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Western Michigan University, 2020

The expansion of attacks against information systems of companies that operate nuclear

power stations and other energy facilities in the United States and other countries, are no-

ticeable with potential catastrophic real-world implications. Data integrity is a fundamental

component of information security. It refers to the accuracy and the trustworthiness of

data or resources. Data integrity within information systems becomes an important factor

of security protection as the data becomes more integrated and crucial to decision-making.

The security threats brought by human errors whether, malicious or unintentional, such as

viruses, hacking, and many other cybersecurity threats, are dangerous and require manda-

tory integrity protection. To date, Biba and Clark-Wilson are well-known general integrity

models in computer systems but they impose a number of restrictions that make them

impractical to implement. Additionally, permission-based solutions are one of the popular

approaches in the literature but existing solutions are designed to address the trustworthiness

of who accesses the data not the trustworthiness of the data itself. To solve these problems,

we propose a generally applicable system to prevent and detect compromised data integrity.

The proposed work consists of two major components: Maia -the definition of mandatory in-

tegrity control language for describing integrity constraints, and Admonita -the construction

of recommendation-based trust model for trustworthy data.

The integrity of systems files is necessary for the secure functioning of an operating

system. Often, file integrity is determined by who modifies the file or by a checksum. Even



if a file is modified by a subject with trust or has a valid checksum, it may not meet the

specification of a valid file. An example would be a password file with no user assigned a

user id of 0. Maia provides a means to specify what the contents of a valid file should be. In

addition, Maia can be used to specify the format and valid properties of system configuration

files, PNG files and others. In this dissertation, we give a structural operational semantics of

Maia to evaluate and validate our approach, and generate a Maia-verifier that supports many

features of the Maia language. Additionally, we quantify Maia’s impact on performance, and

demonstrate that we can provide robust integrity guarantees without sacrificing usability

using an implementation that has not been optimized for performance. Within the context

of the Linux password file, our implementation of Maia itself is quite fast, adding only extra

milliseconds overhead to the time required to compile JAVA code, load and access a single

file, and construct containers. In the worst case, total processing time is 4 seconds to verify

and parse 15000-record password file, and less than 2 seconds to validate the input data.

Within SSH configuration file context, in the worst case, Maia requires less than 2 seconds

to load, validate, and parse 10000-record SSH configuration file, and around 170 milliseconds

to validate the input data.

Data integrity is critical to the secure operation of a computer system. Applications

need to know that the data that they access is trustworthy. In this work, we propose a

recommendation-based trust model, called Admonita, for data integrity that is applicable to

any structured data in a system and provides a measure of trust to applications on-the-fly.

The proposed model is based on the Biba integrity model and utilizes the concept of an

Integrity Verification Procedure (IVP) proposed by Clark-Wilson.

Admonita incorporates subjective logic to maintain the trustworthiness of data and ap-

plications in a system. To prevent critical applications from losing trust, Admonita also

incorporates the principle of weak tranquility to ensure that highly trusted applications can



maintain their trust levels. We develop a simple algebra around these elements and describe

how it can be used to calculate the trustworthiness of system entities. By applying subjec-

tive logic, we build a powerful, artificial and reasoning trust model for implementing data

integrity.

In the future, we plan to implement Admonita in a real system and measure its per-

formance. This will involve creating a high-performance compiler for Maia that utilizes its

natural parallelism. The result will be a system that measures and maintains the trust levels

for the applications and data contained within it.
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CHAPTER 1

INTRODUCTION

Integrity of data within computer systems, along with the ongoing confidentiality and

availability of said data, make up the three major components of computer security. While

both confidentiality and availability are subjects of frequent and ongoing study, integrity

is not generally discussed in terms of complete computer systems. Instead, integrity issues

tend to be either tightly coupled to a particular domain (e.g. database constraints), or else

are too broad. There are few, if any, approaches to integrity which are capable of actively

protecting arbitrary structured data.

Our work seeks to provide robust tools to enable general-purpose integrity protection.

As part of this, we present Maia, a language to describe integrity constraints for arbitrary

files [1]. In Maia, file verification is accomplished over two phases that correspond first,

to checking the file syntax, and second, to checking its semantics. The user provides an

Extended Backus Naur Form (EBNF) grammar to specify the file structure and extract

its syntactic elements into sets for processing. Then, the sets are checked against integrity

constraints in the form of predicate logic.

In addition, we design a proof of concept for Maia by using Structural Operational

Semantics (SOS) [2] and report on a preliminary implementation of a Maia compiler in

the context of a mandatory integrity system [3]. The semantics give precise rules for giving

meaning to a Maia specification. These rules show there is no ambiguity in Maia, giving

assurance that a correct implementation of Maia file verifiers is possible. This allows one to

implement a compiler or interpreter and use Maia to specify integrity constraints within an

integrity system.
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Moreover, Integrity often is maintained by restricting access to high integrity items to only

subjects that have high integrity. However, as illustrated in the first paragraph, integrity

is also a property of the data itself, not just of who accesses or modifies it. How can an

application know how trustworthy the data it accesses is? In addition, if an application tries

to access data that is not very trustworthy, should that application be allowed to access

that data and, if so, does the access affect the future trustworthiness of both the data and

subject?

We address these questions by using an improvement to the trust-enhanced data integrity

model of Oleshchuk [4]. We present a recommendation-based trust model for dynamic data

integrity, called Admonita. Admonita is based upon subjective logic [4]–[8] and the Biba

integrity model [9]; however, it incorporates the idea of an Integrity Verification Procedure

(IVP) from the Clark-Wilson model [10], the principle of tranquility [11], [12] that allows

integrity levels to increase or decrease, and the notion that the data itself has a measure of

integrity apart from who modifies it.

In Admonita, the trust level for subjects and objects is set by a trusted authority. Ad-

monita then incorporates the opinion of an independent observer via an IVP implemented

in Maia [1], [13]. Admonita maintains the trustworthiness of both subjects and objects

in a computing system via the conjunctive, consensus and recommendation operators from

subjective logic. Admonita adjusts the trustworthiness of entities dynamically based upon

the trust levels of subjects and the objects they access, and includes bidirectional weak

tranquility to allow the trust levels to increase or decrease.

In summary, the contribution of this dissertation is five-fold:

1. We provide an extensive discussion of related research, and present three major vul-

nerabilities of existing data integrity approaches.

2



2. We design and implement a mandatory integrity language Maia, for arbitrary struc-

tured data which provides an implementation independent descriptions of valid arbi-

trary structured data. The proposed language is able to:

• Tackle data integrity vulnerabilities in the existing data integrity approaches.

• Protect arbitrary structured data in information systems.

• Detect any attempt of modification to arbitrary structured data in information

systems.

3. We design a proof of concept for Maia that shows that it can be efficiently implemented

using Structural Operational Semantic SOS.

4. We evaluate Maia performance with selected system’s files.

5. We design Admonita: a recommendation trust model for dynamic data integrity using

subjective logic. The proposed model is able to:

• Calculate the trustworthiness of the system entities.

• Provide dynamic data integrity.

• Prevent data isolation from the system resources.

In the remainder of this document, we present tools for providing general, implementable

data integrity protections. The next chapter presents some general background on computer

security, discretionary and mandatory system, computer language design, subjective logic,

and tranquility for dynamic data integrity, We follow this with a discussion of related re-

search. Then, we present Maia, a language for describing integrity constraints on arbitrary

files types followed by a proof of concept of Maia specification using Structural Operational

Semantics (SOS). Next, we present a discussion of Maia implementation performance on

3



selected system files. In chapter 6, we present Admonita: a recommendation based-trust

model for dynamic data integrity. We conclude the dissertation as a whole with discussion

of future research areas derived from this work.

4



CHAPTER 2

BACKGROUND

This chapter is organized within five sections. The first section provides a general back-

ground on computer security aspects including confidentiality, availability, and integrity,

followed by a discussion of the differences between mandatory and discretionary systems,

and how theses systems are directly related to our work. The third section address how

programming languages are designed using their syntax and semantics, and how variants

of language semantics can be used in specifying the behavior of programming languages.

The fourth section discusses how trust models can be used to give a flexible definition of

data integrity that takes into account whether the data itself can be trusted or not. In last

section, we conclude this chapter with a brief discussion.

2.1. Computer Security

Confidentiality allows authorized users or processes to access sensitive and protected

data. Confidentiality is enforced in a classification system such that normal users are not

allowed to access another user’s files by default. Sensitive information is valuable and needs

to be restricted to authorized users only such as U.S. government or military documents,

bank account statements, credit card numbers, and personal information. Protecting such

information is a major part of information security. Two ways to protect information confi-

dentiality include encryption and access control.

Encryption ensures that only the authorized users are able to obtain the information.

Data encryption translates data into another form, so the only users or processes with access

to the decryption key can read it. In this case, confidentiality is enforced even though the

5



stored or the transmitted form of the sensitive data is not confidential. Many data encryption

techniques to ensure and enhance the confidentiality are proposed in [14], [15], and [16].

Another way to ensure information confidentiality is through enforcing file permissions and

access control to restrict access to sensitive information. Controlling appropriate access levels

can ensure various levels of data sensitivity. General access control contains essential services:

authorization, identification and authentication, access approval, and accountability [17].

Authorization specifies what a user or a process can do, identification and authentica-

tion ensure that only a legitimate user can have access to the system’ resources, access

approval allows users to access associated resources based on the authentication policy, and

accountability identifies what subject(s) is associated with a user. Most modern operating

systems enforce an access control model on their resources such as Windows 10 and Windows

server 2016. Moreover, SELinux model provides secure access modes for storing files [18],

and fine-grained Type Enforcement (D-TE) that protects special classes of information by

partitioning the host operating system into access control domains [19].

Availability ensures that accessing the permitted resources in a system is not denied for

authorized users and that the system works promptly. When the system is non-functioning,

information availability is affected. Also, when data is not secure, information security is

affected. Another factor affecting data availability is time. If a system cannot retrieve or

deliver the permitted information efficiently, then availability is compromised.

Availability is an important security aspect of reliability as well as of system design.

An authorized user cannot access permitted resources if the desired resources are unavail-

able. Attempts to block availability are called denial of service attacks (i.e., handling airline

reservations, air traffic control, and automated medical systems). These attacks are diffi-

cult to detect because of the complications of determining unusual access patterns that can

manipulate the resources of the underlying system.

6



There are many approaches to ensure availability such as correctness, fault tolerance, and

good backup plans. Software correctness proves that a given program operates according

to some specifications. In short, correctness is the best proof against poor behavior of a

compromised system. Fault tolerance allows working around crashes to parts of the system.

For example, a user may be able to move to another system and continue working. Finally,

availability is also the ability to recover from damaging events effectively. Using good backup

plans helps in recovering damaged systems or resources but the recovery process requires

significant time and resources to recover the lost data.

Integrity is concerned with whether a piece of information is trustworthy, regardless

of who is accessing it. Any unintended modification to data as a result of a processing

operation or retrieval, including malicious intent or by human error, is a failure of data

integrity. However, confidentiality and availability are concerned with whether a given user

is authorized to access some piece of information, data integrity ensures the accuracy and

consistency of data at some point in its life cycle [20]. The data life cycle consists of:

1. Entering, generating and/or acquiring data,

2. Processing and/or developing data,

3. Storing, copying and distributing data,

4. Backing up and restoring data,

5. Archiving and recalling data, and

6. Deleting, eliminating and destroying data.

There are two types of integrity: origin and data. Origin integrity ensures the source

of the data is acceptable. Data integrity ensures the content itself is valid or trustworthy.

Origin integrity is well understood and served by the same access control mechanisms that

7



enforce confidentiality. Most modern operating systems provide general enforcement of origin

integrity by limiting read/write access using access control mechanisms. Data validation is

the pre-requisite for data integrity. In fact, data integrity is considered a complex problem

such that it is possible to validate the file format, but it is not always possible to validate

the data itself whether it is valid or not. In fact, it is difficult to check well-formed, incorrect

data in such a system without outside help. For example, we can write a program to

ensure whether an accounting ledger is well formed such that D represents today’s deposits,

W represents withdrawals, YB represents yesterday’s balance, and TB represents today’s

balance. Data integrity constraint will then be D+YB-W. The issue in this example is who

verifies the transactions are done correctly?

There are two different types of integrity systems for managing data integrity. Prevention

systems that disallow unauthorized attempts to modify the data, and detection systems that

determine data trustworthiness. Both systems can work together to prevent an incorrect

process from modifying the data, and provide enough information about who caused the

failure and how it happened when data integrity failure is detected.

One of the most known data integrity attacks is Heartbleed [21]. Heartbleed involves

missing bounds check before a memcpy() call that uses non-sanitized user input as a length

parameter. An attacker tricks OpenSSL to allocate a 64KB buffer, copying more bytes than

is necessary into the buffer, and sending the 64KB buffer back at a later time. This leaks

the contents of the victim’s memory and causes a failure of data integrity. This attack is

limited to only single or multiple Heartbleed by requesting an arbitrary number of 64KB

chunks of data until secrets are released. As noted in this attack, access control mechanisms

are unable to ensure origin integrity since the Heartbleed message is a part of a server-client

connection. The detection system through TLS is unable to detect the semantic format of

the received data.

8



As another example, typical double entry accounting requires that every transaction must

be presented as a withdrawal from one account and an equal deposit into another account.

Enforcing the integrity constraints on the ledger contains three parts:

1. Allowing certain users to write new entries into the ledger.

2. Ensuring the authorized users follow the rules of double entry accounting.

3. Auditing periodically to ensure all real transactions were recorded.

The first part provides origin integrity by allowing only permitted users to modify the

ledger. The second part, works as a prevention system that enforce the rules and ensures

data trustworthiness. Finally, the third part, periodic audits helps to detect integrity failures.

However, there are few prevention systems that can provide general integrity protection with

actual implementability.

2.2. Discretionary and Mandatory Systems

Access control is important to computer system security. To compromise a system,

attackers try to gain any access to obtain restricted data or make unapproved system mod-

ifications. The Department of Defense’s Trusted Computer System Evaluation Criteria [22]

establishes security polices for evaluating the computer security using access control models.

Access control models enforce a set of rules controlling access rights to the system resources.

The most directly useful concept related to our work is the difference between discretionary

and mandatory access control models. Discretionary access control policy (DAC), like the

one in traditional UNIX and Linux systems, assigns access rights based on rules specified by

users. In other words, the owner of an object decides who is allowed to access that object,

and what privileges they have; meaning there is no central control policy. DAC has two

important concepts: data ownership where every object in the system has an owner, and
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access rights and permissions that are assigned by the owner to other subjects. Whereas,

Mandatory Access Control policy (MAC) assigns access rights based on rules specified by a

central authority; meaning all access control rules are enforced centrally. MAC is difficult to

manage, and it is used to protect highly sensitive information such as government and mili-

tary information. In MAC, subjects and objects are assigned sensitivity levels. A subject’s

sensitivity level is a level of the trust, and an object’s sensitivity level specifies the level of

the trust required to access the object. DAC and MAC are usually used in environments

where confidentiality is most important.

2.3. Computer Language Design

Computer languages are defined by their syntax and semantics. Language syntax is a

set of rules that describes how to construct a valid statement within a language. Statements

that are syntactically invalid have a syntax error. Language semantics describes the meaning

of syntactically valid statements. Generally, syntactic processing is handled by a parser

and followed by the semantic processing that is handled by an interpreter or compiler that

translates the parser’s output into executable code. In some cases, and for better language

analysis, both syntactic and semantic processing is done concurrently.

A syntactic metalanguage is a notation for defining the syntax of the language using a set

of rules. Backus-Naur Form (BNF) is a notation for defining the syntax of a programming

language formally. Extended BNF is standardized to be a precise method for specifying the

syntax of many languages, and it includes the most widely adopted extensions.

A precise description of programming language semantics can be developed using an

interpreter or a compiler. Building an interpreter or a compiler is a way to map the language

constructs into executable codes. Variants of language semantics are used in specifying the

behavior of languages:
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1. Operational semantics: It is a formal operational model for specifying the meaning of

a programming language by providing a comprehensive formal definition of a program

in terms of its structure.

2. Denotational semantics: It is a mathematical model for specifying the meaning of

a programming language by constructing mathematical objects called domains that

describe the meanings of the language statements.

3. Axiomatic semantics: It is a mathematical model for specifying the meaning of a

programming language by using proof rules within the language logic. In other words,

it proves the language correctness with respect to logical specifications.

Operational semantics framework is used in the specification and implementation of many

programming languages. Structural Operational Semantics (SOS), introduced by G. D.

Plotkin [2], is used to specify a framework for describing the operational behavior of pro-

gramming languages. The basic idea behind SOS is to define the behavior of a language or a

system in mathematical terms, in a form that supports understanding and reasoning about

the language under consideration.

SOS has been successfully applied as a formal tool to give usable semantic descriptions for

real-life programming languages including Java. SOS is the preferred choice over methods

based upon denotational and axiomatic semantics in the static analysis of programs and

in proving compiler correctness. SOS constructs proofs from logical statements about its

execution, rather than attaching mathematical reasoning to the language items. Also, it is

increasingly considered in the study of the theory of concurrent process.
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2.4. Trust-based Models for Data Integrity

With respect to integrity protection, all data integrity models deal with the preservation

of trust. There is a need for a more flexible definition of data integrity that takes into

account whether the data itself can be trusted apart from who modifies the data. Due to the

lack of certainty about the degree of the trustworthiness of subjects and objects, we need to

have opinions to measure the integrity of these subjects and objects. Subjective logic is an

artificial reasoning framework that defines the term opinion, w, which expresses an opinion

about the trust level of subjects/objects [5], [7]. The opinion translates into degrees of trust,

distrust as well as uncertainty, which represents the absence of both trust and distrust values

Trust models are divided into two types: policy-based models and recommendation-based

models. Both types use a language to express relationships about trust. Each type provides

a measure of the trust in an entity, and the result of the evaluation is a complete trust, a

complete distrust, or somewhere between certain or uncertain. Policy-based models require

a language in which to express and analyze system policies. For example, the Keynote trust

management system [23] that is based on Policy-Marker [24] is extended to support applica-

tions that use public keys. Recommendation-based models use past behavior to determine

whether to trust an entity, including recommendations from other entities. For example,

Abdul-Rahman and Hailes [25] base trust on the recommendations of other entities. In their

model, they consider direct trust relationships and recommender trust relationships. Trust

is computed based on integer values. They use -1 for direct trust as representing untrusted,

values from 1 to 4 as representing the lowest to highest trust values, and 0 as the inability to

make trust judgments. For recommender trust values, the integers -1 and 0 have the same

meaning as with direct trust, while the values from 1 to 4 indicates how close the recom-

mender judgment is to the entity that is being recommended. However, These models do
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not consider all of the side effects of dynamic data integrity. For instance, the trust opinions

of the system’s subjects can keep obtaining lower trust levels when they read less trusted

data but there is not mechanism in the model to raise the integrity levels, possibly resulting

in isolation of the subject.

2.5. Conclusion

The classic model for computer information security defines three objectives of security:

confidentiality, availability, and integrity. Each objective addresses a different characteristic

of providing protection for information. Confidentiality and availability are well understood

with generally implemented safeguards. There are no general-purpose integrity systems.

Research on protecting arbitrary structured data integrity is limited.

In this chapter, we have presented major weaknesses in existing data integrity approaches.

Most of integrity approaches deal with the trustworthiness of who accesses the data, provide

a general protection for a specific data format, or do not consider data/subjects’ isolation

from the system resources.
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CHAPTER 3

RELATED WORK

This chapter provides a discussion of related research. It is organized within seven sec-

tions. Most of the related work deals with the trustworthiness of who accesses the data,

designing an integrity protection system that supports a specific data format rather than an

arbitrary data format, or designing an integrity based trust model that does not guarantee

dynamic data integrity.

3.1. Integrity Models

There are several security models that address secure systems for the aspect of integrity.

The most directly useful and related to our work are Biba integrity model, Clark-Wilson

integrity model, and Maia integrity protection language for arbitrary structured file types.

Each integrity model offers a definition of data integrity and introduces their own mechanisms

for preserving integrity. All of these models are addressed next.

3.1.1. Biba Integrity Model

The Biba integrity model is concerned with an unauthorized modification of data within a

system by controlling who may access it. It works as a prevention system for origin integrity.

The model deals with a set of subjects, a set of objects, and a set of integrity levels. Subjects

may be either users or processes. Each subject and object is assigned an integrity level,

denoted as I(S) and I(O), for the subject S and the object O, respectively. The integrity

levels describe how subjects and objects are more or less trustworthy regarding a higher or

lower integrity level. Biba model considers four access modes:
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1. Modify: Allows a subject to write or update information in an object.

2. Observe: Allows a subject to read information in an object.

3. Execute: Allows a subject to execute an object.

4. Invoke: Allows a subject to communicate with another subject.

Biba model can be divided into two types of policies, mandatory and discretionary poli-

cies. Most literature on the Biba model refers to the model as being mandatory as a part of

strict integrity policy [6]. The strict integrity policy is the most popular policy in the Biba

model. Biba model defines a number of rules as part of the strict integrity policy:

1. Simple integrity Property: A subject can only read objects at its own integrity level

or above:

s ∈ S reads o ∈ O ⇐⇒ I(s) ≤ I(o)

2. Integrity Star Property: A subject can only write/update objects at its own integrity

level or below:

s ∈ S updates o ∈ O ⇐⇒ I(o) ≤ I(s)

3. Invocation property: A subject may execute another subject at its own integrity level

or below:

s1 ∈ S invokes s2 ∈ S ⇐⇒ I(s2) ≤ I(s1)

The first property of the strict integrity policy enforces “no read down”. It allows a

subject to read (observe) an object only if the integrity level of the subject is less than

the integrity level of the object. It ensures that high-integrity data cannot be directly

contaminated by low-integrity data. For example, if the simple integrity rule is enforced, a

low-integrity process may read low-integrity data, but it is prevented from contaminating a
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high integrity file that stores this data. On the other hand, a high-integrity process cannot

read low-integrity data and then write it in a high integrity file.

The second property of the policy enforces (no write-up). It allows a subject to write an

object only if the objects integrity level is less than or equal to the subject’s level. It ensures

that high-integrity subjects cannot be corrupted by reading malicious low-integrity objects

in the system. The last rule is the invocation property, which states that a subject at one

integrity level is prohibited from invoking (send/request messages for service) a subject at a

higher level of integrity.

Biba is well-known general integrity model in computer systems. The strict integrity

property succeeds at enforcing origin integrity in a system, but it does not deal with the

integrity of data itself; authorized users can still make improper modifications. For example,

if a trusted user account is compromised, an attacker can use a trusted user’s integrity level

to modify high-level integrity resources.

3.1.2. Clark-Wilson Integrity Model

The most practical integrity model was proposed by David Clark and David Wilson.

The Clark-Wilson integrity Model (CWM) focuses on the prevention and detection of data

integrity faults using transactions. The model is based on two concepts that are used to

enforce commercial security polices or constraints:

1. Well-formed transactions: A user can manipulate data using only constrained rules to

ensure the integrity of data.

2. Separation of duty among users: A person who has the permission to do well-formed

transaction may not have the permission to execute the constrained data.
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CWM enforces integrity controls on data by separating all the data items within a system

into two groups:

1. Constrained Data Items (CDIs): Data items that have associated integrity constraints.

2. Unconstrained Data Items (UDIs): Data items that do not have associated integrity

constraints. For example, a simple text file.

After classifying the data items, the integrity system tests the data items through two types

of procedures:

1. Integrity Verification Procedures (IVPs): Ensure that all the CDIs conform to the

integrity constraints or specifications.

2. Transformation Procedures (TPs): Achieve data items transaction by changing the

system’s CDIs from one valid state to another.

If the system is in a valid state at the current time that means the IPVs were successfully

run, and the system ensures that only TPs are allowed to manipulate the CDIs at the current

time. That shows that the system will continue to be valid for the next coming states. For

TP and IPV validation, an external verifier is needed to certify the correctness of TP and

IVP within the system. The external verifiers impose the integrity by sets of certifications

and enforcements rules. Certifications rules are the security policy restrictions inspecting

the behavior of IVPs and TPs, and are done by the security officer, while enforcements rules

are built-in system security mechanisms that enforce the certifications rules. The rules are

as follows:

C1 (Certification) All IVPs must ensure that all CDIs are in a valid state at the same time

the IVP is run.

C2 All TPs must be certified to be valid. That is, the certifier must define a set of relations

specifying the set of CDIs on which a given TP is certified to run. A TP-CDIs relation has
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the form (TPi, (CDIa, CDIb, CDIc, . . . )), where CDIs define a list of arguments for which

the TP has been certified.

E1 (Enforcement) The system must ensure that CDIs are only manipulated by certified TPs

to modify them according to the relations in C2.

E2 The system must maintain and enforce a set of relations mapping a user to the set of

TPs they may execute, and CDIs those TPs may modify on the user’s behalf. The list of

relation has the form (USERIS, TPi, (CDIa, CDIb, CDIc, . . . ))

C3 The list of relations in E2 must be certified to ensure separation of duty requirements.

E3 The system must authenticate the identity of each user attempting to execute a TP.

C4 All TPs must be certified to write to an append- only CDI(the log) all information that

is reconstruct the nature of the operation performed.

C5 Any TP, which transforms a UDI into a CDI, must be certified in to produce either a

valid CDI or nothing at all in all cases when UDI is rejected.

E4 Only the permitted agent to certify entities can change the list of associated entities

with other entities. For example, the associated TPs with a CDI and the list of the users

associated with a specific TP. The same permitted agent, who can certify an entity, may not

be able to execute it.

Rules C1, C2, and E1 provide the core of the CWM. E2 allows for restricting access to

TPs and CDIs to specific users, while C3 decides which users, E3 provides a system with

mechanisms to figure out which permissions to use such that the type of authentication is

not defined before use of the system, but is required before any manipulation of CDIs. C4

provides an audit trail, and can be implemented by making the log an append-only CDI.

C5 handles untrusted input, so it allows data that cannot be trusted by itself to become

a trusted data object. Finally, E4 makes CWM a mandatory, rather than discretionary
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system, and guarantees that there in no single user can corrupt the integrity of the system

by enforcing separation of duty with respect to certified and allowed relations.

Clark-Wilson provides data integrity but imposes a number of restrictions that make it

impractical to implement. A transformation procedure runs into trouble if a single applica-

tion is able to execute many different transformations. For example, a text editor can be

used to produce HTML files, or to edit the UNIX password file. To implement Clark-Wilson,

the text editor must be broken into a HTML editor, and a password file editor to be certified

to produce valid HTML files, and valid UNIX password file. Additionally, an administrator

needs to mange and verify all the editors and that is impractical and impossible in the worst

case.

3.1.3. Maia: A Language for Integrity Protection on Arbitrary Structured File
Types

Many tools exist to verify particular file formats. XML, which is widely used online

and for storing configuration data, has several different verifier systems: DTD [26], XML

Schema [27] [28], and RELAX NG [29]. Tools also exist for verifying HTML, and many

reference implementations for image formats include sanity checking of their input. While

these are powerful tools for protecting particular file types, they cannot be generalized to

protecting other file formats. Instead, we need an approach that will allow us to verify a

variety of file types.

Parser generators are commonly used in developing new programming languages, and

can be applied to the problem of creating verifiers. Lex [30] and Yacc [31], and their suc-

cessors Flex and Bison generate robust, fast parsers which can be embedded in C or C++

programs. ANTLR [32] serves a similar purpose, with a focus on emitting Java rather than C

code. These tools are often sufficient to produce syntax checkers on their own, but creating
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semantic checks requires detailed knowledge of the underlying parsing technology. The ties

to programming language creation that makes these parser generators fast can also impact

the set of languages they parse correctly. It is possible to design a programming language

around the restrictions of one’s chosen parser generator, but this is harder when the for-

mat to be parsed already exists. PNG images [33], for example, make use of chunk length

specifiers that introduce context sensitivities which are difficult to handle in a normal parser

generator. Some tools, like YAKKER [34], are able to cope with limited context sensitivity,

but still require programmer assistance to perform semantic checks.

Data description languages [35] [36] are designed to provide automated parsing for ad hoc

data formats. Tools like PADS [37] give programmers the ability to describe semi-structured

file formats so that their programs can more readily access the contents of the file. While

this approach significantly simplifies handling formats which were not designed with parsing

in mind, it still requires the intervention of a programmer to describe the format in question

and then perform validity checks.

Maia improves on these tools in two important ways: Maia can be used to describe

any file with a context free structure, and can handle certain types of context sensitivity.

Additionally, Maia specifications describe valid files, not how to validate files, meaning that

no programming is required to generate a verifier. As we will demonstrate, tools can convert

Maia specifications into fully functional verifier programs.

Maia is a specification language that verifies arbitrary structured file types [23]. It is

designed to describe the integrity constraints for arbitrary structured data. For example,

Maia within the context of Linux can be used to specify the format of system configuration

files, PNG files, and others. In Maia, a file verification process is accomplished using two

phases that correspond to checking the file syntax and semantics. In the first phase, the user
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provides an Extended Backus Naur Form (EBNF) grammar in order to verify the file struc-

ture and extract its syntactic elements for processing. This syntax checking component of

Maia is designed to work like a normal parser as generated by a parser generator. The second

phase of Maia checks the constructed containers of data in the syntactic elements by using

set theory and predicate calculus to express the integrity constraints. The containers used

in this phase are automatically constructed during the syntax checking phase by grouping

all occurrences of the same nonterminal (e.g. user names in the passwd file) together.

Maia has a couple of weaknesses. First, Maia does not support binding names to a

container. For example, consider a rule where there is at least one user with name of “root”,

giving the container name that includes names for all users. Maia expresses the given rule

as:

exists name : name == “root”;

Also, a rule that states there is at least one user with uid of 0, given the container uid that

includes uids for all users, Maia expresses the given rule as:

exists uid : uid == 0;

Another example shows a rule that applies the constraint on all elements of the container,

name must be “root” that indicates the user’s uid equal to 0. Maia expresses the given rule

as:

forEvery passwd : name == “root” implies uid == 0;

From these examples, we can see that the specified names are not bound to their containers,

and that leads to semantic ambiguity. A verifier cannot confirm that the uid (name) is an

element in uid (container). The author of Maia uses a hand verifier to confirm that.

Second, Maia also introduces another problem, which is container bounds checking. For

example, isUnique template can be defined within container name called name as:
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(template name isUnique()) forEvery name: name[i] != name[j] ;

We can notice that the verifier cannot determine that i in [1..length(container)], in [i+1..length(container)]

to verify:

( i != j implies name[i] != name[j])

In addition, name on the right hand side of the rule refers to the entire container whereas

name refers to an element of the container in the previous rules. In this work, we solved

names binding and container bounds-checking problems, and implemented a fully automatic

verifier for Maia language.

3.2. Integrity via Access Control

Access control limits who may modify information, and enforces the restrictions on which

processes can cause the authorized modification. This provides origin integrity by limiting

the source of changes. Origin integrity systems have been implemented using existing access

control mechanisms. This includes type-based discretionary access control system (DAC),

and mandatory access control system (MAC). DAC provides access control to objects by

user identity. Each object has a list of users. The permission is defined on objects as a set

of access modes: (read, write, and execute). An example of DAC is Unix file system, which

defines the read, write, and execute permissions in each of the three bits for each user, group,

and others.

MAC views computer systems as a collection of subjects (user or process) and objects.

An example of a MAC system is multi-level security MLS. In MLS, a security administrator

assigns sensitivity levels (Top Secret (TS), Secret (S), Confidential (C), and Unclassified

(U)) to the subjects and objects. These levels are ordered hierarchically from the most to

the least secure such that TS > S > C >U. Each subject is associated with clearance, and
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each object is arranged within a classification. The permission is defined on objects as a set

of access modes: (read, append, write, or read-write). For example, user A has a clearance

secret and user B has a clearance of top secret. Both users are attempting to access an object

that is classified as a top secret. Based on the level sensitivity, user B can only retrieve the

data successfully.

DAC and MAC systems introduce permissions mapping difficulties when the number of

files or processes grows as in a modern computer system. Badger, et al., proposed their

Domain and Type Enforcement (DTE) to address these problems [19]. Under DTE system,

each process executes within a domain and objects are assigned a type. The domain specifies

the rights, and all process excusing within the same domain have the same set of access rights.

DTE Language (DTEL) is a high level symbolic language for expressing policies in a human

readable format. DTEL supports inheritance structure through a file system.

DAC and MAC systems can also introduce role management problems if permissions

are assigned to a positions or roles rather than a specific user. To address this problem,

Ferraiolo, et al., propose a role based access control (RBAC) [38]. Under RBAC, permissions

are associated with roles, and users are assigned numbers of appropriate roles. Access control

policy is expressed in different components of RBAC such as role-permission, user-role, and

role-role relationships. RBAC components are able to determine whether a particular user

will be allowed to access a particular piece of data in the system. Checking on user’s roles

rather than the user themselves, makes updating role-based permissions trivially easy, and

introduces minimal complexity during normal checking.

In addition to the previous access control mechanisms, origin integrity systems have been

achieved using existing access control mechanisms. This includes designing approaches for

a MAC mechanism for the Unix file system [3], securing data flow and file movements using

discretionary access controls [4], and an approximate Clark-Wilson model using Unix access
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controls [39]. Security-Enhanced Linux (SELinux) has been integrated into Linux kernel

[40]. SELinux model provides a mechanism for supporting access control policies using

MLS, DTE and RBAC. However, a trustworthy entity that access an object may still violate

the integrity of the data. For example, a root on a Linux system has full access and can

modify anything in a manner that violates a security policy. The access control mechanisms

cannot directly address such modifications and ensure data integrity without relying on users

or special software. In our tool, we are looking at integrity as a property of the data, not

the trustworthiness of the process modifying it.

3.3. Database Integrity

The integrity of relational database systems are concerned with the maintenance of the

correctness and consistency of the data in a multi-user database environment. Database

integrity violations result from many different sources such as errors in system software, typ-

ing errors, and logical errors in application programs. Many database management systems

have an integrity subsystem that is responsible for monitoring transactions, detecting and

reporting integrity violations, and returning the database to a consistent state.

The relational model is the conceptual basis of relational databases, and it is first pro-

posed by Codd in 1969 [20]. The first major characteristic of the relational model is the

usage of relations (tables) to store all data. Each relation consists of rows and columns, and

also it must have a header and body. The header is a list of columns in the relation, and

the body is the set of data organized into rows. The junction of one column and one row

will result in a unique value called a tuple. The second characteristic of the relational model

is the usage of keys to order or relate data to other relations. One of the most important

keys in the relational databases is a primary key that is used to identify each row of data

uniquely, and the foreign keys that relate data in one relation to the primary key of another
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relation.

The integrity of relational database systems is widely studied and well understood. The

relational model depends on a set of rules to enforce data integrity, these rules are known as

integrity constraints. Integrity constraints deal with the reliability of the data stored in the

database, and are divided into three categories:

1. Domain integrity rules: It is concerned with maintaining the correctness of attribute

values within relations. It defines the type of the domain as a type checking in pro-

gramming languages. The type of the domain must be precise to avoid violations of

domain integrity.

2. Entity integrity rules: It relates to the correctness of relations among attributes of the

same relation. This integrity ensures that each record in a table is unique and has a

primary key that is NOT NULL.

3. Referential integrity rules: It is concerned with maintaining the correctness and con-

sistency of relationships between relations. It requires that a foreign key must have a

null entry or an entry that matches the primary key value in a table that it belongs to.

Turker and Gertz [21] provide a summary of integrity constraints enforcement in the

standard SQL 1999. The standard SQL supports two powerful mechanisms of integrity:

declarative and procedural constraints. Declarative constraints are applied during table

creation and modification. It enforces rules that include field requirements like NOT NULL,

row constraints like CHECK, table constraints like UNIQUE, and inter-table FOREIN KEY.

However, procedural constraints are activated via triggers when changes are made to the

database. Triggers are essential to realize effective constraint enforcing, and become useful

when features supported by declarative constraints cannot meet the functional needs of

the application. It can be set to run immediately before or after the database is modified
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(INSERT, UPDATE, and DELETE actions). Triggered procedures are able to access the

previous and new state of affected records. Also, they can be set up to create new table

entities or remove old entities. Triggered procedures in the database support state change

validation and record updating to be set automatically, regardless of how data modification

is initiated.

Database integrity protection is implementable but it does not provide sufficient func-

tionality to protect general data independently; the traditional relational database does not

provide the integrity controls to validate individual fields in general. Although, the integrity

constraints provided by SQL are very powerful but they are limited to the core type sup-

ported by the language. For example, to validate a phone number, a database user needs to

provide an additional code to one that is provided by SQL.

3.4. Integrity via Fault Tolerance

Fault tolerance is the property that enables a system to continue operating correctly in

the event of the hardware or software failure. A program is developed by making a series of

small changes to a set of legal states (state transitions) as a basic action of assigning value to

a program variable. During normal operation, the program arrives to a valid state within its

legal states. When a fault occurs, the program jumps unpredictably to another state within

some larger set.

A fault tolerant computer system is designed to handle hardware-related faults such as

hard disk failures, input/output device failures, and software-related faults such as bugs and

errors. Fault tolerant software is handled through two conditions: closure and convergence

[15]. Closure requires that a program that starts in valid state will remain operating in valid

states. With a Closure condition, programs will not crash or misbehave due to programming

bugs or errors, while convergence requires a program to be able to return to a valid state after
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faults stop occurring. Combing these two conditions will guarantee the program continue in

valid states until it has failed again.

Fault tolerance and integrity protection solve the same problems: preventing and recov-

ering from errors in the system state. However, integrity is primarily about user/process

actions, while fault tolerance is a reaction to environment effects. Fault-tolerant software

may recover form environmental actions, but it will not guarantee to write valid data, and

cope with corrupted data (i.e. Mirroring software bugs).

3.5. Integrity via Correctness

Program correctness is achieved when a program is correct with respect to some specifi-

cations. Functional correctness refers to the input-output behavior of the program such that,

for each input it produces the expected output. Hoare logic is a specific formal system for

reasoning about the correctness of computer programs [16]. It defines programming language

semantics through assertions known as Hoare triples: precondition: a proper condition to

run the program, command: indicates the behavior of the program, and postcondition: the

desired result following the program’s termination. Program correctness is always described

with respect to its specification precondition and postcondition.

There are two kinds of correctness proofs: partial correctness (weak): assumes all com-

mands terminate:

(precondition and termination) => postcondition

This kind of correctness is weak since it makes no claim if a command fails to halt. To-

tal correctness (strong): requires a command be proven to always halt, and the pre/post-

condition pair being true.

(partial correctness and termination) => postcondition

27



Proving the correctness of a small program is useful and manageable but it does not

suitable for modern software systems that have millions of lines code, representing thou-

sands of semantics states and state transitions. These kinds of systems require a robust

tool for assuring that the system behaves properly in each of its states. For example, the

Java Modeling Language (JML) provides code level extensions to Java, and Spark/Ada is

a proprietary system that provides the similar extension to Ada. These robust tools enable

the programs to include formal specification and their enforcement at run time [17].

Ensuring data integrity through correctness introduces two major problems: first, a prov-

ably correct program is not necessarily able to defend against user invalid well-formed data

even if is guarantees the total correctness. For example, a provably correct text editor is able

to output a text file, which includes the wrong information in the wrong format. The other

problem is about the correctness of the software system itself. For example, a text editor

can modify user account information in provably correct primary user account management

tools.

3.6. Integrity via Trust Models Based Subjective Logic

The following are different enhanced trust-based subjective logic models to support var-

ious organizational security policies that have been proposed. Oleshchuck proposes a trust-

enhanced data integrity model that is based on the Biba integrity model using subjective

logic [4]. In his model, he reformulates the rules of the Biba integrity model in terms of

trust and proposes how to combine Role-Based Access Control RBAC with the introduced

integrity model. Gao, et al. [8], propose a trust model by analyzing and improving subjective

logic. By using subjective logic in their model [7], they can evaluate the trust relationship

between peers and resolve security problems in practical computing environments. Jøsang

proposes a trust management system based on subjective logic [6]. He proposes an evidence
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space and opinion space that are used to evaluate and measure trust relationships.

These policy-based trust models use credentials to instantiate policy rules that determine

whether to trust an entity, resource or information. The policies do not protect the system

entities since the credentials themselves are information that is not protected by the model.

On the other hand, trust models preserve the initial evaluation of data integrity by providing

information about the trustworthiness of data and entities. These models do not consider all

of the side effects of dynamic data integrity. For instance, the trust opinions of the system’s

subjects can keep obtaining lower trust levels when they read less trusted data but there is

not mechanism in the model to raise the integrity levels, possibly resulting in isolation of

the subject.

3.7. Conclusion

Computer security is comprised of the related fields of confidentiality, availability, and

integrity. While confidentiality and availability are generally well-understood with widely

implemented safeguards, there are no general purpose integrity systems. Existing integrity

systems are either:

1. Focusing on safeguarding specific systems at the cost of generality –as with databases,

2. Providing general protection and they are not well-suited to the real-world implemen-

tation –as with Biba or Clark and Wilson integrity models,

3. Dealing with trustworthiness of who access the data –as with access control approaches,

or

4. Causing data/subjects isolation from the system resources -as with trust models based

subjective logic.
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CHAPTER 4

STRUCTURAL OPERATIONAL SEMANTICS SOS FOR MAIA

In this chapter, we give a Structural Operational Semantics (SOS) for Maia and report

on a preliminary implementation of a Maia compiler in the context of a mandatory integrity

system. The semantics give precise rules for giving meaning to a Maia specification. These

rules show there is no ambiguity in Maia, giving assurance that a correct implementation

of Maia file verifiers is possible. This allows one to implement a compiler or interpreter and

use Maia to specify integrity constraints within an integrity system.

This chapter is structured as follows: first, we give an overview of Structural Operational

Semantics. Next, we define Maia and give its SOS. Finally, we give a brief conclusion.

4.1. Structural Operational Semantics (SOS)

SOS, introduced by G. D. Plotkin [2], is used to specify a framework for describing the

operational behavior of programming languages. The basic idea behind SOS is to define the

behavior of a program or a system in mathematical terms, in a form that supports under-

standing and reasoning about the program under consideration. SOS has been successfully

applied as a formal tool to give usable semantics descriptions for real-life programming lan-

guages including Java. SOS is a direct approach that provides comprehensive definitions

in a very simple formal mathematics. Moreover, SOS is the preferred choice over methods

based upon denotational semantics in the static analysis of programs and in proving compiler

correctness.

As described by Prasad and Arun-Kumar [41], SOS defines the semantics of a program-

ming language from the syntax by applying the correct sequence of inference rules. Each

30



rule has the form

P1,

P2,

. . . ,

Pn

C
, (4.1)

where, Pi represents judgments (premises or assumptions), C is a single judgment or conclu-

sion, and side conditions express the constraints of the rule. The inference rule states that

if all of the premises are true, then the conclusion is true.

We present the SOS of Maia using big-step structural semantics that justifies a complete

execution sequence using a tree-structured proof. Any semantics of a programming language

involves auxiliary entities or bindings such as environments, stores, etc. We present the

SOS of Maia with respect to a finite domain function called an environment, γ, that maps

a set of variables, X, to their computed values V . The big-step transition relation ⇒e is

defined inductively as the smallest relation closed under the inference rules given a Maia

rules specification. The SOS of Maia rules specification has the form γ 7→ R ⇒e v which

is read “given an environment γ, the syntax rule R evaluates to a value v”. This relation is

understood as a transition that leaves γ unchanged. The rules can be expressed as a proof

tree of why R can evaluate to a value, where the goal judgment R ⇒ v is at the root, the

internal nodes represent the rule instances with a branch for each antecedent, and the leaves

are axiom instances.
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4.2. Maia

In this dissertation, we present an integrity language, called Maia, that is a specification

language that verifies arbitrary structured file types [1], [13]. It is designed to describe the

integrity constraints for arbitrary structured data. For example, Maia within the context

of Linux can be used to specify the format of system configuration files, PNG files, and

others. In Maia, a file verification process is accomplished using two phases that correspond

to checking the file syntax and semantics. In the first phase, the user provides an Extended

Backus Naur Form (EBNF) grammar in order to verify the file structure and extract its

syntactic elements for processing. This syntax checking component of Maia is designed

to work like a normal parser as generated by a parser generator. The second phase of

Maia checks the constructed sets of data in the syntactic elements by using set theory and

predicate calculus to express the integrity constraints. The sets used in this phase are

automatically constructed during the syntax checking phase by grouping all occurrence of

the same nonterminal (e.g. user names in the passwd file) together.

The rest of this section provides a detailed discussion of Maia’s design including syntax

and semantic specification, automated container building, and other features of Maia.

4.2.1. Design Objectives

Maia has two primary objectives. First, it is must be able to protect arbitrary structured

data in information systems by providing a generally applicable system to detect and prevent

modifications which would compromise data integrity. Maia is designed to be as flexible

as possible to support different types of structured files rather than restricting it to only

support certain files structures. Second, a Maia specification is able to describe the valid

format of data. In other words, Maia takes the perspective that integrity is the property of
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the data. Integrity does not follow the trustworthiness of the process modifying the data. We

designed Maia to provide implementation independent descriptions for valid structured files

that requires not only reasoning about the verifier’s rules but also how they are implemented.

4.2.2. Syntax Specification

Syntax rules represent the first phase of file verification. We built a separate verifier for

this phase. The syntax phase verifier is designed to work like a normal parser as generated

by a parser generator. Additionally, the syntax phase verifier is designed to exit as soon

as it realizes a file is invalid. Otherwise, the syntactic elements will be constructed to be

tested in the semantics phase. A Maia specification begins with a rule specifying the file to

be verified using a full path specification. A Maia verifier invokes the syntax phase verifier

with the specified file and its data.

Maia produces a syntax checker via the standard metalanguge Extended Backus Naur

Form based on ISO/IEC 14977 specification. Some changes and extensions are added to

ISO/IEC 14977 specifications in order to improve Maia syntax rules [23].

In Maia, within the syntax checking phase, nonterminal names are constrained to the

following conventions:

1. Names are expressed from a common name purpose of the syntactic element.

2. Names consist of one or more words, identified from this point on by CamelCase.

3. Names that appear in the left side of the definition start with an uppercase letter.

4. Names that appear in the right side of the definition start with a lowercase letter.

A top-level nonterminal that refers to a file type specification has one nonterminal whose

name starts with uppercase letter. All top-level nonterminals should receive uppercase first
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letters to be reused later, even though they can be appeared on the left in definitions in

other files.

4.2.3. Building Containers

Maia’s syntax phase automatically constructs containers by grouping all occurrences of

the same nonterminal together. In Maia, a container is a multi-set that is ordered by the

order in which the elements appear in the scanned file. Each nonterminal entry in the

specification will be an ordered container with the same name during the second phase. For

example, consider a file consisting of one or more colons separating pairs of user names and

hashed passwords, where each pair appears on its own line. The file has the form:

alice: 19fd01b2307d497fb174decd8bc9c121

bob: 0f68eb4c87c99c563e168cdc2cd92336

An example Maia syntax specification for /etc/passwd follows.

UserFile= userRecord+ ;

userRecord = name “:” password Newline ;

name=[a-z]+ ;

password = [a-z0-9];

The syntax checker phase compares the given file structure against file’s data to obtain

its syntactic elements. If the input file has proper syntax, the parser of this phase produces

an abstract syntax tree. The containers are constructed in this phase by traversing the

generated tree and collecting the information scattered throughout the tree.

Automated Containers Construction. Containers in Maia’s first phase are con-

structed automatically. Each container contains the input chunks that matched the parser

rule. Since each nonterminal becomes an ordered container, the example has the containers,
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userRecord, name, and password. We consider two types of containers that are constructed

within the syntax rule phase: Simple and compound containers.

Simple containers are constructed when nonterminals contain at most one other nonter-

minal. The elements of the constructed container appear in the order they were encountered

by the parser. By considering this file,

alice: 19fd01b2307d497fb174decd8bc9c121

bob: 0f68eb4c87c99c563e168cdc2cd92336

The simple container name will be an array, and has the form:

name= (‘alice’, ‘bob’)

password= (‘19fd0...’, ‘0f68e...’)

Compound containers that are constructed when nonterminals contain at least two other

nonterminals. Dot notation (e.g. ContainerName.ContainerMember) is used to explicitly

refer to members of a compound containers. In our example, the compound container

userRecord will be an array of simple containers name and password, and has the form:

userRecord.name= (‘alice’, ‘bob’)

userRecord.password= (‘19fd0...’, ‘0f68e....’)

By associating simple containers to their main entries, we solve the Maia’s containers

naming ambiguity problem. For example, given only the passwd file containers name and uid,

there is no way to determine which correct name corresponds to which uid especially if there

is another name container that is constructed explicitly. The main container userRecord

provides the mechanism to define the relationship between passwd records, rather than using

name and uid as simple containers.

Explicitly Constructed Containers. Maia’s specification allows users to construct

containers explicitly rather than building them from a given file. Explicit container con-

struction in our tool is only available to the semantics phase. Elements within user-defined
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containers are enclosed within curly braces and specified as a comma-separated list of either

strings (enclosed by single quotation mark) or integer numbers. String and integer container

types cannot be mixed. For example, both of these containers are valid in Maia:

class={ ’TS’, ’S’, ’C’ , ‘U’} ;

version={1,2,3,4} ;

In contrast, the user container below is invalid and causes Maia to exit and generate an

error:

user={20, 10, ’alice1’,’bob85’, ’70R’} ;

Joining Existing Containers. Maia provides a mechanism to create new containers

by joining elements of two or more existing containers from the syntax phase or user-defined

containers. The joining process requires containers to have the same number of elements.

Attempting to join mismatched containers generates an error.

The joined containers are enclosed within curly braces as with user-defined containers and

separated with one or more joining connectors. For string-based fields, the joining connector

is a dot operator to indicate concatenation. For example, consider a file containing user login

data, including user names and login domains:

user={’alice’,’alice’, ’bob’} ;

domain={’DOMAIN1’, ’DOMAIN2’, ’DOMAIN2’} ;

The container of user and domain in Maia would have the following specification:

userDomain={user. domain } ;

This would give us the container:

userDomain=(‘aliceDOMAIN1’, ‘aliceDOMAIN2’, ‘bobDOMAIN3 )
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Mathematical operators can be applied to containers for numeric types. In this case, the

joining operator may be one of +, -, *, /, % andˆ, which preserve their customary meaning

of addition, subtraction, multiplication, division, modulus, and exponentiation.

The container-joining process generates an error if the mathematical operators are applied

on containers that are string-parsed type. However, parsed numeric elements may be joined

with other containers using concatenation (dot operator). This will use the raw input string

rather than using the parsed value.

4.2.4. Semantic Specification

Maia’s semantic rules are a straightforward adaption of predicate logic. For example,

consider the rule “ there must be at least one user with a UID of 0”. Given the container

uid that contains all the UID’s of all users, the formal expression for this rule is: ∃u ∈ uid :

u == 0. The equivalent Maia’s rule is:

exists u in uid: u == 0 ;

In Maia’s semantic rules the ∃ is replaced by exists and it specifically refers to the

existence of a single elements in a given container. The quantifier u in the right hand side

refers to single elements in the containers rather than the entire container. Providing the

container name in the right hand side to compare to a single element or other container

variable will cause an error. Instead, containers are compared to other containers, and a

container variable is compared to a single value or other container variable. For example,

the following Maia semantic rule can be used to express the constraint “there must be at least

one user id in uid and uid1 containers such that both of them are equal", Maia semantic

rule would be:
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exists u in uid, exists v in uid1: u == v ;

Maia also has a rule that applies constraints on all elements of the container, for example,
“UID’s must be in the range 0 to 32767”. In predicate logic, this rule has this form:

∀a ∈ uid : u >= 0 ∧ u <= 32767;

which translates into Maia as:

forEvery u in uid: u >= 0 and u <= 32767 ;

In the reminder of this section, we describe the basic form of Maia semantic rules. Then,

we present the language features for building constraints between elements within containers

and between containers themselves.

Rule Structure. Semantic rules have this basic form:

quantifiers : constraint ;

The quantifiers for the semantic rule specify one or more containers to which the rule applies

and whether the rule must be true for all elements in the containers under consideration

or at least one element. Semantic rules may apply to all constructed containers: parser-

constructed, explicitly constructed, and joined containers. The rule will be false if there is

at least one element does not satisfy the constraint of forEvery or no elements satisfy the

constraint of exists rule.

The right side of the rule provides one or more boolean constraints that will be evaluated

for each container’s element or for each container until the rule is satisfied. Elements are

evaluated in containers under consideration in the order they are encountered during parsing.

Failure of an exists rule results in scanning the entire container. Comparatively, the failure

of a forEvery rule is less expensive since evaluation can be terminated once a single case

evaluates to false.
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Variables, which appear in the constraint, refer to the current element of the associated

container rather than a container as a whole. The variables must be compared to other

variables or individual (integer or string) values. The Maia verifier generates an error if a

variable is compared to a whole container. Additionally, containers’ names may appear in

the constraint. In this case, they must be compared to other containers to avoid generating

an error.

Semantic rules are case sensitive for keywords, variables, and container names. As with

syntax specification, the semicolon is used to represent the end of the rule, and white space

is ignored except to separate tokens.

Logical Comparison and Connectors. Maia’s constraints use any of the following

logical comparisons that carry their conventional meaning: ==, !=, <, <=, >, and >=. The

comparison operators are used for both numeric and string-based comparison. Elements with

numeric passed types are compared as numbers, while elements with string parsed type are

compared lexicographically.

For numeric parsed types, constraints in Maia also use one of any of the mathematical

operators: +, -, *, /, % (module) andˆ(exponentiation), that have their customary meaning

and precedence. However, division (/) truncates and always returns an integer number.

Maia generates an error if a mathematical operator is applied on an element that does not

have a numeric parsed type. All parsed types can be concatenated using the dot operator,

and the result is considered of string type.

In addition, constraints use standard logical connectors: not, and, or, xor, implies

(implication), and iff (bicondition). The not operator can be used to negate a given

constraint. The logical operators have their conventional meanings and precedence as follow:

not > and > or == xor > implies > iff
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Using Quantifiers. We add variables to Maia to solve the ambiguity that is associated

with container naming in the original definition [1]. A unique quantifier is added to represent

each container. Maia generates an error if an existing quantifier is specified to represent other

containers. Each quantifier represents all elements of the current containers. For example,

the following Maia semantic rule can be used to express the constraint “there must be at

least one user with a name of root”, Maia semantic rule would be:

exists u in userRecord.name: u == ‘root’ ;

We design quantifiers in Maia to be compared to either a single value (integer or string) or

other quantifiers. However, Maia generates an error if a quantifier is compared against a

container. For instance, using the following rule to express the constraint “ there must be

at least one user id in the uid container that is greater than a group id in gid container”:

exists u in userRecord.uid, exists x in userRecord.gid: u > gid ;

This rule is invalid in Maia because it attempts to compare the quantifier u against the

container gid

Maia’s Interpreter Values. Our Maia interpreter handles four types of values: integer,

string, boolean, and list(integer, string, and boolean values). Quantifiers are compared to

a single value or to other quantifiers of the same types. Containers are compared to either

other containers or a list value of the same type.

In comparison constraint, Maia first applies type checking on current quantifiers, contain-

ers, and list values. Any mismatched type causes Maia to generate an error. For example,

following is a semantic rule that tests the equality of the containers for user names and

passwords in the passwd file:

forEvery u in userRecord.name, forEvery v in userRecord.password:

userRecord.name == userRecord.password ;
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4.2.5. Example Maia Specification

As examples of Maia, we first show a subset of a specification to protect the integrity of

/etc/passwd. Then, we give a second example that is a portion of a specification to protect

PNG files.

PasswdFile = (passwdRecord Newline)+ ;

passwdRecord = name ":" password ":" uid ":"

gid ":"

gecos ":" directory ":" shell ;

name = [a-zA-Z_][-a-zA-Z0-9_]{0,31} ;

password = "*" | "x" ;

uid = NUMBER ;

gid = NUMBER ;

gecos = [^:\n]* ;

directory = [^:\n]+ ;

shell = [^:\n]* ;

NUMBER: DIGIT+ ;

DIGIT: [0-9] ;

Newline = "\n" ;

exists n in name : n == "root" ;

forEvery u in uid: u <= 65535;

exists g in gid: g <= 65535;

exists p in passwdRecord: p.name == "root" implies p.uid == 0;

forEvery p in passwdRecord : p.shell != "" ;
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The above Maia specification ensures that there is a user named root, the user and group

ids have a valid number, the user id of root is 0, and no shell is empty. The specification

above the line that begins with exists gives the syntactic structure of a password file, and

the lines beginning with exists through the end give what it means for a password file to

be valid. The full specification of Unix password, group and shadow files can be found in [3].

As a second example, we give an excerpt of a Maia specification of PNG files.

ihdr = "\0\0\0\x0D" "IHDR" ihdrData ihdrCRC ;

ihdrData = width height bitDepth colourType

compMethod filterMethod interlaceMethod ;

width = UnsignedBigEndianInt{4} ;

height = UnsignedBigEndianInt{4} ;

bitDepth = BigEndianInt{1} ;

colourType = BigEndianInt{1} ;

compMethod = BigEndianInt{1} ;

filterMethod = BigEndianInt{1} ;

interlaceMethod = BigEndianInt{1} ;

forEvery i in ihdr : i.width >= 1 and i.width <= 2^31 - 1 ;

forEvery i in ihdr : i.height >= 1 and height <= 2^31 - 1 ;

forEvery i in ihdr : i.bitDepth in < 1 , 2 , 4 , 8 , 16 > ;

forEvery i in ihdr : i.colorType in < 0 , 2 , 3 , 4 , 6 > ;

forEvery i in ihdr : i.colorType in < 2 , 4 , 6 > implies

i.bitDepth in < 8 , 16 > ;

forEvery i in ihdr : i.colorType == 3 implies

i.bitDepth in < 1 , 2 , 4 , 8 > ;
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forEvery i in ihdr : i.compMethod == 0 ;

(warn) forEvery i in ihdr : i.filterMethod != 0 ;

(warn) forEvery i in ihdr : not i.interlaceMethod

in < 0 , 1 > ;

In this example, the width and height are limited to be 4 characters long using the {4}

annotation in the respective syntax rules. The second half of the specification, beginning

with forEvery, gives a subset of the semantic requirements for a valid PNG file. The full

specification for PNG files can be found in [3].

4.3. SOS for Maia

In this section, we define a Structural Operational Semantics (SOS) for Maia. A Maia

specification has the following basic structure:

M → I∗ T ∗ X∗ C∗ S∗R (4.2)

where I represents a file inclusion directive, X is an EBNF specification of the input file

syntax, C represents a container construction operation, SR represents a semantic rule and

T represents a template. In the rest of this section, we focus on the semantics for X, C and

SR since they are the critical elements of Maia. The SOS of a Maia specification is

γ `M ⇒e v
(4.3)

where v ∈ B and B = {true, false}.
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4.3.1. File Inclusion

Inclusion brings an existing specification into the current specification via the using

keyword that is similar to #include "file" in C. It provides both reusable definitions and the

refinement of the existing specifications. Therefore, when a path is specified, and a file is

included, all its syntactic specifications will be available, and all of its semantic rules are

enforced. In Maia, inclusion has the form:

I → using "sysPath" ;

| using "sysPath" on "sysPath" ;
(4.4)

where sysPath is the path to the specification to be imported. The path can be relative or

absolute. An absolute path is interpreted according to the local platform rules. Whereas, a

relative path is interpreted in relation to the location of the current file. When the implemen-

tation provides standard libraries, relative paths are checked first against the location of the

current file and then in the standard libraries. For example, a system loads the specification

fsobject.maia , which is located in the current directory with the following command:

using "fsobject.maia" ;

Normal Maia specifications produce verifiers which process whatever input they are given,

but this is insufficient in the event that multiple files must be parsed together. To deal with

the need to process specific other files as part of verification, we provide an extension to the

file inclusion system. First, specifications should be created for each of the files in the file

group. Then, a new specification can be written which includes the existing specifications,

links them to actual files, and provides rules connecting the specifications. Maia supports

multi-file verifiers by adding extensions via the on keyword as follows:
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using "sysPath1" on "sysPath2" ;

In the example below, the Maia specification groupfile.maia is linked to the file /etc/group:

using "groupfile.maia" on "/etc/group" ;

Thus, as part of the current verification, the file /etc/group must also be verified using the

groupfile.maia specification.

The first form of a using statement includes other Maia rules, M , to be applied to the

the same file as the rules contained the current Maia specification. The SOS for the first

form of using is

γ ` using "sysPath"⇒e v1

γ `M ⇒e v2

γ ` using "sysPath"M ⇒e v3
(4.5)

, where v3 ∈ AND(v1, v2)

For the second form of Maia is similar, except that the using statement is evaluated in

a separate environment from the the main file. This leads to the following SOS

γ1 ` using "sysPath" on "sysPath"⇒e v1

γ2 `M ⇒e v2

γ1, γ2 ` using "sysPath" on "sysPath"M ⇒e v3
(4.6)

4.3.2. Syntax Rules

Maia syntax rules are an EBNF specification of input file syntax. A Maia translator can

emit a specification in any parser generator system to read a file. The names that appear
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on the left hand side of a syntax rule represent containers that contain the strings that

match that rule in the input file. Thus, syntax rules define variables that are used later

in constructing containers and in verifying the properties of the constructed containers. In

Maia, items in a container are considered to be ordered based on their original order in the

file being verified.

Let G = (V,Σ, P, S) be a context-free grammar where V is a container of variables or

non-terminals, Σ is the alphabet or container of terminals, P is a set of rules and S is a

distinguished element of V called the start symbol [42]. Let ni be a node in the derivation

tree, T , for the derivation S ∗⇒ w, where w ∈ Σ∗, and nj, . . . , nk be the children of ni. We

denote the string derived from ni as δ(ni). δ(ni) is defined recursively as

1. If ni is a leaf node, then δ(ni) = label(ni)

2. If ni is an interior node, then δ(ni) = δ(nj) · . . . · δ(nk)

Let A,B ∈ V . We denote the container of strings derived from A as ∆(A). ∆(A) = {δ(n) |

n ∈ T ∧ label(n) = A}. In addition, we define ∆(A.B) as

∆(A.B) =

δ(n)

∣∣∣∣∣∣∣
n ∈ T ∧ label(n) = B ∧

label(parent(B)) = A

 (4.7)

This second form is used when referring to strings derived in the context of a specific rule.

A syntax rule, X, has the form: N = xEy where N,E ∈ V and x, y ∈ Σ∗ ∪ V . The SOS

of a syntax rule expressed in the context of a semantic rule, SR, in Maia is

γ ` N= xEy ⇒e (∆(N),∆(N.E))

γ[N 7→ ∆(N), N.E 7→ ∆(N.E)] ` SR ⇒e v

γ ` N= xEy SR ⇒e v
(4.8)
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where v ∈ B and B is a boolean value indicating a file is valid (true) or invalid (false).

Essentially, syntax rules create a new mapping from the name appearing on the left hand

side of an EBNF rule to the container of strings that are matched in an input file.

For example, we can state the rule passwdRecord to specify a record in /etc/passwd as:

passwdRecord = name ":" password ":" uid ":"

gid ":"

If this rule is applied to the input:

alice: 19fd01b2307d497fb174decd8bc9c121:1000:1

bob: 0f68eb4c87c99c563e168cdc2cd92336:200:2

the constructed containers from this input are:

passwdRecord = {{alice,19fd..., 1000, 1 },

{bob,0f68..., 200, 2 }}

passwdRecord.name = {alice, bob}

passwdRecord.password = {19fd..., 0f68...}

passwdRecord.uid = {1000,200}

passwdRecord.gid= {1,2}

Containers in Maia syntax rules are constructed automatically. Each container is converted

into a simple or a compound container containing the input chunks that matched the parser

rule. Maia syntax phase constructs simple containers by grouping all the occurrence of the

same nonterminal together. The scope of the definition of S is limited to the occurrences
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of the same variables in the expression as follow: Lets suppose that S occurs n times,

{S1,S2,. . . ,Sn}. Then, we can define simple container S as follows:

let S =def{S1, S2, .., Sn} (4.9)

The SOS of a simple container definition S is:

(γ ` S1, γ ` S2, . . . , γ ` Sn)⇒e {v1, v2, . . . , vn}=v
γ ` let S =def{S1, S2, . . . , Sn} ⇒d γ[S 7→ v] (4.10)

The scoping definition of simple container S,⇒d returns a new environment with the addi-

tional mapping.

Alternatively, Maia constructs compound containers when nonterminals contain at least

two other nonterminals. The scope of the definition of S is limited to the occurrences of the

different variables in the expression as follows: Lets suppose that S is a compound container

that has n simple cos {S1,S2,. . . ,Sn}. Each simple container S occurs n times such that

{S1,1, . . . , S1,n, S2,1

, . . . , S2,n, Sn,1, . . . , Sn,n}. Then, we can define the compound container S as follows:

let S =def{{S1,1, S2,1, . . . , Sn,1},

{S1,2, S2,2, . . . , Sn,2},

. . . , {S1,n, S2,n, . . . , Sn,n}}

(4.11)
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The SOS of compound container S is:


{γ ` S1,1, γ ` S2,1, . . . , γ ` Sn,1},

{γ ` S1,2, γ ` S2,2, . . . , γ ` Sn,2}, . . . ,

{γ ` S1,n, γ ` S2,n, . . . , γ ` Sn,n}

⇒e


{v1,1, v2,1, . . . , vn,1},

{v1,2, v2,2, . . . , vn,2}, . . . ,

{v1,n, v2,n, . . . , vn,n}

 =v

γ ` let S =def


{{S1,1, S2,1, . . . , Sn,1},

{S1,2, S2,2, . . . , Sn,2},

. . . , {S1,n, S2,n, . . . , Sn,n}}

⇒d γ[S 7→ v]

(4.12)

4.3.3. Container Construction

Container construction in Maia may be done explicitly. Elements are specified as a

comma-separated list of either strings or numbers. Constructed containers are available

to semantics rules. As in the case of syntax rules, Container construction rules create a

mapping from the container name to the elements of the container. In Maia syntax explicitly

constructed containers have the form:

C → Var = < Str1, . . . , Strn > ;

| Var = < Nval1, . . . , Nvaln >;
(4.13)
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where Var is a variable name, Str is a string literal and nVal is a numeric value. An example

of explicit container construction is

classification = < "TS", "S", "C", "UC" > ;

version = < 1, 2, 3.0, 3.1, 3.2> ;

The SOS of the explicit construction of a container of strings is:

γ ` Var = < Str1, . . . ,Strn >⇒e {Str1, . . . ,Strn},

γ[Var 7→ {Str1, . . . ,Strn}] ` SR ⇒e v

γ ` Var = < Str1, . . . ,Strn > SR ⇒e v
(4.14)

This rule indicates that the container name Var maps to the literal container elements

specified when evaluating a container of semantic rules SR. The SOS for containers of

numeric values is similar.

Maia also provides a facility to create a new container by performing a per-element join

operation on two or more existing containers. The containers to be joined are required to

contain the same number of elements of the same type (string or numeric value). Attempting

to join mismatched containers is considered an error.

To join containers, we reuse the angle brackets to indicate containers construction, though

in this case we specify how to construct an element rather than all elements in the container.

For string-based fields, the connector is a period to indicate concatenation, in the style of

Perl’s dot operator. For example,

user = <’a’, ’b’, ’c’ >

domain = <’D1’, ’D2’, ’D3’>

userDomain = < user . domain >
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results in the container userDomain mapping to the value {’aD1’, ’aD2’, ’aD3’}.

The SOS of container join for strings is

γ ` Var = < A1 . A2. . . . . An>⇒e

{a1,1 · . . . · an,1, . . . , a1,m · . . . · an,m},

γ[Var 7→ {a1,1 · . . . · an,1, . . . , a1,n · . . . · an,m}] ` SR ⇒e v

γ ` Var = < A1. A2. . . . . An> SR ⇒e v
(4.15)

where Ai = {ai,1, ai,2, . . . , ai,m}. The SOS of container join for numeric containers is similar.

A Maia specification is executed in two passes. The first pass consists of the rules in

Sections 4.3.2 and 4.3.3 to create the environment in which the semantic rules given in the

next section are evaluated. The second pass verifies the constraints placed on the file contents

expressed by semantic rules.

4.3.4. Semantic Rules

Structurally, Maia semantic rules are a straightforward adaptation of predicate calculus.

For example, consider the rule “there must be at least one user with a UID of 0” that may

be placed on /etc/passwd. Given the container uid, which contains the UIDs of all users in

/etc/passwd, we may express this formally as: ∃u ∈ uid : u == 0. The equivalent Maia is

quite similar:

exists u in uid : u == 0;

A Maia semantic rule has the following syntax:

SR → quantifiers : Cn ; (4.16)
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quantifiers → quantifier , quantifiers ;

| quantifier ;
(4.17)

quantifier → E? forEvery Var1 in Var2 : Cn ;

| E? exists Var1 in Var2 : Cn ;

E → (require) | (warn) | (info)

(4.18)

where E is an enforcement level, Var is a container name and Cn is a constraint on the

container. The possible enforcement levels are (require) which means the constraint is

always checked and input file is invalid if the constraint does not hold, (warn) which means

the constraint is always checked and a warning is issued if the constraint does not hold and

(info) which means the constraint is only checked if requested and a warning message is

given if the constraint does not hold. Below, we give the SOS for the (require) enforcement

level, without loss of generality. The SOS for a forEvery rule is

γ ` Var2 ⇒e A,

∀a ∈ A γ[Var1 7→ a] ` Cn ⇒e v

γ ` forEvery Var1 in Var2 : Cn ;⇒e v
(4.19)

where A is a container defined by a syntax rule or via container construction and v ∈

{true, false}.
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This rule indicate that the constraint must hold on every element of the container A in

order for the file to be valid. Similarly, the SOS for an exists rule is

γ ` Var2 ⇒e A,

∃a ∈ A γ[Var1 7→ a] ` Cn ⇒e v

γ ` exists Var1 in Var2 : Cn ;⇒e v
(4.20)

This rule indicates that the constraint must hold for at least one member of the container

A in order for the file to be valid.

A constraint, Cn, in Maia may be a logical comparison, an expression in predicate logic,

or a logic constraint. Syntactically, constraints are of the form

Cn → Cn logic Cn

| not Cn

| ( Cn )

| Inc

| Blb

| Cmpr

(4.21)

Cn provides one or more Boolean constraints that will be evaluated for each element

in the specifying container until the rule is satisfied. For example, a rule that applies the

constraint on all elements of the container, UIDs must be in the range 0 to 32767. Maia

semantic rule translates the given rule to:

forEvery u in uid : u >=0 and u <= 32767 ;

Maia includes the standard logical operators and, or , and xor. It also provides implies

and iff. Logical operators allow rules like:
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forEvery p in passwdRecord:

p.name == “root" implies p.uid==0 ;

This rule is applied to the constraint passwdRecord to express the constraint that the root

user must have uid equal to 0. The syntax p.name refers to the name field in every member

of the constraint passwdRecord.

Since a constraint is a finite function that finally maps to a Boolean value = {true,

false}. Without loss of generality, the SOS of (Cn1 logic Cn2) is:

γ ` Cn1 ⇒e v1 γ ` Cn2 ⇒e v2

γ ` (Cn1 logic Cn2)⇒e v3

(4.22)

where,

logic → IFF (v1, v2)

| IMPLIES (v1, v2)

| AND (v1, v2)

| OR (v1, v2)

| XOR (v1, v2)

(4.23)

and v1, v2, and v3 ∈ {true, false}.

not Cn negates the constraint. For example, a constraint that requires a user id not

greater than 32767 is expressed as follows:

exists u in uid: not(u > 32767) ;

Without loss of generality, the SOS of not Cn when Cn is true is:
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(not Cn) = v1

γ ` Cn ⇒e v1

γ ` not (v1)⇒e v2
(4.24)

where, v1 is true and v2 is false.

Container membership in Maia is specified with an in constraint. This constraint is

true if and only if there is at least one element in a container being tested. The syntax of

container membership semantic rules is :

Inc → indexedName in Var

| indexedName in < string (, string)∗ >

| indexedName in < nVal (, nVal)∗ >

(4.25)

where nVal in Maia defines numeric values and has the form:

nVal → iVal | fVal (4.26)

where iVal is a decimal or hexadecimal integer value, and fVal is a floating point value. The

SOS of nVal is:

γ ` iVal⇒e iVal γ ` fVal⇒e fVal
γ ` nVal⇒e v

(4.27)

where v ∈ {iVal, fVal}

In indexedName, if an element has a numeric type, it can be compared it to a numeric

literal, by applying a numeric operator, or concatenating it to a numeric value. In Maia ,
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indexedName has the form:

indexedName → Var ([ exp ])? (. Var)?

| Var
(4.28)

For example, indexedName can access an element in a container name as userDomain[i].

The SOS of indexedName is defined as

γ ` Var⇒e γ(Var) (4.29)

γ ` Var.Var⇒e γ(Var.Var) (4.30)

γ ` Var⇒e < u1 . u2. . . . . un>, γ ` exp⇒e v

γ ` Var[ exp ] ⇒e uv
(4.31)

where v ∈ nVal, and Var,Var.Var ∈ dom(γ).

An example of a container membership in Maia, consider the container disallowedCyphers

which contains cyphers that are not permitted under local policy. This rule can be stated

as follows:

forEvery c in cypher:

not (c in disallowedCyphers) ;
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The SOS of container membership is:

γ `


ej ∈ (indexedName) in (Var)

| ej ∈ (indexedName) in < string >

| ej ∈ (indexedName) in < nVal >

⇒e v

γ ` if []ni=1


ei ∈ (indexedName) in (Var)

| ei ∈ (indexedName) in < string >

| ei ∈ (indexedName) in < nV al >

⇒e v

(4.32)

where i, j ∈ {1, . . . , n}, and v ∈ {true, false}.

Black-box verifiers Blb are external procedures or processes that can perform tasks not

expressible in Maia.

Blb(verifier, Var, ...)

In this rule, verifier is the name of a black-box verifier known to the system, and the

Var is one or more elements in the current context to pass to verifier. A black-box verifier

receives one or more values and returns a single value.

A constraint Cn may also include comparisons and arithmetic operators. These operations

have straightforward semantics. Comparisons and arithmetic are of the form

cmp → indexedName cmp exp

| exp cmp indexedName

| indexedName cmp string

| string cmp indexedName

(4.33)

For example, if we have a container of user names name, we can define constraint that “root"

is the first element of the container as follow:
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exists n in name : n == "root" ;

The SOS of Cmp has the form:



γ ` indexedName⇒e v1 γ ` exp⇒e v2

γ ` exp⇒e v1 γ ` indexedName⇒e v2

γ ` indexedName⇒e v1 γ ` string⇒e v2

γ ` string⇒e v1 γ ` indexedName⇒e v2



γ `



indexedName cmp exp

exp cmp indexedName

indexedName cmp string

string cmp indexedName


⇒e v3

(4.34)

where,

cmp → EQ (v1, v2)

| NEQ (v1, v2)

| LESS (v1, v2)

| LEQ (v1, v2)

| GTR (v1, v2)

| GEQ (v1, v2)

(4.35)

and v3 ∈ {true, false}, v1 and v2 are either a numeric or a string value.

In Maia, expression elements, exp, are computed numerically using mathematical opera-

tors as presented in the nonterminal mop. The dot operator is used to concatenate the raw
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input of elements or string literals. In Maia, an expression has the form:

exp → exp ops exp

| ( exp )

| nVal

| indexedName

| Blb

(4.36)

Maia allows three different type-values in numeric comparisons: Integer, Floating-point,

or Mixed. Integer operations, iVal ops iVal results an integer value, except division which

does not truncate and always returns a floating-point number. The semantics of floating point

expression compassion (fVal ops fVal) operations follow the IEEE754 Standard. Finally, all

operands in mixed arithmetic operations are converted to floating-point. The SOS of exp is:

γ ` exp1 ⇒e v1 γ ` exp2 ⇒e v2

γ ` (exp1 ops exp2)⇒e v3
(4.37)

where,

ops → EXP (v1, v2)

| MULT (v1, v2)

| DIV (v1, v2)

| MOD (v1, v2)

| ADD (v1, v2)

| SUB (v1, v2)

| DOT (v1, v2)

(4.38)

59



and v1, v2, and v3 are numeric values.

4.3.5. Template Definition

Template definition aims to make Maia descriptions easier to create and maintain at the

same time. Templates are inspired by C’s macros, and work relatively in the same way. The

template is defined with container name placeholder that will become the rule. It is required

to involve one or more container name. In Maia, template definition has the form:

templateDef → ( template

Var Var ( Var∗))

replacementText ;

replacementText → SR | Cn ;

(4.39)

When the template is encountered during specification evaluation, all placeholders are

replaced with the provided container names, and the combination of provided names and

the template name are replaced by the replacement text. For example, isUnique() template

can be defined within a container called name as:

(template name isUnique())

forEvery n in name: name[i] != name[j] ;

isUnique() template requires all user name in the container name are unique
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name isUnique()

which becomes

forEvery n in name: name[i] != name[j] ;

when the specification is evaluated.

In semanticRule SR template, template serves as a container, which provides context to

the rule. Whereas, in constraint Cn template, the primary container name equivalents to a

container provided by the current context.

In addition, templates may provide either completely quantified rules or individual, un-

quantified constraints. For example, isUnique() would be a complete rule, while isOwnedBy()

is likely to be a constraint. For more templates, we refer the reader to [1].

The SOS of templates definitions is similar to that of syntax rules in that the introduce

a new mapping in the environment. The SOS of a template definition is

γ ` (template Var0 Var1(Var∗i )) Cn | SR1 ; ⇒e

(template Var0 Var1(Var∗i )) Cn | SR1 ;

γ[Var1 7→ (template Var0 Var1(Var∗i )) C | SR1 ; ] `

T ∗ C∗ S∗R2
⇒e v

γ ` (template Var0 Var1(Var∗i )) Cn | SR1);

T ∗ C∗ S∗R2
⇒e v

(4.40)

A reference to a template in a semantic rule (or container construction) requires that we

introduce the small-step relation→1⊆ Env×Exp×Exp between tow expressions, given an
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environment. The small-step relation simplify one expression at a time rather than simplify

to a value in one step.In addition, we need the notion of substitution. We write e[e′/x] to

denote the expression obtained by substituting all free occurrences of the variable x in the

expression e with the expression e′.

Given these definitions, without loss of generality, we can define the SOS for template

references as

γ ` Var1 ⇒e (template Var0 Var1(Var∗i )) SR1 ;

γ ` Var Var1( ˆV ar∗i )→1 Var SR[ ˆV ari/Vari]
(4.41)

4.4. Conclusion

Most integrity models deal with the trustworthiness of who accesses the data, or provide

a general protection for a specific data format. We know of no general-purpose integrity

systems capable of protecting the integrity of the data itself. Research on protecting arbitrary

data integrity is limited. In this chapter, we have presented Maia, a language for general-

purpose integrity protection. We give a formal description of the structural operational

semantics for Maia using rules with simple mathematical foundations. The semantics leads

to a natural interpretation of the meaning of a Maia specification.
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CHAPTER 5

MAIA INTERPRETER IMPLEMENTATION

Maia Interpreter is designed to support many features of Maia language. In this chapter,

we quantify Maia’s impact on performance, and demonstrate that we can provide robust

integrity guarantees without sacrificing usability.

This chapter is organized as follows: First, we present an overview of Maia Interpreter

overall design and implementation. Then, we evaluate Maia’s performance on selected struc-

tured files, and we demonstrate that we can provide robust data integrity without human

intervention. Finally, we conclude this chapter by a brief discussion on Maia performance.

5.1. Benchmark Environment

Our experiments are conducted on a laptop computer equipped with an Intel Core i5 pro-

cessor running at 1.4GHz, four gigabyte of RAM, and a 121.12GB hard drive. We implement

Maia using ANTLR (version 4.7) and Eclipse-Mars.1 Release (4.5.1).

5.2. Maia Interpreter Overall Design

We implement an interpreter for the syntax and semantic phases of Maia without requir-

ing human intervention. This implementation yields consistent performance as discussed in

Chapter 4.

The tool relies on the availability of ANTLR [32]. Specifically, the tool is created using

ANTLR (version 4.7) which generates the required files for our tool verifiers. Each phase

has its own parser. We use a visitor pattern for walking the AST during each phase. In the
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first phase visitor, some actions are added to construct containers to be used in the semantic

phase. The semantic phase visitor has actions for verifying the given file/data.

The syntax checking phase of Maia starts by accepting a plain text file of a format that

matches the existing file structure specification (.g4). For example, the Linux password

file structure (syntax specification) in our tool might be named as passwdFile.g4. Then,

the syntax-checking phase compares the input file passwordFile format against its struc-

ture as written in passwdFile.g4. If the passwordFile is syntactically correct, then the

constructed containers will be passed to the second phase for semantic verification. The

syntax phase generates error value when the structured file is syntactically incorrect. The

semantic-checking phase validates the user input against the maia specification in a .maia

file. If the user input is semantically correct, then Maia generates valid data, or otherwise

it generates invalid data. In addition, an error value could be generated when the structure

of user input does not match The Maia specification or the input is syntactically incorrect.

Figure 5.1 presents the flowchart of overall design of Maia Interrupter with passwordFile.

5.3. Testing with the Password File

We use the Linux password file format, which is located at /etc/passwd, to evaluate

the performance of our interpreter. Since the interpreter is implemented in Java, we are

more concerned with performance relative to file size as opposed to absolute performance.

The password file allows us to test a variety of Maia constraints. In fact, having a valid

password file is crucial to the usability of a Linux computer system including the file’s syntax

specification (the file’s records must be well formed), and the file’s semantic specification (

uid and gid must be between 0 and 65535, there must be a user named “root” that must

have uid of 0, and handling uniqueness of usernames).

Verifier performance is tested first by adding three classes of errors in both the syntax
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Figure 5.1: Flowchart of Maia Interpreter.
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and semantic phases. In the syntax phase, a malformed record is added at the beginning of

the file, in the middle, and at the end. Adding the invalid record at the beginning causes an

early verification failure, while adding the malformed record in the middle causes a mid-parse

verification failure. Finally, adding the invalid record at the end of the file causes an end

of file verification failure. In the semantic phase, the three classes of errors are tested by

causing a verification failure when the existential rule “there must be user named root is

found to be violated with a varying number of records. We time how long it takes to open

the structured file, to verify file’s structure, to construct the file’s containers, and to validate

user input. This time is recorded at the granularity of a millisecond, and reported for further

analysis.

We have obtained our source password file directly from Michigan Tech’s NIS server,

granting us access to 15786 total records. We generally apply our tests to the total number

of records, which produce a total file size around a megabyte. The records contain usernames

(full names) and all other information except password hashes.

5.3.1. Linux Password File Verifier Performance

Maia’s verifier is constructed automatically by our software systems. The verifier vali-

dates the password file syntactically in the syntax phase and semantically in the semantic

phase. In the syntax phase, the verifier exits upon finding an error, which may improve

runtime in some cases. However, it is essential to parse the entire file to determine when it

is valid so the structured file will be completely loaded to allow the syntactic elements to be

constructed. Therefore, the syntax phase error free verification is likely to take longer time

than file’s semantic verification in most cases. We consider four verification cases for our

testing: a clean, structured file (policy loaded), an invalid record at the start of the file, an

invalid record in the middle, and an invalid record detected at the end of the file. Figure 5.2
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Figure 5.2: File Length versus Verification Time in Syntax Phase.

presents the syntax phase verification times for these cases.

It is obvious that Maia’s syntax phase verifier is linear in file size. This follows validating

the file structure and constructing containers from the syntactic elements of the passwd file.

The syntax phase verifier is designed to exit as soon as it realizes a file is invalid. As a

result, the verification time in the syntax phase varies with the error location. Loading the

structured file takes the longest time because it requires scanning the entire file without any

syntax error. However, an invalid record at the beginning of the file causes the Maia’s syntax

verifier to exit immediately, while the error at the end has a verification time close to the

clean file resulting from scanning the entire file to detect the malformed record at the end

of the file.

The longest verification time is observed for files that are clean or have a malformed

record at the end, and is slightly less than 4000 milliseconds for a 15787 record file. When

combined with the overhead from constructing containers there is an overall delay of less

than 300 milliseconds.
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Figure 5.3: File Length versus Processing Time (Maia Verifier).

5.3.2. Baseline

Figure 5.3 presents the results of running the password verifier without the semantic

phase. The valid policy is uploaded and verified for each file size. The results show that

there is no variation between the different points. Only file length has an impact on verifying

time, which is linear in the size of the file.

5.3.3. Linux Password File: Verifying Data Integrity

Maia’s semantics phase verifier is designed to test multiple semantics rules that test the

syntactic elements of the file against the semantic rules. We consider two cases. In the first

verification test, we consider four cases: invalid data at start, invalid data in middle, invalid

data at end, and valid data. The verification cases test the existential rule “there must be a

user named root with a userid of 0”. We choose the existential rules that cause scanning

the entire file in order to locate the matching data. Figure 5.4 presents the semantics phase

verification times for these cases.
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Figure 5.4: File Length versus Verification Time in Semantic Phase: Case 1.

The second verification case tests the existences of all passwd rules considering the last

record. We consider two cases of testing, valid data and invalid data, for all password file

rules. Figure 5.5 presents the semantics phase verification times for these two cases. The

semantic-phase verifier is designed to test all the semantic rules in the passwd.maia file.

For the second verification case, Maia loads the constructed containers that include the

syntactic elements of the structured file. The semantics phase starts testing each semantic

rules against Maia’s specification and the constructed containers. The validity of the data

in this test is approved when all the tested semantics rules are true; otherwise, Maia reports

invalid data for the semantic rule.

Choosing the last record for different file size causes the existential rule to scan all con-

tainers for all passwd rules to find the violating data. Therefore, the verification times of

valid and invalid data are similar.
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Figure 5.5: File Length versus Verification Time in Semantic Phase: Case 2.

5.4. Testing with SSH Configuration File

In addition to Password file, we test SSH Configuration file because it has a different

structure. The OpenSSH SSH client configuration file provides a format that can be used

at the system and per user level. The tested OpenSSH file is the default on most Linux

Distributions and OS X. The format of the file includes:

1. Empty lines or comments (lines starting with ‘#’). Any configuration lines appearing

before the first host configuration are applied globally. All the remaining configuration

lines are considered part of the last host configuration.

2. Each line starts with a keyword, followed by argument(s).

3. Configuration options may be separated by white space or optional white space and

exactly one.

4. Arguments may be enclosed in double quotes in order to specify arguments that contain

spaces.
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This specification is designed to illustrate protecting the key-value format used by SSH

configurations. Configuration items can apply to any connection, or be grouped into different

host configurations that can be applied in connecting to specific machines. The specification

of the SSH configuration file allows us to test a variety of Maia constraints including a

file’s syntax specification (the file’s records must be well formed), and the file’s semantic

specification (port must be between 0 and 65535), and (handling appropriate algorithms

for ciphers and MACs). We have generated our source SSH configuration file with 10000

records that matches the specification of OpenSSH client configuration [43]. We generally

apply our tests to the total number of hosts. The hosts contain all the information. We are

only interested in testing valid ciphers, MACs, and ports.

Maia’s verifier performance on SSH configuration file is tested first by adding three classes

of errors in syntax phase as with Linux password file followed by the semantic phase. In the

second phase, the three classes of errors are tested causing a verification failure when the

universal rule “all hosts’ ports must be between 0 and 65535". We time how long it takes

to open the structured file, to verify file’s structure, to construct file’s containers, and to

validate user input. This time is recorded at millisecond accuracy and is reported for further

analysis.

5.4.1. SSH Configuration File Verifier Performance

The SSH verifier validates the SSH Configuration file syntactically in the syntax phase

and semantically in the semantic phase. In the syntax phase, the verifier exits upon finding

an error. The first phase is designed to parse the entire file to determine whether it is valid

or not. After the validation process, the structured file will be loaded and the syntactic

elements will be constructed. As with password file testing, we consider four verification

cases for our testing: a clean file (policy loaded), an invalid record at the start of the file,
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Figure 5.6: File Length versus Verification Time in Syntax Phase.

an invalid record in the middle, and an invalid record detected at the end of the file. Figure

5.6 represents the syntax phase verification times for these cases.

As with Linux password file, the verification time in syntax phase varies with error

location. Loading the structured file takes longer because it requires scanning the entire file

without any syntax error. Three classes of errors are added to measure the time consumed

for the first phase. An invalid record at the beginning of the file causes the syntax verifier

to exit immediately, while the error at the end has verification time close to the clean file

resulting from scanning the entire file to detect the malformed record at the end of the file.

The longest verification time is observed for files that are clean or have a malformed record

at the end, and is slightly less than 1200 milliseconds for a 10000 records. When combined

with the overhead from constructing containers causes an overall delay of less than 600

milliseconds.

The baseline for this file is similar to the Linux password file. It tests the valid loaded

policy in the syntax phase only.
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Figure 5.7: File Length versus Verification Time in Semantic Phase: Case 1

5.4.2. SSH Configuration File: Verifying Data Integrity

In the semantics phase, we consider four verification cases for our testing: invalid data

at start, invalid data in middle, invalid data at end, valid data. In each case, we add a

malformed record that causes data integrity violation in each file size. The verification cases

test existential rule “there must be a cipher algorithm that is listed in the file specification

and a port between 0 and 65535” with a data integrity violation with different numbers of

records. We choose the existential rules that cause scanning the entire file size to find the

matching data at specific location. Figure 5.6 presents the semantic-phase verification times

for these cases.

In the second verification case, we test the existences of selected SSH Configuration rules

by considering the last records in the most cases. Choosing the last record for different file size

causes the existential rule scanning the entire containers for the selected SSH Configuration

rules to find the matching data. Therefore, the verification times of valid and invalid data

are close in the most tests. We consider two cases of testing: valid data and invalid data for
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Figure 5.8: File Length versus Verification Time in Semantic Phase: Case 2

ciphers, Macs, and ports rules. Figure 5.8 presents the semantics phase verification times

for these two cases.

The semantic-phase verifier for SSH Configuration file is designed to test selected se-

mantics rules in sshConfig.maia file. The semantics phase starts testing each semantic rule

against Maia’s specification and the constructed containers. The validity of the data in this

test is approved when all the tested semantics rules are true otherwise Maia generates invalid

data for all semantics rules.

5.5. Conclusion

This chapter has presented the results of a couple of benchmarks on Maia-generated

verifiers. We have also implemented an interpreter for Maia based upon the semantics that

we have defined. The interpreter is fully automatic with linear performance in the size of

the input data for the cases that we have tested. Maia itself is quite fast. Using Java as

an implementation language adds extra milliseconds to the processing time since Java uses

just-in-time (JIT) compilation. Running a program using a JIT compiler adds the cost of
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the compiler producing bytecode to the actual cost of executing the program. Thus, running

a Maia verifier increases processing time less than the the times reported in this chapter. In

the worst case, total processing time is 4000 milliseconds to verify and parse a 15000 record

password file. Constructing containers to be passed to the next phase added overhead that

is more apparent on heavily loaded systems doing tight I/O loops on protected files.

75



CHAPTER 6

ADMONITA: A RECOMMENDATION-BASED TRUST MODEL FOR
DYNAMIC DATA INTEGRITY

In this chapter, we propose a new recommendation-based trust model that is based on

subjective logic and bi-directional weak tranquility. The recommendation-based trust model

uses past behavior during interactions and information from other resources to determine

whether to trust an entity. Our model adopts the rules from the Biba integrity model and

incorporates recommendation opinions from Maia. In our trust model, integrity levels of

subjects and objects are expressed as trust opinions. Since the security of the system is a

subjective measure that depends on individuals who are qualified to express trust opinions,

we define such trust opinions in the framework of subjective logic. We compute the recom-

mendation values and the trust opinions with a simple algebra based on the trust metrics of

our model. Also, we add a flexible definition of data integrity by using bidirectional weak

tranquility.

We begin by presenting Admointa’s fundamental principles. This is followed by a discus-

sion of Admonita’s design, metrics, details of its structure, and example for trustworthiness

authentication. We conclude with a discussion of a trustworthiness design of using Admonita.

6.1. Subjective Logic

In this section, we use an artificial reasoning framework called subjective logic to express

the levels of trust. Due to the lack of certainty about the degree of the trustworthiness of

subjects and objects, we need to have opinions to measure the integrity of these subjects and

objects. Subjective logic defines the term opinion, w, which expresses an opinion about the
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trust level of subjects/objects [5], [7]. The opinion translates into degrees of trust, distrust

as well as uncertainty, that represents the absence of both trust and distrust values. Let t,

d, and u be trust, distrust and uncertainty, respectively, such that:

t+ d+ u = 1, t, d, u ∈ [0, 1] (6.1)

The opinion w = {t, d, u} is a triplet satisfying (6.1). We use opinions to express trust

levels. Having different levels of trust instead of a single level, such as in Biba, provides a

better integrity model for real-world applications.

Subjective logic defines set logical operators that are equivalent to traditional logical op-

erators, such as conjunction (AND), disjunction (OR), and negation (NOT), as well as some

non-traditional operators that are used for combining opinions, such as recommendation

and consensus. The expressed opinions are the input and output parameters for subjective

logic operators. In this chapter, we define only consensus, recommendation and conjunctive

operators.

Let A and B be two entities that represent observers who maintain the trust opinions

of system resources, and let o be an object. When there are independent opinions about o,

subjective logic defines a consensus operator to combine these independent opinions.

Let wA
o = {tAo , dA

o , u
A
o } and wB

o = {tBo , dB
o , u

B
o } be opinions held by the observers A and B,

respectively, about o. According to subjective logic, the combined consensus opinion wA,B
o
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based on opinions wA
o and wB

o is defined as follows:

wA,B
o = wA

o ⊕ wB
o

= {tA,B
o , dA,B

o , uA,B
o }

where,
tA,B
o = (tAo uB

o + tBo u
A
o )/(uA

o + uB
o − uA

o u
B
o )

dA,B
o = (dA

o u
B
o + dB

o u
A
o )/(uA

o + uB
o − uA

o u
B
o ),

uA,B
o = (uA

o u
B
o )/(uA

o + uB
o − uA

o u
B
o )



(6.2)

Let A and B be two observers such that observer A invokes observer B to access an

object o. Let wA
B = {tAB, dA

B, u
A
B} be A’s opinion about B’s recommendation, and let wB

o =

{tBo , dB
o , u

B
o } be B’s opinion about the trustworthiness of the object o. Subjective logic defines

a recommendation operator to compute the indirect opinion wAB
o based on opinions wA

B and

wB
o as:

wAB
o = wA

B ⊗ wB
o

= {tAB
o , dAB

o , uAB
o }

where,
tAB
o = (tABtBo )

dAB
o = (tABdB

o ),

uAB
o = (dA

B + uA
B + tABu

B
o )



(6.3)

Furthermore, subjective logic defines the conjunctive operator that expresses an opinion

that is held by observer A about the trustworthiness of two distinct objects o1 and o2. Let

wA
o1 = {tAo1 , d

A
o1 , u

A
o1} and w

A
o2 = {tAo2 , d

A
o2 , u

A
o2} be observer A’s opinions about o1 and o2. Then
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the conjunction opinion wA
o1∧o2 of wA

o1 and wA
o2 is defined by:

wA
o1∧o2 = wA

o1 ∧ w
A
o2

= {tAo1∧o2 , d
A
o1∧o2 , u

A
o1∧o2}

where,
tAo1∧o2 = (tAo1t

A
o2)

dA
o1∧o2 = (dA

o1 + dA
o2 − d

A
o1d

A
o2),

uA
o1∧o2 = (tAo1u

A
o2 + uA

o1t
A
o2 + uA

o1u
A
o2)



(6.4)

In our model, we consider the opinion wB, where dB < tB, to be more trustworthy than

opinion wA , where dA < tA, denoted wB � wA, if and only if tB > tA. When tB = tA,

we consider higher uncertainty to be more trustworthy. In the case of tB = tA =⇒ wB �

wA ⇐⇒ uB > uA.

6.2. Tranquility for Dynamic Integrity Policy

In this section, we outline a tranquility principle that is trust-enhanced to protect trust

levels of system entities and resources.

When a model, such as that of Oleshchuk, allows the trustworthiness of subjects to

decrease due to reading low trusted data, the subject may become isolated from system

resources since Biba’s model incorporates only unidirectional weak tranquility. Such isola-

tion can cause a violation of the security policy. For example, the ls Linux command is

a command-line utility for listing the contents of a directory or directories given to it via

standard input, and it writes to the standard output [44]. When ls accesses a corrupted

directory/file, the trust level of ls will decrease. If ls continues accessing objects with low

integrity levels, the trust level of ls may become isolated from system resources. To solve this

issue, we apply the principle of weak tranquility such that the trust level may both increase
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and decrease, making it bidirectional.

The tranquility principle allows controlled copying from high security levels to low se-

curity levels via trusted subjects. There are two forms of the tranquility principle: strong

tranquility and weak tranquility. In strong tranquility, the security levels do not change dur-

ing the normal operation of the system. In weak tranquility, the security levels may never

change in such a way as to violate a defined security policy. Bidirectional weak tranquility is

more desirable in our model. An entity may obtain a new low trust level due to accessing low

integrity data or invoking low integrity entities. By applying bidirectional weak tranquilly,

the entity can progressively accumulate higher trust levels, as actions require it. In other

words, subjects and objects integrity levels will be managed within an allowable range to

make the process more flexible in application. So, our model incorporates weak tranquility

in a bi-directional manner where there are both maximum and minimum trusts levels that

represent boundaries across which an object’s integrity level may not change.

6.3. Admonita

Admonita is a recommendation-based trust model. It is based on Biba and Maia. In

our proposed model, the Biba integrity model defines the subject-objects access properties,

while Maia works as an Integrity Verification Procedure IVP that preserves data integrity.

Basically, a Maia specification defines a set of constraints declaring what it means for data to

have integrity. Maia verifies structured data when a subject writes to the file and generates

a limited number of integrity levels to reflect the evaluation of the data’s integrity.

The Biba integrity model is concerned with an unauthorized modification of data within

a system by controlling who may access it. It works as a prevention system for data integrity.

The model deals with a set of subjects, a set of objects, and a set of integrity levels. Subjects

may be either users or processes. Each subject and object is assigned an integrity level,
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denoted as I(s) and I(o), for the subject s and the object o, respectively. The integrity

levels describe how subjects and objects are more or less trustworthy regarding a higher or

lower integrity level.

Let S = {s1, s2, . . . } be a set of subjects, and O = {o1, o2, . . . } be a set of objects.

According to subjective logic, the opinions about a subject and an object are expressed as

ws = {ts, ds, us} and wo = {to, do, uo} respectively, where s ∈ S and o ∈ O. Therefore, the

trust opinion about the subject ws represents the integrity of the subject I(s). Similarly, the

trust opinion about the object wo represents the integrity of the object I(o).

According to [45], the definition of trust is “Anna trusts Bernard if Anna believes, with

the level of subjective probability, that Bernard will perform a particular action, both before

the action can be monitored (or independently of capacity of being able to monitor it) and in

a context in which it affects Anna’s own action.” If Anna establishes trust in Bernard based

on her observation and other interactions, the trust is direct. If it is established based on

Anna’s acceptance of Bernard’s recommendation of other entities, then the trust is indirect.

Admonita combines direct and indirect opinions about the trustworthiness of subjects

and objects. A security officer T expresses direct trust opinions about the subject s, denoted

as wT
s , and the trust opinions about the object o, denoted as wT

o . Also, T maintains a

list of minimum trust opinions for subjects, denoted as wT
s−min, and list of maximum trust

opinions for objects, denoted as wT
o−max. Maia expresses the indirect subject-object trust

opinion, denoted as wM
so

.

We incorporate the Biba model operations for both subjects and objects:

• Observe: Allows a subject s to read information in an object o, denoted as read(s, o).

• Update: Allows a subject s to write or update information in an object o, denoted as

update(s, o).
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• Invoke: Allows a subject s1 to execute another subject s2, denoted as invoke(s1, s2, o).

The Biba model can be divided into two types of policies, mandatory and discretionary.

Most literature on the Biba model refers to the model as being mandatory as a part of the

strict integrity policy [46]. The Biba model defines a number of rules as part of the strict

integrity policy. We reformulate each rule and compute the integrity level of subjects I(s)

and objects I(o) as follows:

6.3.1. Simple Integrity Property

The Simple Integrity Property enforces no-read-down. It allows a subject to read (ob-

serve) an object only if the integrity level of the subject is less than the integrity level of the

object.

s ∈ S reads o ∈ O ⇐⇒ I(s) ≤ I(o)

This ensures that high-integrity data cannot be directly contaminated by low-integrity data.

For example, if the simple integrity rule is enforced, a low-integrity process may read high-

integrity data, but it cannot contaminate itself by reading low-integrity data.

Our trust model adds a dynamic property to the Simple Integrity Property to allow

high trust subjects to access low trust objects, however, the integrity of the subject may be

lowered. The Simple Integrity Property in our model is reformulated as described below.

∀s ∈ S,∀o ∈ O : read(s, o) ⇐⇒

if I(s) > I(o) then I ′(s) = I(s)⊗ I(o)
(6.5)

When s reads o, denoted read(s, o), the integrity of s may be changed by o, while the

integrity of o will not be changed. If s reads less trusted data, then the integrity level of s

after reading, denoted I ′(s), will decrease. To compute the indirect opinion I ′(s), denoted
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as wT M
so

, let T and Maia be two observers such that the observer T invokes observer Maia to

access an object o. Let wT
M be T ’s opinion about Maia’s recommendation, denoted as wT

s∧o,

and let wM
so

be Maia’s opinion about the trustworthiness of the object o that is accessed by

the subject s. We adjust reasoning from (6.3) and (6.4) and we argue the applicability of

conjunction and recommendation operators described in the previous section as follows:

wT M
so

= wT
s∧o ⊗ wM

so

= (wT
s ∧ wT

o )⊗ wM
so

(6.6)

T expresses the direct trust opinions of wT
s and wT

o . These two opinions are combined

using the conjunctive operator since they are both are assigned by the same observer. wT
s∧o

represents T ’s opinion about Maia’s recommendation. On the other hand, the Maia model

expresses the indirect trust opinion about wM
so
. Thus, to compute the indirect opinion about

the trustworthiness of wT M
so

based on the trustworthiness of recommendation of Maia, the

two opinions are combined using the recommendation operator. Equation (6.6) will decrease

the integrity level of s when it reads less trusted o.

To prevent subject isolation, bidirectional weak tranquility is applied to ensure that the

newly obtained trust level is within an allowable range. It is accomplished by comparing the

new trust value I ′(s), denoted as t′s, against its minimum value of trust, denoted as ts−min

as follows:

1. If the new trust value of the subject is greater than its minimum value such that

t′s > ts−min, then read access will be granted.

2. If the trust values of a subject are equal such that t′s = ts−min , we consider higher

uncertainty to be more trustworthy. In the case when t′s = ts−min then w′s > ws−min if

u′s > us−min.

83



3. If the new trust value of the subject is less than its minimum value such that t′s < ts−min

then the new integrity level of the subject violates the integrity policy. To solve this

problem, we consider two cases:

• If the subject is not allowed to have an integrity level less than its minimum

integrity level, then read access will be denied and that reflects the no-read-down

rule of the Biba integrity model.

• If the subject is allowed to have an integrity level less than its minimum integrity

level then the read access will be granted and the integrity level of the subject will

be forced to go back to its previous integrity level to prevent subject isolation.

if t′s < ts−min then I ′(s) = I(s) (6.7)

6.3.2. Integrity Star Property

The second property of a Biba policy enforces no-write-up. It allows a subject to write

an object only if the integrity level of the object is less than or equal to the integrity level of

the subject.

s ∈ S updates o ∈ O ⇐⇒ I(o) ≤ I(s)

The Integrity Star Property in our model can be reformulated as follows:

∀s ∈ S,∀o ∈ O : update(s, o) ⇐⇒

if I(o) ≤ I(s) then I ′(o) = I(o)⊕ I(s)
(6.8)

When s updates o, denoted update(s, o), the integrity level of o, denoted as I(o), with

trust opinion wo will be changed by the integrity level of s, denoted as I(s), with trust
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opinion ws. If ws is more trustworthy than wo then the integrity level of the object after

the update, denoted as I ′(o), will be increased and I(s) will not change. In contrast, if ws

is less trustworthy than wo then s will not be allowed to update o. This corresponds to the

no-write-up rule of the Biba integrity model.

We consider two scenarios to enforce the no-write-up rule. First, when a high trust

subject s updates a low trust object o invalidly, either accidentally or intentionally, Maia

generates a lower recommendation opinion with a higher distrust value for accessing the

object o. That lowers the integrity level of s by updating I ′(s) using (6.6). Then, I ′(s) is

compared against I(o) without updating I ′(o) with (6.8). With that, our model enforces

no-write-up, and s will be denied to update o. After that, I ′(s) will be set using (6.7), to

avoid isolation from the system resources.

The second scenario, occurs when a high trust subject s updates a low trust object in a

valid format. In this case, the Maia generates a valid recommendation opinion for accessing

the object o.

wT,M
so

= wT
o∧s ⊕ wM

so

= (wT
o ∧ wT

s )⊕ wM
so

(6.9)

T expresses the direct trust opinions of wT
o and wT

s . These two opinions are combined

using the conjunctive operator since they are both are assigned by the same observer. wT
o∧s

represents T ’s opinion about Maia’s recommendation. As with Simple Integrity Property,

Maia expresses the indirect recommendation trust opinion about wM
so
. Since the Integrity

Star Property in our model keeps s unchanged, we introduce a conjunctive consensus term

wT,M
so

that combines two independent opinions about accessing o. Equation (6.9) enforces

increasing the integrity level of o when it is accessed by highly trustworthy s.

To prevent object isolation, bidirectional weak tranquility is applied to ensure that the
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newly obtained trust level I ′(o) is within an allowable range. It is accomplished by comparing

the new trust value of I ′(o), denoted as t′o, against its maximum value of trust, denoted as

to−max, as follows:

1. If the new trust value of the object is less than its maximum value such that t′o < to−max

then update will be granted.

2. If the trust values of objects are equal such that t′o = to−max , we consider higher

uncertainty to be more trustworthy. In the case of t′o = to−max then w′o > wo−max if

u′o > uo−max.

3. If the new trust value of the object is greater than its maximum value such that

t′o > to−max then the new integrity level of the object violates the integrity policy. To

solve this problem, we consider two cases:

• If the object is not allowed to have an integrity level greater than its maximum

integrity level, then the update will be denied.

• If the object is allowed to have an integrity level greater than its maximum in-

tegrity level, then the update access is granted and the integrity level of the object

will be forced to go back to its previous integrity level to prevent object isolation.

if t′o > to−max then I ′(o) = I(o) (6.10)

6.3.3. Invocation Property

In Biba’s model, a subject may execute another subject at its own integrity level or below.

s1 ∈ S invokes s2 ∈ S ⇐⇒ I(s2) ≤ I(s1)

86



This last property states that a subject at one integrity level is prohibited from invoking

(send/request messages for service) a subject at a higher level of integrity. The Invocation

Property in our model is reformulated as follows:

∀s1, s2 ∈ S,∀o ∈ O : read(s1, s2, o) ⇐⇒

if I(s1) < I(s2) then I ′(s1) = I(s1)⊗ (I(s2)⊗ I(o))
(6.11)

In our trust model, when s1 invokes s2 to access o, it is denoted as invoke(s1, s2, o).

According to the strict integrity policy, our trust model requires I(s1) ≥ I(s2) preventing

a less trustworthy s1 using more trustworthy s2 to update the data. This condition keeps

I(s1) unchanged when s1 reads lower integrity data o via s2.

However, when I(s1) < I(s2), the indirect opinion of I ′(s1), denoted as wT M
s1s2o

, can be

calculated using the conjunctive recommendation term as follows:

wT M
s1s2o

= wT
s1 ⊗ (wT

s2∧o ⊗ wM
s2o

)

= wT
s1 ⊗ ((wT

s2 ∧ w
T
o )⊗ wM

s2o
)

(6.12)

In Equation (6.12), the security officer T expresses the direct trust opinions of wT
s1 , w

T
s2

and wT
o . The opinions of wT

s2 and wT
o are combined using the conjunctive operator since

they are both assigned by the same observer. Maia expresses the indirect trust opinion

wM
s2o

. Then the indirect recommendation opinion of wT M
s2o

is combined with wT
s1 using the

recommendation operator. As a result, the integrity level of s1 decreases due to using highly

trusted resources.

The proposed trust opinion calculations associated with no-read-down and no-write-up

operations along with a dynamic range of integrity levels give our model more flexibility and

better control of integrity violations.
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Figure 6.1: A Structure of Trustworthiness Authentication in
Recommendation-Based Trust Model.

6.4. A Structure and Example for Trustworthiness Authentication

Figure 6.1 illustrates a possible structure for computing the integrity level as trust opin-

ions about subjects/objects. The structure above the dotted line represents the opinions of

the security officer T about subjects and objects as stored in T ′s private database. Also, T

maintains a list of minimum trust opinions for each subject s, denoted wT
s−min, and list of

maximum trust opinions for each object o, denoted wT
o−max.

To ensure dynamic computation of trust opinions for system’s entities, T assigns values

of 0 and 1 for trusted subjects and objects, denoted Ts and To respectively. A value of 0

for a subject s does not allow s to obtain an integrity level less than its minimum integrity

level. A value of 0 for an object o does not allow o to obtain an integrity level greater than

its maximum integrity level. In contrast, a value of 1 for s allows s to have access to less
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trustworthy data and return to its previous integrity level. Similarly with o, a value of 1

allows o to have an integrity level greater than its maximum, for updates, and return to its

previous integrity value.

The integrity level of a subject s reflects how much T trusts s when accessing an object.

It is assumed that T knows the trust levels of s. On the other hand, the integrity level of an

object reflects T ′s opinion about the trustworthiness of the data itself.

In our model, T must keep a list of her opinions, wT
s and wT

o , about the trustworthiness

of subjects and objects, respectively. T ’s opinions about a subject reflects the trust level of

the subject. However, T ’s opinions wT
s−min about s ensure dynamic data integrity while the

T ’s opinion about an object reflects the trust level about the data itself. Table 6.1 gives an

example of possible opinion values.

Table 6.1: Security Officer’s Opinions about Subjects’ Trustworthiness

S wT
S wT

S−min T − Subject
A {1.00, 0.00, 0.00} {0.99, 0.01, 0.00} 1
B {0.98, 0.00, 0.02} {0.85, 0.10, 0.05} 1
C {0.88, 0.10, 0.02} {0.80, 0.10, 0.10} 0

In order to enforce weak tranquility, T must maintain a list of her maximum opinions about

objects wT
o−max . Table 6.2 gives an example of possible opinion values. The structure below

the dotted line represents a list of Maia trust recommendations wM
So
, based upon the Maia

specification for that file, for each subject that wants to access the object o. Table 6.3 below

gives an example of possible opinion values.

Assume subject B wants to read an object o1, read(B, o1). Since I(B) is greater than

I(o1), the trust of B, denoted I ′(B), can now be calculated using (6.6):
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Table 6.2: Security Officer’s Opinions about Objects’ Trustworthiness

O wT
O wT

O−max T −Object
o1 {0.90, 0.05, 0.05} {1.00, 0.00, 0.00} 0
o2 {0.96, 0.02, 0.02} {0.96, 0.02, 0.02} 0
o3 {0.98, 0.00, 0.02} {0.98, 0.00, 0.02} 1

Table 6.3: Maia’s Opinions about (Subject-Object) Trustworthiness

So1 wM
So1

Ao1 {0.95, 0.01, 0.04}
Bo1 {1.00, 0.00, 0.00}
Co1 {0.89, 0.02, 0.09}

wT M
Bo1

= (wT
B ∧ wT

o1)⊗ wM
Bo1

= {0.882, 0.00, 0.118}

Notice that the new integrity level of B, 0.882, is less than the old value 0.98 due to B

reading object o1 with a lower trust level than B. Also, the new I ′(B) satisfies (6.7) since it

does not fall below its minimum trust value. Now, the integrity level of B in Table 6.1 will

be replaced by the new value in order to prevent the low integrity of B from updating other

objects in future interactions.

Suppose subject B wants to update object o1, update(B, o1). Since I(B) is greater than

I(o1), the trust of o1, denoted I ′(o1), can now be calculated using (6.9):

wT,M
Bo1

= (wT
o1 ∧ w

T
B)⊕ wM

Bo1

= {1.00, 0.00, 0.00}
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Notice that the new integrity level of o1, 1.00, is greater than the old value 0.90 since B

has a higher trust value than o1 . Also, I ′(o1) satisfies (6.10) since it does not exceed the

maximum trust opinion. Now, the integrity level of o1 in Table 6.2 will be replaced by the

new value.

Consider the case when a subject invokes another subject to access an object o. Assume

B invokes A to access o1. We need to modify the trust level of B for two reasons. First, the

integrity level of B is lower than the integrity level of A, so the trust model will prevent B

from using A. Second, subject A accesses less trusted data o1. This decreases the integrity

level of A.

To calculate the trustworthiness of B, I ′(B), first I ′(A) is calculated using (6.6) and (6.7)

to let A obtain back its trust opinion since it is a trusted subject. Then I ′(B) is calculated

using (6.12):
wT M

BAo1
= wT

B ⊗ ((wT
A ∧ wT

o1)⊗ wM
Ao1

)

= {0.8379, 0.00882, 0.15328}

The new integrity level of B, 0.8379, is less than the old value 0.98 and that is due to the

Invocation Property. In addition, the new trust value of B violates the integrity policy since

it is less than its minimum trusted value. However, B is a trusted subject. Therefore, our

trust model allows B to read the less trusted object and obtain back its trust opinion. Now,

the trustworthiness of B, denoted as I ′(B), can be calculated using (6.7):

if t′(B) < tB−min then I ′(B) = I(B)

I ′(B) = {0.98, 0.00, 0.02}

If B is not a trusted subject, then the read access will be denied.
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6.5. Conclusion

This chapter presents a new recommendation-based trust model for data integrity called

Admonita. Admonita incorporates subjective logic, the Biba integrity model, the Clark-

Wilson integrity model and the principle of bidirectional weak tranquility. Compared to

previous models, our model adds the opinion of an IVP from Clark-Wilson of the integrity

of the data that is a property of the data itself rather than the opinion of a trusted user. In

addition, our model uses bidrectional weak tranquility to allow opinions about the integrity of

data to change dynamically within a restricted range. The result is a model that determines

the integrity of subjects and objects in a system that is not based solely on the integrity of

the users in the system.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The classic model for computer information security defines three objectives of security:

confidentiality, availability, and integrity. Each objective addresses a different characteristic

of providing protection for information. Confidentiality and availability are well understood

with generally implemented safeguards. There are no general-purpose integrity systems.

Research on protecting arbitrary structured data integrity is limited. In this work, we present

the major weaknesses in existing data integrity approaches. Most integrity approaches deal

with the trustworthiness of who accesses the data, provide a general protection for a specific

data format, or cause data/subjects’ isolation form the system resources.

To solve these problems, we present Maia, a language for general-purpose integrity pro-

tection. We give a formal description of the structural operational semantics for Maia using

rules with simple mathematical foundations. The semantics leads to a natural interpretation

of the meaning of a Maia specification. We have also implemented an interpreter for Maia

based upon the semantics that we have defined. The interpreter is fully automatic with

linear performance in the size of the input data for the cases that we have tested. In the

future, we plan to move a full implementation of the Maia interpreter into MandOS [1] to

verify file integrity in a complete system. Moreover, We plan to analyze the risk factors in

Maia using logistic regression. The analysis can develop strategies and highlight problems,

which are important issues to manage, control and reduce the risks of error.

In addition to Maia, we propose a new recommendation-based trust model for data in-

tegrity called Admonita. Admonita incorporates subjective logic, the Biba integrity model,
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the Clark-Wilson integrity model and the principle of bidirectional weak tranquility. Com-

pared to previous models, our model adds the opinion of an IVP from Clark-Wilson of the

integrity of the data that is a property of the data itself rather than the opinion of a trusted

user. In addition, our model uses bidrectional weak tranquility to allow opinions about the

integrity of data to change dynamically within a restricted range. The result is a model that

determines the integrity of subjects and objects in a system that is not based solely on the

integrity of the users in the system.

In the future, we plan to implement Admonita in a real system and measure its per-

formance. This will involve creating a high-performance compiler for Maia that utilizes its

natural parallelism. The result will be a system that measures and maintains the trust levels

for the applications and data contained within it, where the integrity of the data can be a

range of values rather just 0 or 1.
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