
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Dissertations Graduate College 

4-2020 

Efficient Hardware/Software Partitioning Techniques for a Cloud-Efficient Hardware/Software Partitioning Techniques for a Cloud-

scale CPU-FPGA Platform scale CPU-FPGA Platform 

Samah Ziyad Rahamneh 
Western Michigan University, samahrahamneh@gmail.com 

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations 

 Part of the Computer and Systems Architecture Commons, and the Hardware Systems Commons 

Recommended Citation Recommended Citation 
Rahamneh, Samah Ziyad, "Efficient Hardware/Software Partitioning Techniques for a Cloud-scale CPU-
FPGA Platform" (2020). Dissertations. 3598. 
https://scholarworks.wmich.edu/dissertations/3598 

This Dissertation-Open Access is brought to you for free 
and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Dissertations by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3598?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3598&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


Efficient Hardware/Software Partitioning Techniques for a Cloud-scale
CPU-FPGA Platform

by

Samah Ziyad Rahamneh

A dissertation submitted to the Graduate College
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
Electrical and Computer Engineering

Western Michigan University
April 2020

Doctoral Committee:

Lina Sawalha, Ph.D., Chair
Jonshon Asumadu, Ph.D.
Janos Grantner, Ph.D.
Alvis Fong, Ph.D.



Copyright by
Samah Ziyad Rahamneh

2020



Efficient Hardware/Software Partitioning Techniques for a Cloud-scale
CPU-FPGA Platform

Samah Ziyad Rahamneh, Ph.D.

Western Michigan University, 2020

The diversity of workload characteristics has stimulated the deployment of heterogeneous

architectures to accommodate workloads’ requirements disparity in cloud data centers. In

heterogeneous computing, co-processors are utilized to support Central Processing Units

(CPUs) in fulfilling workload demands. Field Programmable Gate Arrays (FPGAs) have ad-

vantages over other accelerators because of their power, performance and re-configurability

benefits. In order to achieve the most benefit of a heterogeneous platform, efficient parti-

tioning of workload between the CPU and the FPGA is a crucial demand.

This dissertation first presents a design and implementation of cooperative CPU-FPGA

execution techniques, which include code and data partitioning, of an image processing algo-

rithm on Intel’s Hardware Research Acceleration Program (HARP). The data partitioning

outperforms both a CPU-only and a FPGA-only implementations by up to 4.8X and 2.1X re-

spectively. It also results in a 55.3% reduction in energy consumption, on average, compared

to the CPU-only implementation. The code partitioning resulted in up to 2.3X speedup

compared to a CPU-only implementation and improved system utilization.

The dissertation also presents an automatic hardware/software partitioning of cloud-

scale applications such as the k-means algorithm, the Canny algorithm, and the Advanced

Encryption (AES) algorithm on HARP. Particle Swarm Optimization (PSO) and Genetic

Algorithm (GA) were used to partition these applications leveraging a multi-objective utility

function. The accuracy and the execution time of PSO depend to a large extent on its



parameters. However, generally accepted fixed value parameters are used by researchers

and practitioners. In this study, a machine learning-based tuning technique for the PSO

parameters was proposed and implemented. The results show an improvement in PSO

accuracy by up to 62.9% and in its execution time by up to 29%. Moreover, aiming at

mitigating the effect of the premature convergence problem that GA and PSO suffer from.

The PSO algorithm is extended with a distributed greedy search technique. This approach

improves the accuracy of PSO by up to 55.4%. GA also was extended with the distributed

local search technique, which improved the accuracy of GA by up to 82.6%.

Finally, we propose and implement a variation of the PSO algorithm that partitions the

code and the data of an application between the CPU and the FPGA by assigning some

nodes to both devices with different data sets. This partitioning approach improves the

accuracy of PSO by up to 33% for a data parallel application, Canny.



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. Lina Sawalha, who engineered my

PhD studies, supported me with her knowledge. Prof. Johnson Asumadu, who’s input

empowered my PhD dissertation. Prof. Janos Grantner, who’s input empowered my PhD

dissertation. Dr. Alvis Fong, who empowered my critical thinking and problem formulation

skills. I would like also to thank the University of Jordan, Amman - Jordan, for their

financial support. Faculty and Staff of Department of Electrical and Computer Engineering,

WMU. The Graduate College represented by Dr. Christine Byrd-Jacobs. National Science

Foundation (NSF) as this material is based upon work supported by NSF under grant No.

1821691, and Intel Inc. for their equipment access.

Samah Ziyad Rahamneh

ii



DEDICATION

To my father Ziyad Rahamneh and my mother Bahieh Albqour, for their encouragement

and prayers during my whole life. To my husband, Saleh El-Manasir for his emotional and

financial support. To my sons, Abd Al-Kareem, Al-Mahdi, and Ahmed for their love and

emotional support.

Samah Ziyad Rahamneh

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. BACKGROUND AND LITERATURE REVIEW . . . . . . . . . . . . . . . . . . 6

2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Application Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2. Application Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3. Software Profiling and Hardware Cost Estimation . . . . . . . . . . . 10

2.1.4. Objective (Cost) Function . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5. HW/SW Partitioning Techniques . . . . . . . . . . . . . . . . . . . . 11

2.2. Taxonomy of Application Partitioning Efforts in Hardware/Software Co-design 11

iii



Table of Contents—Continued

2.3. Review and Discussion of Partitioning Techniques Based on the Partitioning

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1. Partitioning Efforts Based on the Partitioning Approach and Parti-

tioning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. Detailed Discussion of Some Existing Partitioning Efforts . . . . . . . 20

2.3.3. Multi-objective Partitioning Algorithms . . . . . . . . . . . . . . . . . 24

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1. Hardware and Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1. Hardware Acceleration Research Program (HARP) . . . . . . . . . . 26

3.1.2. Open Computing Language (OpenCL) . . . . . . . . . . . . . . . . . 29

3.2. Cloud Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. Partitioning Applications in a Heterogeneous CPU-FPGA System . . . . . . 32

3.3.1. HW/SW Partitioning Problem Formulation . . . . . . . . . . . . . . 32

3.4. Automated Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1. Particle Swarm Optimization for HW/SW partitioning . . . . . . . . 34

3.4.2. Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. SYNERGIC EXECUTION TECHNIQUES FOR A CPU-FPGA PLATFORM:

CANNY EDGE DETECTOR AS A CASE STUDY . . . . . . . . . . . . . . . . . 40

4.1. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1. Sliding Window Based Edge Detectors: Canny Algorithm . . . . . . . 41

4.1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Hybrid CPU-FPGA Acceleration for Canny Algorithm . . . . . . . . . . . . 46

4.2.1. Canny Code Partitioning between the CPU and the FPGA . . . . . . 47

iv



Table of Contents—Continued

4.2.2. Delay-based Weighted Round Robin Distribution of the Workload be-

tween the CPU and the FPGA . . . . . . . . . . . . . . . . . . . . . 48

4.3. Experimental Setup and Evaluation Metrics . . . . . . . . . . . . . . . . . . 49

4.4. Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1. Code Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2. Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. AUTOMATED HW/SW PARTITIONING OF CLOUD APPLICATIONS USING

HEURISTIC OPTIMIZATION ALGORITHMS . . . . . . . . . . . . . . . . . . . 61

5.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1. Modeling Applications Components . . . . . . . . . . . . . . . . . . . 63

5.2. Artificially Tuned PSO (APSO) Parameters . . . . . . . . . . . . . . . . . . 66

5.2.1. Generating Data-set for PSO Training . . . . . . . . . . . . . . . . . 67

5.3. Local Search-based Technique to Mitigate Premature Convergence . . . . . . 68

5.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. CODE AND DATA PARTITIONING . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1. Code-Data Partitioning PSO (CDPSO) . . . . . . . . . . . . . . . . . . . . . 86

6.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 92

7.1. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2. Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

.1. Partitioning Cost Results for the Different Benchmarks . . . . . . . . . . . . 107

v



LIST OF TABLES

2.1 Hybrid HW/SW partitioning algorithms . . . . . . . . . . . . . . . . . . . . 13
2.2 A Comparison of HW/SW partitioning algorithms. . . . . . . . . . . . . . . 19

3.1 HARP HW/SW configurations. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 PSO parameters definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 FPGA resource usage and frequency for different kernels implementations. . 57
4.2 Execution time comparison among GPGPU and FPGA Canny accelerators

and our CPU-FPGA hybrid implementation. . . . . . . . . . . . . . . . . . . 59

5.1 Components cost of k-means algorithm. . . . . . . . . . . . . . . . . . . . . . 65
5.2 Components cost of Canny edge detection algorithm. . . . . . . . . . . . . . 65
5.3 Components cost of advanced encryption standard algorithm. . . . . . . . . 66
5.4 PSO and GA experimental parameters. . . . . . . . . . . . . . . . . . . . . . 72
5.5 Comparison of the partitioning cost among heuristics algorithms and ES. . . 77

1 Partitioning cost of k-means benchmark. . . . . . . . . . . . . . . . . . . . . 107
2 Partitioning cost of Canny benchmark. . . . . . . . . . . . . . . . . . . . . . 108
3 Partitioning cost of AES benchmark. . . . . . . . . . . . . . . . . . . . . . . 109

vi



LIST OF FIGURES

2.1 HW/SW application co-design process flowchart. . . . . . . . . . . . . . . . 8
2.2 DAG representation of a five tasks application graph. . . . . . . . . . . . . . 9
2.3 Thematic taxonomy of application partitioning efforts. . . . . . . . . . . . . 12

3.1 HARP system architecture([91]). . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 OpenCL program compilation flow. . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Particle Swarm Optimization algorithm flowchart. . . . . . . . . . . . . . . . 36
3.4 Particles values for partitioning six nodes graph. . . . . . . . . . . . . . . . . 37
3.5 Genetic Algorithm flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 A 3*3 Gaussian Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Sobel vertical filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Sobel horizontal filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Vertical and horizontal operators of sobel filter. . . . . . . . . . . . . . . . . 43
4.5 Canny algorithm flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 CPU-FPGA code-partitioned processing for Canny algorithm [104]. . . . . . 47
4.7 Hybrid CPU-FPGA processing of images [104]. . . . . . . . . . . . . . . . . 50
4.8 CPU-FPGA tile-based processing for Canny edge detection

algorithm [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9 Tile generation and padding [104]. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10 Execution time for CPU-only, FPGA-only, and CPU-FPGA code-partitioned

implementations [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Execution time of different images using different tiles sizes [104]. . . . . . . 54
4.12 Execution time for CPU-only, FPGA-only, and CPU-FPGA hybrid imple-

mentations [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.13 Energy delay product for CPU-only, FPGA-only, and CPU-FPGA hybrid

implementation [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.14 OpenCL kernel with multiple compute units and SIMD lanes [126]. . . . . . 58

5.1 Application modeling leveraging the LLVM compiler. . . . . . . . . . . . . . 63
5.2 The structure of NN used in training PSO. . . . . . . . . . . . . . . . . . . . 71
5.3 Partitioning cost of GA, MA, PSO, APSO and LPSO using 10, 30, and 60

iterations and different sizes of population for k-means algorithm. . . . . . . 74
5.4 Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10, 20, and 30

iterations and different sizes of population for Canny algorithm. . . . . . . . 75
5.5 Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10, 30, and 60

iterations and different sizes of population for AES algorithm. . . . . . . . . 76

vii



List of Figures—Continued

5.6 Partitioning latency of GA, MA, PSO, APSO and LPSO using 10, 30, and 60
iterations and different sizes of population for k-means algorithm. . . . . . . 78

5.7 Partitioning latency of GA, MA, PSO, APSO, and LPSO using 10, 20, and
30 iterations and different sizes of population for Canny algorithm. . . . . . 79

5.8 Partitioning latency of GA, MA, PSO, APSO, and LPSO using 10, 30, and
60 iterations and different sizes of population for AES algorithm. . . . . . . . 80

5.9 Execution time and energy consumption of GA, MA, PSO, APSO, and LPSO
using k-means algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Execution time and energy consumption of GA, MA, PSO, APSO, and LPSO
using Canny algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Execution time and energy consumption of GA, MA, PSO, APSO, and LPSO
using AES algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Partitioning cost of GA, MA, PSO, APSO, and LPSO the average of 10, 30,
and 60 iterations and different sizes of population for k-means, Canny, and
AES algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10, 30, and 60
iterations and the average of ten different populations for k-means, Canny,
and AES algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 HW/SW partitioning using PSO (upper) and CDPSO (lower). . . . . . . . . 87
6.2 HW/SW partitioning cost of GA, MA, PSO, APSO, LPSO, and CDPSO. . . 90
6.3 Execution time and energy consumption of GA, MA, PSO, APSO, LPSO, and

CDPSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



LIST OF ABBREVIATIONS

CSPs Cloud Service Providers

HPC High Performance Computing

OpenCL Open Computing Language

PSO Particle Swarm Optimization

TS Tabue Search

SA Simulated Annuling

BB Branch Bound

ACO Ant Colony Optimization

ABO Artifical Bee Optimization

LLVM Low Level Virtual Machine

IR Intermediate Rpresentaion

GA Genetic Algorithm

MA Memetic Algorithm

ESs Embeded Systems

APSO Artifical Particle Swarm Optimization

LPSO Local-search Particle Swarm Optimization

CDPSO Code Data Particle Swarm Optimization

NN Neural Network

MLR Multi Linear Regression

SIMD Single Instruction Multiple Data

CU Compute Unit

ix



CHAPTER 1

INTRODUCTION

Cloud computing is a dominant computing paradigm in the IT industry due to its agile

on-demand access to hardware and software resources as well as its pay as you go economical

pricing model. Cloud-based data centers serve a vast range of workloads such as machine

learning, image/video processing, and high-performance financial algorithms [1]. Emerg-

ing resource-consuming applications (compute-consuming, storage-consuming, or network-

consuming) and the huge amount of data exported to the cloud by the Internet of things

(IoT) devices have introduced new challenges to Cloud Service Providers (CSPs). The di-

versity of workload characteristics stimulated deploying of of heterogeneous architectures to

accommodate application requirements disparity. A heterogeneous architecture is a mash

up of different processing powers, for instance, Central Processing Unit (CPU), Graphical

Processing Unit (GPU), Field Programmable Gate Array (FPGA), and Application Specific

Integrated Circuit (ASIC). FPGAs have advantages over other accelerators in cloud-based

environments because of their power, performance and re-configurability benefits. For exam-

ple, reconfiguration produces a custom circuitry that highly optimized for a specific work-

load [2]. As predicted, a large fraction of data centers’ nodes will include FPGA logic by

2021 [3]. Below is a summary for the motivation behind the integration of FPGAs in the

cloud:

• Elastic re-programmability, through flexible and customized circuit design. This agile

behavior allows programmers to generate a circuit that meets applications require-

ments.

1



• Performance improvement: FPGAs are capable of exploiting both data-level and task-

level parallelism of applications. This gives FPGA superior performance over CPUs

and GPUs. As the CPU’s fixed circuity is able to exploit mainly task-level parallelism

through multi-threading, where GPU is able to exploit only data-level parallelism.

• Energy Efficiency: the low clock frequency of FPGAs make them power efficient de-

vices. FPGAs reduce the total power consumption mainly through two co-design ap-

proaches. The first approach is to offload computation hungry tasks to FPGA instead

of executing them on CPU or GPU. The second approach is to deactivate un-configured

(unused) logic until it is used by another task [4].

• Capital Expenditure (CapEx) cost reduction: as a server with integrated FPGA out-

performs two servers without FPGA in terms of response time for Bing search page

ranking as per Microsoft [5]. However, the cost of two servers is much higher than a

server with integrated FPGA.

• Emerging High-level synthesis tools (HLS) and the Open Computing Language (OpenCL).

HLS have made FPGAs programmable using high-level languages such as C and

OpenCL. This unlocked FPGA power to all cloud customers, including moderate level

programmers, and not only Hardware Description Languages (HDL) programmers.

These software Development Kits (SDK) are provided by giant FPGA vendors such as

Intel and Xilinx.

1.1. Problem Statement

The conventional approach to utilize heterogeneous CPU-FPGA platforms is to offload

the entire workload to the FPGA. This approach has many challenges. Chief among these are

the huge size of code and data of cloud applications/services, in addition to FPGA limited

2



logic resources. Hence, to achieve the most benefit of such infrastructure, the workload has

to be intelligently distributed between the CPU and the FPGA. In this dissertation, we

propose and implement efficient techniques to partition workload between the CPU and the

FPGA in a cloud-scale CPU-FPGA platform (Intel’s HARP), to increase performance and

reduce energy consumption.

1.2. Research Objectives

In this dissertation, we propose and implement automated application partitioning tech-

niques for a cloud-scale heterogeneous CPU-FPGA platform. These techniques aim at im-

proving system utilization, performance, and energy consumption. We also investigate some

of the widely used partitioning algorithms and address their weakness. We, also, propose

and implement machine learning-based techniques to improve the performance of the Parti-

cle Swarm Optimization (PSO) algorithm. Our partitioning technique is a Multi-Objective

Optimization (MOO) function. The objectives of the dissertation are:

• Providing a detailed taxonomy of the HW/SW partitioning literature in the embedded

systems and High-performance Computing (HPC) systems, and comparing the existing

partitioning algorithms.

• Designing and implementing cooperative execution techniques between the CPU and

the FPGA in a cloud-scale heterogeneous CPU-FPGA platform.

• Formulating and solving the HW/SW partitioning problem in the context of emerging

CPU-FPGA integrated architectures. In this step, we use a machine-learning-based

variation of PSO to partitioning OpenCL-based cloud applications/services. In ad-

dition, we use a heuristic local-search techniques to improve the quality of PSO and

Genetic Algorithm (GA) partitioning.

3



• Proposing and realizing a technique that automatically partitions the code and the

data of an application between the CPU and the FPGA.

• Partitioning OpenCL kernels manually and automatically. To the best of our knowl-

edge, this study is the first that considers partition OpenCL applications automatically

using heuristic algorithms.

1.3. Research Questions

This dissertation designs and implements efficient collaborative execution techniques be-

tween the CPU and the FPGA in a cloud-scale hybrid CPU-FPGA system ( Intel’s HARP).

It also proposes and implements different strategies to improve accuracy and/or reduce the

execution time of nature-inspired optimization algorithms such as PSO and GA. The disser-

tation answers the following questions:

• What are the techniques/approaches that could be applied to partition a workload

between the CPU and the FPGA in a heterogeneous CPU-FPGA platform?

• How to efficiently utilize a hybrid CPU-FPGA system and meet workload requirements,

such as execution time and energy consumption?

• How to address the weaknesses/vulnerabilities of PSO and GA, in the context of

HW/SW partitioning, using machine learning and informed distributed search tech-

niques?

• Is it possible to automatically partition a workload code and data, simultaneously,

between the CPU and FPGA in a heterogeneous CPU-FPGA platform?

4



1.4. Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents a background

knowledge, a detailed classification and thematic taxonomy of the HW/SW partitioning

literature. Chapter 3 describes the methodology, set of tools, underlying hardware platform,

programming framework and techniques that were used in this dissertation. Chapter 4

presents a design and implementation of collaborative execution techniques that achieve

concurrent utilization of the CPU and the FPGA on Intel’s HARP. In chapter 5, different

optimization techniques that improve the accuracy and/or execution time of PSO and GA

were proposed and implemented. In Chapter 6 a variation of PSO algorithm that partitions

a data-parallel workload between the CPU and the FPGA at the code and the data level

simultaneously was advised and implemented. Finally, Chapter 7 presents some drawn

conclusions and future work.

5



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter thoroughly investigates the efforts of HW/SW partitioning. It also provides

the necessary background information and terminology, in addition to a classification of

HW/SW partitioning algorithms.

2.1. Background

This section presents the fundamental concepts of application partitioning process such

as application modeling and cost assignment.

2.1.1. Application Partitioning

Application partitioning is referred to the process of dividing an application into N dif-

ferent components C, where some components are implemented in software (CPU cores) and

the others are implemented in hardware (FPGA, ASIC, or DSP). The partitioning algo-

rithms aim to optimize the performance, reduce system cost, minimize power consumption

or meet area constraints the objective(s) of the system. Below is a summary of the benefits

of HW/SW co-design and application partitioning:

• Optimize and boost the performance of complicated current and emerging algorithms

and applications, such as new machine learning and bio-informatics algorithms.

• Meet system design goals and constraints, for instance cost, power, security, and area.

• Exploit the huge advances in technology, especially new hardware accelerators.

6



• Reduce energy consumption during the execution of applications and moving toward

green computing.

Application partitioning is a major phase in HW/SW co-design in embedded systems,

HPC, and mobile cloud computing environments. HW/SW co-design consists mainly of four

phases: application modeling, software profiling and hardware cost estimation, objective

function formulation, and the HW/SW partitioning techniques. All of these phases have a

direct impact on the quality of the partitioning decision. Fig. 2.1 illustrates the HW/SW

co-design process [6].

2.1.2. Application Modeling

In order to partition an application, the application is modeled in standard ways, for

instance a graph or a Finite State Machine (FSM) [7]. Due to the heterogeneity and vast

wave of embedded and distributed applications, there are many models that are used to

represent these applications. Direct Acyclic Graph (DAG) is one of the most efficient ways

to model applications [8][9][10]. In DAG, an application is divided into tasks. Each task

is modeled as a vertex and the control flow of an application is modeled as directed edges

connecting these vertexes. Fig. 2.2 shows a DAG representation of an application that

consists of five tasks.

DAG can be generated with a uniform or a random distribution. There are different types

of uniformly distributed DAG in application partitioning literature, such as fork-joint [11],

out-tree [10], and Fast Fourier Transform (FFT) [12]. Uniformly distributed DAG has a

positive effect on the partitioning process when used for application modeling when compared

to randomly distributed DAG [9].

Many other representative models have been used in modeling embedded applications,

7



System Specifications

(latency, area, or 

power)

Application Modeling

(graph or state 

machine)

SW Profiling: Offline 

or Online

HW Cost

(latency, area, and 

power) Estimation

HW/SW Partitioning

( Static, Semi-static, or 

Dynamic)

Objective Function

Modeled Application 

with SW/HW Cost 

Assigned

HW ComponentsSW Components

Figure 2.1: HW/SW application co-design process flowchart.

8



such as Control Flow Graph (CFG) [13], Data Flow Graph (DFG) [14]–[16], Control Data

Flow Graph (CDFG) [17] and State Transition Graph (STG) [18]. Applications are, also,

modeled at different levels of granularity, coarse, intermediate, or fine. In coarse granularity

modeling, an application is modeled as a set of objects. Where it is modeled as a set of

functions or single instruction in intermediate and fine granularity modeling, respectively.In

coarse-grained modeling, the resulting graphs are simpler than fine-grained application mod-

eling. Hence, profiling and partitioning of coarse-grained modeled application are faster and

easier than fine-grained modeled application. However, the accuracy of the partitioning

decision of fine-grained modeling is higher than a coarse-grained modeling.

Figure 2.2: DAG representation of a five tasks application graph.

9



2.1.3. Software Profiling and Hardware Cost Estimation

To partition an application in a way that achieves design goals, statistical information

about application’s components need to be collected and analyzed using a profiling tool. This

allows to set proper boundaries between software and hardware parts of the application [19].

The proper boundary between SW and HW depends on partitioning goals. Profiling is the

process of analyzing a code. Profilers work at two levels of granularity, high and low. High

level profilers track main procedures in the code and hence they are fast. On the other hand,

low level profiler tracks each line in the code, so they are slow [20]. The granularity of the

profiler has a direct impact on the partitioning efficiency (the optimality of the partitioning

decision). High-level profiler speeds up the partitioning process, whereas it gives a brief

analysis of performance bottlenecks of an application. Low-level profiler, on the other hand,

generates a detailed analysis of an application, which helps the partitioning algorithm to

divide the code efficiently ( in term of solution optimality). However, this in detail study

of the code is at the expense of partitioning speed. One profiler example is Altera SDK

for OpenCL that provides efficient profiling techniques for OpenCL applications [21]. Es-

timating hardware cost such as energy consumption and logic utilization requires different

estimation tools. One of the hardware performance estimation tools is Xilinx ISE analyzer

and timer [22], which estimates the hardware power and area.

2.1.4. Objective (Cost) Function

In order to find the optimal boundaries between hardware and software, the partitioning

problem can be mathematically formulated. The mathematical formulation is called the

objective function. The objective function aims at minimizing or maximizing one or multiple

design criteria, such as power consumption or performance, given system constraints, such

10



as available hardware resources or total system cost.

2.1.5. HW/SW Partitioning Techniques

An application can be partitioned in a static, semi-static, or dynamic way. In static

partitioning, an application is divided into HW and SW components at compile time. This

leaves the partitioning algorithm oblivious about the run-time behavior of the application.

Semi-static partitioning algorithm partitions an application at compile time, however, it

exploits run-time information that is collected from previous runs. On the other hand, the

dynamic partitioning algorithm divides the application at runtime. More details about these

techniques are discussed in 2.2 and 2.3.

2.2. Taxonomy of Application Partitioning Efforts in Hardware/Software
Co-design

Most HW/SW partitioning efforts targeted embedded and high performance applications.

Whereas application requirements are very different for these systems. In this section, we

classify existing HW/SW partitioning efforts based on various partitioning model attributes;

we follow a taxonomy similar to the one presented by Liu et al. for mobile cloud comput-

ing [23]. We also discuss these attributes along with examples from the literature. Then, we

review in details some of partitioning techniques.

Figure 2.3 classifies application partitioning efforts into multiple categories based on five

attributes. The partitioning attributes include the partitioning model, partitioning gran-

ularity, objective function, profiling techniques, partitioning approach, and annotation ap-

proaches. The partitioning model represents the type of the algorithm(s) used for dividing

applications into hardware and software components. In general, there are three main parti-

tioning models, exact algorithms, heuristic algorithms, and hybrid algorithms. Using exact

11



Figure 2.3: Thematic taxonomy of application partitioning efforts.

algorithms partitioning model, an application is represented as a graph or a linear objective

function. This model results in an optimal solution [24][25]. However, it is time consuming

when exploring a complex design space and thus inefficient [15], [25]–[29]. This type of algo-

rithms include: Dynamic Programming (DP), Branch and Bound (B&B) and Integer Linear

Programming (ILP). In Heuristic algorithms, the design space is explored intelligently to find

a set of near optimal solutions [30]–[35]. In hybrid algorithms, a combination of exact and

12



heuristic algorithms are used to achieve an efficient partitioning in a reasonable time [16],

[36]–[38]. Table 2.1 summarizes some o the hybrid partitioning algorithms that have been

used in the literature.

Table 2.1: Hybrid HW/SW partitioning algorithms

Hybrid Partition-
ing approach

Publication Contribution

GA & PSO [39] Generates a better quality solution compared to PSO
and faster than GA. Slow exploration of design space
compared to PSO.

FCM & PSO [38] Generates better apartitioning solution in a shorter
time compared to PSO and FCM. Applicable to both
binary and extended partitioning but there is No con-
sideration for communication cost between HW and
SW.

TS & PSO [39] Combines the parallel nature of PSO with the memory
feature of TS to reduce the PSO run-time for large
graphs.

BB & PSO [40] Exploits the efficiency of PSO to speed up the par-
titioning process, BB generates more accurate parti-
tioning decision compared to the proposed algorithm.

FEO & PSO [41] The authors proposed a conformist PSO (CPSO) to
avoid trapping in a local minimum and enhance search
diversity. In order to improve the quality of the CPSO
output, they combined the CPSO with fireworks ex-
plosion operations( FEO) which stimulates the swarm
to traverse disparate regions looking for an optimal
solution.

GA & TS [42] The authors used the TA as a local search technique
with GA. This combination of TS and GA is one vari-
ation of Memetic Algorithm (MA). They demonstrate
the robustness of the algorithm and its ability to gen-
erate a better quality solution as the expense of the
execution time.

The granularity level indicates the level for partitioning compute-intensive applications.

In particular, there are various granularity levels for application partitioning, which include

the following [23]:

13



• Component-level partitioning: partitioning occurs at the level of a group of classes.

• Module-level partitioning: partitioning occurs at the level of the entire application.

• Sub-process level partitioning: partitioning occurs at the level of application methods.

• Task-level partitioning: partitioning is at the level of the tasks.

• Thread-level partitioning: partitioning occurs at the level of application threads.

The partitioning objective indicates the objective function for application partitioning.

Partitioning objectives include one or more of the following:

• Improving performance: There are various measurements for performance improve-

ment. These measurements include throughput [43], execution time [29], [35], [41],

[44]–[48], and algorithm space and time complexity.

• Saving energy: Reducing energy consumption is a crucial demand for embedded sys-

tems and it is very important for all other systems as well. Moreover, it is getting more

attraction due to many factors, such as big data deluge and the global energy problem

[49]–[52].

• Improving application scalability: Many new emerging compute/data-intensive appli-

cations are infeasible without code/data partitioning and distribution [53], [54] .

• Improving the utilization of system resources.

The partitioning approach is the technique used for extracting and revealing any de-

pendencies among application components. Partitioning approaches can be either static at

compile time (off-line) [45], [49], [55], [56], semi-static that exploits off-line and on-line anal-

ysis of an application [57], [58], or dynamic at run-time (on-line) [59]–[61]. The annotation

14



attribute indicates meta-data that is added to the source code to aid partitioning [23]. An-

notation can be done either manually by the programmer [43], [53], or automatically by the

compiler [45], [49], [55], [56], [62].

2.3. Review and Discussion of Partitioning Techniques Based on the
Partitioning Approach

In this section we review and discuss partitioning algorithms based on the partitioning

approach and partitioning model.

2.3.1. Partitioning Efforts Based on the Partitioning Approach and Partitioning
Model

Traditionally, applications have been manually partitioned into HW and SW compo-

nents [63]–[67]. However, the growing complexity of embedded and HPC systems leads to an

exponential increase in the design space. This makes manual partitioning challenging. For

this reason, automatic approach has attracted system designers [44], [45], [56], [68]–[70]. In

general, there are three main approaches of automated HW/SW partitioning; static, semi-

static, and dynamic. In static partitioning, an application is divided at compile time, which

leaves this kind of partitioning oblivious about the runtime behavior of the partitioned ap-

plication. Most of the existing partitioning approaches are classified as static approaches

because it is simpler to implement than dynamic partitioning. Dynamic Partitioning, on the

other hand, divide a binary file on the fly, at run-time. Hence, it able to extract any hidden

behaviors at compile time at the expense of partitioning complexity [71]–[74]. Semi-static

partitioning divides an application off-line exploiting on-line information and analysis from

previous runs.

15



Static HW/SW Partitioning

Static partitioning uses the Worst Case Execution Time (WCET) scenario to meet design

goals and specification. Static HW/SW partitioning algorithms are classified as exact or

heuristic algorithms. In the exact approach, partitioning algorithms iterate until reaching

the optimal solution in the design space. However, these algorithms are cumbersome for

complex systems and efficient only for small graphs [38]. This is due to the fact that HW/SW

partitioning is an NP-hard problem [75], [76]. Moreover, finding the optimal solution is time-

consuming for a large design space. The exact (optimal solution) algorithms include: integer

programming, dynamic programming, and branch and bound.

Integer and linear programming are efficient optimization tools for small to medium size

systems. Using these techniques, HW/SW partitioning is mathematically formulated as an

objective function with a set of design constraints that ensure feasibility of the solution [77].

Design goals and system specifications determine the objective function of a system.

Dynamic programming demonstrates its ability to produce an optimal partitioning of

code components. Knudsen and Madsen [78] proposed a dynamic programming algorithm

that minimizes the execution time of a system given hardware area as a constraint. The

algorithm , also, can minimize hardware area given execution time as a constraint, with

time complexity of O(A(N)2) and space complexity of O(A(N)), where N is the number

of code partitions and A is the hardware area. However, time complexity of the proposed

partitioning algorithm is the main drawback. Hence, a low complexity dynamic programming

algorithm is proposed by Wu and Srikanthan [79] with a time complexity of O(A.N). Branch

and bound is another global optimization algorithm. It gives a proofed optimal solution of

the partitioning process [80].

Nonetheless, the hardness of the partitioning process in the context of modern embedded

16



and HPC systems gives heuristic approaches a superior advantage over exact approaches.

Heuristic algorithms are faster than the exact ones as a result of their informed and intelligent

exploration of the design space. However, they produce a near-optimal solution. Heuristic

algorithms are divided into iterative and constructive algorithms. Most iterative heuristic

algorithms start with a random point in the design space and iterate until reaching a global

sub-optimal solution. These algorithms include Simulated Annealing (SA) [24], [81], Parti-

cle Swarm Optimization (PSO) [30]–[33], Genetic Algorithms (GA) [34], [35], Hill Climbing

(HC) [82], Ant Colony Optimization (ACO) [83], Tabu Search (TS) [14], [24], Fuzzy Logic

(FL) [84] and Artificial Bees Colony (ABC) [85]. On the other hand, constructive heuristic

algorithms start with a partial solution and keep adding components to the initial solution,

and sometimes removing components, until reaching a stop criterion, such as greedy algo-

rithm and hierarchal clustering. Heuristic partitioning techniques, however, have limitations

such as the execution time of GA increases dramatically with increasing design space. As

such, combining multiple heuristic techniques to overcome this limitation is highly recom-

mended.

Hybrid partitioning algorithms are a combination of exact/heuristic algorithms or heuris-

tic/heuristic algorithms. They aim at improving the efficiency of the partitioning process and

solution optimality in a reasonable time. Whereas the main objective of these combinations

differ from one study to another, there are many hybrid partitioning algorithms [36] [37] [16].

For instance, Jiang et al. combined GA and SA to improve the optimality of the generated

solution, taking into consideration cost and delay constrains [36]. Combining GA and PSO

produced a more optimal solution in less time compared to GA and PSO [37]. The algorithm

exploits crossover of GA to control the position and speed of particles. Li et al. [16] pro-

posed a hybrid algorithm by combining GA and TS (GATS). They demonstrate the ability

of GATS to improve the performance by generating optimal (shortest) time assignment of

17



application components on both hardware and software. Fuzzy C-means (FCM) and PSO

were combined (FCMPSO) to improve the quality of the solution in a shorter time by ap-

plying FCM to swarm particles [38]. SA and TS are combined by Liu et al. [9]. The authors

update TS tables using the annealing process in order to speed up tables update. TS has two

tables for storing local and global best candidates in the design space. The new combination

of SA and TS achieves a superior performance when compared with SA and TS for both

HW/SW partitioning.

Table 1 compares different HW/SW partitioning algorithms in terms of their speed, accu-

racy, space complexity, and ease of implementation. This comparison is based on combining

results from several research studies [24], [36]. The comparison aims at providing an ap-

proximate differentiation among the optimization algorithms based on the aforementioned

metrics. For instance, Else et al. [24] showed through experimental results that TS outper-

forms SA. This appears in the table by assigning TS (S++) for speed metric where assigning

(S+) for SA. On the other hand, Jiang et el. [36] demonstrated how combining GA and SA

has a tangible improvement over utilizing GA only. Hence, we assigned GA (S-) to indicate

the significant gap between the GA and SA. The same procedure was followed to assign the

values of the different metrics for all the algorithms in the table. Below is a discussion of

different partitioning efforts in more details.

Dynamic HW/SW Partitioning

Dynamic partitioning is offloading critical code segments of a binary file to a configurable

logic fabric. It achieves a better partitioning solution compared to static partitioning in terms

of performance and energy. Sitt et al. [60] [86] [60] demonstrated the feasibility of HW/SW

dynamic partitioning on a miniature configurable fabric through de-compilation, compiler

18



Table 2.2: A Comparison of HW/SW partitioning algorithms.

Partitioning Algorithm Publications Speed Accuracy Space Com-
plexity

Ease of
Implemen-
tation

Dynamic Programming [78]–[80] S- A++ C+ E
Branch and Bound [80] S A++ C– E
Integer Linear Programming [15], [25]–

[29]
S- A++ C- E

Simulated Annealing [24], [81] S+ A+ C+ E
Particle Swarm Optimization [30]–[33] S++ A+ C E+
Ant Colony Optimization [83] S+ A C++ E
Genetic Algorithms [34], [35] S- A C++ E
Hill Climbing [82] S+ A- C+ E
Tabu Search [14], [24] S++ A+ C++ E
Fuzzy Logic [84] S+ A- C++ E+
Artificial Bees Colony [85] S++ A- C+ E+
Note: [feature X]++ is better than [feature X]+ which is better than [feature X] which is better than [feature X]- which is better
than [feature X]–. Where S=Speed, A=Accuracy, C=Space Complexity, E=Ease of Implementation.

optimization, synthesis (behavioral and logic), and place and rout of a binary file. The results

showed an average speedup of 2.6 for five benchmarks, such as PowerStone and NetBench [60].

However, the place and route phase was a performance bottleneck for their proposal, because

this phase takes minutes or hours to complete while the dynamic partitioning requires it to be

finished in seconds. In order to tackle this problem, the authors proposed a configurable logic

architecture with place and rout algorithms dedicated for dynamic partitioning [61]. The

proposed architecture and algorithms aim at boosting embedded applications performance

through speeding up critical loops. The results showed an average speedup of 2.1 and 33%

power saving. In addition, the place and rout phase is 50X faster compared to commercial

tools, with 1000X less data and code memory size.

19



2.3.2. Detailed Discussion of Some Existing Partitioning Efforts

Brogioli et al. [55] designed and implemented a DSP/FPGA architecture for optimizing

signal processing workloads. They target user detection and channel equalization in 3.5G

wireless mobile receivers that support High-Speed Down-link Packet Access (HSDPA) data

rates. In addition, this system aims at achieving superior performance and meet real-time

requirements for mobile devices. They used a defined set of criteria to partition the workload

between the DSP and the FPGA. For instance,they used data and task level parallelism,

computational complexity of applications and spatial locality of data. Moreover, the authors

used an extensive DSP/FPGA hardware simulation to identify whether a task should be

executed in software (DSP) or hardware (FPGA). The performance enhancement exceeds

90% when compared to traditional programmable DSP-based architectures.

A temporal partitioning algorithm for complex and compute-intensive image processing

applications was proposed [87]. The algorithm increases the level of parallelism among the

various tasks of an application by increasing the effective area. The effective area increase is a

direct consequence of temporal partitioning. In this approach, each application is represented

as a set of sequential tasks. Moreover, each task is associated with a set of parameters; for

instance, task parallelism, task area, execution time and computational complexity. Set of

the independent tasks were implemented on a single FPGA simultaneously. Then the next

sequential set of tasks were implemented on the same FPGA after hardware reconfiguration.

In spite of the reduction in the overall execution time, their hardware reconfiguration time

became a new bottleneck.

Jiang et al. [53] tackled the problem of the multifield packet classification. This task is

a challenging task for network routers especially in the presence of the vast Internet traf-

fic and the diverse value-added service. As the Internet traffic grows dramatically, a new

20



trend to implement the classification algorithms in hardware emerges. However, the huge

memory demand for these algorithms creates a limitation for an efficient hardware imple-

mentation. In order to implement a high-speed hardware classifier, the authors proposed a

coarse-grained independent sets classifier, with the combination of the cross-product scheme.

This partitioning reduces the memory requirement of the classifier. They implemented the

classifier on a single Xilinx Virtex-5 FPGA. The architecture was able to store 10K five-filed

rules and achieve 90 Gbps throughput for a packet size of 40 bytes.

Busonera et al. [44] proposed a framework to optimize the code partitioning process be-

tween CPU and FPGA. The framework takes C code as an input and produces a modified

C code to be executed on the CPU and a bit-stream to configure the FPGA. It starts by

executing high-level transformations through a compiler, for instance, loop unrolling. Then,

it maximizes the size of the basic blocks and represents them using a DAG. A cluster identi-

fication algorithm takes the DAG and extracts possible subgraphs that cloud be mapped to

the FPGA. Then for each identified cluster, software latency, which is the time needed to ex-

ecute the cluster on the CPU, is estimated. In addition, hardware latency, which represents

the time required to execute the cluster on hardware, is calculated by obtaining a Verilog

description of the cluster using a commercial synthesis tool. Hardware latency is estimated

as the sum of the delays for each operation of the cluster [45]. After comparing the estimated

software latency and the calculated hardware latency, the code was partitioned, and then

speedup was calculated. Using a synthesis tool to calculate the hardware latency instead

of estimation makes it more accurate to optimize the code partitioning, and also speeds up

execution time [44]. However, the selection accuracy in this framework is at the expense of

the selection speed between hardware or software implementations. This framework achieves

up to 250% improvement in the performance compared to an estimation-based approach.

Zhang et al. [43] proposed a new design to improve the throughput and speed up of

21



sorting large data sets on a CPU-FPGA heterogeneous platform. They used Intel Quick Path

Interconnect (QPI) as poit-to-point interconnection between the CPU and The FPGA. They

developed a hybrid sorting algorithm optimized for heterogeneous CPU-FPGA platform.

The CPU acts as system orchestrator and task dispatcher, while the FPGA is used to

accelerate the compute-intensive part. Simultaneous execution of the algorithm on both the

CPU and the FPGA is achieved through a divide and conquer strategy, exploiting task-level

parallelism. In order to overlap execution, a large data set is divided into subsets to fit into

the FPGA’s on-chip memory. These data chunks are stored in a shared memory between the

CPU and the FPGA. Then, the FPGA reads data chunks and uses the quick-sort algorithm

to sort and write them back to the shared memory. Once a new sorted chunk is written back

to the memory, the CPU is triggered to merge it with the previously sorted chunks. The

throughput and performance of this design are compared with the CPU-only and FPGA-

only baselines. The results show that this design outperforms the two baselines in terms of

throughput and resource utilization. In addition, it achieves 2.3X throughput over a multi-

core implementation. The main disadvantage of such a design is the overhead of overlapped

execution in terms of consumed power, which is not measured in the paper. This is because

the data is divided into smaller data sets, moreover, these small data sets are divided into

smaller chunks to be sorted in parallel on the FPGA.

Kelm et al. [56] proposed a methodology and a platform to efficiently exploit data-parallel

accelerators through partitioning. CUBA Infrastructure Guided Application Remapping

(CIGAR) allows software developers to identify data parallel parts of their applications,

through a dynamic application profiling tool, and port them to the data parallel acceler-

ator. Moreover, it determines which of the application’s data structures to be hosted on

the accelerator and also performs a debugging to verify the correctness of the partitioning.

22



CIGAR runs a full version of Linux operating system on a CPU/FPGA platform. For guide-

lines and correctness purposes, CIGAR uses integer benchmarks during the development

and verification stages. However, the main concern of the platform is the correctness of the

partitioning process, leaving the performance and power consumption issues open. Further,

the development process is guided by three integer benchmarks, which is not enough in terms

of application variety and coverage.

Heuristic automatic partitioning schemes, for embedded systems, based on simulated

annealing and tabu search were evaluated and compared [24]. The authors designed a cost

function as the communication cost during partitioning. In addition, they adopt a coarse-

grained partitioning granularity at the level of subprograms and processes, so that a minimum

communication cost is guaranteed. The simulated annealing optimization algorithm has a

preference over other well-known automatic partitioning algorithms used at the time, due

to its ability to avoid trapping at a local optimum. Where the algorithm accepts a worse

solution especially at the initial iterations hoping to find the global optimum. However, SA

needs a large number of experiments, to reach the optimum, and a long execution time. On

the other hand, tabu search uses two data structures to keep track of the visited solutions,

while exploring the solution space. The first one is a short-term memory which is used to

store information about recently visited solutions. The second is a long-term memory to

store information about non-neighbor solutions. Through extensive simulation that is based

on random/geometric graphs, the authors found that automatic partitioning based on tabu

search outperforms automatic partitioning based on simulated annealing.

Few existing partitioning algorithms take into consideration the communication cost be-

tween hardware and software during the partitioning process. One example is Phase Greedy

Meta-heuristic Algorithm (PGMA) [88] that models the partitioning process as a multi-

objective optimization problem. The algorithm aims at optimizing various system attributes,

23



such as optimizing area utilization, execution time, power consumption, and memory usage.

A superior efficiency was demonstrated over existing algorithms through partitioning the

Joint Photographer Expert Groups (JPEG) encoder with 1000 blocks.

2.3.3. Multi-objective Partitioning Algorithms

As HW/SW partitioning is a system design optimization problem, it can target different

design goals, such as reducing power consumption, minimizing execution time, minimizing

system area, and reducing the overall system cost. A HW/SW partitioning algorithms can

be classified as single-objective or multi-objective (Pareto) optimization process. Focusing

on a single-objective function simplifies the co-design process (partitioning and scheduling).

Moreover, it avoids being trapped in optimizing conflict objectives and advising complicated

partitioning algorithms [29], [35], [41], [44]–[48]. On the other hand, most of the emergent

computing models require optimizing multiple metrics simultaneously. For instance, HP

embedded systems, cluster, and cloud computing demands high performance of their ap-

plications while keeping the operational expenditures (such as power) within a budget to

grantee acceptable revenues [89].

The contribution of this dissertation that makes it different than previous studies are sum-

marized as follow:

• Target a cloud-scale heterogeneous CPU-FPGA platform, and design and implement

cooperative partitioning techniques, namely code partitioning and data partitioning,

to improve applications’ performance, energy consumption, and system utilization.

• Partition OpenCL-based cloud applications using heuristics algorithms such as PSO

and GA compared to previous studies, which have used random graphs instead of real

applications.

24



• Optimize PSO’s parameters in the context of HW/SW partitioning problem using a

machine learning-based approach. Although the accuracy and the execution time of

PSO depend to a large extent on its parameters, previous studies have used rule-

thumbed values.

• Tackle the premature convergence problem of some heuristic optimization algorithms,

such as GA and PSO by extending these algorithms with a local search technique.

• Partition an openCL-based application at the code and the data levels. This is realized

by duplicating some parts of the application on the CPU and the FPGA. To the best

of our knowledge, this is the first study that proposes and implements code and the

data levels partitioning.

25



CHAPTER 3

METHODOLOGY

This chapter discusses the techniques and tools that were utilized in this research. It

also discusses methods and approaches followed to tackle the problem and achieve the study

objectives.

3.1. Hardware and Software Tools

This section describes the hardware we use, and the required Software Development Kit

(SDK).

3.1.1. Hardware Acceleration Research Program (HARP)

In 2015, Intel introduced the Hardware Research Acceleration Program and infrastruc-

ture (HARP v1) to stimulate research in different fields, such as programming tools, and

accelerator-based computing systems [90]. HARP platform, consisting of several nodes, is a

data center product that is designed to boost the performance of emerging applications in an

energy efficient manner. Each node in HARP consists of an Intel Xeon CPU integrated on

a multi-packed chip with an Altera Stratix V FPGA. The closely coupled CPU and FPGA

communicate through a single Quick Path Interconnect (QPI) bus and share a dynamic ran-

dom access memory (DRAM) [91]. The FPGA accesses memory through the CPU. The QPI

has been developed earlier by Intel to connect processors in a Non Uniform Memory Access

(NUMA) architecture [92].

In 2017, Intel announced the second generation of HARP program (HARP v2), which

consists of an Intel Broadwell Xeon CPU (14 cores) that is integrated with Intel Arria 10

26



GX 1150 FPGA into a Multi-Chip Package (MCP).

In HARP v2, the CPU and the FPGA are connected through two PCIe Gen3x8 and

one QPI as illustrated in Figure 3.1. Both of these interfaces have separate read and write

channels. PCIe3x8 has a transfer speed of 8 GT/s while the QPI is theoretically capable

of achieving 6.4 GT/s [93] . The traffic between the CPU and the FPGA is distributed

over these channels based on link utilization, using a Virtual Channel (VC) streaming unit.

Figure 3.1 illustrates HARP system architecture.

DDR
RAM

VC 
Steering 

Logic

FIU

LLC
CPU

Cores

AFU

FPGA 
Cache

PCIe 3Gen8 QPI

Multichip Package (MCP)

Intel Broadwell Xeon 

Integrated FPGA
Arria 10 GX 1150

Controller

Figure 3.1: HARP system architecture([91]).

A bitstream file is composed of a FPGA’s Interface Unit (FIU) and an Accelerator Func-

tional Unit (AFU) [94]. The FIU contains Intel-provided Intellectual Property (IP) and it

implements I/O control, power, and temperature monitoring. The FIU has at least one

27



interface to the AFU. It is a programmer-defined FPGA code, which determines the func-

tionality of the FPGA [95]. Developers can implement more than one AFU on the FPGA

to meet their performance and power goals.

In this heterogeneous platform, the CPU and the FPGA share an address space in the

global memory. The FPGA contains a cache to mitigate the latency of accessing the shared

memory. The cache is connected only to the QPI interconnect, and it is 64 KB in size with a

cache line of 64 bytes. In a read cycle of the FPGA, if it is a cache miss, the FPGA will read

from the CPU’s Last Level Cache (LLC), which is 35 MB in size [91], [96]. Using shared

memory, no redundant copies of input images are created, as opposed to other designs,

where the device (or FPGA) has its own global memory. In addition, in a shared memory

implementation, the FPGA can handle larger data sets since the shared memory is larger

than the global memory of a FPGA device, in a non-shared memory environment. However,

a memory contention between the CPU and the FPGA might happen.

Table 3.1: HARP HW/SW configurations.

CPU configurations
Host CPU Model Intel Broadwell Xeon
CPU Frequency 2.1 GHz

LLC 35 MB
FPGA Fabric Arria 10 GX 1150

DRAM 95 GB
FPGA configurations

Adaptive logic modules 427,200
Logic elements 1,150,000

Registers 1,708,800
Memory 65.5 kib
DSP 1,518

28



3.1.2. Open Computing Language (OpenCL)

The OpenCL is an open, royalty-free, unified programming model for accelerating algo-

rithms on heterogeneous systems [97]. OpenCL allows programmers to write their code for

various platforms such as CPU, GPU, DSP, and FPGA. Intel FPGA SDK for OpenCL pro-

vides a vendor extension Application Programming Interfaces (API). An OpenCL program

consists of two main files, host code file, which is a C/C++ file, and the kernel code file

which is OpenCL file (*.cl). The host code is executed on the CPU and is responsible for

dispatching the kernels to the guest devices. The kernel code is executed on the OpenCL

devices; it is usually a compute-intensive code. The host code is compiled using traditional

C/C++ compilers to generate the executable file. On the other hand, the kernel is com-

piled to generate a bitstream file using Altera Offline Compiler (AOC). Figure 3.2 shows the

process of compiling an OpenCL application.

Figure 3.2: OpenCL program compilation flow.

29



3.2. Cloud Applications

In cloud environments, there is avast range of application domains that can benefit from

FPGA logic. These domains include machine learning, data compression/encryption, and

image/video processing [98]. In this study, we focus on three widely used applications from

the domains of machine learning, image processing, and data security. Below is a description

of the three benchmarks that were developed and used in this dissertation.

• k-means Clustering:

k-means is an unsupervised clustering algorithm that takes a data set where each data

point consists of N-dimensional observations. The algorithm divides the data set into

k clusters depending on a certain similarity criterion such as Euclidean distance. k-

means has been widely used as a clustering algorithm in many fields, for instance,

machine learning and image processing. The algorithm is a compute-intensive one and

can definitely benefit from HW/SW acceleration. The algorithm consists mainly of the

following steps:

– Initialize clusters centers randomly.

– Assign each data point in the data-set to the closest cluster.

– Update the centers of the clusters based on the new data points assigned to the

cluster.

• Advanced Encryption Standard (AES):

Sharing and virtualization of cloud resources have enabled a tremendous number of

customers to access a vast range of cloud services. However, this sharing has posed

a security challenge for Cloud Service Providers (CSPs) [99]. AES is a symmetric

30



block cipher encryption algorithm, that is extensively used in the cloud. The algo-

rithm consists of many rounds of transformations that are performed on the stored

data [100] [101]. AES uses different key sizes, which are 128, 192, and 256 bits [102].

A different number of rounds is used with each key length. The algorithm consists

mainly of two stages, the encryption stage, and the decryption stage. The encryption

stage converts the input message into ciphertext, while the decryption process converts

the ciphertext back into the input message. The encryption stage is summarized as

follows:

– Byte substitution: In this step, each 16 bytes block of data is substituted using a

Look-Up Table (LUT).

– Shift rows: A circular shift is performed on the rows of the encryption matrix.

The second row is shifted one byte to the left. The third row is shifted two bytes

to left. The last row is shifted three bytes to the left.

– Mix columns: A mathematical function is used to transform all the bytes in each

column. The new matrix is completely completely different from the input matrix.

Columns mixing is not performed in the last encryption round.

– Add round key: The 128-bit round key is XORed with the input matrix. The

result of the last round is the ciphertext.

The decryption process of AES is a reverse order of the encryption process. Each

round in the encryption process consists of add round key, mix columns, shift rows,

and byte substitution.

• Canny Edge Detection Algorithm:

Visual social media is exporting billions of images to the cloud on a daily basis [103].

31



Image processing algorithms, that are used to process these images, are data and

compute-intensive. One of these algorithms is Canny edge detection algorithm. The

algorithm consists of four main stages. We proposed and implemented OpenCL -based

hardware accelerators of Canny algorithm on HARP [104].

3.3. Partitioning Applications in a Heterogeneous CPU-FPGA System

Workload partitioning between the CPU and the FPGA happens at two main levels;

data level and code level. The choice between these levels depends on the nature of the

workload. For instance, image processing applications could be partitioned at data or code

level. Other workload such as k-means algorithm could not be partitioned at data level due

to data dependency.

3.3.1. HW/SW Partitioning Problem Formulation

Automatic HW/SW partitioning is an NP-hard optimization problem [15]. There is

no standard formalization approach to represent the problem. Mathematically, HW/SW

partitioning cloud be formulated as a single objective function or a multi-objective function.

Either way restrictions on other objectives can be applied.

Control Flow Graph (CFG)

The partitioning process starts with modeling an application as a graph G = (V, E), where

V is a set of vertices and E is a set of edges that connect these vertices. The nodes in

V = {v1, v2, ..., vN}, where N is the number of nodes in the application graph. For each

vertex/node, a SW cost and a HW cost are assigned and used to evaluate the cost of the

node using an objective function.

32



Objective function

The objective function is a mathematical formula that describes the output of the system.

It cloud be either a minimization or a maximization problem. The objective function cloud

also be a Single Objective Optimization (SOO) or a Multi-Objective Optimization (MOO).

In SOO, as the name suggests, there is one goal that we try to optimize. However, in MOO,

the objective function has more than a single objective to optimize. Adding more objective

increases the complexity of the optimization problem. In addition, these objectives are con-

flicting and a trade-off has to be made. We illustrate different objective functions starting

from a constrained single objective function to multi-objective formulation. For instance,

formulation 3.1 minimizes the execution time f1(x) constrained to other single objective

functions such as power consumption and HW area. xi in the formulation indicates if vertex

vi is assigned to SW ( xi = 0) or HW (xi = 1). swi and hwi represent the cost of a vertex/n-

ode (i) on software and hardware respectively, andM represents the number of constraints.

min
x

f1(x) =
N∑

i=1
(swi(1− xi) + xihwi)

s.t. ∀fi(x) ∈ (lbi, ubi),∀i ∈ [1,M ]

xj ∈ [0, 1], ∀j ∈ N

(3.1)

Another constrained single objective function, f2(x) that aims at minimize HW area is

illustrated in formulation 3.2. It is constrained to other objective functions such as execution

33



time and power consumption.

min
x

f2(x) =
N∑

i=1
xihwi

s.t. ∀fi(x) ∈ (lbi, ubi),∀i ∈ [1,M ]

xj ∈ [0, 1], ∀j ∈ N

(3.2)

We extended our partitioning using a MOO function as shown in equation 3.3. This MOO

formulation aims at optimizing execution time, energy and area simultaneously.

min
x

F (x) = w1f1(x) + w2f2(x), ....+ wMfM(x)

s.t. fi(x) ≤ bi∀i ∈M

xj ∈ [0, 1], ∀j ∈ N.

(3.3)

Each of these single objective functions ( f1(x) - fM(x)) represents one cost criterion such

as execution time, energy consumption, or resource utilization. We used w1 equals to 1, w2

equals to 0.6, and w3 equals to 0.3. These values could be varied depending on the designer’s

preferences. We gave the execution time a higher weight because it is more important than

the energy and the HW area in the cloud environment.

3.4. Automated Partitioning Algorithms

This section discusses the automated HW/SW partitioning algorithms that were used in

this study.

3.4.1. Particle Swarm Optimization for HW/SW partitioning

Particle Swarm Optimization (PSO) is a stochastic optimization technique developed in

1995 by Kennedy and Eberhart [105]. The algorithm mimics the social behavior of animals

34





Figure 5.2: The structure of NN used in training PSO.

5.4. Results and Discussion

This section presents and discusses the results of different partitioning algorithms such

as GA, MA, PSO, APSO, and LPSO in terms of partitioning cost the partitioning latency.

The experiments were conducted using different numbers of iterations (10, 30, 60) and for

ten different sizes of the population (10-100) with a step of 10. Every single point in these

figures is an average of ten runs. The average was taken to mitigate the effect of the initial

randomized population, the randomization nature of these algorithms, and the variation of

randomness level used in each algorithm. The randomization makes these algorithms vary

71



on their convergence speed and accuracy. The experimental parameters of GA and PSO are

shown in Table 5.4.

Figures 5.3, 5.4, 5.5 show the partitioning cost of the k-means, textitCanny, and AES

Table 5.4: PSO and GA experimental parameters.

Parameter Value
PSO

Population size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Particle size 7, 12, 16

Maximum number of iterations 10, 30, 60
Cognitive value 2
Social value 2
Inertia weight 1 - 0.3

GA
Population size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Chromosome dimensions 7, 12, 16
Maximum number of iterations 10, 30, 60

Mating pool size 3, 6, 8
Cross over rate 0.5

Mutation single point

benchmarks using different sizes of the population and 10, 30, 60 iterations. Theses results

are shown in.1. For k-means benchmark, APSO outperforms PSO by up to 34.5% and

decrease the cost by 6.1% on average. This is because the APSO parameters are optimized

for each benchmark in a way that guides the swarm to a more accurate solution, where the

tuned values of k-means w, c1, and c2 are 0.5, 1, 0.5, respectively. LPSO also outperforms

PSO by up to 34.5% and decrease the cost by 6.7% on average, since LPSO conducts a more

extensive greedy search than PSO in the neighborhood of the leading particles in the swarm.

On the other hand, MA improves the fitness of the solution compared to GA by up to 82.6%

and decrease the cost by 64.3% on average. This is due to the ability of MA to improve

the divergence of population and replace some solutions in the population with lower cost

solutions. Moreover, GA gives lower cost partitioning when the size of the population is ten.

72



For the same number of iterations, increasing the size of GA population affect the quality

of the solution negatively. The reason is a larger population needs more iterations to reach

a better solution. Hence, GA with large population gives better results at larger number of

iterations as shown in the figure. Generally, increasing the size of GA population. As also

shown, for population sizes less than 70 increasing the number of iteration does not improve

the cost.

For Canny benchmark, APSO outperforms PSO by up to 62.9% and decrease the cost by

30.4% on average, it gives more accurate results for all different sizes of population. LPSO

also outperforms PSO by up to 55.4% and decrease the cost by 25.5% on average. On the

other hand, MA improves the cost of the solution by up to 26.3% and on average 18.7%

compared to GA. For AES benchmark, APSO reduces the cost of PSO by up to 17.6% and

on average 4.4%. LPSO also reduces the cost of PSO by up to 23.5% and on average by

5.1%. However, these algorithms give the same level of performance when the population

size is larger than 60. On the other hand, MA improves the solution cost compared to GA

by up to 40% and on average by 33%, and gives better results for all different sizes of the

population. Generally speaking, the performance of PSO, APSO, and LPSO improves when

increasing the size of the population. However, since there is a high level of stochasticity

in these algorithms, no guarantees can be given for continuous improvement in performance

when increasing the population size beyond a certain limit that varies among the different

benchmarks. As these algorithms are randomized, we can not draw a systematic conclusion

about the effect of increasing the population size and the number of iterations on their

performance. The randomness behavior of these algorithms comes from the initial random

population, the use of random vectors in their calculations such as r1 and r2 in PSO and

its variations. In addition, the degree of randomness in GA is even higher than PSO since

the genetic operators used by GA, such as crossover operation, are highly randomized.

73



05
0
0

0
0
0

0
0

1
0
0
0

0
0
0
0

0

1
5
0

0
0
0

0
0

0

2
0
0

0
0
0

0
0

0

2
5
0

0
0
0

0
0

0

3
0
0

0
0
0

0
0

0

0

5
0
0

0
0

1
0
0

0
0
0

1
5
0

0
0
0

2
0
0

0
0
0

2
5
0

0
0
0

3
0
0

0
0
0

3
5
0

0
0
0

4
0
0

0
0
0

4
5
0

0
0
0

5
0
0

0
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Cost

k
-m

e
a

n
s

P
S

O
A

P
S

O
L

P
S

O
G

A
M

A

It
e

ra
ti
o

n
 #

1
0

 a
n

d
 p

o
p

u
la

ti
o
n
 s

iz
e

 1
0

 -
1

0
0

It
e

ra
ti
o

n
 #

 6
0

 a
n

d
 p

o
p

u
la

ti
o
n

 s
iz

e
 1

0
 -

1
0

0
It

e
ra

ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

 s
iz

e
 1

0
 -

1
0

0

Figure 5.3: Partitioning cost of GA, MA, PSO, APSO and LPSO using 10,
30, and 60 iterations and different sizes of population for k-means algorithm.

74



01
0
0

0
0
0

2
0
0

0
0
0

3
0
0

0
0
0

4
0
0

0
0
0

5
0
0

0
0
0

6
0
0

0
0
0

0

2
0
0

0
0

4
0
0
0

0

6
0
0

0
0

8
0
0

0
0

1
0
0

0
0
0

1
2
0

0
0
0

1
4
0

0
0
0

1
6
0

0
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Cost

C
a

n
n

y

P
S

O
A

P
S

O
L

P
S

O
G

A
M

A

it
e

ra
ti
o

n
 #

 1
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
It

e
ra

ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

 s
iz

e
 1

0
 -

1
0

0
It

e
ra

ti
o

n
 #

 6
0

 a
n

d
 p

o
p

u
la

ti
o
n

 s
iz

e
 1

0
 -

1
0

0

Figure 5.4: Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10,
20, and 30 iterations and different sizes of population for Canny algorithm.

75



05
0
0

0
0

1
0
0

0
0
0

1
5
0

0
0
0

2
0
0

0
0
0

2
5
0

0
0
0

3
0
0

0
0
0

3
5
0

0
0
0

4
0
0
0

0
0

4
5
0
0

0
0

5
0
0

0
0
0

0

5
0
0

0
0

1
0
0

0
0
0

1
5
0

0
0
0

2
0
0

0
0
0

2
5
0

0
0
0

3
0
0

0
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Cost
A

E
S

P
S

O
A

P
S

O
L

P
S

O
G

A
M

A

it
e

ra
ti
o

n
 #

 1
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 6
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0

Figure 5.5: Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10,
30, and 60 iterations and different sizes of population for AES algorithm.

76



Figures 5.6, 5.7, 5.8 show the latency of the partitioning algorithms for k-means, Canny,

and AES benchmarks. APSO algorithm has the lowest latency among all other algorithms

for all different numbers of iterations and population sizes. This is because APSO has

intelligently-tuned the acceleration parameters. APSO is faster than PSO by up to 29%.

On the other hand, PSO has lower latency than GA, MA, and LPSO. This is due to the

slow genetic operators taht are used in GA and MA and the local search extensions used

in MA and LPSO. As noticed, increasing the population size increases the latency of the

partitioning algorithms as this requires more computation and communication among the

population’s individuals during each iteration. Also, increasing the number of iterations

increases the latency of the algorithm significantly.

Table 5.5 compares the partitioning cost of GA, MA, PSO, LPSO, APSO, and the Exhaustive

Search (ES) algorithm. The ES algorithm explores the entire design space and finds the

optimal partitioning decision.

Table 5.5: Comparison of the partitioning cost among heuristics algorithms
and ES.

Partitioning al-

gorithm

Partitioning cost

of k-means

Partitioning cost

of Canny

Partitioning cost

of AES

GA 214707113 481758 425305

MA 72575756 412143 288333

PSO 451267 43819 196898

APSO 438438 26942 192118

LPSO 432023 29310 197110

ES 432023 24600 192118

77



01
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Latency (ms)
k
-m

e
a

n
s

G
A

P
S

O
A

P
S

O
M

A
L

P
S

O

it
e

ra
ti
o

n
 #

 1
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 6
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0

Figure 5.6: Partitioning latency of GA, MA, PSO, APSO and LPSO using 10,
30, and 60 iterations and different sizes of population for k-means algorithm.

78



02
0
0

4
0
0

6
0
0

8
0
0

1
0
0

0

1
2
0

0

1
4
0

0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Latency (ms)
C

a
n
n

y
 

G
A

P
S

O
A

P
S

O
M

A
L

P
S

O

it
e

ra
ti
o

n
 #

 1
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0

Figure 5.7: Partitioning latency of GA, MA, PSO, APSO, and LPSO using
10, 20, and 30 iterations and different sizes of population for Canny algorithm.

79



02
0
0

4
0
0

6
0
0

8
0
0

1
0
0

0

1
2
0

0

1
4
0

0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Latency (ms)
A

E
S

G
A

P
S

O
A

P
S

O
M

A
L

P
S

O

it
e

ra
ti
o

n
 #

 1
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 3
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
it
e

ra
ti
o

n
 #

 6
0

 a
n

d
 p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0

Figure 5.8: Partitioning latency of GA, MA, PSO, APSO, and LPSO using
10, 30, and 60 iterations and different sizes of population for AES algorithm.

80



Figures 5.9, 5.10, and 5.11 illustrate the execution time and the energy consumption of

partitioning solutions of k-means, Canny, and AES benchmarks, respectively. These solu-

tions capture the behavior of the different algorithms before converging to the same point.

We used the MOO utility function that is illustrated in Chapter 3. This function is a weighted

sum of execution time, energy consumption, and HW area. Hence, it might happen that the

solution with the lowest total cost, does not guarantee the lowest execution time or the low-

est energy consumption. For the K-means benchmark, since the components execution time

on SW is very large, compared to HW area values, the partitioning algorithm moves more

components to HW. This makes solutions with lower total cost have also lower execution

time and energy consumption. On the other hand, In Canny and AES benchmarks, the SW

execution time is small compared to the HW area. This makes the partitioning algorithm

offloads more components to SW to reduce the total cost. In this scenario, a solution with

lower total cost might have a larger execution time and energy consumption.

Figure 5.12 compares the performance of the partitioning algorithms among the three bench-

marks. For each population size, it shows the average run of the three iterations (10, 30, and

60) using a log scale. It shows that the relative performance of the different algorithms is

the same for the three benchmarks. It also shows that different algorithms might give better

performance for some of the benchmarks over the other. For instance, APSO deliver the best

performance for the Canny benchmark. In combination with Figure 5.13, we can conclude

that increasing the number of iteration is not always beneficial, at least for benchmarks with

these sizes. However, when increasing the population size, we need to increase the number of

iteration to improve performance. To verify the accuracy of a solution’s estimated cost and

execution time with the actual measurements on hardware, we implemented two solutions

on HARP and measured the actual execution time. The results show an overhead in the

execution time of 3% and 2.9% for the two experiments, which is due to communication.

81



1

10

100

1000

10000

100000

1000000

10000000

100000000

GA MA PSO APSO LPSO

1

10

100

1000

10000

100000

1000000
T

im
e

 (
m

s
)

Partitioning algorithm

E
n

e
rg

y
 (

m
j)

k-means

time energy

Figure 5.9: Execution time and energy consumption of GA, MA, PSO, APSO,
and LPSO using k-means algorithm.

1

10

100

1000

10000

100000

1000000

1

10

100

1000

10000

GA MA PSO APSO LPSO

E
n

e
rg

y
 (

m
j)

T
im

e
 (

m
s
)

Partitioning algorithm

Canny

time energy

Figure 5.10: Execution time and energy consumption of GA, MA, PSO, APSO,
and LPSO using Canny algorithm.

82



1

10

100

1000

10000

100000

1

10

100

1000

GA MA PSO APSO LPSO

E
n

e
rg

y
 (

m
j)

T
im

e
 (

m
s
)

Partitioning algorithm

AES

time energy

Figure 5.11: Execution time and energy consumption of GA, MA, PSO, APSO,
and LPSO using AES algorithm.

83



11
0

1
0
0

1
0
0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0

0
0
0

0

1
0
0

0
0
0

0
0

1
0
0

0
0
0

0
0

0

1
E

+
0
9

1

1
0

1
0
0

1
0
0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0

0
0
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Cost

K
-m

e
a

n
s
, 
C

a
n
n

y,
 a

n
d
 A

E
S

P
S

O
A

P
S

O
L

P
S

O
G

A
M

A

K
-m

e
a

n
s
, 
p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
A

E
S

, 
p

o
p

u
la

ti
o
n

s
iz

e
 1

0
 -

1
0

0
C

a
n

n
y,

 p
o

p
u

la
ti
o
n

s
iz

e
 1

0
 -

1
0

0

Figure 5.12: Partitioning cost of GA, MA, PSO, APSO, and LPSO the average
of 10, 30, and 60 iterations and different sizes of population for k-means,

Canny, and AES algorithms.
84



11
0

1
0
0

1
0
0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0

0
0
0

0

1
0
0

0
0
0

0
0

1
0
0

0
0
0

0
0

0

1
E

+
0
9

1

1
0

1
0
0

1
0
0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0

0
0
0

0

1
0

3
0

6
0

1
0

3
0

6
0

1
0

3
0

6
0

Cost

k
-m

e
a

n
s
, 
C

a
n
n

y,
 a

n
d
 A

E
S

P
S

O
A

P
S

O
L

P
S

O
G

A
M

A

k
-m

e
a

n
s
, 
it
e

ra
ti
o

n
 #

 1
0

, 
3

0
, 
6

0
A

E
S

, 
it
e

ra
ti
o

n
 #

 1
0

, 
3

0
, 
6

0
C

a
n

n
y,

 i
te

ra
ti
o

n
 #

 1
0

, 
3

0
, 
6

0

Figure 5.13: Partitioning cost of GA, MA, PSO, APSO, and LPSO using 10,
30, and 60 iterations and the average of ten different populations for k-means,

Canny, and AES algorithms.
85



CHAPTER 6

CODE AND DATA PARTITIONING

In the HW/SW partitioning, each node in the application graph is completely assigned

either to the CPU or the FPGA. In addition, the CPU and the FPGA in emerging CPU-

FPGA architectures have tighter integration than before, which allows faster communication

between the CPU and the FPGA. Moreover, the data-parallel nature of many cloud appli-

cations makes it possible for both the CPU and the FPGA to execute the same task with

different data-sets simultaneously. In this chapter, we propose and implement a variation of

the PSO algorithm that partitions the code and the data of an application graph between

the CPU and the FPGA by assigning some nodes to both devices with different data sets.

Nodes that could be assigned to both devices must be compute-intensive with a high level

of data parallelism.

6.1. Code-Data Partitioning PSO (CDPSO)

A vast range of cloud applications such as image/video processing applications have a

data-parallel nature. In data-parallel programming, the user can distribute the application

data-set among many homogeneous or heterogeneous processors. In this case, all these

processors will perform the same task over different portions of the data concurrently. This

approach improves the execution time and guarantees a more efficient utilization of system

resources [142]. In this chapter, we propose and implement a variation of the PSO algorithm

that partitions the nodes of an application graph into three categories. These categories

are nodes that are assigned to CPU, nodes that are assigned to FPGA, and nodes that are

assigned to both CPU and FPGA at the same time. For nodes that are assigned to both the

86



Figure 6.1: HW/SW partitioning using PSO (upper) and CDPSO (lower).

CPU and the FPGA, the data is distributed between CPU and FPGA using the approach

followed in Chapter 4.

In terms of the partitioning algorithms, 0 indicates that the node is assigned to CPU,

while 1 indicates that the node is assigned to FPGA. In code and data partitioning, we used

2 to indicate that the node is assigned to both the CPU and the FPGA. We used Canny

graph to demonstrate the superiority of CDPSO over the PSO because this algorithm has

many data-parallel functions that could be assigned to the CPU and the FPGA at the

same time with different portions of the data. However, for the other benchmarks, nodes

can not be duplicated on the CPU and the FPGA at the same time due to fine-grain data

dependency. Figure 6.1 shows the difference between a candidate partitioning solution of

PSO and CDPSO. The total cost of PSO solution is 476,152 while the CDPSO solution cost

is 345,773, which means an improvement of the total cost by 27%. The reason behind this

reduction in partitioning cost is that CDPSO duplicates the data-parallel nodes on the CPU

and the FPGA. Duplicating a task on the CPU and the FPGA reduces the execution time

significantly, which has the highest weight in our cost function. The pseudo code of CDPSO

is illustrated in Algorithm 3. The ratio at which the data is partitioned between the CPU

and the FPGA is platform dependent. This means it varies with the variation of the CPU

or the FPGA performance characteristics since the execution time ratio of the CPU and the

FPGA might be different among different platforms. The wenergy is 0.6, and the warea is 0.3

as discussed in Chapter 3.

87



Data: swarm size s, application graph g

Result: the best solution of partitioning a workload between SW and HW at both code

and data levels

1 set Max_iter, w, c1, c2

2 formulate a cost function:

3 f = max(wCP U ∗ SWL, wF P GA ∗HWL) + wenergy(wCP U ∗ SWenergy + wF P GA ∗

HWenergy) + warea ∗HWarea.

4 for i← 0 to s do

5 initialize particle_i positions with 0, 1, and 2

6 initialize particle_i velocities

7 end

8 while i ≤Max_iter do

9 evaluate candidate solutions fattiness using f ;

10 for j ← 0 to p do

11 update particle_j best position;

12 if particle_j_best_position < swarm_best_position then

13 swarm_best_position← particle_j_best_position;

14 end

15 update particle_i positions update particle_i velocities

16 end

17 end

18

Algorithm 3: Code and Data partitioning PSO (CDPSO).

To realize this partitioning technique, we have made the following assumptions that we

concluded from our previous work [104]. First, if a node or a task could be partitioned

between the CPU and the FPGA, the CPU is assigned one-third (wCP U) of the data set

88



and the FPGA is assigned two thirds (wF P GA). We calculated this ratio using the CPU and

the FPGA weights equation in Chapter 4 page 48. Second, the execution time and energy

consumption are estimated to consider only the assigned data portion as shown in the cost

function calculation in the algorithm 3. Third, the user indicates the data-parallel nodes

of the application. Fourth, to be able to distribute the data set between the CPU and the

FPGA, the total cost of the duplicated node on the CPU and the FPGA has to be lower than

the total cost on the CPU-only and the total cost on the FPGA-only. This means that the

partitioning algorithm compares these three values before duplicating a data-parallel node

as shown in relation 6.1.

The total cost of the duplicate node <

min{the total cost of the node on CPU, the total cost of the node on FPGA}
(6.1)

6.2. Results and Discussion

This section discusses the results of CDPSO and compares them to GA, MA, PSO, APSO,

and LPSO. Figure 6.2 compares the average performance of CDPOS to other partitioning

algorithms for different sizes of populations (10 - 100) with a step of 10 and the number of

iterations is 60. The results demonstrate the superiority of CDPSO over GA, MA, and PSO.

This is due to the CDPSO task duplication mechanism on the CPU and the FPGA, which

reduces the total cost of the partitioning solution. Duplicating data-parallel nodes on the

CPU and the FPGA reduces the total cost of the partitioning results. CDPSO total cost

improvement over PSO reaches up to 33%. The partitioning algorithms aim at minimizing

the utility function, which reflects the total cost. The reduction in the total cost does not

always mean a reduction in execution time. This is because of the trade-off between the

89



execution time and the HW area. PSO and CDPSO give the same cost when the size of

the population is larger than 70. This is because increasing the number of individuals in a

population makes the algorithm converges to a sub-optimal solution.

Figure 6.3 compares the execution time and energy consumption of a partitioning solu-

tion among the partitioning algorithms. It shows that CDPSO outperforms PSO and its

variations in terms of execution time. This is because the duplication of a node has a higher

effect on the execution time. CDPSO also has a lower energy consumption than the PSO

algorithm and its variations.

0

100000

200000

300000

400000

500000

600000

0

20000

40000

60000

80000

100000

120000

140000

10 20 30 40 50 60 70 80 90 100

C
o
s
t

Population size

Canny

PSO APSO LPSO CDPSO GA MA

Figure 6.2: HW/SW partitioning cost of GA, MA, PSO, APSO, LPSO, and
CDPSO.

90



1

10

100

1000

10000

100000

1000000

1

10

100

1000

10000

GA MA PSO APSO LPSO CDPSO

E
n

e
rg

y
 (

m
j)

T
im

e
 (

m
s
)

Partitioning algorithm

time energy

Figure 6.3: Execution time and energy consumption of GA, MA, PSO, APSO,
LPSO, and CDPSO.

91



CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes and summarizes the dissertation. It also provides insights into

future work.

7.1. Summary and Conclusion

Heterogeneous CPU-FPGA platforms have been recently deployed in data centers and

cloud environments to improve performance and reduce energy consumption of applications.

Many of these platforms have tighter integration between the CPU and the FPGA than

the traditional off-chip PCIe-based FPGA accelerator [143]. The conventional offloading of

the entire kernel to the FPGA is not always efficient since it leaves the CPU underutilized.

Moreover, for cloud-scale workload, the consumption of logic resources exceeds the capacity

of a FPGA chip. Hence, an efficient partitioning technique of the workload between the CPU

and the FPGA is a crucial demand to improve system utilization, performance, and reduce

energy consumption. In this study, we proposed and implemented synergic partitioning tech-

niques for a compute-intensive image processing algorithm. We partitioned OpenCL-based

implementation of Canny algorithm between the CPU and the FPGA using two mechanisms,

code partitioning and data partitioning. In the code partitioning technique, the code was

partitioned between the CPU and the FPGA, and resulted in up to 2.3X speedup compared

to a CPU-only implementation. In the data partitioning technique, both the CPU and the

FPGA executed all the stages of the algorithm on different portions of the data. The data

partitioning technique outperforms both CPU-only and FPGA-only implementations by up

to 4.8X and 2.1X respectively. It also results in 55.3% reduction in energy consumption, on

92



average, compared to the CPU-only implementation. In addition, its energy-delay product

is comparable to the FPGA-only implementation.

Nature-inspired optimization algorithms such as Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO) have been used for HW/SW partitioning. In this study, we tack-

led some limitations of these algorithms, which are fixed values of PSO parameters, and the

premature convergence of GA and PSO. The accuracy and execution time of PSO algorithm

depends on the parameters it uses in its search equations. The appropriate values of these

parameters might vary from application to another. However, researchers and practitioners

have used generally accepted parameters. In this study, we tuned these parameters using

a Neural Network (NN) in order to improve the performance of PSO. The dataset, which

was used to train the NN, was generated by executing PSO on our benchmarks graphs. The

features reflect source-level and IR-level characteristics of the benchmarks, in addition to

platform characteristics. This technique improves the accuracy of PSO by 62.8% and its

execution time by up to 29%.

We also proposed and implemented a distributed greedy local search technique to mitigate

the premature convergence problem. This technique mutates individuals with poor quality

and replaces them with superior individuals. We applied a mutation-based local search tech-

nique to GA and PSO. Although GA is a robust optimization algorithm, it extensively suffers

from premature convergence. GA with a mutation-based search, aslo known as Memtic Algo-

rithm (MA), reduces the premature convergence problem. Our variation of MA outperforms

GA by 82.6% of the total cost. The extended PSO algorithm with mutation-based search

technique outperforms PSO by up to 55.4% of the total cost.

Finally, to boost the system performance, we proposed a prototype for a concurrent

code and data portioning technique with a simple implementation. Using this technique, we

duplicated data-parallel nodes of the application graph on the CPU and the FPGA at the

93



same time. The Code and Data partitioning PSO (CDPSO) outperforms the PSO algorithm

by up to 33% of the total cost. We used a Multi Objective Optimization (MOO) utility

function that consists of weighted sum of execution time, energy consumption, and HW

resource utilization.

7.2. Future Works

This work can be extended as follows:

• Include more benchmarks to cover disparate cloud application domains.

• Compare our results with other heuristic partitioning algorithms such as Grey Wolf

Optimizer (GWO).

• Study different heterogeneous CPU-FPGA and CPU-GPU platforms.

• Build a model to predict the best number of iterations and the best population size

for different benchmarks.

• Utilize different heuristic techniques to mitigate the premature convergence problem.

94



BIBLIOGRAPHY

[1] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “En-
abling fpgas in the cloud”, in Proceedings of the 11th ACM Conference on Computing
Frontiers, 2014, p. 3.

[2] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient knn algorithm implemented on
fpga based heterogeneous computing system using opencl”, IEEE 23rd Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines, pp. 167–
170, 2015.

[3] The 27th IEEE International Symposium on Field-Programmable Custom Comput-
ing Machines, en-US. [Online]. Available: https : / / www . fccm . org/ (visited on
02/09/2019).

[4] F. Milliot, When Are FPGAs the Right Choice to Improve HPC Performance, en-US.
[Online]. Available: http://tinyurl.com/m6q4yvl (visited on 02/06/2018).

[5] Microsoft Uses Intel FPGAs for Smarter Bing Searches. [Online]. Available: https:
//www.eweek.com/cloud/microsoft-uses-intel-fpgas-for-smarter-bing-
searches (visited on 02/24/2019).

[6] A. Shaout, A. H. El-Mousa, and K. Mattar, “Specification and modeling of hw/sw
co-design for heterogeneous embedded systems”, in Proceedings of the World Congress
on Engineering, vol. 1, 2009.

[7] I. Mhadhbi, S. B. Othman, and S. B. Saoud, “A comprehensive survey on hard-
ware/software partitioning process in co-design”, International Journal of Computer
Science and Information Security, vol. 14, no. 3, p. 263, 2016.

[8] A. Bhattacharya, A. Konar, S. Das, C. Grosan, and A. Abraham, “Hardware software
partitioning problem in embedded system design using particle swarm optimization
algorithm”, in Complex, Intelligent and Software Intensive Systems, CISIS Interna-
tional Conference on, 2008, pp. 171–176.

[9] P. Liu, J. Wu, and Y. Wang, “Hybrid algorithms for hardware/software partitioning
and scheduling on reconfigurable devices”, Mathematical and Computer Modelling,
vol. 58, no. 1-2, pp. 409–420, 2013.

[10] I. Ahmad, M. K. Dhodhi, and I. Ahmad, “Multiprocessor scheduling by simulated
evolution”, Journal of Software, vol. 5, no. 10, pp. 1128–1136, 2010.

[11] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph schedul-
ing algorithms”, Journal of Parallel and Distributed Computing, vol. 59, no. 3, pp. 381–
422, 1999.

95

https://www.fccm.org/
http://tinyurl.com/m6q4yvl
https://www.eweek.com/cloud/microsoft-uses-intel-fpgas-for-smarter-bing-searches
https://www.eweek.com/cloud/microsoft-uses-intel-fpgas-for-smarter-bing-searches
https://www.eweek.com/cloud/microsoft-uses-intel-fpgas-for-smarter-bing-searches


[12] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing”, IEEE transactions on parallel and
distributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[13] E. Sha, L. Wang, Q. Zhuge, J. Zhang, and J. Liu, “Power efficiency for hardware/soft-
ware partitioning with time and area constraints on mpsoc”, International Journal of
Parallel Programming, vol. 43, no. 3, pp. 381–402, 2015.

[14] J. Wu, P. Wang, S.-K. Lam, and T. Srikanthan, “Efficient heuristic and tabu search
for hardware/software partitioning”, The Journal of Supercomputing, vol. 66, no. 1,
pp. 118–134, 2013.

[15] P. Arató, Z. Á. Mann, and A. Orbán, “Algorithmic aspects of hardware/software
partitioning”, ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 10, no. 1, pp. 136–156, 2005.

[16] L. Li, J. Sun, W. Li, Z. Lv, and F. Guan, “Hardware/software partitioning based on
hybrid genetic and tabu search in the dynamically reconfigurable system”, Interna-
tional Journal of Control and Automation, vol. 8, no. 1, pp. 29–36, 2015.

[17] P. K. Nath and D. Datta, “Multi-objective hardware–software partitioning of embed-
ded systems: A case study of jpeg encoder”, Applied Soft Computing, vol. 15, pp. 30–
41, 2014.

[18] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “Fast high-level power estimation
for control-flow intensive design”, in Proceedings of the international symposium on
Low power electronics and design, 1998, pp. 299–304.

[19] A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, and A. A. Jerraya, “Combining a per-
formance estimation methodology with a hardware/software codesign flow supporting
multiprocessor systems”, IEEE Transactions on Software Engineering, vol. 28, no. 9,
pp. 822–831, 2002.

[20] S. Shekhar, Y. Barve, and A. Gokhale, “Understanding performance interference
benchmarking and application profiling techniques for cloud-hosted latency-sensitive
applications”, in Proceedings of the 10th International Conference on Utility and
Cloud Computing, 2017, pp. 187–188.

[21] Altera SDK for OpenCL Best Practices Guide. [Online]. Available: https://www.
intel . com / content / dam / www / programmable / us / en / pdfs / literature / hb /
opencl-sdk/aocl-best-practices-guide.pdf.

[22] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first
step towards software power minimization”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 2, no. 4, pp. 437–445, 1994.

[23] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions”, Journal of Network and Computer Applications, vol. 48, pp. 99–117, 2015.

96

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf


[24] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/software
partitioning based on simulated annealing and tabu search”, Design automation for
embedded systems, vol. 2, no. 1, pp. 5–32, 1997.

[25] P. Arató, S. Juhász, Z. Á. Mann, A. Orbán, and D. Papp, “Hardware-software parti-
tioning in embedded system design”, in Intelligent Signal Processing, IEEE Interna-
tional Symposium on, 2003, pp. 197–202.

[26] R. Niemann and P. Marwedel, “Hardware/software partitioning using integer pro-
gramming”, in Proceedings of the European conference on Design and Test, 1996,
p. 473.

[27] ——, “An algorithm for hardware/software partitioning using mixed integer linear
programming”, Design Automation for Embedded Systems, vol. 2, no. 2, pp. 165–193,
1997.

[28] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao, “Partitioning and pipelined scheduling
of embedded system using integer linear programming”, in Parallel and Distributed
Systems, Proceedings 11th International Conference on, vol. 2, 2005, pp. 37–41.

[29] W. Zuo, L.-N. Pouchet, A. Ayupov, T. Kim, C.-W. Lin, S. Shiraishi, and D. Chen, “Ac-
curate high-level modeling and automated hardware/software co-design for effective
soc design space exploration”, in Proceedings of the 54th Annual Design Automation
Conference, 2017, pp. 78–88.

[30] S.-A. Li, C.-C. Hsu, C.-C. Wong, and C.-J. Yu, “Hardware/software co-design for par-
ticle swarm optimization algorithm”, Information Sciences, vol. 181, no. 20, pp. 4582–
4596, 2011.

[31] X. Yan, F. He, N. Hou, and H. Ai, “An efficient particle swarm optimization for
large-scale hardware/software co-design system”, International Journal of Cooperative
Information Systems, p. 1 741 001, 2017.

[32] X.-H. Yan, F.-Z. He, and Y.-L. Chen, “A novel hardware/software partitioning method
based on position disturbed particle swarm optimization with invasive weed optimiza-
tion”, Journal of Computer Science and Technology, vol. 32, no. 2, pp. 340–355, 2017.

[33] Y. M. Tavares, N. Nedjah, and L. de Macedo Mourelle, “Hardware/software co-design
system for template matching using particle swarm optimization and pearson’s cor-
relation coefficient”, in Computational Intelligence (LA-CCI), IEEE Latin American
Conference on, 2016, pp. 1–6.

[34] E. T. Tan and Z. A. Halim, “Performance evaluation of genetic algorithm to solve
hardware-software partitioning design: A factorial design analysis”, in Region 10 Con-
ference, TenCon IEEE, 2017, pp. 439–442.

[35] N. Hou, F. He, Y. Zhou, Y. Chen, and X. Yan, “A parallel genetic algorithm with
dispersion correction for hw/sw partitioning on multi-core cpu and many-core gpu”,
IEEE Access, vol. 6, pp. 883–898, 2018.

97



[36] Y. Jiang, H. Zhang, X. Jiao, X. Song, W. N. Hung, M. Gu, and J. Sun, “Uncertain
model and algorithm for hardware/software partitioning”, in VLSI (ISVLSI), IEEE
Computer Society Annual Symposium on, 2012, pp. 243–248.

[37] L. An, F. Jinfu, L. Xiaolong, and Y. Xiaotian, “Algorithm of hardware/software
partitioning based on genetic particle swarm optimization”, Journal of Computer-
Aided Design & Computer Graphics, vol. 6, p. 005, 2010.

[38] I. Mhadhbi, S. Ben Othman, and S. Ben Saoud, “An efficient technique for hard-
ware/software partitioning process in codesign”, Scientific Programming, vol. 2016,
p. 10, 2016.

[39] Y. Wu, H. Zhang, and H. Yang, “Research on parallel hw/sw partitioning based on
hybrid pso algorithm”, in International conference on algorithms and architectures
for parallel processing, 2009, pp. 449–459.

[40] T. Eimuri and S. Salehi, “Using dpso and b&b algorithms for hardware/software
partitioning in co-design”, in Second international conference on computer research
and development, 2010, pp. 416–420.

[41] X. Yan, F. He, N. Hou, and H. Ai, “An efficient particle swarm optimization for
large-scale hardware/software co-design system”, International Journal of Cooperative
Information Systems, vol. 27, no. 01, p. 1 741 001, 2018.

[42] G. Lin, W. Zhu, and M. M. Ali, “A tabu search-based memetic algorithm for hard-
ware/software partitioning”, Mathematical Problems in Engineering, vol. 2014, 2014.

[43] C. Zhang, R. Chen, and V. Prasanna, “High throughput large scale sorting on a
cpu-fpga heterogeneous platform”, in Parallel and Distributed Processing Symposium
Workshops, IEEE International, 2016, pp. 148–155.

[44] G. Busonera, S. Carta, A. Marongiu, and L. Raffo, “Automatic application partition-
ing on fpga/cpu systems based on detailed low-level information”, in Digital System
Design: Architectures, Methods and Tools, 9th EUROMICRO Conference on, 2006,
pp. 265–268.

[45] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific instruction-set ex-
tensions under microarchitectural constraints”, International Journal of Parallel Pro-
gramming, vol. 31, no. 6, pp. 411–428, 2003.

[46] M. Brogioli, P. Radosavljevic, and J. R. Cavallaro, “Hardware/software co-design
methodology and dsp/fpga partitioning: A case study for meeting real-time processing
deadlines in 3.5 g mobile receivers”, in IEEE International Midwest Symposium on
Circuits and Systems, 2006.

[47] M. Riabi, Y. Manai, and J. Haggege, “Hardware/software codesign approach for het-
erogeneous mpsoc system”, International Journal of Computer Science and Network
Security, vol. 18, no. 1, pp. 10–17, 2018.

98



[48] T. Zhang, X. Zhao, X. An, H. Quan, and Z. Lei, “Using blind optimization algorithm
for hardware/software partitioning”, IEEE Access, vol. 5, pp. 1353–1362, 2017.

[49] Z. Wang, B. He, and W. Zhang, “A study of data partitioning on opencl-based fpgas”,
in Field Programmable Logic and Applications (FPL) 25th International Conference
on, 2015, pp. 1–8.

[50] G. Stitt, F. Vahid, and S. Nematbakhsh, “Energy savings and speedups from parti-
tioning critical software loops to hardware in embedded systems”, ACM Transactions
on Embedded Computing Systems (TECS), vol. 3, no. 1, pp. 218–232, 2004.

[51] J. Henkel, “A low power hardware/software partitioning approach for core-based em-
bedded systems”, in Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, 1999, pp. 122–127.

[52] I. Ghribi, R. B. Abdallah, M. Khalgui, Z. Li, K. Alnowibet, and M. Platzner, “R-
codesign: Codesign methodology for real-time reconfigurable embedded systems under
energy constraints”, IEEE Access, vol. 6, pp. 14 078–14 092, 2018.

[53] W. Jiang and V. K. Prasanna, “A fpga-based parallel architecture for scalable high-
speed packet classification”, in Application-specific Systems, Architectures and Pro-
cessors, 20th IEEE International Conference on, 2009, pp. 24–31.

[54] J. L. Tripp, A. A. Hanson, M. Gokhale, and H. Mortveit, “Partitioning hardware and
software for reconfigurable supercomputing applications: A case study”, in Proceedings
of the ACM/IEEE conference on Supercomputing, 2005, p. 27.

[55] M. Brogioli, P. Radosavljevic, and J. R. Cavallaro, “Hardware/software co-design
methodology and dsp/fpga partitioning: A case study for meeting real-time processing
deadlines in 3.5 g mobile receivers”, in IEEE International Midwest Symposium on
Circuits and Systems, 2006.

[56] J. H. Kelm, I. Gelado, M. J. Murphy, N. Navarro, S. Lumetta, andW.-m. Hwu, “Cigar:
Application partitioning for a cpu/coprocessor architecture”, in Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques,
2007, pp. 317–326.

[57] F. Ghaffari, M. Benjemaa, and M. Auguin, “Algorithms for the partitioning of applica-
tions containing variable duration tasks on reconfigurable architectures”, in Computer
Systems and Applications, Book of Abstracts. ACS/IEEE International Conference
on, 2003, p. 13.

[58] Y.-K. Kwok, A. A. Maciejewski, H. J. Siegel, I. Ahmad, and A. Ghafoor, “A semi-
static approach to mapping dynamic iterative tasks onto heterogeneous computing
systems”, Journal of Parallel and Distributed Computing, vol. 66, no. 1, pp. 77–98,
2006.

99



[59] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness of fpga soft
processor cores using dynamic hardware/software partitioning”, in Proceedings of the
conference on Design, Automation and Test in Europe, 2005, pp. 18–23.

[60] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic hardware/software partitioning: A first
approach”, in Proceedings of the 40th annual Design Automation Conference, 2003,
pp. 250–255.

[61] R. Lysecky and F. Vahid, “A configurable logic architecture for dynamic hardware/-
software partitioning”, in Design, Automation and Test in Europe Conference and
Exhibition, Proceedings, vol. 1, 2004, pp. 480–485.

[62] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/software
partitioning based on simulated annealing and tabu search”, Design automation for
embedded systems, vol. 2, no. 1, pp. 5–32, 1997.

[63] M. Gately, Y. Zhai, M. Yeary, E. Petrich, and L. Sawalha, “A three-dimensional
swept volume display based on led arrays”, Journal of Display Technology, vol. 7,
no. 9, pp. 503–514, 2011.

[64] G. Zhong, A. Dubey, T. Cheng, and T. Mitra, “Synergy: A hw/sw framework for high
throughput cnns on embedded heterogeneous soc”, arXiv preprint arXiv:1804.00706,
2018.

[65] N. Govil and S. R. Chowdhury, “High performance and low cost implementation of
fast fourier transform algorithm based on hardware software co-design”, in Region 10
Symposium, IEEE, 2014, pp. 403–407.

[66] S. Ossif, “Applications of fpgas in high-performance adaptive channel equalization”,
2016.

[67] F. B. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, “Energy-efficient fpga
implementation of the k-nearest neighbors algorithm using opencl.”, in FedCSIS Po-
sition Papers, 2016, pp. 141–145.

[68] S. H. Gerez, Algorithms for VLSI design automation. Wiley New York, 1999, vol. 8.
[69] S. Yousuf and A. Gordon-Ross, “An automated hardware/software co-design flow for

partially reconfigurable fpgas”, in VLSI (ISVLSI), IEEE Computer Society Annual
Symposium on, 2016, pp. 30–35.

[70] A. Iguider, M. Chami, O. Elissati, and A. En-Nouaary, “Embedded systems hw/sw
partitioning based on lagrangian relaxation method”, in Proceedings of the Mediter-
ranean Symposium on Smart City Applications, 2017, pp. 149–160.

[71] T. Streichert, C. Haubelt, and J. Teich, “Online hardware/software partitioning in
networked embedded systems”, in Proceedings of the Asia and South Pacific Design
Automation Conference, 2005, pp. 982–985.

100



[72] G. Stitt and F. Vahid, “Energy advantages of microprocessor platforms with on-chip
configurable logic”, IEEE Design & Test of Computers, vol. 19, no. 6, pp. 36–43, 2002.

[73] ——, “A decompilation approach to partitioning software for microprocessor/fpga
platforms”, in Proceedings of the conference on Design, Automation and Test in Eu-
rope, 2005, pp. 396–397.

[74] P. Waldeck and N. Bergmann, “Dynamic hardware-software partitioning on reconfig-
urable system-on-chip”, in System-on-Chip for Real-Time Applications, Proceedings.
The 3rd IEEE International Workshop on, 2003, pp. 102–105.

[75] N. N. Bình, M. Imai, A. Shiomi, and N. Hikichi, “A hardware/software partitioning
algorithm for designing pipelined asips with least gate counts”, in Proceedings of the
33rd annual Design Automation Conference, 1996, pp. 527–532.

[76] P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli, “Hardware/software partitioning
of vhdl system specifications”, in Proceedings of the conference on European design
automation, 1996, pp. 434–439.

[77] R. R. Schaller, “Moore’s law: Past, present, and future”, IEEE Spectr., vol. 34, no. 6,
pp. 52–59, 1997.

[78] P. V. Knudsen and J. Madsen, “Pace: A dynamic programming algorithm for hard-
ware/software partitioning”, in Proceedings of the 4th International Workshop on
Hardware/Software Co-Design, 1996, p. 85.

[79] J. Wu and T. Srikanthan, “Low-complex dynamic programming algorithm for hard-
ware/software partitioning”, Information processing letters, vol. 98, no. 2, pp. 41–46,
2006.

[80] K. S. Chatha and R. Vemuri, “Hardware-software partitioning and pipelined schedul-
ing of transformative applications”, IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 10, no. 3, pp. 193–208, 2002.

[81] T. Wiangtong, P. Y. Cheung, andW. Luk, “Comparing three heuristic search methods
for functional partitioning in hardware–software codesign”, Design Automation for
Embedded Systems, vol. 6, no. 4, pp. 425–449, 2002.

[82] F. Vahid, D. D. Gajski, and J. Gong, “A binary-constraint search algorithm for min-
imizing hardware during hardware/software partitioning”, in Proceedings of the con-
ference on European design automation, 1994, pp. 214–219.

[83] D. Wang, S. Li, and Y. Dou, “Collaborative hardware/software partition of coarse-
grained reconfigurable system using evolutionary ant colony optimization”, in Pro-
ceedings of the Asia and South Pacific Design Automation Conference, 2008, pp. 679–
684.

[84] V. Catania, M. Malgeri, and M. Russo, “Applying fuzzy logic to codesign partition-
ing”, IEEE Micro, vol. 17, no. 3, pp. 62–70, 1997.

101



[85] M. Koudil, K. Benatchba, A. Tarabet, and E. B. Sahraoui, “Using artificial bees to
solve partitioning and scheduling problems in codesign”, Applied Mathematics and
Computation, vol. 186, no. 2, pp. 1710–1722, 2007.

[86] G. Stitt and F. Vahid, “Hardware/software partitioning of software binaries”, in Pro-
ceedings of the IEEE/ACM international conference on Computer-aided design, 2002,
pp. 164–170.

[87] P. S. B. do Nascimento and M. E. de Lima, “Temporal partitioning for image pro-
cessing based on time-space complexity in reconfigurable architectures”, in Design,
Automation and Test in Europe, DATE’06. Proceedings, vol. 1, 2006, pp. 1–6.

[88] N. Govil, R. Shrestha, and S. R. Chowdhury, “Pgma: An algorithmic approach for
multi-objective hardware software partitioning”, Microprocessors and Microsystems,
vol. 54, pp. 83–96, 2017.

[89] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, and N. Linge, “A speculative approach to
spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud
environment”, Security and Communication Networks, vol. 9, no. 17, pp. 4002–4012,
2016.

[90] Intel, Hardware Accelerator Research Program, en. [Online]. Available: https : / /
software.intel.com/en-us/hardware-accelerator-research-program (visited
on 12/01/2018).

[91] T. Faict, “Exploring OpenCL on a CPU-FPGA Heterogeneous Architecture Research
Platform (HARP)”, en,

[92] dlmulni1, Intel Xeon Processor Scalable Family Technical Overview, en. [Online].
Available: https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview (visited on 01/11/2019).

[93] Performance Characteristics of Common Transports and Buses, en-US. [Online]. Avail-
able: https://www.microway.com/knowledge-center-articles/performance-
characteristics-of-common-transports-buses/ (visited on 01/14/2019).

[94] “Accelerator Functional Unit (AFU) Developer’s Guide for Intel”, en, p. 46,
[95] Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-

P) Reference Manual. [Online]. Available: https : / / www . intel . com / content /
www / us / en / programmab - le / documentation / buf1506187769663 . html (visited
on 12/01/2018).

[96] Intel Acceleration Stack for Intel Xeon CPU with FPGAs 1.0 Errata. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/programmab-le/documentation/
ffv1519794536166.html (visited on 12/01/2018).

102

https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://www.microway.com/knowledge-center-articles/performance-characteristics-of-common-transports-buses/
https://www.microway.com/knowledge-center-articles/performance-characteristics-of-common-transports-buses/
https://www.intel.com/content/www/us/en/programmab- le/ documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmab- le/ documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmab- le/ documentation/ffv1519794536166.html
https://www.intel.com/content/www/us/en/programmab- le/ documentation/ffv1519794536166.html


[97] Intel® FPGA SDK for OpenCL™, en. [Online]. Available: https://www.intel.com/
content/www/us/en/software/prog-rammable/sdk-for-opencl/overview.html
(visited on 02/12/2019).

[98] Hardware Accelerator Research Program, en. [Online]. Available: https://software.
intel.com/en-us/hardware-accelerator-research-program (visited on 02/14/2019).

[99] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud computing security
problem”, arXiv preprint arXiv:1609.01107, 2016.

[100] M. Babitha and K. R. Babu, “Secure cloud storage using aes encryption”, in Inter-
national Conference on Automatic Control and Dynamic Optimization Techniques
(ICACDOT), 2016, pp. 859–864.

[101] B.-H. Lee, E. K. Dewi, and M. F. Wajdi, “Data security in cloud computing using
aes under heroku cloud”, in 27th Wireless and Optical Communication Conference
(WOCC), 2018, pp. 1–5.

[102] C.-C. Lu and S.-Y. Tseng, “Integrated design of aes (advanced encryption stan-
dard) encrypter and decrypter”, in Proceedings IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, 2002, pp. 277–285.

[103] The State of Video Marketing in 2018 [Infographic]. [Online]. Available: https://
www.socialmediatoday.com/news/the-state-of-video-marketing-in-2018-
infographic/518339/.

[104] S. Rahamneh and L. Sawalha, “An opencl-based acceleration for canny algorithm us-
ing a heterogeneous cpu-fpga platform”, in IEEE 27th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), 2019, pp. 322–
322.

[105] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, inMHS.
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

[106] S. G. Li, F. J. Feng, H. J. Hu, C. Wang, and D. Qi, “Hardware/software partitioning
algorithm based on genetic algorithm.”, JCP, vol. 9, no. 6, pp. 1309–1315, 2014.

[107] 61 Social Media Statistics to Bookmark for 2018, en-US, 2018. [Online]. Available:
https://sproutsocial.com/insights/social-media-statistics/ (visited on
11/30/2018).

[108] L. Shao, R. Yan, X. Li, and Y. Liu, “From heuristic optimization to dictionary learn-
ing: A review and comprehensive comparison of image denoising algorithms”, IEEE
Transactions on Cybernetics, vol. 44, no. 7, pp. 1001–1013, 2014.

[109] W. Cao, Y. Zhou, C. P. Chen, and L. Xia, “Medical image encryption using edge
maps”, Signal Processing, vol. 132, pp. 96–109, 2017.

103

https://www.intel.com/content/www/us/en/software/prog- rammable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/prog- rammable/sdk-for-opencl/overview.html
https://software.intel.com/en-us/hardware-accelerator- research-program
https://software.intel.com/en-us/hardware-accelerator- research-program
https://www.socialmediatoday.com/news/the-state-of-video-marketing-in-2018-infographic/518339/
https://www.socialmediatoday.com/news/the-state-of-video-marketing-in-2018-infographic/518339/
https://www.socialmediatoday.com/news/the-state-of-video-marketing-in-2018-infographic/518339/
https://sproutsocial.com/insights/social-media-statistics/


[110] G. N. Chaple, R. Daruwala, and M. S. Gofane, “Comparisions of robert, prewitt, sobel
operator based edge detection methods for real time uses on fpga”, in Technologies
for Sustainable Development (ICTSD), International Conference on, 2015, pp. 1–4.

[111] Q. Xu, S. Varadarajan, C. Chakrabarti, and L. J. Karam, “A distributed canny edge
detector: Algorithm and fpga implementation”, IEEE Transactions on Image Pro-
cessing, vol. 23, no. 7, pp. 2944–2960, 2014.

[112] F. A. Pellegrino, W. Vanzella, and V. Torre, “Edge detection revisited”, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 3,
pp. 1500–1518, 2004.

[113] L. H. Lourenco, D. Weingaertner, and E. Todt, “Efficient implementation of canny
edge detection filter for itk using cuda”, in 13th Symposium on Computer Systems,
2012, pp. 33–40.

[114] S. Niu, J. Yang, S. Wang, and G. Chen, “Improvement and parallel implementation of
canny edge detection algorithm based on gpu”, in 9th IEEE International Conference
on ASIC, 2011, pp. 641–644.

[115] J. Lee, H. Tang, and J. Park, “Energy efficient canny edge detector for advanced
mobile vision applications”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 4, pp. 1037–1046, 2016.

[116] X. Li, J. Jiang, and Q. Fan, “An improved real-time hardware architecture for canny
edge detection based on fpga”, in Third International Conference on Intelligent Con-
trol and Information Processing, 2012, pp. 445–449.

[117] W. He and K. Yuan, “An improved canny edge detector and its realization on fpga”,
in Intelligent Control and Automation, WCICA 2008. 7th World Congress on, 2008,
pp. 6561–6564.

[118] H. S. Neoh and A. Hazanchuk, “Adaptive edge detection for real-time video processing
using fpgas”, Global Signal Processing, vol. 7, no. 3, pp. 2–3, 2004.

[119] P. Musa and N. F. Irmawati, “Hardware software co-simulation and real-time video
processing for edge detection using matlab simulink model blockset”, Computer En-
gineering and Inteliigent Systems, vol. 7, no. 1, pp. 43–56, 2016.

[120] H. Quinn, L. A. S. King, M. Leeser, and W. Meleis, “Runtime assignment of reconfig-
urable hardware components for image processing pipelines”, in Field-Programmable
Custom Computing Machines, FCCM 11th Annual IEEE Symposium on, 2003, pp. 173–
182.

[121] C. Gentsos, C.-L. Sotiropoulou, S. Nikolaidis, and N. Vassiliadis, “Real-time canny
edge detection parallel implementation for fpgas”, in Electronics, Circuits, and Sys-
tems (ICECS), 17th IEEE International Conference on, 2010, pp. 499–502.

104



[122] P. S. Deokar, “Implementation of canny edge detector algorithm using fpga”, IJISET
Int. J. Innov. Sci. Eng. Technol, vol. 2, pp. 112–115, 2015.

[123] E. Lbbers, “Accelerating Data Center Workloads with FPGAs”, en, p. 26,
[124] Intel Xeon Processor E5-2680 v4 (35m Cache, 2.40 GHz) Product Specifications, en.

[Online]. Available: https : / / ark . intel . com / products / 91754 / Intel - Xeon -
Processor-E5-2680-v4-35M-Cache-2-40-GHz- (visited on 01/15/2019).

[125] Early Power Estimators and Power Analyzer. [Online]. Available: https://www.
intel.com/content/www/us/en/programmable/support/support-resources/
operation-and-testing/power/pow-powerplay.html (visited on 12/18/2018).

[126] Intel FPGA SDK for OpenCL Pro Edition: Programming Guide. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/documentation/
mwh1391807965224.html (visited on 01/24/2020).

[127] Y. Luo and R. Duraiswami, “Canny edge detection on nvidia cuda”, in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition Workshops,
2008, pp. 1–8.

[128] D. V. Rao and M. Venkatesan, “An efficient reconfigurable architecture and imple-
mentation of edge detection algorithm using handle-c”, in International Conference
on Information Technology: Coding and Computing, Proceedings. ITCC, vol. 2, 2004,
pp. 843–847.

[129] I. Mhadhbi, S. B. Othman, and S. B. Saoud, “A comprehensive survey on hard-
ware/software partitioning process in co-design”, International Journal of Computer
Science and Information Security (IJCSIS), vol. 14, no. 3, 2016.

[130] I. C. Trelea, “The particle swarm optimization algorithm: Convergence analysis and
parameter selection”, Information processing letters, vol. 85, no. 6, pp. 317–325, 2003.

[131] M. Juneja and S. Nagar, “Particle swarm optimization algorithm and its parameters:
A review”, in International Conference on Control, Computing, Communication and
Materials (ICCCCM), 2016, pp. 1–5.

[132] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization”, in
International conference on evolutionary programming, 1998, pp. 591–600.

[133] A. Farmahini-Farahani, M. Kamal, S. M. Fakhraie, and S. Safari, “Hw/sw parti-
tioning using discrete particle swarm”, in Proceedings of the 17th ACM Great Lakes
symposium on VLSI, 2007, pp. 359–364.

[134] The LLVM Compiler Infrastructure Project. [Online]. Available: https://llvm.org/
(visited on 11/06/2019).

[135] Graphviz - Graph Visualization Software. [Online]. Available: https://www.graphviz.
org/ (visited on 11/06/2019).

105

https://ark.intel.com/products/91754/Intel-Xeon-Processor-E5-2680-v4-35M-Cache-2-40-GHz-
https://ark.intel.com/products/91754/Intel-Xeon-Processor-E5-2680-v4-35M-Cache-2-40-GHz-
https://www.intel.com/content/www/us/en/programmable /support/support-resources/operation-and-testing/power/pow- powerplay.html
https://www.intel.com/content/www/us/en/programmable /support/support-resources/operation-and-testing/power/pow- powerplay.html
https://www.intel.com/content/www/us/en/programmable /support/support-resources/operation-and-testing/power/pow- powerplay.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://llvm.org/
https://www.graphviz.org/
https://www.graphviz.org/


[136] A. Azizi-Mazreah, M. T. M. Shalmani, H. Barati, and A. Barati, “Delay and energy
consumption analysis of conventional sram”, in Proc. Of World Academy of Science,
Engineering and Technology, vol. 27, 2008.

[137] P. Bhattacharjee and A. Majumder, “A variation-aware robust gated flip-flop for
power-constrained fsm application”, Journal of Circuits, Systems and Computers,
p. 1 950 108, 2018.

[138] L. A. Montalvo, K. K. Parhi, and J. H. Satyanarayana, “Estimation of average energy
consumption of ripple-carry adder based on average length carry chains”, in VLSI
signal processing, IX, 1996, pp. 189–198.

[139] HP Labs : CACTI. [Online]. Available: https://www.hpl.hp.com/research/cacti/
(visited on 10/29/2019).

[140] V. Bushaev, Adam latest trends in deep learning optimization. Oct. 2018. [Online].
Available: https://towardsdatascience.com/adam-latest-trends-in-deep-
learning-optimization-6be9a291375c (visited on 01/09/2020).

[141] P. Garg, “A comparison between memetic algorithm and genetic algorithm for the
cryptanalysis of simplified data encryption standard algorithm”, arXiv preprint arXiv:1004.0574,
2010.

[142] J. T. Feo, A comparative study of parallel programming languages: the Salishan prob-
lems. 2016.

[143] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quantitative
analysis on microarchitectures of modern cpu-fpga platforms”, in Proceedings of the
53rd Annual Design Automation Conference, 2016, p. 109.

106

https://www.hpl.hp.com/research/cacti/
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c


.1. Partitioning Cost Results for the Different Benchmarks

Table 1: Partitioning cost of k-means benchmark.

Population size-itr 10 GA MA PSO APSO LPSO
10 134606338.8 74551824.54 470510.6 444852.6 444852.6
20 170686336.3 104587796 451267.1 451267.1 438438.1
30 208681785.7 92606148.14 451267.1 432023.6 432023.6
40 196691973.1 64564743.12 457681.6 444852.6 432023.6
50 214707113.3 86580820.46 451267.1 438438.1 438438.1
60 224700776.4 76587157.38 457681.6 444852.6 432023.6
70 238701304 62586629.82 457681.6 438438.1 438438.1
80 234725464.6 67232148.33 470510.6 451267.1 432023.6
90 248727999.4 52559934.4 470510.6 432023.6 432023.6
100 256720980.7 49454902.87 457681.6 444852.6 432023.6

Population size-itr 30 GA MA PSO APSO LPSO
10 134606338.8 74551824.54 474786.93 457681.6 432023.6
20 170686336.3 104587796 457681.6 457681.6 432023.6
30 208681785.7 92606148.14 451267.1 432023.6 432023.6
40 196691973.1 71681795.73 457681.6 444852.6 432023.6
50 214707113.3 86580820.46 451267.1 432023.6 432023.6
60 224700776.4 76587157.38 457681.6 438438.1 432023.6
70 238701304 50577650.3 457681.6 432023.6 432023.6
80 189711425.7 60579059.32 470510.6 438438.1 432023.6
90 248727999.4 52559934.4 470510.6 432023.6 432023.6
100 256720980.7 44566953.14 457681.6 438438.1 432023.6

Population size-itr 60 GA MA PSO APSO LPSO
10 227826014.9 59393111.41 457681.6 457681.6 432023.6
20 167356292.5 80580663.3 464096.1 438438.1 432023.6
30 208681785.7 82603595.44 451267.1 438438.1 432023.6
40 194022350.1 54562190.5 457681.6 432023.6 432023.6
50 214707113.3 72575756.5 451267.1 438438.1 432023.6
60 213795735.4 67726447.45 457681.6 432023.6 432023.6
70 203497860 70200538.52 457681.6 439507.18 432023.6
80 204398215.3 69573627.43 451267.1 438438.1 432023.6
90 204285670.9 69651991.32 451267.1 438438.1 432023.6
100 204285670.9 69651991.32 451267.1 438438.1 432023.6

107



Table 2: Partitioning cost of Canny benchmark.

Population size-itr 10 GA MA PSO APSO LPSO
10 471747.36 386854.34 150075.88 97476.5 79451.02
20 499765.44 395193.04 94668.2 50798.3 48327.9
30 495949.06 400414.14 58737.1 36414.4 37603.3
40 488711.34 406114.12 42410 24600 35276.2
50 481758.18 412143.78 39915.9 24600 34046.4
60 483643.72 407727.12 36739.7 24600 26942.4
70 493925.44 399906.64 36418.6 26997.8 29310.4
80 494200.24 402162.96 37603.3 24600 24600
90 516109.14 380254.06 39107.7 24600 24600
100 502146.4889 387241.7 35156.2 24600 29284.8

Population size-itr 30 GA MA PSO APSO LPSO
10 476528 393035.8 127287.18 82537.7 76439.66
20 499765.44 395193.04 133454.6 63503.02 72469.4
30 495949.06 400414.14 57765.1 31733.8 34020.8
40 488711.34 406114.12 41222.5 30495.1 29310.4
50 481758.18 412143.78 43819.5 26942.4 29310.4
60 483643.72 415267.17 24600 24600 24600
70 493925.44 402437.76 35316.3 29336 29336
80 494200.24 402162.96 37599.1 24600 26942.4
90 516109.14 380254.06 26968 24600 24600

Population size-itr 60 GA MA PSO APSO LPSO
10 476528 393035.8 123411.84 73315.36 55067.52
20 499765.44 395193.04 85331.18 31678.4 58052.88
30 495949.06 400414.14 59582.72 26968 47185.04
40 488711.34 406114.12 44035.9 26968 30445.8
50 481758.18 412143.78 43692.5 24600 26942.4
60 483643.72 411936.3778 39895.5 26942.4 24600
70 497374.3556 399906.64 31682.6 24600 29310.4
80 494200.24 401952.5333 24600 24600 24600
90 494200.24 401952.5333 24600 24600 24600
100 494200.24 401952.5333 24600 24600 24600

108



Table 3: Partitioning cost of AES benchmark.

Population size-itr 10 GA MA PSO APSO LPSO
10 373775.2 296211.32 279877.54 243368.18 227499.68
20 413314.68 279059.02 218712.06 196378.52 192118
30 420355.06 283520.08 218174.48 192118 198648.1
40 419424.58 301508.5 199155.08 192118 194614.18
50 425305.58 288333.34 196850.44 192118 192118
60 442556.94 277191.06 194614.18 192118 192118
70 413177.64 300461.28 192118 192118 192118
80 444560.24 268930.24 198648.1 192118 192118
90 443295.38 276452.62 194614.18 192118 192118
100 447619.58 272128.42 192118 192118 192118

Population size-itr 30 GA MA PSO APSO LPSO
10 371144.74 293028.48 249671.38 209890.58 194614.18
20 413314.68 279059.02 254289.96 221355.38 194614.18
30 419291.86 281483.4 211170.72 192118 196151.92
40 418239.5 300323.42 210719.26 192118 192118
50 425305.58 288333.34 196898.64 192118 197110.36
60 442556.94 277191.06 194614.18 192118 192118
70 423843.12 300461.28 192118 192118 192118
80 444560.24 268930.24 192118 192118 192118
90 443295.38 265787.14 192118 192118 192118
100 447619.58 272128.42 192118 192118 192118

Population size-itr 60 GA MA PSO APSO LPSO
10 371144.74 293028.48 252666.52 218393.42 200412.44
20 413314.68 279059.02 233064.08 192118 198874.7
30 419291.86 281483.4 201199.8 192118 192118
40 418239.5 300323.42 192118 192118 192118
50 425305.58 288333.34 192118 192118 192118
60 442556.94 277191.06 192118 192118 192118
70 423843.12 300461.28 192118 192118 192118
80 444560.24 268930.24 192118 192118 192118
90 443295.38 265787.14 192118 192118 192118
100 447619.58 272128.42 192118 192118 192118

109


