
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

8-2020

Software Quality Control through Formal Method Software Quality Control through Formal Method

Jialiang Chang
Western Michigan University, aiolos404@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Computational Engineering Commons, and the Computer and Systems Architecture

Commons

Recommended Citation Recommended Citation
Chang, Jialiang, "Software Quality Control through Formal Method" (2020). Dissertations. 3653.
https://scholarworks.wmich.edu/dissertations/3653

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3653?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

SOFTWARE QUALITY CONTROL THROUGH FORMAL
METHOD

by

Jialiang Chang

A dissertation submitted to the Graduate College
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Computer Science
Western Michigan University

August 2020

Doctor Committee:

Zijiang Yang, Ph.D., Chair
Steve Carr, Ph.D.
Jun Sun, Ph.D.

© 2020 Jialiang Chang

SOFTWARE QUALITY CONTROL THROUGH FORMAL
METHOD

Jialiang Chang, Ph.D.

Western Michigan University, 2020

With the improvement of theories in the software industry, software quality is

becoming the most significant part of the procedure of software development. Due to the

implicit and explicit vulnerabilities inside the software, software quality control has caught

more researchers and engineers’ attention and interest.

Current research on software quality control and verification are involving various

manual and automated testing methods, which can be categorized into static analysis and

dynamic analysis. However, both of them have their own disadvantages. With static

analysis methods, inputs will not be taken into consideration because the software system

isn’t executed so we do not know the behavior of the concurrent software system, while

dynamic analysis methods would be extremely expensive because of the enumeration of

inputs and paths/interleaving states of the concurrent program. In this research, the formal

method brings rigorous mathematical proof into the software quality control, to verify that

the requirements for the system being developed have been completely and accurately

specified.

This study focuses on the application of the formal method, associated with other

software verification method, including symbolic execution, fuzzing, and static analysis

methods, to verify the software vulnerabilities and security issues which negatively impact

the software quality. For the purpose of presenting the benefits of the utilization of formal

methods in software quality control, this study summarizes the research results on the

different software platforms, including memory reuse distance measurement and blockchain

smart contracts security verification on Ethereum and Hyperledger Fabric.

ACKNOWLEDGMENTS

At this time approaching to the end of long journey, I truly feel grateful and lucky

that there are my family, my teachers and my friends who selflessly show their supports

and love during this 5 year long chapter. At the last chapter of this fruitful book, I wrote

down every letter in this dissertation not only to complete my Ph.D. program, but also to

show my appreciation to all of you. I cannot make this far without you.

I would like to express my special appreciation and thanks to my advisor, Dr. Zijiang

Yang, whose invaluable mentorship on both research and my career guided me to become a

qualified Ph.D.

I would also extend my thanks to my committee members, Dr. Steve Carr and Dr.

Jun Sun for serving as my committee members. I would like to thank you for the research

opportunities and advices you gave me in my research projects.

I would also like to thank my parents, Sheng and Kefen, who support me to pursue

this academic honor from the beginning of my life, and whose love continuously encourages

me through these years.

Special thanks to my wife, Qian, who witness my hardworking, support me without

any return and has been with me all these years. The presence of you is the finest of rewards

to me.

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Formal Methods in Software Quality Control . 2

1.3 Research Domains . 5

1.4 Dissertation Contributions . 6

1.4.1 Memory Distance Measurement for Concurrent Programs 6

1.4.2 sCompile: Critical Path Identification and Analysis for Smart Contracts . . 7

1.4.3 Hyperledger Fabric Chaincode Quality Control with Fuzz Testing 7

2 Memory Distance Measurement for Concurrent Programs 9

2.1 Introduction . 9

2.2 Background: Execution of Concurrent Programs 13

2.3 Memory Distance Measurement Based on Symbolic Execution 15

2.4 Memory Distance Measurement with Random Scheduling 15

2.4.1 PCT Algorithm . 17

2.4.2 Measure Memory Distance with Random Scheduling 18

2.4.3 Probabilistic Guarantee Inheritance . 19

2.5 Experiments . 20

2.5.1 Implementation . 20

2.5.2 Comparison between DisConPro and DisConSym on Small Programs . . . 20

2.5.3 DisConPro on Public Benchmarks . 22

iii

2.6 Related Works . 25

2.7 Conclusion . 27

3 sCompile: Critical Path Identification and Analysis for Smart Contracts 28

3.1 Introduction . 28

3.2 Illustrative Examples . 31

3.3 Approach . 33

3.3.1 Constructing CFG . 33

3.3.2 Identifying Monetary Paths . 36

3.3.3 Identifying Property-Violating Paths . 37

3.3.4 Ranking Program Paths . 40

3.3.5 Feasibility Checking . 41

3.4 Implementation and Evaluation . 42

3.4.1 Implementation . 42

3.4.2 Experiment . 42

3.5 Related Works . 49

3.6 Conclusion . 50

4 Hyperledger Fabric Chaincode Quality Control with Fuzz Testing 51

4.1 Introduction . 51

4.2 Motivating Example . 54

4.2.1 Chaincode . 54

4.2.2 Motivation Example . 55

4.3 Fuzzing Test Approach . 60

4.3.1 Fuzzing Policy Generation . 60

4.3.2 CFG Generation . 61

4.3.3 Instrumentation . 62

4.3.4 Feedback Guided Fuzzing Mechanism . 63

4.3.5 Input Mutation . 68

iv

4.4 Warning Oracle . 70

4.5 Experiment and Evaluation . 73

4.6 Related Works . 78

4.7 Conclusion . 83

5 Conclusion and Future Works 84

Bibliography 86

v

List of Tables

2.1 Memory reference of a program execution . 10

2.2 Motivating example . 11

2.3 Memory distance results in different interleavings 11

2.4 Four threads with eight memory accesses. 17

2.5 Impact of the number of global variables comparing with DisConSym and DisConPro 21

2.6 Tracked paths and time cost result for DisConSym and DisConPro 22

3.1 Definition of αpr . 40

3.2 Loop bound definitions among three tools . 43

3.3 Comparison on vulnerable contracts . 44

3.4 Average number of program paths . 44

3.5 Statistics and results of surveyed contracts . 48

4.1 Minimization of candidate input . 65

4.2 Mutation of candidate input . 68

4.3 List of security warnings . 70

4.4 Analysis report on evaluated chaincodes . 75

4.5 Crash result . 77

4.6 Warning result . 78

vi

List of Figures

1.1 Symbolic execution example code . 3

2.1 Code snippet of a concurrent program and its generalized interleaving graph(GIG). 14

2.2 Parsec results . 23

2.3 MySQL result . 24

3.1 Illustrative contracts . 32

3.2 Overall workflow of sCompile . 33

3.3 Control flow graph of the contract toyDAO . 35

3.4 Guardless suicide . 38

3.5 A non-greedy contract . 41

3.6 Execution time of sCompile vs. Oyente vs. MAIAN 44

3.7 Ambiguous cases between sCompile and MAIAN 46

3.8 Contract of owner change . 47

4.1 Chaincode necessary interfaces . 54

4.2 Motivating example . 56

4.3 Policy file for Motivating example . 77

4.4 Control flow graph of chaincode in Fig. 4.2 . 78

4.5 Snippet of instrumented chaincode in Fig. 4.2 . 79

4.6 inputs that can call private functions . 79

4.7 difference between statical and dynamical CFG generation 79

4.8 Example for sonar instrumentation . 79

vii

4.9 Vulnerabilities explaination example . 80

4.10 Overall workflow of afuzzer . 81

4.11 Chaincode coverage rate . 81

viii

Chapter 1

Introduction

Software quality[78] is a commonly applied standard that applied in description of the degree

of matching between the implementation of software and its initial customer requirement. The

definitions of software quality can be illustrated from different perspectives, including correctness,

robustness, security and usability. In this dissertation, software quality is representing the correctness

and security of the software, which is the main features that studied in software verification research

area.

1.1 Background

Software quality has been a huge concern in many research and industry areas. Many accidents

that related to software quality, which could-be-avoided, have happened. In order to verify its

correctness and security, software testing method is introduced conduct examinations on quality of

software, which can significantly improve the software quality. There are some fatal cases among

those casesthat happened due to vulnerabilities of software:

• A female driver got killed in a car accident caused by falure of autopilot function in 2018[11].

• The fatal overdosed radiation exposure to patients by Therac-25 medical equipment. It was

involved in at least six accidents between 1985 and 1987, in which patients were given

massive overdoses of radiation[14].

1

• A notorious bug called reentrancy attack happened on Ethereum blockchain smart contract,

which caused 60 million us dollars financial loss[12].

Aforementioned and many other security issues that dangers software quality in terms of

its correctness and security. The best practical methods that can control and improve the software

quality is testing, which has been considered as an essential step of the software life cycle[77]

When the software testing[72] is introduced for the first time, all of the methods are con-

ducted manually to control the software quality. In manual testing, people have to create specific

test cases for each software, which consumes lot of time and labors but cannot check all runtime pos-

sibilities of software exhaustively. With progressive development of research and theory, automated

software testing[54] is introduced to assist manual testing with automated methods and theories.

Automatic testing tried to replace the traditional manual testing but yet completely obsolete it at all.

This is because automated testing cannot prove all detected vulnerabilities are positively true and its

system is extremely expensive to design and implement due to highly requirement of professional

experiences. Formal method[35] is one of highly specialized mathematical based method that

applied on verifying the correctness and security of the software and hardware. In this dissertation,

I mainly focus on formal method with integration of automated fuzzing and static analysis methods

to improve the quality of different types of software.

1.2 Formal Methods in Software Quality Control

In the past, due to lack of software quality control method, it is quite difficult for software engineer

to control the software quality during the software life circle. Formal method is one of many theories

that introduced as tools to solve this issue. Formal method is fundamentally consists of three steps:

formal model abstraction, property/specification generation and property/specification checking.

Formal model abstraction will abstract the software implementation into a formal model which is

basically a model that is described by a specific type of language, such as XML[24] or Ethereum

virtual machine[29] abstract tree. However, building a formal method based software quality control

tool requires highly professional knowledge. Therefore, my research interest in throughout my Ph.D.

2

program is to develop formal method-based tools to support the debugging, analysis and verification

of complex systems, and integrated with the automated technique. I would like to introduce the

methods that are applied in this dissertation which bring universal proof of software security and

solution to improve and better control the software quality.

Formal method is a mathematical technique which integrated programming theories, aims

to construct the formal model to describe the behaviors of the software. With formal method,

constructed model can be used to fully explore and verify the software quality. Symbolic execution

is the main formal method that applied in the dissertation. Symbolic execution[61] is one of the most

widely well-accepted formal methods that applied to analyze the software quality. With symbolic

execution, program could be analyzed without worrying of concrete inputs to the software.

In order to apply symbolic execution method, symbolic variables will be inserted into

software program at the beginning. The software program will then be abstracted into a specific type

of formal method that contains path constraints, which are collected from each possible conditional

branches in the software program. Satisfiability modulo theories(SMT) constraint solver will be

applied to analyze the path constraints to check if any paths are feasible or infeasible in the software,

and generate input case or counter input example as test case. Fig. 1.1 shows a small example to

shown how symbolic execution works in analyzing the software.:

1 x = read();

2 if (x == 12)

3 fail();

4 else

5 print("OK");

Figure 1.1: Symbolic execution example code

Above code snippet is an example to better illustrate the procedure of symbolic execution.

With given input of the program, x, there are two possible path that may be executed in runtime,

fail() will be executed when the value of x is exactly equal to 12, otherwise, print(“OK”) will be

executed. In manual testing, software engineer has to look inside the program in order to create test

cases to cover all runtime possibilities. However, given a more complex software, manual inspection

must require more time and labor to generate enough test cases.

With symbolic execution, the variable of x will be set as the symbolic variable. A static

3

analysis is required to capture the conditions of the selection statement, e.g. if-else statements in line

2 to line 5. In above code snippet, the captured condition is (x == 12). Once all possible conditions

are captured, SMT constraint solver will be invoked to solve the captured condition and check its

satisfiability. If there is at least one solution to the condition can be found to make this condition

satisfied, then we can guarantee the true branch, where fail() will be executed, can be executed in

runtime. Otherwise if there’s no solution existing to satisfy the condition, it thus indicates only false

branch will be executed in runtime.

The evaluation criteria for software testing method is the coverage rate. Coverage rate is the

percentage that the software is examined. There are multiple types of coverage rate to represent the

degree of the software examined in different perspectives:

• Path coverage: the coverage rate based on the number of paths checked to the total number of

paths

• Statement coverage: the coverage rate based on the number of statements checked to the total

number of statements

• Branch coverage: the coverage rate based on the number of branches checked to the total

number of branches

The most discussed topic is how to efficiently get a high path coverage rate in the analysis

process. With the developing of the software engineering, path explosion and constraint solving

effectiveness are two of the key challenges in symbolic execution research are. The more paths

explored, the more program behavior will be covered. However, the exponential growth of the

number of paths would require a lot of computation ability and tons of time. Besides path explosion

problem, the constraint solver is another bottleneck in symbolic execution. The constraints solvers

lost its ability when solving large scale program. It is a very large restriction in concurrent program

symbolic execution area. This dissertation is going to study the necessity of exhaustive path coverage

for fault detection in testing parallel program.

Besides the formal method, fuzzing and static analysis methods are also applied in controlling

the software quality in my Ph.D. researches and this dissertation.

4

Fuzzing[44, 45, 86] is an automated practical testing method that is widely used in software

testing. By mutating and generating random inputs, fuzzing aims to execute the target program rea-

sonable times in order to cover as many program paths as possible and find potential vulnerabilities.

With the same code snippet shown above, traditional fuzzing will randomly generate input as

value of x, then execute the code snippet with input. Every time an execution is finished, a random

input of x will be generated and used in next execution. The aim of fuzzing is to achieve high code

coverage through multiple program executions. However, it is difficult to cover all possibilities

of program with random inputs. Like in the code snippet above, the searching space for fuzzing

engine to generate 12 as next input is huge without knowing the condition of the selection statement

through static analysis. Thus, in order to effectively get high code coverage through fuzzing, the

static information of the program must be utilized.

Static analysis methods are a set of method that perform the software analysis and testing

to control its quality without executing the software, including control flow graph construction,

abstract syntax tree analysis, etc. It was first gradually brought into sight in 1970’s when inspection

and review of the program code is regarded as necessary part of software quality[59]. It is faster

than dynamic software analysis, which requires execution of the software. However, static analysis

has its own limitation, such as higher false positive rates than dynamic analysis.

In this dissertation, to control the software quality, I conducted researches to test and verify

the software security and correctness of different types of software with the combination of symbolic

execution, fuzzing and static analysis methods for the purpose of software quality control.

1.3 Research Domains

In this dissertation, Aforementioned formal method, fuzzing and static analysis methods are

primarily applied on software on following platforms and domains:

• Introduced a memory reuse distance measurement approach[65] that is based on randomized

executions for sequential program and a probabilistic guarantee method of observing all

possible interleaving without repeated executions for concurrency program, evaluated the

5

first one on Parsec benchmark suite and a large industrial-size benchmark MySQL, which

confirms that the randomized execution-based approach is effective and practical.

• Developed automatic verification framework[33] to test smart contract on Ethereum platform.

Framework identify paths which involve monetary transaction as critical paths and prioritize

those which potentially violate important properties. The framework is evaluated that can

capture vulnerabilities if user inspects fewer program paths and considering explicit or implicit

loops due to fallback function.

• Implemented first-in-the-world Hyperledger Fabric chaincode fuzzing test engine to verify

chaincode security issues, including detections of all types common runtime crashes and 10

types static warnings.

1.4 Dissertation Contributions

With the methods discussed in 1.2 and research domains listed in 1.3, this dissertation presents the

solutions to projects that provided in each of following platform: memory reuse distance prediction,

Ethereum smart contract security verification and Hyperledger Fabric chaincode fuzzing test.

1.4.1 Memory Distance Measurement for Concurrent Programs

Memory distance analysis, the number of unique memory references made between two accesses

to the same memory location, is an effective method to measure data locality and predict memory

behavior. Many existing methods on memory distance measurement and analysis consider sequential

programs only. With the trend towards concurrent programming, it is necessary to study the impact of

memory distance on the performance of concurrent programs. Unfortunately, accurate measurement

of concurrent program memory distance is non-trivial. In fact, due to non-determinism, the reuse

distance of memory references may differ with the same input set across multiple runs. Since

memory distance measurement is fundamental to analysis, we propose a measuring approach that is

based on randomized executions. Our approach provides a probabilistic guarantee of observing all

6

possible interleaving without repeated executions. In order to evaluate our approach, we propose a

second symbolic execution-based approach that is more rigorous but much less scalable than the

first approach. We have compared the two approaches on small programs and evaluated the first one

on Parsec benchmark suite and a large industrial-size benchmark MySQL. Our experiments confirm

that the randomized execution-based approach is effective and practical.

1.4.2 sCompile: Critical Path Identification and Analysis for Smart Con-

tracts

Ethereum smart contracts are an innovation built on top of the blockchain technology, which

provides a platform for automatically executing contracts in an anonymous, distributed, and trusted

way. The problem is magnified by the fact that smart contracts, unlike ordinary programs, cannot be

patched easily once deployed. It is important for smart contracts to be checked against potential

vulnerabilities. In this work, we propose an alternative approach to automatically identify critical

program paths (with multiple function calls including intercontact function calls) in a smart contract,

rank the paths according to their criticalness, discard them if they are infeasible or otherwise present

them with user friendly warnings for user inspection. We identify paths which involve monetary

transaction as critical paths and prioritize those which potentially violate important properties.

For scalability, symbolic execution techniques are only applied to top ranked critical paths. Our

approach has been implemented in a tool called sCompile, which has been applied to 36,099 smart

contracts. The experiment results show that sCompile is efficient, i.e., 5 s on average for one smart

contract. Furthermore, we show that many known vulnerabilities can be captured if user inspects

as few as 10 program paths generated by sCompile. Lastly, sCompile discovered 224 unknown

vulnerabilities with a false positive rate of 15.4% before user inspection.

1.4.3 Hyperledger Fabric Chaincode Quality Control with Fuzz Testing

Since the invention of blockchain technology, both academia and industry area raised highly interests

in researching blockchain theory seeking for utilization of its high transparency and high distribution

7

features. However, the rapid development and improvement of blockchain comes with the huge

concerns of smart contract security. In this paper, we introduced a state-of-the-art software testing

approach with fuzzing formal method technique on chaincode, which is the smart contract on

the well-known blockchain platform, Hyperledger Fabric [19]. Fuzzing is a automated formal

method that is widely used in software testing. By mutating and generating random inputs, fuzzing

aims to execute the target program reasonable times in order to cover as many program paths as

possible and find potential vulnerabilities. Based on the approach, we designed the fuzzing test

tool to help chaincode user to verify the correctness of the chaincode. In our tool, chaincode that

written in golang is interpreted into abstract syntax tree format, which is abstract representation of

the chaincode. Interpreted chaincode thus is executed with inputs that are mutated and generated

based on the feed-back guidance of code-coverage and vulnerabilities that collected statistically

in previous executions. Until the a specific coverage criteria is satisfied, 10 types of chaincode

vulnerabilities checking applies and there is report that contains chaincode safety information

submitted to user. With experiment results of 24 golang written chaincodes, our tool is proved that

can correctly examine 10 types of vulnerabilities and verifies 20 real world runtime Hyperledger

Fabric chaincodes crashes in a reasonable time.

8

Chapter 2

Memory Distance Measurement for

Concurrent Programs

This chapter presents the contribution in the research: Memory Distance Measurement for Con-

current Programs. The 30th International Workshop on Languages and Compilers for Parallel

Computing (LCPC). Section 2.1 and 2.2 serves as introduction and background knowledge to the

research. In section 2.3 and 2.4, symbolic execution and random scheduling methods are introduced

in memory reuse distance measurement research area. The evaluation of the research is performed

in section 2.5. Finally, related works study and conclusion of the research are given in section 2.6

and 2.7.

2.1 Introduction

Nowadays, widespread multicore hardware has put us at a fundamental turning point in software

development. Although we have seen incrementally more programmers writing multithreaded

programs in the past decade, the vast majority of applications today are still single-threaded and

cannot benefit from the hardware improvement without significant redesign. Applications will need

to be well-written concurrent software programs in order to benefit from the advances in multicore

processors.

9

Table 2.1: Memory reference of a program execution

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Reference accessed A B C A C C B A C B A C B B A C

Memory distance ∞ ∞ ∞ 2 1 0 2 2 2 2 2 2 2 0 2 2

The main reason to develop concurrent programs, which are much more sophisticated than

sequential programs, is to enhance the performance of an application. To achieve the performance,

developers usually make extra effort to hand tune the programs. One aspect of performance

enhancement is data locality because of its significant effect on cache. In order to manage locality,

developers need to measure the memory distance of their programs.

The memory distance of a reference is a dynamic quantifiable distance in terms of the

number of different memory references between two accesses to the same memory location [46].

It is a widely accepted concept in analyzing program cache performance. The speed gap between

the processor and memory has resulted in what is known as the memory wall. To overcome this

wall and speed up program performance, data locality is an important factor that developers must

consider. Memory distance analysis [43, 46, 47, 70] is an effective method to measure data locality

and predict memory behavior.

Much existing work on memory distance measurement and analysis considers sequential

programs only. With the trend towards concurrency, we need to do such measurement on concurrent

programs. Unfortunately, adapting existing approaches that were designed for sequential programs

is not feasible. Due to the inherent non-deterministic behavior under fixed inputs for concurrent

programs, measuring concurrent memory distance is fundamentally different from that of sequential

programs.

Consider the example shown in Table 2.1. The first row lists the indices of the events in a

program execution under input vector v. The second row gives the symbolic memory address being

accessed and the third row computes the memory distance. In the following, we use an index as

the superscript to differentiate the instances of the same memory addresses in the execution trace.

The memory distance of A1, denoted as ∆v(A1), is ∞ because it is the first appearance of A. For the

same reason we have ∆v(B2) = ∆v(C3) = ∞. ∆v(A4) = 2 because there are two accesses to other

10

memory locations between the current access and the previous access to A. Note that ∆v(B7) = 2,

because although there are four accesses between B2 and B7, three out of the four access visit the

same memory location. It can be easily observed that the minimal and maximal memory distances

under v are 0 and 2 (not considering ∞), respectively. All the existing memory analysis approaches

are in general based on such computation, with minor variants 1.

Table 2.2: Motivating example

index 1 2 3 4 5 6 7 8
Memory references in thread 1 A B C A C C B A
Memory references in thread 2 C B A C B B A C

However, the minimal and maximal memory distances under v may not be 0 and 2 if the

program under analysis is concurrent. For example, the trace in Table 2.1 may be from a concurrent

program with two threads as shown in Table 2.2. That is, the first eight memory accesses are from

Thread 1 and the remaining eight are from Thread 2. The execution trace in Table 2.1 corresponds

to the case where Thread 2 starts its execution after Thread 1 completes. However, this is not the

only possibility. Many other interleavings are possible, as illustrated in Table 2.3.

Table 2.3: Memory distance results in different interleavings

idx Reference accessed Memory distance
1 {C2,B2,A2,C2,B2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1} {∞,∞,∞,2,2,0,2,2,1,2,2,2,1,0,2,2}
2 {C2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,2,1,2,2,2,1,0,2,2,2,2,0,2}
3 {A1,B1,C1,C2,B2,A2,C2,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,0,1,2,2,1,1,0,2,2,2,2,0,2}
4 {A1,C2,B2,B1,C1,A2,C2,A1,C1,C2,B2,C1,B1,A1,B2,A2} {∞,∞,∞,0,1,2,1,1,1,0,2,1,1,2,1,1}
5 {A1,C2,B1,B2,C1,A2,C2,A1,C1,C2,C1,B2,B1,B2,A1,A2} {∞,∞,∞,0,1,2,1,1,1,0,0,2,0,0,2,0}
6 {C2,B2,A1,B1,A2,C2,C1,A1,B2,B2,C1,C1,A2,C2,B1,A1} {∞,∞,∞,1,1,2,0,1,2,0,2,0,2,1,2,2}
7 {C2,A1,B2,B1,A2,C1,A1,C2,B2,B2,C1,A2,C1,C2,B1,A1} {∞,∞,∞,0,1,2,1,1,2,0,1,2,1,0,2,2}

This simple example illustrates the challenge in measuring memory distance for concurrent

programs. Multiple executions of a concurrent program with the same input might exercise different

sequences of synchronization events possibly producing different results each time. To obtain

accurate memory distances for a given input, all execution traces permissible under that input must

be examined. However, in current execution environments a developer has no control over the

1For example, some approaches may report ∆v(B7) = 4 because there are four accesses between B2 and B7 regardless
same memory locations are accessed.

11

scheduling of threads. Furthermore, when executing a concurrent program by running it repeatedly

on a lightly-loaded machine, the same thread interleaving, with minor variations, tend to be exercised

since thread schedulers generally switch among threads at the same program locations. The net

effect of these impediments is that only a few interleavings end up being examined. This leads to an

incomplete picture of memory distances. Even if it were possible to control thread scheduling, it

would still be infeasible to explicitly test all interleavings. For example, a program with 3 threads

and 50 lines of code per thread may have more than 1069 different interleavings. In general, the

number of possible interleavings of a multi-threaded program with n threads, each executing at most

k steps, can be as large as (nk)!/(k!)n ≥ (n!)k, a complexity that is exponential in both n and k.

There are two well accepted method to measure the reuse distance: stack based method and

tree based method. In stack based method, a stack is used for calculating reuse distance When a

program is executed and encountered an address, this address will be searched in the stack. If there

is no such address in the stack, then this new address will be pushed onto the top of the stack and

the reuse distance of this memory reference will be set to infinity. This method takes O(N) time and

is relatively slow. On the other hand, in tree based method, a tree is used to store four variables in

the structure: basic pointers to the left and right child, the memory address and the the number of

nodes under this node in the tree. This is a much more efficient algorithm and takes O(log N) time.

In this paper, we present an approach to measure memory distance of concurrent programs.

Given the fact that we cannot possibly explore all the thread interleavings of a concurrent program,

our approach introduces randomness in repeated executions. By adapting a method called PCT [26],

our approach provides a mathematical guarantee to detect memory distances of given triggering

depths. That is, if there exists a memory distance d between memory accesses to m with triggering

depth δ d
m(definition to be given in Section 2.4), our approach guarantees its detection with probability

of 1/(n× kδ d
m−1), where n and k are the approximated number of threads and the approximated

number of events, respectively, of the given program. We have implemented our method in a

tool called DisConPro(Memory Distance measurement of Concurrent Programs with Probabilistic

Guarantee).

In order to validate the effectiveness of DisConPro, we propose a more rigorous but much

12

less scalable approach to measure memory distance based on symbolic execution. The second

approach utilizes the symbolic execution engine that we developed to exhaustively explore all

intra-thread paths and inter-thread interleavings. We name this tool DisConSym (Memory Distance

measurement of Concurrent Programs based on Symbolic Execution Guarantee). DisConSym can

only handle small programs due to its inherent path explosion. By comparing DisConPro against

DisConSym on small programs, we are able to determine if DisConPro covers a similar memory

distance spectrum as DisConSym.

The contributions of this paper include the following:

1. To the best of our knowledge, we are the first to propose a feasible approach to measure the

memory distance of concurrent programs. Our approach is based on randomized executions

and provides probabilistic guarantees.

2. We propose a second approach that is more rigorous but less scalable than the first approach.

Although such a symbolic execution based approach can only handle small benchmarks, it

allows us to evaluate the effectiveness of the first approach.

3. We have implemented two prototypes DisConPro and DisConSym and conducted experiments

on medium-sized Parsec[23] benchmarks and a large industrial size benchmark MySQL with

DisConPro.

The rest of the paper is organized as follows. The background knowledge of concurrent

program execution is described in Section 2.2, followed by the explanation of our two approaches

in Sections 2.3 and 2.4, respectively. The experimental results are given in Section 2.5. Section 2.6

discusses the related work. Finally Section 2.7 concludes the paper.

2.2 Background: Execution of Concurrent Programs

Figure 2.1 gives a code snippet of a concurrent program with two threads. Depending on the values

of a and b, different branches in the two threads can be observed across executions. Depending on

the synchronization and operating system scheduling policies, different interleavings can also be

13

T 11:a=x;

T 12:if(a > 0) Br1;

else Br1;

T 13:if(a % 2==0) Br2;

else Br2;

T 14:

---- [T1] ----

T 21:b=y;

T 22:if(b > 0) Br3;

else Br3;

T 23:if(b % 2 == 1) B4;

else Br4;

T 24:

---- [T2] ----

< T 11, T 21 >

< T 12, T 21 > < T 11, T 22 >

< T 13, T 21 > < T 12, T 22 > < T 11, T 23 >

< T 13, T 22 > < T 12, T 23 >

< T 13, T 23 >

Br1

Br1

< T 14, T 21 >

< T 14, T 22 >

< T 14, T 23 >

< T 14, T 24 >

< T 13, T 24 >

< T 12, T 24 >

< T 11, T 24 >

Br2
Br2

Br3

Br3

Br1

Br1

Br4
Br4

Br3

Br3

Br3

Br3

Br3

Br3Br2

Br2

Br2

Br2

Br4
Br4

Br4

Br4

Br4

Br4

Br2

Br2

Br1

Br1

Br1

Br1

Figure 2.1: Code snippet of a concurrent program and its generalized interleaving graph(GIG).

observed. In order to present intra-thread paths and inter-thread interleavings, we use the generalized

interleaving graph(GIG) [50, 90] to illustrate all possible executions of a concurrent program.

Figure 2.1 shows a program and its GIG. For simplicity, we assume a=x++ is atomic. The

root node (a1,b1) corresponds to the starting points of the two threads. The terminal node (a5,b5)

corresponds to the end of the two threads. Nodes such as (a1,b1) are i-PP nodes, where we can

execute either thread 1 which leads to (a2,b1), or thread 2 which leads to (a1,b2). In contrast,

nodes such as (a2,b1) are b-PP nodes, where we can take either the assume(a = 0) branch, leading

to the code segment A1, or the assume(a 6= 0) branch, leading to the code segment A1.

Figure 2.1 depicts the GIG of the code snippet on its left, where black and blue edges

represent an execution step of Threads T 1 and T 2, respectively. The dashed lines with the same

source (defined as b-PP node) denote a branch within a thread and the solid lines with the same

source (defined as i-PP node) denote a context switch between two threads. Note that a node can be

both b-PP and i-PP. In order to measure memory distance accurately, all the paths in a GIG must be

considered. This is what our symbolic execution based approach, described in Section 2.7, attempts

to accomplish. However, enumerating all possible executions is obviously impractical. Thus, we

present a practical approach in Section 2.4.

14

2.3 Memory Distance Measurement Based on Symbolic Execu-

tion

In this section, we present a symbolic execution based approach that is able to systematically

explore all the intra-thread branches and inter-thread interleavings. The pseudo-code is shown in

Algorithm 1, which is based on the symbolic execution algorithm proposed in [50], and follows

the Concolic [80] framework. The algorithm uses a recursive procedure TRACKSTATE to explore

paths. The first path is randomly chosen. When a new b-PP node with condition c is encountered,

TRACKSTATE checks whether the current path condition appended with c if satisfiable. If so, it

continues the execution along the branch while pushing the other branch ¬c on the stack S. The

satisfiability is checked by an SMT solver such as Z3 [38]. If the SMT solver fails to find a solution,

it indicates that no inputs or interleavings can continue the execution along the branch. In this

case, the current execution backtracks by popping its stack S. If an i-PP node is first encountered,

TRACKSTATE randomly choose one interleaving while pushing the other one on the stack. For a

more detailed explanation, please refer to [50]

The measurement of memory distance occurs during backtrack. That is, when the current

execution reaches an end state normal end state or reaches an infeasible branch. In GETMEMDIST,

a path is treated as a sequence of member accesses 〈acc1, . . . ,accn〉. Each acci is a pair (addr,d)

of memory address and distance. All the global memory accesses are analyzed to calculate the

memory distance. Initially the memory distance of any memory access is set to -1. The algorithm

continuously checks the next access acc j. If acc j accesses a memory address different from

acci.addr, acc j.addr is added to the set memorySet. Otherwise,the size of memorySet is the

memory distance between acci and acc j.

2.4 Memory Distance Measurement with Random Scheduling

In this section, we present our main approach that computes memory distances with random

scheduling. We begin with the concept of memory distance minimal depth δ d
m. Given a memory

15

Algorithm 1: SymbolicExecution(P)
let Stack S← /0 be the path constraints of a path;

1: TRACKSTATE(s)
2: S.push(s);
3: if (s is an i-PP node or b-PP node)
4: while (∃t ∈ (s.enabled \ s.done\ s.branch))
5: s′← NEXT(s, t);
6: TRACKSTATE(s′);
7: s.done← s.done∪{t};
8: else if (s is an local thread node)
9: t← s.next;

10: s′← NEXT(s, t);
11: TRACKSTATE(s′);
12: path← S.pop();
13: NEXT(s, t)
14: let s be 〈pcon,M 〉;
15: if (t instanceof halt)
16: s′← normal end state;
17: GetMemDist(path);
18: else if (t instanceof branch(c))
19: if (s.pcon is unsatisfiable under M)
20: s′← infeasible state;
21: GetMemDist(path);
22: else
23: s′← 〈pcon∧ c,M 〉;
24: else if (t instanceof X = Y op Z)
25: s′← 〈pcon,M [X]〉;
26: return s′;
27: GETMEMDIST(path)
28: let path be 〈acc1, . . . ,accn〉;
29: for (int i← 0, i < n−1, i++)
30: memorySet← /0;
31: for (int j← 1, j < n, j++)
32: if (acci.addr = acci.addr
33: acci.d ← memorySet.size();
34: break;
35: else
36: memorySet.insert(acc j.addr);

location m, δ d
m is defined as the minimal number of constraints for any pair of accesses to m that

have a memory distance of d. Consider the example given in Figure 2.4. There are four threads

with eight events e1, . . . ,e8 that access four memory locations A,B,C and D. Among the total 2520

interleavings, the memory distances between a pair of accesses to A range from 0 to 3. The memory

16

Table 2.4: Four threads with eight memory accesses.

Thread1 Thread2 Thread3 Thread4
< e1,A > < e2,B > < e3,C > < e4,D >
< e5,A > < e6,A > < e7,A > < e8,A >

distance of 3 occurs only if e1≺ e2∧e1≺ e3∧e1≺ e4, where≺ denotes the happens-before relation.

That is, δ 3
A = 3 because there are three constraints.

2.4.1 PCT Algorithm

We adapt the PCT [26] algorithm that was proposed to detect concurrent bugs with a probabilistic

guarantee. The basic idea is to add a random scheduling control mechanism to randomize scheduling

to avoid redundant executions.

In [26], a concurrent bug depth is defined as the minimum number of order constraints that

are sufficient to guarantee to find the bug. The algorithm attempts to find the concurrent bug with

depth of d by controlling the thread scheduling as the following.

• The scheduling is controlled by giving each thread a priority. A thread executes only if it has

the highest priority or the threads with higher priorities are waiting.

• It assigns n initial priorities d, d + 1, d + 2....d + n−1 to the n threads.

• It randomly picks d−1 change points from k instructions, where k is the estimated number

of instructions. The program is then executed with the following rules.

– Each time only the enabled instruction from the thread with the highest priority can be

executed. During execution all the instructions are counted.

– If the instruction to be executed is counted as the number k-th and k is equal to any of ki,

change the priority value of the current thread to i. This causes a context switch.

17

2.4.2 Measure Memory Distance with Random Scheduling

We propose an approach called DisConPro, which adapts the PCT [26] algorithm to measure the

memory distance in concurrent programs. As demonstrated above, memory distances may be

different with different interleavings.

The basic idea of DisConPro is to measure the memory distance in multiple executions with

the PCT scheduling control mechanism. At the beginning, DisConPro generates a random schedule

following PCT [26]. Then it executes the program following the schedule. The memory distance

is measured during the execution. Each memory access is recorded in a memory access trace and

memory distances are calculated based on the memory access traces.

In practice, the statically computed scheduling is not always feasible. However, the infeasible

cases only deviate from the planned interleavings but do not lead to execution error. For example,

DisConPro may attempt to execute an instruction that is disabled by the operating system. In this

case, the execution will choose the next thread with highest priority until an enabled instruction is

found.

Algorithm 2: DisConPro(P,n,k,d,m)
1 Input: P is a program
2 Input: n is the number of threads
3 Input: k is the number of events
4 Input: d is memory distance minimum depth
5 Input: m is a memory address on which memory distance is measured
6 Var: Trace is a list that records every memory access events
7 Var: Distance is an array of memory distances
8 Distance[i] is the memory distance between i-th and (i+1)-th access to m
9 Trace = Empty List

10 Generate a random schedule S based on PCT algorithm
11 Schedule n threads based on S and execute
12 those k events
13 for each memory access event e do
14 Trace.add(e)

15 end
16 Calculate Distance based on Trace

18

2.4.3 Probabilistic Guarantee Inheritance

The PCT algorithm provides a probabilistic guarantee to find a concurrent bug. By adapting it, our

approach can provide a probabilistic guarantee to find a particular memory distance d with a depth

of δ d
m. The probability is at least 1/(n× kδ d

m−1). Now we now give the proof by adapting the proof

for finding a concurrent bug found in [26].

Definition 1. DisConPro(m,n,k,P) is defined as a set of memory distances of a memory object m.

DisConPro finds memory distances during one execution of program P, containing n threads and k

instructions.

Theorem 1 (Probabilistic Guarantee Theorem). If there exists a memory distance d with a minimum

depth memory distance of δ d
m, the probability of DisConPro finding it in one execution is

Pr(d ∈ DisConPro(m,n,k,P))> 1/(n× kδ d
m−1) (2.1)

Proof. We define an assert statement assert(m,d) as that d is not the memory distance of memory

object m in the execution. We define a bug B that can be flagged if the assertion fails. If bug B is

detected, d is found as the memory distance of memory m. We define event E1 as DisConPro finds

bug B and event E2 as DisConPro finds d as the memory distance of m. Base on the definition of E1

and E2, we can argue that E1 ≡ E2. Let Cons be a minimum set of constraints that are sufficient

for E1 to happen. We argue that Cons is one of the minimum set of constraints that are sufficient

for E2 to happen. This bug B is not different from other concurrent bugs hidden in rare schedules.

The depth of B equals δ d
m, which is the size of Cons. We defineE3 as PCT algorithm find B in one

execution. Since DisConPro adapts PCT algorithm, we can argue that Pr(E2) = Pr(E3). By the

definition, we have

Pr(E1 : d ∈ DisConPro(m,n,k,P)) = Pr(E2 : DisConPro f inds B) (2.2)

Pr(E2 : DisConPro f inds B) = Pr(E3 : PCT f inds B) (2.3)

19

It has been proved that(see[26])

Pr(E3 : PCT f inds B) > 1/(n× kδ d
m−1) (2.4)

Then,

Pr(E1 : d ∈ DisConPro(m,n,k,P))> 1/(n× kδ d
m−1) (2.5)

2.5 Experiments

2.5.1 Implementation

We implement DisConPro using PIN [67], a dynamic binary instrumentation(DBI) framework that

allows users to insert analysis routines to the original program in binary form. DisConSym is

based on Cloud9 [34], a symbolic execution engine built upon LLVM [63, 64] and KLEE [30].

DisConSym has an extension for analyzing concurrent programs since Cloud9 only partially

supports concurrency. The extension of Cloud9 follows the algorithm and implementation given in

[82]. With the extension, DisConSym can analyze the interleavings not only due to synchronization

primitives, which is also supported by Cloud9, but also due to global variables. The latter is essential

and a prerequisite to analyze the memory distance of a concurrent program.

2.5.2 Comparison between DisConPro and DisConSym on Small Programs

We compare DisConPro with DisConSym to answer the following questions.

• Can DisConPro discover the same memory reuse range as DisConSym does?

• Can DisConPro cover all valid tracks as DisConSym does?

• Is DisConPro more scalable than DisConSym?

20

Table 2.5: Impact of the number of global variables comparing with DisConSym and DisConPro

Thread number = 3 2 mem global 3 mem global 4 mem global 5 mem global

DisConSym

mem global 1 -1,0,1 -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 2 -1,0,1 -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 3 N/A -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 4 N/A N/A -1,0,1,2,3 -1,0,1,2,3,4
mem global 5 N/A N/A N/A -1,0,1,2,3,4

DisConPro

mem global 1 -1,0,1 -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 2 -1,0,1 -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 3 N/A -1,0,1,2 -1,0,1,2,3 -1,0,1,2,3,4
mem global 4 N/A N/A -1,0,1,2,3 -1,0,1,2,3,4
mem global 5 N/A N/A N/A -1,0,1,2,3,4

Since DisConSym is not scalable, we compare the two tools on several small concurrent

programs with an adjustable number of threads and global variables. All the programs have less

than 100 lines of code. Table 2.5 gives the experimental results. In the experiments we set the

number of threads to 3, as indicated by the heading of Column 2, and the number of global variables

to be 2-5. DisConSym is not able to handle a program with more threads and global variables.

Columns 3-6 indicate the number of global variables created in each group of experiments. Each

row in the table gives the memory distance observed for each individual global variable. When a

variable does not exist in an experiment, e.g. mem global3 in an experiment with only two global

variables in Column 3, N/A is given. In the table, the top half of the rows give the results under

DisConSym and the bottom half show the results under DisConPro. For all the experiments done by

DisConPro, we set depth to be 5 and run each program 100 times. The table indicates that memory

distances can be affected by the number of global variables. It can also be observed that for the

small programs DisConPro can find as many memory distances as DisConSym.

Although for small programs DisConSym and DisConPro generate the same results in

measuring memory distance, the cost is significantly different. Table 2.6 gives the number of paths

and time usage of the seven groups of experiments with various numbers of threads and global

variables. It can be observed that even for such small programs DisConPro is more than 1000 times

faster. As concurrent programs become larger, the gap will be wider. Although we cannot guarantee

DisConPro can detect as many memory distances as DisConSym does for non-trivial programs, we

21

Table 2.6: Tracked paths and time cost result for DisConSym and DisConPro

Threads and mem global setting Approach # Paths Time (seconds)

3 threads, 2 mem global
DisConSym 90 2
DisConPro 100 25

3 threads, 3 mem global
DisConSym 1680 27
DisConPro 100 25

3 threads, 4 mem global
DisConSym 34650 930
DisConPro 100 25

3 threads, 5 mem global
DisConSym >200000 >6794
DisConPro 100 25

2 threads, 3 mem global
DisConSym 20 1
DisConPro 100 25

4 threads, 3 mem global
DisConSym >200000 >9609
DisConPro 100 25

5 threads, 3 mem global
DisConSym >200000 >11473
DisConPro 100 25

believe DisConPro achieves a nice trade-off between accuracy and efficiency.

2.5.3 DisConPro on Public Benchmarks

We evaluate DisConPro with 9 applications in the Parsec benchmark suite [23], as well as the

real-world application MySQL with more than 11 million lines of code. For each application, we

conduct 6 groups of experiments. Group one measures the memory distance by only running the

test cases once without scheduling control. Groups 2 to 6 measure the memory distances by running

each test case 30 times. Group 2 uses random scheduling. Groups 3-6 set the predefined depth to 5,

10, 20 and 50, respectively. For each application, we perform memory distance analysis on global

variables only. For a large application with too many global variables, we randomly choose several

global variables to measure their memory distances.

Parsec Benchmark.

Figure 2.2 gives the results of the experiments on Parsec [23]. The data in the sub-tables and

sub-figures present the range of memory distances. Each column gives the minimum and maximum

distances of all the global variables we evaluate. The figures show that in most cases the ranges

22

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 1 1 1 1
max 328 371 328 336 357 339

0 0 1 1 1 1

328
371

328 336 357 339

0

100

200

300

400

blackscholes

(a) blackscholes

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 4 4 4 4
max 3873061 3871813 3871830 3871830 3871830 3871830

0 0 4 4 4 4

3873061 3871813 3871830 3871830 3871830 3871830

0

1000000

2000000

3000000

4000000

bodytrack

(b) bodytrack

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 0 0 0 0
max 3230 3230 3230 3230 3299 3230

0 0 0 0 0 0

3230 3230 3230 3230 3299 3230

0

500

1000

1500

2000

2500

3000

3500
canneal

(c) canneal

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 4 4 4 4 4 4
max 3374 3400 3374 3374 3374 3387

4 4 4 4 4 4

3374 3400 3374 3374 3374 3387

0

1000

2000

3000

4000
raytrace

(d) raytrace

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 0 0 0 0
max 279331 280801 281695 281611 281615 281713

0 0 0 0 0 0

279331 280801 281695 281611 281615 281713

0

75000

150000

225000

300000

swaptions

(e) swaptions

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 0 0 0 0
max 1858829 1903585 1408696 1408696 1408702 1408701

0 0 0 0 0 0

1858829 1903585

1408696 1408696 1408702 1408701

0

500000

1000000

1500000

2000000

vips

(f) vips

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 1 1 1 1
max 2165608 2204919 2551977 2557459 2553523 2556035

0 0 1 1 1 1

2165608 2204919
2551977 2557459 2553523 2556035

0

750000

1500000

2250000

3000000

dedup

(g) dedup

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 0 0 0 0
max 1088837 1102811 1157952 1120492 1125579 1119260

0 0 0 0 0 0

1088837 1102811 1157952 1120492 1125579 1119260

0

300000

600000

900000

1200000

ferret

(h) ferret

One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50
min 0 0 0 0 0 0
max 1764421 1764649 1763630 1763787 1763964 1764143

0 0 0 0 0 0

1764421 1764649 1763630 1763787 1763964 1764143

0

450000

900000

1350000

1800000

freqmine

(i) freqmine

Figure 2.2: Parsec results

that DisConPro finds are larger than those detected by Random Schedule, which in turn are larger

than the ranges discovered by Single Run. However, the range gaps achieved by PCT are not

comparable to those obtained by random algorithm or even single runs. This is because the ranges

reported in the figure are for all the global variables that we have evaluated. Assume that there

exists a global variable that is accessed at the beginning of an execution and is re-accessed before

the program terminates, its memory distance span is large and does not change much under all the

possible interleavings. In this case, this variable hides the differences of the ranges exhibited in

other variables.

For the application vips, single and random executions without PCT detect a larger memory

distance span. Since PCT randomly generates change points to enforce context switches, it may

disturb program executions significantly. For this reason, PCT may observe memory distances that

23

min max min max min max min max min max min max
One Run No PCT PCT_5 PCT_10 PCT_20 PCT_50

0x0000000000ad20c4 16 254080 16 254117 16 255799 16 255774 16 255797 16 254143
0x0000000000ad3780 0 100523 0 100524 0 100524 0 100524 0 100524 0 100939
0x0000000000ad62a0 3 112189 3 112189 3 112523 3 112523 3 112523 3 112523
0x0000000000b0ea44 67 74800 67 74802 67 74804 67 75213 67 75129 67 75212
0x0000000000b0f530 0 39719 0 39719 0 40141 0 40140 0 40140 0 40141
0x0000000000b10a00 0 51418 0 51418 0 51516 0 51516 0 51419 0 51821

16

254080

16

254117

16

255799

16

255774

16

255797

16

254143

0

100523

0

100524

0

100524

0

100524

0

100524

0

100939

3

112189

3

112189

3

112523

3

112523

3

112523

3

112523

67

74800

67

74802

67

74804

67

75213

67

75129

67

75212

0

39719

0

39719

0

40141

0

40140

0

40140

0

40141

0

51418

0

51418

0

51516

0

51516

0

51419

0

51821

0

50000

100000

150000

200000

250000

Memory distance chart for MySQL

Figure 2.3: MySQL result

are less diverse than those without PCT. This phenomenon is further amplified by the facts that

we aggregate all variables in the same figure. To understand the performance of PCT algorithms

further, we choose to illustrate the data per variable in MySQL experiments.

MySQL

Figure 2.3 gives the experimental results on MySQL. We randomly choose 6 memory objects whose

addresses are listed in the table. The figure depicts the ranges of the minimum and maximum

memory distances that we have observed from each group of experiments. It can be observed that

the memory ranges in Groups 2 to 6 are larger than that in Group 1. By comparing the results

of Group 2 to Groups 3-5, we can conclude that DisConPro is more effective than the random

scheduling algorithm. The best performance algorithms for the six memory objects are PCT 5,

PCT 50, PCT 5 or PCT 10 or PCT 50, PCT 10, PCT 5 or PCT 10, PCT 50, respectively. For

measuring the memory distances of individual variables, DisConPro can find a range that is 30%

larger than Random Schedule.

24

2.6 Related Works

Cache performance heavily depends on program locality. In the past there were studies that indirectly

measure program locality by simulating its execution on a set of probable cache configurations. Such

simulations are not only time consuming but also inaccurate. In [42], Ding and Zhong proposed to

measure program locality directly by the distance between the reuses of its data because data reuse

is an inherent program property and does not depend on any cache parameters. They designed two

algorithms with one targeting efficiency and the other one targeting accuracy. Their work inspired

further improvements that exploits sampling [82] and statistical methods [46]. These methods

work well for sequential programs. However, they do not consider that non-deterministic thread

scheduling and thus not applicable to concurrent programs.

In recent years there has been research on multicore reuse distance analysis [56, 79, 92, 93].

Schuff et. al. [79] propose a sampled, paralleled method of measuring reuse distance profiles for

multithreaded programs. Whereas previous full reuse distance analysis tracks every reference,

sampling analysis randomly selects individual references from the dynamic reference stream and

yields a sample for each by tracking unique addresses accessed until the reuse of that address.

The sampling analyzer can account for multicore characteristics in much the same way as the full

analyzer. The method allows the use of a fast-execution mode when no samples are currently active

and allows parallelization to reduce overhead in analysis mode. These techniques result in a system

with high accuracy that has comparable performance to the best single-thread reuse distance analysis

tools. While our work also conducts reuse distance analysis of multithreaded programs, there exists

fundamental difference between their approach and ours. Schuff et al. focus on the hardware while

we focus on software. Their goal is to efficiently measure the distance on a more sophisticated

multicore. Thus efficiency is a major concern of their research. With the help of the their findings a

system designer may design a better cache. We aim to provide a feasible approach that measures the

reuse distance of a particular multithreaded program. Therefore non-deterministic thread scheduling

is the major concern of our work. With our approach we hope to let programmers understand the

behavior of their multithreaded programs regardless of the cache configurations. The two methods

25

are orthogonal and can potentially be integrated. While we strive to diversify the executions of a

multithreaded program, the approach proposed in [79] can be used to monitor each execution.

The goal of the approaches in [56, 92, 93] are similar to that of [79]. They apply reuse

distance analysis to study the scalability of multicore cache hierarchies, with the goal to help

architects design better cache systems. In particular, Jiang et. al. [56] introduce the concept of

concurrent reuse distance (CRD), a direct extension of the traditional concept of reuse distance with

data references by all co-running threads (or jobs) considered. They reveal the special challenges

facing the collection and application of CRD on multicore platforms, and present the solutions based

on a probabilistic model that connects CRD with the data locality of each individual thread. Wu et.

al. [93] present a framework based on concurrent reuse distance and private reuse distance (PRD)

profiles for reasoning about the locality impact of core count. They find that interference-based

locality degradation is more significant than sharing-based locality degradation. Wu and Yeung [92]

extend [93] by using reuse distance analysis to efficiently analyze multicore cache performance for

loop-based parallel programs. They provide an in-depth analysis on how CRD and PRD profiles

change with core count scaling, and develop techniques to predict CRD and PRD profile scaling.

As we mentioned, our focus is to examine program behavior rather than the cache performance.

Thus we measure memory distance from a completely different perspective from [56, 92, 93].

There exists work that studies reuse distance from other perspectives. Keramidas et al. [60]

propose a direct way to predict reuse distance and apply their method to cache optimization. Zhong

et al. [96] focus on the effect of input on reuse distance. They propose a statistical, pattern-matching

method to predict reuse distance of a program based on executions under limited number of inputs.

Shen et al. [81] introduce the time-efficiency model to analyze reuse distance with time distance.

Retaining the high accuracy of memory distance, their approach significantly reduces the reuse-

distance measurement cost. Niu et al. [76] present the first parallel framework to analyze reuse

distance efficiently. They apply a cached size upper bound to restrict a maximum reuse distance

to get a faster analysis. Although these approaches are not optimized for multithreaded programs,

many of their ideas can potentially be adopted to extend our work.

Our repeated executions of a multithreaded program relies on PCT [26, 27], a randomized

26

algorithm originally designed for concurrent program testing. The advantage of PCT over total

randomized algorithms is that PCT provides a probabilistic guarantee to detect bugs in a concurrent

program. There has been recent work that adopts PCT for various purposes. For example, Liu et

al. [66] introduce a pthread library replacement that applies PCT to support analyzing data races

and deadlocks in concurrent programs deterministically. Cai and Yang [32] propose to add a radius

to the PCT algorithm so the revised algorithm can efficiently detect deadlocks. However, to the

best of our knowledge, we are the first to apply PCT in applications that are not intended to detect

concurrency bugs.

2.7 Conclusion

In this paper, we have presented an approach to measure the memory distance of concurrent

programs. Given the fact that we cannot possibly explore all the thread interleavings of a concurrent

program, our approach introduces randomness in repeated executions. By adapting the scheduling

method PCT, our approach provides a mathematical guarantee to detect memory distances of given

triggering depths.

27

Chapter 3

sCompile: Critical Path Identification and

Analysis for Smart Contracts

This chapter presents the contribution in the research: sCompile: Critical Path Identification

and Analysis for Smart Contracts. 21st International Conference on Formal Engineering Meth-

ods(ICFEM 2019). At the beginning of this research, a introduction of the research topic is shown

in section 3.1. To better present the research topic, an illustrative example is given in section 3.2.

In section 3.3, the detailed approach and method to conduct the research is described. Experiment

and evaluation details are written in section 3.4. Finally, related works and conclusion are shown in

section 3.5 and 3.6.

3.1 Introduction

Built on top of cryptographic algorithms [40, 41, 57] and the blockchain technology [25, 51, 74],

cryptocurrency like Bitcoin has been developing rapidly in recent years. Many believe that it

has the potential to revolutionize the banking industry by allowing monetary transactions. Smart

contracts bring it one step further by providing a framework which allows any contract to be

executed in an autonomous, distributed, and trusted way. Smart contracts thus may revolutionize

many industries. Ethereum [91], an open-source, blockchain-based cryptocurrency, is the first to

28

integrate the functionality of smart contracts. Due to its enormous potential, its market cap reached

at $26.13 billion as of Jun 11th, 2019 [15].

In essence, smart contracts are computer programs which are automatically executed on

a distributed blockchain infrastructure. A majority of smart contracts in Ethereum are written in

a programming language called Solidity [13]. Like ordinary programs, Solidity programs may

contain vulnerabilities, which potentially lead to attacks. The problem is magnified by the fact that

smart contracts, unlike ordinary programs, cannot be patched easily once they are deployed on the

blockchain.

In recent years, these attacks exploit security vulnerabilities in Ethereum smart contracts

and often result in monetary loss. One notorious example is the DAO attack [2], i.e., an attacker

stole more than 3.5 million Ether (about $45 million USD at the time) from the DAO contract on

June 17, 2016.

The problem of analyzing and verifying smart contracts is far from being solved. Some

believe that it will never be, just as the verification problem of traditional programs. Solidity is

designed to be Turing-complete which intuitively means that it is very expressive and flexible. The

price to pay is that almost all interesting problems associated with checking whether a smart contract

is vulnerable are undecidable [89]. Consequently, tools which aim to analyze smart contracts

automatically either are not scalable or produce many false alarms. For instance, Oyente [68] is

designed to check whether a program path leads to a vulnerability or not using a constraint solver to

check whether the path is feasible or not. Due to the limitation of constraint solving techniques,

if Oyente is unable to determine whether the path is feasible or not, the choice is either to ignore

the path (which may result in a false negative, i.e., a vulnerability is missed) or to report an alarm

(which may result in a false alarm).

Besides, we believe that manual inspection is unavoidable given the expressiveness of

Solidity. However, given that smart contracts often enclose many behaviors (which manifest through

different paths), manually inspecting every path is overwhelming. Thus, sCompile further aims to

reduce the manual effort by identifying a small number of critical paths and presenting them to the

user with easy-to-digest information.

29

Overall, sCompile works as follows:

• sCompile firstly constructs a control flow graph (CFG) which captures all possible control

flow including those due to the inter-contract function calls. sCompile then systematically

generates paths (with a bounded sequence of function calls).

• To address path explosion, sCompile then statically identifies paths which are ‘critical’. In

this work, we define paths involving monetary transactions as critical paths, which is often

sufficient in capturing vulnerabilities in smart contracts.

• We then define a set of (configurable) money-related properties based on existing vulnerabili-

ties and identify all paths that potentially violate our properties. Considering that different

properties have different criticalness and a long path may be unlikely feasible than a short

one, sCompile ranks all paths by computing a criticalness score for each path based on the

two factors.

• Finally, for top ranked paths,sCompile automatically checks whether it is feasible using

symbolic execution techniques. And, the feasible paths are presented to the user for inspection.

We have implemented sCompile and applied it to 36,099 smart contracts gathered from

EtherScan [7]. Our experiment shows that sCompile can efficiently analyze smart contracts, i.e., it

spends 5 seconds on average to analyze a smart contract (with a bound on the number of function

calls 3). Furthermore, we show that sCompile effectively prioritizes programs paths which reveal

vulnerabilities in smart contracts, i.e., it is often sufficient to capture the vulnerability by inspecting

the reported 10 or fewer critical paths. Overall, sCompile identified 224 vulnerabilities. The false

positive rate of sCompile (before the results are reported for user inspection) is 15.4%, which is

also generally acceptable. A further user study result shows that with sCompile ’s help, users are

more likely to identify vulnerabilities in smart contracts.

The rest of the paper is organized as follows. Section 3.2 illustrates how sCompile works

through a few simple examples. Section 3.3 presents the details of our approach step-by-step.

Section 3.4 shows evaluation results on sCompile . Section 3.5 reviews related work and lastly

Section 3.6 concludes with a discussion on future work.

30

3.2 Illustrative Examples

In this section, we present multiple examples to illustrate vulnerabilities in smart contracts and how

sCompile helps to reveal them. The contracts are shown in Fig. 3.1.

Example 1: Contract EnjinBuyer is a token managing contract. It has 2 inherent addresses

for developer and sale. In function purchase tokens(), the balance is sent to the sale’s address. There

is a mistake on the sale’s address and as a result the balance is sent to a non-existing address and is

lost forever. Note that any hexadecimal string of length not greater than 40 is considered a valid

(well-formed) address in Ethereum and thus there is no error when function purchase tokens() is

executed. Given this contract, the most critical path reported by sCompile is one invoking function

purchase tokens(). The path will be labeled by sCompile with a message stating that the address

does not exist on Ethereum mainnet. With this, the user captures the vulnerability.

Example 2: Contract toyDAO is an invariant one of the DAO contract. Mapping credit is

a map which records a user’s credit amount. Function donate() allows a user to top up its credit

with 100 wei (which is a unit of Ether). Function withdraw() by design sends 20 wei to the message

sender (at line 1) and then updates credit. However, when line 1 is executed, the message sender

could call function withdraw() through its fallback function, before line 2 is executed. Line 1 is

then executed again and another 20 wei is sent to the message sender. Eventually, all Ether in the

wallet of this contract is sent to the message sender.

In sCompile , inspired by common practice in banking industry, assume that the user sets the

limit to be 30. Given the contract, a critical path reported by sCompile is one which executes line 0,

1, 0, and 1. The path is associated with a warning message stating that the accumulated amount

transferred along the path is more than the limit. We remark that existing approaches often check

such vulnerability through a property called reentrancy, which often results in false alarms [58, 68].

Example 3: Contract Bitway is another token management contract. It receives Ether (i.e.,

cryptocurrency in Ethereum) through function createTokens(). Note that this is possible because

function createTokens() is declared as payable. However, there is no function in the contract which

can send Ether out. Given this contract, sCompile identifies a list of critical paths for user inspection.

31

contract EnjinBuyer {

address public developer = 0x0639C169D9265Ca4B4DEce693764CdA8ea5F3882;

address public sale = 0xc4740f71323129669424d1Ae06c42AEE99da30e;

function purchase_tokens() {

require(msg.sender == developer);

contract_eth_value = this.balance;

require(sale.call.value(contract_eth_value)());

require(this.balance==0);

}

}

contract toyDAO{

address owner;

mapping (address => uint) credit;

function toyDAO() payable public {

owner = msg.sender;

}

function donate() payable public{

credit[msg.sender] = 100;

}

function withdraw() public {

0 uint256 value = 20;

1 if (msg.sender.call.value(value)()) {

2 credit[msg.sender] = credit[msg.sender] - value;

}

}

}

contract Bitway is ERC20 {

function () public payable {

createTokens();

}

function createTokens() public payable {

require(msg.value > 300);

...

}

...

}

Figure 3.1: Illustrative contracts

The most critical one is a path where function createTokens() is invoked. Furthermore, it is labeled

with a warning message stating that the smart contract appears to be a “black hole” contract as there

is no path for sending Ether out, whereas this path allows one to transfer Ether into the wallet of the

contract. By inspecting this path and the warning message, the user can capture the vulnerability.

In comparison, existing tools like Oyente [68] and MAIAN [75] report no vulnerability given the

32

contract. We remark that even although MAIAN is designed to check similar vulnerability, it checks

whether a contract can receive Ether through testing1 and thus results in a false negative in this case.

Smart
contract

Step 1:
control flow graph

simulating construction

Step 2:
money-related paths

identification

Step 5:
feasibility checking

Step 6:
visualization report

generation

Report

Step 3:
suspicious monetary

properties violation checking

Step 4:
paths ranking

1 2 3 1 2 3

Figure 3.2: Overall workflow of sCompile

3.3 Approach

Fig. 4.10 shows the overall work flow of sCompile . Firstly, given a smart contract, sCompile

construct a control flow graph (CFG) [16], based on which we can systematically enumerate all

paths. Secondly, we identify the monetary paths based on the CFG up to a user-defined bound on

the number of function calls. Thirdly, we analyze each path in order to check whether it potentially

violates any of the pre-defined monetary properties. Next, we compute a criticalness score for each

and rank the paths accordingly. Afterwards, we apply symbolic execution to filter infeasible critical

paths. Lastly, we present the results along with the associated paths to the user for inspection.

3.3.1 Constructing CFG

sCompile constructs a CFG for a smart contract (the compiled EVM opcode with a single entrance

for whole and for each function) to capture all possible paths. Formally, a CFG is a tuple (N,root,E)

such that

• N is a set of nodes, where each node is a basic block of opcodes.

• root ∈ N is the first basic block of opcodes.

1MAIAN sends a value of 256 wei to the contract deployed in the private blockchain network

33

• E ⊆ N×N is a set of edges, where each edge (n,n′) corresponds to exactly a control directly

from flow n to n′.

We also consider inter-contract functions calls, where there is a CALL to a foreign function that is

assumed to call the current function including third-part contract.

For instance, Fig. 3.3 shows the CFG of the contract toyDAO shown in Fig. 3.1. Each node

is in the form of Node m n, where m and n are the indices of the first and the last opcodes of the

basic block, respectively. The red diamond node at the top is the root node; the blue rectangle

nodes represent the first node of a function. Note that a black oval represents a node that can be

redirected to the root due to inter-contract function calls. The black solid edges represent the normal

control flow. The red dashed edges represent control flow due to a new function call, e.g., the edge

from Node 88 91 to Node 0 12. That is, for every node n such that n ends with a terminating

opcode instruction (i.e., STOP, RETURN), we introduce an edge from n to root. The red dotted edges

represent control flow due to the inter-contract function call. That is, for every node which ends

with a CALL instruction to an external function, an edge is added from the node to the root.

Given a bound b on the number of function calls, we can systematically unfold the CFG

so as to obtain all paths during which only b or fewer functions are called. For instance, with a

bound 2, the set of paths include all of those which visit Node 81 87 or Node 102 109 no more

than twice.

Statically constructing the CFG is non-trivial due to indirect jumps in the bytecode generated

by the Solidity compiler. For instance, part of the bytecode for contract toyDAO is shown as follows.

........... |

92 JUMPDEST | 300 SHA3

93 PUSH2 0x0064 // 100 | 301 DUP2

96 PUSH2 0x0070 // 112 | 303 SSTORE

99 JUMP | 304 POP

|

100 JUMPDEST | 305 JUMPDEST

101 STOP | 306 POP

34

....... | 307 JUMP

112 JUMPDEST |

113 PUSH1 0x00 |

115 PUSH1 0x14 |

....... |

Node_0_12

Node_13_64

Node_76_80

Node_81_87
withdraw() Node_65_75

Node_92_99Node_88_91

Node_112_162

Node_163_171

Node_305_307

Node_172_304

Node_100_101

Node_102_109
donate()

Node_308_378

Node_110_111

Figure 3.3: Control flow graph of the contract toyDAO

35

Considering that Solidity compiler use templates and often introduces indirect jumps (e.g.,

PUSH), we actually construct CFGs from EVM opcode as follows:

• Disassemble the bytecode to a sequence of opcode instructions.

• Identify all basic blocks (BBL) from the opcode instructions as nodes of a CFG, where

the boundaries among BBLs are branching instructions JUMP and JUMPI, JUMPDEST, call

instructions CALL, and terminal instructions such as RETURN, STOP, and REVERT.)

• Connect basic blocks with edges (e.g., direct jumps) which are statically decided from the

opcode instructions.

• Use stack simulation to complete the CFG with edges for indirect jumps.

In the above, whenever there are indirect jumps, their targets cannot be decided by checking

the proceeding instructions and we have missing edges. These nodes are known as dangling

blocks and we introduce stack simulation to find the successor of them. Stack simulation is similar

to define-use analysis except that dangling blocks which are reachable from the entry BBL are

processed first. That is, we find all the paths from the entry BBL to the dangling blocks (e.g., the

two paths from Node 0 12 to Node 305 307) and simulate the instructions in each path following

the semantics of the instruction on the stack. Note that a dangling block ends with JUMP may

have multiple successors in the CFG. When we reach the JUMP or JUMPI in the dangling block,

the content of the top stack entry shall be determined and we connect the dangling block with

the BBL which starts at the address as in the top stack entry. For instance, for the dangling block

Node 305 307, there is only one successor Node 100 101 in both paths which is pushed by the

instruction at address 093. We repeat the above step until all dangling blocks are processed.

3.3.2 Identifying Monetary Paths

Given a bound b on the number of call depth (i.e., the number of function calls) and a bound on

the loop iterations, there are still many paths in the CFG to be analyzed. For instance, there are 6

paths in the toyDAO contract with a call depth bound of 1 (and a loop bound of 5) and 1296 with a

call depth bound of 4. This is known as the path explosion problem [18]. In this work, we focus on

the paths which are money-related to avoid path explosionhttps://github.com/Microsoft/verisol, as

36

almost all vulnerabilities [20] are ‘money’-related.

A node is money-related if and only if its BBL contains any of following opcode instructions:

CALL, CREATE, DELEGATECALL or SELFDESTRUCT. In general, one of these instructions must be

used when Ether is transferred from one account to another. A path which traverses through a

money-related node is considered money-related. 2

3.3.3 Identifying Property-Violating Paths

Next, sCompile prioritizes paths that violate critical properties. The objective is to prioritize those

paths which may trigger violation of critical properties for user inspection. The properties are

designed based on previously known vulnerabilities and they can be configured and extended in

sCompile .

Property: Respect the Limit In sCompile , we allow users to set a limit on the amount of

Ether transferred out of the contract’s wallet. For each path, we statically check whether Ether is

transferred out of the wallet and whether the transferred amount is potentially beyond the limit.

To do so, for each path, we use a symbolic variable to simulate the remaining limit. Each time an

amount is transferred out, we decrease the variable accordingly and check whether the remaining

limit is less than zero. If so, the path potentially violates the property. Note that if we are unable to

determine the exact amount to be transferred , we conservatively assume the limit may be broken.

Property: Avoid Non-Existing Addresses Any hexadecimal string of length no greater than 40 is

considered a valid (well-formed) address in Ethereum. If a non-existing address is used as the

receiver of a transfer, the Solidity compiler does not generate any warning and the contract can be

deployed on Ethereum successfully. If a transfer to a non-existing address is executed, Ethereum

automatically registers a new address (after padding 0s in front of the address so that its length

becomes 160bits). Because this address is owned by nobody, no one can withdraw the Ether in it

since no one has the private key.

2Note that each opcode instruction in EVM is associated with some gas consumption which technically makes
them money-related. Gas[91] is the cost of any transaction that can be utilized to measure actions on Ethereum
platform. However, the gas consumption alone in most cases does not constitute vulnerabilities and therefore we do not
consider them money-related. In Fig. 3.3, we visualize money-related nodes with black background (e.g., the node
Node 112 162 with a CALL statement msg.sender.call.value(value)()).

37

For every path which contains instruction CALL or SELFDESTRUCT, sCompile checks whether

the address in the instruction exists or not. This is done with the help of EtherScan Ethereum [7]

(which can check whether an address is registered or not). A path which sends Ether to a non-

existing address is considered to be violating the property. Currently, to minimize the number of

requests to EtherScan, we only query external transactions, thus may lead to false positives when

the address has only internal transactions. Of course, users can configure sCompile to also check

internal transactions.

Property: Guard Suicide sCompile checks whether a path would result in destructing the

contract without constraints on the date or block number, or the contract ownership. A contract may

be designed to “suicide” (with the opcode SELFDESTRUCT) after certain date or reaching certain

number of blocks, and often by transferring the Ether in the contract wallet to the owner. A famous

example is Parity Wallet which resulted in an estimated loss of tokens worthy of $155 million [1].

We thus check whether there exists a path which executes SELFDESTRUCT and whether its

path condition is constituted with constraints on date or block number and contract owner address.

While checking the former is straightforward, checking the latter is achieved by checking whether

the path contains constraints on instruction TIMESTAMP or BLOCK, and checking whether the path

condition compares the variables representing the contract owner address with other addresses. A

path which calls SELFDESTRUCT without such constraints is considered a violation of the property.

contract StandardToken is Token {

1 function destroycontract(address _to) {

2 require(now > start + 10 days);

3 require(msg.sender != 0);

4 selfdestruct(_to);

5 }

6 ...

7 }

8 contract Problematic is StandardToken { ... }

Figure 3.4: Guardless suicide

One example is the Problematic contract3 shown in Fig. 3.4. Contract Problematic inherits

3We hide the names of the contracts as some of them are yet to be fixed.

38

contract StandardToken, where one of the functions is destroycontract() allowing one to destruct the

contract. sCompile can report that line 4 potentially violates the property.

Property: Be No Black Hole In a few cases, sCompile analyzes paths which do not contain

CALL, CREATE, DELEGATECALL or SELFDESTRUCT. For instance, if a contract has no money-related

paths (i.e., never sends any Ether out), sCompile then checks whether there exists a path which

allows the contract to receive Ether. The idea is to check whether the contract acts like a black hole

for Ether. If it does, it is considered a vulnerability.

To check whether the contract can receive Ether, we check whether there is a payable

function. Since Solidity version 0.4.x, a contract is allowed to receive Ether only if one of its public

functions is declared with the keyword payable. When the Solidity compiler compiles a non-payable

function, the following sequence of opcode instructions are inserted before the function body.

1 CALLVALUE

2 ISZERO

3 PUSH XX

4 JUMPI

5 PUSH1 0x00

6 DUP1

7 REVERT

At line 1, the instruction CALLVALUE retrieves the message value (to be

received). Instruction ISZERO then checks if the value is zero, if it is zero, it

jumps (through the JUMPI instruction at line 4) to the address which is pushed

into stack by the instruction at line 3; or it goes to the block starting at line 5,

which reverts the transaction (by instruction REVERT at line 7). Thus, to check

whether the contract is allowed to receive Ether, we go through every path to

check whether it contains the above-mentioned sequence of instructions. If

all of them do, we conclude that the contract is not allowed to receive Ether. Otherwise, it is. If

the contract can receive Ether but cannot send any out, we identify the path for receiving Ether as

potentially violating the property and label it with a warning messaging stating that the contract is a

black hole.

Above properties are designed based on reported vulnerabilities. Of course, sCompile is

designed to be extensible, i.e., new properties can be easily supported by providing a function which

takes a path as input and reports whether the property is violated.

To further help users understand paths of a smart contract, sCompile supports additional

analysis. For instance, sCompile provides analysis of gas consumption of paths. However, without

trying out all possible inputs, users may not be aware of the existence of certain particularly gas

39

consuming paths. The gas consumption of a path is estimated based on each opcode instruction in

the path statically.

3.3.4 Ranking Program Paths

To allow user to focus on the most critical paths as well as to save analyses efforts, we prioritize the

paths according to the likelihood they reveal critical vulnerability. For each path, we calculate a

criticalness score and rank the paths according to the scores. The criticalness score is calculated as

follows: let pa be a path and V be the set of properties which pa violates.

criticalness(pa) =
Σpr∈V αpr

ε ∗bound(pa)
(3.1)

where αpr is a constant which denotes the criticalness of violating property pr, bound(pa) is the

depth bound of path pa (i.e., the number of function calls) and ε is a positive constant. Intuitively,

the criticalness is designed such that the more critical a property the path violates, the larger the

score is; and the more properties it violates, the larger the score is. Furthermore, it penalizes long

paths so that short paths are presented first for user inspection.

Table 3.1: Definition of αpr

transfer limit non-existing addr. suicide black hole
Likelihood 1 1 2 3

Severity 2 3 3 2
Difficulty 2 2 3 2

αpr 4 6 18 12

To assess the criticalness of each property, we use the technique called failure mode and

effects analysis (FMEA [83]) which is a risk management tool widely used in a variety of industries.

FMEA evaluates each property with 3 factors, i.e., Likelihood, Severity and Difficulty. Each factor

is a value rating from 1 to 3, i.e., 3 for Likelihood means the most likely; 3 for Severity means the

most severe and 3 for Difficulty means the most difficult to detect. The criticalness αpr is then set as

the product of the three factors. After ranking, only paths which have a criticalness score larger

than certain threshold are subject to further analysis, reducing the number of paths significantly.

40

In order to identify the threshold for criticalness, we adapt the k-fold cross-validation[39, 62]

idea in statistical area. We collected a large set of smart contracts and split them into a training data

set(10,452 contracts) and a test data set (25,678 contracts). We repeated the experiments 20 times

which took more than 5,700 total hours of all machines and optimizes those parameters.The adapted

parameters are shown in Table 3.1, and ε is set to be 1 and the threshold for criticalness is set to be

10.

3.3.5 Feasibility Checking

Not all the paths are feasible. To avoid such false alarms, we filter infeasible paths through symbolic

execution [53, 61]. The basic idea is to symbolically execute a given program.Symbolic execution

has been previously applied to Solidity programs in Oyente [68] and MAIAN [75]. In this work, we

apply symbolic execution to reduce the paths which are to be presented for users’ inspection. Only

if a path is found to be infeasible by symbolic execution, we remove it. In comparison, both Oyente

and MAIAN aim to fully automatically analyze smart contracts and thus when a path cannot be

determined by symbolic execution, the result may be a false positive or negative.

contract GigsToken {

1 function createTokens() payable {

2 require(msg.value > 0);

3 uint256 tokens = msg.value.mul(RATE);

4 balances[msg.sender] = balances[msg.sender].add(tokens);

5 owner.transfer(msg.value);

6 }

7 ...

}

Figure 3.5: A non-greedy contract

For instance, Fig. 3.5 shows a contract which is capable of both receiving (since the function

is payable) and sending Ether (due to owner.transfer(msg.value) at line 5), and thus sCompile does

not flag it to be a black hole contract. MAIAN however claims that it is. A closer investigation

reveals that because MAIAN has trouble in solving the path condition for reaching line 5, and thus

41

mistakenly assumes that the path is infeasible. As a result, it believes that there is no way Ethers

can be sent out and thus the contract is a black hole.

3.4 Implementation and Evaluation

3.4.1 Implementation

sCompile is implemented in C++ with about 8K lines of code and is available online4. The symbolic

execution engine in sCompile is built based on the Z3 SMT solver [37].

3.4.2 Experiment

We aim to to answer research questions (RQ) regarding sCompile ’s efficiency, effectiveness and

usefulness in practice. Our test subjects contain all 36,099 contracts (including both the training set

and the set) with Solidity source code downloaded from EtherScan. sCompile can directly take

EVM code as input and the source code is used for our manual inspection for experiment purpose.

All experiment are done on an Amazon EC2 C3 xlarge instance installed with Ubuntu 16.04

and gcc 5.4. The timeout set for sCompile is: global wall time is 60 seconds and Z3 solver timeout

is 100 milliseconds. The limit on the maximum number of blocks for a single path is set to be 60,

and the limit on the maximum iterations of loops is set to be 5, i.e., each loop is unfolded at most

five times.

RQ1: Is sCompile efficient enough for practical usage? In this experiment, we evaluate

sCompile in terms of its execution time. We systematically apply sCompile to all the benchmark

programs in the training set.

The results are summarized in Figure 3.6. In sub-table of Figure 3.6, the second, third and

fourth row show the execution of sCompile with call depth bound 1, 2, and 3 respectively.For

comparison, the fifth row shows the execution time of Oyente (the latest version 0.2.7) with the

same timeout. We remark that the comparison should be taken with a grain of salt. Oyente does

4The link is removed for anonymity.

42

not consider sequences of function calls, i.e., its bound on function calls is 1. Furthermore, it

does not consider initialization of variables in the constructor (or in the contract itself). The next

columns show the execution time of MAIAN (the latest commit version on Mar 19). Although

MAIAN is designed to analyze paths with multiple (by default, 3) function calls, it does not consider

the possibility of a third-party contract calling any function in the contract through inter-contract

function calls and thus often explores much fewer paths than sCompile . Furthermore, MAIAN

checks only one of the three properties (i.e., suicidal, prodigal and greedy) each time. Thus, we

must run MAIAN three times to check all three properties. The different bounds used in all three

tools are summarized in Table 3.2.

Table 3.2: Loop bound definitions among three tools

Tool call bound loop bound timeout other bound
sCompile 3 5 60 s 60 cfg nodes
Oyente 1 10 60 s N.A.
MAIAN 3 (no inter-contract) N.A. 60 s 60 cfg nodes

In sub-table of Figure 3.6, the second column shows the median execution time and the third

column shows the number of times the execution time exceeds the global wall time (60 seconds).

We observe that sCompile almost always finishes its analysis within 10 second. Furthermore, the

execution time remains similar with different call depth bounds. This is largely due to sCompile ’s

strategy on applying symbolic execution only to a small number of top ranked critical paths. We do

however observe that the number of timeouts increases with an increased call depth bound. A close

investigation shows that this is mainly because the number of paths extracted from CFG is much

larger and it takes more time to extract all paths for ranking. In comparison, although Oyente has a

call depth bound of 1, it times out on more contracts and spends more time on average. MAIAN

spends more time on each property than the total execution of sCompile . For some property (such as

Greedy), MAIAN times out fewer times, which is mainly because it does not consider inter-contract

function calls and thus works with a smaller CFG.

The sub-figure in Figure 3.6 visualizes the distribution of execution time of the tools in

plot-box. The x-axis represents the execution time (in seconds). From the figure, we can conclude

43

that sCompile is efficient.

TABLE IV: Comparison on vulnerable contracts

sCompile MAIAN
alarmed true positive false positive alarmed true positive false positive

Avoid non-existing address 37 32 5 N.A. N.A. N.A.
Be no black hole 57 57 0 141 56 85

Guard Suicide 42 38 4 66 30 36

0 10 20 30 40 50 60

MAIAN
(Greedy)

MAIAN
(Prodigal)

MAIAN
(Suicidal)

Oyente
(0.2.7)

sCompile
(Call bound=3)

sCompile
(Call bound=2)

sCompile
(Call bound=1)

Fig. 7: execution time on sCompile vs. Oyente vs. MAIAN,
with 60s global timeout, 100ms z3 solver timeout and bound
1.

unlike in the case of Oyente and MAIAN. To validate the
conjecture, we count the average number of program paths
which are analyzed through symbolic execution in sCompile.
Table V shows the results. The second column shows the
estimated total number of program paths on average for each
smart contract which is successfully tested within the wall time
limit. Note that the estimation is based on the CFG and thus
may count program paths which are infeasible. This is part
of the reason it is often greater than the number reported by
alternative methods like [8], [10]. The other part is that our
CFG is more complete by considering a more conservative
inter-procedural calls. The third column shows the average
number of paths analyzed with symbolic execution. It can be
observed that only a small fraction of the program paths are
symbolically analyzed. Furthermore, the number of symboli-
cally executed paths remain small even when the call depth
bound is increased. This is because only the top ranked critical
program paths are analyzed by symbolic execution. If there
are multiple program paths which potentially violate the same
property, sCompile prioritizes the shorter one and often avoids
symbolically executing the longer one. The results confirm our

conjecture.

TABLE V: Average number of program paths

in total symbolic-executed to user
call depth 1 48.92 37.51 1.49
call depth 2 6177.21 144.24 12.46
call depth 3 31346.62 121.23 12.62

In the second experiment, we aim to investigate the
effectiveness of sCompile. We manually inspect the critical
paths reported by sCompile to check whether the program
path, together with the associated warning message, reveals a
true vulnerability in the contract. Note that not all properties
checked by sCompile readily signals a vulnerability. For
instance, given a user-set transfer limit, sCompile may report
that a program path may violate the transfer limit. Although
such information is often useful, depending on the transfer
limit set by the user, the program path may or may not
signal a vulnerability. For instance, a gambling contract may
allow a user to place a bet with certain amount and transfer
some amount back to the user when the betting result is
revealed. In such a case, the transfer limit is likely broken
if a large bet is placed by the user. For another instance,
sCompile automatically reports a program path which is the
most gas-consuming. Such information is useful for the user
(e.g., to set the right ‘price’ for the transaction). It however
does not necessarily signal a vulnerability (although it may
signal program bugs). We thus focus on those results produced
by sCompile which are directly related to vulnerabilities in
the following, i.e., program paths which are deemed to violate
property “avoid non-existing addresses”, “be no black hole”
and “guard suicide”. Note that two of the properties (i.e., the
latter two) analyzed by sCompile are supported by MAIAN as
well. We can thus compare sCompile’s performance with that
of MAIAN for these two properties. The results are shown
in Table IV. In the following, we discuss the detailed findings.

For Property 2: Be no Black Hole, there are 57 contracts
alarmed by sCompile. We manually checked all these contracts
and confirm that they are all true positives. In comparison,
MAIAN identified 141 black hole contracts and 56 contracts
among them are true positives, 43 of which overlap with
sCompile’s results. We then investigate why sCompile missed
the remaining 13 contracts identified by MAIAN. We dis-
covered all of them took more than 60 seconds and thus
sCompile timed out before finishing analyzing. When we set
the timeout to 200s, sCompile successfully identifies 3 more as
black hole contracts. But the other 10 are stopped by contracts
with mass of money-related paths which leads to timeout at
last.

median(s) timeout #
sCompile
(Call bound = 1) 3.106 1145

sCompile
(Call bound = 2) 8.717 1737

sCompile
(Call bound = 3) 5.267 2597

Oyente 18.015 2223
MAIAN
(Suicidal) 19.053 1561

MAIAN
(Prodigal) 23.472 6186

MAIAN
(Greedy) 19.397 1081

Figure 3.6: Execution time of sCompile vs. Oyente vs. MAIAN

Table 3.3: Comparison on vulnerable contracts

sCompile MAIAN
alarmed true positive false positive alarmed true positive false positive

Avoid non-existing address 37 32 5 N.A. N.A. N.A.
Be no black hole 57 57 0 141 56 85

Guard suicide 42 38 4 66 30 36

Table 3.4 shows the statistics on the number of processed path, including the estimated total

number of paths on average (in the second column), the number of symbolic-executed (based on

CFG), and the number passed to users. It can be observed that only a small fraction of the paths

are symbolically analyzed. Furthermore, the number of symbolically executed paths remain small

even when the call depth bound is increased. This is because only the top ranked critical paths are

analyzed by symbolic execution.

Table 3.4: Average number of program paths

In total Symbolic-executed To user
call depth 1 48.92 37.51 1.49
call depth 2 6177.21 144.24 12.46
call depth 3 31346.62 121.23 12.62

44

RQ2: Is sCompile effective to practical usage? In the second experiment, we aim to

investigate the effectiveness of sCompile . We apply sCompile to all 36,099 contracts and manually

inspect the critical paths reported by sCompile to check whether the path, together with the

associated warning message, reveals a true vulnerability in the contract. Note that not all properties

checked by sCompile readily signals a vulnerability. We only focus on those results produced by

sCompile which are directly related to vulnerabilities in the following, i.e., paths which are deemed

to violate property “avoid non-existing addresses”, “be no black hole” and “guard suicide”. Note

that two of the properties (i.e., the latter two) analyzed by sCompile are supported by MAIAN as

well. We can thus compare sCompile ’s performance with that of MAIAN for these two properties.

The results are shown in Table 3.3. In the following, we discuss the detailed findings5.

For Property: Be no Black Hole, there are 57 contracts in the training set are marked

vulnerable by sCompile . We manually confirmed that they are all true positives. In comparison,

MAIAN identified 141 black hole contracts and 56 contracts among them are true positives, 43

of which overlap with sCompile ’s results. For 13 missed contracts by sCompile but detected by

MAIAN, all of them took more than 60 seconds and thus sCompile timed out before finishing

analyzing.

The other 85 identified by MAIAN are false positives and 62 of them are library contracts.

We randomly choose 5 contracts from the remaining for further investigation. We find Z3 could

not finish solving the path condition in time and thus MAIAN conservatively marks the contract as

vulnerable. After extending the time limit for Z3 and the total timeout, 4 of the 5 false positives are

still reported. The reason is that these contracts can only send Ether out after certain period, and

MAIAN could not find a feasible path to send Ether out for such cases, and mistakenly flags the

contract as a black hole.

For Property: Guard Suicide, sCompile reports a program path if it leads to SELFDESTRUCT,

without a constraint on the ownership of the contract or the date or the block number, i.e., a guard to

prevent an unauthorized users from killing the contract. Among the analyzed contracts, sCompile

5We have informed all developers whose contact info are available about the vulnerabilities in their contracts and
several have confirmed the vulnerabilities and deployed new contracts to substitute the vulnerable ones. Some are yet to
respond, although the balance in their contracts are typically small.

45

identified 42 contracts which contain at least one path which violates the property. Many of the

identified contracts violate the property due to contract inheritance as shown in Fig. 3.4.

The remaining 4 cases reported by sCompile are false positives. We manually investigated

into them and found that they are belonged two uncommon coding cases (where 3 of them are

originated from the same contract) and three of them can be detected by sCompile by slightly

revising its implementation.

MAIAN identified 66 contracts violating the property. 30 of them are true positives, 13 of

which are also identified by sCompile . The other 36 are false positives. The contract MiCarsToken

shown in Fig. 3.7 shows a typical false alarm. There are 2 constraints before SELFDESTRUCT in the

contract. sCompile considers such a contract safe for there is a guard of msg.sender == owner (or

the other condition), whereas MAIAN reports a vulnerability as the contract can also be killed if the

msg.sender is not the owner when the second condition is satisfied.

contract MiCarsToken {

function killContract () payable external {

if (msg.sender==owner ||

msg.value >=howManyEtherInWeiToKillContract)

selfdestruct(owner);

}

...

}

Figure 3.7: Ambiguous cases between sCompile and MAIAN

We further analyzed the 17 cases which were neglected by sCompile . 6 of them are alarmed

for owner change as exemplified in Fig. 3.8. In this contract, selfdestruct is well guarded, but the

developer makes a mistake so that the constructor becomes a normal function, and anyone can

invoke mortal() to make himself the owner of this contract and kill the contract.

For Property: Avoid Non-existing AddressFor the contracts in the training set, all addresses

identified are of length 160 bits. However, there are 37 contracts identified as non-existing ad-

dresses (i.e., not registered in Ethereum mainnet). They may be used for different reasons. For

example, in contract AmbrosusSale, the address of TREASURY does not exist before the function

specialPurchase() or processPurchase() is invoked (which will cost more gas for its first

46

contract Mortal {

address public owner;

function mortal() { owner = msg.sender; }

function kill() {

if (msg.sender == owner) suicide(owner); }

}

Figure 3.8: Contract of owner change

user). And there are 5 addresses registered by internal transactions.

We further analyzed 25,647 contracts newly uploaded in EtherScan from February 2018

to July 2018. For “Be no Black Hole”, there are 109 vulnerabilities out of 139 alarms generated

by sCompile . Applying MAIAN on these contracts, 84 of them are marked vulnerable, 77 of

which are true vulnerabilities overlapping with those found by sCompile and 7 library contracts are

marked vulnerable mistakenly. Among the 139 contracts, 25 vulnerable ones are missed by MAIAN

according to our manual check. For “Guard Suicide”, there are 83 vulnerabilities out of 114 alarms

generated by sCompile . Applying MAIAN on these contracts, 42 are marked vulnerable, all of

which overlap with those found by sCompile . For “Avoid Non-existing Addresses”, there are 80

vulnerabilities out of 87 alarms generated by sCompile . The 7 false alarms are due to internal

transactions.

In total, sCompile identifies 224 vulnerabilities from the 36,099 contracts consisting of

46 Black Hole vulnerabilities, 66 Guardless Suicide vulnerabilities and 112 Non-existing Address

vulnerabilities.

RQ3: Is sCompile useful to contract users? Different from other tools which aim to fully

automatically analyze smart contracts, sCompile is designed to facilitate human users. We thus

conduct a user study to see whether sCompile is helpful to them.

The study takes the form of an online test. Once a user starts the test, first the user is

briefed with necessary background on smart contract vulnerabilities (with examples). Then, 6 smart

contracts (selected at random each time from a pool of contracts) are displayed one by one. For

each contract, the source code is first shown. Afterwards, the user is asked to analyze the contract

and answer the two questions. The first question asks what is the vulnerability the contract has.

47

The second question requires user to identify the most gas consuming path in contract (with one

function call).

For the first three contracts, the outputs from sCompile are shown alongside the contract

source code as a hint to the user. For the remaining 3 contracts, the hints are not shown. The

contracts are randomized so that not the same contracts are always displayed with the hint. The

goal is to check whether users can identify the vulnerabilities correctly and more efficiently with

sCompile ’s results.

We distribute the test through social networks and online professional forums. We also

distribute it through personal contacts who we know have some experience with Solidity smart

contracts. In three weeks we collected 48 successful responses to the contracts (without junk

answers)6. Table 3.5 summarizes the results. Recall that sCompile ’s results are presented for the

first three contracts. Column LOC and #paths shows the number of lines and paths in each contract.

Note that in order to keep the test manageable, we are limited to relatively small contracts in this

study. Columns Q1 and Q2 show the number of correct responses (the numerator) out of the number

of valid responses (the denominator). We collect the time (in seconds) taken by each user in the

Time column to answer all the questions. In the end of the survey we ask the user to give us a score

(on the scale of 1 to 7, the higher the score the more useful our tool is) on how useful the hints in

helping them answer the questions. The value in column Usefulness is the average score over all

responses because all responses are shown half the hints.

Table 3.5: Statistics and results of surveyed contracts

Contract LOC #paths Q1 Q2 Time Usefulness
C1 (w) 33 8 7/8 3/8 119

5

C2 (w) 52 16 7/8 2/8 98
C3 (w) 67 38 7/8 2/8 233

C4 (w/o) 87 59 2/8 1/8 414
C5 (w/o) 103 13 3/8 1/8 397
C6 (w/o) 107 27 4/8 1/8 420

The results show that for the first three contracts for which sCompile ’s analysis results are

shown, almost all users are able to answer Q1 correctly using less time. For the last three contracts
6There are about 80 people who tried the test. Most of the respondents however leave the test after the first question,

which perhaps evidences the difficulty in analyzing smart contracts.

48

without the hints, most of the users cannot identify the vulnerability correctly and it takes more

time for them to answer the question. For identifying the most gas-consuming path, even with

the hints on which function takes the most gas, most of the users find it difficult in answering the

question, although with sCompile ’s help, more users are able to answer the question correctly. The

results show that gas consumption is not a well-understood problem and highlight the necessity of

reporting the condition under which maximum gas consumption happens. All the users think our

tool is useful (average score is 5/7) in helping them identify the problems.

3.5 Related Works

sCompile is related to existing work on identifying vulnerabilities in smart contracts that can

be roughly categorized into 3 groups according to the level at which the vulnerability resides

at: Solidity-level, EVM-level, and blockchain-level [20?]. In addition, existing work can be

categorized according to the techniques they employ to find vulnerabilities: symbolic execution [36,

55, 68, 75, 87], static-analysis based approaches [88] and formal verification [22, 58]. Our approach

works at the EVM-level and is based on static analysis and symbolic execution, and is thus closely

related to the following work.

Oyente [68] formulates the security bugs as intra-procedural properties and uses symbolic

execution to check these properties. However, Oyente does not perform inter-procedural analyses to

check inter-procedural or trace properties as did in sCompile .

MAIAN [75] is recently developed to find three types of problematic contracts in the

wild: prodigal, greedy and suicidal. It formulates the three types of problems as inter-procedural

properties and performs bounded inter-procedural symbolic execution. It builds a private testnet

to valid whether the contracts found by it are true positives by executing the contracts with data

generated by symbolic execution. However, sCompile differs from MAIAN in following aspects.

First, sCompile makes a much more conservative assumption about a call to third-party contract

which we assume can call back a function in current contract. sCompile is designed to reduce

user effort rather than to analyze smart contracts fully automatically. Secondly, sCompile supports

49

more properties than MAIAN. Thirdly, sCompile checks properties in ways which are different

from MAIAN. sCompile treates the value used for a transaction as symbolic variable and does not

introduce false negatives. For checking suicidal contracts, MAIAN performs symbolic execution

and generates inputs to trigger the suicide of the contract in the validation phase; sCompile checks

guardless suicide with either ownership checking or date checking which are often hard for SMT

solver to generate values. Other symbolic execution based tools [36, 87] perform intra-procedural

symbolic analysis directly on the EVM bytecode as what Oyente does.

The tool Securify [88] is based on static analysis to analyze contracts. It specifies both

compliance and violation patterns for the property. The vulnerability detection problem is then

reduced to search the patterns on the inferred data and control dependencies information. The use

of compliance pattern reduces the number of false positives in the reported warnings. In the ranking

algorithm, our approach rely on syntactic information to reduce paths for further symbolic analysis

to improve performance. We analyze the extracted paths with symbolic execution which is more

precise than the pure static analysis as adopted by Securify.

Other attempts on analyzing smart contracts include formal verification using either model-

checking techniques [58] or theorem-proving approaches [22]. They in theory can check arbitrary

properties specified manually in a form accepted by the model checker or the theorem prover.

It is known that model checking has limited scalability whereas theorem proving requires an

overwhelming amount of user effort.

3.6 Conclusion

We proposed a practical approach named sCompile to reveal “money-related“ paths in smart

contract and to further detect vulnerabilities among critical ones. In our experiment among 36,099

smart contracts, it detected 224 new vulnerabilities. All the new vulnerabilities are well defined in

our approach and could be presented to the user in well-organized information within a reasonable

time frame. A comparison with two existing approaches also demonstrated that sCompile is both

efficient and effective.

50

Chapter 4

Hyperledger Fabric Chaincode Quality

Control with Fuzz Testing

This chapter presents the contribution in the research about Hyperledger Fabric chaincode quality

control with fuzz testing method. At the beginning, introduction of the research topic and a

motivating example is shown in section 4.1 and 4.2. After that, in section 4.3, the entire fuzzing

approach is described in 5 steps and the details of these steps are completely described. The

vulnerabilities detection analysis is illustrated in section 4.4. In order to evaluate the research project

performance, a well designed experiment and its result evaluation is shown in section 4.5. At last,

related works and conslusion is given in section 4.6 and 4.7.

4.1 Introduction

Smart contract is an revolutionary software category built upon the blockchain platform, which has

been well-accepted in documentation keeping and broadcasting messages that introduced in recent

decade. Smart contract is designed as a programmable and safe implementation for the purpose of

satisfying user’s requirements, such as voting and trading cryptocurrency. However, in most recent

years, there are plenties of attacks that caused huge economic losses. The notorious DAO attack

make the Ethereum owner suffer a loss of $ 60M. More hazardously, the same type of attack that

51

had been discovered and happened, which cannot be prevented completely.

Hyperledger Fabric is a promising blockchain platform that maintained by Linux foundation.

It has great features on distribution and privacy which are the reason of being widely accepted and

applied in business industry. It’s smart contract, chaincode, designed with upgradeable and high

maintainable status, which is also extensively utilized and integrated into the business system.

With the development and adoption of Hyperledger Fabric, there’s incremental demands for

the security analysis. However, the security of Hyperledger unfortunately, hasn’t not gain much

attention from neither industry nor research area. Noticing this surging security requests and driven

by curiosity of software security research on chaincode, we developed an approach for automated

analyzing chaincode vulnerabilities with fuzz testing, which is proved as a quality software testing

technique to discover software security issues.

To the best of our knowledge, we didn’t find any effective fuzzing analysis tool that can

truly verify chaincode security issues and detect chaincode vulnerabilities and crashes. There

are researches[3, 94] that focused on static analysis for Hyperledger Fabric chaincode. However,

there’re natural limitations to statically analyze program as static analysis cannot prove the found

warnings really exist in runtime or could lead to runtime bug in practical. Moreover, static analysis

also bring high amount of false positive and false negative in analysis result.

Besides static analysis, fuzzing is another widely used software testing technique in practical

industry. Building a efficient fuzzer is quite challenging due to following difficulties:1, difficulty

to generate new inputs; 2, difficulty to create a execution method for specific type of program;3,

difficulty to achieve high coverage rate and 4, difficulty to reveal potential vulnerabilities in test

result. In order to efficiently utilize fuzzing technique in chaincode testing, our approach take above

difficulties into considerations and is implemented into afuzzer , which is modularized fuzzer that

handled difficulties to guarantee figure out any potential warnings and security issues that hidden

inside the chaincode. afuzzer inherits advantages from go-fuzz [6], which is well-known golang

program fuzzer, and extensively adopts feed-back seed mutation strategy and static analysis on

chaincode security issues. This make afuzzer a first and unique Hyperledger Fabric chaincode

fuzzer to bring insight to chaincode developer with signals and alerts of when and how they should

52

start focusing on verify security of chaincode in order to increase the software quality.

afuzzer is designed and implemented based on go-fuzz, which collected wisdom of American

fuzzy lop(AFL)[9]. Besides the inherited fuzzing architecture, afuzzer integrate chaincode static

analysis from previous researches[3, 94], and improved and extended their chaincode security

definitions to further increase the analysis accuracy on chaincode security issues. In order to prove

the correctness and efficiency of afuzzer , 24 chaincodes are systematically analyzed with the tool.

As experimental result, afuzzer can finish all Hyperledger Fabric chaincode analysis with 1 minute

and 10 minutes wall time each to reveal all pre-defined chaincode warnings, which are in total of 52

chaincode warnings. At the same time, 20 runtime crashed are found amount these chaincodes, and

those that related to official Hyperledger Fabric projects had been reported.

Our main contributions in this article are

• Design fuzzing approach to reveal chaincode vulnerability warnings and runtime chaincode

crashes.

• Integrate existing chaincode static analysis as module to enhance fuzzing test process. Static

analysis module can optional be stand-alone analysis module during or after the fuzz execu-

tion.

• Improved existing chaincode static analysis with more accurate chaincode vulnerability

warnings definitions.

• Design input mutation seed prioritizing algorithm with factors of static analysis result and

functions which had been fuzzed at runtime.

• Implementation of afuzzer based on fuzzing approach, which is state-of-the-art distributed

Hyperledger Fabric chaincode test platform.

• Evaluation of afuzzer with opcode sourced chaincodes. This proves correctness and efficiency

of afuzzer

We organized the paper as follows. In Section 4.2, we present how afuzzer works through a

motivating example. In Section 4.3 we show the details of fuzz testing that containing inside the

53

afuzzer . Section 4.5 illustrate the implementation of afuzzer and shows the results on experiment

and evaluating afuzzer . Then section 4.6 reviews related work. Finally, Section 4.7 concludes the

paper.

4.2 Motivating Example

4.2.1 Chaincode

Hyperledger Fabric chaincode is a smart contract program designed to interactive with ledger state

of Hyperledger Fabric blockchain. It can be implemented with various kinds of languages including

Go, Java and Node.js. Chaincode runs on peer nodes of blockchain and is called to initial or invoke

transactions to update the status of ledger and assets. A typical chaincode is as following:

1 import (

2 "github.com/hyperledger/fabric/core/chaincode/shim"

3 pb "github.com/hyperledger/fabric/protos/peer"

4)

5
6 type ChaincodeAsset struct {}

7
8 func (t *ChaincodeAsset) Init(stub shim.ChaincodeStubInterface) pb.Response{

9 // statements

10 }

11
12 func (t *ChaincodeAsset) Invoke(stub shim.ChaincodeStubInterface) pb.Response{

13 // statements

14 }

Figure 4.1: Chaincode necessary interfaces

As shown in Fig. 4.1, to implement a chaincode, there are two interfaces(shows in Fig. 4.1),

Init and Invoke, must be implemented in the chaincode. After that, the chaincode can be installed

on the peer node and called through these two implemented functions when user would like to

create new transactions. Please note that there are only Init and Invoke can be called through the

commands of Hyperledger Fabric whereas in Ethereum, each functions can be called from external

call independently in Ethereum smart contract. In this setting, in order to call other functions in the

Hyperledger Fabric chaincode, these functions have to be called through Init and/or Invoke function.

The commonly method is implement a selection statement to control which function to be called by

54

setting with different values of input arguments.

Being shown the chaincode skeleton, we shows a motivating example to further explain how

warning and crash hide inside the chaincode and revealed by our approach.

4.2.2 Motivation Example

In this section, we first introduce the basic of Hyperledger Fabric chaincode. Then we show a

illustrative chaincode example that contains chaincode security warnings and implicit runtime crash,

and the steps how our approach analyze the example and reveal all warnings and crashes.

During the research process of Hyperledger Fabric chaincode(smart contract), we found

vulnerabilities in several examples that come with the Hyperledger Fabric Software Development

Kit(SDK) and thus motivated by them. In order to illustrate what our approach can analyze, we

designed following chaincode based upon example04.go, one of Hyperledger Fabric SDK official

example1.

Warning and Crash: In the chaincode in Fig. 4.2, there are 4 functions: Init, Invoke, query, and

toChaincodeArgs. Among these 4 functions, Init, Invoke and query are methods that designed for

ME struct, which is short name of Motivating Example. According to the design requirement of

chaincode, Init and Invoke are the functions that must be implemented based upon the Hyperledger

Fabric chaincode interface. The difference between them is that Init will only be called once when

chaincode’s initialization and Invoke could be called multi-times when every time the chaincode

is invoked after initialization. Besides these two functions, query is the function to call another

chaincode with a set of given arguments formalized with help of toChaincodeArgs function. Please

note that the shim.ChaincodeStubInterface is the chaincode required argument for any function in

the chaincode, but not necessary to be assigned to the function when invoking any function of the

chaincode other than Init and Invoke.

In the motivating example, there are 2 warnings and 1 crash hidden inside:

• The first warning is at line 13 where the length of args is not checked and could cause

1Found crashes in example04.go as well as other 4 vulnerable chaincodes have been reported to Hyperledger Fabric
bug bounty website (https://hackerone.com/hyperledger)

55

1 package MotivatingExample

2
3 import (

4 "strconv"

5 "github.com/hyperledger/fabric/core/chaincode/shim"

6 pb "github.com/hyperledger/fabric/protos/peer"

7)

8
9 type ME struct {}

10
11 func (t *ME) Init(stub shim.ChaincodeStubInterface) pb.Response {

12 _, args := stub.GetFunctionAndParameters ()

13 event := args [0]// warning 1

14 eventVal , _ := strconv.Atoi(args [1])// warning 2

15 err := stub.PutState(event , []byte(strconv.Itoa(eventVal)))

16 if err != nil {

17 return shim.Error(err.Error())

18 }

19 return shim.Success(nil)

20 }

21
22 func (t *ME) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

23 function , args := stub.GetFunctionAndParameters ()

24 if function == "query" {

25 return t.query(stub , args)

26 }

27 return shim.Error("Invalid function name")

28 }

29
30 func (t *ME) query(stub shim.ChaincodeStubInterface , args [] string) pb.Response {

31 if len(args) > 3 {

32 chainCodeToCall := args [1]

33 queryKey := args [2]

34 channel := args [3]

35 invokeArgs := toChaincodeArgs("query", queryKey)

36 //crash if input is {"Args ":[" query","a" ,"","",""]}

37 stub.InvokeChaincode(chainCodeToCall , invokeArgs , channel)

38 }

39 return shim.Success ([] byte("Query success"))

40 }

41
42 func toChaincodeArgs(args ... string) [][] byte {

43 bargs := make ([][] byte , len(args))

44 for i, arg := range args {

45 bargs[i] = []byte(arg)

46 }

47 return bargs

48 }

Figure 4.2: Motivating example

uncheckedArgument warning since a none exist member of array may be called. If the input

to Init is {”Args” : []}, then args[0] may lead to an out of bound error if there’s no member

in the array of args[0]

• The second warning is at line 14 which is a unhandledError warning. The trigger input to

this warning could be {”Args” : [””,”string”]}. The return value of eventVal will be 0 if the

value of args[1] is a non-integer string. To prevent this, the second return value of function

56

strcvonv.Atoi, which is an error, should be handled correctly in order to make sure the value

that stored into the ledger is correct in line 15.

• The crash happens at line 37. When the invoke argument set to {”Args” : [”query”,”a”,””,””,””]},

the Invoke function will be called and argument will be parsed by the method GetFunctionAnd-

Parameters. After the execution of line 23, the value of function will be assigned with query.

The values of args will be {”a”,””,””,””} and then passed into function query. After that, the

args pass the if statement in line 32 in function query and second element of args(arg[1]) will

be assigned to variable chainCodeToCall. Since the value that assigned to chainCodeToCall is

null, thus there is error in call stub.InvokeChaincode as chainCodeToCall is its first argument

and cannot be null. In this crash, the length of args is guarded by line 31, which can prevent

following statements from unhandledError warnings. However, there’s still a crash at line 37.

This crash informs us that: A warning may not have to cause a crash and a crash may happen

even if the warning has been proved.

Approach Steps: In order to detect all implicitly existing crashes and expose warnings that may

lead to crashes, our approach is inspired from [49] and fuzzing test the Hyperledger Fabric chaincode

with following 4 main steps:

1. The first step is to generate required policy file. The policy file will be used as the entry

of the fuzzing test and assist to validate the mutated-generated input to each chaincode execution.

As shown in Fig. 4.3, there is a snippet of a policy file generated based on aforementioned

chaincode in Fig. 4.2. There are 3 functional steps implemented in the policy: filter invalid fuzz-

generated inputs (line 2-11), parse fuzz-generated inputs into correct format(line 12-21) and invoke

chaincode with inputs (line 23-27). With policy file, our approach can feed mutated-inputs through

policy file to the chaincode, and avoid the warnings and crashes that caused by the illegal format of

inputs. Please note that we applied Mock API comes with Hyperledger Fabric SDK to test each

single execution of targeted chaincode since our approach aims to provide an efficient method

to fuzzing test chaincode. In this case, our approach tries best to simulate the practical running

environment of chaincode and ignored the illegal inputs which will be handled in practical runtime

57

environment of Hyperledger Fabric blockchain. That’s the reason our approach considered and

ignored any malicious activities caused by the illegal inputs as they won’t happen in the runtime.

More details will be given in section 4.3.

2. The second step is to construct the control flow graph of chaincode. To figure out

if there’s any implicit warnings in the chaincode, there are two criteria needed to check: path

information for each unique path and path that are executed in runtime. For the uniqueness of each

path and to collect path information, it is necessary to build the CFG as reference of the chaincode

execution.

The CFG is built statically based on chaincode abstract syntax tree before the chaincode is

instrumented. Fig. 4.4 shows the control flow graph of chaincode in Fig.4.2.

Note that there are only two functions that can be called externally: Init and Invoke. The

difference of these two functions is that Init function can only be called once when the chaincode is

deployed on Hyperledger Fabric blockchain. On the other hand, Invoke could be called every time

chaincode is invoked with inputs. This is due to design of chaincode and will affect the control flow

graph that shows in 4.4

In Fig. 4.4, it shows all 5 paths that could be executed during the fuzz testing procedure.

The CFG consists of Nodes and Edges. There are 4 types of Node: The diamond node with lines

inside is the root node, which represents the beginning of chaincode execution. The diamond node

without inside lines are for Init and Invoke function as these two functions are entry of the chaincode

when it is called. The ellipse node represents the basic blocks in the function and finally, the square

node is the terminal node, which is last node and exit of the function. If there’s relations between

two nodes, they are connected with Edge. If one node is the start node of two edges, it shows this

specific node has branches that may lead to different child nodes.

Since the call to chaincode can only be through Init and Invoke, we thus categorize these

paths into two call processes. In call process 1, path information that starts with function call Init

will be collected. Meanwhile, information of warning 1 and warning 2 will be also collected and

could be detected potentially if the paths that includes line 13 and line 14 are executed in later steps.

Similarly, our approach collects path information in call process 2 to analyze any path that walk

58

through Invoke function and monitor if any information are related to potential warnings and crashes.

3. The third step is to instrument source code of chaincode into instrumented program.

Our approach walk through abstract syntax tree(ast) of the each file that are consists of target

chaincode. The comments are trimmed and a customized label is added into source code and

form the instrumented chaincode. For each block of ast, a CoverTab size is given in front of the

beginning of the block as instrumentation information. This information will be used to analyze

path information as well as coverage rate in following steps. The code snippet of instrumented

source code of motivating chaincode example is shown in Fig. 4.5.

4. In the fourth step, instrumented program then is feeded with fuzzing-generated inputs and

executed. In each time of execution, if the new mutated input triggers and discovers a new path,

then this specific execution path and its associated data will be recorded. This is because every time

the different input is feeded into the program, the executed chaincode path may (or not) be same

path. Next we could start the execution process and waiting until the wall time or desired paths

information are collected. Ideally, all feasible paths are tracked in a given time and fuzzing step can

then be terminated.

The aim of step four is to reveal all implicit warnings and generate test cases for any potential

crashes in maximized number of covered branched in the chaincode in efficient way. Towards

this aim, we designed algorithm to guide seed mutation with feed-back of every previous history

chaincode execution record. Feed-back algorithm take given input as initial seed, prioritize the seed

which is most promising in mutating new input that can discover new branch in each execution,

and generate new input based on selected seed. This algorithm repeatedly monitor the fuzzer to

guarantee efficiency of fuzzer until fuzzer’s termination.

In the motivating example, we thoroughly present the entire procedure of our approach step

by step. In next section, the technical details about our approach will be illustrated in each step.

59

4.3 Fuzzing Test Approach

In this section, we introduce our state-of-the-art fuzz testing method for Hyperledger Fabric

chaincode in details.

4.3.1 Fuzzing Policy Generation

As first step, the target chaincode will be given as input to create policy file, which will contain the

necessary data that need by fuzzer in following steps, such as the number and the types of variables

that accepted by chaincode. Moreover, a specific template will be applied to generate a policy file

which can thus be recognized as fuzzing configuration used by following steps.

However, there are challenges in generating a well-formed, meaningful policy file.

• How to design an entrance to accept input that in the form that chaincode can accept?

• How to invoke chaincode with given input in policy file?

With such consideration, a fuzzing policy is generated with 2 functional parts: a validator for input

and interface to call chaincode with given input.

As any inputs will be considered as data in form of []byte due to the versatility consideration

of go-fuzz. We adopted the idea of go-fuzz [6] in which there’s a Fuzz function working as start

point and takes all possible inputs that generated through afuzzer in format of []byte, like the

variable data in line 1 of code snippet in Fig. 4.3.

According to design of the chaincode, each chaincode must implement two interfaces, Init

and Invoke. Init will be invoked when chaincode is initialized or upgraded. The Invoke function is

called when chaincode is invoked to process transaction. As the nature of handling multiple functions

as a program and only Invoke could be the entry of the chaincode after chaincode initialization, it is

non-deterministic for any fuzz input generator to generate a valid invoke input automatically at the

beginning of the chaincode test. The format of input of chaincode must strictly follow a specific

JSON [10] format. In Fig. 4.6, the snippet of Invoke function shows there are only three types of

input set can successfully call private functions. For example, input {”Args”:[”invoke”,args...]}

60

will lead the snippet to walk through line 3 and 4 while {”Args”:[”query”,args...]} will guide

chaincode to the line 7 and 8. However, invalid inputs like {”Args” : [”update2”,”a”,”200”]} or

{”Args2” : [”query”,”a”,”200”]} may also be generated by fuzzer and passed to chaincode during

fuzzing process if there’s no policy file to filter them, which will eventually decrease fuzzer’s

efficiency.

Thus, a validator is integrated in the policy file, such as line 2 to line 2 in the policy file in

Fig. 4.3, which only allow the input with format that accepted by chaincode pass.

Once the input argument is validated and parsed, Mock API is utilized to simulate chaincode

execution procedure. Taking Fig 4.3 as example, the chaincode object is created at line 23 and the

internal state map of chaincode is initialized through the constructor at line 24. At line 26, there’s

an optional code to apply to invoke the Init before Invoke if the Invocation of the chaincode depends

on the status of initialization. Otherwise, chaincode could be invoked through line 27 directly.

4.3.2 CFG Generation

After the setup of fuzz policy file and initial corpus, a control flow graph(CFG) [17] is necessary to

guide the path data analysis. A CFG consists of 3 elements: nodes, edges and relations between

nodes and nodes. Given a chaincode, the CFG will contain all possible chaincode paths information.

Given a chaincode, there are only two functions, Init and Invoke, can be invoked by external

calls. We thus construct a graph starts from a abstract root node (representing a function call for

initializing variables). Then there are always two nodes, Init and Invoke, are connecting to the

root node. The Invoke node is then connected to nodes representing calling of any of the private

functions. Each private function f is then analyzed such that if it calls a function f ′, there is an edge

from f to f ′. Any function which can terminate without calling another function is connected to

every child of the root node, which allows a sequence of call of the private functions. Note that the

paths that identified in CFG may not be all feasible in runtime since it is unknown to figure out the

branch conditions of chaincode statically.

We take advantage of methods of go/ast function provided by golang to get necessary data to

contract CFG by default. The algorithm of CFG construction is presented as shown in algorithm 3

61

Algorithm 3: Algorithm constructCFG
1 Let G = (N,root,E) be an empty control flow graph
2 Let source be source code of chaincode
3 Let AST be abstract tree of chaincode
4 AST = gen ast(source)
5 Blocks = parse blocks(AST)
6 while block ∈ Blocks do
7 while stmt ∈ block do
8 N = update n(N,stmt)
9 E = update e(E,N,stmt)

10 if stmt = f st then
11 root = add r(N,stmt)
12 end
13 end
14 end
15 G = update g(G)

The generation of CFG happens statically before the instrumentation of chaincode. Since

the statically process, the CFG is over-approximated comparing with the CFG that constructed

dynamically in some cases. For example, there may be only one branch(if branch) could be tracked

for a selection statement(if-else-if branches) when CFG is built dynamically with certain input.

Such as example in 4.7, else-if branch will not be tracked dynamically as the square of input i is

always greater than or equal to 0, which, however, could be added to CFG since effect of input will

not be considered if CFG is built statically. To sum up, the CFG built is an over-approximation of

the set of reachable paths of chaincode in runtime.

4.3.3 Instrumentation

The third step is chaincode instrumentation. In this step, we adopted go-fuzz solution. Original

chaincode and policy file will be given into instrumentation module. Instrumentation module will

insert a label for each line and column of code and a instrumented source code of chaincode will be

created.

During the procedure of instrumentation, there two types of instrumentation, cover and

sonar. Cover instrumentation is for coverage measurement purpose. It will be generated to guide

62

the process of fuzzing and keep the information of tracked paths. And sonar is to find out all the

comparison operations in source code code. When there’s comparison operation happens, intercept

will keep and pass it into runtime. The purpose of sonar instrumentation can help to mutate the

input more effectively with the current input.

As shown in Fig. 4.8, there are two possible paths for the code snippet. One will go with

return ”Error” when v1 is not equal v2 and another one will go with return ”Success”. Assuming

the current fuzz input is v1 and v1 is not equal to v2, the current tracked path is going with return

”Error”. If we choose to randomly generate another fuzz input, it probably won’t track another path

since a new v1 may still not equal to v2. Sonar instrumentation can help to replace the v1 with v2’s

value from the chaincode and force tracking another path, which will go with return ”Success” in

next execution.

Eventually, the instrumentation and source code of chaincode will be passed to the next

Execution step.

4.3.4 Feedback Guided Fuzzing Mechanism

With instrumented source code of chaincode, execution module will start the fuzzing execution.

During the execution step, the most distinguished secret to specific fuzzing engine is its input

feed-back guidance. As to our approach, we designed the algorithm to select the seed which will

most likely discover new path on top of two-level input mutation strategy inherited and extended

from go-fuzz, aiming to achieve a high coverage rate.

The overall work flow of execution is shown in algorithm 4. The input of the algorithm is a

set of initial input seed, which is represented as S. With the input, the expecting output are a result

set for crashes, C, a result set for warnings, W , and a result set for input seed, which is updated S set.

A candidate input seed, cand, will be randomly picked from the initial input seed S at the beginning,

and algorithm iteratively execute the chaincode and update every candidate input with two-level

mutation strategy, computeMinimization and computeMutation respectively, until pre-set time is

out or is manually terminated. At line 8, cand is feeded into instrumented chaincode, and generate

a set of crash c, a set of warning w and a set of path information i as results. All of these three sets

63

Algorithm 4: Fuzzing execution
1 Let C be an empty set for crashes
2 Let W be an empty set for warnings
3 Let S be initial input seed set
4 Let I be information of the discovered paths
5 Let cand be candidate input to next execution
6 cand = randomPick(S)
7 cand.minimized = f alse
8 while timeout or terminated manually do
9 c,w, i,eureka := exec(cand)

10 C = C ∪ c
11 W = W ∪ w
12 I = I ∪ i
13 if eureka then
14 S = S.insert(cand)
15 end
16 minimizedCand = cand
17 while ! cand.minimized do
18 minimizedCand = computeMinimization(minimizedCand)
19 C, W , I, S = exec(minimizedCand, C, W , I)
20 if minimizedCand == M then
21 cand.minimized = true
22 end
23 end
24 cand.score=computeScore(cand,I)
25 sortBySeedScoreAscOrder(S)
26 cand=computeMutation(S[0])
27 end
28 return C, W , S

will be stored into C, W , and I respectively. If there is a new path tracked by cand, eureka will be

true which represents a new path is found by executing chaincode with cand. When a new path is

found, current cand will be stored in S. Note that our approach integrated plugin to parse all internal

functions in the chaincode except Invoke and Init in with regular expression method. As the format

of chaincode input is strict to a certain type, i.e., {”Args” : [arg0,arg1,arg2...]}, in order to make

sure the input could walk through Init and Invoke and into the function that we would like to test

with fuzzer, first argument of the chaincode, such as arg0, must be exactly be a case string of switch

statement to guarantee appropriate input is generated. As for other arguments in generated input, the

64

number and values of them are randomly generated to prevent bias caused by inputs in fuzz testing

process. Lastly, for each internal function, a certain number of inputs may be generated depending

on the user’s customization. With this plugin, we reduced the search space for randomly generating

initial inputs from scratch and focused on analyzing internal functions ignoring the effects from

Invoke and Init functions.

From line 15 to line 21, there are three functions to generate candidate input for next

execution cycle, computeMinimization, computeScore and computeMutation. each candidate will

first be mutated by minimization way to generate every another new candidate until candidates

cannot be minimized, all of the minimized candidates will be feeded in to chaincode for execution

and analysis. Then a score will be computed for the candidate that cannot be minimized with

function computeScore. Every input seed that has been executed with will have a score in factors

of crashes, warnings and path information in the path that this input triggered. Computed score

will help to decide which input is most promising candidate in terms of discovering a new path of

chaincode. After that, the set of inputs S is sorted by scores of inputs and the input with smallest

score will be given as mutation seed. With selected input, function computeMutation will generate

candidate input to next chaincode execution. We will describe details of computeMinimization,

computeScore and computeMutation in following paragraphs.

Function computeMinimization assists to explore candidate input’s potential in terms of discovering

new path, crashes and warnings. We adopted go-fuzz minimization theory to minimize candidate

input with minimization methods listed in table 4.1 and execute chaincode with each minimized

input. There are three methods used to minimize candidate input: remove each individual byte,

remove each subset of bytes and replace each individual byte with ’0’.

Table 4.1: Minimization of candidate input

computeMinimization(cand) methods
Remove each individual byte
Remove each subset of bytes

Replace each individual byte with ’0’

For example of remove each subset of bytes, candidate input {”Args” : [”query”,”a”,”200”]}

would be firstly minimized into {”Args” : [”query”,”a”]} , then {”Args” : [”query”]} and finally{”Args” :

65

[]}. In afuzzer , the minimized input is set to {”Args” : []} and cand.minimized will be flagged as

true at this time. All method will be applied to candidate input to generate new input for execution.

Any crashes, warnings and new path information found in executions will also be stored in the C,

W , I respectively.

Function computeScore is designed to compute a score for each input and evaluate the potential of

the seed in terms of tracking a new path, which will eventually discover all crashes and warnings in

all paths of chaincode. The score will be used to decide which seed will be selected as mutation

candidate to pass to the computeMutation function. Therefore, computeScore will play key role in

our feedback guided fuzz analysis, which needs to be scrutinized carefully and designed finely.

Score(cand) =
Σ(Times f /Complexity f)

Σ(Weightw ∗Numberw)

where:

Score(cand) = computed score for current input cand

Times f = accumulated called times of invoked function f

Complexity f = function complexity of invoked function f by cand

Weightw = weigh of warning of w

Numberw = times of warning w reported in current path

Above algorithm shows how our approach compute scores for each candidate inputs. Ba-

sically, the score is affected by the times of functions are called, the complexity of functions,

customized weights of each types of warnings and the number of each type of warning that are

reported. As described in above algorithm variable definitions, Score is proportional to Times and

is inversely proportionally to another three factors, Complexity, Weight and Number. The thinking

behind these relations is: the candidate input that invoked under-investigated, more complicated

functions and reported more warnings should be selected as mutation seed. This is because through

insight regarding to software development, we observed that more complicated function will always

66

have more number of paths, which needs continuously to be investigated. If the times of high

complexity function is less that, it also indicate the specific function needs to be further tested.

Nonetheless, the input that report more high-impact warnings should also be prioritized as next

mutation input seed. With consideration of this, the smaller score of input get, the more likely this

input is selected as mutation seed. Therefore, function sortBySeedScoreAscOrder is used to sort

the inputs by their scores to facility selecting the input that with smaller score.

More in details, as for Times, invoked times of each function will be recorded in each

execution. The more a function is invoked, the less likely the input that will invoke this function is

selected as mutation seed. To compute the Complexity, we adopted cyclomatic complexity [71] as

function complexity measurement, which shows as following:

Complexity(f) =


1 if complexity is 0 initially

Complexity(f)+ 1 if found ’if’,’for’,’case’,’&&’,’||’

Moreover, Weight is a set of customizable pre-defined values for each type of warnings. It

combined with the number of warning of each type, Number, affect the score of input as well. More

details about warnings will presents in section 4.4.

Function computeMutation is similar with function computeMinimization to mutate the given

input seed. There are 20 mutation strategies applied in computeMutation as methods, which shows

in table 4.2. One mutation method will be selected each time randomly to mutate the input. Note

that the generated mutation will be discarded if the test case has been generated previously or is a

minimized input, i.e., {”Args” : []} in afuzzer .

When fuzzing process is terminated, crashes, warnings and input seeds(combined with

initial seeds as well as generated seed during fuzzing) will be stored for further analysis. Besides

minimization and mutation’s assistance to mutate the input, there’s another structure mutation also

67

Table 4.2: Mutation of candidate input

computeMutation(cand) methods
Remove a range of bytes.

Insert a range of random bytes
Duplicate a range of bytes

Copy a range of bytes
Random bit flip

Set a byte to a random value
Swap 2 bytes

Add/subtract from a byte
Add/subtract from a uint16
Add/subtract from a uint32
Add/subtract from a uint64

Replace a byte with an random value
Replace an uint16 with an random value
Replace an uint32 with an random value
Replace an ascii digit with another digit

Replace a multi-byte ASCII number with another number
Splice another input

Insert a part of another input
Insert a random literal

Replace a random literal

improved the efficiency of input mutation, which is described in next sub section in details.

4.3.5 Input Mutation

The execution step is iterative since multiple inputs will be generated continuously based on original

input corpus, mutation(bitflip) algorithm and chaincode execution feedback. They will be input

into the chaincode to check if crash happens. Any crash that happens will be recorded. Note that

an input filter is necessary to only pass the satisfied input to the chaincode since go-fuzz does not

provide API to generate complicated structure inputs.

Low-level implies in where the valid input will guide the generation of next input. It

utilized the metadata from chaincode instrumentation in last step and help to mutate the input

in low level, such as the mutation from input of {”Args” : [”update”,”a”,”200”]} to input of

68

{”Args” : [”update”,”a1”,”2000”]}, which mutates current input and generate a non-structure

mutation.

Besides the lower-lever input mutation based on metadata of instrumentation, there’s another

high-level input mutation design inside go-fuzz, which name is Versifier. Versifier is based on the

reverse engineering algorithm that can recognize current input and learn from the validation of

current input. Versifier does four steps:

• Catch current input.

• Figure out if current input is a valid.

• Check out if current input can be take into consideration in increased priority or in lower

priority.

• Based on above steps, decide whether add current input to the corpus of fuzz testing, and then

mutate the current input with a certain direction.

Assuming a current input is {” f unction name”,”arg1”,”arg2”} in a form of {string, int, int},

Versifier detects and stores the current input. Versifier will firstly check if current input should be

stored into corpus or not based on policy setting. Then Versifier will go on to generate next input. If

current input is valid, then Versifier will more likely mutate next input with current form. Otherwise,

if the current input is invalid, then Versifier may consider to generate next input in another form,

such as {string, int,string} or {int, int}.

With effective input mutation, the procedure of analysis execution is a iterative event. There’s

a execution report will be printed on screen in a customizable time interval. The time interval is set

to 3 seconds by default. At the beginning of the execution, user can set the number of workers for

the execution and wall time for terminating the fuzzing execution. Then in each interval, the number

of corpus, crashes, restarts and executions will be reported. The cover in the figure represents how

many statements are executed in the chaincode so far.

While in the process of fuzz execution of the chaincode, each unique tracked path will be

saved into designated location. Our approach can apply warning analysis method on each stored

69

path information to figure out if there’s any warnings. Note that the analysis method does not have

to wait until the end of the fuzz execution but generate warning report during the process of fuzz

execution.

4.4 Warning Oracle

As a part of path information that stored in the process of execution, a coverage profile is generated

for each new discovered path. Coverage profiles are kept in the form of golang coverage profile and

can be used directly to generate coverage statistics with go cover tool [4]. The benefit of selecting

this form is that it can be natively supported by official golang coverage analysis tool as well as

other open source tools that support this format.

Besides the well-supported third-party coverage statistic tools, we followed the factory

design pattern and designed a oracle factory to provide 10 types of warnings to analysis path that

are executed and tested. Table 4.3 shows the list of vulnerabilities supported to be detected by our

approach. The oracle factory also provides extension capability to allow further adding warning

detection, working as plugin.

To better illustrate each vulnerabilities, we manually design a chaincode in Fig. 4.9 to present

the each warnings and show the positions where the warnings are.

Global Variable Usage Global variables in chaincode are not saved on ledger of blockchain but

just belonging to a single node. If this node is down, then the value of global variable will be reset

Table 4.3: List of security warnings

Global Variable Global variable used in chaincode.

Blacklisted imports
Libraries which allow communication with the outside world, grant file access or
can introduce non-determinism are used.

Concurrency of Program Concurrency that may causes non-deterministic behavior such as race condition exists.
Field Declarations Field declared at structure of chaincode.
Map range iterations Map object as key value is returned in a random order in iterating through range operator.
Unhandled Errors Ignore return values related to errors. Not all errors are handled.
Unchecked Input Arguments Input arguments are not checked to prevent from out-of-bound error.

Read After Write
Read a value after write may cause reading output inconsistent when read and
write are non-atomic.

Range Query Risk Two functions to call range query cause phantom read of the ledger.
Cross Channel Invocation Call chaincode across the channels where data are not handled correctly.

70

and cause inconsistent over all other peers. To prevent from this issue, global variable should not be

used to read or write the ledger, or other operations should not depend on the global variables.

For example, gv0, gv1 and blocks are global variables that declared in the chaincode.

Meanwhile, gv0 is read and write at line 41 in Fig. 4.9. As result, the read and write location of gv0

will be reported as Global Variable Usage warning.

Blacklisted imports Using external libraries may bring inconsistent into the chaincode, such as time

and math/rand, which will bring a time dependent value and generate random value. respectively.

For example, library time is imported into the chaincode and a external function time.Now()

is used at line 39. This will cause endorsing peers not compute the same result from using a

non-determinism function. With inconsistent computation, then the transaction may be invalid.

Concurrency of Program Using go currency function in the chaincode may lead to non-deterministic

behavior, especially in read and write ledger operation. This results in non-consistent behavior

amongst peers. Thus the go concurrency function should not be used in the chaincode.

From line 38 and 39 in Fig. 4.9, the concurrency usage of function1 may cause the data race

issue in writing the different value into ledger. In this case, any path that tracked line 38 and 39 will

be reported that contains Concurrency of Program warning.

Field Declarations The chaincode object is created once when setting up the chaincode at first time.

If chaincode object contains fields, then it is possible to sustain a global state in the program. Since

these global states are not stored on the ledger, the chaincode object should not contain any fields.

At line 8, VE is declared as global chaincode structure, and includes two members, dummyv

and dummyw. These two members may not sustain global state in chaincode because these global

states are not stored on ledger. So it may cause inconsistency in the state of VE. As a result, a Field

Declarations warning will be reported with VE’s information.

Map range iterations As shown in Fig. 4.2 as well as line 24 in Fig. 4.9, the global map object

blocks will cause this type of warning because of iteration over the entries of a map is not determin-

istic in execution of chaincode. Therefore, a Map range iterations warning will be warning to the

user warning

Unhandled Errors In golang, the output of a function does not have to be saved to certain variable,

71

shown as line 43 in Fig. 4.9. The function1’s return values consists of two error type values. The

first error return value is ignored with a underscore at line 43, which represent this value is not

necessary in future operation. However, sometimes it is import to capture all errors and set related

resolution to errors. So, there’s a Unhandled Errors warning reported at Line 42 by our approach.

Unchecked Input Arguments For the chaincode invocation, the arguments of invocation is set as

an array form and input into the Invoke function. If the length of the arguments are not checked

with bound, then an out-of-bound error may happens. For example, args0[2] is used function0 at

line 42. Since the length of args0 is not guarded to be guaranteed to larger than 3. Then Unchecked

Input Arguments should be reported as the number of chaincode arguments must be checked before

usage to prevent from out-of-bound error.

Read After Write Read After Write warning is actually a data dependence issue which is due to the

read and write operation is not atomic. The operation through PutState or GetState will always be

through a transaction. In this case, GetState may return the old value from the ledger. For example,

in line 21 and 22 of Fig. 4.9, PutState write a key-value pair to the ledger and GetState read this

key-value pair from ledger. However, because they are in the same transaction, a new value caused

by PutState may not affect the return value of GetState and GetState will return a old value. In this

case, a Read After Write warning will be reported.

Range Query Risk The data reading from chaincode API GetHistoryOfKey or GetQueryResult

will cause phantom reads, which will cause inconsistancy if the data is used to update ledger. For

example, at line 19 and line 21, the value of data is coming from the GetHistoryOfKey function, it

should not be written on the ledger. In this case, the Range Query Risk warning will be reported.

Cross Channel Invocation channel value in InvokeChaincode(chaincodeName string, args [][]byte,

channel string) should not be any arbitrary value except value of GetChannelID(). Otherwise same

channel chaincode call will not be guaranteed. If channel is not the same channel of caller chaincode,

the transaction is just a ”Query” and any state update that are made through chaincode will not work

properly.

For example, there is a Cross Channel Invocation warning at line 56. If the value of channel

is set to the value other than the value of channel of current chaincode itself. Thus current chaincode

72

across the different channels to call another chaincode through stub.InvokeChaincode, which may

cause error on the global states.

For each chaincode, following outputs will be provided as a result set: coverage profile,

warnings statistics, includes numbers of each types and locations, and crashes profile, includes

trigger input argument and panic stack information.

4.5 Experiment and Evaluation

Based on the design of our approach, we implemented afuzzer , which consists of 4 main module

components: Policy generation module, Instrumentation module, Fuzz execution module and

Warning analysis module. Fig. 4.10 shows general structure of the tool. Each module has following

functions:

• Policy generation module: Generate policy file according to the chaincode source code.

• Instrumentation module: Generate control flow graph and instrumentation source code and

binaries.

• Fuzz execution module: Execute chaincode with mutated inputs iteratively, generate path

information and store crashes information.

• Warning analysis module: Analyze warnings in each path and coverage rate of fuzzing test.

In order to evaluate the contribution of afuzzer , we designed the experiment to evalu-

ate afuzzer and answer following research questions(RQ) in order to guarantee its robustness,

soundness, efficiency and effectiveness.

• RQ1: How’s the efficiency of afuzzer ? Fuzz testing is a test method focusing on generating

valid/reasonable inputs as faster as possible. In this case, testing efficient is the first important

standard that needs to be evaluated.

73

• RQ2: How’s the effectiveness of afuzzer ? High coverage rate is another evaluation standard

that we care about. High coverage rate implies high percentage of the chaincode has been

tested. In order to find more implicit vulnerabilities and warnings, we designed this RQ and

would like to answer by evaluating the testing coverage rate of each chaincode.

• RQ3: Will the afuzzer find out crashes and give sufficient warnings to users?

Experiment Setting We did the experiment on a platform of 64bit MacOS 10.14 with

Hyperledger Fabric golang SDK 1.4 version and golang 1.12.1 version. From hardware perspective,

all experiment has been done with an Intel Core i5-8400(4.0 GHz, 6 cores) and 16 GB of DDR4

2600 RAM.

Experiment benchmarks In order to answer above RQs and evaluate afuzzer , we collected

Hyperledger Fabric chaincodes from multiple sources. Due to the nature of Hyperledger Fabric

as consortium blockchain, there’s no reliable method to collect all of existing chaincodes on all

Hyperledger Fabric chains. For the purpose of collect as many chaincodes as possible, we focused

on collecting the official examples and demonstration cases that are designed and contributed by the

active entrepreneurs supporters and chaincode developers. We collect and manage these chaincodes

as a benchmark suite as they has high possibility in being used in private Hyperledger Fabric chains.

As a result, we collected 24 chaincode benchmarks and organized these chaincodes as shown in

table 4.4. Noted that these tested chaincodes includes the cases that consists of single chaincode

and that consists of multiple chaincode files. We continued to analyze the chaincode benchmarks

that consists of multiple files for the purpose of evaluation.

In Fig. 4.4, the first and second columns on the left lists indexes and names of the chaincodes

that are fuzz tested with afuzzer . All of them are collected through 3 sources: official Hyperledger

Fabric chaincode tutorials offered by IBM [8], general open source libraries and most forked chain-

code projects on open source platform. We managed them into a chaincode set as our benchmark

suite, which is utilized to evaluate afuzzer and answer RQs.

RQ1: Efficiency: To evaluate the efficiency of afuzzer , we firstly tested benchmark suite in two

74

Table 4.4: Analysis report on evaluated chaincodes

Index Name Explored paths Coverage rate Crashes Warnings Initial inputs LOC
1 min 10 min 1 min 10 min 1 min 10 min 1 min 10 min

1 cashloan/cash 17 49 73.00% 80.90% 0 0 0 0 3 283
2 cashloan/loan 10 10 75.30% 75.30% 2 2 0 0 2 166
3 crowdfunding/ 10 10 80.20% 80.20% 0 0 5 5 5 259
4 drug/ 10 10 65.40% 65.40% 0 0 0 0 5 235
5 eventsender/ 6 6 71.90% 71.90% 0 0 0 0 2 91
6 example01/ 2 5 73.30% 83.30% 0 0 5 8 1 72
7 example02/ 6 12 79.60% 87.20% 0 0 0 0 3 177
8 example03/ 2 5 76.50% 85.30% 0 0 0 0 1 81
9 example04/ 9 11 75.60% 78.00% 1 2 0 0 3 155

10 example05/ 8 8 49.00% 49.00% 2 2 0 0 2 196
11 fabcar/ 10 10 74.30% 74.30% 0 0 1 1 5 203
12 farm/ 51 127 47.20% 51.90% 0 0 3 3 10 745
13 maps/ 60 86 59.40% 59.40% 6 6 7 7 15 464
14 marbles chaincode/ 41 267 51.20% 53.80% 1 1 3 3 13 754
15 morpheo/ 32 77 62.40% 64.20% 0 0 8 8 10 1059
16 mrtgexchg/ 37 156 69.10% 79.60% 2 2 1 1 14 722
17 passthru/ 5 5 76.50% 76.50% 1 1 0 0 2 71
18 sleeper/ 6 8 78.40% 78.40% 0 1 2 2 2 123
19 fabric test/maps.go 14 18 56.10% 58.20% 1 1 4 4 6 203
20 fabric test/mapkeys.go 26 37 54.70% 56.00% 1 2 6 6 11 305
21 fabric test/samplecc/ 7 9 82.10% 82.10% 0 0 0 0 2 180
22 fabric test/sbe/ 39 39 75.50% 75.50% 0 0 3 3 3 150
23 fabric test/shim-vendored/ 9 9 61.20% 61.20% 0 0 0 0 3 237
24 fabric test/shimApiDriver/ 9 9 81.40% 81.40% 0 0 1 1 5 212

group of wall time limit, 1 minute and 10 minutes, in order to check out two hypothesis: Will the

number of explored paths increase with increased time period? Can afuzzer could explore many

paths of the program in a minimal time period? To check these two hypothesis, based on data on the

Explored paths and Coverage rate columns, the statistics of experiment are presented and grouped

with wall time length on both columns. Note that the coverage rate represent the statement coverage

rate which collected based on the explored paths information.

For all the chaincodes in Fig. 4.4, the number of explored paths are all identical or increased

when the wall time extended from 1 minute to 10 minute. The increment of explored paths numbers

represent afuzzer can guarantee test and explore the chaincode continuously. Meanwhile, for the

chaincodes No.2, 3, 4, 5, 10, 11, 17, 22, 23, 24, the number of explored paths are same in both

1 min and 10 min wall time setting and the value of coverage rate are same too. This situation

indicate that afuzzer can finish testing these chaincodes in minimal time since the coverage rate

won’t increase even if the wall time extended. Thus, afuzzer can efficiently explore as many paths

as possible in a minimal time period.

75

Moreover, for the chaincodes No.13, 18, 21, the number of explored paths are increased

while the coverage rate keep identical. This case represent that the statement of chaincode has been

explored thoroughly but the branch coverage are still increasing. Following figure shows a small

example to further explain this case:

Assuming there are two group of inputs: a=1, b=1 and a=-1,b=-1, thus the line 1,2,6,7 are

explored with a=1, b=1 and the line 3,4,8,9 are explored with a=-1, b=-1. At the end, all of the

statements are explored and statement coverage rate is 100%. However, if we continue to provide

another group of inputs, a=1, b=-1, then the line 1,2,8,9 are explored. A new path is explored while

the statements explored keep the same.

With the explanation of above examples, afuzzer can continuously and efficiently test the

chaincode even if statements has been explored.

RQ2: Effectiveness: We evaluate the effectiveness based on the value of coverage rate of each

chaincode. Fig. 4.11 shows the coverage rate for each chaincode in 1 minute and 10 minute time

frame. The average of coverage rate is 68.64% for 1 minute and 71.21% for 10 minutes, which

presents quite reasonable effectiveness of afuzzer .

RQ3: Crashes and Warnings: According to the statistics in Fig.4.4, afuzzer can detect crashes

and give warnings to user in a timely manner like 1 minute and also could find out the bug that hided

deeply in the chaincode in longer time frame, like 10 minutes. To further analysis the features of

these crashes and warnings, we categorize them, respectively, according to the types and definitions

described in section 4.4 and show the result in table 4.5 and table 4.6. Note that the warning

categories that does not have any warnings in chaincodes are ignored.

As the date shown in table 4.5, for most of crashes generated during the experiment, we

found they are caused by two reason: 1, for the index out of range crashes, it commonly happens

when one of argument in argument array is read without checking its existence or length of the

argument array. This crash reason is closely connected with the Unchecked Argument warning. 2,

for the invalid memory address or nil pointer dereference caused crashes, the reason behind it is that

76

1 func Fuzz(data []byte) int {

2 if len(data) == 0 {

3 return -1

4 }

5 var inp interface {}

6 if err := json.Unmarshal(data , &inp); err != nil {

7 return -1

8 }

9 if inp.(type) != map[string]interface {} {

10 return -1

11 }

12 mp := inp.(map[string]interface {})

13 argmp := make(map[string]interface {})

14 for a := range mp {

15 argmp[strings.ToLower(a)] = mp[a]

16 }

17 _, argsPresent := argmp["args"]

18 _, funcPresent := argmp["function"]

19 if !argsPresent || (len(mp) == 2 && !funcPresent) || len(mp) > 2 {

20 return 0

21 }

22
23 scc := new(ME)

24 stub := shim.NewMockStub("chaincodeName", scc)

25 // optional if Init needs test or Invoke depends on initialization

26 stub.MockInit("uuid", [][] byte {[] byte("Init"), []byte("a") ,[]byte("200")})

27 stub.MockInvoke("uuid", toArgsByteArray(argmp))

28
29 return 1

30 }

Figure 4.3: Policy file for Motivating example

Table 4.5: Crash result

Name index out of range
invalid memory address or

nil pointer dereference SIGABRT Total

1min 10min 1min 10min 1min 10min 1 min 10 min
cashloan/loan 1 1 1 1 0 0 2 2
example04/ 0 0 1 2 0 0 1 2
example05/ 0 0 1 2 0 0 2 2

maps/ 4 4 2 2 0 0 6 6
marbles chaincode/ 1 0 1 1 0 0 1 1

mrtgexchg/ 0 0 2 2 0 0 2 2
passthru/ 0 0 1 1 0 0 1 1
sleeper/ 0 0 0 0 0 1 0 1

fabric test/maps.go 1 1 0 0 0 0 1 1
fabric test/mapkeys.go 1 2 0 0 0 0 1 2

Total 8 8 9 11 0 1 17 20

77

Figure 4.4: Control flow graph of chaincode in Fig. 4.2

Table 4.6: Warning result

Name
GlobalVariable

Usage
Blacklisted

Import
Unhandled

Error
Unchecked
Argument

ReadAfter
Write

RangeQuery
Risk Total

1min 10min 1min 10min 1min 10min 1min 10min 1min 10min 1min 10min 1min 10min
crowdfunding/ 5 5 5 5

example01/ 5 8 5 8
fabcar/ 1 1 1 1
farm/ 1 1 2 2 3 3
maps/ 1 1 3 3 3 3 7 7

marbles chaincode/ 1 1 2 2 3 3
morpheo/ 5 5 3 3 8 8

mrtgexchg/ 1 1 1 1
sleeper/ 1 1 1 1 2 2

fabric test/maps.go 1 1 1 1 2 2 4 4
fabric test/mapkeys.go 1 1 2 2 3 3 6 6

fabric test/sbe/ 1 1 2 2 3 3
fabric test/shimApiDriver/ 1 1 1 1

Total 6 9 8 8 12 12 6 6 3 3 9 9 44 47

although the existence of the read argument is checked, developer did check if null can accepted

and transfer to the function.

From table 4.6, the largest number of warnings appear in unhandled error category, which

means it is quite common for chaincode developer to ignore handling all possible errors in the

chaincode program.

4.6 Related Works

With the closer attention to smart contract testing techniques from researchers, related researches

are recently proposed and published in smart contract verification area. In our approach, we

adopted fuzzing test and introduced it into smart contract verification research area. To the best of

78

1 func (t *ME) query(stub shim.ChaincodeStubInterface , args [] string) pb.Response {

2 _afuzzer_dep_.CoverTab [51928]++

3 if len(args) > 3 {

4 _afuzzer_dep_.CoverTab [56144]++

5 chainCodeToCall := args [1]

6 queryKey := args [2]

7 channel := args [3]

8 invokeArgs := toChaincodeArgs("query", queryKey)

9
10 stub.InvokeChaincode(chainCodeToCall , invokeArgs , channel)

11 } else {

12 _afuzzer_dep_.CoverTab [27618]++

13 }

14 _afuzzer_dep_.CoverTab [61116]++

15 return shim.Success ([] byte("Query success"))

16 }

Figure 4.5: Snippet of instrumented chaincode in Fig. 4.2

1 func (t *ME) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

2 function , args := stub.GetFunctionAndParameters ()

3 if function == "invoke" { //{"Args ":[" invoke",args ...]}

4 return t.invoke(stub , args)

5 }else if function == "update"{//{"Args ":[" update",args ...]}

6 return t.update(stub , args)

7 }else if function == "query"{//{"Args ":[" query",args ...]}

8 return t.query(stub , args)

9 }

10 return shim.Error("Invalid function name")

11 }

Figure 4.6: inputs that can call private functions

1 // Assuming input i is in type of integer

2 if i * i >= 0 {

3 // statement 1

4 }else if i * i < 0 {

5 // statement 2

6 }

Figure 4.7: difference between statical and dynamical CFG generation

1 if v1 != v2 {

2 return "Error"

3 }

4 return "Success"

Figure 4.8: Example for sonar instrumentation

79

1 import (

2 "fmt"

3 "github.com/hyperledger/fabric/core/chaincode/shim"

4 "github.com/hyperledger/fabric/protos/peer"

5 "time"

6)

7
8 type VE struct {

9 dummyv string

10 dummyw string

11 }

12
13 var blocks = map[int]int {1:1 ,2:5 ,3:10 ,4:50 ,}

14
15 var gv0 int = 111

16 var gv1 = 222

17
18 func function1(stub shim.ChaincodeStubInterface , data string)(e0 error ,e1 error){

19 iterator ,_ := stub.GetHistoryForKey("key")

20 data , _ := iterator.Next()

21 stub.PutState("key", []byte(data.Value))

22 stub.GetState("key")

23 returnValue := 0

24 for i, ii := range blocks{

25 returnValue = returnValue * i - ii

26 }

27 args1 := stub.GetStringArgs ()

28 if len(args1) < 1 {

29 fmt.Println("working guard")

30 return e1, e0

31 }

32 _, e1 = stub.GetState(args1 [2])

33 return e0, e1

34 }

35
36 func (t *VE) function0(stub shim.ChaincodeStubInterface) {

37 args0 := stub.GetStringArgs ()

38 go function1(stub , "data1")

39 go function1(stub , "data2")

40 fmt.Println(time.Now())

41 gv0 = gv0 + 1

42 resultT , _ := stub.GetState(args0 [2])

43 _ , e1 := function1(stub , "data")

44 fmt.Println(e1)

45 }

46
47 func (m *VE) Init(stub shim.ChaincodeStubInterface) peer.Response {

48 return shim.Success ([] byte("Init Success"))

49
50 }

51
52 func (m *VE) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

53 m.function0(stub)

54 _, args := stub.GetFunctionAndParameters ()

55 chainCodeToCall := args [1]

56 channel := args [2]

57 stub.InvokeChaincode(chainCodeToCall , [][] byte{}, channel)

58 return shim.Success ([] byte("Invoke Success"))

59 }

60
61 func main() {

62 if err := shim.Start(new(VE)); err != nil {

63 fmt.Printf("Error starting chaincode: %s", err)

64 }

65 }

Figure 4.9: Vulnerabilities explaination example

80

Figure 4.10: Overall workflow of afuzzer

1 if a > 0 {

2 statement1

3 }else {

4 statement2

5 }

6 if b > 0 {

7 statement3

8 }else {

9 statement4

10 }

0.00%
10.00%
20.00%

30.00%
40.00%
50.00%
60.00%

70.00%
80.00%
90.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Avg

Chaincode coverage rate 1 min 10 min

Figure 4.11: Chaincode coverage rate

knowledge, we systemly looked in the research works that focusing on (1)fuzzing test[31, 48, 49, 69]

and (2)smart contract verification approaches, especially those works that aims to verify Hyperledger

Fabric chaincode.

Fuzzing [84] test’s aim to execute target program and monitor runtime status by feeding

81

inputs that are generated during the executions. The most challenges are (1)how to generate effective

inputs and (2) how to increase the code coverage. American fuzzy lop(AFL) [95] is tool designed

to solve these two questions and has been proved as efficient and extended as basis to multiple

toolsbohme2017coverage,bohme2017directed. To generate effiective inputs, AFL maintains a

minimum input queue by trimming the inputs that will not change the program behavior. New

inputs are mutated iteratively through customized fuzzing strategies and pushed into the input queue.

If any input triggers a new path that is not explored, then related output will be recorded. This

coverage-oriented fuzzing test theory inspired following fuzzing test tools as well as our approach,

to test different programs on various platforms. afuzzer take advantages of mutation based fuzzing

test tool [6] focusing on golang that based on AFL theory. Beyond that, we introduced new method

to validate the inputs and integrated vulnerability warning into the afuzzer for the purpose of

providing one-stop fuzzing test service to users.

Smart contract theory is introduced two decades ago[85] and brought into public sightseeing

since the popularity of bitcoin[73] raised. Most recent smart contract testing and verification

researches are aggregating on Ethereum[28] platform with formal verification techniques, including

symbolic execution and fuzz testing. Luu et al.[68] for the first time introduced symbolic exe-

cution method into smart contract verification. In this approach, loop interations and relations

among functions are not considered during the symbolic execution procedure. Zeus[58] persuaded

translating smart contract into llvm[64] and thus can be integrated with llvm based program ver-

ification tool to test smart contracts. Similar research logic, translate smart contract into other

language then tested with existing tool, is also applied in other tools[21, 52]. Besides symbolic

execution, fuzzing test is another practical method in testing vulnerabilities of smart contract.

ContractFuzzer[55] and echidna[5] are utilizing fuzz testing techniques to verify Ethereum smart

contracts. In contractFuzzer, fuzz testing is introduced to test smart contract for the first time, and 7

types of vulnerabilities can be detected. However, inputs are totally generated based on the source

code and no input improvement could be guided to increase coverage rate due to lack of input

mutation analysis.

For the perspective of Hyperledger Fabric chaincode testing, there are few researches presents

82

practical verification methods integrating with formal verification techniques. As references of

analysis of chaincode security, in [3], authors presents tool to static analyze chaincode to investigate

9 types of vulnerabilities and send warnings to users. This is research provide insights to analyze

dynamic analysis of chaincode and its theory is inherited by [94], which extend the detection

capability beyond the investigated types of vulnerabilities. To the best of our knowledge, there’s

no other fuzzing test basis, even formal method basis chaincode verification platform existing or

proposed yet.

4.7 Conclusion

In this work, we propose the first Hyperledger Fabric chaincode fuzzer to bring insight to chaincode

developer with signals and alerts of when and how they should start focusing on verify security of

chaincode in order to increase the software quality.

83

Chapter 5

Conclusion and Future Works

In the researches that are throughout my Ph.D. years, I always focus on the software qulity and

verification. Software quality should always be top priority in the life cycle of the software

development.

In the research of memory reuse distance, We repurpose PCT algorithm to mitigate path

explosion problems in analyzing concurrent program and take its advantage to measure memory

distance in an effective way with probabilistic guarantees and without losing its generality.

Blockchain is gradually becoming a hot research topic in research area, especially the

software quality of smart contract. Smart contract is a evolutional software category built upon

the blockchain platform, which has been well-accepted in voting, crowdfunding and broadcasting

area due to information transparency and traceability. However, in most recent years, there are

plenty of attacks that caused huge economic losses. The notorious DAO attack make the Ethereum

owner suffer a loss of $60 M. More hazardously, the same type of attack that had been discovered

and happened, which cannot be prevented completely. With insight of huge potential and market

caps, I committed time into this promising research area and is concentrating on following research

projects.

Hyperledger fabric is a another promising blockchain platform that maintained by Linux

foundation. It has great features on distribution and privacy which are the reason of being widely

accepted and applied in business industry. It’s smart contract, chaincode, designed with upgradeable

84

and high maintainable status, which is also extensively utilized and integrated into the business

system.

With the development and adoption of Hyperledger fabric, there’s incremental demands for

the security analysis. However, the security of Hyperledger fabric unfortunately, hasn’t not gain

much attention from neither industry nor research area. Noticing this surging security requests

and driven by curiosity of software security research on chaincode, I developed an approach for

automated analyzing chaincode vulnerabilities with fuzz testing, which is proved as a quality

software testing technique to discover software security issues.

To the best of our knowledge, I didn’t find any effective fuzzing analysis tool that can

truly verify chaincodes security issues and detect chaincode vulnerabilities and crashes. There

are researches that focused on static analysis for Hyperledger fabric chaincode. However, there’re

natural limitations to statically analyze program as static analysis cannot prove the found warnings

really exist in runtime or could lead to runtime bug in practical. Moreover, static analysis also bring

high amount of false positive and false negative in analysis result.

In the future, my current researches can be extended into new platform such as Libra smart

contract test with static analysis and symbolic execution technique

Libra is another blooming blockchain platform introduced by Facebook, aiming to establish

a safe, unbounded crypto-currency exchange platform, which will assist research and applications

from any areas.

This project is, on one hand, very promising and worth research due to the increment of

smart contract vulnerabilities and necessities of the audit verification, and application prospects as

introduced by Facebook, who taken up large share of market and embraced 2.45 billion monthly

active users in 2019. On the other hand, to the best of our knowledge, there’s no any existing tools

focusing on libra smart contract, which is written by move.

I propose a state-of-the-art libra smart contract testing framework with integration of static

analysis and symbolic execution technique. This framework will automatically explore the security

issues hidden inside the smart contracts and will definitely help both researchers and develop-

ers to build more safely smart contract, bring broader impact on the research on smart contract

85

vulnerabilities verification and attracts the investment from both scientific foundation and industries.

In testing concurrent software program, the difficulties are that I couldn’t predict the inputs

of the concurrent software program and which path or state will the concurrent software program

will be in. So It is very hard to test a concurrent program because not only inputs have to be

enumerated exhaustively but also program path interleaving states are very hard to predict.

In my future research plans, I will focus on blockchain cybersecurity area and other in-

teresting research areas that can assist solving questions in software testing area better and more

effectively. Contributing on current research projects, blockchain smart contract testing will be my

research topic in next three years in order to generate applicable software testing application for

most financially promising blockchain platforms and attract external funding from national funding

supporter as well as industry companies. Besides considerations of research financial support, I will

also evaluate my researches’ impact to my community research institutes in terms of education and

research activities, such as holding and joining research conferences. I will make contributions to

my beloved software verification research area in the future.

86

Bibliography

[1] Another parity wallet hack explained. https://medium.com/@Pr0Ger/
another-parity-wallet-hack-explained-847ca46a2e1c. (Accessed on 06/06/2018).

[2] Attack - the dao - the dao. https://daowiki.atlassian.net/wiki/spaces/DAO/pages/7209155/
Attack. (Accessed on 06/12/2019).

[3] Chaincode scanner. https://chaincode.chainsecurity.com/. (Accessed on 09/02/2019).

[4] The cover story - the go blog. https://blog.golang.org/cover. (Accessed on 10/19/2019).

[5] crytic/echidna: Ethereum fuzz testing framework. https://github.com/crytic/echidna/. (Ac-
cessed on 10/28/2019).

[6] dvyukov/go-fuzz: Randomized testing for go. https://github.com/dvyukov/go-fuzz. (Accessed
on 09/09/2019).

[7] Ethereum (eth) blockchain explorer. https://etherscan.io/. (Accessed on 06/30/2018).

[8] Hyperledger fabric tutorials – ibm developer. https://developer.ibm.com/components/
hyperledger-fabric/tutorials/. (Accessed on 10/20/2019).

[9] lcamtuf.coredump.cx/afl/technical details.txt. http://lcamtuf.coredump.cx/afl/technical details.
txt. (Accessed on 01/09/2020).

[10] Rfc 8259 - the javascript object notation (json) data interchange format. https://datatracker.ietf.
org/doc/rfc8259/. (Accessed on 10/19/2019).

[11] Self-driving uber car that hit and killed woman did not recognize
that pedestrians jaywalk. https://www.nbcnews.com/tech/tech-news/
self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281. (Accessed on
05/09/2020).

[12] Smart contract security: Part 1 reentrancy attacks — hacker noon. https://hackernoon.com/
smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302. (Accessed on 05/09/2020).

[13] Solidity, the contract-oriented programming language. https://github.com/ethereum/solidity.
(Accessed on 06/12/2019).

[14] Therac-25 - wikipedia. https://en.wikipedia.org/wiki/Therac-25. (Accessed on 05/09/2020).

87

https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://daowiki.atlassian.net/wiki/spaces/DAO/pages/7209155/Attack
https://daowiki.atlassian.net/wiki/spaces/DAO/pages/7209155/Attack
https://chaincode.chainsecurity.com/
https://blog.golang.org/cover
https://github.com/crytic/echidna/
https://github.com/dvyukov/go-fuzz
https://etherscan.io/
https://developer.ibm.com/components/hyperledger-fabric/tutorials/
https://developer.ibm.com/components/hyperledger-fabric/tutorials/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://datatracker.ietf.org/doc/rfc8259/
https://datatracker.ietf.org/doc/rfc8259/
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
https://github.com/ethereum/solidity
https://en.wikipedia.org/wiki/Therac-25

[15] Top 50 cryptocurrency prices—coinbase. https://www.coinbase.com/price. (Accessed on
06/17/2019).

[16] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM,
1970.

[17] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM,
1970.

[18] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compositional
symbolic execution. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 367–381. Springer, 2008.

[19] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, page 30. ACM, 2018.

[20] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum
smart contracts (sok). In International Conference on Principles of Security and Trust, pages
164–186. Springer, 2017.

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,
Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote,
Nikhil Swamy, et al. Formal verification of smart contracts: Short paper. In Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for Security, pages 91–96.
ACM, 2016.

[22] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,
Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote,
Nikhil Swamy, and Santiago Zanella-Béguelin. Formal verification of smart contracts: Short
paper. In Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis
for Security, PLAS ’16, pages 91–96. ACM, 2016.

[23] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite:characterization and architectural implications. In International Conference on Parallel
Architecture and Compilation Techniques, pages 72–81, 2008.

[24] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, Franois Yergeau, et al.
Extensible markup language (xml) 1.0, 2000.

[25] Jerry Brito and Andrea Castillo. Bitcoin: A primer for policymakers. Mercatus Center at
George Mason University, 2013.

[26] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. In Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and Operating Systems, pages
167–178, 2010.

88

https://www.coinbase.com/price

[27] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. In ACM Sigplan Notices,
volume 45, pages 167–178. ACM, 2010.

[28] Vitalik Buterin et al. Ethereum white paper. GitHub repository, pages 22–23, 2013.

[29] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform.
white paper, 3(37), 2014.

[30] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. pages 209–224, 2008.

[31] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI, volume 8, pages
209–224, 2008.

[32] Yan Cai and Zijiang Yang. Radius aware probabilistic testing of deadlocks with guarantees.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 356–367, 2016.

[33] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai, and Zijiang Yang. scompile: Critical
path identification and analysis for smart contracts. In International Conference on Formal
Engineering Methods, pages 286–304. Springer, 2019.

[34] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea. Cloud9:
a software testing service. Operating Systems Review, 43(4):5–10, 2009.

[35] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[36] ConsenSys. Mythril: Security analysis of ethereum smart contracts. https://github.com/
ConsenSys/mythril, 2018. [online, accessed 30-may-2018].

[37] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[38] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. pages
337–340, 2008.

[39] Pierre A Devijver and Josef Kittler. Pattern recognition: A statistical approach. Prentice hall,
1982.

[40] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor., 22(6):644–
654, September 2006.

[41] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In Proceedings
of the June 7-10, 1976, National Computer Conference and Exposition, AFIPS ’76, pages
109–112, New York, NY, USA, 1976. ACM.

89

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril

[42] Chen Ding and Yutao Zhong. Reuse distance analysis. University of Rochester, Rochester, NY,
2001.

[43] Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse distance
analysis. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, PLDI ’03, pages 245–257, 2003.

[44] Joe W Duran and Simeon Ntafos. A report on random testing. In Proceedings of the 5th
international conference on Software engineering, pages 179–183. IEEE Press, 1981.

[45] Joe W Duran and Simeon C Ntafos. An evaluation of random testing. IEEE transactions on
Software Engineering, (4):438–444, 1984.

[46] Changpeng Fang, S Carr, Soner Onder, and Zhenlin Wang. Instruction based memory distance
analysis and its application to optimization. In 14th International Conference on Parallel
Architectures and Compilation Techniques (PACT’05), pages 27–37. IEEE, 2005.

[47] Changpeng Fang, Steve Carr, Soner Önder, and Zhenlin Wang. Reuse-distance-based miss-rate
prediction on a per instruction basis. In Proceedings of the 2004 Workshop on Memory System
Performance, MSP ’04, pages 60–68, 2004.

[48] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random testing.
In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[49] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz testing.
In NDSS, volume 8, pages 151–166. Citeseer, 2008.

[50] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. Assertion guided
symbolic execution of multithreaded programs. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 854–865. ACM, 2015.

[51] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document. In Conference on
the Theory and Application of Cryptography, pages 437–455. Springer, 1990.

[52] Yoichi Hirai. Formal verification of deed contract in ethereum name service. November-
2016.[Online]. Available: https://yoichihirai. com/deed. pdf, 2016.

[53] William E. Howden. Symbolic testing and the dissect symbolic evaluation system. IEEE
Transactions on Software Engineering, (4):266–278, 1977.

[54] Dorota Huizinga and Adam Kolawa. Automated defect prevention: best practices in software
management. John Wiley & Sons, 2007.

[55] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart contracts for vulnerability
detection. arXiv preprint arXiv:1807.03932, 2018.

[56] Yunlian Jiang, Eddy Z Zhang, Kai Tian, and Xipeng Shen. Is reuse distance applicable to
data locality analysis on chip multiprocessors? In International Conference on Compiler
Construction, pages 264–282. Springer, 2010.

90

[57] Norman D Jorstad and TS Landgrave. Cryptographic algorithm metrics. In 20th National
Information Systems Security Conference, 1997.

[58] Sukit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharmar. Zeus: Analyzing safety of
smart contracts. In Network and Distributed Systems Security Symposium 2018, pages 1–12.
internetsociety, 2018.

[59] Stephen H Kan. Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[60] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache replacement based
on reuse-distance prediction. In Computer Design, 2007. ICCD 2007. 25th International
Conference on, pages 245–250. IEEE, 2007.

[61] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[62] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[63] Chris Lattner. Llvm and clang: Next generation compiler technology. In The BSD Conference,
pages 1–2, 2008.

[64] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

[65] Hao Li, Jialiang Chang, Zijiang Yang, and Steve Carr. Memory distance measurement for
concurrent programs. In International Workshop on Languages and Compilers for Parallel
Computing, pages 49–64. Springer, 2017.

[66] Tongping Liu, Charlie Curtsinger, and Emery D Berger. Dthreads: efficient deterministic
multithreading. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 327–336. ACM, 2011.

[67] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40, pages
190–200. ACM, 2005.

[68] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 254–269. ACM, 2016.

[69] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: an input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 224–234, 2013.

91

[70] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance predictions for
scientific applications using parameterized models. In Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’04/Perfor-
mance ’04, pages 2–13, 2004.

[71] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[72] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John Wiley &
Sons, 2011.

[73] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[74] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, 2016.

[75] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. arXiv preprint arXiv:1802.06038, 2018.

[76] Qingpeng Niu, James Dinan, Qingda Lu, and P Sadayappan. Parda: A fast parallel reuse
distance analysis algorithm. In Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 1284–1294. IEEE, 2012.

[77] Parag C Pendharkar, James A Rodger, and Girish H Subramanian. An empirical study of the
cobb–douglas production function properties of software development effort. Information and
Software Technology, 50(12):1181–1188, 2008.

[78] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave macmillan,
2005.

[79] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. Accelerating multicore reuse distance
analysis with sampling and parallelization. In Proceedings of the 19th international conference
on Parallel architectures and compilation techniques, pages 53–64. ACM, 2010.

[80] Koushik Sen. Scalable automated methods for dynamic program analysis. Technical report,
2006.

[81] Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. Locality approximation using
time. In ACM SIGPLAN Notices, volume 42, pages 55–61. ACM, 2007.

[82] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. ACM SIGPLAN
Notices, 39(11):165–176, 2004.

[83] D. H. Stamatis. Failure Mode and Effect Analysis: FMEA from Theory to Execution. ASQ
Quality Press, 2003.

[84] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnerability
Discovery. 2007.

92

[85] Nick Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9),
1997.

[86] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. Fuzzing for software security
testing and quality assurance. Artech House, 2018.

[87] trailofbits. Manticore: Symbolic execution tool. https://github.com/trailofbits/manticore, 2018.
[online, accessed 30-may-2018].

[88] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Gervais, Florian Buenzli, and
Martin Vechev. Securify: Practical security analysis of smart contracts. arXiv preprint
arXiv:1806.01143, 2018.

[89] Alan M Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc, 42, 1937.

[90] Chao Wang, SAID Mahmoud, Aarti Gupta, Vineet Kahlon, and Nishant Sinha. Dynamic test
generation for concurrent programs, July 12 2012. US Patent App. 13/348,286.

[91] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

[92] Meng-Ju Wu and Donald Yeung. Efficient reuse distance analysis of multicore scaling for
loop-based parallel programs. ACM Transactions on Computer Systems (TOCS), 31(1):1,
2013.

[93] Meng-Ju Wu, Minshu Zhao, and Donald Yeung. Studying multicore processor scaling via
reuse distance analysis. In ACM SIGARCH Computer Architecture News, volume 41, pages
499–510. ACM, 2013.

[94] Kazuhiro Yamashita, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and Sun Jun. Potential risks
of hyperledger fabric smart contracts. In 2019 IEEE International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), pages 1–10. IEEE, 2019.

[95] Michal Zalewski. American fuzzy lop. URL: http://lcamtuf. coredump. cx/afl, 2017.

[96] Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis using reuse distance.
ACM Transactions on Programming Languages and Systems (TOPLAS), 31(6):20, 2009.

93

https://github.com/trailofbits/manticore

	Software Quality Control through Formal Method
	Recommended Citation

	Introduction
	Background
	Formal Methods in Software Quality Control
	Research Domains
	Dissertation Contributions
	Memory Distance Measurement for Concurrent Programs
	sCompile: Critical Path Identification and Analysis for Smart Contracts
	Hyperledger Fabric Chaincode Quality Control with Fuzz Testing

	Memory Distance Measurement for Concurrent Programs
	Introduction
	Background: Execution of Concurrent Programs
	Memory Distance Measurement Based on Symbolic Execution
	Memory Distance Measurement with Random Scheduling
	PCT Algorithm
	Measure Memory Distance with Random Scheduling
	Probabilistic Guarantee Inheritance

	Experiments
	Implementation
	Comparison between DisConPro and DisConSym on Small Programs
	DisConPro on Public Benchmarks

	Related Works
	Conclusion

	sCompile: Critical Path Identification and Analysis for Smart Contracts
	Introduction
	Illustrative Examples
	Approach
	Constructing CFG
	Identifying Monetary Paths
	Identifying Property-Violating Paths
	Ranking Program Paths
	Feasibility Checking

	Implementation and Evaluation
	Implementation
	Experiment

	Related Works
	Conclusion

	Hyperledger Fabric Chaincode Quality Control with Fuzz Testing
	Introduction
	Motivating Example
	Chaincode
	Motivation Example

	Fuzzing Test Approach
	Fuzzing Policy Generation
	CFG Generation
	Instrumentation
	Feedback Guided Fuzzing Mechanism
	Input Mutation

	Warning Oracle
	Experiment and Evaluation
	Related Works
	Conclusion

	Conclusion and Future Works
	Bibliography

