.20%

GLSD - Homogeneity Y 0.0672 0.0503 -25.22%
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Figure 71. Pressure histograms for samples 137-2-922 vs 158-3-3717 (paired data subset) 

 

Paired Data Subset Summary. Comparative results of the samples included in the paired 

data subset emphasize the importance of introducing new pressure measures to recover the 

information loss by current common pressure measures. The proposed measures of spatial 

relationship, variability, gradients, and smoothness and texture are useful complements to 

commonly used pressure measures; these new pressure measures are able to detect specific and 

unique pressure distribution patterns that commonly used pressure measures are unable to. The 

results in this section confirm that the set of meaningful pressure measures (Table 23) are valid 

and feasible to be used as global descriptors of pressure distribution within pressure maps. If used 

for comparative purposes, note that these measures are unable to identify differences in terms of 

shape, location and/or spatial position of pressure clusters. To overcome these limitations, image 

registration techniques are implemented and evaluated in the following section. 
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Image Registration and Similarity/Dissimilarity Coefficients 

The following subsections show the results of applying image registration techniques to 

compare pressure maps where significant changes are seen in terms of the shape, orientation, 

position and/or location of the pressure readings. Results from the following datasets are presented 

accordingly: (1) transformed data subset, used for evaluating performance and accuracy of 

registration techniques, and (2) registration data subset, used to analyze feasibility and practicality 

of proposed comparative techniques (image registration and similarity/dissimilarity coefficients) 

when significant movements occur (e.g., pressure map shifts, sitting reorientation or relocations).  

While analyzing the transformed data subset, the similarity and dissimilarity coefficients 

are initially used as a supplementary benchmark to evaluate the accuracies and performances of 

the image registration techniques. Because the transformed pressure maps included in transformed 

data subset are in fact the same pressure maps as the reference maps (with very small differences 

due to the random transformation being applied), the resulting values of the similarity and 

dissimilarity coefficients at registration optimality can be used to benchmark the registrations 

procedure. A good registration procedure should result in approximately 1 in measures of 

similarity and 0 in measures of dissimilarity. 

It is important to note that for pressure maps that are inherently different, such as the ones 

included in the registration data subset, the roles of the similarity and dissimilarity coefficients are 

changed to post-hoc comparative measures instead of benchmarking measures. In these instances, 

similarity and dissimilarity coefficients are only used to evaluate differences between registered 

maps at optimality. Higher (lower) values in measures of similarity (dissimilarity) do not 

necessarily indicate that a better registration was achieved by a particular registration method; but 

in cases where pressure map images share a number of commonalities and features, a proper 
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correspondence between registered pressure map images generally results in an increase (decrease) 

of the similarities (dissimilarities) measures.  

Transformed Data Subset 

 To evaluate the translational and rotational capabilities of the image registration 

techniques, a subset of the dataset consisting of ten (10) samples of pressure maps was used. 

Stratified sampling based on different levels of contact area was used to select the pressure map 

samples and create the transformed data subset (see Fig. 12). Two random transformations, each 

with a random translational and rotational shift, were applied to each pressure map sampled; these 

were also included in the transformed data subset. Selected samples with applied random 

transformations are shown in Appendix L. 

Before running the optimal linear registration techniques [i.e., maximization of the Mutual 

Information (MI), or minimization of the Mean Square Errors (MSE)], the pressure map samples 

were upscaled to a factor of 10 (i.e., from a 32 x 32 map to a 320 x 320 map) to allow fine 

adjustments of the position and orientation of the pressure maps during image registration 

procedures.  

 Image registration algorithms were implemented from the SimpleITK (v1.2.0) python 

package, which was developed at the US National Institutes of Health (NIH) and also available in 

multiple programming languages (Yaniv et al., 2018). Before the registration process starts, an 

initial transformation is applied to center the images, and is defined by the geometric moments of 

gray level values computed from both images. This approach assumes that the moments of both 

pressure maps are similar, and hence the best initial guess for registering the images is to 

superimpose both mass centers (i.e., center of pressures). 
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After the initial centering, a number of transformations occur during the registration 

process. The transform used in this study applies a rigid transformation in 2D space with rotations 

represented by a Euler angle, and are specified as a rotation around an arbitrary center, followed 

by a translation. Linear interpolations are used to calculate resulting pressure map images during 

these transformations. Both registration method (MI and MSE) use the same acceleration settings, 

convergence settings, and optimality parameters during the registration process. Gradient descent 

is being used as the optimization algorithm during image registration. 

Initial centering based on the geometric moments significantly reduced any translation and 

location differences between pressure maps. Unfortunately, significant rotational differences 

between pressure maps were found to have meaningful effects during registration procedures. 

After applying Mutual Information (MI) image registrations to the transformed data subset, results 

showed instances where large initial rotation differences between the maps significantly affected 

the registration performance and accuracy. An example is shown in Figure 72 where pre-registered 

pressure maps for sample 126-2-2177 are shown. The template image shown is the resulting map 

after applying a random transformation (60° rotation, and horizontal and vertical translations).  

 

 

Figure 72. Sample 126-2-2177, original and transformed maps (transformed data subset) 
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Figure 73 shows the results of registering the pressure maps presented in Figure 72 with 

both registration methods (MI and MSE). Results of the Mutual Information (MI) registration were 

not appropriate at optimality (25 iterations), as additional rotation transformations are needed for 

better images’ correspondence (see Fig. 73, top). Similarity and dissimilarity coefficients are also 

shown in the figure. Note that non-standardized metrics such as 𝐿1 Norm and Squared 𝐿2 Norm 

are in magnitude of 102 due to scaling factors. The registration error obtained at MI registration 

optimality led to a non-scaled 𝐿1 Norm measure (non-masked) of 10,983.49 mmHg, representing 

approximately a 90.45% pressure error in pressure maps’ correspondence. 

 

  

 

Figure 73. Sample 126-2-2177, optimal MI and MSE registration (transformed data subset) 
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Figure 73 also shows the results of registering the pressure maps presented in Figure 72 

with the Mean Square Error (MSE) registration method (see Fig. 73, bottom). MSE results shows 

an improvement in the registration procedure by obtaining better images’ correspondence when 

compared to MI results. MSE registration shows a non-scaled 𝐿1 Norm (non-masked) of 783.11 

mmHg, representing approximately a 6.45% pressure error between images, with optimality being 

achieved after 292 iterations (3.2s processing time).  

Figure 74 shows pressure map differences at MSE optimality (see Fig. 73, bottom). These 

pressure map differences are calculated by subtracting the pressure readings of the transformed 

template pressure map (i.e. moving map) to the pressure readings in the reference pressure map 

(i.e. fixed map). This figure shows a low-pressure lattice pattern for the pressure differences across 

the pressure maps with some slight pressure differences around the left ischial tuberosity. This 

lattice pattern is expected if a proper and successful registration is made on equal pressure maps.  

 

 

Figure 74. Sample 126-2-2177, optimal MSE registration differences (transformed data subset) 
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Another example where the registration procedure was affected by the significant rotation 

difference between pre-registered pressure map is shown in Figure 75. This figure shows the 

reference pressure map for sample 175-3-1142 along the template image resulting after applying 

a random transformation (35° rotation, and horizontal and vertical translations).  

 

 

Figure 75. Sample 175-3-1142, original and transformed maps (transformed data subset) 

 

Figure 76 shows the results of registering the pressure maps presented in Figure 75 with 

both registration methods (MI and MSE). Results of using MI registration were again unsuccessful 

between these pressure maps, with additional rotation transformations still needed for better 

images’ correspondence (see Fig. 76, top). An 83.27% pressure error in images’ correspondence 

is detected by the 𝐿1 Norm measure (non-masked) at MI optimality. On the other hand, a successful 

and proper registration was achieved when using MSE registration, with a 6.37% pressure error as 

per the 𝐿1 Norm measure (non-masked). Figure 77 shows pressure map differences at MSE 

optimality. This figure shows the expected low-pressure lattice pattern of the pressure differences 

between the pressure maps, with slight pressure differences around the mid-ischial tuberosities 

region.  
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Figure 76. Sample 175-3-1142, optimal MI and MSE registration (transformed data subset) 

 

 

Figure 77. Sample 175-3-1142, optimal MSE registration differences (transformed data subset) 
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Previous examples demonstrate how significant differences in rotation between pressure 

map images can have adverse effects when performing MI registration procedures; however, this 

is not always the case. Figure 78 shows pre-registered pressure maps for sample 109-2-265 along 

with the template image resulting from applying a random transformation (36° rotation, and 

vertical and horizontal translation). While this transformation is similar to the one applied in Figure 

75, the registration results were successful when using both registration methods. Figure 79 shows 

proper registrations when using MI or MSE, with better results being obtained when using the 

latter (10.55% and 5.59% 𝐿1 Norm (non-masked) pressure error for MI and MSE respectively). 

 

 

Figure 78. Sample 109-2-265, original and transformed pressure maps (transformed data subset) 

 

   

Figure 79. Sample 109-2-265, optimal MI and MSE registration (transformed data subset) 
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 Excluding unsuccessful registrations for samples 126-2-2177 (Fig. 73) and 175-3-1142 

(Fig. 76), proper registrations where generally achieved by MI for all other samples, with an 

average 𝐿1 Norm (non-masked) pressure error of 8.92% and non-masked Pearson Correlation 

Coefficients of at least 0.9 (𝑟 ≥ 0.9). However, using optimal linear registration based on Mean 

Square Errors (MSE) minimization generally results in more accurate registration procedures.  

Excluding unsuccessful registrations, Figure 80 shows the non-masked similarity and non-

masked dissimilarity scores at registration method’s optimality for all other samples in the 

transformed data subset. A total of twenty registrations (ten pressure map samples, each with two 

applied random transformations) were completed by each registration method. Individual points 

in the figure represents the similarity/dissimilarity score achieved by the registration method in 

each registered sample. Tanimoto similarity scores are not shown in the figure as their behavior 

was almost the same as the Pearson similarity scores (𝑅2 = 99.85%). As seen in the figure, higher 

similarities scores and lower dissimilarities scores are generally obtained with MSE registration. 

 

 

Figure 80. Non-masked similarity and dissimilarity scores plots (transformed data subset) 
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As explained earlier in this section, the similarity and dissimilarity coefficients are being 

used as a supplementary benchmark to evaluate the accuracies and performances of the image 

registration techniques while evaluating the transformed data subset. Due to the fact that registered 

pressure maps are almost identical to the reference maps, with differences being due to random 

applied transformations, a registration method achieving a high similarity and low dissimilarity is 

desired. The similarity and dissimilarity coefficient results obtained at MSE optimality generally 

outperform the ones obtained at MI optimality. Visual feedback of the registration process also 

confirms that MSE generally achieves optimal registrations with higher accuracies and better 

images’ correspondences. Table 24 shows the results of one-sided Wilcoxon signed-rank tests, 

including results from all samples, of the similarity and dissimilarity metric scores between MI 

and MSE optimalities. These paired difference tests show that MSE registration achieves 

significantly better results than MI registration at 𝛼 = 0.05. The results of samples’ similarity and 

dissimilarity coefficients obtained at MI and MSE optimalities are shown in Appendix M. 

Table 24. MI vs MSE: Wilcoxon signed-rank tests for similarity and dissimilarity results 

(transformed data subset) 

Hypothesis 𝐻𝑜: 𝜇𝑀𝐼 ≥ 𝜇𝑀𝑆𝐸 𝐻𝑜: 𝜇𝑀𝐼 ≤ 𝜇𝑀𝑆𝐸 

Metric Pearson Min-Ratio 𝐿1 Norm Sq 𝐿2 Norm Int-Ratio Var 

P-Value 0.001 0.003 0.002 0.001 0.004 

 

Transformed Data Subset Summary. Image registration methods based on optimal linear 

models of Mutual Information (MI maximization) or Mean Square Errors (MSE minimization) 

were, for most samples, suitable for aligning the pressure map images in the transformed data 

subset (i.e., mostly identical pressure maps). The pressure map resolutions obtained with these 
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samples (32x32) required upscaling (e.g., factor of 10) to allow fine rotation and translation 

adjustments during the registration process. Initial centering using image moments (i.e., center of 

pressures) and subsequent 2D rigid transformation were generally adequate to achieve good 

registration for both MI and MSE registration methods.  

In some instances, Mutual Information exhibited registration issues when significant 

rotation differences are present among pressure map images. On the other hand, results using MSE 

provided proper and accurate registration for all samples included in the transformed data subset. 

While Mutual Information generally reached optimality at a faster rate (53 less iterations on 

average when compared to MSE registration), MSE provided significantly higher accuracy and 

better images’ correspondence at optimality (see Fig. 80 and Table 24). 

Similarity and dissimilarity coefficients, which quantify the relationship between pressure 

images, generally confirmed good registrations at optimality, particularly for MSE. Use of MSE 

registration resulted in an average Pearson Correlation Coefficient of 𝑟 = 0.9966 and a 6.11% 

average pressure error from 𝐿1 Norm among all registered samples.  

Registration Data Subset 

This section shows the results and evaluations of using image registration techniques and 

similarity and dissimilarity measures for analyzing and comparing pressure maps during dynamic 

sitting. For this purpose, the registration data subset was created using twenty (20) samples of pairs 

of pressure maps selected by stratified sampling based on the different levels of contact area (Fig. 

12). Each sample pair was selected from indexes in a continuous sitting interval (within-subject) 

where a potential significant positional shift or movement is detected. A potential significant 

movement is considered as a translation of the center of pressure greater than one inch (∆ 𝐶𝑃 >

1 𝑖𝑛) within a twenty seconds time window. Sample pairs selection was done while screening the 
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dynamic movement to confirm that pressure maps selected are not within-movement, but rather to 

select pre-movement pressure maps (with relative pre-movement stability) and a post-movement 

pressure maps (with relative post-movement stability). Appendix N shows the selected pressure 

map indexes from various sitting intervals (within-subjects) with the translation distances of the 

Center of Pressure (CP) and the time window in frames (1 index ~ 1 second). Sampled pressure 

maps were again upscaled by a factor of 10 for registration purposes. Upscaled pressure maps of 

selected sample pairs are shown in Appendix O.  

Given that MI and MSE registrations have different optimality metrics, and that the use of 

similarity and dissimilarity coefficients as a registration benchmark is not appropriate for pressure 

maps that are inherently different, visual feedback was used to assess images’ registrations and 

correspondences results for MI and MSE registration optimality in all pairs of pressure map 

samples. Subjective assessments of the seating pressure map alignments completed by each 

registration method was done using expert knowledge. Iterative pressure map overlays and maps 

with highlights of pressure differences during registrations were used for visual feedback 

assessments. The results of MI and MSE registration optimalities for all pairs of pressure map 

samples, along with notes from the subjective visual feedback assessments, can be seen in 

Appendix Q.  

Assessments via visual feedback found that in twelve out of the twenty registered samples, 

there were no visually noticeable differences between the optimality results of MI registration and 

MSE registration, with both registration methods producing proper and accurate alignments 

between the seating pressure maps. Visual assessments also showed that optimal results from MI 

and MSE were found to be visually distinguishable in six others of the registered samples (see 

notes in Appendix Q), with MSE producing better image correspondences in all of these samples.  
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Figures 81 and 82 show some of the examples where visually distinct registrations are 

found between image registrations (MI and MSE). In both of these examples, MSE registration 

was able to identify and correctly align the locations of the ischial tuberosities and legs regions 

during the registration, greatly improving the images’ correspondence. The improvement in the 

images’ correspondence achieved by MSE registration results in some measures showing higher 

(lower) similarities (dissimilarities) when compared to results from the MI registration (e.g., Figure 

81 shows MSE results of 0.904 and 7,778.48 mmHg for non-masked variations of Pearson and 

non-scaled 𝐿1 Norm respectively, while MI shows results of 0.851 and 7,802.28 mmHg for these 

same measures). Note that not every similarity or dissimilarity coefficient improves when using 

MSE registration over MI registration (e.g., Figure 82 shows higher non-masked Pearson values 

when using MSE over MI [0.819 vs 0.786], but lower non-masked non-scaled 𝐿1 Norm values are 

obtained when using MI [6,631.85 mmHg vs 7,778.48 mmHg]). 

Visual feedback assessments also found two pairs of samples where misalignments of the 

pressure map images are present at optimality when using either registration (MI or MSE). Figures 

83 and 84 show the pressure maps for these pairs of samples along with optimal registration results 

from MI and MSE, where evidence of incorrect alignments at registration optimalities are seen.  

For the pressure map samples obtained from subject 169 (Fig. 83), both MI and MSE 

registrations attempted to align the pressure clusters in the ischial tuberosities from the template 

image (moving image) with the pressure clusters in the mid-tights regions of the reference image 

(fixed image). In this instance, the lack of distinct high-pressure clusters around the ischial 

tuberosities in the reference image and the significant difference in the size between pressure maps 

greatly affected the images’ correspondence during both MI and MSE registration procedures.  
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Figure 81. Subject 114, optimal image registration: MI vs MSE (registration data subset) 
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Figure 82. Subject 152, optimal image registration: MI vs MSE (registration data subset) 
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           . 

           . 

Figure 83. Subject 169, optimal image registration: MI vs MSE (registration data subset) 
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Figure 84. Subject 174, optimal image registration: MI vs MSE (registration data subset) 
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In samples obtained from subject 174 (Fig. 84), the differences in the seating pressure maps 

from index 958 to 970 (approximately twelve seconds) shows a complete re-orientation of the legs. 

Image registration methods have to account for a rotational difference of around 700 to be able to 

provide an adequate registration with proper images’ correspondence. Compared to MSE 

registration results, MI registration was able to detect the need for significant rotational 

transformations by showing registered pressure maps with better alignments, particularly in the 

legs regions, but more rotation transformations are still needed for a proper registration. On the 

other hand, MSE registration focused on aligning the mid- and high-level pressure clusters around 

the mid-regions of the pressure maps, where most of the pressure is located. The pressure readings 

under the leg regions were possibly not significantly considered by the MSE registration 

procedures due to having relatively low-pressure values, with the rotational transformations 

applied by the MSE registration actually being made in the opposite direction (not in alignment 

with the legs orientation). 

Findings from the visual feedback assessments indicate that using image registration 

methods based on the minimization of the Mean Square Errors (MSE) results in alignments of 

seating pressure map images that are equal to or better than the ones obtained when using MI 

image registration. In twelve out of the twenty registered samples (60%), no visually noticeable 

differences were seen between the registration methods, but significantly improved alignments and 

images’ correspondences where seen in six of out of the twenty registered samples (30%) when 

using MSE registration.  

As explained earlier in this section, higher (lower) values in measures of similarity 

(dissimilarity) do not necessarily indicate that a better registration is achieved by a particular 

registration method. Nonetheless, an increase (decrease) in similarity (dissimilarity) measures is 
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generally seen if proper correspondences are obtained at registration optimality between images 

that truly share a number of commonalities and features. In the pairs of samples where the MSE 

registration resulted in better pressure map alignments and images’ correspondence, significant 

improvements in the measures of similarity such as Pearson and Tanimoto and dissimilarity 

measures such as 𝐿1 Norm and Squared 𝐿2 Norm were seen, possibly due to the better image 

correspondences achieved by MSE (see Appendix P). Measures of similarity and dissimilarity 

were not significantly different in instances where the registration results from MI and MSE were 

not visually distinguishable; but values of these coefficients where marginally better, in most cases, 

when using MSE registration due to slightly better images’ correspondences (see Appendix P). 

Different approaches for measuring similarities and dissimilarities (masked vs non-

masked) were used in this study. Differences of their use and application are now more evident 

when using the registration data subset; this is due to the pressure maps images included in this 

dataset being inherently different (as opposed to the ones used in the transformed dataset). When 

calculating similarities and dissimilarities coefficients using the masked approach, only non-zero 

pressure readings sharing the same locations in both pressure map images are considered, while 

the non-masked approach considers these unbalanced pressure readings (i.e., for a particular 

pressure map location, one pressure map has a non-zero pressure reading while the other pressure 

map does not). 

When using the non-masked approach, a penalty while calculating the similarity and 

dissimilarity coefficients was expected due to unbalanced pressure readings being considered. 

Most of the similarity and dissimilarity measures concur with this logic, as measures such as 

Tanimoto, Minimum Ratio, 𝐿1 Norm, and Squared 𝐿2 Norm show lower (higher) similarities 

(dissimilarities) when using the non-masked approach. But a contrasting behavior is seen for the 
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Pearson Correlation Coefficient and Intensity-Ratio Variance measures, as these improve when 

considering unbalanced paired readings (see Appendix P).  

The improvements obtained by the Pearson Correlation Coefficient and Intensity-Ratio 

Variance measures when considering a non-masked approach are possibly due to the fact that most 

pressure readings’ location mismatches (i.e., non-overlapping pressure readings) occur around the 

outlines of the pressure maps, where readings with low-pressure values are mainly present. These 

mismatches in the outlines of the pressure maps (e.g., a low-pressure reading in a pressure map 

matched with a zero pressure readings in the other pressure map) can result to a higher Pearson 

Correlation Coefficient or lower Intensity-Ratio Variance due to their approach in calculating Sum 

of Squares Error (SSE) (see Equations 17 and 22). 

The non-masked and masked approaches for measuring the similarities and dissimilarities 

between pressure map images have their unique purpose and use. A research study where the goal 

is measuring the similarity/dissimilarity of only shared features (i.e. overlaps) between pressure 

map images might be inclined on evaluating the masked variation of these coefficients. While a 

research study where the goal is measuring all true differences between pressure map images might 

be inclined to evaluate the non-masked variation of the similarity/dissimilarity coefficients. 

Throughout this study, the non-masked variation was the favored approach as it considers 

all pressure readings differences between pressure map images. The following analysis evaluates 

the differences in the similarity and dissimilarity coefficient values obtained for each registration 

method when using the non-masked approach.  

Figure 85 shows the paired differences in the similarity and dissimilarity values between 

image registration optimalities. These paired differences are calculated by subtracting the results 

obtained when using MSE registration to the ones obtained when using MI registration. In this 
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figure, similarity measures from Pearson and Tanimoto and dissimilarity measures from 𝐿1 Norm 

and Square 𝐿2 Norm indicate that higher (lower) similarities (dissimilarities) are seen between 

registered pressure map samples when using MSE registration, again, possibly due to better images 

correspondences’ of pressure map samples. Ratio based measures (i.e., Minimum-Ratio and 

Intensity-Ratio Variance) indicate that similarities/dissimilarities seen between registered pressure 

map samples are very similar when using MI registration or MSE registration (see Fig. 85).  

 

 

Figure 85. MI vs MSE non-masked similarity/dissimilarity differences (registration data subset) 

 

Table 25 shows descriptive statistics for all similarity and dissimilarity coefficients along 

with one-way Wilcoxon signed-rank tests to compare results from the image registration methods 

(MI vs MSE). At 𝛼 = 0.05, significant differences are generally seen between the similarity and 
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dissimilarity values obtained by each registration method. These results indicate that significantly 

higher (lower) similarities (dissimilarities) are generally seen between registered pressure map 

when using MSE registration as compared to MI registration. Again, it is important to emphasize 

that higher similarities or lower dissimilarities do not necessarily indicate that a better registration 

or alignment between pressure maps was found by a particular registration method. These 

differences in values of similarity and dissimilarity coefficients between the registration methods 

are possibly due to the fact that pressure map alignments attained by MSE generally resulted in 

better registrations and correspondences of the pressure readings (as confirmed via visual feedback 

assessments). On the other hand, values for ratio-based measures indicate that the similarities 

(dissimilarities) seen between the registered pressure map samples are not significantly different 

when using MI or MSE registration. The ratio-based measures are somewhat unique compared to 

other coefficients, with them being particularly sensitive to pressure map shapes and/or scale 

differences; more details on their sensitivities are presented in the case study (Chapter 6). 

Table 25. Non-masked similarity/dissimilarity coefficients: descriptive statistics, one-sided 

Wilcoxon signed-rank tests (registration data subset) 

  Coefficient Method Mean StDev Min Median Max p-value 

S
im

il
ar

it
y

 

Pearson 
MI 0.8543 0.0764 0.6286 0.8522 0.9616 

0.001 
𝐻

𝑜
:𝜇

𝑀
𝐼

≥
𝜇

𝑀
𝑆

𝐸
 

MSE 0.8726 0.055 0.7416 0.8688 0.9675 

Tanimoto 
MI 0.7564 0.1183 0.495 0.773 0.9366 

0.001 
MSE 0.7764 0.1022 0.5342 0.7815 0.9457 

Min-Ratio 
MI 0.5832 0.093 0.3793 0.5867 0.7472 

0.743 
MSE 0.5805 0.1018 0.3201 0.5791 0.7463 

D
is

si
m

il
ar

it
y

 𝐿1 Norm 
MI 854,234 298,948 547,894 730,774 1,498,689 

0.032 

𝐻
𝑜

:𝜇
𝑀

𝐼
≤

𝜇
𝑀

𝑆
𝐸

 

MSE 833,580 271,001 538,889 713,017 1,357,217 

Sq 𝐿2 

Norm 

MI 4.2E+07 2.9E+07 1.1E+07 3.6E+07 1.2E+08 
0.001 

MSE 3.8E+07 2.3E+07 1.1E+07 3.3E+07 1.0E+08 

Int-Ratio 

Var 

MI 2.063 4.034 0.164 0.766 17.881 
0.294 

MSE 1.48 1.848 0.165 0.536 6.525 
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Information about the number of iterations and processing time for each pairs of registered 

samples are shown in Appendix P. When using the SimpleITK (v1.2.0) python package, it is 

important to emphasize that the stopping criteria for the registration procedures do not necessarily 

trigger during the optimal iteration. Multiple points of interest are generally found during 

registration procedures, and a single optimal point is chosen by the algorithm among the points of 

interest. As an example, Figure 86 shows a time series plot of the Mutual Information (MI) values 

during the registration process for paired-samples 110-2-1065 and 110-2-1073.  

 
Figure 86. MI iteration values, samples 110-2-1065 vs 110-2-1073 (registration data subset) 

 

In addition to the initial transformation (iteration 0), two other preliminary transformations 

where used by the MI registration process of these paired-samples. These transformations occurred 

in iterations 11 and 15, and are represented as blue stars in the figure (see Fig. 86). Transformations 

following each preliminary transformation attempted to increase the mutual information values 

between registered pressure map images, by using the minimization of the negative mutual 

information as the objective function during gradient descent optimization. This same principle is 

MI Image Registration: 110-2-1065 vs 110-2-1073 

Iterations of Interest [10, 14, 21].     (Transformation change) 

Optimal iteration (10) 
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used for MSE transformations using the minimization of the mean squared errors as the objective 

function during gradient descent optimization. For the example shown in Figure 86, three points 

of interest were found in this registration process [10, 14, 21], with the tenth iteration (10) being 

chosen as the optimal iteration due its lower negative mutual information value.  

Figure 87 shows boxplots of the processing times when using MI and MSE registrations 

for the pressure map samples in the registration data subset. On average, MSE registration requires 

approximately 28 more iterations than MI registration, which translates to an additional time of 

1.93 seconds. The highest processing time observed was 2.58 seconds (52 iterations) using MI 

registration and 15.59 seconds (171 iterations) using MSE registration. For the sample with the 

highest processing time using MSE registration (171 iterations), the registration process actually 

reached local optimality at iteration 17, with subsequent iterations trying different transformations 

to improve registration results (generally the case for MSE registrations). On average, MI required 

1.14 seconds to complete the registration process while MSE required 3.07 seconds.  

 

 

Figure 87. MI vs MSE computing time (registration data subset) 
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Registration Data Subset Summary. Results of the implementation of image registration 

techniques and similarity and dissimilarity measures for analyzing and comparing pressure maps 

during dynamic sitting (e.g., ∆ CP>1 in) were generally successful. MI image registration methods 

were found to provide adequate alignments of pressure map images in most cases, but MSE image 

registration results were found to be equal to or better than the ones obtained by MI registrations. 

In twelve out of the twenty registered samples (60%), no visually noticeable differences were seen 

between the registration methods, but significantly improvements in alignments and images’ 

correspondences where seen in six of out of the twenty registered samples (30%) when using MSE 

registration. Pearson and Tanimoto similarity measures, and 𝐿1 Norm and Square 𝐿2 Norm 

dissimilarity measures indicate that significantly higher (lower) similarities (dissimilarities) are 

observed between registered pressure map samples when using MSE image registration compared 

to MI image registration, possibly due to the better images correspondences’ of pressure map 

samples achieved by the MSE registrations. 

Evidence of incorrect alignments of the pressure map images at registration optimalities 

were found in two pairs of samples (10%) when using either MI or MSE image registration 

methods. Pressure maps commonalities, such as shared delineated shapes and similar locations of 

high- and low-pressure cluster, significantly improves the registration procedures; a significant 

lack of any of these could possibly result in inadequate optimal registrations (see Figs. 83, 84). 

The lack of distinct high-pressure clusters (e.g., those normally found around the ischial 

tuberosities), significant differences in pressure map sizes, and/or significant re-orientations of 

relatively low-pressure readings (e.g., changes in facing of the legs) were possible factors that 

attributed to inaccurate registration for these misaligned samples. 
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Measures of similarity and dissimilarity using proposed coefficients were found to be 

adequate for measuring and comparing differences between pressure map images. Variations when 

calculating the similarity and dissimilarity coefficients (i.e., masked or non-masked approach) 

provided different comparison basis. The masked approach is aimed at research studies where the 

goal is to compare pressure map images while only considering common pressure regions (i.e. 

overlaps), while the non-masked approach is aimed at research studies where the goal is to measure 

all true differences between pressure map images.  

In the context of seating pressure map images, similarity measures of Tanimoto and 

Minimum Ratio were found to be generally lower when using the non-masked approach, while 

dissimilarity measures of 𝐿1 Norm and Squared 𝐿2 Norm were generally higher. This is due to the 

non-masked approach taking into consideration all true differences between the pressure map 

images. But a contrasting behavior is seen for the Pearson Correlation Coefficient and Intensity-

Ratio Variance measures, as these improve when using the non-masked approach. This is possibly 

due to the fact that most pressure readings’ location mismatches (i.e., non-overlapping pressure 

readings) occur around the outlines of the pressure maps, where readings with low-pressure values 

are mainly present. 

In regard to computational times, MSE image registrations, on average, required 

approximately 28 more iterations than MI image registrations, which translates in requiring and 

average time of 3.07 seconds to complete the registration process while MI image registrations 

only required 1.14 seconds on average. Both were implemented using the SimpleITK (v1.2.0) 

python package.
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CHAPTER VI 

 

CASE STUDY 

 

 Results from Chapter 5 show that a number of spatial data analytics and image processing 

techniques are useful and effective for cleansing, evaluating, aligning, and comparing pressure 

map images. In this case study, the applications of selected techniques are evaluated in terms of 

continuous sitting, where subjects’ pressure maps are constantly captured within a given time 

interval. A 5-minute sitting interval sample (referred as to dynamic data subset) with a number of 

sequential spatio-temporal pressure images from one of the subjects in the dataset is used for this 

case study. As seating subject’s frequently change their seating postures during prolonged sitting, 

changes in pressure distributions and location and orientation of the pressure readings are made 

constantly. The main goal in this case study is to evaluate the real-life applications of these 

methods and techniques under dynamic sitting.  

The effectiveness of selected spatial clustering methods as pre-processing techniques for 

continuous pressure mapping are initially examined. Selected spatial clustering methods are 

evaluated by their performances in continuous data cleansing (i.e., removing unwanted pressure 

artifacts from continuous pressure maps). The density-based spatial clustering technique providing 

the highest overall accuracies in detecting extrinsic pressure artifacts (outliers) and true contact 

pressure readings (non-outliers) is selected as the pre-processing techniques applied to the dynamic 

data subset for subsequent analyses. 



155 

 

 

After the extraneous pressure maps artifacts are removed, the set of meaningful pressure 

measures featured in Table 23 were calculated and evaluated in terms of their practicality and 

feasibility as measures of dynamic pressure. The application of sequential image registration 

(using minimization of the Mean Squared Errors [MSE]) as a tool to align dynamic pressure map 

images is also evaluated. Similarity and dissimilarity coefficients are also evaluated as comparative 

dynamic measures for post-registered continuous pressure maps. Comparisons to the initial 

reference index (Index 1) are used as a way of measuring continuous pressure map changes over 

time. Computation demands for continuous pre-processing (data cleansing) and sequential image 

registrations (pressure map alignments) are also discussed in this chapter.  

 

Data Sample 

To evaluate the applications of selected spatial data analytics and image processing 

techniques under continuous dynamic sitting, a single 5-minute sitting interval sample of 

continuous pressure maps was used (dynamic data subset). The sampled interval includes a number 

of within-subject sequential spatio-temporal pressure maps, and was selected from the first sitting 

interval during the second data collection session (Trial 2) of Subject 109. This 5-minute interval 

contains 281 individual frames with extrinsic pressure artifacts continuously present within the 

recorded pressure maps. Significant pressure redistributions and potential evidence of dynamic 

sitting are also present in the sampled interval. 

 

Pre-Processing: Spatial Clustering 

The results compiled in Table 22 (Chapter 5) show that algorithms based on DBSCAN and 

DENCLUE, when using only the pressure readings’ location information as input data, were 
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suitable for pre-processing seating pressure maps. With proper parameter settings, these algorithms 

exhibited high accuracies when discriminating extrinsic pressure artifacts (outliers) and true 

contact pressure readings (non-outliers) in seating pressure maps. These density-based spatial 

clustering algorithms are evaluated in this case study for their abilities in detecting extrinsic 

pressure readings artifacts in continuous pressure map. 

Unwanted pressure readings and extrinsic artifacts were defined and selected via expert 

knowledge for all 281 pressure maps withing the dynamic data subset. Selected density-based 

spatial clustering algorithms (see Table 26) were then executed while calculating measures of 

outliers and non-outlier accuracies for all continuous pressure maps. The aim is to select the best-

performing combination (i.e., clustering methods and parameter settings) from Table 26 by using 

the overall accuracy (i.e., calculated weighted average of both outliers and non-outliers accuracies) 

as the measuring criteria. The best-performing combination was used as the pre-processing 

techniques applied to the dynamic data subset for subsequent analyses. 

Table 26. Parameter settings and clustering methods evaluated (dynamic data subset) 

Method Parameters Input Data 

DBSCAN-1 
eps: 1.60, 1.80 

min_samples: 8 
Location 

DENCLUE-1 
eps: 2 

min_density: 1.7e-03 
Location 

DBSCAN-2 
eps: 2.00, 2.20 

min_samples: 10 
Location 

DENCLUE-2 
eps: 0.01 

min_density: 1.65e-03 
Location 

DBSCAN-3 
eps: 2.5 

min_samples: 10 
Location 
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The pressure map samples included in the dynamic data subset show high consistency in 

the locations of extrinsic pressure artifacts cluster and locations of scattered unwanted pressure 

readings. Figure 88 shows original pressure maps (non-cleansed) of some of the samples where 

various extrinsic pressure artifacts (outliers) are present. This figure also shows the expert-created 

outliers references maps where these outliers are being pre-identified as noise (black dots); these 

served as basis for calculating clustering algorithms’ accuracies.  

 

       

 (a) Original 109-2-1 Pressure Map    (b) 109-2-1 pre-identified outliers (black) 

 

       

 (c) Original 109-2-115 Pressure Map   (d) 109-2-115 pre-identified outliers (black) 
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 (e) Original 109-2-154 Pressure Map   (f) 109-2-154 pre-identified outliers (black) 

Figure 88. Examples of original pressure maps from interval sample 109-2 with marked outliers 

 

The original pressure maps presented in Figure 88 show clearly demarked regions of 

pressure outliers caused by extrinsic artifacts at the bottom of the pressure map images, with other 

pressure reading outliers being scattered throughout these pressure maps. Pre-processing 

techniques for continuous data cleansing are needed for eliminating these unwanted pressure 

readings and artifacts.  

For most of the pressure maps in the dynamic data subset, the selected density-based spatial 

clustering algorithms (Table 26) were able to correctly identify and classify pressure artifacts 

(outliers) and true contact pressure readings (non-outliers). However, the algorithms were not able 

to correctly discriminate these extrinsic artifacts from the true pressure readings in some of the 

pressure maps. Figure 89 shows the pressure map sample (109-2-203) where the lowest overall 

accuracies were observed for the DBSCAN-1 and DBSCAN-2 clustering methods, both marking 

a number of non-outlier pressure readings as outliers. Clustering algorithms results from 

DBSCAN-3, DENCLUE-1, and DENCLUE-2 showed a 100% overall accuracy while classifying 

outlier and non-outliers for this specific sample. 
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(a) Original 109-2-203 Pressure Map     (b) 109-2-203 Outlier Reference  

         

(c) 109-2-203 Results (DBSCAN-1)     (d) 109-2-203 Results (DBSCAN-2) 

            

     (e) 109-2-203 Results (DBSCAN-3)     (f) 109-2-203 Results (DENCLUE-1/2)   

Figure 89. Clustering results for sample 109-2-203 (location-only data) 
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The lowest overall accuracies observed for the DBSCAN-3, DENCLUE-1, and 

DENCLUE-2 clustering algorithms were seen in sample 102-2-208 (see Fig. 90). While these 

clustering algorithms were able to identify the cluster of outliers at the bottom of the pressure map, 

Figure 90 shows their inefficacy in correctly identifying some of the pre-identified outliers in the 

leg regions, thus significantly affecting their outlier accuracy scores. DBSCAN-1 and DBSCAN-

2 clustering algorithms were able to classify all the pre-identified outliers included in this pressure 

map sample. Unfortunately, their more aggressive approach in marking pressure readings as 

outliers resulted in a number of true contact pressure readings (non-outliers) being incorrectly 

classified as extrinsic pressure artifacts (outliers).  

 

               

(a) Original 109-2-208 Pressure Map     (b) 109-2-208 Outlier Reference  

        

(c) 109-2-208 Results (DBSCAN-1)     (d) 109-2-208 Results (DBSCAN-2) 
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   (e) 109-2-208 Results (DBSCAN-3)    (f) 109-2-208 Results (DENCLUE-1/2) 

Figure 90. Clustering results for sample 109-2-208 (location-only data) 

 

A summary of the results obtained by using the selected clustering methods to pre-process 

the dynamic data subset can be seen in Table 27. Results of the performances and accuracies of 

these clustering method are generally high, with average Outliers and average Non-Outliers 

accuracies greater than 90% for any of methods. Results also show tradeoffs between these 

accuracies, with some methods being more aggressive in classifying pressure readings as outliers, 

while others exhibiting a more conservative approach when marking outliers. 

 

Table 27. Dynamic data subset clustering methods results of accuracies and processing times 

Method Parameters Input 
Average (Min) Accuracy Avg. 

(Max) 

Proc Time Outliers Non-Outliers Overall 

DBSCAN-1 
eps: 1.60 

min_samples: 8 
Location 

100% 

(100%) 

99.431% 

(96.918%) 

99.440% 

(96.959%) 

3.285ms 

(15.991ms) 

DENCLUE-1 
eps: 2 

min_density: 1.7e-03 
Location 

95.035% 

(71.429%) 

100% 

(100%) 

99.914% 

(99.379%) 

8.597s 

(11.764s) 

DBSCAN-2 
eps: 2.00 

min_samples: 10 
Location 

100% 

(100%) 

99.909% 

(99.315%) 

99.910% 

(99.324%) 

2.895ms 

(7.995ms) 

DENCLUE-2 
eps: 0.01 

min_density: 1.65e-03 
Location 

92.900% 

(71.429%) 

100% 

(100%) 

99.879% 

(99.379%) 

8.493s 

(10.370s) 

DBSCAN-3 
eps: 2.5 

min_samples: 10 
Location 

92.298% 

(71.429%) 

99.999% 

(99.685%) 

99.866% 

(99.379%) 

2.870ms 

(4.997ms) 
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 Results from Table 27 show that only DBSCAN-1 and DBSCAN-2 were able to correctly 

classify all extrinsic pressure artifacts as outliers, however, they also show the lowest Non-Outlier 

average accuracies among the clustering methods’ results. This indicate that these variations of 

DBSCAN favor a more aggressive approach when detecting outliers, by incorrectly classifying 

true contact pressure readings as outliers. It is important to note that, in spite of having the lowest 

non-outlier accuracies among the clustering methods, average non-outlier accuracies are above 

99% for any of the selected methods. Results from the table also show that both clustering methods 

using DENCLUE algorithms were able classify all true contact pressure readings as non-outliers, 

indicating a more conservative approach when marking pressure readings as outliers. 

 A good balance between average Outliers and Non-Outliers accuracies were obtained by 

most of the clustering methods being evaluated, with two clustering methods excelling over the 

others. Clustering results (Table 27) show DENCLUE-1 having an average Overall accuracy of 

99.914% which resulted from a very high average Outliers accuracy score (95.04%) and a perfect 

Non-Outliers accuracy score (100%) in all pressure maps, and DBSCAN-2 having an average 

Overall accuracy of 99.910% which resulted from with a very high average Non-Outliers accuracy 

score (99.91%) and a perfect Outliers accuracy score (100%) in all pressure maps.  

While all clustering methods were found to be adequate for pre-processing the pressure 

maps included in the dynamic data subset, this case study selected DENCLUE-1 due to having a 

slight edge in the Overall accuracy score and also for being able to keep all true contact pressure 

readings for subsequent analyses. Unfortunately, the non-optimized python package use in this 

study (Mgarrett, 2017, n. DENCLUE 2.0) resulted in very high computational demands while 

processing all samples in the dynamic data subset (see Table 27).  
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The average processing time when using DENCLUE-1 was around 8.6 seconds per frame 

on average, and the total processing time required to pre-process all 281 individual pressure maps 

was around 40 minutes. In contrast, the processing times obtained from any of the DBSCAN 

algorithms, implemented from a fully-optimized python package, were around 3 milliseconds per 

frame on average, with the total time required to pre-process all 281 individual pressure maps 

being less than 1 second. These drastic differences in the processing times between these clustering 

methods can be attributed to many factors (e.g., programming optimizations, multiprocessing 

capabilities, and/or clustering algorithm complexities), and need to be considered for real-life 

applications. Fully optimized DBSCAN algorithms are available in many commercially available 

packages and programming languages, and they generally achieve very good results when using 

seating pressure maps (see Table 27). As an example, DBSCAN-3 clustering was still able to achieve 

very high Non-Ouliers accuracies (average of 99.999%) and reasonable Outliers accuracies 

(average of 92.298%) while still required less than a second; this could be an alternative method 

to DENCLUE algorithms if preservation of the true contact pressure readings is of utmost 

importance. 

For the purpose of this study, the algorithm’s performance in classifying outliers and non-

outliers outweighs their required computation time, therefore, the density-based clustering 

algorithm DENCLUE-1 is used as the pre-processing technique applied to the dynamic data subset 

due to the high overall accuracies obtained while cleaning the pressure map images included in the 

dataset. The (pre-processed) dynamic data subset is now ready for subsequent analyses using 

measures of spatial autocorrelation, image statistical features, and comparative techniques using 

image registration and similarity/dissimilarity coefficients. 
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Dynamic Measures: Spatial Autocorrelation and Image Statistical Features 

Meaningful pressure measures featured in Table 23 (Chapter 5) were calculated and 

evaluated in terms of their practicality and feasibility as measures of dynamic pressure using the 

pre-processed dynamic data subset. Validation of their use as dynamic measures was done via 

visual feedback of time series plots. Emphasis is given in selecting and evaluating a sequence of 

indexes where significant changes in these measures occur in a short period of time. Comparative 

visual feedback between pressure maps within a sequence of indexes is used to confirm in-chair-

movements (i.e., dynamic sitting), while evaluating measures’ sensitivities and changes over time. 

Figure 91 shows the time series plots for the general pressure measures of Contact Cells, 

Sum of Pressure, and Skewness for the full 5-minute interval length of this sample (281 indexes).  

 

        
   (a) Contact Cells     (b) Sum of Pressure 

         
(c) Skewness 

Figure 91. Pressure measures: general overview, dynamic data subset (sample 109-2) 
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Results in Figure 91 show a consistent increase in Sum of Pressure during the first minutes 

of the sitting interval (approximately 2.5 min), indicating a possible pressure creep effect. It also 

shows that the number of contact cells increased slightly in the same period of time. The pressure 

creep effect was confirmed via visual feedback, where pressure readings in the ischial tuberosities 

were consistently increasing over time. This increase in pressure and somewhat stability in contact 

cells is also being detected by the skewness measure. The skewness is decreasing over time within 

the same time frame due the increase in the relative frequency of cells with high-pressure and mid-

pressure values. 

At around index 150, considerable changes in the values across all measures are also seen 

in the time series plots in Figure 91, possibly indicating an In-Chair-Movement (ICM). These 

measures are also identifying possible ICMs (i.e., dynamic sitting) occurring around indexes 200 

and 250; with measures of skewness also identifying continuous changes in the pressure between 

indexes 180 and 200 that other measures are less sensitive to it.  

Figure 92 shows a sequence of pressure maps between indexes 148 and 156 (elapsed time 

of approximately 8 seconds) where the first considerable changes in the values of the general 

pressure measures are seen. The sequences of indexes presented in this case study generally show 

a pre-movement pressure map (with relative pre-movement stability) and a post-movement 

pressure map (with relative post-movement stability). The figure also show values and trendlines 

for all meaningful pressure measures featured in Table 23 (Chapter 5) along a comparison between 

the pre-movement index (148) and post-movement index (156) as relative changes in percentage 

(%) across these measures. 

A significant reduction of the overall pressure can be seen in the sequence of indexes shown 

in Figure 92. The magnitudes and cluster sizes of the high-pressure regions exerted by the ischial   
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148 151 153 156

Contact Cells 356 339 362 374 5.06%

Sum of Pressure 20,587.41 15,729.90 17,239.33 15,924.67 -22.65%

Skewness 2.0592 1.7074 2.2829 3.1282 51.91%

Moran's I (Q) 0.8420 0.8227 0.8203 0.7857 -6.69%

GLSD - Correlation X 0.7668 0.6806 0.7310 0.7283 -5.02%

GLSD - Correlation Y 0.8415 0.7983 0.7819 0.7582 -9.89%

Coefficient of Variation 1.0781 0.9366 0.9301 1.0773 -0.07%

GLD - Gradient Contrast X 1,856.50 1,218.77 1,069.60 1,176.53 -36.63%

GLD - Gradient Contrast Y 1,240.52 759.06 850.71 1,025.44 -17.34%

GLD - Gradient Mean X 27.16 23.80 22.30 20.81 -23.38%

GLD - Gradient Mean Y 21.08 17.70 17.75 16.80 -20.33%

GLD - Gradient Second Moment X 0.0241 0.0244 0.0245 0.0289 20.11%

GLD - Gradient Second Moment Y 0.0350 0.0349 0.0344 0.0427 21.87%

GLSD - Homogeneity X 0.0698 0.0623 0.0585 0.0642 -7.95%

GLSD - Homogeneity Y 0.0991 0.0855 0.1157 0.1254 26.49%
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Figure 92. Changes in pressure measures between indexes 148 and 156 (sample interval 109-2) 
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tuberosities, along with the pressure in the buttock regions, have decreased in the latter frames. A 

slight increase in the pressure map size is also seen post-movement, with the number of contact 

cells increasing by around 5%. This decrease in the overall pressure and increase in contact cells 

also affect the skewness measure considerably. A larger relative presence of low and low-mid 

pressure reading values are seen within the post-movement pressure map (109-2-156), this being 

indicated as a relative increase of the skewness value of around 50%.  

Figure 92 also shows a considerable higher contrast is pre-movement frames, mainly due 

to the presence of larger high-pressure clusters under the ischial tuberosities and increased pressure 

in buttocks region, with both Gradient Contrast and Gradient Means measures indicating so. Note 

that the Coefficient of Variation (CV) measure, while changing its values in the within-movement 

frames, does not show any significant difference between the pre-movement pressure map (Index 

148) and post-movement pressure map (Index 156) with a 0.07% relative difference.  

An increase in pressure homogeneity is also obtained after the ICM in Figure 92. Measures 

of Gradient Second Moment and Homogeneity (Y) show considerable increases in their values, 

generally indicating a seating pressure map with more congruent pressure readings and with 

smoother pressure transitions (e.g., less pronounced gradients) between pressure levels. 

Time series plots shown in Figure 93 are of measures of spatial relationship for the 5-

minute interval length included in the dynamic data subset. The effect of pressure creep around 

the ischial tuberosities can also be seen for measures of spatial relationship, as they increase 

consistently over time until the first considerable ICM (Index 148) occurs. Spatial relationship 

measures, just like general pressure measures (Fig. 91), are also able to capture dynamic sitting 

with considerable changes in their values occurring specially around indexes 150 and 200. 
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For the ICM around Index 150 (see Fig. 92), decreases between five to ten percent are seen 

across the spatial relationship measures. While the pressure map obtained after the in-chair-

movement is more homogeneous and with less pressure variability/contrast, the pre-movement 

pressure map actually exhibits pressure readings with higher spatial relationship. This pre-

movement map (Fig. 92, top left) shows a higher number of distinct cluster of various pressure 

levels, with similar-value pressure readings usually found in contiguity among themselves; 

indicating a higher spatial relationship compared to latter frames. 

 

    
          (a) Moran’s I: Queen Weight Matrix 

 
(b) GLSD – Correlation X (𝜃 = 0°)            (c) GLSD – Correlation Y (𝜃 = 90°) 

Figure 93. Pressure measures: spatial relationship, dynamic data subset (sample 109-2) 
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Figure 94 shows the time series plots for measures of pressure variability and contrast for 

all indexes included in the dynamic data subset. In the indexes previous to the first considerable 

ICM (Index 148), measures of Gradient Contrast and Gradient Mean are also constantly increasing 

due to the pressure creep factor around the ischial tuberosities. It has already been established, as 

in the case with other meaningful pressure measures, that significant changes in pressure map 

contrast and variability also occurred between indexes 148 and 156 mainly due to the decrease in 

size of the large high-pressure clusters and decrease pressure in buttocks region in the latter frames 

(see Fig. 92). Additionally, measures of variability and contrast, just as many other meaningful 

measures, are also reacting to potential in-chair-movement around Index 200.  

 

 

 (a) Coefficient of Variation  

 
       (b) GLD – Gradient Contrast X (𝜃 = 0°)      (c) GLD – Gradient Contrast Y (𝜃 = 90°) 
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    (d) GLD – Gradient Mean X (𝜃 = 0°)      (e) GLD – Gradient Mean Y (𝜃 = 90°) 

Figure 94. Pressure measures: variability and contrast, dynamic data subset (sample 109-2) 

 

Figure 95 shows a sequence of pressure maps between indexes 186 and 209 (elapsed time 

of approximately 23 seconds) where the second considerable shifts in the values of meaningful 

pressure measures are seen. As with similar figures, the figure also show values and trendlines for 

all meaningful pressure measures featured in Table 23 (Chapter 5) along with a comparison 

between the pre-movement index (186) and post-movement index (209) as relative changes in 

percentage (%) across these measures. 

The sequence of seating pressure maps presented in Figure 95 indicate an occurrence of 

In-Chair-Movement (ICM). While the total pressure (Sum of Pressure) exerted into the pressure 

interface stayed relatively the same before and after the ICM, significant differences on how 

pressure is distributed are seen. Areas under the legs show overall reductions in exerted pressure 

after movement (Index 209), but gains are otherwise seen in areas around the ischial tuberosities 

and buttock regions. These differences in relative pressure distribution are being detected by the 

measures of skewness, being significantly lower in the latter frames. This increase in the exerted  
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186 192 201 209

Contact Cells 371 340 329 330 -11.05%

Sum of Pressure 15,484.79 14,513.51 13,591.37 15,460.33 -0.16%

Skewness 3.1429 0.9690 2.0989 2.4634 -21.62%

Moran's I (Q) 0.7772 0.8157 0.8105 0.8152 4.89%

GLSD - Correlation X 0.6949 0.6040 0.6984 0.7613 9.55%

GLSD - Correlation Y 0.7652 0.7353 0.7830 0.8181 6.91%

Coefficient of Variation 1.0694 0.6956 0.9835 1.2253 14.58%

GLD - Gradient Contrast X 1,258.43 693.75 1,009.55 1,660.92 31.98%

GLD - Gradient Contrast Y 946.23 444.73 712.54 1,237.05 30.73%

GLD - Gradient Mean X 21.47 20.34 21.47 23.50 9.44%

GLD - Gradient Mean Y 16.45 15.04 16.42 18.79 14.20%

GLD - Gradient Second Moment X 0.0282 0.0258 0.0266 0.0313 11.23%

GLD - Gradient Second Moment Y 0.0429 0.0345 0.0371 0.0441 3.02%

GLSD - Homogeneity X 0.0673 0.0432 0.0452 0.0972 44.47%

GLSD - Homogeneity Y 0.1238 0.0782 0.0867 0.1166 -5.78%
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Figure 95. Changes in pressure measures between indexes 186 and 209 (sample interval 109-2) 
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pressure around the ischial tuberosities and buttock regions are also affecting the values of 

measures of contrast and variability during and after the in-chair-movement, with measures of 

Gradient Contrast, Gradient Mean, and Coefficient of Variation being considerably higher in the 

latter frames. 

 The changes in the pressure distributions between the pre-movement pressure map (Index 

186) and post-movement pressure map (Index 209) in Figure 95 have also significantly affected 

measures of texture and smoothness. There is a considerable increase in the uniformity of the 

pressure readings at the post-movement seating pressure map (Fig. 95, bottom right), which is 

translated as an increase in measures of Gradient Second Moment and Homogeneity (X). This 

increase in post-movement homogeneity is also strengthened by the higher spatial relationship 

seen among the pressure readings within various levels of pressure, with the late frame (Index 209) 

showing less variability within these clusters of pressure levels and increase contiguity between 

similar-value pressure readings. Moran’s I and the GLSD Correlation measures are detecting this 

increase in the spatial relationships among similar-value pressure readings. 

 Figure 96 shows the time series plots for the measures of texture, smoothness, and 

homogeneity for all indexes included in the dynamic data subset. The changes in smoothness (e.g., 

less texture) and homogeneity occurring during the in-chair-movement around Index 200 (Fig. 95) 

were the highest relative changes among sequential indexes in the dynamic data subset. 

In the indexes previous to the first considerable ICM (Index 148), measures of Gradient 

Second Moment (GLD) are decreasing over time due to the pressure creep factor in the ischial 

tuberosities and buttock regions. Gradient Second Moment measures are known to be sensitive to 

changes in pressure levels and gradients when measuring smoothness and texture, while measures 

of Homogeneity are somewhat more robust to these pressure variations and have more emphasis 
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in measuring the similarities of the pressure readings within various pressure levels. Measures of 

Homogeneity show more stability in their values for the indexes prior to the first considerable ICM 

(Index 148). This indicate that, while the total pressure exerted to the pressure interface is 

increasing over this period of time, the homogeneity within the pressure cluster levels is relatively 

stable, that is, the contiguity and grouping aspect of similar-value pressure readings are relatively 

similar across these indexes.  

 

 

 

Figure 96. Smoothness and texture pressure measures (sample interval 109-2) 

 

Most meaningful measures are also detecting a possible in-chair-movement around Index 

250 (see Figs. 91, 93, 94, 96). In most of these time series plots, a defined spike in their values 
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(upward or downward) is generally seen, with most of the measures’ values returning close to they 

were before the movement (spike) occurred. 

Figure 97 shows the sequence of pressure maps between indexes 246 and 252 (elapsed 

time of approximately 6 seconds) where the last considerable changes in the values of the 

meaningful pressure measures are seen. These measures are mostly reacting to a side-to-side in-

chair-movement as detected from the seating pressure maps presented in Figure 97. Pressure is 

seen tilting, particularly around the ischial tuberosities and buttock regions, from one side to the 

other within this time interval. Some changes in meaningful pressure measures’ values are seen in 

the resulting post-movement seating pressure map (Index 252). While all meaningful pressure 

measures are changing and reacting to the in-chair-movement between these indexes accordingly, 

the post-movement seating pressure map (Index 252), contrary to previously detected in-chair-

movements, does not show large differences to the pre-movement (Index 246) seating pressure 

map; this is in agreement to the spikes seen in the time series plots where values of the meaningful 

pressure measures are somewhat returning back to pre-movement values (see Figs. 91, 93, 94, 96). 

The post-movement seating pressure map in Figure 97 (bottom, right) does show some 

slight differences when compared to the pre-movement seating pressure map (top, left). The total 

pressure exerted to the pressure interface is reduced, particularly around the buttocks area. This 

modifies the values of skewness (more positive due to higher frequency of relatively low- and mid-

low pressure readings) and variability/contrast measures (less pressure in the buttock regions and 

tuberosities). The spatial relationships are not significantly different between these maps (Index 

246 vs Index 252), but a slightly higher homogeneity is obtained in the late frames due to a 

reduction of the gradients between pressure levels.  
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Figure 97. Changes in pressure measures between indexes 246 and 252 (sample interval 109-2) 

246 247 248 252

Contact Cells 341 323 318 328 -3.81%

Sum of Pressure 17,445.56 13,387.17 14,153.42 14,469.36 -17.06%

Skewness 2.2049 2.1037 2.3669 2.6441 19.92%

Moran's I (Q) 0.8278 0.8292 0.8099 0.8051 -2.75%

GLSD - Correlation X 0.7664 0.7161 0.7246 0.7578 -1.11%

GLSD - Correlation Y 0.8351 0.8053 0.8171 0.8124 -2.72%

Coefficient of Variation 1.1955 1.0379 1.1863 1.2696 6.20%

GLD - Gradient Contrast X 1,817.41 1,073.85 1,591.88 1,597.69 -12.09%

GLD - Gradient Contrast Y 1,262.39 718.35 1,030.86 1,209.40 -4.20%

GLD - Gradient Mean X 25.47 21.44 25.35 22.78 -10.55%

GLD - Gradient Mean Y 19.81 16.34 19.11 17.71 -10.62%

GLD - Gradient Second Moment X 0.0291 0.0269 0.0248 0.0321 10.34%

GLD - Gradient Second Moment Y 0.0412 0.0384 0.0350 0.0498 20.68%

GLSD - Homogeneity X 0.0902 0.0556 0.0547 0.0979 8.52%

GLSD - Homogeneity Y 0.1386 0.1035 0.0835 0.1473 6.28%
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When calculating measures of Gray-Level Differences (GLD) and Gray-Level Spatial-

Dependence (GLSD), a significance effect in measures’ values when considering a different axis 

direction is seen for the time series plots in Figures 93, 94, and 96. GLD measures of Gradient 

Contrast and Gradient Mean are identifying higher variabilities when measured in the horizontal 

or lateral direction (𝜃 = 0° , X) (see Fig. 94), while GLSD measures of Correlation, Gradient 

Second Moment, and Homogeneity show higher values when measured in the vertical or anterior-

posterior direction (𝜃 = 90° , Y) (see Figs. 93, 96). 

 While the direction when calculating pressure map gradients have significant effects in 

GLD and GLSD measures, there is a strong dynamic relationship between both directions (𝜃 = 0° 

and 𝜃 = 90°) among the indexes included in the dynamic data subset. The dynamic behavior of 

GLD and GLSD measures are very similar in both directions with the most notable difference 

being in significant offsets in the measures’ values between both directions (𝜃 = 0° and 𝜃 = 90°). 

Figure 98 shows the pressure map for the first index of the 5-minute sitting interval (Sample 109-

2-1), along with the first-order and second-order gradient maps for the same sample. Seating 

pressure maps usually have an elongated shape towards the anterior-posterior direction (𝜃 = 90°) 

due to the fact that buttock-popliteal lengths are generally greater than hip breadths (see Table 3).  

First-order and second-order gradient maps in Figure 98 also show how seating pressure 

maps generally exhibit higher pressure gradients in the lateral direction (𝜃 = 0°) due to closeness 

of high-pressure clusters (e.g., ischial tuberosities) to lateral edges. When measured in the anterior-

posterior direction (𝜃 = 90°), pressure transitions are smoother and with less gradients as pressure 

in the leg regions increase gradually when approximating to high-pressure clusters in the 

tuberosities. This is translated as an increase in homogeneity, smoothness, and spatial relationship 

when measured in the anterior-posterior direction (𝜃 = 90°) (see Fig. 98, bottom right).  
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Figure 98. First-order and second-order gradient maps, directions 𝜃 = 0°, 90° (sample 109-2-1) 
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In this section, many examples of the potential use of spatial relationship measures and 

image statistical features as dynamic pressure measures are shown. It has been shown that these 

meaningful pressure measures can be used as global pressure map descriptors in a static 

environment (within a single pressure map) and dynamic environments (continuous pressure 

maps) to measure distinct and unique phenomena within seating pressure maps. 

While spatial relationship measures and image statistical features can help in identifying 

in-chair-movements, these measures are not able to track changes in terms of shape, location and/or 

spatial position of pressure readings. To evaluate these changes, continuous comparative 

techniques using image registration and dynamic similarity/dissimilarity coefficients are 

implemented and studied in the following section. 

 

Sequential Image Registration and Similarity/Dissimilarity Coefficients 

In this case study, a sequential image registration technique (using minimization of the 

Mean Squared Errors [MSE]) is evaluated as a tool to align the dynamic pressure map images 

included in the dynamic data subset. Given the results of the image registration methods in the 

previous chapter (Chapter 5), MSE registration was chosen due to the higher accuracy and 

improved image correspondence achieved when aligning various seating pressure map images. 

Similarity and dissimilarity coefficients are also evaluated as comparative dynamic measures for 

post-registered continuous pressure maps. Comparisons to the initial reference index (Index 1) are 

used as a way of measuring continuous pressure map changes over time.  

Figure 99 shows the reference pressure map that will be used as a comparison basis (sample 

109-2-1). A visual feedback assessment of the pressure maps following this first frame confirmed 

the use of sample 109-2-1 to be an appropriate basis for comparison. The pressure map images 
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following sample 109-2-1 showed relative stability in the pressure distributions and locations of 

pressure readings when compared to the first sampled index. 

 

 

Figure 99. Image registration reference map (Sample 109-2-1) 

 

MSE registrations were completed to align all indexes in the dynamic dataset to the 

reference index (Fig. 99). Similarity and dissimilarity coefficients were calculated using a non-

masked approach (unbalanced pairwise pressure cells are allowed) with an epsilon parameter equal 

to one (𝜀 = 1) for ratio-based measures. The non-masked approach was used in this case study as 

the goal is to measure all true differences between the initial sitting pressure map and consecutive 

pressure map images. Results of the similarities and dissimilarities coefficients of the post-

registration comparisons are shown in Appendix R 

As the indexes included in the dynamic data subset were sampled from an interval where 

the subject used a fixed sitting surface (i.e., same seat pan contour), similarities and dissimilarities 

coefficients were expected to indicate a high correspondence between the successive pressure map 
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images and the initial pressure map image (Index 1). It was expected that the overall shapes and 

sizes of the continuous pressure maps to not be significantly different from one another unless 

significant In-Chair-Movements (ICM) occurred. Results in general show high correspondence 

between the pressure map images following the reference frame (Index 1). Figure 100 shows time 

series plots of the similarity measures (compared to the reference pressure map) for all indexes in 

the dynamic data subset.  

 

 

Figure 100. Similarity coefficients (non-masked): MSE registration (sample interval 109-2) 

 

Values of Pearson Correlation Coefficient (PCC) show relative stability in the similarities 

of images between Index 1 and Index 149 (see Fig. 100), a behavior somewhat similar to measures 

of GSLD Homogeneity during this same interval (see Fig. 96). Other similarity measures are 

indicating a decrease in the similarities of successive pressure maps when compared to the initial 

seating pressure map. Measures of Tanimoto and Minimum Ratio are more sensitive to the 
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pressure differences in pair-wise pressure readings when comparing seating pressure map images. 

This decrease in similarities throughout Index 1 and Index 149 is due to the pressure creep 

phenomenon found when evaluating measures of Sum of Pressure (see Fig. 91) and contrast 

measures (see Fig. 94). The Minimum Ratio measure is more sensible to the increase in pressure 

seen in some of the pairwise readings (the ratio is lower when greater differences are found). 

Meanwhile, the Tanimoto measures consider these pressure differences as well, but also considers 

their relationships (similar to Pearson), making the values of Tanimoto similarities somewhere in 

between the PCC and Minimum Ratio values. 

Measures of dissimilarity are also reacting to the pressure creep phenomenon occurring 

between indexes 1 and 149. Figure 101 shows time series plots of the dissimilarity measures 

(compared to the reference pressure map) for all indexes in the dynamic data subset. 

 

 

Figure 101. Dissimilarity coefficients (non-masked): MSE registration (sample interval 109-2) 
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 The results in Figure 101 show measures of 𝐿1 Norm and Squared 𝐿2 Norm increasing in 

their dissimilarity values due to differences in pressure between the initial reference index (Index 

1) and successive indexes before index 150. Similar to Tanimoto and Minimum Ratio measures, 

this behavior is due to the pressure creep phenomenon during this time frame. To evaluate the 

pressure creep effect, the registration results between the initial frame (Index 1) and Index 149 

(before the first considerable in-chair-movement) are presented in Figure 102, along with measures 

of similarity/dissimilarity and a visual highlights of pressure differences between these images. 

 

 

          . 

Figure 102. Optimal MSE image registration: Index 1 vs Index 149 (sample interval 109-2) 
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MSE registration achieved appropriate alignments and image correspondence between the 

seating pressure maps presented in Figure 102. The pressure distributions in terms of location and 

spatial relationship of pressure readings are similar, but the magnitudes of the pressure readings at 

Index 149 are considerable increased (see Fig. 102 bottom right). Larger high-pressure clusters are 

seen under the ischial tuberosities in the latter frame, with higher pressures also being exerted in 

the top buttock regions. Given these pressure differences, a decrease (increase) in pressure map 

similarities (dissimilarities) are seen by the Tanimoto, Minimum Ratio, 𝐿1 Norm and Squared 𝐿2 

Norm measures; all being sensitive to those pairwise differences in pressure. Measures such as 

Pearson, not being sensitive to differences in pressure scale, finds the relationship among pressure 

maps somewhat similar (non-masked 𝑟 = 0.977) The Intensity Ratio Variance also show low 

dissimilarities between these maps due to the robustness of this measure to pressure scaling 

differences (non-masked 𝑅𝑉 = 0.018). Intensity Ratio Variance is more sensitive to overlapping 

differences in terms of shapes (when using the non-masked approach). The overall shapes of these 

pressure maps from Index 1 to Index 149 were very consistent and similar (see Fig. 102, top row). 

 Another important measure obtained when using sequential image registration procedures 

(i.e., alignment of continuous images) is the distance traveled by the center of mass [Center of 

Pressure (CP)] of the template image (i.e. moving image) to reach registration optimality. The 

template pressure maps (i.e. moving maps) were all registered according to the initial reference 

pressure map (i.e. fixed map). The translation required to align these pressure map images to the 

reference map can be calculated as the distance traveled by the center of pressure during 

registration. A CP to CP distance is calculated as the Euclidean distance between the CP locations 

of the of the pre-registered map and post-registered map. Note that this distance between CP 

locations are not calculating differences in the CP locations between the template map and 
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reference maps, but the translation of CP within the template map after registration. Figure 103 

shows the CP translation results of the registration process for aligning each subsequent pressure 

map to the reference map (Index 1). 

 

 
 

Figure 103. Original vs Transformed CP locations: Cells distances (sample interval 109-2) 

 

The required translations to align the pressure maps from index 1 through 149 were 

minimum, with most registrations doing CP translations of less than 1 cell (see Fig. 103). It is 

important to emphasize that pressure maps were scaled by a factor of ten to allow fine-tuning 

transformations during registrations. Therefore, the resulting CP to CP distances (in units of cells) 

presented in Figure 103 are also in factor of ten. To obtain real distances (in units of cells) between 

the original and transformed CP locations, the cell distances need to be divided by 10. It is also 

important to highlight that meaningful differences in CP movement were considered when 

translations of CP were greater than one inch (𝐶𝑃 > 1 𝑖𝑛); one inch being the approximate 
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distance required to travel one unit of cell. Hence, a distance of 10 cells in the current scale of CP 

to CP distances roughly equates to a 1-inch movement in CP location. Figure 103 only show one 

instance (Index 192) where a translation greater than 1 inch (10 upscaled cells) was needed to align 

the template pressure map to the reference pressure map, indicating that the subject was sitting in 

a relative stable location throughout the entire 5-minute sitting interval.  

Time series plots in Figures 100, 101 and 103 also show highlights of index ranges where 

possible in-chair-movement is detected. The first region shows a considerable shift in values of 

similarities and dissimilarities between indexes 149 and 159. Figure 104 shows a close 

examination of the similarity measures for this range of indexes. This figure shows that similarity 

measures had a considerable decrease in Index 152 during an in-chair-movement. This same in-

chair-movement was also detected using values of meaningful pressure measures as dynamic 

pressure measures (see Fig. 92). 

 

 

Figure 104. Similarity coefficients highlights: MSE registration (sample interval 109-2) 
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 To evaluate the pressure map differences during the first considerable in-chair-movement, 

the registration results between the initial frame (Index 1) and Index 152 are presented in Figure 

105, with measures of similarity/dissimilarity and a visual highlights of pressure differences 

between these images also being presented. 

 

 

         . 

Figure 105. Optimal MSE image registration: Index 1 vs Index 152 (sample interval 109-2) 

 

Figure 105 shows considerable changes in pressure distributions at index 152 when 

compared to the initial seating pressure map. The reference index (109-2-1) shows a distinct 



187 

 

 

presence of high-pressure clusters under the ischial tuberosities while the pressure map in index 

152 shows higher pressure being exerted under the leg regions (see Fig. 105, bottom right). These 

pressure differences are still being accounted by the Tanimoto, Minimum Ratio, 𝐿1 Norm and 

Squared 𝐿2 Norm similarity and dissimilarity measures, but now measures of Pearson Correlation 

Coefficient (PCC) and Intensity Ratio Variance are also indicating considerable changes. A 

decrease in non-masked PCC similarity is now seen from 0.977 in the pre-movement index 149 to 

0.884 during the in-chair-movement at index 152 (see Figs. 102, 105). Likewise, the non-masked 

Intensity Ratio Variance dissimilarity measures increased from 0.018 in pre-movement index 149 

to 0.147 during the in-chair-movement at index 152 (see Figs. 102, 105). These changes in these 

two similarity/dissimilarity measures are due to significant differences in pressure distributions 

(e.g., pressure under ischial tuberosities) and differences in shape (e.g., no overlaps or intersections 

between pressure readings in the top left leg region). 

Other possible in-chair-movements are detected within the highlighted regions of interest 

shown in Figures 100, 101 and 103. The second region of interest show a number of possible in-

chair-movement between indexes 180 and 217. A close examination of the similarity measures for 

this range of indexes is also shown in Figure 104. The first index to be evaluated for this region is 

Index 192, where considerable decreases in similarities are seen during the in-chair-movements. 

This same in-chair-movement was also detected using values of meaningful pressure measures as 

dynamic pressure measures (see Fig. 95). 

Figure 106 shows the registration results between the initial frame (Index 1) and Index 192, 

along with measures of similarity/dissimilarity and visual highlights of pressure differences 

between these images. Pronounced pressure differences are now seen between the reference map 

and Index 192 when compared to differences between the reference map and Index 152 (Fig. 105).  
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           . 

Figure 106. Optimal MSE image registration: Index 1 vs Index 192 (sample interval 109-2) 

 

Differences in the pressure distributions between Index 192 and the reference map (Index 

1) are seen in the high-pressure cluster under the ischial tuberosities and higher-pressure values 

around the buttocks area in the reference map, while the pressure map in Index 192 shows more 

pressure in both leg regions (see Fig. 106, bottom right). According to similarity values, these 

pronounced differences are the highest seen among compared indexes (see Fig. 104). A close 

examination of the dissimilarity measures for this range of indexes, seen in Figure 107, also shows 

that Index 192 is where the highest dissimilarities are obtained according to most of the measures.  



189 

 

 

 
 

Figure 107. Dissimilarity coefficients highlights: MSE registration (sample interval 109-2) 

 

Index 192 is also where the distance traveled by the Center of Pressure (CP) is the largest 

(13.24 cells) among the translations needed to reach registration optimality across all indexes (see 

Fig. 103). The registered pressure map overlays in Figure 106 (bottom left) shows how the 

template image (Index 192) had to be slightly moved down in the Y-axis (anterior-posterior 

direction) to have a better match of the pressure map shape and correspondence of the locations of 

high-pressure within each map. 

In addition, a significant number of potentials in-chair-movements are also seen within the 

second region of interest (indexes 180 and 217). Figures 104 and 107 show close examination of 

the similarity and dissimilarity measures for this range of indexes respectively, where differences 

in the behavior or sensitivities between similarity/dissimilarity measures are seen between indexes 

196 and 200. Measures such as Pearson, Tanimoto, and Squared 𝐿2 Norm show higher (lower) 

similarity (disimilarity) between Index 200 and the reference index, than the ones obtained when 
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comparing Index 196 to the reference index. Other measures such as 𝐿1 Norm and Minimum Ratio 

show opposite results, by detecting higher (lower) similarity (disimilarity) between Index 196 and 

the reference index than the ones obtained when comparing Index 200 to the reference index. To 

evaluate these discrepancies between similarity and dissimilarity measures, the registration results 

between the initial frame (Index 1) and Index 196, and between the initial frame (Index 1) and 

Index 200 are presented in Figures 108 and 109 respectively. Measures of similarity/dissimilarity 

and visual highlights of pressure differences between images are also presented in these figures. 

 

 

           . 

Figure 108. Optimal MSE image registration: Index 1 vs Index 196 (sample interval 109-2) 
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           . 

Figure 109. Optimal MSE image registration: Index 1 vs Index 200 (sample interval 109-2) 

 

 Differences between the reference index (Index 1) and Index 196 show lower differences 

in pairwise pressure readings than the ones between the reference index (Index 1) and Index 200 

(see Figs. 108, 109, bottom right). The lower overall differences in pressure among the pairwise 

pressure readings seen when registering Index 196 (Fig. 108), compared to the ones obtained when 

registering Index 200 (Fig. 109), are being detected by measures of 𝐿1 Norm and Minimum Ratio. 

Values of non-masked 𝐿1 Norm and Minimum Ratio are at 6,788.77 mmHg and 0.613 respectively 
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when registering Index 196, compared to values of 8,190.81 mmHg and 0.544 respectively when 

registering Index 200. 

 While lower overall pressure differences (𝐿1 Norm values) are obtained when registering 

Index 196, compared to the ones obtained when registering Index 200, the differences in pressure 

in specific regions are greater when registering Index 196. The map of pressure differences seen 

in Figure 108 (bottom right) shows higher pressure differences around the ischial tuberosities 

(differences between 200-250 mmHg between pairwise cells), compared to map of pressure 

differences seen in Figure 109 (bottom right) where the pressure differences around the ischial 

tuberosities are lower (differences between 150-175 mmHg between pairwise cells). These large 

pairwise pressure differences seen when registering Index 196 (Fig. 108) affects the measures of 

Pearson, Tanimoto, and Squared 𝐿2 Norm, with these measures agreeing that higher (lower) 

similarities (dissimilarities) are seen when registering Index 200, instead of 196. This is a good 

example of the differences and sensitivities of various similarity and dissimilarity coefficients. 

 Compared to other similarity and dissimilarity measures, the Intensity Ratio Variance has 

a unique behavior and sensitivity when comparing pressure map images. The Intensity Ratio 

Variances do not show major significant shifts when comparing all indexes to the reference map, 

but spikes in their values are seen in the time series plot in Figure 101, indicating a reaction to 

specific differences between pressure maps.  

Figure 107 shows particular instances where changes in Intensity Ratio Variance values 

are considerable higher when compared to other similarity and dissimilarity coefficients. Indexes 

203, 208, and 258 are instances where unique spikes are seen in the values of Intensity Ratio 

Variance. Other similarity and dissimilarity coefficients do not react in a similar way when these 

indexes are compared, suggesting that Intensity Ratio Variance measures are sensitive to specific 
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differences between pressure maps. To evaluate the uniqueness of the Intensity Ratio Variance 

measure, the registration results and similarity and dissimilarity coefficients obtained when 

comparing these indexes [203, 208, and 258] to the reference maps are presented in Figure 110. 

 

 
(a) 109-2-1 vs 109-2-203    (b) 109-2-1 vs 109-2-208 

 
(c) 109-2-1 vs 109-2-258 

Figure 110. Optimal MSE image registration: Indexes 203, 208, and 258 (sample interval 109-2) 

 

Figure 110a shows the results when comparing Index 203 to the reference map. For this 

particular index, all similarity and dissimilarity coefficients detect considerable differences 

between the maps (e.g., non-masked Pearson Correlation Coefficient = 0.861), but measures of 

Intensity Ratio Variance show a considerable change when compared to results from other indexes. 

As an indicator, 92.88% of compared indexes show values of non-masked Intensity Ratio Variance 
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less than 0.5, with the average value being 0.16; due to this, a non-masked Intensity Ratio Variance 

value greater than one is considered significant for this dynamic data subset sample.  

In all three indexes, measures of Intensity Ratio Variance indicated considerable pressure 

map differences (see Fig. 107). Index 203 (Fig. 110a) shows a significant non-masked Intensity 

Ratio Variance value of 1.929, while indexes 208 (Fig. 110b) and 258 (Fig. 110c) show non-

masked Intensity Ratio Variance values of 1.987 and 1.306 respectively. The high values of 

Intensity Ratio Variance are due to differences in the shapes between the pressure maps; 

considerable regions with non-overlapping pressure readings are found, particularly in the leg 

regions. Also note that similarity and dissimilarity coefficients other than Intensity Ratio Variance 

are indicating relatively high (low) similarities (dissimilarities), particularly when comparing 

indexes 208 and 258 (e.g., non-masked Pearson Correlation Coefficient are set at 0.980 and 0.981 

respectively). The examples shown in Figure 110 indicate that measures of Intensity Ratio 

Variance are particularly sensitive to these differences in shapes (i.e., non-overlapping pressure 

readings) when compared to sensitivities from other similarity and dissimilarity coefficients. 

The last section in this case study is devoted to evaluating the computational demands for 

continuous dynamic image registration. To register all 281 indexes in the dynamic data subset, the 

total MSE registration process was executed in 676.33 seconds (approximately 11 minutes). Figure 

111 shows a histogram of the processing time for all indexes. Results show that alignment of 

pressure maps was done in one second or less for 66.5% of the indexes included in the dynamic 

data subset, with MSE registration taking longer than 5 seconds in just 10% of the indexes when 

aligning them to the reference map. The maximum recorded processing time for a particular index 

was 45 seconds (Index 256, with total of 235 iterations and optimality at iteration 13). 
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Figure 111. MSE image registration processing times (Sample 109-2) 

 

The results in this section show the potential of using similarity and dissimilarity 

coefficients as complementary dynamic pressure measures for identifying and evaluating in-chair-

movements (ICM). Sequential image registration using MSE attained the intended results for the 

5-minute sitting interval sample evaluated in this case study; proper alignments, centering, and 

correspondences in pressure maps’ image features were achieved. While the method chosen for 

this case study is based on comparisons of all pressure maps to the initial reference map (Index 1), 

other comparison basis could have been chosen (e.g., other pressure maps index or an aggregate 

map) with different interpretable results. 

Similarities and dissimilarities coefficients were suitable comparative techniques between 

post-registered pressure maps with potential uses for dynamic sitting applications. These 

coefficients can evaluate differences in the pressure distributions between pressure maps and be 

used as global comparative measures, each with a unique take, while the use of new proposed 

pressure measures in Table 23 (Chapter 5) can highlight the features that makes each map different.  
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CHAPTER VII 

 

CONCLUSIONS 

 

This work evaluated the applications of machine learning, spatial data analytics, digital 

image processing, and optimal image registration as new techniques for analyzing pressure maps. 

The applications, feasibilities, and practicalities of introduced techniques were made within the 

context of seating research. Results obtained in this study indicate that many of these techniques 

are suitable for analyzing pressure maps, with applications for pre-processing, analysis and 

evaluation, and comparisons of seating pressure map images. These techniques were found to also 

be cross-functional for applications in static (i.e., single map) and dynamic (i.e., sequential 

temporal maps) environments.  

The research objectives were successfully fulfilled by achieving the following: 

(1) The study introduced appropriate methods for detecting and removing extrinsic 

pressure artifacts (i.e., pressure reading outliers), with overall accuracies over ninety-

nine percent (99%), by using density-based spatial clustering techniques. The 

feasibility and practicality of applying these techniques for cleansing continuous 

pressure maps (e.g., dynamic sitting) was also demonstrated. 

(2) Various pressure measures based on spatial autocorrelation and image statistical 

features were introduced and validated as new pressure measures. These new measures 

were found to be appropriate and suitable for measuring certain aspects of the pressure 

maps, such as specific pressure distribution patterns (e.g., homogeneity, acute points, 
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and low-high distributions), overall spatial relationships, and pressure contrasts that 

commonly used pressure measures were not able to describe due to information loss. 

Their values and usefulness as dynamic pressure measures were also demonstrated. 

(3) A toolset for aligning and comparing pressure maps is introduced by using optimal 

image registration methods and similarity and dissimilarity coefficients. Accurate and 

appropriate alignments were obtained via image registration, particularly by using the 

MSE metric. The uniqueness of each similarity/dissimilarity coefficient was explained 

when comparing pressure patterns between pressure maps, along with demonstrating 

the feasibility and practicality of applying these techniques for aligning and comparing 

continuous pressure maps (e.g., dynamic sitting). 

A summary of the results obtained in the study is presented in Table 28. This table presents 

concise findings for each introduced methodology along with their applications and interpretations 

in the context of seating pressure mapping analysis. One major benefit in introducing these 

techniques is the increase in objectivity through quantitative evaluation, with no dependence of 

visual feedback assessments for understanding seating pressure map characteristics, features, and, 

particularly, dynamic behavior. The human information-processing system is overloaded by 

sensorial information, with constraints placed in cognitive processes such as attention, perception, 

recognition, judging, reasoning, and problem solving (Payne, 2003; Smith & Kelly, 2015). Such 

constraints make the human information-processing system prone to errors and misjudgments.  

By assessing values of meaningful pressure measures and similarity/dissimilarity 

coefficients, particularly during dynamic evaluation of time series plots, a general idea of the 

seating activity and behavior of the seating pressure distributions is generally obtained without 

recurring to constant visual feedback – a more-demanding cognitive activity. 
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While the introduced techniques for pressure mapping analysis were evaluated in a task 

seating environment (i.e. mousing and typing), the applications of these methodologies, along with 

their use and interpretation, should be transferable to other seating research environments. For 

example, research in automobile seating could be enhanced by the analytical capabilities of the 

introduced methodologies. The automobile seating environment provides certain restrictions in 

terms of seating postures and movements, thus making seating pressure behavior to be generally 

stable. Therefore, pressure redistributions during driving activities are important indicators of 

sitting discomfort, and enhancements in monitoring, tracking, and analysis of seating pressure 

maps can help in a better understanding of these movement-discomfort relationships (Sammonds 

et al., 2017).  

Other implementations of the introduced methodologies can be in the ergonomic evaluation 

of aircraft pilot seats, where factors such as inappropriate seat dimensions and improper sitting 

postures are possible contributors to discomfort. Pilot discomfort due to sitting conditions can lead 

to distractions and reduction in pilot performance during an air flight, causing concerns in flight 

safety (Andrade, 2013). By use of pressure mapping interfaces, the introduced techniques could 

help in evaluating pilot seat designs and seating postures, while helping in further understanding 

their relation to seating comfort-discomfort. 

Another example where introduced methodologies can help expand the analytical 

capabilities is in paraplegic seating research, where the monitoring of pressures between the soft 

tissues of the body and the support surface is important in assessing tissue viability (Aissaoui et 

al., 2001). While body tissues can generally tolerate high pressures for short periods of time, the 

lack of sitting movement or pressure redistribution is of concern. Blood supply and lymphatic 

drainage are impaired if high seating pressures are maintained (Aissaoui et al., 2001). The 
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additional information provided by the introduced methodologies can help in identifying 

unfavorable pressure distribution patterns or stagnant sitting behavior. 

In all aforementioned examples, the analysis of the relationships between user-chair 

interactions and seating comfort-discomfort could be expanded by the introduced pressure 

mapping techniques; these can help in objectively identifying the seating conditions that can lead 

to discomfort. While many of the findings in this study are in the context of seating pressure 

mapping evaluation, the applications of these techniques can also be tailored and employed in non-

seating research using pressure map images (e.g., gait analysis, industrial applications, and sports 

fields), or for research studies using spatially related three-dimensional datasets (e.g., surface 

topography, contour data, and heat maps). 

 

Limitations 

Some of the limitations in this study are in terms of the pressure mapping interface used to 

collect the pressure maps included in the studied dataset. There were instances where many 

pressure sensor cells in the pressure mat were maxed out (i.e., 300 mmHg), usually around high-

pressure regions such as the ischial tuberosities. Some of the introduced pressure measures, such 

as homogeneity and spatial relationships measures, were sensitive to clusters of maxed out 

readings. To obtained more accurate results with introduced measures, the use of pressure mapping 

interfaces with pressure limits higher than the expected max pressure reading is required. 

Introduced methodologies were validated for a grid-base pressure mat interface with 1024 

(32 x 32) contiguous pressure elements (sensors). While the applications of many of the introduced 

measures, techniques, and methodologies should scale well with grid-base pressure mat interfaces 

with different configurations (e.g., 16 x 16, or 32 x 80 [used in mattress research]), proposed 
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techniques for data cleansing (using density-based spatial clustering) might not be adequate for 

other pressure mapping applications. This study implemented density-based spatial clustering on 

the assumption that seating pressure maps generally exhibit a single-body (or a number of large 

bodies) of contiguous pressure readings. This assumption could be violated in other human-subject 

pressure mapping applications (e.g., gait analysis, mattress mapping, or dental mapping). In 

controlled pressure mapping environments, particularly in industrial applications (e.g., sealing 

packaging, robotic assembly, and ultrasonic welding), extrinsic pressure artifacts might not even 

be present; making the pre-processing (data cleansing) of collected pressure maps not a 

requirement. 

For the dynamic evaluation of continuous pressure maps, the 5-minute interval sample used 

in this study provided sufficient dynamic pressure redistributions to evaluate the feasibility of 

introduced dynamic pressure measures. Unfortunately, significant seat pan repositions did not 

occur during this sitting time interval. More seating repositions could potentially be observed in 

longer sitting sessions, where the potential use of measures of registered CP translation distances 

could be better evaluated. The dynamic evaluation conclusions presented in this study assume that 

all introduced methodologies and measures are scalable (different pressure map resolutions) and 

extendable (longer collection of continuous pressure maps). 

Evaluations of introduced comparative techniques were limited to comparisons of pressure 

maps with no significant orientation differences (e.g., rotational differences of more than 90o), or 

significant scaling differences (e.g., differences in number of contact cells more than 20%). 

Significant scaling differences can occur when comparing pressure maps between subjects due to 

differences in subjects’ anthropometry, or when comparing within-subject pressure maps where 

different seating surfaces are examined (e.g., different seating area and/or contour). These scaling 
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differences can have meaningful effects during image registration procedures. While scaling 

algorithms can be also implemented for comparing pressure maps, it is generally not appropriate 

for research involving human subjects (e.g., seating research). Scaling algorithms will distort 

subject’s anthropometry and cover dissimilarities due to true differences in size between subjects, 

and therefore not considered in this study. But other potential pressure mapping research 

applications where objects are naturally scalable (e.g., tire footprint analysis) might benefit from 

scaling algorithms during image registrations. 

Another major limitation is that seating pressure maps were used as the testing and 

validation platform for introducing new methods and techniques for pressure mapping analysis. 

While other pressure mapping applications could benefit from many of the proposed 

methodologies, their applications and interpretations could possibly change according to what is 

being researched (human or object) and which contact interaction (surface) is being studied. 

 

Future Research 

Possible avenues for future research are in terms of pre-processing (data cleansing) 

techniques. Additional input data can be provided to density-based clustering algorithms with the 

purpose of enhancing detection and classification accuracies of extrinsic pressure artifacts 

(outliers). One possibility could be incorporating pressure distances between individual pressure 

reading and the map’s center of pressure (with appropriate weights) as a way to identify closeness 

to the main pressure body. Other techniques could include forward or backwards propagation 

analysis in continuous pressure maps to detect common areas and locations where outliers are 

detected across sequential pressure maps, or use of multi-phase algorithms (e.g., using 
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combinations of clustering methods, pressure magnitudes, locations, and distances information) to 

provide outlier scores to pressure readings within a pressure map. 

With the introduction of new pressure measures and comparative techniques, future studies 

in seating research can implement these to further study human-chair interactions. Research can 

be aimed at determining appropriate ranges of values for the proposed pressure measures in 

relation to sitting comfort-discomfort. These measures can also be used to understand subjects’ 

anthropometry influences during extended sitting bouts, and further help in understanding the 

relationships to comfort-discomfort during dynamic sitting.  

As one of the limitations in this study is the use of seating pressure maps as the testing and 

validation platform for introduced methodologies, is also of importance that applications, 

evaluations, feasibilities, and practicalities of proposed methodologies are studied in other pressure 

mapping application fields. 
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# -*- coding: utf-8 -*-   

1.    
2. """  
3. Created on Thu Mar  7 09:13:08 2019  
4.   
5. @author: Joan Martinez  
6. """   
7.    
8. import numpy as np   
9. import pandas as pd   
10. from sklearn.cluster import DBSCAN, OPTICS     
11. from hdbscan import HDBSCAN   
12. from sklearn import metrics   
13. from sklearn.preprocessing import StandardScaler   
14. import matplotlib.pyplot as plt   
15. import sys, time, glob, os   
16. import matplotlib as mpl   
17. from skimage.external import tifffile   
18.    
19. sys.path.append(os.getcwd()+'\\DENCLUE-master')   
20. from denclue import DENCLUE # mgarrett, 2017 (github.com/mgarrett57/DENCLUE)   
21.    
22. sys.path.append(os.getcwd()+'\\py-dbclasd-master')   
23. from dbclasd2 import dbclasd # Sebastian Palacio, 2015 (github.com/spalaciob/py-dbclasd)   
24.    
25. # create colormap   
26. upper = mpl.cm.jet(np.arange(int(256/4.5),256))   
27. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])   
28.    
29. ########################### LOAD DATA ##############################################   
30.    
31. sheet = 'Seatpan'   
32.       
33. # Pressure Mat Info   
34. res1 = 32   
35. res2 = 32   
36. pmax = 300   
37.    
38. Y1 = pd.read_excel('Data\\Cluster data subset.xlsx', sheet_name=sheet)   
39. Ylab = pd.read_excel('Data\\Cluster data subset.xlsx', sheet_name=sheet + ' Outliers')   
40.    
41. nindex = np.size(Y1.iloc[1,:])   
42.    
43. Y = np.float32(Y1.values.reshape(res1,res2,nindex))   
44. Ym = np.ma.masked_where(Y == 0, Y) ## Inactive cells = 0 mmHg   
45.    
46. indexlist = list(range(56))    
47.    
48. #Setting up column/rows/pressure array   
49. X1 = np.array(np.meshgrid(np.arange(1,res1+1),np.arange(1,res2+1))).T.reshape(-1,2)   
50. X1 = pd.DataFrame(np.hstack((X1,np.zeros(res1*res2).reshape(1,1))),columns=['Row','Column'

,'Pressure'])   
51.    
52. #Setting up cluster label variables   
53. cluvarlist = ['db', 'dbnp', 'op', 'opnp', 'opdb', 'opdbnp', 'hdb', 'hdbnp'   
54.               ,'dcl', 'dclnp', 'dbcl', 'dbclnp']     
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55. labvarlist = ['DBSCAN', 'DBSCAN (NP)', 'OPTICS_XI','OPTICS_XI (NP)', 'OPTICS_DBSCAN',   
'OPTICS_DBSCAN (NP)', 'HDBSCAN', 'HDBSCAN (NP)', 'DENCLUE', 'DENCLUE (NP)', 'DBCLASD', 'DB
CLASD (NP)']   

56. props = dict(boxstyle='round', facecolor='wheat', alpha=0.3)   
57.    
58. Results = pd.DataFrame(columns=['File','Sheet','Method','Parameters','Clusters', 

'Noise Pts','Cluster Accuracy','Overall Accuracy','Outliers Accuracy', 
'Non-Outliers Accuracy', 'Homogeneity','Completeness','V-measure','Adj RI', 'Adj MI', 
'Silhouette Coefficient', 'Proc Time'])   

59.   
60.  
61. start = time.time()   
62. ############################## START INDEXING #################################   
63. for i in indexlist:   
64.    
65.     filename = Y1.columns[i]   
66.     os.makedirs('Data\\Cluster data subset\\' + filename, exist_ok=True)   
67.        
68.     #Plot pressure map   
69.     plt.figure(figsize=(5, 4), dpi=200)   
70.     plt.imshow(Ym[:,:,i], cmap=cmap);   
71.     plt.clim(0,pmax)   
72.     plt.colorbar()   
73.     plt.title(f'{filename} - Pressure Map (mmHg)')     
74.     plt.savefig(f'Data\Cluster data subset\{filename}\Pressure Map - {filename}.tif',  

bbox_inches='tight')   
75.     plt.clf()     
76.        
77.    
78.     X=X1   
79.     X['Pressure'] = np.array(Y1.iloc[:,i]).reshape(-1,1)   
80.     labels_true = np.array(Ylab.iloc[:,i])   
81.        
82.     #Eliminating non-pressure elements   
83.     X = X.drop(X[X.Pressure == 0].index)   
84.     labels_true = np.array([labels_true[j] for j in X.index])   
85.     X = X.reset_index(drop=True)   
86.        
87.     # Standardization (Z)   
88.     X['Pressure'] = StandardScaler().fit_transform(X['Pressure'].values.reshape(-1,1))   
89.            
90.     ###### NO PRESSURE DATA #######   
91.     Xnp = X.drop('Pressure', axis=1)   
92.     Xnpreord=X[['Column','Row']]   
93.        
94.     #Marking all as non-outliers   
95.     core_samples_mask = np.zeros(len(X.iloc[:,0]), dtype=bool)   
96.     core_samples_mask[:] = True   
97.    
98.     #Plotting Reference Outlier Map   
99.     real_n_noise = list(labels_true).count(-1)   
100.     real_non_outliers = list(labels_true).count(0)   
101.        
102.     unique_labels = set(labels_true)   
103.     colors = [plt.cm.Set3(each)   
104.               for each in np.linspace(0, 1, len(unique_labels))]       
105.           
106.     fig, ax = plt.subplots()     
107.     pstr = ('Outliers: %i' %real_n_noise + '\nNon-Outliers: %i' %real_non_outliers)   
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108.     ax.text(res1 + 1.5, 1, pstr, fontsize=7,verticalalignment='top', bbox=props)    
109.    
110.     # Black removed and is used for noise instead.   
111.     for k, col in zip(unique_labels, colors):   
112.         if k == -1:   
113.             # Black used for noise.   
114.             col = [0, 0, 0, 1]   
115.        
116.         class_member_mask = (labels_true == k)   
117.        
118.         xy = X[class_member_mask & core_samples_mask]   
119.         ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),   
120.                  markeredgecolor='k', markersize=7)   
121.        
122.         xy = X[class_member_mask & ~core_samples_mask]   
123.         ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),   
124.                  markeredgecolor='k', markersize=5)   
125.                
126.     plt.xticks(np.arange(0, res1+1, res1/8))   
127.     plt.yticks(np.arange(0, res1+1, res1/8))   
128.     plt.title(f'{filename} - Outliers Reference [Noise: {real_n_noise}]')       
129.     ax.axis([-0.5, res1+0.5, -0.5, res2+0.5])   
130.     ax.set_aspect(1)   
131.     ax.invert_yaxis()   
132.        
133.     plt.savefig(f'Data\Cluster data subset\{filename}\Reference - {filename}.tif',  

dpi=200, bbox_inches='tight')       
134.     plt.clf()     
135.        
136.     # Compute DBSCAN   
137.     proctime = time.time()   
138.     db = DBSCAN(eps=2.5, min_samples=8, metric='euclidean', algorithm='brute').fit(X)   
139.     dbtime = time.time() - proctime   
140.        
141.     proctime = time.time()   
142.     dbnp = DBSCAN(eps=2.2, min_samples=10, metric='euclidean',  

algorithm='brute').fit(Xnp)   
143.     dbnptime = time.time() - proctime   
144.        
145.     # Compute OPTICS XI   
146.     proctime = time.time()   
147.     op = OPTICS(min_samples= 3 , metric='euclidean', cluster_method='xi', xi= 0.1,  

min_cluster_size = 0.4, algorithm='brute').fit(X)   
148.     optime = time.time() - proctime   
149.        
150.     proctime = time.time()   
151.     opnp = OPTICS(min_samples= 3 , metric='euclidean', cluster_method='xi', xi= 0.03,  

min_cluster_size = 0.4, algorithm='brute').fit(Xnp)   
152.     opnptime = time.time() - proctime   
153.        
154.     # Compute OPTICS DBSCAN   
155.     proctime = time.time()   
156.     opdb = OPTICS(min_samples= 8, max_eps= 2.2, metric='euclidean',  

cluster_method='dbscan', algorithm='brute').fit(X)   
157.     opdbtime = time.time() - proctime   
158.        
159.     proctime = time.time()   
160.     opdbnp = OPTICS(min_samples= 10, max_eps= 2, metric='euclidean',  

cluster_method='dbscan', algorithm='brute').fit(Xnp)   
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161.     opdbnptime = time.time() - proctime   
162.        
163.     # Compute HDBSCAN   
164.     proctime = time.time()   
165.     hdb = HDBSCAN(min_cluster_size=12, min_samples=3, metric='euclidean', alpha=1.0,  

algorithm='best', leaf_size=5,    
166.                   gen_min_span_tree=True, cluster_selection_method='eom',  

allow_single_cluster=False).fit(X)   
167.     hdbtime = time.time() - proctime   
168.        
169.     proctime = time.time()   
170.     hdbnp = HDBSCAN(min_cluster_size=12, min_samples=3, metric='euclidean', alpha=1.0, 

algorithm='best', leaf_size=5, gen_min_span_tree=True,  
cluster_selection_method='eom', allow_single_cluster=False).fit(Xnp)   

171.     hdbnptime = time.time() - proctime   
172.       
173.     # Compute DENCLUE   
174.     proctime = time.time()   
175.     dcl = DENCLUE(h=None, eps=1, min_density=2e-04, metric='euclidean').fit(X.values)   
176.     dcltime = time.time() - proctime   
177.       
178.     proctime = time.time()   
179.     dclnp = DENCLUE(h=None, eps=1, min_density=1.3e-03,  
180. metric='euclidean').fit(Xnp.values)  
181.     dclnptime = time.time() - proctime   
182.       
183.     # Compute DBCLASD   
184.     proctime = time.time()   
185.     dbcldiv = 8   
186.     dbcl = dbclasd(n_neighbors =  int(len(X)/dbcldiv)).fit(X.values)   
187.     dbcltime = time.time() - proctime   
188.        
189.     proctime = time.time()   
190.     dbclnpdiv = 5   
191.     dbclnp = dbclasd(n_neighbors =  int(len(X)/dbclnpdiv)).fit(Xnp.values)   
192.     dbclnptime = time.time() - proctime   
193.        
194.     for var, lab in zip(cluvarlist,labvarlist):   
195.            
196.         # Number of clusters in labels, ignoring noise if present.       
197.         labels = eval(var).labels_   
198.         n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)   
199.         n_noise_ = list(labels).count(-1)   
200.         cmatrix = metrics.confusion_matrix(labels_true, labels)   
201.            
202.         if real_n_noise + n_noise_ == 0:   
203.             outacc = 1   
204.             noutacc = 1   
205.             ovacc = 1   
206.         else:   
207.             correct_n_noise = cmatrix[0][0]   
208.             incorrect_non_outliers = cmatrix[1][0]   
209.             outacc = (correct_n_noise/real_n_noise)   
210.             noutacc = ((real_non_outliers-incorrect_non_outliers)/real_non_outliers)   
211.             ovacc = (correct_n_noise+(real_non_outliers- 

incorrect_non_outliers))/(real_n_noise + real_non_outliers)           
212.        
213.         if n_clusters_+ n_noise_ == 1:   
214.             silhouette=1   
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215.         elif n_clusters_+ n_noise_ == len(labels):   
216.             silhouette=-1   
217.         else:   
218.             silhouette=metrics.silhouette_score(X, labels)   
219.            
220.         proctime = eval(var+'time')   
221.            
222.         print(f'{filename} , Index: {i}\n____________ {lab} RESULTS _______________')   
223.         print('No of clusters:\t\t\t %d' % n_clusters_)   
224.         print('No of noise points:\t\t %d' % n_noise_)   
225.         print("Cluster Accuracy:\t\t %0.4f" % metrics.accuracy_score(labels_true,  

labels)) #fraction of correctly classified samples (ALL)   
226.            
227.         print("Overall Accuracy:\t\t %0.4f" %ovacc) #fraction of correctly classified   

samples (ALL)   
228.         print("Outliers Accuracy:\t\t %0.4f" %outacc) #fraction of correctly classified 

outliers (-1)   
229.         print("Non-Outliers Accuracy:\t\t %0.4f" %noutacc) #fraction of correctly  

classified non-outliers (non -1)   
230.            
231.         print("Homogeneity:\t\t\t %0.4f" % metrics.homogeneity_score(labels_true,  

labels)) #fraction of correctly classified members of a single class.   
232.         print("Completeness:\t\t\t %0.4f" % metrics.completeness_score(labels_true,  

labels)) #data points that are members of a given class are elements of the  
same cluster.   

233.         print("V-measure:\t\t\t %0.4f" % metrics.v_measure_score(labels_true, labels))  
#harmonic mean between homogeneity and completeness   

234.         print("Adjusted Rand Index:\t\t %0.4f" #counting pairs that are assigned in the 
same or different clusters in the predicted and true clusterings.   

235.               % metrics.adjusted_rand_score(labels_true, labels))   
236.         print("Adjusted Mutual Information:\t %0.4f" #measure of the similarity between

    two labels of the same data   
237.               % metrics.adjusted_mutual_info_score(labels_true, labels, average_method= 

'arithmetic'))   
238.         print("Silhouette Coefficient:\t\t %0.4f" #mean relationship between mean  

intra-cluster and mean nearest-cluster distances for each sample.   
239.               % silhouette)   
240.         print('Confusion Matrix\n', cmatrix)   
241.          
242.         pstr = "Params = None"   
243.            
244.         if (var == 'db' or var == 'dbnp'):   
245.             pstr = ('eps:%.2f' %eval(var).eps + '\nmin_samples:%.0f'    

   %eval(var).min_samples)   
246.            
247.         if (var == 'op' or var == 'opnp'):   
248.             pstr = ('xi:%.3f' %eval(var).xi + '\nmin_samples:%.0f'    

   %eval(var).min_samples    
249.                    + '\nmin_size:%.2f' %eval(var).min_cluster_size)    
250.            
251.         if (var == 'opdb' or var == 'opdbnp'):   
252.             pstr = ('eps:%.2f' %eval(var).max_eps + '\nmin_samples:%.0f'   

   %eval(var).min_samples)    
253.            
254.         if (var == 'hdb' or var == 'hdbnp'):   
255.             pstr = ('min_size:%.2f' %eval(var).min_cluster_size + '\nmin_samples:%.0f' 

   %eval(var).min_samples   
256.                    + '\nleaf_size:%.2f' %eval(var).leaf_size)        
257.        
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258.         if (var == 'dcl' or var == 'dclnp'):   
259.             pstr = ('eps:%.1e' %eval(var).eps + '\nmin_density:%.1e'    

   %eval(var).min_density)     
260.                
261.         if (var == 'dbcl'):   
262.             pstr = ('n_neighbors:%i' %eval(var).n_neighbors + '\nArea%%:%.2f'   

   %(1/dbcldiv))            
263.                
264.         if (var == 'dbclnp'):   
265.             pstr = ('n_neighbors:%i' %eval(var).n_neighbors + '\nArea%%:%.2f'   

   %(1/dbclnpdiv))     
266.         
267.          
268.         Results.loc[len(Results)] = np.array([filename, sheet, lab, pstr, n_clusters_, 

n_noise_,metrics.accuracy_score(labels_true, labels),ovacc, outacc,noutacc,   
metrics.homogeneity_score(labels_true, labels), 
metrics.completeness_score(labels_true, labels), 
metrics.v_measure_score(labels_true, labels), 
metrics.adjusted_rand_score(labels_true, labels), 
metrics.adjusted_mutual_info_score(labels_true, labels,   
average_method='arithmetic'), silhouette, proctime]) 

269.            
270.         unique_labels = set(labels)   
271.         colors = [plt.cm.Set3(each)   
272.                   for each in np.linspace(0, 1, len(unique_labels))]       
273.               
274.         fig, ax = plt.subplots()   
275.         ax.text(res1 + 1.5, 1, pstr, fontsize=7,verticalalignment='top', bbox=props)   

    
276.            
277.         # ############### RESULTS PLOT ########################################   
278.         # Black removed and is used for noise instead.   
279.         for k, col in zip(unique_labels, colors):   
280.             if k == -1:   
281.                 # Black used for noise.   
282.                 col = [0, 0, 0, 1]   
283.            
284.             class_member_mask = (labels == k)   
285.            
286.             xy = X[class_member_mask & core_samples_mask]   
287.             ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),   
288.                      markeredgecolor='k', markersize=7)   
289.            
290.             xy = X[class_member_mask & ~core_samples_mask]   
291.             ax.plot(xy['Column'], xy['Row'], 'o', markerfacecolor=tuple(col),   
292.                      markeredgecolor='k', markersize=5)   
293.                    
294.         plt.xticks(np.arange(0, res1+1, res1/8))   
295.         plt.yticks(np.arange(0, res1+1, res1/8))   
296.         plt.title(f'{filename} - {lab} [Clusters: {n_clusters_}, Noise: {n_noise_}]')   
297.         ax.axis([-0.5, res1+0.5, -0.5, res2+0.5])   
298.         ax.set_aspect(1)   
299.         ax.invert_yaxis()   
300.            
301.         plt.savefig(f'Data\Cluster data subset\{filename}\{lab} - {filename}.tif',  

   dpi=200, bbox_inches='tight')   
302.         plt.clf()        
303.    
304.     #### Create TIF files   
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305.     with tifffile.TiffWriter(f'Data\Cluster data subset\{filename} {sheet} -   
  Cluster Plots.tif') as stack:   

306.         for fname in sorted(glob.glob(f'Data\Cluster data subset\{filename}\*.tif'),  
   key=os.path.getmtime):   

307.             stack.save(tifffile.imread(fname), compress=6)   
308.                
309. # Write Results in Excel   
310. from excelappend import append_df_to_excel   
311. append_df_to_excel(f'Data\Cluster data subset\Cluster Results.xlsx',Results,  

  sheet_name="Results")   
312.    
313. print('Processing Time: ', (time.time() - start))   
314.    
315. # ############################# END ################################################   
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Appendix D 

Python Code: Spatial Autocorrelation and Statistical Features 
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1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Thu Apr  4 13:22:31 2019  
4.   
5. @author: Joan Martinez  
6. """   
7.    
8. import numpy as np   
9. import pandas as pd   
10. import scipy as sp   
11. import pysal   
12. import matplotlib.pyplot as plt   
13. import matplotlib as mpl   
14. import skimage.feature as sf   
15. import sys   
16. import time   
17. import glob   
18. import os   
19. from skimage.external import tifffile   
20.    
21. sys.path.append(os.getcwd()+'\\biokit\\viz')   
22. import corrplot   
23.    
24. # create colormap   
25. upper = mpl.cm.jet(np.arange(int(256/4.5),256))   
26. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])   
27.    
28.    
29. # #############################################################################   
30. # Load data   
31.    
32. sheet = 'Seatpan'   
33. Dataset = 'Static'   
34. #Dataset = 'Paired'   
35.    
36. Y1 = pd.read_excel('Data\\{Dataset} data subset.xlsx', sheet_name=sheet)   
37.    
38. os.makedirs('Data\\{Dataset} data subset\\' + sheet + '\\Results' , exist_ok=True)   
39. os.makedirs('Data\\{Dataset} data subset\\' + sheet + '\\Plots', exist_ok=True)   
40.    
41. nindex = np.size(Y1.iloc[1,:])   
42.    
43. res1 = 32   
44. res2 = 32   
45. pmax = 300   
46.    
47. Y = np.float32(Y1.values.reshape(res1,res2,nindex))   
48. Ym = np.ma.masked_where(Y == 0, Y) ## unactive cells = 0 mmHg   
49. Y1m = np.ma.masked_where(Y1 == 0, Y1) ## unactive cells = 0 mmHg   
50.    
51. ##############################################################################   
52. ##############################################################################   
53.    
54. #Spatial Autocorrelation Variales   
55. miarrq, gcarrq, miarrc, gcarrc, miarrid, gcarrid = (np.zeros(nindex) for _ in range(6)) 
56.    
57. # Weight Matrix for Autocorrelation   
58. wq = pysal.lat2W(res1,res2, rook = False)   
59. X = np.array(np.meshgrid(np.arange(1,res1+1),np.arange(1,res2+1))).T.reshape(-1,2)   
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60. wid = pysal.threshold_continuousW_from_array(X,2*2**0.5)   
61. wc = pysal.threshold_continuousW_from_array(X,2*2**0.5, alpha = 0)   
62.    
63. #First Order Statistics Variables   
64. ctarr, sumarr, meanarr,sdarr,cvarr, skewarr,kurtarr = (np.zeros(nindex) for _ in range(7))

   
65. histarr = np.zeros(shape=(pmax+1, nindex))   
66.    
67. #Gradient Variables   
68. diffx = np.ma.array(np.zeros(shape = (res1,res2-1,nindex)))   
69. diffy = np.ma.array(np.zeros(shape = (res1-1,res2,nindex)))   
70. gradx,grady = (np.ma.array(np.zeros(shape = (res1,res2,nindex))) for _ in range(2))   
71. histdiffxarr, histdiffyarr = (np.zeros(shape=(pmax+1, nindex)) for _ in range(2))   
72.    
73. #GLD Variables   
74. gradprobdistrx,gradprobdistry = (np.zeros(shape=(pmax+1, nindex)) for _ in range(2))   
75. [gradcontrastx,gradcontrasty,gradsecmomentx,gradsecmomenty,   
76.  gradentropyx,gradentropyy,gradmeanx,gradmeany,   
77.  invdiffmomx,invdiffmomy] = (np.zeros(nindex) for _ in range(10))   
78.    
79. #GLSD Variables   
80. [glsd_energyx,glsd_energyy,glsd_contrastx,glsd_contrasty,   
81.  glsd_correlationx,glsd_correlationy,glsd_homogeneityx,glsd_homogeneityy,   
82.  glsd_entropyx,glsd_entropyy] = (np.zeros(nindex) for _ in range(10))   
83.    
84.    
85. start = time.time()   
86. #INDEX LOOP   
87. i = 0   
88. for i in range(nindex):    
89.            
90.     miarrq[i] = "%.5f" %pysal.Moran(Y[:,:,i], wq, permutations=2).I   
91.     gcarrq[i] = "%.5f" %pysal.Geary(Y[:,:,i], wq, permutations=2).C   
92.        
93.     miarrc[i] = "%.5f" %pysal.Moran(Y[:,:,i], wc, permutations=2).I   
94.     gcarrc[i] = "%.5f" %pysal.Geary(Y[:,:,i], wc, permutations=2).C   
95.        
96.     miarrid[i] = "%.5f" %pysal.Moran(Y[:,:,i], wid, permutations=2).I   
97.     gcarrid[i] = "%.5f" %pysal.Geary(Y[:,:,i], wid, permutations=2).C   
98.        
99.     histarr[:,[i]] = np.histogram([Ym[:,:,i]],pmax+1)[0].reshape(pmax+1,1)   
100.      
101.     ## Only active cells    
102.     ctarr[i] = np.ma.MaskedArray.count(Y1m[:,i])   
103.     sumarr[i] = np.ma.MaskedArray.sum(Y1m[:,i])   
104.     meanarr[i] = "%.5f"%sp.stats.mstats.describe(Y1m[:,i]).mean    
105.     sdarr[i] = "%.5f"%np.sqrt(sp.stats.mstats.describe(Y1m[:,i]).variance  
106.     cvarr[i] = "%.5f"%sp.stats.mstats.variation(Y1m[:,i])   
107.     skewarr[i] = "%.5f"%sp.stats.mstats.skew(Y1m[:,i])    
108.     kurtarr[i] = "%.5f"%sp.stats.mstats.kurtosis(Y1m[:,i])   
109.             
110.     ## FIRST ORDER GRADIENT   
111.     diffy[:,:,i] = abs(np.diff(Ym[:,:,i], axis=0))   
112.     diffx[:,:,i] = abs(np.diff(Ym[:,:,i], axis=1))   
113.        
114.     histdiffxarr[:,[i]] = np.histogram(diffx[:,:,i].compressed(),pmax+1, [0,pmax])[0]. 

      reshape(pmax+1,1)   
115.     histdiffyarr[:,[i]] = np.histogram(diffy[:,:,i].compressed(),pmax+1, [0,pmax])[0]. 

     reshape(pmax+1,1)   
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116.        
117.     gradprobdistrx[:,[i]] = histdiffxarr[:,[i]]/np.sum(histdiffxarr[:,[i]])   
118.     gradprobdistry[:,[i]] = histdiffyarr[:,[i]]/np.sum(histdiffyarr[:,[i]])   
119.        
120.     gradcontrastx[i] = np.sum(gradprobdistrx[:,[i]]*(np.arange(pmax+1). 

     reshape(pmax+1,1))**2)   
121.     gradcontrasty[i] = np.sum(gradprobdistry[:,[i]]*(np.arange(pmax+1). 

     reshape(pmax+1,1))**2)   
122.        
123.     gradsecmomentx[i] = np.sum(gradprobdistrx[:,[i]]**2)   
124.     gradsecmomenty[i] = np.sum(gradprobdistry[:,[i]]**2)   
125.        
126.     gradentropyx[i] = sp.stats.entropy(gradprobdistrx[:,[i]], base=2)[0]   
127.     gradentropyy[i] = sp.stats.entropy(gradprobdistry[:,[i]], base=2)[0]   
128.        
129.     gradmeanx[i] = np.sum(gradprobdistrx[:,[i]]*(np.arange(pmax+1).reshape(pmax+1,1)))  
130.     gradmeany[i] = np.sum(gradprobdistry[:,[i]]*(np.arange(pmax+1).reshape(pmax+1,1)))  
131.        
132.     invdiffmomx[i] = np.sum(gradprobdistrx[:,[i]]/((np.arange(pmax+1). 

     reshape(pmax+1,1))**2+1))   
133.     invdiffmomy[i] = np.sum(gradprobdistry[:,[i]]/((np.arange(pmax+1). 

     reshape(pmax+1,1))**2+1))   
134.    
135.     ## SECOND ORDER CENTRAL GRADIENT   
136.     grady[:,:,i] = np.gradient(Ym[:,:,i], edge_order=1, axis=0)   
137.     gradx[:,:,i] = np.gradient(Ym[:,:,i], edge_order=1, axis=1)   
138.        
139.     ########################### SECOND ORDER STAT FEATURES ##########   
140.       
141.     #Removing first 0 pressure column   
142.     gcm2 = np.float64(sf.greycomatrix(np.uint16(np.round(Ym[:,:,i])),[1],[0, np.pi/2], 

     levels=pmax+1, symmetric=True)[1:,1:,:,:])   
143.     gcm2[:,:,0,0] = gcm2[:,:,0,0]/np.sum(gcm2[:,:,0,0])   
144.     gcm2[:,:,0,1] = gcm2[:,:,0,1]/np.sum(gcm2[:,:,0,1])   
145.        
146.     glsd_energyx[i] = (sf.greycoprops(gcm2, "energy")**2)[0,0]   
147.     glsd_energyy[i] = (sf.greycoprops(gcm2, "energy")**2)[0,1]   
148.        
149.     glsd_contrastx[i] = sf.greycoprops(gcm2, "contrast")[0,0]   
150.     glsd_contrasty[i] = sf.greycoprops(gcm2, "contrast")[0,1]   
151.        
152.     glsd_correlationx[i] = sf.greycoprops(gcm2, "correlation")[0,0]   
153.     glsd_correlationy[i] = sf.greycoprops(gcm2, "correlation")[0,1]   
154.        
155.     glsd_entropyx[i] = sp.stats.entropy(np.reshape(gcm2,(-1,2)), base=2) 

     [np.newaxis][0,0]   
156.     glsd_entropyy[i] = sp.stats.entropy(np.reshape(gcm2,(-1,2)), base=2) 

     [np.newaxis][0,1]   
157.        
158.     glsd_homogeneityx[i] = sf.greycoprops(gcm2, "homogeneity")[0,0]   
159.     glsd_homogeneityy[i] = sf.greycoprops(gcm2, "homogeneity")[0,1]   
160.          
161. print('Processing Indexes Time: ', (time.time() - start))   
162.    
163. #### WRITE RESULTS IN EXCEL ###################################   
164.    
165. filenames = Y1.columns   
166.    



241 

 

 

167. resvarlist = ['filenames', 'miarrq', 'gcarrq', 'miarrc', 'gcarrc', 'miarrid',  
'gcarrid', 'ctarr', 'sumarr','meanarr', 'sdarr', 'cvarr', 'skewarr', 'kurtarr']   

168.    
169. labvarlist = ['Sample', "Moran's I (Q)", "Geary's C (Q)", "Moran's I (CD)",  

"Geary's C (CD)", "Moran's I (ID)", "Geary's C (ID)", 'Contact Cells',  
'Sum of Pressure', 'Mean Pressure', 'Standard Deviation', 'Coefficient of Variation',  
'Skewness', 'Kurtosis']   

170.    
171. resvarlistx = ['gradcontrastx', 'gradsecmomentx', 'gradentropyx', 'gradmeanx',  

'invdiffmomx', 'glsd_energyx', 'glsd_contrastx', 'glsd_correlationx', 'glsd_entropyx', 'gl
sd_homogeneityx']   

172.    
173. labvarlistx = ['GLD - Gradient Contrast X', 'GLD - Gradient Second Moment X',  

'GLD - Gradient Entropy X', 'GLD - Gradient Mean X',  
'GLD - Inverse-Difference Moment X', 'GLSD - Energy X', 'GLSD - Contrast X',  
'GLSD - Correlation X', 'GLSD - Entropy X', 'GLSD - Homogeneity X']   

174.    
175. resvarlisty = ['gradcontrasty', 'gradsecmomenty', 'gradentropyy', 'gradmeany',  

'invdiffmomy', 'glsd_energyy', 'glsd_contrasty', 'glsd_correlationy', 'glsd_entropyy',  
'glsd_homogeneityy']   

176.    
177. labvarlisty = ['GLD - Gradient Contrast Y', 'GLD - Gradient Second Moment Y',  

'GLD - Gradient Entropy Y', 'GLD - Gradient Mean Y',  
'GLD - Inverse-Difference Moment Y', 'GLSD - Energy Y', 'GLSD - Contrast Y',  
'GLSD - Correlation Y', 'GLSD - Entropy Y', 'GLSD - Homogeneity Y']   

178.    
179. Results = pd.DataFrame(columns=labvarlist + labvarlistx + labvarlisty)   
180.    
181. for var, lab in zip(resvarlist + resvarlistx + resvarlisty,labvarlist + labvarlistx  

                    + labvarlisty):   
182.     Results[lab] = eval(var)   
183.    
184. from excelappend import append_df_to_excel   
185. append_df_to_excel(f'Data\\{Dataset} data subset\\{sheet}\Results\{Dataset}  

 Pressure Parameteres Results.xlsx',Results,sheet_name=sheet)   
186.    
187. corr = Results.corr(method='pearson')   
188. c = corrplot.Corrplot(corr)   
189. c.plot(method='ellipse', shrink=0.8, rotation=45, upper='text', lower='pie')   
190. fig = plt.gcf()   
191. fig.set_size_inches(20, 16);   
192. plt.title(f'{Dataset} Data Subset - Pressure Parameters Correlations')   
193. plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\\{Dataset} Pressure Parameters  

 Correlations.tif', dpi=200, bbox_inches='tight')   
194.    
195. append_df_to_excel(f'Data\\{Dataset} data subset\\{sheet}\Results\{Dataset} Pressure  

 Parameteres Correlations.xlsx',corr,sheet_name=sheet)   
196.    
197.    
198. ######## INDEXES MAPS & PLOTS ##############################   
199. start = time.time()   
200. dpishow = 100   
201. dpisave = 200   
202.    
203. i = 0   
204. for i in range(nindex):    
205.     plt.clf()   
206.     plt.figure(figsize=(5, 4), dpi=200)   
207.     plt.imshow(Ym[:,:,i], cmap=cmap);   
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208.     plt.clim(0,pmax)   
209.     plt.colorbar()   
210.     plt.title(f'%s, Pressure Map (mmHg) [CV = %.3f]' %(filenames[i],cvarr[i]))       
211.     #plt.show()   
212.     plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Pressure Map -  

     Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')   
213.        
214.     plt.clf()   
215.     plt.figure(figsize=(5, 2), dpi=dpishow)   
216.     plt.hist(Y1m[:,i].compressed(),pmax+1,[0,pmax])   
217.     plt.xlabel('Pressure (mmHg)', fontsize=12)   
218.     plt.title(f'%s, {sheet} Pressure Histogram' %filenames[i])       
219.     #plt.show()   
220.     plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Histogram -  

     Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')   
221.    
222.     plt.clf()   
223.     fig, (ax1, ax2) = plt.subplots(1, 2, dpi=dpishow)   
224.     im1=ax1.imshow(gradx[:,:,i], cmap='seismic', vmin=-pmax, vmax=pmax);   
225.     ax1.set_title('[0°, X-axis]')   
226.     im2=ax2.imshow(grady[:,:,i], cmap='seismic', vmin=-pmax, vmax=pmax);   
227.     ax2.set_title('[90°, Y-axis]')   
228.     fig.subplots_adjust(right=1.2)   
229.     cbar_ax = fig.add_axes([1, 0.15, 0.05, 0.7])   
230.     fig.colorbar(im2, cax=cbar_ax)   
231.     plt.suptitle(f'%s, {sheet} Second Order Central Gradient Map (mmHg)' %filenames[i], 

     horizontalalignment='center')    
232.     fig.tight_layout(rect=[0, 0.03, 1, 0.95])   
233.     #plt.show()   
234.     plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Central Gradient Map -  

     Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')   
235.    
236.     plt.clf()       
237.     fig, (ax1, ax2) = plt.subplots(1,2, dpi=dpishow)   
238.     gim1=ax1.imshow(diffx[:,:,i], cmap='YlOrRd', vmin=0, vmax=pmax);   
239.     ax1.set_title('[0°, X-axis]')   
240.     im2=ax2.imshow(diffy[:,:,i], cmap='YlOrRd', vmin=0, vmax=pmax);   
241.     ax2.set_title('[90°, Y-axis]')   
242.     fig.subplots_adjust(right=1.2)   
243.     cbar_ax = fig.add_axes([1, 0.15, 0.05, 0.7])   
244.     fig.colorbar(im2, cax=cbar_ax)   
245.     plt.suptitle(f'%s, {sheet} First Order Absolute Gradient Map (mmHg)' %filenames[i], 

     horizontalalignment='center')        
246.     fig.tight_layout(rect=[0, 0.03, 1, 0.95])   
247.     #plt.show()   
248.     plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute Gradient Map -  

     Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')   
249.        
250.     plt.clf()           
251.     fig, (ax1, ax2) = plt.subplots(1,2, figsize=(8,3), dpi=dpishow, sharey=True)   
252.     im1=ax1.hist(diffx[:,:,i].compressed(),pmax+1,[0,pmax]);   
253.     ax1.set_title('[0°, X-axis]')   
254.     ax1.set_xticks(np.arange(0, pmax+1, 50))   
255.     ax1.set_xlabel('Pressure (mmHg)', fontsize=10)   
256.     im2=ax2.hist(diffy[:,:,i].compressed(),pmax+1,[0,pmax]);   
257.     ax2.set_title('[90°, Y-axis]')   
258.     ax2.set_xticks(np.arange(0, pmax+1, 50))   
259.     ax2.set_xlabel('Pressure (mmHg)', fontsize=10)   
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260.     plt.suptitle(f'%s, {sheet} First Order Absolute Gradient Histogram (mmHg)' 
     %filenames[i], horizontalalignment='center')           

261.     fig.tight_layout(rect=[0, 0.03, 1, 0.95])   
262.     #plt.show()   
263.     plt.savefig(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute Gradient  

     Histogram - Sample %s.tif' %filenames[i], dpi=dpisave, bbox_inches='tight')   
264.     plt.clf()     
265.    
266. #### Create TIF files   
267. with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset             

                         Pressure Maps.tif') as stack:   
268.     for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\ 

      Pressure Map - Sample*.tif'), key=os.path.getmtime):   
269.         stack.save(tifffile.imread(fname), compress=6)   
270.    
271. with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset 

                                  Pressure Histograms.tif') as stack:   
272.     for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\ 

      Histogram - Sample*.tif'), key=os.path.getmtime):   
273.         stack.save(tifffile.imread(fname), compress=6)   
274.            
275. with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset, 

                           Central Gradient Map.tif') as stack:   
276.     for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\ 

      Central Gradient Map - Sample*.tif'), key=os.path.getmtime):   
277.         stack.save(tifffile.imread(fname), compress=6)   
278.    
279. with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset  

                            Absolute Gradient Map.tif') as stack:   
280.     for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\Absolute 

      Gradient Map - Sample*.tif'), key=os.path.getmtime):   
281.         stack.save(tifffile.imread(fname), compress=6)   
282.    
283. with tifffile.TiffWriter(f'Data\\{Dataset} data subset\\{sheet}\{Dataset} Data Subset  

                            Absolute Gradient Histogram.tif') as stack:   
284.     for fname in sorted(glob.glob(f'Data\\{Dataset} data subset\\{sheet}\Plots\ 

     Absolute Gradient Histogram - Sample*.tif'), key=os.path.getmtime):   
285.         stack.save(tifffile.imread(fname), compress=6)   
286.    
287. print('Processing Plots Time: ', (time.time() - start))   
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Appendix E 

Python Code: Image Registration and Similarity/Dissimilarity Coefficients 
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1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Mon Aug 5 10:22:04 2019  
4.   
5. @author: Joan Martinez  
6. """   
7.    
8. import numpy as np   
9. import pandas as pd   
10. import scipy as sp   
11. import matplotlib.pyplot as plt   
12. import matplotlib as mpl   
13. import time   
14. import glob   
15. import os   
16. from skimage.external import tifffile   
17. from scipy.ndimage import rotate, shift   
18. import SimpleITK as sitk   
19.    
20. # create colormap   
21. upper = mpl.cm.jet(np.arange(int(256/4.5),256))   
22. cmap = mpl.colors.ListedColormap(upper, name='myColorMap', N=upper.shape[0])   
23.    
24. # #############################################################################   
25. # Load data   
26.    
27. Dataset = "Synthetic"   
28. sheet = 'Seatpan'   
29. sheet2 = 'Template'   
30.    
31. Y1 = pd.read_excel(f'Data\\{Dataset} data subset.xlsx', sheet_name=sheet)   
32. Y2 = pd.read_excel(f'Data\\{Dataset} data subset.xlsx', sheet_name=sheet2)   
33.    
34. Y1m = np.ma.masked_where(Y1 == 0, Y1) ## unactive cells = 0 mmHg   
35. Y2m = np.ma.masked_where(Y2 == 0, Y2) ## unactive cells = 0 mmHg   
36.    
37. nindex1 = np.size(Y1.iloc[1,:])   
38. nindex2 = np.size(Y2.iloc[1,:])   
39.    
40. res1 = 32   
41. res2 = 32   
42. pmax = 300   
43.       
44. X1 = np.float32(Y1.values.reshape(res1,res2,nindex1))   
45. X1m = np.ma.masked_where(X1 == 0, X1) ## unactive cells = 0 mmHg   
46.    
47. X2 = np.float32(Y2.values.reshape(res1,res2,nindex2))   
48. X2m = np.ma.masked_where(X2 == 0, X2) ## unactive cells = 0 mmHg   
49.    
50.    
51. ##############################################################################   
52. ##############################################################################   
53.    
54. i = 0   
55. j = 0   
56. eps = 1   
57.    
58. filename1 = Y1.columns[i]   
59. filename2 = Y2.columns[j]   
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60. if Dataset == "Synthetic":   
61.     # Apply transformation   
62.     hloc = 1  
63.     vloc = -1   
64.     rot = -15   
65.    
66. template = shift(X2[:,:,j], [-vloc,hloc],order=0,prefilter=False)   
67. template = rotate(template, rot, reshape=False)  
68. else: 
69.     [hloc,vloc,rot] = (0 for _ in range(3)) 
70.     template = X2[:,:,j] 
71.     
72. plt.imshow(X1[:,:,i])   
73. plt.show()   
74. plt.imshow(template)       
75. print("\n",filename1," vs ", filename2)   
76.    
77. os.makedirs(f'Data\{Dataset} data subset\\' + filename1 + ' vs ' + filename2 ,                     

         exist_ok=True)   
78.      
79. dpishow = 100   
80. dpisave = 200   
81.    
82. for method in ["MI","MSE"]:   
83.            
84.     # Callback invoked when the StartEvent happens, sets up our new data.   
85.     def start_plot():   
86.         global metric_values, multires_iterations   
87.            
88.         metric_values = []   
89.         multires_iterations = []   
90.        
91.     # Callback invoked when the EndEvent happens, do cleanup of data and figure.   
92.     def end_plot():   
93.         global metric_values, multires_iterations   
94.            
95.         del metric_values   
96.         del multires_iterations   
97.         # Close figure, we don't want to get a duplicate of the plot latter on.   
98.         plt.close()   
99.        
100.     # Callback invoked when the IterationEvent happens, update our data and    
101.     # save an image that includes a visualization of the registered images and   
102.     # the metric value plot.       
103.     def save_plot(registration_method, fixed, moving, transform, file_name_prefix):   
104.        
105.         #   
106.         # Plotting the similarity metric values, resolution changes are marked with    
107.         # a blue star.   
108.         #   
109.         global metric_values, multires_iterations, ref, trans, regmetric, iterreg  
110.            
111.         metric_values.append(registration_method.GetMetricValue())         
112.        
113.            
114.         moving_transformed = sitk.Resample(moving, fixed, transform,    
115.                                            sitk.sitkLinear, 0.0,    
116.                                            moving_image.GetPixelIDValue())   
117.        
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118.         ref = np.dstack((ref, sitk.GetArrayFromImage(fixed)))   
119.         trans = np.dstack((trans,sitk.GetArrayFromImage(moving_transformed)))   
120.         regmetric = np.append(regmetric,registration_method.GetMetricValue())   
121.         iterreg = [index for index in multires_iterations]   
122.            
123.     # Callback invoked when the sitkMultiResolutionIterationEvent happens, update the  
           Index into the metric_values list.    
124.     def update_multires_iterations():   
125.         global metric_values, multires_iterations   
126.         multires_iterations.append(len(metric_values))   
127.        
128.     if __name__ == '__main__':   
129.        
130.         # Read the images   
131.         factor = 10   
132.         ref = np.zeros(shape = (res1*factor,res2*factor,0))   
133.         trans = np.zeros(shape = (res1*factor,res2*factor,0))   
134.         regmetric = np.zeros(0)   
135.         iterreg = np.zeros(0)       
136.            
137.         fixed_image =  sitk.Expand(sitk.GetImageFromArray(X1[:,:,i]),[factor]*2, sitk.s 
                              itkLinear)   
138.         moving_image = sitk.Expand(sitk.GetImageFromArray(template),[factor]*2, sitk.si 
                              tkLinear)   
139.            
140.         fig, (ax1, ax2) = plt.subplots(1, 2, dpi=dpishow)   
141.         im1 = ax1.imshow(np.ma.masked_where(sitk.GetArrayFromImage(fixed_image) < 1, si 
                                tk.GetArrayFromImage(fixed_image)), cmap=cmap, vmax = pmax)   
142.         ax1.set_title(f'[Reference Image]')   
143.         ax2.imshow(np.ma.masked_where(sitk.GetArrayFromImage(moving_image) < 1, sitk.Ge 
                          tArrayFromImage(moving_image)), cmap=cmap, vmax = pmax)   
144.         ax2.set_title(f'[Template Image]')   
145.         fig.subplots_adjust(right=1.2)   
146.         cbar_ax = fig.add_axes([1, 0.15, 0.05, 0.7])   
147.         fig.colorbar(im1, cax=cbar_ax)   
148.         plt.suptitle(f'{method} Image Registration: {filename1} vs {filename2}, Scaling

                         Factor: {factor}', horizontalalignment='center')    
149.         fig.tight_layout(rect=[0, 0.03, 1, 0.95])   
150.         plt.savefig(f'Data\{Dataset} data subset\{filename1} vs {filename2}\{method} Im 

        age Registration, {filename1} vs {filename2} Template.tif', dpi=200,  
        bbox_inches='tight')   

151.        
152.         # Multi-resolution rigid registration   
153.         registration_method = sitk.ImageRegistrationMethod()   
154.            
155.         # Initial alignment of the two volumes        
156.         transform = sitk.CenteredTransformInitializer(fixed_image,    
157.                                                       moving_image,    
158.                                                       sitk.Euler2DTransform(),   
159.                                                       sitk.CenteredTransformInitializer  

                                                      Filter.MOMENTS)  
160.           
161.           
162.         if method == "MI":              
163.            registration_method.SetMetricAsJointHistogramMutualInformation(numberOfHisto 

                               gramBins=50, varianceForJointPDFSmoothing = 1.5)   
164.         elif method == "MSE":   
165.             registration_method.SetMetricAsMeanSquares()   
166.                
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167.         registration_method.SetInterpolator(sitk.sitkLinear)   
168.         registration_method.SetOptimizerAsGradientDescent(learningRate=1.0,    
169.                                                           numberOfIterations=300,    
170.                                                           convergenceMinimumValue=1e- 

5, convergenceWindowSize=5)   
171.                
172.         registration_method.SetOptimizerScalesFromPhysicalShift()   
173.         registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1]) #1,1,1    
174.         registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[0,0,0])   
175.         registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()       
176.         registration_method.SetInitialTransform(transform)   
177.        
178.         # Add all the callbacks responsible for ploting   
179.         registration_method.AddCommand(sitk.sitkStartEvent, start_plot)   
180.         registration_method.AddCommand(sitk.sitkEndEvent, end_plot)   
181.         registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, update_m 

ultires_iterations)    
182.         registration_method.AddCommand(sitk.sitkIterationEvent, lambda: save_plot(regis 

tration_method, fixed_image, moving_image, transform, f'Data/{Dataset} data su 
bset/{filename1} vs {filename2}/{method} iteration_plot'))   

183.    
184.     start = time.time()       
185.     registration_method.Execute(fixed_image, moving_image)   
186.     #sitk.WriteTransform(transform, 'Data/Similarities/ct2mrT1.tfm')   
187.     print(time.time()-start)   
188.        
189.     refm2d = np.ma.masked_where(ref < 1, ref)    
190.     transm2d = np.ma.masked_where(trans < 1, trans)    
191.     refm1d = refm2d.reshape(res1*factor*res2*factor,len(ref[0,0,:]))   
192.     transm1d = transm2d.reshape(res1*factor*res2*factor,len(trans[0,0,:]))   
193.     diffm2d = np.ma.array(refm2d.data-transm2d.data,  

mask=np.logical_and(refm2d.mask,transm2d.mask))   
194.        
195.     [pcc2imgreg, pcc3imgreg, tm1imgreg, tm2imgreg, minr1imgreg, minr2imgreg,   
196.      l1n1imgreg, l1n2imgreg, l2n1imgreg, l2n2imgreg, irvar1imgreg, irvar2imgreg,    
197.      ct_ireg, ct_jreg, sum_ireg, sum_jreg, mean_ireg, mean_jreg, cv_ireg, cv_jreg,    
198.      cpx_ireg, cpx_jreg, cpy_ireg, cpy_jreg, ct_regdiff, cp_regdiff] =  

(np.zeros(len(ref[0,0,:])) for _ in range(26))   
199.        
200.        
201.     # Plot the similarity metric values   
202.     plt.clf()   
203.     plt.plot(regmetric, 'r')   
204.     plt.plot(iterreg, [regmetric[index] for index in iterreg], 'b*')   
205.     plt.xlabel('Iteration Number',fontsize=12)   
206.     plt.ylabel(f'{method} Metric Value',fontsize=12)   
207.     if max(regmetric)>1000:   
208.         plt.axis([0, len(regmetric), min(regmetric)-0.1*1000, 1000])   
209.     else:   
210.         plt.axis([0, len(regmetric), min(regmetric)-abs(0.1*max(regmetric)),  

abs(0.1*max(regmetric))+max(regmetric)])   
211.     plt.suptitle(f'{method} Image Registration: {filename1} vs {filename2}, Iterations  

of Interest {np.array(iterreg[1:])-1})', horizontalalignment='center')    
212.     plt.savefig(f'Data\{Dataset} data subset\{filename1} vs {filename2}\{method} Image  

Registration, {filename1} vs {filename2} Iteration Metric Plot.tif', dpi=200,  
bbox_inches='tight')   

213.        
214.        
215.        
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216.     props = dict(boxstyle='round', facecolor='wheat', alpha=0.3)   
217.     for x in range(len(ref[0,0,:])):   
218.            
219.         ## PRESSURE PARAMETERS   
220.         ct_ireg[x] = np.ma.MaskedArray.count(refm1d[:,x])   
221.         sum_ireg[x] = np.ma.MaskedArray.sum(refm1d[:,x])   
222.         mean_ireg[x] = sp.stats.mstats.describe(refm1d[:,x]).mean  ## Only active cells 
223.         cv_ireg[x] = sp.stats.mstats.variation(refm1d[:,x])   
224.         cpx_ireg[x] = sp.ndimage.measurements.center_of_mass(refm2d[:,:,x])[0]   
225.         cpy_ireg[x] = sp.ndimage.measurements.center_of_mass(refm2d[:,:,x])[1]   
226.            
227.         ct_jreg[x] = np.ma.MaskedArray.count(transm1d[:,x])   
228.         sum_jreg[x] = np.ma.MaskedArray.sum(transm1d[:,x])   
229.         mean_jreg[x] = sp.stats.mstats.describe(transm1d[:,x]).mean # Only active cells 
230.         cv_jreg[x] = sp.stats.mstats.variation(transm1d[:,x])   
231.        
232.         if ct_jreg[x]>0:           
233.             cpx_jreg[x] = sp.ndimage.measurements.center_of_mass(transm2d[:,:,x])[0]   
234.             cpy_jreg[x] = sp.ndimage.measurements.center_of_mass(transm2d[:,:,x])[1]   
235.            
236.         ct_regdiff[x]=abs(ct_ireg[x]-ct_jreg[x])   
237.         cp_regdiff[x]=((cpx_ireg[x]-cpx_jreg[x])**2+(cpy_ireg[x]- 

cpy_jreg[x])**2)**0.5   
238.        
239.            
240.         # SIMILARITY MEASURES ######################################################   
241.         #Person Correlation Coefficient       
242.         pcc2imgreg[x] = np.ma.corrcoef(refm1d[:,x],transm1d[:,x])[0,1] #Masked   
243.         pcc3imgreg[x] = np.corrcoef(refm1d[:,x].data,transm1d[:,x].data)[0,1] #Non- 

Masked   
244.            
245.         #Tanimoto Measure   
246.         tm1imgreg[x] = np.ma.sum(refm1d[:,x]*transm1d[:,x])/(np.ma.sum((refm1d[:,x]- 

transm1d[:,x])**2)+np.ma.sum(refm1d[:,x]*transm1d[:,x])) #Masked   
247.         tm2imgreg[x] = np.sum(refm1d[:,x].data*transm1d[:,x].data)/(np.sum((refm1d[:,x] 

.data-transm1d[:,x].data)**2)+np.sum(refm1d[:,x].data* 
transm1d[:,x].data)) #Non-Masked   

248.            
249.         #Min-Ratio       
250.         minr1reg = np.ma.minimum([refm1d[:,x]/transm1d[:,x]],[transm1d[:,x]/refm1d[:,x] 

]).reshape(-1,1)   
251.         minr1reg = np.ma.array(minr1reg,mask=np.logical_or(refm1d[:,x].mask,transm1d[:, 

x].mask))   
252.         minr1imgreg[x] = np.ma.mean(minr1reg) #Masked   
253.            
254.         Y1epsreg = refm1d[:,x]+eps   
255.         Y2epsreg = transm1d[:,x]+eps   
256.         minr2reg = np.minimum([Y1epsreg/Y2epsreg],[Y2epsreg/Y1epsreg]).reshape(-1,1)   
257.         minr2reg = np.ma.array(minr2reg, mask = np.logical_and(Y1epsreg.mask, 

Y2epsreg.mask))   
258.         minr2imgreg[x] = np.mean(minr2reg) #Non-Masked ()   
259.            
260.         # DISSIMILARITY MEASURES ######################################################

   
261.         #L1 Norm   
262.         l1n1imgreg[x] = np.ma.sum(abs(refm1d[:,x]-transm1d[:,x])) #Masked   
263.         l1n2imgreg[x] = np.sum(abs(refm1d[:,x].data-transm1d[:,x].data)) #Non-Masked   
264.            
265.  
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266.         #L2 Norm   
267.         l2n1imgreg[x] = np.ma.sum((refm1d[:,x]-transm1d[:,x])**2) #Masked   
268.         l2n2imgreg[x] = np.sum((refm1d[:,x].data-transm1d[:,x].data)**2) #Non-Masked   
269.            
270.         #Intensity-Ratio Variance   
271.         irvar1imgreg[x] = np.ma.var(refm1d[:,x]/transm1d[:,x]) #Masked   
272.            
273.         irvar2reg = np.ma.array(Y1epsreg/Y2epsreg, mask = np.logical_and(Y1epsreg.mask, 

Y2epsreg.mask))   
274.         irvar2imgreg[x] = np.var(irvar2reg) #Non-Masked   
275.        
276.         plt.clf()   
277.         fig = plt.figure()   
278.         ax1 = fig.add_subplot(111)   
279.         #fig, (ax1, ax2) = plt.subplots(1, 2, dpi=dpishow)   
280.         im1=ax1.imshow(refm2d[:,:,x], cmap=cmap,alpha=.5,vmax=pmax);   
281.         #ax1.set_title(f'{filename1}, Index %i, [Reference Image]' %i)   
282.         im2=ax1.imshow(transm2d[:,:,x], cmap=cmap, alpha=.5, vmax=pmax);   
283.         pstrm = (f'_________MASKED__________\nPCC:\t\t   {pcc2imgreg[x]:.3f}\nTanimoto: 

\t{tm1imgreg[x]:.3f}'   
284.                  f'\nMin-Ratio:\t {minr1imgreg[x]:.3f}\nL1 Norm:\t{l1n1imgreg[x]:.2f} 

\nL2 Norm:\t{l2n1imgreg[x]:.2f}'   
285.                  f'\nInt-Ratio Var:\t{irvar1imgreg[x]:.3f}').expandtabs()   
286.         pstrnm = (f'_______NON-MASKED_______\nPCC:\t\t   {pcc3imgreg[x]:.3f}\nTanimoto: 

\t{tm2imgreg[x]:.3f}'   
287.              f'\nMin-Ratio:\t {minr2imgreg[x]:.3f}\nL1 Norm:\t{l1n2imgreg[x]:.2f} 

\nL2 Norm:\t{l2n2imgreg[x]:.2f}'   
288.              f'\nInt-Ratio Var:\t{irvar2imgreg[x]:.3f}').expandtabs()   
289.         pstrmet = (f'____OTHER METRICS_____\nContact Diff:\t\t    {ct_regdiff[x]:.0f}'  
290.              f'\nCP-CP Distance:\t\t {cp_regdiff[x]:.2f}').expandtabs()   
291.         plt.text((res1 + 1.5)*factor, 1*factor, pstrm, fontsize=7,verticalalignment='to 

p', bbox=props)   
292.         plt.text((res1 + 1.5)*factor, 13*factor, pstrnm, fontsize=7,verticalalignment=' 

top', bbox=props)   
293.         plt.text((res1 + 1.5)*factor, 24*factor, pstrmet, fontsize=7,verticalalignment= 

'top', bbox=props)   
294.         plt.title(f'{method} Image Registration: {filename1} vs {filename2}, Iteration  

{x}\nMetric: {regmetric[x]}\n', horizontalalignment='center')    
295.         cbar_ax = fig.add_axes([0, 0.145, 0.04, 0.6])   
296.         cbar = plt.colorbar(im1, cax=cbar_ax)   
297.         cbar.ax.yaxis.set_ticks_position('left')       
298.         fig.tight_layout(rect=[-0.2, 0.03, 1, 0.95])       
299.         plt.savefig(f'Data\{Dataset} data subset\{filename1} vs {filename2}\{method}  

Image Registration, {filename1} vs {filename2}, Iteration {x}.tif', 
dpi=200, bbox_inches='tight')   

300.            
301.     for x in range(len(ref[0,0,:])):   
302.         plt.clf()   
303.         fig = plt.figure()   
304.         ax1 = fig.add_subplot(111)   
305.         clim = max(np.abs(np.min(diffm2d[:,:,x])),np.max(diffm2d[:,:,x]))   
306.         im1=ax1.imshow(diffm2d[:,:,x], cmap='seismic', vmin=-clim, vmax=clim)   
307.         plt.title(f'{method} Image Registration: {filename1} vs {filename2}, Iteration  

{x}\n[Reference - Transformed] (mmHg)\n', horizontalalignment='center')  
308.         cbar_ax = fig.add_axes([0.70, 0.145, 0.04, 0.6])   
309.         fig.colorbar(im1, cax=cbar_ax)   
310.         fig.tight_layout(rect=[-0.2, 0.03, 1, 0.95]) 
311.     
312.          
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313. plt.savefig(f'Data\{Dataset} data subset\{filename1} vs {filename2}\{method} Im 
age Registration, {filename1} vs {filename2} Differences, Iteration {x}.tif',  
dpi=200, bbox_inches='tight')   

314.            
315.                                             
316.     #### Create TIF files   
317.     with tifffile.TiffWriter(f'Data\{Dataset} data subset\{filename1} vs {filename2}\ 

{method} Image Registration Results, {filename1} vs {filename2}.tif') as stack:   
318.         for fname in sorted(glob.glob(f'Data\{Dataset} data subset\{filename1} vs {file 

name2}\{method} Image Registration, {filename1} vs {filename2}*.tif'),  
key=os.path.getmtime):   

319.             stack.save(tifffile.imread(fname), compress=6)   
320.        
321.     ResultsReg = pd.DataFrame(data = np.transpose([np.repeat(sheet,x+1),np.repeat 

(filename1,x+1),np.repeat(i,x+1), np.repeat(filename2,x+1),np.repeat(j,x+1), 
np.repeat(method,x+1),np.repeat(f'{hloc},{vloc},{rot}',x+1),list(range(x+1)),    

322.    regmetric, ct_ireg, ct_jreg, ct_regdiff, sum_ireg, sum_jreg, mean_ireg, mean_jreg,   
323.         cv_ireg, cv_jreg, cpx_ireg, cpy_ireg, cpx_jreg, cpy_jreg, cp_regdiff,   
324.         pcc3imgreg, pcc2imgreg, tm2imgreg, tm1imgreg, minr2imgreg, minr1imgreg,   
325.         l1n2imgreg, l1n1imgreg, l2n2imgreg, l2n1imgreg, irvar2imgreg, irvar1imgreg]),   
326.         columns=['Sheet','File1','Index1','File2','Index2','Reg Method', 'H,V,ROT', 

'Iteration', 'Metric Score', ‘Contact Cells 1', 'Contact Cells 2',  
'Contact Cells Diff', 'Pressure Sum 1', 'Pressure Sum 2',    

327.          'Mean Pressure 1', 'Mean Pressure 2', 'CV 1', 'CV 2', 'CPX 1', 'CPY 1',  
'CPX 2', 'CPY 2', 'CP Diff', 'Pearson','Pearson (M)', 'Tanimoto',  
'Tanimoto (M)','Min-Ratio','Min-Ratio (M)',   

328.          'L1 Norm', 'L1 Norm (M)', 'Sq L2 Norm', 'Sq L2 Norm (M)','Int-Ratio Var', 
'Int-Ratio Var (M)'])   

329.        
330.     # Write Results in Excel   
331.     from excelappend import append_df_to_excel   
332.     append_df_to_excel(f'Data\{Dataset} data subset\\' + filename1 + ' vs ' +  

filename2 + '\Image Registration Results.xlsx',ResultsReg,sheet_name=method)   
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Appendix F 

Cluster Data Subset: Samples with Outliers 
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Appendix G 

Cluster Data Subset: Samples without Outliers 

 

 

 



261 

 

 

   

   

   

   



262 

 

 

   

   

   

   



263 

 

 

  

   

   

   



264 

 

 

   

   

 



265 

 

 

 

Appendix H 

Static Data Subset: Samples based on CV levels 
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Appendix I 

Static Data Subset: Spatial Autocorrelation 
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Appendix J 

Paired Data Subset: Samples based on Contact, Pressure and CV levels 
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Appendix K 

Paired Data Subset: Pressure Measures Results 
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122-3-51 170-2-2787

Contact Cells 305 307 0.66%

Sum of Pressure 11340.58 11345.89 0.05%

Skewness 1.7478 2.2060 26.22%

GLSD - Correlation X 0.6824 0.4327 -36.60%

GLSD - Correlation Y 0.8530 0.6351 -25.54%

Coefficient of Variation 0.7669 0.7525 -1.89%

GLD - Gradient Contrast X 535.50 927.20 73.15%

GLD - Gradient Mean X 15.94 20.03 25.65%

GLD - Gradient Contrast Y 234.37 541.71 131.14%

GLD - Gradient Mean Y 10.04 15.53 54.65%

GLD - Gradient Second Moment X 0.0345 0.0283 -17.77%

GLSD - Homogeneity X 0.0782 0.0617 -21.07%

GLD - Gradient Second Moment Y 0.0553 0.0378 -31.62%

GLSD - Homogeneity Y 0.1026 0.0753 -26.61%

Relative 

%
Δ Plot
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Pressure MeasureType
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150-2-1968 144-3-1841

Contact Cells 288 293 1.74%

Sum of Pressure 17411.35 17503.15 0.53%

V
ar
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lit
y

Coefficient of Variation 0.7959 0.7978 0.25%

GLD - Gradient Second Moment Y 0.0276 0.0320 16.00%

GLSD - Homogeneity Y 0.0615 0.0709 15.19%

Type Pressure Measure
Sample Relative 

%
Δ Plot
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137-2-922 158-3-3717

Contact Cells 501 503 0.40%

Sum of Pressure 43027.83 42878.06 -0.35%

Skewness 0.9667 1.5394 59.25%

Moran's I (CD) 0.8281 0.6828 -17.54%

GLSD - Correlation X 0.8557 0.7699 -10.02%

Coefficient of Variation 0.8102 0.8168 0.82%

GLD - Gradient Contrast X 1381.04 2290.37 65.84%

GLD - Gradient Mean X 26.02 32.50 24.91%

GLD - Gradient Contrast Y 1065.68 1762.09 65.35%

GLD - Gradient Mean Y 22.69 29.31 29.16%

GLD - Gradient Second Moment X 0.0212 0.0179 -15.52%

GLD - Gradient Second Moment Y 0.0241 0.0197 -18.20%

GLSD - Homogeneity Y 0.0672 0.0503 -25.22%

Relative 

%
Δ PlotType Pressure Measure

Sample
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ar
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120-2-1719 128-3-1298

Contact Cells 388 386 -0.52%

Sum of Pressure 16877.71 16871.47 -0.04%

Coefficient of Variation 0.8247 0.8249 0.03%

GLD - Gradient Contrast Y 664.2320 592.9861 -10.73%

GLSD - Homogeneity X 0.1026 0.0891 -13.10%

V
ar
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bi

lit
y

Type Pressure Measure
Sample Relative 

%
Δ Plot
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183-3-3613 123-3-2437

Contact Cells 488 482 -1.23%

Sum of Pressure 16311.05 16440.84 0.80%

Skewness 2.9147 2.5989 -10.84%

Moran's I (CD) 0.5220 0.6802 30.30%

GLSD - Correlation Y 0.6588 0.7377 11.98%

Coefficient of Variation 0.8367 0.8327 -0.48%

GLD - Gradient Contrast Y 548.94 428.37 -21.96%

GLD - Gradient Mean Y 15.27 12.01 -21.35%

GLD - Gradient Second Moment X 0.0397 0.0455 14.55%

GLSD - Homogeneity X 0.0911 0.1035 13.70%

GLD - Gradient Second Moment Y 0.0359 0.0479 33.40%

GLSD - Homogeneity Y 0.0642 0.1255 95.57%

Sp
at

ia
l

V
ar

ia
b
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ty

Te
xt

ur
e

Type Pressure Measure
Sample Relative 

%
Δ Plot

G
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116-1-512 180-1-1487

Contact Cells 303 294 -2.97%

Sum of Pressure 14273.5 14200.87 -0.51%

Skewness 2.2856 2.0434 -10.60%

Sp
at

ia
l

Moran's I (CD) 0.7010 0.6037 -13.88%

Coefficient of Variation 0.9328 0.9369 0.44%

GLD - Gradient Contrast X 1123.4829 1465.3984 30.43%

GLD - Gradient Mean X 20.90 26.78 28.15%

GLD - Gradient Mean Y 16.96 20.10 18.54%

GLD - Gradient Second Moment X 0.0294 0.0222 -24.40%

GLSD - Homogeneity X 0.0673 0.0520 -22.74%

GLD - Gradient Second Moment Y 0.0398 0.0294 -26.00%

GLSD - Homogeneity Y 0.1003 0.0684 -31.75%

Type Pressure Measure
Relative 

%
Δ Plot
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V
ar

ia
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ty
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xt
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111-2-3218 118-2-3479

Contact Cells 388 392 1.03%

Sum of Pressure 22778.76 22877.61 0.43%

Skewness 1.56029 1.89197 21.26%

Coefficient of Variation 0.9330 0.9384 0.58%

GLD - Gradient Contrast X 1123.53 1407.48 25.27%

GLD - Gradient Second Moment Y 0.0260 0.0310 19.08%

GLSD - Homogeneity Y 0.0669 0.0773 15.50%

V
ar
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xt
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Type Pressure Measure
Sample Relative 

%
Δ Plot
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133-3-1804 147-3-2982

Contact Cells 279 281 0.72%

Sum of Pressure 12629.66 12567.88 -0.49%

Skewness 1.7632 2.4782 40.55%

Moran's I (Q) 0.8238 0.7364 -10.61%

GLSD - Correlation X 0.7340 0.5978 -18.55%

Coefficient of Variation 1.0103 1.0199 0.95%

GLD - Gradient Contrast X 1169.28 1837.02 57.11%

GLD - Gradient Mean X 22.50 26.54 17.98%

GLD - Gradient Contrast Y 919.11 1135.76 23.57%

GLD - Gradient Second Moment X 0.0299 0.0255 -14.71%

GLSD - Homogeneity X 0.0733 0.0593 -19.08%

GLD - Gradient Second Moment Y 0.0380 0.0334 -11.89%

GLSD - Homogeneity Y 0.1053 0.0868 -17.65%

Δ Plot
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118-2-61 188-2-2491

Contact Cells 368 364 -1.09%

Sum of Pressure 25704.47 25628.04 -0.30%

Moran's I (CD) 0.7905 0.5501 -30.41%

GLSD - Correlation X 0.8539 0.6808 -20.28%

GLSD - Correlation Y 0.8646 0.7400 -14.41%

Coefficient of Variation 1.0451 1.0441 -0.10%

GLD - Gradient Contrast X 1622.49 3663.97 125.82%

GLD - Gradient Mean X 25.11 38.17 52.01%

GLD - Gradient Contrast Y 1471.59 2819.38 91.59%

GLD - Gradient Mean Y 22.29 31.86 42.93%

GLD - Gradient Second Moment X 0.0255 0.0180 -29.41%

GLSD - Homogeneity X 0.0797 0.0559 -29.94%

GLD - Gradient Second Moment Y 0.0317 0.0231 -27.17%
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Type Pressure Measure
Sample Relative 

%
Δ Plot

148-1-2914 170-1-1363

Contact Cells 302 301 -0.33%

Sum of Pressure 15917.33 15918.89 0.01%

Skewness 2.1262 2.6473 24.51%

Coefficient of Variation 1.1210 1.1259 0.44%

GLD - Gradient Contrast Y 1150.61 1622.08 40.98%

GLD - Gradient Mean Y 19.32 21.99 13.80%

GLD - Gradient Second Moment X 0.0330 0.0240 -27.40%

GLSD - Homogeneity X 0.0929 0.0590 -36.53%

GLD - Gradient Second Moment Y 0.0414 0.0317 -23.51%

GLSD - Homogeneity Y 0.0990 0.0672 -32.12%
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Sample Relative 

%
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Appendix L 

Transformed Data Subset: Upscaled Samples and Transformations 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: +3, Vertical: −3, Rotation: +15°] 

 

Transformation 2 [Horizontal: −2, Vertical: −1, Rotation: −6°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: +4, Vertical: −7, Rotation: −20°] 

 

Transformation 2 [Horizontal: +3, Vertical: −2, Rotation: +8°] 

 



284 

 

 

Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: +2, Vertical: −4, Rotation: −60°] 

 

Transformation 2 [Horizontal: −2, Vertical: −3, Rotation: +10°] 

 



285 

 

 

Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: −1, Vertical: −3, Rotation: +17°] 

 

Transformation 2 [Horizontal: +4, Vertical:+1, Rotation: −7°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: −1, Vertical: −6, Rotation: +35°] 

 

Transformation 2 [Horizontal: +3, Vertical:−2, Rotation: −5°] 
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 Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: −1, Vertical: −3, Rotation: +36°] 

 

Transformation 2 [Horizontal: +4, Vertical:−1, Rotation: −5°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: −2, Vertical: −3, Rotation: +22°] 

 

Transformation 2 [Horizontal: +3, Vertical:0, Rotation: −9°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: +2, Vertical: −5, Rotation: +25°] 

 

Transformation 2 [Horizontal: 0, Vertical:−3, Rotation: −10°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: +2, Vertical: −1, Rotation: +30°] 

 

Transformation 2 [Horizontal: −3, Vertical:+1, Rotation: −6°] 
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Original Non-Scaled Pressure Map 

 

Transformation 1 [Horizontal: −1, Vertical: −4, Rotation: −12°] 

 

Transformation 2 [Horizontal: +4, Vertical:0, Rotation: +9°] 
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Appendix M 

Transformed Data Subset: Registration Results 
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Appendix N 

Registration Data Subset: Center of Pressure Distances 
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Appendix O 

Registration Data Subset: Upscaled Sample Pairs 
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Appendix P 

Registration Data Subset: Registration Results 

 

 

 



 

  

305 

Sa
m

p
le

 1
 

Sa
m

p
le

 2
 

M
e

th
o

d
 It

e
ra

ti
o

n
 

O
p

ti
m

al
 

P
e

ar
so

n
 

P
e

ar
so

n
 

(M
) 

Ta
n

im
o

to
 T

an
im

o
to

 

(M
) 

M
in

-

R
at

io
 M

in
-R

at
io

 

(M
) 

L1
 N

o
rm

 
L1

 N
o

rm
 

(M
) 

Sq
 L

2
 N

o
rm

 S
q

 L
2

 N
o

rm
 

(M
) 

In
t-

R
at

io
 

V
ar

 

In
t-

R
at

io
 

V
ar

 (
M

) 
P

ro
c 

Ti
m

e
 

To
ta

l 

It
e

ra
ti

o
n

s 

1
5

2
-1

-1
98

6
 

1
5

2
-1

-1
99

0
 

M
I 

5
 

0
.7

8
5

6
 

0
.6

6
2

6
 

0
.6

7
8

9
 

0
.6

8
4

6
 

0
.5

1
0

6
 

0
.5

7
8

5
 

6
6

3
,1

8
5 

6
1

6
,2

9
3 

3
8

,2
1

2
,4

5
2 

3
7

,2
2

1
,9

7
9 

1
.2

8
8

8
 

2
.4

3
2

3
 

0
.3

6
0

2
 

1
3

 

1
5

2
-1

-1
98

6
 

1
5

2
-1

-1
99

0
 

M
SE

 
1

5
 

0
.8

1
8

6
 

0
.7

6
0

6
 

0
.7

2
0

6
 

0
.7

6
2

9
 

0
.5

1
1

0
 

0
.5

9
5

2
 

6
7

1
,0

0
8 

5
5

2
,1

4
4 

3
2

,4
4

8
,7

3
2 

2
5

,9
9

8
,7

0
3 

1
.3

8
0

9
 

2
.5

1
3

6
 

0
.5

9
7

8
 

2
8

 

1
1

4
-2

-1
82

6
 

1
1

4
-2

-1
83

6
 

M
I 

1
1

 
0

.8
5

1
0

 
0

.7
8

1
4

 
0

.7
1

4
0

 
0

.7
1

4
7

 
0

.5
3

4
4

 
0

.5
5

2
2

 
7

8
0

,2
2

8 
7

6
1

,4
9

0 
5

0
,9

1
2

,8
1

1 
5

0
,7

5
3

,4
3

1 
0

.8
1

7
2

 
1

.4
8

3
0

 
0

.4
5

8
4

 
1

4
 

1
1

4
-2

-1
82

6
 

1
1

4
-2

-1
83

6
 

M
SE

 
2

6
 

0
.9

0
4

0
 

0
.8

6
7

6
 

0
.7

8
2

2
 

0
.7

8
5

3
 

0
.5

1
0

5
 

0
.5

1
4

0
 

7
7

7
,8

4
8 

7
4

9
,3

1
3 

3
7

,3
1

1
,7

6
8 

3
6

,6
2

2
,0

7
3 

2
.8

9
3

8
 

6
.2

2
1

3
 

0
.7

8
4

5
 

3
4

 

1
8

0
-2

-2
58

4
 

1
8

0
-2

-2
59

2
 

M
I 

4
4

 
0

.8
4

3
6

 
0

.7
3

2
8

 
0

.5
3

0
2

 
0

.5
3

2
8

 
0

.5
1

8
4

 
0

.5
5

9
7

 
6

7
2

,9
0

3 
6

3
9

,9
2

8 
4

1
,9

4
4

,3
4

7 
4

1
,5

0
1

,7
3

8 
1

.0
2

5
4

 
2

.2
0

0
7

 
1

.8
6

3
1

 
4

4
 

1
8

0
-2

-2
58

4
 

1
8

0
-2

-2
59

2
 

M
SE

 
3

5
 

0
.8

4
8

6
 

0
.7

4
2

5
 

0
.5

3
4

2
 

0
.5

3
7

1
 

0
.5

2
5

3
 

0
.5

7
2

3
 

6
6

7
,0

4
6 

6
3

0
,7

1
8 

4
1

,4
9

1
,0

7
2 

4
1

,0
0

1
,7

7
0 

0
.9

1
1

8
 

1
.9

4
3

1
 

1
.0

4
7

0
 

3
5

 

1
4

1
-1

-2
65

8
 

1
4

1
-1

-2
66

8
 

M
I 

4
2

 
0

.8
3

0
5

 
0

.7
1

8
3

 
0

.7
4

6
6

 
0

.7
6

9
1

 
0

.4
8

9
0

 
0

.5
6

4
4

 
9

6
3

,6
3

7 
8

3
7

,8
4

1 
4

6
,5

1
7

,2
6

7 
4

1
,1

3
8

,0
7

9 
5

.8
9

2
6

 
1

3
.3

2
9

2
 

1
.7

3
5

7
 

4
2

 

1
4

1
-1

-2
65

8
 

1
4

1
-1

-2
66

8
 

M
SE

 
6

5
 

0
.8

4
7

7
 

0
.7

5
2

7
 

0
.7

6
8

0
 

0
.7

9
2

3
 

0
.4

9
8

7
 

0
.5

8
1

6
 

9
1

1
,3

4
3 

7
7

6
,8

0
3 

4
2

,0
6

3
,9

2
4 

3
6

,4
9

6
,9

0
4 

6
.5

2
5

5
 

1
5

.1
6

5
9

 
2

.6
9

9
6

 
6

5
 

1
4

8
-1

-3
55

1
 

1
4

8
-1

-3
55

7
 

M
I 

3
8

 
0

.9
1

6
3

 
0

.8
7

2
0

 
0

.8
5

6
4

 
0

.8
5

9
2

 
0

.6
6

2
2

 
0

.7
0

0
5

 
6

4
9

,3
3

0 
6

1
8

,2
3

6 
2

9
,9

6
6

,8
4

6 
2

9
,2

8
6

,1
5

9 
0

.4
2

6
0

 
0

.7
4

8
5

 
1

.5
2

7
4

 
3

8
 

1
4

8
-1

-3
55

1
 

1
4

8
-1

-3
55

7
 

M
SE

 
1

2
 

0
.9

1
6

3
 

0
.8

7
1

7
 

0
.8

5
6

5
 

0
.8

5
9

0
 

0
.6

6
3

1
 

0
.6

9
9

7
 

6
5

1
,4

7
1 

6
2

1
,1

0
5 

2
9

,9
4

0
,0

0
1 

2
9

,3
2

5
,5

7
6 

0
.4

3
2

3
 

0
.7

7
5

8
 

6
.9

6
3

1
 

1
0

8
 

1
4

5
-1

-2
81

1
 

1
4

5
-1

-1
44

9
 

M
I 

8
 

0
.9

6
1

6
 

0
.9

4
0

1
 

0
.9

3
6

6
 

0
.9

3
9

9
 

0
.6

0
2

0
 

0
.6

7
4

9
 

7
1

5
,8

9
1 

6
5

5
,1

3
5 

2
3

,0
8

5
,6

5
8 

2
1

,8
1

1
,5

2
8 

0
.1

8
0

6
 

0
.2

3
5

2
 

0
.4

6
5

7
 

1
5

 

1
4

5
-1

-2
81

1
 

1
4

5
-1

-1
44

9
 

M
SE

 
2

3
 

0
.9

6
7

5
 

0
.9

5
1

3
 

0
.9

4
5

7
 

0
.9

4
9

6
 

0
.6

0
6

7
 

0
.6

8
2

1
 

6
7

3
,9

0
8 

6
0

6
,5

9
6 

1
9

,6
7

8
,0

0
0 

1
8

,1
7

8
,5

8
6 

0
.2

1
2

5
 

0
.2

8
8

5
 

0
.7

9
2

7
 

3
1

 

1
8

5
-1

-1
61

0
 

1
8

5
-1

-1
62

0
 

M
I 

1
7

 
0

.9
2

2
8

 
0

.8
7

6
9

 
0

.8
1

7
4

 
0

.8
1

8
3

 
0

.5
6

2
8

 
0

.5
7

3
2

 
6

3
9

,7
8

4 
6

2
4

,2
7

7 
1

6
,2

0
1

,2
9

5 
1

6
,1

0
4

,1
0

0 
1

.0
0

0
1

 
1

.8
7

4
0

 
0

.7
0

3
2

 
2

1
 

1
8

5
-1

-1
61

0
 

1
8

5
-1

-1
62

0
 

M
SE

 
2

9
 

0
.9

2
6

0
 

0
.8

8
2

9
 

0
.8

2
1

4
 

0
.8

2
2

4
 

0
.5

6
0

9
 

0
.5

7
3

2
 

6
3

4
,8

2
1 

6
1

8
,1

3
6 

1
5

,8
1

1
,2

2
2 

1
5

,7
0

1
,6

0
7 

1
.0

2
4

1
 

1
.9

3
4

3
 

1
.4

9
6

4
 

4
5

 

1
3

0
-1

-2
32

 
1

3
0

-1
-2

42
 

M
I 

1
5

 
0

.8
4

2
8

 
0

.8
3

3
6

 
0

.6
8

6
6

 
0

.7
0

0
4

 
0

.5
3

9
6

 
0

.5
6

7
0

 
6

1
0

,8
2

9 
5

4
0

,6
8

2 
2

5
,3

0
5

,4
9

2 
2

3
,7

0
9

,4
4

9 
5

.1
9

5
3

 
1

2
.5

2
8

5
 

0
.7

1
3

3
 

2
4

 

1
3

0
-1

-2
32

 
1

3
0

-1
-2

42
 

M
SE

 
3

3
 

0
.8

4
6

0
 

0
.8

3
7

2
 

0
.6

9
0

3
 

0
.7

0
3

5
 

0
.5

3
0

9
 

0
.5

5
8

4
 

6
1

6
,9

5
8 

5
4

7
,6

5
5 

2
4

,9
4

3
,5

2
4 

2
3

,4
2

7
,9

8
8 

5
.1

5
2

4
 

1
2

.1
6

5
6

 
0

.9
7

9
0

 
3

3
 

1
6

4
-3

-3
88

6
 

1
6

4
-3

-3
89

6
 

M
I 

1
1

 
0

.8
3

5
1

 
0

.6
6

7
6

 
0

.6
8

4
3

 
0

.6
8

6
7

 
0

.5
2

4
9

 
0

.5
6

2
1

 
1

,4
9

8
,6

8
9 

1
,4

4
8

,5
5

8 
1

1
5

,1
7

0
,0

7
0 

1
1

3
,8

7
9

,6
0

2 
0

.9
0

4
0

 
1

.5
6

8
6

 
0

.6
1

1
7

 
1

8
 

1
6

4
-3

-3
88

6
 

1
6

4
-3

-3
89

6
 

M
SE

 
2

2
 

0
.8

6
2

2
 

0
.7

4
3

8
 

0
.7

1
2

2
 

0
.7

2
4

5
 

0
.5

7
5

2
 

0
.6

3
1

3
 

1
,3

5
7

,2
1

7
 1

,2
5

1
,7

3
4

 1
0

3
,5

0
8

,8
2

3 
9

7
,4

2
4

,0
7

4 
0

.2
5

5
9

 
0

.3
5

0
6

 
5

.7
3

4
2

 
9

1
 

1
8

2
-1

-2
04

8
 

1
8

2
-1

-2
05

8
 

M
I 

5
0

 
0

.8
7

4
7

 
0

.7
8

2
4

 
0

.8
0

8
2

 
0

.8
0

9
6

 
0

.6
2

6
5

 
0

.6
4

1
3

 
9

9
5

,3
6

4 
9

7
2

,0
5

1 
5

4
,9

9
7

,1
7

3 
5

4
,4

9
6

,5
7

9 
0

.6
0

8
7

 
0

.8
2

7
5

 
2

.5
8

7
6

 
5

2
 

1
8

2
-1

-2
04

8
 

1
8

2
-1

-2
05

8
 

M
SE

 
1

5
 

0
.8

9
7

1
 

0
.8

2
2

2
 

0
.8

3
7

4
 

0
.8

3
8

1
 

0
.6

2
6

5
 

0
.6

4
0

4
 

9
5

6
,2

2
1 

9
3

7
,8

6
6 

4
5

,9
7

2
,9

6
0 

4
5

,7
3

4
,5

0
8 

0
.4

9
1

0
 

0
.7

4
2

1
 

0
.7

3
3

9
 

3
0

 

1
7

4
-3

-9
58

 
1

7
4

-3
-9

70
 

M
I 

3
1

 
0

.6
2

8
6

 
0

.2
8

0
3

 
0

.4
9

5
0

 
0

.5
0

9
8

 
0

.3
7

9
3

 
0

.4
8

4
9

 
1

,4
4

0
,9

9
8 

1
,2

2
3

,8
1

9 
1

0
7

,5
1

8
,1

1
6 

1
0

1
,3

2
8

,5
7

7 
1

7
.8

8
1

2
 

3
8

.3
1

1
1

 
1

.3
5

1
2

 
3

5
 

1
7

4
-3

-9
58

 
1

7
4

-3
-9

70
 

M
SE

 
1

1
9 

0
.7

9
3

1
 

0
.7

2
6

6
 

0
.6

4
7

6
 

0
.7

1
9

5
 

0
.3

2
0

1
 

0
.5

3
9

8
 

1
,3

0
2

,1
2

3 
8

2
2

,1
9

3 
6

7
,6

2
2

,8
2

0 
4

8
,4

3
9

,5
0

8 
4

.3
4

5
4

 
9

.4
0

2
7

 
8

.9
4

0
6

 
1

1
9

 

1
2

9
-2

-1
84

2
 

1
2

9
-2

-1
85

2
 

M
I 

2
2

 
0

.8
7

1
2

 
0

.7
9

9
7

 
0

.7
9

6
1

 
0

.8
0

4
4

 
0

.5
9

0
5

 
0

.6
4

9
7

 
7

4
5

,6
5

7 
6

7
4

,1
6

3 
3

1
,4

3
2

,9
5

8 
2

9
,8

3
4

,9
9

9 
0

.2
6

9
9

 
0

.4
1

4
2

 
1

.7
5

9
9

 
4

0
 

1
2

9
-2

-1
84

2
 

1
2

9
-2

-1
85

2
 

M
SE

 
1

1
 

0
.8

7
5

4
 

0
.8

0
7

7
 

0
.8

0
1

4
 

0
.8

1
2

2
 

0
.5

7
0

2
 

0
.6

4
1

3
 

7
5

2
,1

2
6 

6
6

5
,9

1
5 

3
0

,5
3

0
,7

9
6 

2
8

,4
7

3
,3

2
9 

0
.3

2
4

0
 

0
.5

3
9

4
 

0
.3

7
8

6
 

1
9

 

1
2

4
-1

-7
05

 
1

2
4

-1
-7

19
 

M
I 

2
1

 
0

.8
9

4
0

 
0

.8
3

1
3

 
0

.7
7

2
7

 
0

.7
7

3
2

 
0

.6
8

3
4

 
0

.6
9

4
1

 
5

4
7

,8
9

4 
5

3
6

,5
9

2 
2

0
,6

0
9

,3
0

1 
2

0
,5

5
1

,5
6

5 
0

.3
2

9
0

 
0

.4
8

2
3

 
0

.9
1

8
0

 
2

9
 

1
2

4
-1

-7
05

 
1

2
4

-1
-7

19
 

M
SE

 
2

0
 

0
.9

0
1

1
 

0
.8

4
5

1
 

0
.7

8
0

9
 

0
.7

8
1

7
 

0
.6

8
3

2
 

0
.7

0
0

5
 

5
3

8
,8

8
9 

5
2

4
,7

2
6 

1
9

,7
7

5
,1

2
4 

1
9

,6
7

5
,7

5
0 

0
.3

1
3

4
 

0
.4

8
3

3
 

2
.0

4
4

1
 

4
9

 

1
1

2
-2

-1
69

6
 

1
1

2
-2

-1
70

8
 

M
I 

7
 

0
.8

3
1

8
 

0
.6

7
3

5
 

0
.7

6
7

9
 

0
.7

7
1

2
 

0
.5

8
9

6
 

0
.6

1
6

7
 

9
4

5
,1

6
4 

9
1

1
,3

2
7 

3
4

,5
9

0
,0

9
7 

3
3

,9
6

3
,8

5
9 

0
.4

5
5

2
 

0
.6

7
8

0
 

0
.5

2
5

7
 

1
7

 

1
1

2
-2

-1
69

6
 

1
1

2
-2

-1
70

8
 

M
SE

 
1

3
 

0
.8

3
5

9
 

0
.6

8
2

0
 

0
.7

7
2

4
 

0
.7

7
5

8
 

0
.5

8
7

1
 

0
.6

1
9

8
 

9
3

7
,7

0
9 

9
0

1
,5

7
4 

3
3

,8
3

3
,0

6
2 

3
3

,1
9

1
,0

3
6 

0
.4

0
5

1
 

0
.5

9
3

3
 

5
.8

2
5

0
 

9
5

 

1
6

9
-2

-1
99

3
 

1
6

9
-2

-2
00

9
 

M
I 

4
0

 
0

.7
3

3
5

 
0

.4
3

8
1

 
0

.6
0

0
1

 
0

.6
1

2
4

 
0

.4
6

1
4

 
0

.5
4

8
6

 
1

,2
4

1
,7

2
1 

1
,1

0
6

,9
2

9 
7

3
,5

8
0

,3
6

4 
6

9
,8

6
6

,5
1

1 
2

.0
6

7
9

 
3

.9
6

5
6

 
1

.9
0

8
4

 
4

4
 

1
6

9
-2

-1
99

3
 

1
6

9
-2

-2
00

9
 

M
SE

 
7

 
0

.7
4

1
6

 
0

.4
6

1
8

 
0

.6
0

7
6

 
0

.6
2

4
4

 
0

.4
3

9
7

 
0

.5
3

9
1

 
1

,2
6

1
,7

3
0 

1
,0

8
8

,9
9

1 
7

1
,5

8
4

,4
4

2 
6

6
,6

5
7

,4
3

3 
2

.4
4

4
5

 
5

.1
4

5
9

 
0

.6
2

2
6

 
2

3
 

1
8

1
-1

-3
43

6
 

1
8

1
-1

-3
44

6
 

M
I 

2
0

 
0

.9
4

1
2

 
0

.8
8

8
4

 
0

.8
7

8
7

 
0

.8
7

9
1

 
0

.6
7

0
7

 
0

.6
8

7
9

 
9

9
2

,5
4

7 
9

7
7

,6
6

8 
4

1
,1

5
3

,5
9

3 
4

0
,9

8
5

,8
7

3 
0

.7
1

4
1

 
1

.2
2

5
6

 
0

.9
0

5
0

 
2

5
 

1
8

1
-1

-3
43

6
 

1
8

1
-1

-3
44

6
 

M
SE

 
2

1
 

0
.9

4
4

2
 

0
.8

9
4

3
 

0
.8

8
2

5
 

0
.8

8
2

8
 

0
.6

7
1

9
 

0
.6

8
7

6
 

9
8

2
,9

4
3 

9
6

9
,0

7
7 

3
9

,7
9

6
,8

8
2 

3
9

,6
5

2
,0

4
3 

0
.5

7
1

8
 

0
.9

0
5

2
 

0
.7

8
6

3
 

3
1

 

1
1

0
-2

-1
06

5
 

1
1

0
-2

-1
07

3
 

M
I 

1
0

 
0

.8
3

0
3

 
0

.7
1

2
3

 
0

.7
7

3
3

 
0

.7
7

6
0

 
0

.5
8

3
8

 
0

.6
0

2
8

 
1

,2
4

5
,9

0
1 

1
,2

1
1

,6
8

2 
5

7
,1

3
0

,1
2

5 
5

6
,2

5
7

,1
9

9 
0

.2
5

9
5

 
0

.3
3

0
5

 
0

.8
2

1
6

 
2

1
 

1
1

0
-2

-1
06

5
 

1
1

0
-2

-1
07

3
 

M
SE

 
1

7
 

0
.8

3
0

7
 

0
.7

1
3

3
 

0
.7

7
3

7
 

0
.7

7
6

6
 

0
.5

8
3

1
 

0
.6

0
2

1
 

1
,2

4
6

,7
3

1 
1

,2
1

0
,5

8
0 

5
7

,0
2

4
,4

9
5 

5
6

,0
6

8
,7

7
1 

0
.2

5
3

4
 

0
.3

2
7

1
 

1
5

.5
9

8
1

 
1

7
1

 

1
2

3
-1

-2
50

4
 

1
2

3
-1

-2
52

4
 

M
I 

2
2

 
0

.8
5

3
4

 
0

.7
5

4
2

 
0

.8
0

6
0

 
0

.8
0

7
6

 
0

.6
5

0
7

 
0

.6
6

7
4

 
5

7
8

,3
6

2 
5

5
8

,3
9

4 
1

5
,1

6
6

,8
4

2 
1

5
,0

1
2

,6
0

0 
1

.2
6

0
2

 
2

.3
1

3
6

 
0

.9
1

4
0

 
2

6
 

1
2

3
-1

-2
50

4
 

1
2

3
-1

-2
52

4
 

M
SE

 
3

9
 

0
.8

5
7

4
 

0
.7

6
1

2
 

0
.8

1
1

9
 

0
.8

1
3

3
 

0
.6

6
2

8
 

0
.6

7
7

3
 

5
7

1
,7

4
8 

5
5

3
,9

0
5 

1
4

,6
9

7
,6

1
8 

1
4

,5
5

9
,6

3
1 

0
.9

9
7

9
 

1
.7

9
7

0
 

1
.6

1
0

4
 

4
7

 

1
3

2
-1

-1
99

0
 

1
3

2
-1

-2
00

2
 

M
I 

2
9

 
0

.9
1

3
4

 
0

.8
1

7
4

 
0

.8
9

1
2

 
0

.8
9

1
7

 
0

.7
3

7
4

 
0

.7
5

0
2

 
5

9
1

,3
6

0 
5

7
9

,6
5

3 
1

3
,6

9
1

,7
0

5 
1

3
,6

1
7

,2
4

4 
0

.5
1

2
2

 
1

.0
2

8
1

 
1

.2
5

7
0

 
2

9
 

1
3

2
-1

-1
99

0
 

1
3

2
-1

-2
00

2
 

M
SE

 
6

3
 

0
.9

1
3

7
 

0
.8

1
7

7
 

0
.8

9
1

5
 

0
.8

9
2

0
 

0
.7

3
5

9
 

0
.7

4
9

4
 

5
9

2
,1

0
7 

5
8

0
,2

9
8 

1
3

,6
5

2
,3

4
8 

1
3

,5
7

8
,9

0
6 

0
.5

0
0

5
 

0
.9

7
3

0
 

3
.1

8
0

4
 

6
3

 

1
8

3
-3

-2
33

5
 

1
8

3
-3

-2
34

2
 

M
I 

2
4

 
0

.9
2

4
0

 
0

.8
6

7
3

 
0

.8
8

8
4

 
0

.8
8

8
6

 
0

.7
4

7
2

 
0

.7
5

0
8

 
5

6
5

,2
4

0 
5

5
8

,9
2

3 
1

1
,2

5
3

,8
6

8 
1

1
,2

3
4

,0
3

0 
0

.1
6

3
9

 
0

.2
1

1
4

 
1

.4
2

8
0

 
3

2
 

1
8

3
-3

-2
33

5
 

1
8

3
-3

-2
34

2
 

M
SE

 
1

9
 

0
.9

2
5

2
 

0
.8

6
9

8
 

0
.8

8
9

7
 

0
.8

8
9

9
 

0
.7

4
6

3
 

0
.7

4
9

4
 

5
6

7
,6

5
0 

5
6

1
,4

5
7 

1
1

,1
2

1
,9

1
3 

1
1

,1
0

0
,9

6
0 

0
.1

6
5

4
 

0
.2

1
7

0
 

0
.6

3
5

2
 

2
7

 

M
S

E
  
→

 B
et

te
r 

v
is

u
al

 r
eg

is
tr

at
io

n
 ||

  
R

ed
 →

 U
n

su
cc

es
sf

u
l 

v
is

u
al

 r
eg

is
tr

at
io

n
  
|| 

 (
M

) 
→

 M
as

k
ed

 v
ar

ia
ti

o
n

 o
f 

si
m

il
ar

it
y

/d
is

si
m

il
ar

it
y

 c
o

ef
fi

ci
en

t



306 

 

 

Appendix Q 

Registration Data Subset: Optimality Registration Results Maps 
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Reference (fixed) and Template (moving) pressure maps 

 

  

Visual feedback: MSE registration produced better correspondence in tuberosities and legs. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: MSE registration produced better correspondence in tuberosities and legs. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: MSE registration produced slightly better correspondence in the left tuberosity. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: MSE produced slightly better correspondence in tuberosities and top buttocks. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: MSE registration produced better correspondence in tuberosities and legs. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: MSE produced better correspondence in tuberosities, legs, and top buttocks. 
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Reference (fixed) and Template (moving) pressure maps 

 

  

  

Visual feedback:  While neither MI nor MSE produced a successful registration, MI is better. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

  

  

Visual feedback: Neither MI nor MSE produced a successful registration. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 

 



325 

 

 

Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Reference (fixed) and Template (moving) pressure maps 

 

 

  

Visual feedback: Both MI and MSE did similar and appropriate registrations. 
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Appendix R 

Case Study: Sequential Registration and Comparative Results 
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Template 
CP-CP 

Diff 
Pearson Tanimoto 

Min-
Ratio 

L1 Norm Sq L2 Norm 
Int-Ratio 

Var 
Proc 
Time 

109-2-1 0 1 1 1 0.00 0.00 0 0 
109-2-2 0.1965 0.9995 0.9982 0.9479 62,000.53 227,841.49 0.0022 0.5887 
109-2-3 0.1486 0.9991 0.9957 0.9274 93,892.10 561,214.08 0.0037 0.9744 
109-2-4 0.1420 0.9983 0.9910 0.9044 137,321.15 1,200,237.43 0.0050 1.2533 
109-2-5 0.1912 0.9980 0.9883 0.8973 157,662.23 1,580,425.12 0.0040 0.4887 
109-2-6 0.2962 0.9971 0.9833 0.8741 192,627.88 2,308,566.96 0.0060 1.2893 
109-2-7 0.2889 0.9966 0.9805 0.8639 210,233.39 2,731,405.03 0.0062 0.8835 
109-2-8 0.4328 0.9964 0.9805 0.8604 212,712.12 2,723,526.09 0.0074 0.5587 
109-2-9 0.4175 0.9958 0.9760 0.8477 238,079.86 3,415,251.42 0.0065 1.4772 

109-2-10 0.3456 0.9960 0.9773 0.8533 229,342.14 3,213,429.02 0.0062 1.0304 
109-2-11 0.3810 0.9961 0.9777 0.8571 226,961.76 3,155,578.15 0.0060 0.6316 
109-2-12 0.6728 0.9966 0.9853 0.8688 179,536.13 1,992,752.48 0.0104 0.6057 
109-2-13 0.6026 0.9957 0.9771 0.8447 231,895.62 3,238,896.46 0.0105 0.6137 
109-2-14 0.1305 0.9946 0.9715 0.8369 258,227.00 4,108,337.76 0.0096 1.3772 
109-2-15 0.3775 0.9942 0.9675 0.8395 273,149.78 4,754,045.33 0.0078 0.5867 
109-2-16 0.3225 0.9929 0.9607 0.8258 302,995.07 5,874,813.41 0.0084 0.4467 
109-2-17 0.2519 0.9935 0.9633 0.8281 290,116.12 5,449,490.24 0.0071 0.5767 
109-2-18 0.0911 0.9901 0.9594 0.8327 289,272.22 6,007,286.25 0.0103 0.7446 
109-2-19 0.3397 0.9898 0.9682 0.8292 264,672.59 4,494,050.03 0.0140 0.5877 
109-2-20 0.4329 0.9914 0.9662 0.8332 266,727.21 4,892,842.84 0.0108 0.4797 
109-2-21 0.3447 0.9896 0.9556 0.8163 309,365.97 6,655,635.01 0.0116 0.5077 
109-2-22 0.2591 0.9909 0.9544 0.8084 320,083.84 6,921,572.37 0.0098 0.3238 
109-2-23 0.5650 0.9908 0.9544 0.8049 329,519.96 6,916,756.31 0.0110 0.3128 
109-2-24 0.3713 0.9890 0.9413 0.7856 379,187.06 9,290,573.64 0.0110 0.4557 
109-2-25 0.2999 0.9903 0.9441 0.7877 371,628.49 8,803,556.80 0.0096 0.4218 
109-2-26 0.3126 0.9886 0.9378 0.7866 387,521.47 9,937,806.99 0.0210 1.1613 
109-2-27 0.4614 0.9886 0.9380 0.7878 385,342.64 9,901,964.98 0.0226 2.2497 
109-2-28 0.2954 0.9882 0.9358 0.7826 392,225.94 10,323,479.52 0.0215 0.2828 
109-2-29 0.0670 0.9872 0.9344 0.7697 407,855.18 10,550,953.65 0.0221 6.5533 
109-2-30 0.0392 0.9865 0.9325 0.7657 411,181.21 10,889,107.36 0.0208 0.6346 
109-2-31 0.0220 0.9871 0.9320 0.7722 412,184.02 11,018,266.91 0.0187 0.4178 
109-2-32 0.7373 0.9858 0.9304 0.7678 410,755.86 11,285,542.13 0.0234 3.5740 
109-2-33 0.0999 0.9860 0.9253 0.7611 439,117.98 12,343,076.28 0.0180 1.4232 
109-2-34 0.2767 0.9848 0.9251 0.7556 438,815.03 12,314,604.31 0.0206 3.5930 
109-2-35 0.1717 0.9842 0.9159 0.7457 476,652.96 14,242,191.83 0.0200 0.4827 
109-2-36 0.0721 0.9852 0.9192 0.7589 457,211.91 13,572,534.60 0.0216 0.5017 
109-2-37 1.3022 0.9817 0.9058 0.7343 504,007.54 16,311,355.74 0.0260 0.3218 
109-2-38 0.2166 0.9837 0.9070 0.7341 511,214.62 16,169,554.72 0.0198 0.5307 
109-2-39 0.0818 0.9842 0.9173 0.7546 465,801.46 13,931,907.86 0.0187 0.6057 
109-2-40 0.1483 0.9852 0.9251 0.7638 433,759.04 12,339,135.93 0.0195 1.3892 
109-2-41 0.0585 0.9848 0.9159 0.7439 477,924.01 14,270,228.64 0.0192 0.7006 
109-2-42 0.1061 0.9846 0.9119 0.7350 492,972.20 15,128,198.49 0.0196 0.6107 
109-2-43 0.1243 0.9840 0.9082 0.7276 511,894.36 15,932,884.54 0.0204 0.5617 
109-2-44 0.0940 0.9829 0.9001 0.7159 541,005.65 17,708,500.49 0.0198 1.6691 
109-2-45 0.1695 0.9840 0.9094 0.7336 499,534.02 15,663,254.63 0.0179 0.5987 
109-2-46 0.0909 0.9837 0.9049 0.7246 520,390.73 16,659,594.57 0.0214 0.6256 
109-2-47 0.2707 0.9833 0.8996 0.7174 542,430.23 17,851,270.95 0.0202 0.6596 
109-2-48 0.1870 0.9833 0.8999 0.7233 535,972.38 17,798,425.37 0.0184 0.5297 
109-2-49 0.1105 0.9824 0.8959 0.7145 553,028.28 18,672,321.57 0.0210 1.4942 
109-2-50 0.1663 0.9819 0.8939 0.7106 563,537.26 19,114,063.24 0.0190 0.6117 
109-2-51 0.2207 0.9825 0.9025 0.7248 528,533.12 17,121,651.30 0.0195 0.7796 
109-2-52 0.2522 0.9824 0.9009 0.7140 542,714.27 17,498,992.32 0.0206 0.5607 
109-2-53 0.1398 0.9814 0.8969 0.7162 554,385.11 18,361,993.43 0.0196 0.6626 
109-2-54 0.2145 0.9809 0.8911 0.7101 575,629.36 19,716,547.36 0.0190 0.6966 
109-2-55 0.0985 0.9832 0.9069 0.7271 513,260.15 16,175,911.60 0.0190 0.5447 
109-2-56 0.1184 0.9816 0.8937 0.7080 564,191.58 19,149,147.83 0.0191 0.4997 
109-2-57 0.2087 0.9815 0.8948 0.7061 559,727.22 18,886,059.36 0.0191 0.6976 
109-2-58 0.1328 0.9832 0.9038 0.7170 528,137.06 16,877,957.51 0.0186 0.6147 
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109-2-59 0.2107 0.9815 0.8949 0.7114 556,675.71 18,844,673.53 0.0193 0.6456 
109-2-60 0.1958 0.9822 0.8967 0.7107 550,617.87 18,464,483.74 0.0185 0.6846 
109-2-61 0.1669 0.9822 0.8950 0.7060 560,628.81 18,867,385.82 0.0182 0.6656 
109-2-62 0.1630 0.9809 0.8842 0.6903 603,617.26 21,425,775.11 0.0185 0.8175 
109-2-63 0.2252 0.9812 0.8895 0.7000 577,725.38 20,143,442.64 0.0185 0.7086 
109-2-64 0.1841 0.9806 0.8846 0.6925 601,563.62 21,303,732.10 0.0186 0.6586 
109-2-65 0.1471 0.9806 0.8829 0.6925 605,806.03 21,749,848.70 0.0191 0.5147 
109-2-66 0.1877 0.9803 0.8793 0.6889 617,780.19 22,641,968.59 0.0190 0.4507 
109-2-67 0.1699 0.9799 0.8783 0.6857 623,162.66 22,849,906.94 0.0191 0.8485 
109-2-68 0.1392 0.9802 0.8803 0.6899 613,348.37 22,380,424.70 0.0190 0.5517 
109-2-69 0.1728 0.9799 0.8765 0.6835 630,205.39 23,316,402.68 0.0188 0.4957 
109-2-70 0.1668 0.9789 0.8714 0.6790 647,708.35 24,589,363.55 0.0192 0.4198 
109-2-71 0.1650 0.9794 0.8739 0.6833 637,932.34 23,973,980.79 0.0189 0.4398 
109-2-72 0.1770 0.9787 0.8681 0.6742 662,838.79 25,465,066.25 0.0196 0.4948 
109-2-73 0.1745 0.9792 0.8710 0.6790 649,791.41 24,718,158.47 0.0189 0.4687 
109-2-74 0.1825 0.9786 0.8681 0.6753 661,446.63 25,436,621.69 0.0191 0.4407 
109-2-75 0.1893 0.9789 0.8694 0.6761 658,058.29 25,138,609.91 0.0190 0.4697 
109-2-76 0.1725 0.9791 0.8717 0.6792 645,362.27 24,518,916.44 0.0188 0.7086 
109-2-77 0.1776 0.9785 0.8680 0.6745 662,394.00 25,470,120.54 0.0190 0.4018 
109-2-78 0.1847 0.9793 0.8739 0.6812 637,081.60 23,952,453.75 0.0186 0.6706 
109-2-79 0.1580 0.9799 0.8783 0.6869 618,923.76 22,859,867.66 0.0183 0.6606 
109-2-80 0.2134 0.9791 0.8714 0.6787 647,708.79 24,592,891.53 0.0186 1.6690 
109-2-81 0.2171 0.9787 0.8697 0.6773 650,332.72 25,029,721.03 0.0188 0.6816 
109-2-82 0.1988 0.9790 0.8720 0.6820 638,718.31 24,434,411.42 0.0185 0.6756 
109-2-83 0.1855 0.9786 0.8696 0.6772 653,189.57 25,033,922.21 0.0188 0.6866 
109-2-84 0.2353 0.9786 0.8691 0.6772 653,508.95 25,192,312.04 0.0188 2.3547 
109-2-85 0.1885 0.9786 0.8675 0.6735 661,131.99 25,614,237.08 0.0188 0.7046 
109-2-86 0.1899 0.9778 0.8634 0.6694 676,017.88 26,668,524.81 0.0192 0.7506 
109-2-87 0.2043 0.9781 0.8649 0.6735 667,113.95 26,269,976.01 0.0186 0.5867 
109-2-88 0.1956 0.9778 0.8627 0.6691 679,049.68 26,849,971.28 0.0188 0.6566 
109-2-89 0.1974 0.9775 0.8608 0.6665 686,108.97 27,363,314.69 0.0188 0.6107 
109-2-90 0.1773 0.9774 0.8592 0.6677 688,667.07 27,794,921.00 0.0189 0.4337 
109-2-91 0.1976 0.9780 0.8649 0.6693 673,124.04 26,272,467.04 0.0187 0.7925 
109-2-92 0.2034 0.9775 0.8604 0.6701 682,850.61 27,480,347.20 0.0188 0.5477 
109-2-93 0.1710 0.9790 0.8751 0.6792 639,788.97 23,609,730.48 0.0184 0.8465 
109-2-94 0.2031 0.9783 0.8675 0.6736 663,986.52 25,573,558.12 0.0185 0.5407 
109-2-95 0.1955 0.9778 0.8638 0.6723 673,940.08 26,557,581.33 0.0186 0.6886 
109-2-96 0.2201 0.9778 0.8639 0.6706 678,776.23 26,526,792.42 0.0186 0.5257 
109-2-97 0.2931 0.9783 0.8706 0.6771 648,513.83 24,743,544.48 0.0192 0.8465 
109-2-98 0.1880 0.9793 0.8770 0.6837 624,345.80 23,142,670.95 0.0184 0.8115 
109-2-99 0.2079 0.9791 0.8723 0.6785 644,736.57 24,361,990.27 0.0178 0.9005 

109-2-100 0.2335 0.9787 0.8718 0.6788 644,327.93 24,473,077.63 0.0181 0.9744 
109-2-101 0.2335 0.9784 0.8698 0.6763 649,207.81 24,961,162.42 0.0183 0.7646 
109-2-102 0.2300 0.9779 0.8645 0.6723 670,047.31 26,363,347.29 0.0184 0.7436 
109-2-103 0.2425 0.9780 0.8675 0.6748 656,234.36 25,562,249.57 0.0185 0.8215 
109-2-104 0.2263 0.9779 0.8651 0.6725 666,810.00 26,205,688.84 0.0183 0.7316 
109-2-105 0.2314 0.9781 0.8651 0.6730 667,969.63 26,216,043.85 0.0183 0.8455 
109-2-106 0.2405 0.9779 0.8658 0.6743 662,251.38 26,032,612.71 0.0184 0.7776 
109-2-107 0.1984 0.9778 0.8633 0.6692 676,343.78 26,687,590.41 0.0182 0.7776 
109-2-108 0.2132 0.9773 0.8596 0.6673 686,881.73 27,667,680.90 0.0183 0.9325 
109-2-109 0.1997 0.9774 0.8609 0.6694 680,900.92 27,338,830.19 0.0182 0.7086 
109-2-110 0.2053 0.9778 0.8622 0.6689 681,874.37 26,996,254.49 0.0180 0.8165 
109-2-111 0.2334 0.9772 0.8588 0.6649 692,565.89 27,909,461.64 0.0177 0.6496 
109-2-112 0.2061 0.9772 0.8602 0.6685 686,780.68 27,508,219.94 0.0185 0.6107 
109-2-113 0.1872 0.9774 0.8612 0.6691 682,913.44 27,233,915.67 0.0194 0.6456 
109-2-114 0.2532 0.9771 0.8590 0.6682 689,344.66 27,822,677.58 0.0192 0.6936 
109-2-115 0.1496 0.9777 0.8653 0.6699 675,237.56 26,131,635.56 0.0176 0.6236 
109-2-116 0.1571 0.9772 0.8620 0.6656 683,558.34 26,993,311.39 0.0179 1.0254 
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109-2-117 0.1797 0.9776 0.8641 0.6723 671,584.88 26,462,576.02 0.0178 0.4447 
109-2-118 0.2084 0.9771 0.8597 0.6678 690,816.13 27,630,505.09 0.0181 0.9694 
109-2-119 0.1700 0.9774 0.8631 0.6713 674,725.35 26,719,139.64 0.0178 0.8295 
109-2-120 0.2071 0.9773 0.8616 0.6699 679,964.42 27,103,813.62 0.0177 0.7566 
109-2-121 0.2700 0.9770 0.8581 0.6666 695,855.29 28,070,239.14 0.0180 0.4338 
109-2-122 0.2758 0.9767 0.8574 0.6678 695,691.55 28,250,602.68 0.0180 0.4647 
109-2-123 0.2261 0.9775 0.8623 0.6701 681,475.06 26,935,633.43 0.0176 0.4877 
109-2-124 0.1312 0.9781 0.8704 0.6750 656,811.97 24,795,152.21 0.0187 0.5917 
109-2-125 0.2000 0.9768 0.8611 0.6699 683,366.22 27,210,917.73 0.0188 0.8155 
109-2-126 0.1687 0.9766 0.8595 0.6661 692,447.82 27,650,017.66 0.0190 0.8115 
109-2-127 0.1585 0.9769 0.8611 0.6680 683,703.10 27,203,981.12 0.0179 0.4607 
109-2-128 0.1568 0.9764 0.8568 0.6634 701,492.75 28,383,995.10 0.0184 0.6456 
109-2-129 0.1807 0.9767 0.8594 0.6664 692,987.61 27,662,110.46 0.0181 1.1753 
109-2-130 0.1235 0.9774 0.8675 0.6737 660,264.82 25,511,766.94 0.0179 0.8475 
109-2-131 0.1617 0.9771 0.8657 0.6717 667,638.58 25,973,508.78 0.0185 0.8545 
109-2-132 0.0998 0.9762 0.8585 0.6652 693,940.79 27,884,952.38 0.0186 0.7296 
109-2-133 0.1175 0.9767 0.8626 0.6691 677,610.37 26,768,747.24 0.0182 0.8515 
109-2-134 0.1086 0.9765 0.8592 0.6662 691,274.29 27,712,103.94 0.0178 0.8225 
109-2-135 0.1030 0.9759 0.8569 0.6622 699,907.61 28,311,388.07 0.0194 0.6506 
109-2-136 0.1453 0.9768 0.8625 0.6713 677,623.87 26,823,159.96 0.0178 0.4737 
109-2-137 0.1826 0.9766 0.8589 0.6664 691,452.65 27,794,580.47 0.0180 0.5147 
109-2-138 0.1530 0.9768 0.8614 0.6695 679,933.23 27,124,626.41 0.0178 0.8575 
109-2-139 0.2083 0.9761 0.8570 0.6631 697,195.06 28,306,886.24 0.0211 1.8420 
109-2-140 0.0527 0.9776 0.8697 0.6761 658,753.07 24,919,729.75 0.0177 0.5647 
109-2-141 0.0568 0.9771 0.8659 0.6746 664,171.96 25,898,960.92 0.0176 0.7356 
109-2-142 0.0540 0.9771 0.8669 0.6753 657,545.55 25,647,116.94 0.0177 0.9355 
109-2-143 0.0912 0.9765 0.8612 0.6708 682,434.80 27,138,652.28 0.0182 0.7196 
109-2-144 0.2236 0.9773 0.8693 0.6788 648,549.80 25,000,333.09 0.0185 0.8685 
109-2-145 0.1381 0.9773 0.8677 0.6757 657,195.13 25,450,403.25 0.0185 0.8305 
109-2-146 0.0960 0.9768 0.8643 0.6707 667,071.85 26,307,141.50 0.0183 0.8935 
109-2-147 0.0815 0.9771 0.8674 0.6791 651,054.06 25,513,247.73 0.0183 0.7946 
109-2-148 0.0511 0.9770 0.8629 0.6723 672,018.43 26,728,351.31 0.0188 0.7106 
109-2-149 0.1286 0.9769 0.8621 0.6733 672,915.42 26,945,564.48 0.0182 0.4817 
109-2-150 1.4304 0.9802 0.9248 0.7518 442,689.54 12,098,316.68 0.0309 0.8055 
109-2-151 1.1416 0.9266 0.8831 0.7402 452,095.37 15,477,984.15 0.1176 7.2849 
109-2-152 3.2833 0.8836 0.8216 0.6485 623,902.40 24,334,532.38 0.1469 4.5154 
109-2-153 3.2028 0.9381 0.8946 0.6496 528,217.95 14,707,069.15 0.1060 27.8482 
109-2-154 2.9640 0.9518 0.9174 0.6750 442,223.89 9,928,467.12 0.1297 18.3176 
109-2-155 1.7837 0.9717 0.9520 0.6979 349,581.73 6,113,663.32 0.0907 17.7829 
109-2-156 2.4463 0.9766 0.9582 0.6937 333,273.59 5,464,037.07 0.0918 0.7916 
109-2-157 2.7084 0.9777 0.9623 0.6933 325,956.55 4,685,832.21 0.1153 0.5367 
109-2-158 2.5824 0.9616 0.9300 0.6878 380,026.51 8,193,219.54 0.1316 8.6771 
109-2-159 4.0594 0.9677 0.9451 0.6768 371,565.43 6,688,413.65 0.1472 6.4723 
109-2-160 3.7926 0.9701 0.9498 0.6804 359,970.57 6,349,583.85 0.1294 7.7846 
109-2-161 3.5167 0.9707 0.9498 0.6799 364,898.96 6,496,509.04 0.1186 4.7753 
109-2-162 3.4491 0.9716 0.9496 0.6784 370,339.61 6,674,497.31 0.1106 0.8845 
109-2-163 3.4697 0.9720 0.9486 0.6762 377,341.99 6,908,500.27 0.1076 0.9355 
109-2-164 3.4910 0.9719 0.9462 0.6696 394,145.61 7,354,888.00 0.0990 2.5086 
109-2-165 3.4264 0.9718 0.9443 0.6659 404,862.54 7,711,529.85 0.0998 2.0678 
109-2-166 2.7979 0.9687 0.9420 0.6692 403,592.12 7,889,935.49 0.0959 3.0752 
109-2-167 3.7177 0.9728 0.9500 0.6800 370,118.12 6,690,794.79 0.0993 3.1032 
109-2-168 3.9747 0.9710 0.9425 0.6616 411,417.51 7,975,347.02 0.0988 2.1987 
109-2-169 3.7919 0.9722 0.9390 0.6537 433,868.63 8,744,200.08 0.0975 9.8274 
109-2-170 3.7025 0.9717 0.9348 0.6466 453,775.07 9,505,759.65 0.0865 14.7876 
109-2-171 3.7307 0.9813 0.9646 0.6863 333,129.69 4,663,447.62 0.0998 5.3819 
109-2-172 3.9309 0.9716 0.9493 0.6695 380,371.33 6,685,048.62 0.1139 1.2903 
109-2-173 3.6043 0.9721 0.9484 0.6698 382,825.20 6,945,035.50 0.1144 25.4345 
109-2-174 3.5332 0.9714 0.9467 0.6675 389,109.59 7,218,678.04 0.1126 1.3312 
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109-2-175 2.5924 0.9695 0.9378 0.6600 428,474.02 8,793,746.65 0.0938 0.6296 
109-2-176 2.5578 0.9709 0.9342 0.6579 442,697.80 9,593,890.09 0.0867 1.3123 
109-2-177 2.9833 0.9641 0.9303 0.6598 438,696.06 9,855,009.46 0.1094 0.6317 
109-2-178 3.6925 0.9657 0.9307 0.6557 446,172.31 9,906,333.97 0.1164 0.6246 
109-2-179 3.9010 0.9654 0.9296 0.6532 451,484.01 10,096,955.64 0.1103 1.3123 
109-2-180 3.3463 0.9656 0.9287 0.6497 457,275.25 10,294,157.84 0.1020 1.4942 
109-2-181 7.8654 0.9057 0.8494 0.6213 556,070.83 18,672,499.48 0.4075 3.6389 
109-2-182 6.5447 0.9260 0.8713 0.6398 497,656.21 15,085,892.26 0.3102 5.5059 
109-2-183 4.2701 0.9572 0.9291 0.6732 405,519.86 8,912,997.86 0.1728 1.6301 
109-2-184 5.6732 0.9139 0.8612 0.6504 511,335.32 17,141,713.52 0.2547 1.8739 
109-2-185 3.3176 0.9753 0.9563 0.7035 328,431.81 5,224,131.25 0.1124 14.3858 
109-2-186 3.2500 0.9684 0.9470 0.6865 362,019.05 6,756,749.56 0.1221 3.0493 
109-2-187 6.5742 0.9184 0.8629 0.6434 506,508.00 16,361,562.91 0.2934 5.0681 
109-2-188 5.6131 0.9501 0.9181 0.6640 432,743.80 10,403,257.04 0.2045 1.9639 
109-2-189 7.4210 0.8225 0.7345 0.6146 651,084.85 33,611,357.61 0.4330 3.2531 
109-2-190 5.8420 0.9540 0.9238 0.6622 422,941.28 9,510,541.43 0.2142 8.5012 
109-2-191 3.6464 0.8977 0.8396 0.6412 609,495.22 20,480,627.60 0.2668 6.5743 
109-2-192 13.2381 0.6970 0.5865 0.4799 1,020,801.63 54,097,620.43 1.4943 4.5774 
109-2-193 5.2403 0.8719 0.8015 0.5923 667,066.93 25,075,145.30 0.5349 2.1238 
109-2-194 3.9862 0.9097 0.8560 0.6218 550,352.62 18,013,753.66 0.3130 1.1134 
109-2-195 4.6708 0.9324 0.8901 0.6410 496,936.85 13,771,678.91 0.2221 0.8555 
109-2-196 6.7538 0.7742 0.6682 0.6135 678,877.29 41,491,398.49 0.6116 1.5751 
109-2-197 5.9931 0.8835 0.8197 0.5950 652,185.13 23,642,337.08 0.2357 1.7190 
109-2-198 6.4901 0.9057 0.8425 0.5853 620,923.48 18,864,376.04 0.5466 4.2516 
109-2-199 6.2919 0.9191 0.8701 0.5899 599,178.69 16,491,721.02 0.3597 12.2710 
109-2-200 9.0868 0.8197 0.7383 0.5442 819,082.85 35,644,135.89 0.6335 3.9937 
109-2-201 4.0434 0.9089 0.8513 0.6225 547,426.71 17,981,789.70 0.5154 0.7526 
109-2-202 0.1108 0.9733 0.8874 0.6661 393,309.59 11,457,981.18 0.4623 8.3042 
109-2-203 1.9841 0.8613 0.7526 0.4928 648,475.61 28,205,542.64 1.9291 1.4092 
109-2-204 0.0301 0.9531 0.9229 0.6500 405,608.11 9,999,153.37 0.8211 2.4191 
109-2-205 0.7681 0.9598 0.9133 0.6607 445,762.04 13,013,642.83 0.6894 0.6007 
109-2-206 1.3122 0.9604 0.8965 0.6739 492,883.37 16,789,312.53 0.5656 4.4665 
109-2-207 0.8588 0.9873 0.9765 0.7243 243,082.18 3,011,510.48 0.4773 0.5617 
109-2-208 1.0505 0.9803 0.9613 0.6814 303,028.64 5,163,251.80 1.9868 1.5831 
109-2-209 1.1634 0.9841 0.9496 0.7329 343,947.70 7,476,011.10 0.4455 1.0804 
109-2-210 1.0412 0.9832 0.9449 0.7254 360,856.86 8,310,767.55 0.4469 2.7103 
109-2-211 1.0301 0.9807 0.9327 0.7057 411,073.89 10,514,166.04 0.5272 2.6126 
109-2-212 0.8183 0.9810 0.9354 0.7050 403,991.32 10,011,088.34 0.4971 0.4118 
109-2-213 0.5002 0.9325 0.8839 0.6472 481,097.92 16,603,483.46 0.7937 11.4588 
109-2-214 0.7043 0.9839 0.9595 0.7166 314,775.33 5,718,354.36 0.5245 1.4012 
109-2-215 0.8590 0.9629 0.8904 0.6890 509,799.40 18,428,152.15 0.4916 0.5902 
109-2-216 1.0509 0.9854 0.9637 0.7353 283,181.79 5,061,066.36 0.4479 1.3138 
109-2-217 1.1104 0.9863 0.9584 0.7463 301,995.99 6,017,154.21 0.3809 0.7985 
109-2-218 1.1149 0.9853 0.9488 0.7400 340,616.69 7,690,280.54 0.3416 1.8709 
109-2-219 1.0912 0.9837 0.9393 0.7334 376,008.23 9,405,414.10 0.3486 1.3124 
109-2-220 1.0822 0.9832 0.9369 0.7282 387,832.45 9,832,182.12 0.4118 1.8955 
109-2-221 1.0622 0.9810 0.9260 0.7202 424,733.09 11,901,814.69 0.3588 0.8355 
109-2-222 1.0463 0.9826 0.9300 0.7148 418,556.98 11,181,041.48 0.3727 1.7780 
109-2-223 0.8551 0.9825 0.9242 0.7081 442,918.52 12,345,753.09 0.3996 0.4178 
109-2-224 0.8715 0.9813 0.9188 0.7133 463,139.74 13,421,744.32 0.3307 1.1304 
109-2-225 0.7578 0.9801 0.9274 0.7098 427,990.64 11,542,908.18 0.8333 29.1255 
109-2-226 0.8425 0.9839 0.9414 0.7297 374,161.11 9,011,502.79 0.3639 1.0035 
109-2-227 0.9751 0.9840 0.9381 0.7316 383,529.14 9,641,442.77 0.3290 19.8965 
109-2-228 1.0215 0.9832 0.9291 0.7271 414,263.03 11,393,399.16 0.3144 38.7839 
109-2-229 1.0499 0.9828 0.9250 0.7228 428,538.78 12,202,600.11 0.3105 13.5126 
109-2-230 0.6993 0.9822 0.9313 0.7350 389,761.55 10,890,384.41 0.3158 0.5017 
109-2-231 0.7445 0.9833 0.9338 0.7355 383,312.10 10,444,120.87 0.3064 0.5767 
109-2-232 0.5358 0.9817 0.9323 0.7167 405,416.92 10,670,076.21 0.3434 0.4787 



332 

 

 

Template 
CP-CP 

Diff 
Pearson Tanimoto 

Min-
Ratio 

L1 Norm Sq L2 Norm 
Int-Ratio 

Var 
Proc 
Time 

109-2-233 0.6253 0.9806 0.9332 0.7156 402,532.48 10,430,281.80 0.3434 0.3348 
109-2-234 0.6769 0.9819 0.9484 0.7163 351,690.11 7,595,047.58 1.0606 0.4038 
109-2-235 0.7516 0.9824 0.9424 0.7235 367,532.45 8,740,055.45 0.4735 0.6406 
109-2-236 0.7537 0.9821 0.9358 0.7242 389,655.02 9,994,200.16 0.3623 0.5267 
109-2-237 0.8588 0.9813 0.9253 0.7211 426,142.91 12,065,557.56 0.3344 0.4417 
109-2-238 0.8496 0.9811 0.9206 0.7196 443,229.31 13,026,332.23 0.3213 0.5447 
109-2-239 0.5615 0.9793 0.9193 0.7048 454,296.21 13,178,086.90 0.3707 0.3768 
109-2-240 0.5436 0.9780 0.9135 0.6997 474,052.22 14,355,969.15 0.3628 0.4118 
109-2-241 0.8745 0.9812 0.9254 0.7034 434,009.81 12,030,182.05 0.3559 0.9285 
109-2-242 0.7867 0.9816 0.9198 0.7077 452,664.62 13,230,067.54 0.3090 0.8505 
109-2-243 0.8245 0.9814 0.9162 0.7071 471,657.56 14,000,203.17 0.2904 0.3798 
109-2-244 0.8345 0.9810 0.9112 0.7047 489,928.68 15,056,888.58 0.2821 0.3566 
109-2-245 0.8833 0.9794 0.9005 0.6987 521,921.88 17,368,288.32 0.2829 0.4158 
109-2-246 0.8624 0.9803 0.9108 0.7078 482,896.33 15,102,029.28 0.2881 0.5457 
109-2-247 0.7810 0.8840 0.8188 0.6867 511,713.55 22,817,530.44 0.5596 0.6027 
109-2-248 0.4029 0.9471 0.9095 0.6570 436,270.68 12,401,863.42 0.5973 4.2456 
109-2-249 0.6181 0.9818 0.9629 0.6684 299,369.94 4,301,015.71 0.5557 2.3272 
109-2-250 0.3359 0.9868 0.9759 0.7344 237,770.90 3,062,046.60 0.3293 12.7042 
109-2-251 0.3321 0.9873 0.9701 0.7485 254,110.27 4,069,329.04 0.3002 2.3367 
109-2-252 0.3873 0.9873 0.9655 0.7593 264,555.75 4,821,947.44 0.2419 1.8020 
109-2-253 0.4549 0.9870 0.9598 0.7615 283,747.99 5,782,514.29 0.2330 1.7200 
109-2-254 0.4140 0.9870 0.9561 0.7625 297,504.56 6,435,188.16 0.2306 1.2803 
109-2-255 0.2866 0.9880 0.9612 0.7628 287,371.68 5,589,643.35 0.2284 5.3342 
109-2-256 0.3208 0.9865 0.9572 0.7627 296,680.84 6,228,702.81 0.2454 44.6619 
109-2-257 0.3504 0.9859 0.9473 0.7627 331,096.51 7,997,641.40 0.2274 4.3213 
109-2-258 0.6898 0.9810 0.9341 0.6874 410,936.13 10,238,106.77 1.3059 0.5170 
109-2-259 0.5559 0.9848 0.9357 0.7427 384,539.83 10,149,671.93 0.2710 0.4083 
109-2-260 0.5677 0.9829 0.9224 0.7386 428,041.04 12,756,783.76 0.2525 0.3728 
109-2-261 0.4551 0.9827 0.9195 0.7352 441,491.91 13,353,105.84 0.2440 0.3728 
109-2-262 0.5823 0.9820 0.9147 0.7298 458,139.40 14,341,651.08 0.2495 0.3573 
109-2-263 0.6435 0.9835 0.9210 0.7387 433,814.07 13,091,032.14 0.2369 0.3588 
109-2-264 0.6310 0.9823 0.9131 0.7368 458,203.45 14,710,205.93 0.2250 0.3768 
109-2-265 0.5945 0.9824 0.9139 0.7370 457,633.62 14,556,929.45 0.2248 0.4108 
109-2-266 0.5760 0.9832 0.9316 0.7401 400,395.14 10,881,386.56 0.2352 0.4368 
109-2-267 0.5906 0.9828 0.9242 0.7419 423,914.77 12,383,351.60 0.2118 0.4078 
109-2-268 0.6074 0.9829 0.9234 0.7441 425,094.94 12,542,388.78 0.2119 0.5117 
109-2-269 0.5615 0.9825 0.9201 0.7406 437,872.12 13,213,568.53 0.2166 0.3580 
109-2-270 0.5989 0.9823 0.9174 0.7389 445,572.87 13,777,164.99 0.2042 0.3588 
109-2-271 0.5793 0.9815 0.9121 0.7361 462,622.60 14,880,049.22 0.2041 0.3668 
109-2-272 0.5935 0.9811 0.9088 0.7360 473,490.06 15,600,132.91 0.2026 0.3700 
109-2-273 0.5012 0.9829 0.9367 0.7574 374,030.06 9,861,505.08 0.2007 0.4395 
109-2-274 0.5238 0.9839 0.9289 0.7473 412,133.19 11,471,299.39 0.1870 0.5451 
109-2-275 0.5353 0.9822 0.9157 0.7408 456,168.31 14,143,743.76 0.1875 1.8929 
109-2-276 0.5854 0.9832 0.9169 0.7412 452,647.96 13,947,883.17 0.1898 0.4200 
109-2-277 0.6543 0.9833 0.9161 0.7397 453,953.36 14,133,047.57 0.1908 0.4058 
109-2-278 0.6479 0.9819 0.9076 0.7363 480,402.04 15,915,639.20 0.1829 0.4088 
109-2-279 0.6466 0.9813 0.9025 0.7335 496,323.81 17,038,751.52 0.1787 0.4602 
109-2-280 0.6208 0.9819 0.9045 0.7344 490,892.03 16,623,143.60 0.1847 0.4068 
109-2-281 0.6268 0.9809 0.8989 0.7321 508,296.72 17,865,931.90 0.1818 28.3385 
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