
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

8-2020

Resource Optimization in Support of IoT Applications Resource Optimization in Support of IoT Applications

Ihab Ahmed Mohammed
Western Michigan University, eihabmurjan@yahoo.com

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Information Security Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Mohammed, Ihab Ahmed, "Resource Optimization in Support of IoT Applications" (2020). Dissertations.
3640.
https://scholarworks.wmich.edu/dissertations/3640

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3640?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3640&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

RESOURCE OPTIMIZATION IN SUPPORT OF IOT APPLICATIONS

by

Ihab Ahmed Mohammed

A dissertation submitted to the Graduate College
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Computer Science
Western Michigan University

August 2020

Doctoral Committee:

Ala Al-Fuqaha, Ph.D., Chair
Ajay Gupta, Ph.D.
Alvis Fong, Ph.D.
Mohammad Salahuddin, Ph.D.

Copyright by
Ihab Ahmed Mohammed

2020

RESOURCE OPTIMIZATION IN SUPPORT OF IOT APPLICATIONS

Ihab Ahmed Mohammed, Ph.D.

Western Michigan University, 2020

With the rise of the Internet of Things (IoT) and smart communities, managing computa-

tion and communication resources required by billions of smart devices becomes a concern.

To tackle this problem, we develop algorithms for resource management to ensure better

Quality of Service (QoS), safety, and performance. We focus our efforts on three problems.

In the first problem, we studied the strict QoS requirements of applications and differ-

entiated service requirements in different situations of vehicular networks. We propose a

generic prioritization and resource management algorithm that can be used to prioritize the

processing of received packets in vehicular networks. We formulate the generic severity-based

prioritized packet processing problem as Penalized Multiple Knapsack Problem (PMKP) and

prove that it is an NP-Hard problem. We thus develop a real-time heuristic that utilizes

a relaxed version of the formulation. The relaxed formulation executes in polynomial time

and guarantees a minimum delay per severity-level while respecting the processing rate con-

straint. To measure the performance of the proposed heuristic, real traffic data is used in a

small-scale experiment. The proposed heuristic is tested against the PMKP solution and re-

sults show a small degradation of up to 4% in profit for the heuristic compared to the PMKP

solution. Also, the proposed heuristic is tested against a non-prioritized processing algorithm

that works using first come first served policy. Results show that the proposed heuristic gains

9% to 67% more profit than the non-prioritized processing algorithm in moderate and high

congestion scenarios.

In the second problem, we explored the utilization of existing vehicles on roads as “mes-

sage ferries” for the transport data for smart community applications to avoid the cost of

installing new communication infrastructure. We propose an opportunistic data ferry selec-

tion algorithm that strives to select vehicles that can minimize the overall delay for data

delivery from a source to a given destination. Our proposed opportunistic algorithm utilizes

an ensemble of online hiring algorithms, which are run together in passive mode, to select

the online hiring algorithm that has performed the best in recent history. The proposed

ensemble-based algorithm is evaluated empirically using real-world traces from taxies plying

routes in Shanghai, China, and its performance is compared against a baseline of four state-

of-the-art online hiring algorithms. A number of experiments are conducted and our results

indicate that the proposed algorithm can reduce the overall delay compared to the baseline

by an impressive 13% to 258%.

In the third problem, we solve the problem of optimizing accuracy in stateful federated

learning with a budgeted number of candidate clients by selecting the best candidate clients

in terms of test accuracy to participate in the training process. We formulate the problem

of maximizing the probability of selecting the best candidate clients based on test accuracy

as a secretary problem then analytically analyze the performance and provide proofs. Next,

we propose an online stateful FL heuristic to find the best candidate clients. Additionally,

we propose an IoT client alarm application that utilizes the proposed heuristic in training a

stateful FL global model based on IoT device classification to alert clients about unauthorized

IoT devices in their environment. To test the efficiency of the proposed online heuristic, we

conduct several experiments using a real dataset and compare the results of the proposed

online heuristic against state-of-the-art algorithms. Our results indicate that the proposed

heuristic performance is comparable to the performance of the best offline algorithm and

outperforms the online random algorithm with up to 27% gain in accuracy.

ACKNOWLEDGEMENTS

I dedicate this humble work to my mother and my aunt Ezdihar, who dedicated their

lives to take care of me. To my wife, who sacrificed her time and energy so that I complete

this work. To my uncle Sadiq, who raised me like his son. To my uncle Safaa, who inspired

me and supported me. To the beautiful minds (friends and colleagues), who supported me

through this journey. To Prof. Ala (my supervisor), who challenged my mind, orchestrated

my efforts, sharpened my skills, and showed me the path to success in academia, industry,

and life. I also would like to express sincere thanks to:

* Committee members Dr. Ajay Gupta, Dr. Alis Fong, and Dr. Mohammad Salahuddin.

* Faculty and Staff of Computer Science Department, WMU.

* The Graduate College, WMU.

* Faculty and Staff of Al-Nahrain University, Baghdad - Iraq.

* Staff of the Higher Committee of Education Development in Iraq (HCED).

Ihab Ahmed Mohammed

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

1. INTRODUCTION . 1

1.1. Introduction . 1

1.2. Statement of the Problem . 2

1.3. Purpose of the Research . 2

1.4. Significance of the Study . 3

1.5. Contributions . 3

1.6. Structure of the Dissertation . 4

2. Severity-Based Prioritized Processing of Packets with Application in VANETs . . 5

2.1. Introduction . 5

2.1.1. Motivation . 5

2.1.2. Contributions . 7

2.1.3. Examples of Applications . 8

2.1.4. Organization . 10

2.2. Related Work . 10

2.3. System Model . 12

2.3.1. Prioritization Model . 12

iii

Table of Contents—Continued

2.3.2. System Parameters . 13

2.4. Delay Upper-Bounds . 15

2.5. Problem Formulation . 18

2.5.1. Derivation of the Delay Constraints 18

2.5.2. PMKP Formulation . 19

2.5.3. Proof of NP-Hardness . 20

2.6. Heuristic Solution . 20

2.6.1. Lower Bound Solution . 22

2.6.2. Upper Bound Solution . 23

2.6.3. Fixing Upper Bound Solution . 25

2.6.4. Upper Bound Solution Proof . 26

2.7. Experimental Results . 30

2.7.1. VANET Traffic Characterization . 30

2.7.2. Simulation Settings . 33

2.7.3. Comparison Study: Proposed Heuristic Versus PMKP 33

2.7.4. Comparison Study: Proposed Heuristic Versus Non-Prioritized Pro-

cessing . 34

2.8. Future Directions and Conclusion . 36

2.9. Acknowledgment . 41

3. Opportunistic Data Ferrying in Areas with Limited Information and Communica-

tions Infrastructure . 42

3.1. Introduction . 42

3.2. Related Work . 45

3.3. System Model . 47

iv

Table of Contents—Continued

3.4. Online Hiring Algorithms . 48

3.5. Heuristic Solution . 50

3.6. Illustrative Example . 52

3.7. Experimental Results . 52

3.7.1. Dataset & Experimental Settings . 53

3.7.2. Results Discussion . 54

3.8. Conclusions and Future Work . 57

4. Budgeted Online Selection of Candidate Clients to Participate in Federated Learning 60

4.1. Introduction . 60

4.2. Background . 64

4.3. Related Work . 65

4.3.1. Algorithm Optimization . 66

4.3.2. Selective Updates . 67

4.3.3. Model Compression . 68

4.3.4. Secretary Problem . 69

4.4. System Model . 71

4.5. Proposed Client Selection Solution . 71

4.5.1. Proposed Algorithm . 73

4.5.2. Toy Illustrative Example . 75

4.6. Performance Analysis . 77

4.6.1. Optimal Value for α . 78

4.6.2. Worst-Case Analysis (Competitive Ratio Analysis) 82

4.7. Experimental Settings . 82

4.7.1. Use Case: IoT Device Classification 83

v

Table of Contents—Continued

4.7.2. Dataset Details and Preprocessing Phases 85

4.7.3. Experiments . 90

4.8. Result Discussion . 91

4.8.1. Experimenting with Different Values of r2 92

4.8.2. Experimenting with Different Values of R 92

4.8.3. Experimenting with Different Values of N 92

4.8.4. Lessons Learned . 96

4.9. Conclusions and Future Work . 96

5. CONCLUSION AND FUTURE WORK . 98

5.1. Conclusion . 98

5.2. Future Work . 99

BIBLIOGRAPHY . 100

vi

LIST OF TABLES

2.1 D2D Experimental results . 31
2.2 Policing queue settings . 32
2.3 Queue settings . 32

3.1 Performance (average overall delay) of the proposed algorithm compared to
the two online hiring algorithms . 52

4.1 Summary of mathematical notations . 72
4.2 Choosing α∗ that maximizes the probability to select R best candidates such

that r1 ≤ R ≤ r2 and N = 1000 . 81
4.3 Names and MAC addresses of the used IoT devices 86
4.4 IoT device features . 87
4.5 FL parameters . 90
4.6 Simulation parameters . 90

vii

LIST OF FIGURES

2.1 WAVE stack. 8
2.2 User priority service in WAVE. 9
2.3 Illustrative scenario. 9
2.4 System model. 13
2.5 Input flow set divisions. 23
2.6 Performance of the proposed heuristic compared to the PMKP. 37
2.7 Profit of the proposed heuristic compared to the non-prioritized processing

algorithm. 38
2.8 Number of accepted flows of the proposed heuristic compared to the non-

prioritized processing algorithm. 39
2.9 Maximum delay of the proposed heuristic compared to the non-prioritized

processing algorithm. 40

3.1 Ferrying data from different blocks to the SCMC block in a community using
vehicles. 48

3.2 Average overall delay per block. Our proposed algorithm achieves minimal
overall delay per block regardless of the traffic volume. 55

3.3 Average waiting & delivery delay per block. Our proposed algorithm performs
the best either with minimal average waiting delay or average delivery delay
per block, but not with both. 56

3.4 Number of selected vehicles. Our proposed algorithm hires the most number
of vehicles with the exception of the high threshold algorithm. 57

3.5 Average overall delay using different algorithms for the various traffic scenarios
(light, medium, high) over different days. Our proposed algorithm achieves
the minimal overall delay for different number of days results regardless of the
traffic volume. 58

3.6 Performance of algorithms in one block over 10 days. Our proposed algorithm
switches between different hiring algorithms to achieve minimal overall delay. 59

4.1 An illustrative example of the proposed algorithm. 76
4.2 Effects of α on the probability of selecting the best clients. 81
4.3 An illustration of the clients alarm application. The cloud server running the

proposed algorithm communicates with the local servers of the best subscribed
clients to train the global model. 84

4.4 Dataset preprocessing phases (through which the raw dataset is transformed
to the N candidate clients’ datasets). 85

viii

List of Figures—Continued

4.5 Performance of algorithms for different r2 values (1, 2, 3, 4, 5) while fixing
N , number of clients, to 400 and R, number of selected clients, to 20. Our
proposed algorithm performs better than the random algorithm approaching the
performance of the best algorithm as r2 is increased. 93

4.6 Performance of algorithms for different R, number of selected clients, values
(10, 20, 30, 40, 50) while fixing N , number of clients, to 400 and r2 to 4 (α∗ is
43). Our proposed algorithm is more competitive for smaller values of R and
as R is increased, the performance of algorithms converges. 94

4.7 Performance of algorithms for different N , number of clients, values (100,
200, 400, 800, and 1600) while fixing R, number of selected clients, to 30 and
r2 to 4 (different α per N value). Our proposed algorithm performs better
than the random algorithm approaching the performance of the best algorithm
regardless of the value of N . 95

ix

LIST OF ABBREVIATIONS

IoT Internet of Things

IoMT Internet of Medical Things

IoAT Internet of Animal Things

IoWasteT Internet of Waste Things

IoBT Internet of Battlefields Things

IoUGT Internet of Underground Things

IoUWT Internet of Underwater Things

IoNT Internet of Nano Things

IoMobT Internet of Mobile Things

VANETs Vehicular Ad-hocNetworks

QoS Quality of Sservice

MKP Multiple Knapsack Problem

PMKP Penalized Multiple Knapsack Problem

RPKP Relaxed Penalized Knapsack Problem

DSRC Dedicated Short-Range Communications

WAVE Wireless Access in Vehicular Communications

SCH Service Channel

CCH Control Channel

EDCA Enhanced Distributed Channel Access

MAC Medium Access Control

ACs Access Categories

BSMs Basic Safety Messages

x

List of Abbreviations—Continued

ECDSA Elliptic Curve Digital Signature Algorithm

OBU On-Board Unit

D2D Device 2 Device

FCFS First Come First Serve

ICT Information Communications Technologies

WSNs Wireless Sensor Networks

CPS Cyber-Physical Systems

MF Message Ferrying

SCMC Smart Community Management Center

TMC Traffic Management Center

LCB Local Community Broker

SVaaS Smart Vehicle as a Service

DTN Delay Tolerant Network

ML Machine Learning

DL Deep Learning

FD Federated Learning

AI Artificial Intelligence

EHR Electronic Health Record

VEC Vehicular Edge Computing

DDoS Distributed Denial of Service

CSV Comma Separated Values

JSON JavaScript Object Notation

DDN Deep Neural Network

xi

CHAPTER 1

INTRODUCTION

1.1. Introduction

The Internet started as a mean to connect people and provide electronic services such as

email, web, e-commerce, and social networks. Nevertheless, as more heterogeneous devices

(i.e. laptops, tables, phones, sensors, etc) are connected to the internet, the concept of

the Internet of Things (IoT) is realized. IoT refers to devices, sensors, or things in general

that are intelligent, have a unique address, and autonomous [1]. Moreover, IoT have many

applications and benefits. In fact, IoT is used in developing countries to obtain Sustainable

Development Goals (SDGs) of the United Nations [2]. The authors in [3] classified application

in IoT as follows:

• Internet of Medical Things (IoMT) with things are medical wearable devices to

control diseases such as Parkinson, diabetes or collect information such as heart rate;

• Internet of Animal Things (IoAT) with things such as smart cattle collars, RFID

ear tags, and sound analyzers;

• Internet of Waste Things (IoWasteT) with things like smart garbage bins and

RFID tags;

• Internet of Battlefield Things (IoBT) with things like ammunition, weapons,

vehicles, and human-wearable sensors;

• Internet of Underground Things (IoUGT) with things such as buried soil sensors

and seismometers;

1

• Internet of Underwater Things (IoUWT) with things such as underwater sensors

and asmrt buoys;

• Internet of Nano Things (IoNT) with things such as nano-sensors and actuators;

• Internet of Mobile Things (IoMobT) with things like mobile personal devices.

It is estimated that each person will use 6 to 7 devices by the year 2020 and 500 billion

devices will be connected to the Internet by 2030 [1]. Consequently, connecting all those

devices while providing high quality of service along with privacy and security is a challenge.

Realization of IoT vision faces many challenges mostly related to availability, reliability,

mobility, performance, management, scalability, interoperability, and security and privacy

[4]. In this work, we address some of these challenges by designing real-time and online

algorithms to optimize the use of resources in IoT applications.

1.2. Statement of the Problem

Managing communication and computation resources utilized by billions of smart devices

in IoT applications is a challenge. The lack of efficient algorithms that control the usage

of resources results in economic problems, safety threatening situations, and security and

privacy concerns.

1.3. Purpose of the Research

In this work, we investigate the use of efficient real-time and online algorithms in man-

aging communication and computation resources in IoT applications.

2

1.4. Significance of the Study

On one study, we show that the utilization of the proposed real-time algorithm to op-

portunistically prioritize the processing of data flows based on a generic severity notion in

vehicles helps drivers avoid collisions, which saves lives. On another study, we reduce the

cost of setting up smart cities significantly by using vehicles as message ferries instead of

setting up a costly infrastructure. Additionally, we propose opportunistic data ferry selection

algorithm that strives to select vehicles that can minimize the overall delay for data delivery

from a source to a given destination. Finally, we optimize the accuracy of stateful federated

learning used in IoT applications.

1.5. Contributions

This dissertation is based on the following publications:

• Paper I: A. Al-Fuqaha, I. Mohammed, S. J. Hussini, and S. Sorour, “Severity-Based

Prioritized Processing of Packets in VANETs,” in IEEE Transactions on Mobile Com-

puting, vol. 19, no. 2, pp. 484-496, 1 Feb. 2020.

• Paper II: I. Mohammed, S. Tabatabai, A. Al-fuqaha, and J. Qadir, “Opportunistic

Data Ferrying in Areas with Limited Information and Communications Infrastructure,”

2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA,

2019, pp. 1-6.

• Paper III: I. Mohammed, S. Tabatabai, A. Al-fuqaha, F. El Bouanani, J. Qadir,

and B. Qolomany, “Budgeted Online Selection of Candidate Clients to Participate in

Federated Learning,” to be submitted, IEEE Internet of Things Journal, July 2020.

The work in this dissertation also contributes to the following publications:

3

• S. Tabatabai, I. Mohammed, A. Al-fuqaha, and J. Qadir, “Opportunistic Selection

of Vehicular Data Brokers as Relay Nodes to the Cloud,” 2020 IEEE 17th Annual

Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,

2020, pp. 1-6.

• S. Tabatabai, I. Mohammed, A. Al-Fuqaha, and M. A. Salahuddin, “Managing a Clus-

ter of IoT Brokers in Support of Smart City Applications,” 2017 IEEE 28th Annual

International Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), Montreal, QC, 2017, pp. 1-6.

1.6. Structure of the Dissertation

The overall structure of the dissertation is as follows:

• Chapter I: Introduction

• Chapter II: Paper I

• Chapter III:Paper II

• Chapter IV: Paper III

• Chapter V: Conclusions and future work

4

CHAPTER 2

Severity-Based Prioritized Processing of Packets with Application in VANETs

2.1. Introduction

2.1.1. Motivation

Dedicated short-range communications (DSRC) and Wireless Access in Vehicular Com-

munications (WAVE) have become the de-facto vehicular communications technologies in

VANETs. IEEE 802.11p and IEEE P1609 form the bases of the WAVE protocol as shown in

Fig.2.1[5]. To address the unique challenges in VANETs (i.e., dynamic topology, short com-

munication periods and application requirements), WAVE uses multi-channel operations to

increase channel utilization, and differentiated service categories to provide Quality of Service

(QoS). To provide multi-channel operations, WAVE utilizes the IEEE 1609.4 standard, which

defines six Service Channels (SCH) and one Control Channel (CCH) for use in VANETs [6].

These channels have different frequencies, maximum transmission power, and applications.

The CCH for instance is used for transmitting safety and control data in order to insure fast

and prioritized delivery of time-critical data. Furthermore, to provide differentiated services,

WAVE relies on IEEE 802.11p, which uses Enhanced Distributed Channel Access (EDCA) at

the Medium Access Control (MAC) layer to provide differentiated QoS. The IEEE 802.11p

EDCA specifies four different Access Categories (ACs): AC_VO (Voice or AC3), AC_VI

(Video or AC2), AC_BE (Best effort or AC1) and AC_BK (Background or AC0), each of

which has a different priority for accessing the communication medium [6]–[8]. This catego-

rization offers low latency communications and differentiated services for applications. An

overall schematic of multi-channel access and ACs assignment is shown in Fig.2.2. We have

5

to emphasize that the IEEE 802.11p scheme for prioritization only applies to applications

during data transmission and does not affect the processing of data after its receipt. For

more details on WAVE, please refer to [5], [9], [10].

The use of multi-channel access and data prioritization via ACs, as detailed in the EDCA

standard, only guarantees prioritized access to the communications medium for broadcasting

and sending data. However, this may not necessarily lead to improved system-level perfor-

mance, because each vehicle in the network has to process the received data based on its

own context, not the transmitting vehicle’s context. Assume the scenario shown in Fig.2.3,

where five different vehicles are involved. If vehicles B and C collide, then both vehicles

would try to inform their neighbors by sending data using the highest priority AC. This flow

of data is very important for vehicle “A”, but not as important for vehicles “D” and “E”. In

such a scenario, vehicle “A” must prioritize the processing of packets that it receives from

vehicle “B” (and/or vehicle “C”). On the other hand, vehicles “D” and “E” do not necessarily

benefit from processing the high priority safety application data flow(s) from vehicles “B”

and/or “C” ahead of other flows with lower ACs, since the accident does not have an impact

on their mobility. In such scenarios, it is hence imperative that each vehicle processes the

received data flows, not just based on their ACs, but also based on the flows impacts on the

vehicles’ mobility.

Prioritization of received data and management of computation resources are important

tasks because autonomous and semi-autonomous vehicles have to process data from a wide

range of sensors (e.g., LIDAR, GPS, compass, radar, infrared cameras) at any given moment,

which in turn puts more computation overhead over the on-board computational resources.

Beyond processing raw sensor data, the on-board computational resources must execute

complex algorithms to perform proximity understanding and vehicle control.

Another example to illustrate the importance of the proper prioritization of received data

6

flows is the security performance of basic safety messages (BSMs). To verify and sign BSMs,

the standard recommends using the Elliptic Curve Digital Signature Algorithm (ECDSA).

However, using ECDSA increases the processing overhead [11] and degrades the performance

that could result in the loss of safety-critical BSMs. This can become problematic especially

in environments with a higher density of vehicles. To solve this issue, the authors of [12]

propose re-prioritizing signature verification of received BSMs based on location proximity

of the sender’s vehicle, such that nearby vehicles are assigned higher priority. This example

demonstrates the importance of prioritized processing of data flows on the receiver’s side in

order to increase the overall performance of the system.

From the discussion of the two previous scenarios, it is evident that achieving ideal

performance in VANETs depends, not only on efficient algorithms and techniques for sending

data but also on a better prioritization of packets on the receiver side. This prioritization

must be done according to a certain severity metric that corresponds to the nature of the

application. The proposed algorithm prioritizes the processing of received data based on

their impact on the safety of a given vehicle.

2.1.2. Contributions

In this paper, we aim to design a real-time algorithm to opportunistically prioritize the

processing of data flows based on a generic severity notion, such that the benefit to the

overall system is maximized. Severity can thus be defined according to the application, as

a metric (e.g., vehicle speed, direction, position) that underlines the importance of the flow

for the overall benefit of the system. The proposed algorithm models flow prioritization

by classifying them according to their severity into multiple queues with different priority

and capacity levels. For this proposed approach, we derive an upper bound on the delay

of service for the flows classified in each queue using network calculus. We then formulate

7

Figure 2.1: WAVE stack.

the problem of maximizing the severity of the admitted flows into the queue system as a

penalized multiple knapsack problem with a service delay constraint on each of the queues.

Being an NP-hard problem, we propose a real-time heuristic that divides the problem into

sub-problems, each finding the optimal admission of flows into each of the queues such that

the total severity of the admitted flows is maximized. Finally, both the optimal and heuristic

solutions are tested using real traffic data and compared to un-prioritized first come first serve

approaches.

2.1.3. Examples of Applications

The potential applications of our proposed algorithm can be numerous depending on the

application’s definition of flow severity. In the simplest form, flow severity can be defined

as a QoS requirement that needs to be fulfilled. The dynamic topology of VANETs imposes

strict QoS requirements on applications, especially the safety applications [13]. If severity is

defined as application’s QoS requirement, then the algorithm would strive to assign flows to

queues such that flows with the most strict QoS requirements get higher priority. If severity

is defined as the sending vehicle’s proximity, then the algorithm would strive to provide

8

Figure 2.2: User priority service in WAVE.

Figure 2.3: Illustrative scenario.

prioritized service to flows that belong to the closest vehicles. In all these use cases, our

algorithm acts as an admission control system, whereby it assesses the processing resources

and incoming flows and strives to service the most severe flows first in order to achieve the

best performance for the overall system.

Another important use of our proposed severity-based prioritization algorithm is to pro-

vide adaptive security in VANETs. To provide security in VANETs, WAVE relies on cryp-

tographic solutions [10]. In order to have better security, it is important that more robust

cryptographic solutions are used. However, using more robust cryptographic solutions leads

9

to increased computations, increased cryptographic loss [11], and can have severe impact on

the achieved QoS of applications [11], [14], [15]. To overcome this problem, adaptive security

measures can be used, where a vehicle can determine the robustness of the cryptographic

solution it uses for each flow based on the load and performance of the overall system. In

such scenarios, our algorithm can classify four different cryptographic solutions ranked from

the most (i.e., requires more computations) to the least robust, and determine which cryp-

tographic solution would result in the best performance based on the flow, application QoS

requirements, and performance of the overall system.

In conclusion, we are proposing an algorithm that can be adopted to support any appli-

cation benefiting from intelligent prioritized processing of requests. In the rest of this paper,

we focus on prioritized packet processing in VANETs.

2.1.4. Organization

The remainder of the paper is organized as follows: The related literature is reviewed

in Section 2.2. The proposed prioritization model and system parameters are described in

Section 2.3. In Section 2.4, we derive the delay upper bounds for the service of each of the

queues. Section 2.5 shows the formulation of the problem in terms of the penalized knapsack

problem, while Section 2.6 provides a heuristic solution. In Section 2.6.4, we provide the

upper bound delay proof. Section 2.7 describes our experiments and results while conclusions

are drawn in Section 2.8.

2.2. Related Work

WAVE QoS, service prioritization, and performance improvements are studied extensively

in the literature. Generally, the studies and solutions offered can be divided into two broad

10

groups: (1) studies that offer solutions from the sender’s point of view and (2) studies that

tackle the issue from the receiver’s point of view. In the first group, the offered solutions

range from spectrum sharing in order to prioritize safety message delivery [16]–[20] to MAC

layer enhancements and admission control techniques in order to improve QoS and channel

access [21]–[29]. Furthermore, there have been studies [30]–[32] that use vehicle’s contextual

information (i.e., vehicle’s position) in order to ensure effective utilization of resources and

provide prioritized services. The major difference between our work and these studies is that

we tackle the issue from the receiver’s point of view. We consider a receiver’s perspective

(as opposed to the sender’s perspective) to achieve prioritized processing at the receiver (as

opposed to prioritized transmission from the sender). Our algorithm deals with data that is

received by a vehicle with the objective of opportunistically prioritize the processing of the

received data for the overall benefit of the VANET.

While there have been numerous studies to improve QoS, service prioritization, and

performance of WAVE from the sender’s perspective, in the second group, there have not

been many studies that address these issues on the receiver’s side. The few studies that have

been conducted in this area focus on security performance. Verification of time-sensitive

BSMs in order to decrease cryptographic loss, by prioritizing the verification of BSMs based

on the physical position of the sender, has been studied in[12], [33]. The authors of [34]

have proposed to reduce the verification time of messages at the receiver side in dense areas

by assigning different priority levels to nearby vehicles based on their physical parameters

after verifying those vehicles. Our study in this paper extends these special cases in the

aforementioned sources to a more general prioritized processing of the received packets in

VANETs, as a function of a generic severity metric, in order to maximize the overall profit to

the system while respecting its QoS constraints. The generic severity metric can be defined

based on the application, such as physical proximity of vehicles as in [34] or more complex

11

settings as in [32]. Therefore, our proposed solutions can apply to a variety of prioritized

packet processing applications by properly defining its corresponding severity metric.

2.3. System Model

2.3.1. Prioritization Model

In this paper, we propose a real-time algorithm that allows vehicles in VANETs to intelli-

gently prioritize the processing of the received packets based on their severity. Upon receipt

of data flows, each flow is assigned a severity-level and passed on to the next phase for flow

policing. This policing prevents flooding attacks as it regulates each flow via a token bucket

filter to a predefined processing rate. The last phase is assigning the flows to one of N queues

based on both the flow’s severity and the capacity of the queue. These queues have different

priority levels and capacities, such that “Queue N” has the highest priority and smallest

capacity, while “Queue 1” has the lowest priority and the largest capacity. The size of each

queue is determined by the computational load and delay requirements of it’s assigned flows,

and it dictates the maximum delay that will be incurred by the flows assigned to that queue.

While assigning flows to queues, the algorithm strives to assign the highest severity flows

to the highest priority queue to ensure their fast processing. The other flows are passed to

their corresponding queues according to their severity levels. Once the capacity of a queue

is reached, the algorithm proceeds to place the next batch of unassigned flows of the same

severity to the subsequent lower priority queue. This process continues until all flows are

assigned to queues or queues are all filled. If some flows are left out after all the queues

were filled, the algorithm discards these remaining flows as these cannot be serviced in a

timely manner. Although it’s possible that some flows are discarded, our algorithm makes

sure to serve the highest severity flows first while guaranteeing performance bounds for the

12

�

�

�

���

�����	

�	��

�����������	

�����������

�����������

�����������

�

�

�

��������

������	

�

��

�

��

�

��

��������	

������

��������

���������

�������

 ���
	��	��

�!����������

����������

�

�

�

�

�

�

"

�

"

��

������

�

�

�

�

�

�

�

"

��

"

��

"

��

"

��

"

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2.4: System model.

accepted flows. The process of assigning flows to queues happens in snapshots. During every

snapshot, which is done every ∆t, the algorithm takes the available flows and assigns them

to queues. The frequency of generating flow snapshots and the addition and removal of the

flows to the snapshots are not handled in our algorithm. Rather, it assumes the availability

of the snapshots and focuses on prioritizing flows available during each snapshot.

2.3.2. System Parameters

The system model and parameters are shown in Fig.2.4. Assuming a VANET with V

vehicles, where one vehicle Vr ∈ V receives packets of length L (measured in bytes), sent

from a set of sending vehicles Vs = V \ Vr within its communications range. Vr receives

all these packets via its On Board Unit (OBU), which has a channel reception rate Rb

(measured in Mbps) and maximum burst length B (measured in packets). Let R be the

rate in packets per second of the OBU (i.e., R = Rb

L
). The received packets are then passed

to the marking queue of the marking processor, which is assumed to be the On-Board

13

Unit (OBU) processor. The marking processor assigns to each incoming packet a priority

(severity) level based on the receiving vehicle’s perspective. The marking service requires

simple computations (e.g., marking the packets based on the type of application, relative

position, speed and direction of the sending vehicle); thus, induces a very small and almost

negligible processing delay. The marking processor uses the packets’ source MAC address in

order to demultiplex the incoming packets into a set of flows F (i.e., a flow is defined between

a source-destination pair of vehicles). The marking process applied to the scenario shown

in Fig.2.3, would be as follows: When vehicles B and C collide, they transmit data about

the collision to their surrounding vehicles. Since vehicle A is affected by this collision, when

it receives data about the collision, based on its context severity, its marking processor will

mark the received data about the collision with the highest severity category and processes

it accordingly. But since the collision doesn’t affect vehicles D and E, when they receive

this data, their marking processors would mark it with a lower severity level (severity level

2,3, or 4 based on the defined context severity). Let Si be the severity level of the packets

in flow i, i ∈ {1, . . . , |F|}. We assume M severity levels. Packets are assigned to flows in

order to enforce per-flow policing, which is an important measure in order to protect the

system from flow-based unfair exploitation (e.g., flooding attacks). The policing phase limits

the per-flow rate and burstiness based on the severity level. Flow i, i ∈ {1, . . . , |F|}, with

severity level Si has a maximum rate and burstiness of (ρimax, σimax). Regardless of the traffic

from neighboring vehicles, all flows are thus forced to respect the per-severity limits such

that flows violating the limits are dropped. Finally, the last phase is the processing phase

where flows are assigned to N queues. “Queue N” has the highest priority and the least

capacity, which is appropriate for serving high severity flows. On the other end, “Queue 1”

has the lowest priority and highest capacity. Although, “Queue N” may best serve flows

of high severity, but this queue may admit flows of low severity depending on the available

14

flows in order to maximize the utilization of system resources. Processor k, k ∈ {1, . . . , N},

has a fixed processing rate of Ck and queue k, k ∈ {1, . . . , N}, has a guaranteed maximum

delay of dqk. Additionally, the total delay induced by processing all accepted flows admitted

to queue k must be less than or at most equal to the guaranteed maximum delay dqk as

explained later in equation (9). The objective is to serve the maximum number of requests

while providing the highest quality of service and maintaining guaranteed delay bounds in

all queues.

2.4. Delay Upper-Bounds

Since the OBUs are the sources of data and as long as the maximum transfer rate is

known, the output of the i-th transmitting OBU can be upper bounded, using network

calculus tools, by an affine arrival curve (Ai) that is defined as [35]:

Ai ∼ (Bi, Ri) (2.1)

Consequently, the i-th sending OBU has burstiness Bi and rate Ri. The sum of burstiness

of all OBU flows equals the received burstiness at the destination OBU as shown in the

following equation:

B =
F∑
i=1

Bi

Also, the sum of the rates of all OBU flows equals the received rate at the destination OBU

as shown in the following equation:

R =
F∑
i=1

Ri

15

Thus, the input to each receiving OBU Di is upper bounded by an affine arrival curve:

Di ∼ (B,R) (2.2)

Since the input to the marking process is bounded by (2.2) and the marking service rate is

Cm, then the delay for the marking phase dm is:

dm = B

Cm −R

The output of the marking phase Dmi
consists of |F| flows that is upper bounded by:

Dmi
∼
(
Bi +Ri·

B

Cm −R
,Ri

)

which can be reduced to the following form:

Dmi
∼
(
Bi (Cm −R) +RiB

Cm −R
,Ri

)
(2.3)

The policing process of the ith flow Dpi
is expressed by the following bound:

Dpi
∼

Bi (Cm −R) +RiB

Cm −R
,Ri

 ∗
 M∑
j=1

σjmaxf
j
i ,

M∑
j=1

ρjmaxf
j
i

 (2.4)

where f ji is a flag that is set to 1 to indicate that the ith flow belongs to severity level j;

zero otherwise. Since there exist M severity levels and each flow is assigned to only one of

them, we have the following constraint on these flags:

M∑
j=1

f ji = 1 ∀i

16

The ∗ operator in (2.4) represents the min-plus convolution operator, which is an infimum

operation over the addition of the bursitness and the service. Consequently, Equation (2.4)

can be rewritten as:

Dpi
∼ α(t) = min

Bi (Cm −R) +RiB

Cm −R
+Rit,

M∑
j=1

σjmaxf
j
i +

M∑
j=1

ρjmaxf
j
i t


which is equivalent to:

Dpi
∼

min
Bi (Cm −R) +RiB

Cm −R
,
M∑
j=1

σjmaxf
j
i

 , min
Ri,

M∑
j=1

ρjmaxf
j
i


Since we are looking for the upper bound, we can assume the maximum traffic-per-flow. In

other words, only the maximum burstiness and rate per severity are selected from equation

(2.5). Thus, the output of the policing process is upper-bounded by:

Dpi
∼

 M∑
j=1

σjmaxf
j
i ,

M∑
j=1

ρjmaxf
j
i

 (2.5)

Each flow i is assigned to one of the N prioritization queues of the system. The flag gki is

used to indicated these assignments, such that gki is set to 1 to indicate that the ith flow is

assigned to Queue k; otherwise, it’s set to zero. So, for any flow i we have:

N∑
k=1

gki 6 1 ∀i

The delay during the processing phase drk
is per-queue, so the upper-bound on the delay for

Queue k is computed using all flows that are processed by Queue k as:

drk
=

∑|F|
i=1

∑M
j=1 σ

j
maxf

j
i g

k
i

Ck −
∑|F|
i=1

∑M
j=1 ρ

j
maxf

j
i g

k
i

(2.6)

17

The total delay per-queue dtk is the sum of the marking delay and the processing delay as

shown below:

dtk = B

Cm −R
+

∑|F|
i=1

∑M
j=1 σ

j
maxf

j
i g

k
i

Ck −
∑|F|
i=1

∑M
j=1 ρ

j
maxf

j
i g

k
i

(2.7)

Note that “Queue N” has the highest priority and can handle high severity flows faster than

the other queues.

2.5. Problem Formulation

As was mentioned earlier, our objective is to serve the maximum number of flows (i.e.,

vehicles) prioritized based on their severity while at the same time striving to provide the

highest quality of service. However, these two goals might not always be in harmony. If

we try to provide the highest quality of service (e.g., using the most robust cryptographic

solution), it may result in some flows not being serviced within the required delay constraint.

So, we have to find a balance between the quality of service that can be provided and the

number of flows that can be serviced with priorities based on their severities. Thus, we

formulate this problem as a Penalized Multiple Knapsack Problem (PMKP) with the goal of

maximizing the profit (i.e., the total severity of the admitted flows). The next sub-sections

introduce the formulation of the problem of maximizing the profit of the system in terms

of the total sum of severities of admitted flows while fulfilling their corresponding delay

constraints. In sub-Section C, we show that the problem is NP-Hard.

2.5.1. Derivation of the Delay Constraints

Each queue has a delay dqk
, and accepted flows must satisfy the condition that the total

processing delay of accepted flows in Queue k must be less than the delay of that queue.

18

This can be written mathematically as:

dtk= B

Cm −R
+

∑|F|
i=1

∑M
j=1 σ

j
maxf

j
i g

k
i

Ck −
∑|F|
i=1

∑M
j=1 ρ

j
maxf

j
i g

k
i

6 dqk

which states that the total delay-per-queue dtk must not exceed the kth queue delay dqk
.

The above inequality can be reduced to the following form:

|F|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i

 · gki 6 Ck

(
dqk
− B

Cm −R

)
(2.8)

2.5.2. PMKP Formulation

Before presenting the formulation, we define ψ as the penalty term that represents the

highest severity among the dropped flows and order the set F based on severity in non-

increasing order.

The problem can thus be expressed as a PMKP as follows:

max
N∑
k=1

|F|∑
i=1

Si · gki · k − ψ (2.9)

s.t.

Si
(
1− gki

)
6 ψ ∀ i, k (2.10)

|F|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i


·gki 6 Ck

(
dqk
− B

Cm −R

)
∀ k (2.11)

19

N∑
k=1

gki 6 1 ∀ i (2.12)

gki ∈ {0, 1} ∀ i, k (2.13)

Constraint (2.10) indicates that the penalty term is the highest severity among the dropped

flows. The idea is to deduct a penalty from the overall profit for every dropped flow. The

second constraint (2.11) ensures that the total delay of each queue does not exceed the

guaranteed queue delay. The third constraint in (2.12) specifies that every flow i cannot

be assigned to more than one queue. However, it is possible that flow i is not assigned to

any of the queues; meaning it is dropped. The last constraint in (2.13) indicates that this

optimization problem is an integer linear programming problem, where the assignment of

flows to queues can be either zero or one (i.e., no fractional assignment of flows to queues).

2.5.3. Proof of NP-Hardness

The problem discussed in this paper is a PMKP and is NP −Hard in the weak sense.

To prove it, we only need to show that this problem is actually a Multiple Knapsack Problem

(MKP). In fact, MKP is a special case of the PMKP when the penalty term ψ is known.

2.6. Heuristic Solution

To devise a real-time heuristic, we divide the overall problem into N sub-problems, where

each problem k ∈ N finds the optimal flows that fit in Queue k capacity such that the total

profit (i.e., admitted severity) of the system is maximized. To ensure the maximum system

profit and the best quality of service for the received flows, the sub-problems are solved

starting from Queue N down to Queue 1. The solution of the sub-problems is inspired by

20

the work of Ceselli and Righini [36].

Before presenting the algorithm, we define Fk as the set of input flows to Queue k, i.e.,

flows available to be admitted in Queue k. This set Fk of input flows to Queue k includes all

the unassigned flows after solving the flow assignment problems to the higher priority queues

(i.e., Fk includes all flows from the original set F except those selected by the higher priority

Queues {k + 1, ..., N}). For example, the input set of flows FN−1 excludes flows selected by

Queue N from input set FN . Furthermore, we define Xk, (with |Xk| = |Fk|) as the vector of

flow selection flags from Fk, where a value of 1 in the i-th flag Xk[i] indicates that the i-th

flow is selected for admission in Queue k, while 0 means that the i-th flow is not selected by

Queue k. Consequently, the set of input flows to Queue k can be mathematically expressed

as:

Fk = Fk+1 \
⋃

∀ i|Xk+1[i]=1
fi ∀ k = N − 1, . . . , 1

where FN is the set of input flows to Queue N , which is initialized to all F .

The proposed heuristic algorithm proceeds as follows:

For k = N down to 1, do the following steps:

• Order the set of input flows Fk for Queue k based on their severity.

• Find the initial flow selection vector Xk for admission to Queue k using the lower bound

solution (See Sec. 2.6.1). Let Zk be the sum of the severity of admitted flows in Queue

k given the lower bound solution.

• Iteratively find better flow admission solutions for Queue k using the upper bound

solution (See Sec. 2.6.2). If any flow admission solution X̃k with the sum-severity

Z̃k > Zk, let Zk = Z̃k and Xk = X̃k.

21

• Xk contains the optimal flow admission solution for Queue k having the maximum

severity level Zk, while respecting the flow constraints.

In the next subsections, we will explain how the lower and upper bound solutions are ob-

tained. The pseudo-code in Algorithm 1 details the steps of the entire process.

2.6.1. Lower Bound Solution

The input flows are admitted to Queue k in descending order of flow severity. Such flows

are added until the flow with index l, for which its addition will exceeds the capacity Ck of

Queue k (as illustrated in Fig. 2.5). Thus, the range of flows {1, ..., l − 1} can be admitted

and processed by Queue k without violating the capacity constraint, and without penalty,

since no flow is dropped from this range of flows. This implies that the elements Xk[j] will

have one values for j ∈ {1, ..., l − 1}, and zero otherwise. We will refer to flow fkl as the

initial leading flow, which represents the flow with the highest severity among the dropped

flows in the range {l, ..., |Fk|}. Consequently, the lower bound solution Zk is initialized by

adding the severity of those flows on the left side of flow l as shown in the following equation:

Zk =
l−1∑
i=1

Si

This initial solution is a feasible solution. Next, we define Lk as the set of possible leading

flows for Queue k. The set Lk is initialized with all the flows to the left side of the leading

flow fkl (i.e., fki , ∀i ∈ {1, · · · l − 1}) as illustrated in Fig. 2.5. Each leading flow is used to

find an upper bound solution to the sub-problem.

22

Figure 2.5: Input flow set divisions.

2.6.2. Upper Bound Solution

In this part, we solve |Lk| Relaxed Penalized Knapsack Problems (RPKP) and compare

their solutions with the lower bound solution to find the solution with the maximum profit.

The following formulation represents the problem of finding the upper bound solution for

Queue k’s flow selection problem:

max
|Fk|∑
i=1

Si · gki · k − ψk (2.14)

s.t.

Si
(
1− gki

)
6 ψk ∀ i (2.15)

|Fk|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i


·gki 6 Ck

(
dqk
− B

Cm −R

)
(2.16)

23

0 6 gki 6 1 ∀i (2.17)

X̃k[i] = 1 ∀ i = 1 . . . l − 1 (2.18)

X̃k[l] = 0 (2.19)

The upper bound solutions are computed using the following |Lk| iterative steps for

every leading flow i ∈ Lk in descending order of severity (as detailed in the pseudo-code of

Algorithm 1):

While l ≥ 1 do:

• Set the penalty term ψk = Sl; i.e. set it to the severity of the leading flow.

• Mark the leading flow l as dropped and all flows to its left as selected. This is basically

equivalent to eleminating the current leading flow from Fk in the current iteration of

the upper bound solution. Marking is represented by constraints (2.18) and (2.19).

• Solve the problem as an RPKP with the penalty ψk = Sl.

• Fix the fractional results of RPKP to 1s and 0s using the proposed fixing heuristic (See

Sec. 2.6.3). Compute the corresponding upper bound solution X̃k and its sum-severity

Z̃k as the severity of flows with xi = 1, ∀ i.

• If the current upper bound solution has a greater sum-severity than Zk, update the

solution Xk = X̃k and its sum-severity Zk = Z̃k.

• Select the new current leading flow l from the set Lk to be the one just to the left of

the previous leading flow. In other words, set l← l − 1.

24

The core philosophy of this solution is to eliminate one of the selected flows or the initial

leading flow from the lower bound solution at a time, starting from the lowest severity among

them and on. This opens room for selecting flows on the right of the current leading flow of

each iteration, as long as this will maximize the profit of Queue k (i.e. the sum-severity of its

final admitted flows). To do this, the problem is solved as an RPKP . Now since the penalty

term ψk is known to be the severity of the leading flow, then the problem is reduced to an

RKP . However, solving the problem using the relaxed version might result in a fractional

solution. Thus, we use the proposed heuristic in section 2.6 for fixing the relaxed solution

to get a feasible integer solution.

2.6.3. Fixing Upper Bound Solution

The solution produced by solving the relaxed problems (i.e, RPKP) in each of the |Lk|

iterations of the upper bound solution results in values between 0 and 1. Such values do

not constitute a feasible solution as they do not indicate which flows are assigned to Queue

k. To resolve this problem, we propose an algorithm for rounding the fractional values to

integer values.

The algorithm iteratively searches for a flow with strictly fractional value (i.e. between

0 and 1 neither including 0 nor 1) starting from the left side of the set X̃k and fixes it to 1

(i.e., select that flow). However, the RPKP solution is optimal, and rounding a value to 1

means accepting more portion of that flow. Consequently, this may result in more delays,

which could violate the delay constraint. Thus, the next step is to search for a set of flows

with strictly fractional values starting from the right side of the set X̃k and fix them to 0

(i.e drop these flows) in order to regain the balance and satisfy the delay constraint. The

pseudo-code in Algorithm 1 details these steps, where Dt is the total delay for selected flows

(Xk[i] = 1,∀i) and Dmax
k is the maximum delay for Queue k.

25

Algorithm 1 Severity-Based Prioritized Processing Heuristic
Set Fk = F k = N downto 1
Sort Fk in descending order based on severity
Find the minimum l such that flows 1, . . . , l − 1 fit in Ck
Set Xk[i] = 1 ∀ i{1, . . . , l − 1}
Set Zk = ∑l−1

i=1 Si l > 0 l ≥ 1
Set X̃k[l] = 0 l ≥ 2
Set X̃k[i] = 1 ∀i ∈ {1, . . . , l − 1}
Set X̃k[j] = RPKP solution, j ∈ {l + 1, · · · , |Xk|}.
Set a = l + 1
Set b = |Xk| a < b X̃k[a] > 0 AND X̃k[a] < 1
Round X̃k[a] to 1
doX̃k[b] > 0 AND X̃k[b] < 1
Round X̃k[b] to 0
Compute Dt

b = b− 1
while Dt > Dmax

k AND a < b Dt > Dmax
k

Undo any changes on X̃k for this iteration
Round X̃k[a] to 0
a = a+ 1
Z̃k = ∑

i|X̃k[i]=1 Si Z̃k > Zk

Set Zk = Z̃k
Set Xk = X̃k
l = l − 1
Set Fk−1 = Fk \

⋃
∀ i|Xk[i]=1 fi

2.6.4. Upper Bound Solution Proof

First, we define the term KP (l) to denote the optimal value of the binary knapsack with

flows indices in the range (1, . . . , l−1) as selected for Queue k. The binary knapsack problem

is defined in the following formulation:

KP (l) = max
|Fk|∑
i=1

Si · gki · k

26

s.t.

|Fk|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i

 · gki 6 Ck

(
dqk
− B

Cm −R

)

gki ∈ {0, 1} ∀ i

X̃k[i] = 1 ∀ i = 1 . . . l − 1

Taking flow l as the leading flow, we define the term KPl which is the optimal value of

the binary KP with flows indices in the range (1, . . . , l− 1) as selected for Queue k and flow

l as the flow with the highest severity among all dropped flows. The definition is expressed

below:

KPl = max
|Fk|∑
i=1

Si · gki · k

s.t.

|Fk|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i

 · gki 6 Ck

(
dqk
− B

Cm −R

)

gki ∈ {0, 1} ∀ i

27

X̃k[i] = 1 ∀ i = 1 . . . l − 1

X̃k[l] = 0

Note that KPl is a special case of KP (l) when the l-th flow is eliminated from the

optimization problem. Next, we define the term PKPl as the optimal value of the binary

PKP with a penalty of subtracting the severity of the l-th flow as the leading flow as shown

below:

PKPl = KPl − Sl (2.20)

Finally, we use RKPl to denote the relaxed knapsack problem after eliminating the l-th

flow (i.e. the leading flow), which is defined as follows:

RKPl = max
|Fk|∑
i=1

Si · gki · k

s.t.

|Fk|∑
i=1

 M∑
j=1

σjmaxf
j
i + dqk

M∑
j=1

ρjmaxf
j
i −

B

Cm −R

M∑
j=1

ρjmaxf
j
i

 · gki 6 Ck

(
dqk
− B

Cm −R

)

0 6 gki 6 1 ∀ i

28

X̃k[i] = 1 ∀ i = 1 . . . l − 1

X̃k[l] = 0

Ordering the set of input flows Fk based on severity in non-increasing order results in

the following inequalities:

Sl > Sl+1 (2.21)

KP (l) > KP (l + 1) (2.22)

KP (l) > KPl (2.23)

RKPl > KPl (2.24)

The following represents the computation of the upper bound solutions for all possible

leading flows:

ui = RKPi − Si ∀ i = 1 . . . l (2.25)

Where the flows in the range {1, . . . , l} represent the list of leading flows as explained

previously.

Proposition 1.

Let S be the set of RKPi−Si for leading flow i ∀i = 1 . . . l. Also, let P be the set of solutions

of PKPi for leading flow i ∀i = 1 . . . l. Then, u is an upper bound for the optimal value of

29

the original PKP if

u > max(S) > max(P) > PKP (2.26)

Proof.

From definitions (2.20), (2.24), and (2.25), and since

u > ui = RKPi − Si > KPi − Si = PKPi > PKP ∀i = 1 . . . l

then

u > max({u1 . . . ul}) > max({PKP1 . . . PKPl}) > PKP

The core of the proposed heuristic (cf. Algorithm 1) is based on this proposition.

2.7. Experimental Results

In this section, we apply our proposed severity-based service prioritization scheme to

VANETs. We first describe the VANET traffic data used in our experiments and experiment

settings and the environment. Furthermore, we will also discuss the achieved results.

2.7.1. VANET Traffic Characterization

As explained earlier, our proposed heuristic works on any metric defined to serve as the

severity. For our experiments, we define the severity to represent the type of application

generating the VANET data. Data on safety applications (e.g., BSMs) are marked to have

higher severity than data of infotainment applications (e.g., video streaming, congestion

warning). Furthermore, we use the Bologna Ring-way dataset [37] to incorporate real vehicle

mobility in our VANET simulations.

30

Table 2.1: D2D Experimental results

Lecture Video Rogue One Trailer
MPEG-2 MPEG-4 MPEG-2 MPEG-4

Average 38.9 23.1 78 84.1
Peak 92 29 97 97.6
Burst 2.3 1.2 1.2 1.1

Average/Peak values are in packets per second

For all safety applications, the data rate is set to 10 packets per second as recommended by

the standard for safety periodic messages (i.e., BSMs) [38]. Moreover, the burstiness and rate

values for infotainment applications were acquired experimentally. In these experiments, a

computer is set up as a VLC [39] server that streams videos over a Motorola Vehicle Mounted

Modem or OBU acting as a device-to-device (D2D) communications medium. Another

computer with VLC software acts as a client. While the VLC client is receiving the video

stream, the network traffic is analyzed using WireShark [40] to determine the rate and

burstiness of the traffic. It should be noted that two different types of videos, each with two

different video encodings, were used for our experiments. The maximum rate of infotainment

applications was set to the maximum rate of the WAVE protocol suite, while the burstiness

value from our previous experiment was used as the average burstiness of infotainment

applications. The results of the experiments are shown in Table 2.1.

To measure the performance of the proposed heuristic, we conducted two experiments.

In the first experiment, we compared the results from the PMKP formulation in (2.9) against

our proposed heuristic. In the second experiment, we compared our results against a baseline

non-prioritized processor that operates using first come first serve (FCFS).

To conduct the experiments, we simulate the system model shown in Fig. 2.4 using a

marking processor with a capacity (rate) of 9000 packets per second. The capacity of the

marking processor is set to a large value that induces minimum delay during the marking

31

Table 2.2: Policing queue settings

Severity Level Maximum Burst Maximum Rate
1 2 50
2 2 50
3 1 10
4 1 10

Table 2.3: Queue settings

of Queue Capacity Guaranteed Delay
1 130 0.4
2 110 0.3
3 90 0.2
4 70 0.1

service. The policing processor configuration is shown in Table 2.2, which specifies for each

severity level the maximum rate in packets per second and maximum burst size in packets.

The PMKP and our proposed heuristic use four queues with the configurations shown

in Table 2.3, where the capacity is reported in packets per second and the guaranteed delay

is reported in seconds. Severity level 1 is for safety messages while severity levels 2-4 are

for infotainment messages. The baseline non-prioritized processor uses one queue without

guaranteed delay (i.e., non-prioritized processing).

To evaluate the performance of the proposed heuristic against the baseline non-prioritized

processor, we set the capacity of the baseline queue to equal the combined capacity of the four

queues. Such configuration is more advantageous to the baseline no-prioritized processing

algorithm as it will have one large queue with a rate that equals the rate of the four queues

of the proposed prioritized processing algorithm. To validate the results, we run two other

tests and set the baseline queue capacity to 50% of the combined capacity of the four queues

in one experiment, and 150% of the combined capacity of the four queues in the other.

Obtaining the simulation data and the results of the two experiments are discussed next.

32

2.7.2. Simulation Settings

In order to test the proposed heuristic, the Bologna Ring-way dataset was used to generate

a basis of test data. The Bologna Ring-way dataset results were analyzed and a snapshot

of the data was taken every 200 milliseconds. The snapshots provided us with an accurate

number of flows for each vehicle during the simulation. It was revealed that a vehicle can

have no more than 50 flows at a given time and most of the vehicles have 10 flows at some

point during the simulation. Equipped with this data, we generated five data sets with

10, 20, 30, 40 and 50 flows. To simulate real-world traffic for each of these data sets, we

further generated different percentages of safety-to-infotainment application data. Safety

applications have the highest severity level, while infotainment and non-safety applications

have three different severity levels. For each data set, five different combinations of safety-

to-infotainment messages, which are 20%− 80%, 40%− 60%, 50%− 50%, 60%− 40%, and

80% − 20% were generated. The first two scenarios of 10 and 20 flows represent a light

congestion case. A moderate congestion case is presented in the third scenario with 30 flows.

To test high congestion traffic scenarios, the fourth and fifth scenarios with 40 and 50 flows

are used. The number of flows in these scenarios represents the number of vehicles that a

certain vehicle is receiving data.

2.7.3. Comparison Study: Proposed Heuristic Versus PMKP

In this experiment, we executed the PMKP optimization and run the proposed heuristic

on the 25 datasets. The testing results are shown in Fig.2.6. As Fig.2.6 (a) indicates, the

PMKP has a small gap of up to 4% in profit gain over the proposed heuristic. As for the

number of accepted flows, the PMKP and the proposed heuristic have similar results with

the PMKP having more flows in some cases as illustrated in Fig.2.6 (b). The PMKP achieves

33

a better delay compared to the proposed heuristic, as clearly illustrated in Fig.2.6 (c).

In this small-scale experiment that involves a high congestion scenario, the maximum

number of flows is set to 50. This value can be higher in real-life traffic congestion scenarios.

However, when raising the number of flows over 40, the optimal PMKP requires more pro-

cessing time, unlike the proposed heuristic, which makes it useless in solving this real-time

problem. This is due to the combinatorial nature of embedded integer linear programming

in PMKP. Thus, this experiment demonstrates that the proposed heuristic performs almost

at the same level as that of the PMKP in terms of profit and quality of service. This is

the case when the number of sending vehicles is between 10 and 50. Our proposed heuristic

outperforms the PMKP in terms of its execution time in all cases especially when the number

of sending vehicles is over 40.

2.7.4. Comparison Study: Proposed Heuristic Versus Non-Prioritized Process-
ing

To compare the performance of the four queues when the proposed heuristic is employed

with that of the single queue non-prioritized processing approach, we conduct three experi-

ments. In these experiments, we set the baseline non-prioritized processor queue capacity to

50%, 100%, and 150% of the combined capacity of the four queues of the proposed heuristic,

respectively. Experimenting with these various capacities aims to give more confidence to

our claims on the superiority of our proposed prioritized processing heuristic.

One way to compare the proposed approach with the non-prioritized approach is to sum

the severity of the accepted flows for each approach and compare the two results. However,

in this paper, we gave more advantage to the non-prioritized approach (i.e., baseline) over

the proposed approach for the sake of fairness. Thus, in the proposed approach, the cumu-

lative severity is the sum of the severity of accepted flows. However, for the non-prioritized

34

approach, the cumulative severity is the sum of the severity of all accepted flows multiplied

by a factor based on the total delay as shown below:

profit =



cumulative severity · 1 if dt > 0.3,

cumulative severity · 2 if 0.2 6 dt < 0.3,

cumulative severity · 3 if 0.1 6 dt < 0.2,

cumulative severity · 4 if dt < 0.1.

where dt is the total delay. Basically, the profit of the baseline non-prioritized approach

is multiplied by the equivalent queue number k of the proposed heuristic that offers an

equivalent delay.

Profit-wise, the proposed heuristic outperforms the baseline non-prioritized processing

approach in moderate and high congestion scenarios as shown in Fig.2.7. When the capacity

of the baseline non-prioritized processor queue is increased to 150%, the proposed heuristic

still collects more profit than the baseline non-prioritized processing approach, as shown in

Fig.2.7 (c). Furthermore, Fig.2.7 (a), illustrates the superior performance of the proposed

heuristic when the baseline non-prioritized processing queue capacity is reduced by half.

The non-prioritized processor accepts almost the same or sometimes more flows compared

to the proposed heuristic as indicated in Fig.2.8. However, the extra flows processed by the

baseline non-prioritized approach can be ignored, since the proposed heuristic still gets more

profit.

To measure the quality of service, the worst-case delay is observed, which is the maximum

delay for every queue be it prioritized or non-prioritized. Fig.2.9 shows that all four queues of

the proposed heuristic guarantee a delay level for all flows based on their severity. This delay

level never exceeds the required QoS limit. Contrary to our approach, the non-prioritized

35

approach provides no delay guarantees, which results in high severity flows suffering long

processing delays. In other words, all flows regardless of their severity levels encounter

similar processing delays when the baseline non-prioritized approach is used. Conversely,

our proposed prioritized processing heuristic fulfills its promise of processing flows based on

their severity level and processing them within the QoS and time requirements.

2.8. Future Directions and Conclusion

In this paper, we presented a generic real-time heuristic that provides differentiated

services based on a given set of flows and their corresponding severity metric. Furthermore,

we demonstrated that the proposed heuristic can be used to offer differentiated services and

improve QoS in VANETs. The proposed heuristic intelligently prioritizes the processing of

flows in VANETs based on their corresponding severity metric. The problem is formulated

as a PMKP, which is proved to be NP-Hard. Due to the complexity of the PMKP, a

polynomial-time algorithm based on a relaxed version of the PMKP formulation is proposed

to perform the desired prioritization in real-time. The proposed heuristic is tested against

the PMKP solution and a baseline non-prioritized processing approach. Results obtained

through simulations with real traffic data demonstrated a minor difference in performance

between the proposed heuristic and the PMKP. On the other hand, the proposed heuristic

surpasses the baseline non-prioritized approach by 9% to 67% more profit in moderate and

high congestion scenarios. As the results suggest, differentiated services are not required

when the system has resources to satisfy all the requests, but rather when the system is

under higher loads. In such scenarios, results show that our proposed prioritized processing

heuristic is superior and provides better performance.

In our future research, we plan to pursue applications of our proposed approach beyond

VANETs. Specifically, we plan to explore the potential use of our approach in support of

36

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

50

100

150

200

250

300

350

0%
0%

0%
0%

0%

-2%

-2%

0%
0%

-2%

-3%

0%

-2%

-1%

0%

-4%

-1%

-2%

0%

0%

-1%

-1%

-2%

0%

-1%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

P
ro
fi
t

Proposed Heuristic

PMKP

(a) Profit

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

5

10

15

20

25

30

35

40

45

50

0% 0% 0% 0% 0%

0%

-12%
0%

0%

-5%

0%

0%

0%

-4%

0%

-10%

-0%

-4%

0%

0%

-5%

4%

0%

0%

-3%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

#
F
lo
w
s
A
cc
ep

te
d

Proposed Heuristic

PMKP

(b) Accepted flows

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
0

0.1

0.2

0.3

0.4

0.5

0.6

0%

-3% 6%

0%

9%

15%

-2%

4%

20%

-5%

2%

0%

3%

0%

0%

2%

19%

0%

0%

2%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

Processors

M
a
x
D
el
ay

Proposed Heuristic

PMKP

(c) Average load

Figure 2.6: Performance of the proposed heuristic compared to the PMKP.

37

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

50

100

150

200

250

300

350

70%
73%

46%
21%

16%

56%

47%

73%
42%

67%

48%

70%

70%

68%

66%

74%

70%

35%

66%

65%

51%

35%

65%

68%

65%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

P
ro
fi
t

Proposed Heuristic

Non-prioritized Processing

(a) Non-prioritized processor capacity is 50% of the combined
proposed heuristic capacity

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

50

100

150

200

250

300

350

-21%
-16%

-15%
-12%

-11%

13%

32%

30%
1%

-1%

36%

67%

34%

29%

25%

10%

65%

29%

62%

59%

9%

28%

61%

59%

53%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

P
ro
fi
t

Proposed Heuristic

Non-prioritized Processing

(b) Non-prioritized processor capacity is the same as the com-
bined proposed heuristic capacity

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

50

100

150

200

250

300

350

-21%
-16%

-15%
-12%

-11%

-6%

-15%

-29%

-5%

-26%

21%

29%

25%

22%

-12%

-6%

62%

21%

59%

13%

27%

23%

16%

56%

50%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

P
ro
fi
t

Proposed Heuristic

Non-prioritized Processing

(c) Non-prioritized processor capacity is 150% of the combined
proposed heuristic capacity

Figure 2.7: Profit of the proposed heuristic compared to the non-prioritized
processing algorithm.

38

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

5

10

15

20

25

30

35

40

45

50

55

60

10%10%10%10% 0%

39%
27%

22%
18%

5%

38%

11%
19%

13%

10%

33%

21%
20%

17%

18%

35%

22%

17%

21%

21%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

#
F
lo
w
s
A
cc
ep

te
d

Proposed Heuristic

Non-prioritized Processing

(a) Non-prioritized processor capacity is 50% of the combined
proposed heuristic capacity

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

5

10

15

20

25

30

35

40

45

50

55

60

0% 0% 0% 0% 0%

8%

-12%

-10%
-6%

-5%

6%

-14%-5%

-8%

-7%

11%

-8%
0%

-3%

-3%

10%

4%

0%

-31%

-11%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

#
F
lo
w
s
A
cc
ep

te
d

Proposed Heuristic

Non-prioritized Processing

(b) Non-prioritized processor capacity is the same as the com-
bined proposed heuristic capacity

20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80 20 40 50 60 80
0

5

10

15

20

25

30

35

40

45

50

55

60

0% 0% 0% 0% 0%

-19%

-25%-10%-15%-5%
-24%

-24%
-22%

-23%-7%

-14%

-23%
-17%

-17%

-15%

-17%

-10%

-14%

-18%

-22%

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

% Safety Message

#
F
lo
w
s
A
cc
ep

te
d

Proposed Heuristic

Non-prioritized Processing

(c) Non-prioritized processor capacity is 150% of the combined
proposed heuristic capacity

Figure 2.8: Number of accepted flows of the proposed heuristic compared to
the non-prioritized processing algorithm.

39

p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

Processors

M
a
x
D
el
ay

Proposed Heuristic: P1 P2 P3 P4

Non-prioritized Processing: P

(a) Non-prioritized processing capacity is 50% of the combined
proposed heuristic capacity

p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

Processors

M
a
x
D
el
ay

Proposed Heuristic: P1 P2 P3 P4

Non-prioritized Processing: P

(b) Non-prioritized processing capacity is the same as the com-
bined proposed heuristic capacity

p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p p1p2p3p4 p
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 Flows 20 Flows 30 Flows 40 Flows 50 Flows

Processors

M
a
x
D
el
ay

Proposed Heuristic: P1 P2 P3 P4

Non-prioritized Processing: P

(c) Non-prioritized capacity is 150% of the combined proposed
heuristic capacity

Figure 2.9: Maximum delay of the proposed heuristic compared to the non-
prioritized processing algorithm.

40

Industrial IoT applications (IIoT) with real-time QoS constraints below 10 ms.

2.9. Acknowledgment

This publication was made possible by NPRP grant # [7-1113-1-199] from the Qatar

National Research Fund (a member of Qatar Foundation). The statements made herein are

solely the responsibility of the authors.

41

CHAPTER 3

Opportunistic Data Ferrying in Areas with Limited Information and
Communications Infrastructure

3.1. Introduction

It is estimated that about 60% of the world’s population will live in cities by 2030 [41].

Additionally, by the year 2020, around 20.4 billion devices are expected to be connected

to the Internet [42]. To cope with the trend of people moving to urban centers and to

provide high-quality services to their residents, municipalities are increasingly turning to

Information and Communications Technologies (ICT)—such as cloud computing, Internet

of Things (IoT), Wireless Sensor Networks (WSNs), and Cyber-Physical Systems (CPS)

[43]—for the deployment of smart community applications that provide value-added services

in diverse fields such as healthcare, transportation, entertainment, and governance [44].

But such smart community deployments are often prohibitively expensive, especially for

smaller communities where the deployment of smart community applications is hindered by

the unavailability of appropriate communication infrastructure. One way to address this

concern is to exploit existing infrastructure in innovative ways. In particular, modern ve-

hicles that abundantly ply the roads of urban cities can be exploited to obviate the need

for an expensive communications infrastructure. In recent times, with increased interest in

vehicular ad-hoc networks (VANETs) and self-driving cars, vehicles are increasingly becom-

ing more sophisticated and it is expected that by the year 2020, 90% of vehicles will be

equipped with a hardware-based On-Board Unit (OBU) [45] that has processing and com-

munications capabilities. Therefore developing an approach for opportunistically accessing

these smart vehicles in an efficient delay-tolerant manner becomes a promising approach

42

towards the deployment of cost-effective and efficient smart community applications with

limited ICT infrastructure overhead. For example, rural areas that lack the funds to deploy

ICT infrastructure can benefit from our proposed approach.

One approach of delivering data in sparse networks is Message Ferrying (MF). In this

approach, devices are classified as message ferries (or ferries) or regular nodes. Ferries are

mobile devices that move around to collect messages from regular nodes to deliver them to

their destination [46]. In this paper, we use this approach and utilize vehicles as ferries to

transfer data collected from the smart devices (i.e., regular nodes) to the Smart Commu-

nity Management Center (SCMC). One example of the SCMC is the Traffic Management

Center (TMC), which is used for managing traffic in support of intelligent transportation

applications.

In this paper, we envision a smart community application architecture where the service

area is divided into blocks, each having at least a single Local Community Broker (LCB),

where an LCB is a cloudlet that is deployed in the block or hosted on a vehicle that has

processing and communications capabilities. Each LCB serves as a block manager responsible

for selecting vehicles to transfer data collected from IoT devices scattered across the block

to the Smart Community Management Center (SCMC). When a vehicle passes through

the block, the block manager (i.e., LCB) acquires the estimated delivery delay from the

vehicle and decides on whether to utilize it as a ferry to transfer collected data to the

SCMC. Consequently, the vehicles themselves are used as ferries to transfer data between

the different blocks of the service area. Actually, sparsely deployed LCBs are the only

required infrastructure in our proposed architecture, and no communications infrastructure

(optical, microwave, or 5G base stations) is required to relay the data from the LCBs to the

SCMC.

The main challenge in this architecture lies in the ‘intelligent’ selection of vehicles. If

43

the block manager is not selective, it may end up using vehicles with high delivery delay

as any vehicle might be selected even if it has a high delivery delay—delivery delay is the

time taken to transfer a data bundle on a vehicle selected to serve as a data ferry from the

LCB to the SCMC. On the other hand, if it is very selective and picks vehicles that have a

short delivery delay, it would incur a high waiting delay as it needs to wait longer to find

such vehicles—waiting delay is the time taken to select a vehicle to serve as a data ferry. In

fact, this problem is of an online nature because once a vehicle leaves the block, the block

manager can no longer utilize the vehicle. Consequently, the block manager may regret its

decision when the delivery delay of future vehicles is shorter than that of previous ones.

To solve this problem, we propose an online algorithm that utilizes an ensemble of online

hiring algorithms. The proposed algorithm opportunistically selects the best performing

algorithm from its ensemble based on the recent observed performance. The average overall

delay is the sum of the average waiting delay and the average delivery delay as detailed

later in the paper. The proposed algorithm selects one algorithm from its ensemble to be

active with the objective of minimizing the average overall delay. All other algorithms in the

ensemble are set to be passive (i.e., inactive). This way, the active algorithm alone selects

the vehicles to be used as data ferries. Although other algorithms in the ensemble will not

be utilized to select the data ferries, their performance is utilized in order to choose the best

performing algorithm in the ensemble by choosing the one that demonstrated the lowest

average overall delay in the recent history (i.e., greedy approach). Consequently, different

hiring algorithms from the ensemble might be utilized over time.

To the best of our knowledge, this is the first research effort that utilizes online hir-

ing algorithms for the selection of data ferries in the specific setting of smart community

applications. We perform a thorough evaluation of our work and show that our proposed al-

gorithm performs better than other state-of-the-art online hiring algorithms in a wide variety

44

of settings (including for different traffic volumes).

3.2. Related Work

The literature is rich with research that deals with network issues in smart communities.

Jawhar et al. [43] presented the networking requirements for different smart city applications

and additionally presented network architectures for different smart city systems. In [44],

the authors discussed the networking and communications challenges encountered in smart

cities. Paradells et al. [47] state that deploying wireless sensor networks along with the

aggregation network in different locations in the smart city is very costly and consequently

propose an infrastructure-less approach in which vehicles equipped with sensors is used to

collect data.

Bouroumine et al. [48] present a system where public and semi-public vehicles are used for

transporting data between stations distributed around the city and the main server. Aloqaily

et al. [49] introduce the concept of Smart Vehicle as a Service (SVaaS). They predict the

future location of the vehicle in order to guarantee a continuous vehicle service in smart

cities. In another work [50], the authors indicate that cars will be the building blocks for

future smart cities due to their mobility, communications, and processing capabilities. They

propose Car4ICT, an architecture that uses cars as the main ICT resource in a smart city.

The authors in [51] propose an algorithm for collecting and forwarding data through vehicles

in a multi-hop fashion in smart cities. They proposed a ranking system in which vehicles are

ranked based on the connection time between the OBU and the RSU. The authors claim that

their ranking system results in a better delivery ratio and decrease the number of replicated

messages.

45

In [52], the authors state that existing network infrastructure in smart cities can not sus-

tain the traffic generated by sensors. To overcome this problem, an investment in telecom-

munication infrastructure is required. However, the authors proposed to exploit buses in a

Delay Tolerant Network (DTN) to transfer data in smart cities. In [53], the authors intro-

duce mobile cloud servers by installing servers on vehicles and use them in relief efforts of

large-scale disasters to collect and share data. These mobile cloud servers convey data among

isolated shelters while traveling and finally returning to the disaster relief headquarters. Ve-

hicles exchange data while waiting in the disaster relief headquarters, which is connected to

the Internet.

Bonola et al. [54] conduct a study on using taxi cabs as oblivious data mules for data

collection and delivery in smart cities. They have no guarantee of data communications since

they are using taxi cabs without any selection criteria. They use real taxi traces in the city of

Rome and divide the city into blocks of size 40×40 meter2. Depending only on opportunistic

connections between vehicles and nodes, the authors claim to achieve a coverage of 80% of

the downtown area over a 24 hour period.

The aforementioned papers mostly utilize multiple relays for transferring data between

source-destination locations. Furthermore, these papers do not approach the ferry selection

problem from an online perspective. Conversely, in this paper we propose an approach

where each vehicle transfers a data bundle from source to destination without having to use

relays and decisions are made in an online fashion—these assumptions are practical as more

vehicles utilize OBU and GPS units that provide exact or probabilistic information about

the path of the vehicle. Additionally, this paper considers online hiring algorithms for data

ferry selection.

46

3.3. System Model

To utilize data ferrying in a given area, we divide the service area (e.g., city) into B

blocks. Each block has a number of smart devices (e.g., sensor nodes) that generate data.

In addition, one of these blocks hosts the SCMC as shown in Figure 3.1. Vehicles are used

to transfer data collected from smart devices to the SCMC. Also, each block has one LCB

positioned near the center of the block. Any vehicle that enters a given block is within the

communications range of its LCB.

In this paper, we make two assumptions about incoming vehicles. First, it is known if the

vehicle will pass through the SCMC in the future. Second, for vehicles that pass through the

SCMC, the expected arrival time is known. Our assumptions are based on many research

efforts that appeared in the recent literature [55]–[58] to predict those parameters.

Each LCB serves as a block manager that contacts incoming vehicles to acquire two pieces

of information; namely, whether the vehicle is going to pass through the SCMC block, and

at what time (i.e., expected arrival time at the SCMC block). If a vehicle is going to visit

the SCMC block, the block manager computes its expected arrival time. Using the expected

arrival time, the block manager computes the delivery delay d, which is the time required

by the vehicle to transfer the data from the current block to the SCMC block. Besides, the

block manager computes the waiting delay w, which is the time between the selection of the

last vehicle and the selection of the current vehicle. In other words, w is the time the data

must wait until a vehicle is selected to serve as a data ferry.

When a vehicle passes through a block, the block manager, running the proposed al-

gorithm, makes a decision on whether to accept or reject the current vehicle to serve as a

data ferry. The block manager computes the delivery delay d and the waiting delay w and

passes them to the proposed algorithm. Once the proposed algorithm makes a decision, it

47

Figure 3.1: Ferrying data from different blocks to the SCMC block in a com-
munity using vehicles.

is impossible for that decision to be altered. The proposed algorithm utilizes an ensemble

of online hiring algorithm as explained in Section 3.5. If more than one vehicle exists in a

block, and these vehicles are going to pass through the SCMC block sometime in the future,

the block manager considers only the vehicle with the minimum d.

Once a vehicle is selected, the LCB uploads data of block j to the vehicle. Next, the

vehicle continues its trip and eventually passing through block k, which has the SCMC. Once

in block k, the OBU of the vehicle uploads data collected from block j to the LCB of block

k, which in turn conveys it to the SCMC. These steps are illustrated in Fig 3.1.

3.4. Online Hiring Algorithms

Many companies around the world use hiring algorithms to select employees instead of

the traditional manual selection process. Actually, there are many flavors of the hiring

algorithm. In [59] [60], researchers investigate the performance of the different heuristics

48

for the classical secretary problem that select the best candidate out of multiple candidates.

The problem involves an interviewer interviewing n candidates one at a time for a position

and then deciding after each interview if the interviewee is the best candidate. The overall

goal in this problem that seeks to decide under uncertainty is to maximize the probability of

choosing the best candidate. To select the best candidate, the authors introduce three hiring

algorithms [59] including (1) hire above a threshold, (2) hire above minimum or maximum,

and (3) hire above mean or median (Lake Wobegon). We provide a brief description of the

algorithms used in this work next.

• Hiring Above a Threshold: In this version of the hiring algorithm, vehicle i is selected

only if the delivery delay di is less than or equal to a fixed threshold τ .

• Hiring Above the Mean: In this hiring algorithm version, vehicle i is selected only if

the delivery delay di is less than ab (the average delivery delay of selected vehicles in

block b). Initially, the algorithm accepts the first vehicle that enters block b and then

sets ab to d0, and subsequently, ab decreases gradually as the algorithm accepts more

vehicles.

• Hiring Above the Median: Hiring above the median uses mb (the median of the delivery

delay of all selected vehicles in block b). Like hiring above the mean, this algorithm

initially accepts the first vehicle that enters block b. This algorithm needs an odd

number of selected vehicles before recomputing mb since mb is the value in the middle

after sorting. Therefore, after selecting a vehicle, if the number of selected vehicles is

even, the algorithm does not update mb postponing the update of mb to the situation

where the number of vehicles is odd.

49

3.5. Heuristic Solution

In this work, we propose an algorithm that strives to minimize the average overall delay

for transporting data from one block to the SCMC block. The overall delay is the sum of

the waiting delay and the delivery delay. The idea is simply to run an ensemble of N online

hiring algorithms in passive mode while selecting only one of them to be active at any point

in time. By passive, we mean an algorithm makes a decision for whether a given vehicle

should be selected to serve as a data ferry but the decision is not executed. This is done

in order to collect performance metrics needed to compare the performance of the different

algorithms in the ensemble.

The proposed algorithm utilizes four hiring algorithms; namely, low threshold, high

threshold, mean, and median. These algorithms can only consider the delivery delay and

cannot take the waiting delay into consideration. In other words, they cannot make a deci-

sion based on the overall delay which includes the waiting delay. This stems from the fact

that the waiting delay can be larger than the threshold used by those algorithms. Conse-

quently, those algorithms will reject all requests after that time and will be stuck in this state

forever. For example, if the threshold of the low threshold algorithm is set to 50 minutes

and the algorithm is waiting for more than 50 minutes (i.e., waiting delay is greater than

50) then the overall delay will always be greater than 50 even if the delivery delay is zero.

Thus, the low threshold algorithm will reject vehicles from serving as data ferries indefinitely.

However, the proposed algorithm is capable of analyzing the history of all algorithms in its

ensemble in terms of the overall delay. Moreover, to be efficient, the proposed algorithm has

the chance to switch between the four algorithms in its ensemble every S time units in case

the performance of the already selected algorithm deteriorates.

Algorithm (2) shows the three parts of the proposed algorithm. One of the four algorithms

50

Algorithm 2 Proposed algorithm for selecting ferries
Input: vehicle arrival time A.
Output: decision (accept or reject)
Initialization (executed once at time 0):

1: Set all algorithms as passive
2: Set activeAlgorithm = select an algorithm randomly.

On vehicle arrival:
3: Set d = A− current time
4: Set w = current time - last time a vehicle was accepted
5: for each of the 4 algorithms do
6: Run the algorithm
7: if Decision is accept then
8: Save overall delay as d+ w
9: if this algorithm is activeAlgorithm then
10: Accept the vehicle
11: end if
12: else if this algorithm is activeAlgorithm then
13: Reject the vehicle
14: end if
15: end for

Executed every S minutes:
16: Compute average overall delay based on saved data
17: Set bestAlgorithm = algorithm with minimum delay
18: if activeAlgorithm 6= bestAlgorithm then
19: Set activeAlgorithm = bestAlgorithm
20: end if

in the ensemble is selected randomly to serve as the active algorithm in the initialization part,

which is executed once when the algorithm starts as indicated in lines 1 and 2. The second

part is executed whenever a vehicle arrives and a decision needs to be made on whether to

select it as a data ferry. In the second part, the four algorithms in the ensemble are executed

and the overall delay of each one is saved for later analysis in the third part. Moreover, the

decision made by the active algorithm is committed while the decisions of other algorithms

are ignored. Lines 3 to 15 represent the second part. The last part is only executed after

S time units had passed, which is represented by lines 16 to 20. Furthermore, the average

overall delay of all algorithms is computed based on saved data and the algorithm with

the minimum average overall delay is set as the active algorithm while setting the other

algorithms as passive.

51

Table 3.1: Performance (average overall delay) of the proposed algorithm com-
pared to the two online hiring algorithms

Time
Algorithm A Algorithm B Proposed
Avg. delay Avg. delay Avg. delay Selection

t0 0 0 0 Algorithm B
t1 8 10 10 Algorithm A
t2 12 22 14 Algorithm A
t3 18 26 20 Algorithm B
t4 30 28 22 Algorithm B

3.6. Illustrative Example

Let Algorithm A and Algorithm B be two online hiring algorithms with Algorithm A

initialized in passive mode and Algorithm B initialized in active mode (i.e., selected randomly

by the proposed algorithm) at t0. Table 3.1 shows the average overall delay per algorithm

recorded every S minutes (see Algorithm 2), which is computed as the average of overall

delays in the period ti to tj, where j = i+ 1. The performance of the proposed algorithm is

not the best at t1 since it randomly selects Algorithm B as the active algorithm between t0

and t1, which performs worst than Algorithm A. However, the proposed algorithm switches

to Algorithm A at t1 and got an average overall delay of 4 minutes between t1 and t2, which

is the same value gained by Algorithm A. Between t2 and t3, Algorithm B performs better

than Algorithm A leading the proposed algorithm to get 6 minutes instead of 2 minutes. In

t3, the proposed algorithm switches to Algorithm B and get the minimum average overall

delay of 2 minutes between t3 and t4. By t4, the proposed algorithm achieves less average

overall delay compared to both algorithms.

3.7. Experimental Results

In this section, we describe the dataset used in our experiments; explain the experiments’

settings; evaluate the performance of the proposed online algorithm by comparing it with

52

four baseline online hiring algorithms using real vehicular traces; and finally, discuss the

results and present the major insights learned from our experiments.

3.7.1. Dataset & Experimental Settings

In our experiments, we make use of the Shanghai dataset consists of taxi traces collected

in the city of Shanghai in China. Each taxi has a GPS unit and a GPRS wireless commu-

nications modem. Vehicles send their GPS location along with other information to a data

center every minute. Around 2,109 taxis participated in this dataset in 2007. Information

sent by taxis includes ID, timestamp, longitude and latitude, speed, and heading direction

[61].

In order to utilize the Shanghai dataset, we have encoded the geographical location

that encompasses longitude and latitude into a string of 7 characters using the GeoHashing

method [62]. Every string represents a grid (i.e., block) of the city. Actually, we used a

GeoHashing of 7 characters because this allows for the division of the globe into blocks,

each of 153 × 153 meters, which is within the communications coverage of a typical LCB.

Using these blocks, we position the SCMC in the block that is mostly visited by vehicles.

Additionally, we filtered the dataset to remove blocks that have no traffic activity and focus

on the active blocks. The dataset is based on a one-day observation. However, one day is a

very short period for the proposed algorithm to work effectively. Therefore, we replicate the

one-day data a number of times to have datasets for 5, 10, 15, 20, and 25 continuous days.

To study the performance of the proposed algorithm under different traffic scenarios,

we divide the city into three areas based on the traffic volume. We computed the average

number of vehicles per block along with the standard deviation and found that the standard

deviation is greater than the average. Therefore, we categorized each block based on Nb, the

number of vehicles in block b, as follows:

53

• Light traffic area: Nb < average

• Medium traffic area: average ≤ Nb ≤ standard deviation

• High traffic area: Nb > standard deviation

We set S to 30 minutes in all of the experiments to be consistent. Also, to derive the low

and high threshold values for the threshold algorithms in every block, we used a percentile

of the delivery delay in the block. The dataset used in the experiment has a heavy-tailed

distribution and particularly a long-tail distribution and we resort to extremely low and high

threshold values—2nd percentile for the low threshold algorithm and 95th percentile for the

high threshold algorithm—to fully explore the space of values in such a distribution.

3.7.2. Results Discussion

3.7.2.1. Evaluation of the proposed algorithm for different traffic volumes Considering the

four baseline hiring algorithms only, it can be clearly seen that a different one outperforms

in each area depending on the traffic volume. The mean algorithm is the best in light traffic

areas, the high threshold is the best in medium traffic areas, and the low threshold is the

best in high traffic areas as shown in Fig. 3.2.

The low threshold algorithm suffers from a high overall delay in the light traffic areas

because the waiting delay is very high since it is very selective. However, the low threshold

algorithm outperforms in the area of the high traffic since it only selects vehicles with low

delivery delay and there are plenty of vehicles to pick from. On the other hand, the high

threshold algorithm performs best in the medium traffic areas, which provide a balance

between waiting delay and delivery delay. Since the high threshold algorithm accepts the

majority of vehicles, it benefits from this balance. As for the mean and median algorithms,

54

Figure 3.2: Average overall delay per block. Our proposed algorithm achieves
minimal overall delay per block regardless of the traffic volume.

their performance is best in the areas of light traffic. This is because the thresholds of these

algorithms decrease with more vehicles. The more these algorithms accept, the more greedy

they become towards a lower threshold.

The proposed algorithm achieves the best results in all areas with up to 258% less overall

delay albeit at a cost. To understand this cost, we focus on the 10 days results and record

the number of selected vehicles, average delivery delay, average waiting delay, and average

overall delay.

The proposed algorithm outperforms the baselines algorithms regardless of the traffic

volume by either performing better on the waiting delay or on the delivery delay but not

both as indicated in Fig. 3.3.

It should be noted that the proposed algorithm does not only perform better in terms of

the average overall delay but it also accepts more vehicles to serve as data ferries as shown

in Fig. 3.4 (with the exception of the high threshold algorithm since it accepts the majority

of vehicles in all areas).

55

(a) Average waiting delay per block.

(b) Average delivery delay per block.

Figure 3.3: Average waiting & delivery delay per block. Our proposed algo-
rithm performs the best either with minimal average waiting delay or average

delivery delay per block, but not with both.

3.7.2.2. Evaluation of the proposed algorithm for different time periods To assess the per-

formance of the proposed algorithm relative to the four baseline hiring algorithms, we run

the algorithms for a different number of days. Results are collected in terms of the average

overall delay in each of the three different areas as shown in Fig. 3.5. The figure shows the

consistent behavior of the proposed algorithm regardless of the number of days.

56

Figure 3.4: Number of selected vehicles. Our proposed algorithm hires the
most number of vehicles with the exception of the high threshold algorithm.

3.7.2.3. Switching activity of the proposed algorithm To show the switching activity of the

proposed algorithm, we record the average overall delay every hour for one block over 10

days as illustrated in Fig. 3.6. The figure shows how some algorithms perform better for a

period of time and how the proposed algorithm follows the one with the minimum average

overall delay based on performance collected from recent history.

3.8. Conclusions and Future Work

In this paper, the problem of selecting vehicles to serve as data ferries in support of

smart community applications is considered. The selection process strives to achieve the

minimum average overall delay. An online algorithm is proposed that utilizes four online

hiring algorithms by running all of them together in passive mode and selecting the one

that has performed the best in recent history. The proposed algorithm is evaluated using

real taxi traces from the city of Shanghai in China and compared against a baseline of

four online hiring algorithms. Experiments with these traces demonstrate that the proposed

algorithm outperforms online hiring algorithms presented in the literature regardless of the

57

(a) Light traffic area.

(b) Medium traffic area.

(c) High traffic area.

Figure 3.5: Average overall delay using different algorithms for the various
traffic scenarios (light, medium, high) over different days. Our proposed algo-
rithm achieves the minimal overall delay for different number of days results

regardless of the traffic volume.

58

Figure 3.6: Performance of algorithms in one block over 10 days. Our pro-
posed algorithm switches between different hiring algorithms to achieve mini-

mal overall delay.

traffic volume by either performing better on the waiting delay or on the delivery delay but

not both.

In the future, we plan to evaluate the proposed algorithm analytically to provide perfor-

mance guarantees, in terms of competitive ratio, in worst-case scenarios.

59

CHAPTER 4

Budgeted Online Selection of Candidate Clients to Participate in Federated
Learning

4.1. Introduction

The fourth industrial revolution (Industry 4.0) promises the provisioning of smart services

that enhance the manufacturing process by utilizing emerging technologies such as Internet

of Things (IoT) and Artificial Intelligence (AI) [63] [64]. In particular, most of the recent

advances in Industry 4.0 and AI are driven by Machine Learning (ML), a branch of AI, and

more specifically by Deep Learning (DL) [63] [65] [66].

The ML and DL techniques however require a large amount of data for the training of

their models. In particular, serious privacy and security concerns crop up when we have

to collect and process data scattered over different organizations and users [67] [68]. For

instance, the prediction of patient mortality using Electronic Health Record (EHR) data

dispersed over many hospitals is a complex undertaking due to the various privacy, security,

regulatory, and operational issues [69]. Additionally, the communication of potentially large

amounts of data from the clients to a central server is costly and can choke the networks

when limited bandwidth is available [70]. Such bottlenecks can be observed in Vehicular

Edge Computing (VEC) where vehicles have to send their data such as images to roadside

servers to build models, which results in the networks being greatly burdened [71].

To address the issues of security, privacy, and excessive communication cost, the technique

of Federated Learning (FL) [72], a distributed ML approach that runs on a server and

multiple clients, was proposed. The server and the clients use the same model architecture.

The server initiates the global model (i.e., the server model) and executes the following steps

60

over several communication rounds [70] [72]:

• The server sends the global model’s parameters to some (or if possible all) clients;

• Every participating client uses the received global parameters to train the local model

using the local dataset;

• Every participating client sends the local model parameters to the server;

• The server aggregates the local parameters received from the clients to update the

global model;

• Eventually, the accuracy of the global model converges to some threshold.

In FL, the server has no access to the client’s local dataset since only the local model

parameters are shared with the server. Consequently, privacy and security are preserved and

communication cost is reduced. However, FL suffers from the following two problems [73]:

• Convergence may take a long time, which increases the communication cost.

• Clients have different computation, storage, and communication resources and different

dataset sizes, which makes the task of selecting clients a challenge.

FL can be stateful or stateless. In stateful FL, a candidate client can participate in each

of the communication and computation rounds used in training the global model and thus

the state is preserved between rounds. Nevertheless, in stateless FL, a candidate client will

likely participate in one communication and computation round to train the global model,

which means in each round, new fresh candidate clients are utilized [74].

In this paper, we propose a stateful FL model with a budgeted number of candidate clients

to overcome communication and computation constraints. In other words, from a total of N

61

candidate clients, we select the best R < N candidate clients to participate in training the

global model. Now, some candidate clients become available while other candidate clients

become offline or out of communication range over time. Also, we assume that not all

candidate clients are available at the same time. Meaning that the problem of selecting R

candidate clients is an online problem. As a result, the selection of candidate clients is a

challenge. In offline problems, information about all candidate clients are well known in

advance rendering the problem of selecting the best R candidate clients trivial. However, in

online problems, once a candidate client becomes available then an irrevocable decision must

be made on the selection of this candidate client without any prior knowledge about coming

candidate clients. Consequently, we propose a budgeted online selection algorithm that

selects the best R candidate clients based on their evaluated test accuracy. The proposed

algorithm is inspired by the solution of the secretary problem.

The proposed algorithm can be used in different applications, particularly for online

applications with intermittently available mobile clients. Once a client is available, a decision

must be made on whether to utilize the client or not since the client may become unreachable

like out of communication range or offline. However, once the client is selected, the client

will be utilized. Furthermore, decisions cannot be revoked in online applications but might

be regretted.

Detection and identification of unauthorized IoT devices are very important especially

with the increase in the number of attacks on IoT devices [75]. Therefore, we propose a

clients’ alarm application that alerts clients about unauthorized IoT devices in their envi-

ronment. Each client uses a local machine (i.e. server) to monitor the traffic generated by

IoT devices in the environment and extract features based on IoT device behavior. Extracted

features are used to identify the IoT device type by training an ML model on those features.

This is known as IoT device type classification. However, clients can not identify unknown

62

IoT devices in their environment depending only on the local dataset. Therefore, clients

subscribe to the alarm service provided by the server on the cloud that utilizes the proposed

algorithm. Clients share their model’s parameters with the server to train a global model

capable of identifying unauthorized IoT devices.

The salient contributions of this paper are:

• We propose a model for optimizing accuracy in stateful federated learning by selecting

the best candidate clients based on test accuracy. We formulate the problem of maxi-

mizing the probability of selecting the best R candidate clients based on test accuracy

from N total candidate clients as a secretary problem and analytically analyze the

performance and provide proofs.

• We propose an online heuristic solution for optimal budgeted client selection based on

test accuracy inspired by the secretary problem that works in stateful FL settings. This

is the first work as far as we know that utilizes online resources selection in federated

learning.

• We propose a client alarm application for identifying unauthorized IoT devices using

the proposed algorithm and IoT device type classification. We conduct many experi-

ments to evaluate the performance of the proposed heuristic against other state-of-the-

art algorithms. Results show an improvement of up to 27% in accuracy compared with

the online random algorithm and an accuracy gain of approximately 10% compared

with the offline best algorithm.

The organization of the remainder of the paper is as follows. Background regarding FL is

discussed in section 4.2. Related literature is reviewed in Section 4.3. The proposed system

is described in Section 4.4 while Section 4.5 provides the heuristic solution. Section 4.6

provides performance proofs including analysis for the worst-case scenario. Experimental

63

results are provided in Section 4.7, where we discuss the application, the dataset (and its

preprocessing phases), and the conducted experiments. A discussion of the results and the

salient lessons learned are provided in Section 4.8. Finally, the paper is concluded in Section

4.9 by summarizing this work and identifying future directions of work.

4.2. Background

To understand the concepts of FL systems, Li et al. [68] provide a comprehensive study

of FL systems. They categorize FL systems based on six features including machine learn-

ing model, communication architecture, data partition, privacy mechanism, motivation of

federation, and scale of federation. Additionally, the authors present a summary of a com-

parison that includes 42 studies based on the six proposed features. Researchers [67] and

[68] categorize FL based on data distribution as:

• Horizontal Federated Learning: datasets of clients share the same feature space but

with a small intersection in regards to the sample space.

• Vertical Federated Learning: datasets of clients share the same sample space but with

a small intersection in regards to the feature space.

• Hybrid Federated Learning (Federated Transfer Learning): datasets of clients have a

small intersection in regards to both the feature and sample spaces.

The main challenges in implementing FL, as described in [73] and [76], are:

• Communication cost: there could be many clients (millions) and the system may ex-

ecute many rounds before converges to the required level of accuracy, which imposes

an overload on the network.

64

• Clients heterogeneity: the system is heterogeneous and has clients with varying com-

putation, storage, and communication capabilities. Also, the client datasets may differ

in features and samples (i.e., the datasets may have statistical heterogeneity).

• Privacy and security: FL already protects clients’ data by only sharing models’ pa-

rameters. However, sensitive information may be revealed.

Researchers [76] and [77] have highlighted the importance of client selection for enhancing

the performance of FL systems since it contributes to both communication cost and resource

allocation.

Existing research on enhancing performance in FL follow one of the following approaches:

• Algorithm Optimization: optimize the FL algorithm and perform more computation

on clients to reduce the convergence time by reducing the number of rounds on the

expense of more computation [78]–[85].

• Selective Updates: select only important updates from the clients or select the best

clients in regards to the clients’ resources and data size [86]–[91].

• Model Compression: reduce the amount of data exchanged between clients and the

server [79], [92]–[94].

4.3. Related Work

FL is a hot research area that grabs the attention of many researchers. In this section, we

list different approaches for enhancing the performance and discuss studies in each approach.

Next, we discuss studies related to online resource selection based on the optimal stopping

theory and particularly the secretary problem.

65

4.3.1. Algorithm Optimization

Some researchers work on optimizing the algorithm used in FL to reduce convergence time

and thus reduce the generated traffic on the network. Replacing the minibatch Stochastic

Gradient Descent (mb-SGD) optimization model with Adam has been studied in [79]. The

authors propose CE-FedAvg, an algorithm that uses Adam optimization and compresses

models before uploading to the server. The authors claim that using Adam optimization

along with model compression reduces the convergence time by reducing the number of

rounds and the amount of data exchanged between clients and the server. Using a multi-

objective evolutionary algorithm with neural networks in FL has been studied in [80]. The

authors use the Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) to minimize the

communication cost at the expense of higher computation cost. In [81], researchers propose

Momentum Federated Learning (MFL), which uses Momentum Gradient Descent (MGD) in

every step of local updates rather than the first-order gradient descent. Authors state that

since MGD consider preceding iteration, it converges faster than the traditional FL system.

Other researchers proposed algorithms that utilize the computation power on clients’

machines to speed up the convergence process. To reduce the number of rounds, Liu et al.

[82] propose to use Federated Stochastic Block Coordinate Descent (FedBCD) algorithm in

vertical FL, which let clients do multiple local model updates before syncing with each other.

Authors in [83] claim that using two models in every client instead of a single model can

reduce the number of rounds. Besides training the global model received from the server,

each client trains another local model and uses the Maximum Mean Discrepancy (MMD)

between the output of the two models. Using agents on edge nodes between clients and the

server are studied in [84] and [85]. Multiple agents perform partial model aggregation before

communicating with the server to reduce the communication cost between clients and the

66

server.

Other researchers study the trade-off between the number of iterations performed by

clients to minimize the loss function and the frequency of global aggregation done by the

server. In [78], the authors compute the convergence bound of the gradient-descent algorithm

then designed an algorithm that finds the best frequency of global aggregation based on

system dynamics, model characteristics, and data distribution to minimize the consumed

computation and communications.

4.3.2. Selective Updates

In [86], the authors formulate a client selection and resource allocation optimization

problem for FL in wireless networks to minimize the value of the loss function. They first

derive an equation to represent the expected convergence rate of the FL algorithm. Next,

they simplified the optimization problem as a mixed-integer nonlinear programming prob-

lem. Then for a given uplink resource block allocation and client selection, authors compute

the optimal transmit power. Finally, they transform the problem into a bipartite matching

problem and use the Hungarian algorithm to find the optimal client selection and resource

block allocation. Nishio and Yonetani [87] propose a new FL protocol named FedCS to

enhance the efficiency of FL. The basic idea of the proposed protocol is to select clients

based on their computation/communication capabilities and their data size instead of pick-

ing clients randomly. To reduce the communication overload, authors in [88] propose an

approach that identifies clients with irrelevant updates and prevent those clients from up-

loading their updates to the server. In [89] and [90], the authors proposed the selection

of clients based on the consumed energy in model’s transmission and training, clients’ dis-

tance from the server, and channel availability using Deep Reinforcement Learning (DRL)

approach. Yoshida et al. [91] propose a hybrid FL approach based on the assumption that

67

some clients share and upload their data to the server to improve the accuracy and mitigate

the degradation resulted from non-independent-and-identically-distributed (non-IID) data.

However, uploading clients’ data to the server violates the rules of FL.

4.3.3. Model Compression

Sattler et al. [92] proposed a new compression framework named Sparse Ternary Com-

pression (STC). Authors claim that their compression framework performs better than other

proposed methods in the literature in bandwidth-constrained learning environment. In [93],

the authors propose to use structured updates (low rank and random mask) and force mod-

els to use these structures and also sketched updates with lossy compression before sending

models to the server. On the other hand, Caldas et al. [94] apply lossy compression on the

model sent from the server to the clients.

The related research discussed up till now have a high computational cost. The clients’

intensive computation and algorithm optimization approach requires intensive computation.

In addition to the extra computation required by the compression approach, it is best applied

to models with large parameter vector such images or models with many hidden layers.

The presented studies using the selective updates approach either are too difficult to train

(especially when a large number of clients are used as in DRL) or have no analysis and

proofs for convergence. In contrast, our proposed algorithm, which uses the selective updates

approach, does not require intensive computations or a large parameter vector, and we also

provide analysis and proofs demonstrating convergence.

68

4.3.4. Secretary Problem

The secretary problem, which is also known as the marriage problem, dowry problem,

beauty contest problem, or Googol is a class of the optimal stopping decision problems. The

secretary problem was first introduced by Martin Gardner back in 1960 [95]. The classical

secretary problem focuses on the selection of a secretary from a pool of candidates adhering

to the following rules [95] [96]:

• The number N of candidates is known,

• Only one candidate is to be chosen,

• Candidates are interviewed sequentially in random order,

• Each candidate must be accepted or rejected before interviewing the next one (with

no provision for recalling rejected candidates later),

• Candidates are ranked from best to worst and the decision of accepting or rejecting a

candidate depends on the relative ranks of candidates interviewed so far,

• The problem focuses on maximizing the probability of selecting the best candidate.

The solution of the secretary problem is for some integer 1 ≤ α < N , reject the first

α candidates then select the first candidate with rank better than of those observed can-

didates. The goal is to find the optimal α that maximizes the probability of selecting the

best candidate. Actually, it has been proven that the optimal value for α is 0.367879 with

optimal probability of 1
e
[95]. In other words, the probability of finding the best candidate is

37% when rejecting the first 37% of candidates and selecting the first candidate with ranking

better than those observed ones.

69

The authors in [97] reviewed the extensions and generalizations of the secretary problem.

They indicate that some researchers focus on the secretary problem when the number of

candidates is unknown. Other researchers assume that candidates’ ranks follow a specific

distribution such as Poisson. Additionally, they show that some studies focus on selecting

R candidate instead of one.

In this paper, we are interested in studies of the secretary problem where R top candidates

are selected. In [98], the authors provide many variations of the secretary problem studied

under different assumptions and one of these cases is for selecting R candidates with one of

the candidates as the best candidate. Kleinberg proposed an algorithm to maximize the sum

of ranks of the R selected candidates [99]. The algorithm has two stages. In the first stage,

the classical secretary algorithm is recursively applied on roughly the first half of candidates

to select l = R/2 best candidates. In the second stage, the rank of the lth selected candidate

in the first stage is used as a threshold for selecting R/2 candidates from the second half of

candidates. The author states that the algorithm has a competitive ratio of 1 − O(
√
q/R).

In [100], the authors propose an algorithm to maximize the sum of the R selected candidate.

The algorithm rejects the first bn/ec candidates and records the R highest rankings in set S.

Next, when a candidate with a rank higher than the minimum rank in S is encountered, the

candidate is selected and the minimum rank in S is removed. This is repeated until either

S is empty or all candidates are reviewed. The authors indicate that the algorithm has a

competitive ratio no worse than e for all values of R.

The work in this paper is inspired by the aforementioned studies. However, this work is

different in that we find the optimal stopping position α, which we call α∗, to maximize the

probability of selecting the R top candidates. We reject the first α∗ candidates and record

the best rank. Then, we use the best rank as a threshold in selecting the top R candidates.

70

4.4. System Model

We assume N candidate clients and one server. Also, we assume a budget of R candidate

clients. The nature of the proposed model is online since some clients become available

while others become unreachable or offline over time. Consequently, the server must make

an irrevocable decision to accept (i.e. select) or reject a candidate client once a candidate

client becomes available. The server runs the proposed heuristic (explained in the next

section), which initializes the global model, selects the R best candidate clients based on

their test accuracy, and then train the global model using the selected candidate clients in

K communication rounds. Each selected candidate client trains the local model in E epochs

using the local dataset but with the global model parameters. Moreover, we assume the

datasets of candidate clients are different in size. Therefore, we use the terms fat clients and

thin clients to point to candidate clients with different sizes of datasets. We note that in

some literature, the terminology of elephants (instead of fat) and mice (instead of thin) is

used instead [101]. For the convenience of the readers, we have listed the main mathematical

notations used in this paper in Table 4.1.

4.5. Proposed Client Selection Solution

The problem we tackle in this paper is to select the best set of candidate clients that

provide higher test accuracy when training the global model using their local dataset. This

problem is similar to the famous secretary problem, which aims to maximize the probability of

selecting the maximum element from a randomly ordered sequence [102]. However, instead of

selecting one element, in this problem, R elements must be selected. The secretary problem

is one scenario of the optimal stopping theory. In the secretary problem, an employer wants

to hire a secretary and there are N candidates. The employer cannot assess the quality

71

Table 4.1: Summary of mathematical notations

Notation Definition
N Total number of candidate clients arriving until time T .

Each candidate client is identified by an index in the in-
terval 1..N

K Number of communication rounds
E Number of epochs
R Number of required best candidate clients
(C`)1≤`≤N Set of candidate clients
α An index in the interval 1..N
α∗ The optimal value of α
CM The best candidate client in [1..α], i.e., 1 ≤M ≤ α
(im)1≤m≤R The set of R positions corresponding to the top R best candi-

date clients in the interval [α + 1..N], better than CM , such
that α + 1 ≤ im ≤ N and Cim is worst than Cim−1 for all
2 ≤ m ≤ R{

A(i)
}
α+1≤i≤N

The set of events where “the ith candidate better than CM
is selected”{

B(m,i)
}

1≤m;α+1≤i≤N
The set of events where “the ith candidate is the mth best
one”

ER The event “The R best candidates in [α + 1..N] better than
CM are selected” occurring with the probability Pr (ER); Ob-
viously,

R
∩
`=1
ER = ∪

iR≤iR−1..≤i1

R
∩
`=1

{
A(i`) ∩ B(`,i`)

R

}
with i1 and iR

correspond to the best and the worst combinations, among
R selected ones, respectively

P(r1,r2) Probability to select the R best candidates (im)1≤m≤R where
r1 ≤ R ≤ r2 and r1, r2 < N.P(r1,r2) = ∑r2

R=r1 Pr (ER).

of a candidate until after the end of the interview and have to make an irrevocable hiring

decision. Thus, the employer may end up hiring a candidate before interviewing the rest of

the candidates and the hiring of the best candidate is not guaranteed.

Our solution is inspired by the secretary problem. The quality of a client is determined

by its test accuracy. We evaluate the test accuracy (i.e. quality) of the first α∗ (see section

4.6) clients and reject them all. Then, select the next R clients with test accuracy better

72

than the best test accuracy of the first α∗ clients, and if none is found then select the last

clients.

4.5.1. Proposed Algorithm

The proposed heuristic identifies the best test accuracy among the first few available can-

didate clients then use this test accuracy as a threshold for accepting or rejecting candidate

clients available later. The heuristic accepts the parameters N , R, r1, r2, K, E, and δ as

explained in Algorithm 2 and consists of three stages that run every δ time units to update

the global model.

In the first stage (Algorithm 2, lines 2 through 11), the value of α∗ (discussed in Section

4.6) is computed based on the value of r1 and r2 using equation (4.7). The first α∗ candidate

clients that are available are then tested to determine the best test accuracy. However, none

of those candidate clients are accepted. Whenever a candidate client becomes available, the

server initializes the global model and communicates with the candidate client to evaluate its

test accuracy. Testing is performed by sending the initialized global model’s parameters from

the server to the candidate client for one communication round so that the candidate client

trains the local model with these parameters using the local dataset. Then, the candidate

client sends back the updated parameters to the server. The server evaluates the received

parameters (i.e., no averaging is applied since only one candidate client is involved) using

the test dataset to determine the test accuracy of the candidate client. After testing α∗

candidate clients, the server selects the best test accuracy to be used as a threshold in the

second section.

In the second stage (Algorithm 2, lines 12 through 27), whenever a candidate client

becomes available, it gets tested in the same way explained in the first section. Next, the

server accepts (i.e., selects) the candidate client only if its test accuracy is greater than

73

Algorithm 3 Proposed heuristic
Input: N (expected number of clients), R (number of selected candidate clients), r1, r2 (to compute
α∗), K (number of communication rounds), E (number of epochs per client), and δ
Output: Trained global model

1: for every δ time units do
// Find best test accuracy for first m candidate clients, m : 1..α∗

2: Initialize the global model
3: Compute α∗ based on r1, r2, and N using equation (4.7)
4: Set Ab, best test accuracy = 0
5: for m = 1 to α∗ do
6: Test client CM and record Am, its test accuracy
7: if Am > Ab then
8: Set Ab = Am
9: end if
10: Reject candidate client Cm
11: end for

// Find R best candidate clients
12: Set Sb, set of best candidate clients = []
13: Set Nb, number of best candidate clients found = 0
14: for m = α∗ + 1 to N do
15: if Nb = R then
16: Reject candidate client Cm
17: else if (N −m) ≤ (R−Nb) then
18: Accept candidate client Cm and add it to Sb
19: Increment Nb by 1
20: else
21: Test client Cm and record Am, its test accuracy
22: if Am > Ab then
23: Accept candidate client Cm and add it to Sb
24: Increment Nb by 1
25: end if
26: end if
27: end for

// Start training
28: for k = 1 to K do
29: Send global model to all candidate clients in Sb
30: Candidate clients train global model on local dataset for E epochs
31: Server average aggregated model parameters from candidate

clients in Sb
32: end for
33: end for

the best test accuracy found in the first section. Nonetheless, if the number of available

candidate clients is less than the number of required candidate clients (i.e., R) then the

server has no choice but to select those remaining candidate clients. In the worst-case

74

scenario, the candidate client with the best test accuracy is met during the first section.

Consequently, all candidate clients met early in the second stage are rejected for having a

test accuracy less than that of the best test accuracy found in the first section. As a result,

the server is forced to accept all candidate clients that are met at the end of the second

section. In fact, in the worst-case scenario, the proposed heuristic behaves similarly to the

random algorithm explained in Section 4.8.

In the third stage (Algorithm 2, lines 28 through 32), once the best candidate clients are

identified, the global model is trained using the selected candidate clients for K communi-

cation rounds as described in Section 4.1.

4.5.2. Toy Illustrative Example

To understand the proposed algorithm in more depth, we present an example where we

observe one run cycle (when δ is 1) of the proposed algorithm overtime (see Figure 4.1).

Assume a total of 10 candidate clients becoming available over time during the observed

period (i.e. N = 10). We refer to candidate i as Ci. Additionally, we set the budget to 2

candidate clients (i.e. R = 2), which means that we want to select the best 2 candidate

clients for training the global model. Moreover, we set E, the number of epochs, to 3 and set

K, the number of communication rounds between the server, and selected candidate clients

for training the global model to 20. Also, the value of α∗ is computed based on equation

(4.7) in section 4.6.1 (assuming r1 is 1 and r2 is 2) and its value is 2.

When a candidate client becomes available then (1) the proposed algorithm initiates the

global model’s parameters then sends them to the candidate client, (2) The candidate client

trains the local model for E epochs using the received parameters from the server on the local

dataset, (3) the candidate client sends the updated parameters to the server, (4) the server

evaluate the accuracy of the candidate client by testing the global model using the updated

75

Stage 1

Time

Stage 2

Reject Reject Reject Reject Reject Select Reject Select

C1(0.30) C2(0.62) C3(0.23) C4(0.41) C5(0.56) C6(0.85) C7(0.22) C8(0.92) C9 C10

Threshold set to 0.62

Figure 4.1: An illustrative example of the proposed algorithm.

parameters on the test dataset. Then, the proposed algorithm must make an irrevocable

decision on whether to use this client or not based on its evaluated test accuracy.

The proposed algorithm runs in three stages. In the first stage, the proposed algorithm

communicates with the first α∗ (i.e. 2) candidate clients and evaluate their test accuracy

to determine the best test accuracy, which is used as a selection threshold with the rest

of candidate clients that become available later. Thus, when C1 becomes available, the

proposed algorithm communicates with C1 then evaluates its test accuracy and finds it 0.30.

The proposed algorithm sets its selection threshold to 0.30 and rejects C1. Next, C2 becomes

available and the proposed algorithm communicates with C2 then evaluates its test accuracy

and finds it 0.62. The proposed algorithm updates its selection threshold to 0.62 as illustrated

in Fig. 4.1 where Ci(x) represents candidate client i with evaluated test accuracy x (test

accuracy is a number between 0 and 1, where 0 means the trained model fails to identify all

test samples while 1 means the trained model identifies all test samples successfully).

In the second stage, the proposed algorithm will continue to communicate with any

candidate client that becomes available and evaluate its test accuracy to decide on the

selection of this candidate client. This process continues as shown in Fig. 4.1 until the

proposed algorithm selects 2 candidate clients and as follows:

• C3 becomes available and its test accuracy is 0.23 and thus gets rejected.

76

• C4 becomes available and its test accuracy is 0.41 and thus gets rejected.

• C5 becomes available and its test accuracy is 0.56 and thus gets rejected.

• C6 becomes available and its test accuracy is 0.85 and thus gets selected.

• C7 becomes available and its test accuracy is 0.2 and thus gets rejected.

• C8 becomes available and its test accuracy is 0.92 and thus gets selected.

• The server is not going to communicate with C9 and C10 once they are available since

the proposed algorithm has already selected two candidate clients.

In the third stage, the proposed algorithm trains the global model using C6 and C8 with K

communication rounds but without initiating the global model in every round. A best-case

scenario is presented in this example, but a worst-case scenario can occur if the test accuracy

of C2 is evaluated and found as 9. In this case, the proposed algorithm rejects both C6 and

C8. Eventually, the proposed algorithm will have to communicate with the last two clients

(C7 and C10) and selects both.

4.6. Performance Analysis

The performance of the proposed algorithm explained in the previous section depends

vitally on the optimal value of α, which is α∗. In this section, we derive an equation for

computing the value of α∗ and prove its validity. This equation is plugged in the first stage

of the proposed algorithm as mentioned in section 4.5.1. Finally, we analytically analyze the

performance of the proposed algorithm in worst-case scenario.

77

4.6.1. Optimal Value for α

By assuming (i) M and im positions are not known in advance, (ii) the candidates can

arrive in any order, and (iii) N,α >> R, we aim to find the optimum value α∗, depending

on both, allowing to maximize P(r1,r2).

Lemma 1. The following summation

K(R,α) =
N−R+1∑
iR=α+1

1
iR − 1

N−R+2∑
iR−1=iR+1

1
iR−1 − 1 ..

N∑
i1=i2+1

1
i1 − 1 , (4.1)

can be tightly approximated by

K(R,α) ≈

(
log N

α

)R
R! . (4.2)

Proof. Let us proceed by induction. one can ascertain that for R = 1, the summation∑N
i1=α+1

1
i1−1 can be approximated by the

∫N
α

dt
t

= log N
α
, confirming (4.2).

Let us assume that (4.2) holds for R− 1. One obtains

K(R,α) =
N−R+1∑
iR=α+1

1
iR − 1K(R− 1, iR)

≈ 1
(R− 1)!

N−R+1∑
iR=α+1

(
log N

iR

)R−1

iR − 1

≈ 1
(R− 1)!

∫ N−R+1

α

(
log N

t

)R−1

t
dt. (4.3)

Finally, taking into account that R << N (i.e., N −R + 1 ≈ N), it follows that

K(R,α) ≈ 1
R!

[
−
(

log N
t

)R]N
α

(4.4)

≈ 1
R!

(
log N

α

)R
, (4.5)

78

which concludes the proof.

Proposition 1. For all positive numbers r1, r2 << α,N , the approximation

P(r1,r2) ≈ α

N

r2∑
R=r1

1
R!

(
log N

α

)R
, (4.6)

holds, and the optimum value maximizing such probability is

α∗ = N exp
−(r2!

(r1 − 1)!

) 1
r2−r1+1

 . (4.7)

Proof. Given that the indices of the selected candidates are sorted in increasing order of

candidates’ accuracies, ER can be broken into R exclusives events as follows

• Candidate client M is the best one in [1, iR − 1] and

• Candidate clients im are the best ones in [1, im−1 − 1], 2 ≤ m ≤ R and

• Candidate client i1 is best one in [1, N].

Consequently,

Pr (ER) =
N−R+1∑
iR=α+1

N−R+2∑
iR−1=iR+1

..
N∑

i1=i2+1
Pr

 R
∩
`=1

{
A(i`) ∩ B(`,i`)

R

}
︸ ︷︷ ︸

DR

 . (4.8)

With the aid of the Bayes’s rule, DR can be rewritten as

Pr (DR) = Pr
(
A(iR)

∣∣∣B(R,iR)
R ∩ DR−1

)
Pr
(
B(R,iR)
R

∣∣∣DR−1
)
. (4.9)

The probability to select the Rth best one among [1..N] \ {i1, i2, .., iR−1} is

Pr
(
B(R,iR)
R

∣∣∣DR−1
)

= 1
N −R + 1 , (4.10)

79

with the conditional probability in (4.9) can be evaluated as

Pr
(
A(iR)

∣∣∣B(R,iR)
R ∩ DR−1

)
= α

iR − 1

R−1∏
`=1

1
i` − 1 . (4.11)

Substituting (4.11), (4.10), and (4.9) into (4.8), one obtains

Pr (ER) = α

N −R + 1K(R,α). (4.12)

Leveraging Lemma 1 and noting that N −R+ 1 ≈ N , (4.6) is obtained. Now, defining

x = α/N (i.e., 0 ≤ x ≤ 1), the two first derivatives of P(r1,r2) with respect to x can be

expressed as

∂P(r1,r2)

∂x
= (− log x)r2

r2! − (− log x)r1−1

(r1 − 1)! , (4.13)

∂2P (r1,r2)

∂x2 = −1
x

[
(− log x)r2−1

(r2 − 1)! − (− log x)r1−2

(r1 − 2)!

]
. (4.14)

Thus, by solving ∂P(r1,r2)

∂x
= 0 and setting α∗ = Nx∗, we get (4.7). Moreover, it can be

easily checked that the second derivative evaluated at x∗

∂2P (r1,r2)

∂x2 = (− log x)r1−2

x∗ (r1 − 2)!

(r1 − 2)!
(r2 − 1)!(− log x∗)r2−r1+1︸ ︷︷ ︸

= r2!
(r1−1)!

− 1


= − (r2 − r1 + 1) (− log x)r1−1

x∗ (r1 − 1)! , (4.15)

is negative as r2 > r1 and x∗ ≤ 1, which completes the proof.

Table 4.2 summarizes some values of the optimal number α∗ along with the aforemen-

tioned maximum probability for various values of r1 and r2, when N = 1000. Note that the

probability (4.6) is an increasing function on r2, while its maximum value is not monotone

as it depends also on r1 as summarized in Table I. It can be seen also that:

80

• The smaller r1 is, the greater the optimal value (α∗ = Nx∗).

• For a fixed r1, the larger r2 is, the smaller α∗.

Fig. 4.2 shows that the probability of selecting the best R clients is higher when the

value of α is small.

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
ta

l p
ro

ba
bi

lit
y

r1=2,r2=5
r1=3,r2=5
r1=3,r2=7
r1=5,r2=7

Figure 4.2: Effects of α on the probability of selecting the best clients.

Table 4.2: Choosing α∗ that maximizes the probability to select R best can-
didates such that r1 ≤ R ≤ r2 and N = 1000

r1 r2 α∗ Percentage (%) x∗ = α∗

N P(r1,r2)
max

2 2 135.3353 13.53 0.2707
2 3 49.7871 4.97 0.4481
2 4 0.3355 0.03 0.0966
3 3 49.7871 4.97 0.2240
3 4 2.4788 0.24 0.2231

81

4.6.2. Worst-Case Analysis (Competitive Ratio Analysis)

The worst-case scenario is encountered when the proposed heuristic does not find can-

didates that exceed CM from index α∗ until N . The competitive ratio in the worst-case

scenario is computed over all possible input sequences as the maximum ratio of the gain of

the online algorithm and the optimal offline algorithm [103].

Proposition 2. The heuristic’s worst-case performance has a competitive ratio of O(1) when

R is proportional to N .

Proof. Let ALG be the proposed heuristic and OPT be the optimal algorithm.

The worst-case happens when the highest element appears before index α∗. In that case,

the proposed algorithm randomly selects candidate clients from index α∗ + 1 until N . A

candidate client within this range of indices is selected with probability R
N−α∗ . Consequently,

the following proof is concluded as follows:

Comr = ALG

OPT
= R

N − α∗

Thus, Comr, the competitive ratio, becomes O(1) when R is proportional to N .

4.7. Experimental Settings

In this section, we describe the application proposed in this paper in detail first. Next,

we describe the dataset used in the simulation and describe the dataset preparation phases

used to transform the raw dataset into N candidate clients’ datasets. Finally, we discuss

conduced experiments.

82

4.7.1. Use Case: IoT Device Classification

IoT devices perform specific tasks, which makes their network behavior predictable [104].

There are plenty of studies on IoT device classification or fingerprinting in the literature

[75], [104]–[112]. Those studies concentrate on identifying IoT devices for different reasons

including security, access control, provisioning, resource allocation, and management [105].

Actually, most of those studies concentrate on security in response to recent incidents. In one

incident, thousands of IoT devices including surveillance cameras are used for Distributed

Denial of Service (DDoS) attack [75]. Therefore, we propose a client alarm application based

on IoT device type classification in FL settings to identify unauthorized IoT devices. The

IoT device type classification is inspired by the work in [112]. We aim to use the proposed

application as a use-case to test the performance of the proposed heuristic.

The proposed application consists of N candidate clients, a main server in the cloud, and

an alarm mechanism. Each client’s environment has several IoT devices, a local machine

(i.e., the local server), and an alarm device as shown in Fig. 4.3. The alarm can be a physical

device or software that delivers email, text messages, or any other form of notification to the

client. The local server monitors the traffic generated by IoT devices, extract features, and

build a local dataset. Then, train the local model using the local dataset. However, training

on local dataset is not sufficient to identify unknown IoT devices in the environment. As a

result, the clients subscribe to the alarm service provided by the server through the use of

FL. The server is responsible for running the proposed FL algorithm. Also, the server and

clients cooperate to build a global model capable of classifying devices used by participating

clients. In other words, clients can use the global model to identify unknown devices from

the knowledge of other clients.

The proposed algorithm in the server trains a global model by sharing only the model’s

83

Figure 4.3: An illustration of the clients alarm application. The cloud server
running the proposed algorithm communicates with the local servers of the

best subscribed clients to train the global model.

parameters with clients and thus preserving the security and privacy of clients. The process

of training the global model is repeated every δ time units to make sure that the new clients,

and clients with the new installed IoT devices, are considered and included.

Employing all clients in the training process produce high traffic, which overloads the

network. Additionally, this might be infeasible since some clients are not available all the

time. However, selecting clients with high accuracy contribution to the global model training

enhance the classification accuracy, which is done by the proposed heuristic.

84

4.7.2. Dataset Details and Preprocessing Phases

To test the performance of the proposed heuristic, we use a real dataset collected by

researchers from the University of New South Wales (UNSW), Sydney, Australia [112]. The

dataset is created using 28 IoT devices and also some non-IoT devices installed in a lab on the

campus of the university. Trace data are captured over 6 months between October 1, 2016

and April 13, 2017. However, only 20 days of trace data are available for the public. Raw

data consisting of packet headers and payload information are captured using the tcpdump

tool installed on the gateway. The dataset is available as a set of pcap (packet capture) files

and also as a set of CSV (comma-separated values) files. The dataset consists of 20 pcap

files, one file per day.

pcap files
(Raw data)

NormalizationFeatures extraction

JSON files (Flows)

Flow collection

csv files (Features)
Normalized &

reindexed Features

80%80%

20%20%

Build ML
model

Train
dataset

Test
dataset FatFat ThinThin

. . .

Global Model

Figure 4.4: Dataset preprocessing phases (through which the raw dataset is
transformed to the N candidate clients’ datasets).

The raw dataset is processed in five phases (illustrated in Fig 4.4) in order to create N

candidate client’s datasets to simulate FL settings as described next.

In the flows collection phase (Phase-1), we collect flows from raw data in pcap

files using the joy tool developed by Cisco Systems [113]. Joy is a data collection tool

that reads the data from raw traffic (or from pcap files) and produces a JavaScript Object

Notation (JSON) file with a summary of the traffic data in the form of flows. We create a

bash script that uses the joy tool to process the pcap files and produce JSON files. Each

JSON file contains flows related to a specific IoT device based on the MAC address listed

in Table 4.3, which includes names of devices and their MAC addresses as indicated in

85

Table 4.3: Names and MAC addresses of the used IoT devices

IoT device name MAC address
Amazon Echo 44:65:0d:56:cc:d3

August Doorbell Cam e0:76:d0:3f:00:ae
Awair air quality monitor 70:88:6b:10:0f:c6

Belkin Camera b4:75:0e:ec:e5:a9
Belkin Motion Sensor ec:1a:59:83:28:11

Belkin Switch ec:1a:59:79:f4:89
Blipcare BP Meter 74:6a:89:00:2e:25
Canary Camera 7c:70:bc:5d:5e:dc

Dropcam 30:8c:fb:2f:e4:b2
Google Chromecast 6c:ad:f8:5e:e4:61

Hello Barbie 28:c2:dd:ff:a5:2d
HP Printer 70:5a:0f:e4:9b:c0

iHome PowerPlug 74:c6:3b:29:d7:1d
LiFX Bulb d0:73:d5:01:83:08

NEST Smoke Sensor 18:b4:30:25:be:e4
Netatmo Camera 70:ee:50:18:34:43

Netatmo Weather station 70:ee:50:03:b8:ac
Phillip Hue Lightbulb 00:17:88:2b:9a:25
Pixstart photo frame e0:76:d0:33:bb:85

Ring Door Bell 88:4a:ea:31:66:9d
Samsung Smart Cam 00:16:6c:ab:6b:88

Smart Things d0:52:a8:00:67:5e
TP-Link Camera f4:f2:6d:93:51:f1
TP-Link Plug 50:c7:bf:00:56:39
Triby Speaker 18:b7:9e:02:20:44

Withings Baby Monitor 00:24:e4:10:ee:4c
Withings Scale 00:24:e4:1b:6f:96

Withings Sleep Sensor 00:24:e4:20:28:c6

the dataset’s website [112]. To filter by MAC address, we use the Berkeley/BSD Packet

Filter syntax supported by the joy tool through the data feature options. Each flow in the

resultant JSON file has a flow key that includes the source and destination addresses, and

the source and destination port and protocol numbers. Each flow also contains number of

bytes, number of packets, start time, and end time. Additionally, joy can be configured to

save more information per flow. Algorithm 4 describes the flow collection process. Also, the

script is available on GitHub [114].

In the features extraction phase (Phase-2), we extract features from the flows stored

in JSON files. Inspired by a previous study [112], we analyze the flows and extract features

as listed in Table 4.4. Features are saved in a CSV file with the first 10 columns for features

and the last column for the labels, which are the IoT device IDs. Algorithm 5 shows the

86

Algorithm 4 Flows collection algorithm
Input: dataset pcap files.
Output: JSON files.

1: for each pcap file as pF ileName do
2: Open pF ileName for reading
3: Set deviceCo = 1
4: Set json = pF ileName+ deviceCo
5: for each MAC address in Table 4.3 as mac do
6: Run joy with pF ileName as input, json as output, and

mac as the host MAC address
7: Set deviceCo = deviceCo+ 1
8: end for
9: Close pF ileName
10: end for

Table 4.4: IoT device features

Feature Description
totalSleepT ime Total time of no activity
totalActiveT ime Total time of activity
totalF lowV olume Number of bytes (sent/re-

ceived) by the IoT device
flowRate Total flow volume divided by

total active time
avgPacketSize Number of bytes sent or re-

ceived divided by no. of packets
sent or received

numberOfServers Number of servers
Excluding DNS (53) and NTP
(123)

numberOfProtocols Number of protocols
based on destination port num-
ber

numberOfUniqueDNS Number of unique DNS re-
quests

DNSinterval Total time for using DNS
NTPinterval Total time for using NTP

steps used in the extraction process. In addition, the Python code for extracting the features

is made available on GitHub [114].

In the normalization phase (Phase-3), we first normalize all features by transform-

ing features’ values to be between 0 and 1 using the MinMaxScaler function from the

scikit-learn library [115]. Second, to ensure that samples are distributed randomly, we

87

Algorithm 5 Features extraction algorithm
Input: JSON files.
Output: features csv file.

1: Open features file for writing
2: Set maxPeriod = 10 minutes
3: for each JSON file do
4: Open JSON file for reading
5: Read deviceID from JSON file
6: Set totalSleepT ime = 0; totalActiveT ime = 0
7: Set totalF lowV olume = 0; totalPackets = 0
8: Set numberOfServers = 0; numberOfProtocols = 0
9: Set numberOfUniqueDNS = 0; DNSinterval = 0
10: Set NTPinterval = 0; lastF lowEndT ime = 0
11: for each flow do
12: Set #flow = flow number
13: Set flowT ime = flowEndT ime− flowStartT ime
14: Set totalActiveT ime = totalActiveT ime + flowT ime
15: Set totalF lowV olume = totalF lowV olume + number of bytes in the flow
16: Set totalPackets = totalPackets + number of packets in the flow
17: if port in flow is not recorded before then
18: Set numberOfProtocols = numberOfProtocols + 1
19: Record port
20: end if
21: if port in flow = 53 then
22: Set DNSinterval = DNSinterval + flowT ime
23: if DNS query in flow is not recorded before then
24: Set numberOfUniqueDNS = numberOfUniqueDNS + 1
25: Record DNS query
26: end if
27: else if port in flow = 123 then
28: Set NTPinterval = NTPinterval + flowT ime
29: else
30: if destination address in flow is not recorded before then
31: Set numberOfServers = numberOfServers + 1
32: Record destination address
33: end if
34: end if
35: if #flow = 1 then
36: Set startT ime = flowStartT ime
37: else
38: Set totalSleepT ime = totalSleepT ime +

(flowStartT ime− lastF lowEndT ime)
39: if flowEndT ime− startT ime ≥ maxPeriod then
40: Set flowRate = 0
41: if totalActiveT ime ≥ 0 then
42: Set flowRate = totalF lowV olume/totalActiveT ime
43: end if

88

44: Set avgPacketSize = 0
45: if totalPackets ≥ 0 then
46: Set avgPacketSize=totalF lowV olume/totalPackets
47: end if
48: Add a record to features file with features and deviceID
49: Reinitialize all features variables
50: end if
51: end if
52: Set lastF lowEndT ime = flowEndT ime
53: end for
54: Close JSON file
55: end for
56: Close features file

randomly re-index all normalized features in the dataset.

In the ML model design phase (Phase-4), we split the dataset into two parts: the

training dataset (80% of the original) and the test dataset (20% of the original). To ensure

a fair comparison between the proposed algorithm and other algorithms, the test dataset

is stored on the server. We then design a Deep Neural Network (DNN)-based ML model

with three layers, each having 25 neurons. The first two layers use the ReLu activation

function, while the last layer uses a softmax activation function. Adam optimizer is utilized

for optimization.

Finally, in the dataset splitting phase (Phase-5), we create N datasets to represent

local datasets for the N candidate clients. Each of the N datasets is created randomly from

the training dataset. To reflect a real scenario, we ensure that those datasets do not have

the same size. The majority of candidate clients possess a small amount of the dataset while

the minority of candidate clients possess large portions of the dataset. Consequently, the fat

clients constitute 20% of candidate clients and each fat client has about 10% of the training

dataset selected randomly. On the other hand, the thin clients constitute 80% of candidate

clients and each thin client has about 1% of the training dataset randomly selected. All

89

these parameters along with other FL parameters are listed in Table 4.5.

Table 4.5: FL parameters

Parameter Value(s)
Batch size 3
E (Epochs) 8

K (Communication rounds) 20
Test dataset 20% of the dataset
Train dataset 80% of the dataset

Number of fat clients 20% of N
Number of thin clients 80% of N

Fat client dataset 10% of the train dataset
Thin client dataset 1% of train dataset

Table 4.6: Simulation parameters

Sym. Parameter Value(s)
N No. of candidate clients (100, 200, 400, 800, and 1600)
R No. of best candidate clients (10, 20, 30, 40, and 50)
r1 Minimum no. of 1

best candidate clients
r2 Maximum no. (1, 2, 3, 4, and 5)

of best candidate clients

4.7.3. Experiments

After Phase-5, N candidate clients’ datasets are formed to simulate FL settings, which

are utilized in the conducted experiments. To measure the performance of the proposed

heuristic, we compare the results of two algorithms against the proposed heuristic. The

two algorithms are the online random algorithm and the offline best algorithm. The online

random algorithm selects and rejects candidate clients randomly. On the other hand, the

offline best algorithm is an offline algorithm that can work with all candidate clients at the

same time. In other words, the offline best algorithm does not have to wait for clients to be

available over time and instead have the advantage of working with all candidate clients at

the same time. The offline best algorithm creates a sorted list of all (i.e., N) candidate clients

90

based on accuracy and selects the top R candidate clients, which are mostly fat candidate

clients.

We conduct 125 experiments to test the performance of the proposed heuristic. In all

these experiments, we fixed the number of communication rounds to 20; the number of

epochs per client to 8; and the batch size to 3 (as shown in Table 4.5). We are not interested

in optimizing the aforementioned parameters since the goal of this paper is not to achieve the

highest accuracy possible, but to investigate the ability of the proposed heuristic compared

against the state-of-the-art algorithms. Thus, we vary the number of clients N , number of

selected candidate clients R, and r2 (used to compute the value of α∗) each with five different

values as indicated in Table 4.6. Experimenting with different values of N , R, and r2 is vital

to truly test the abilities of the proposed heuristic.

The values in Table 4.6 are not selected arbitrarily. We test with values of N that vary

from hundreds to thousands by doubling the numbers to see how this increase affects the

performance. As for R, we test with different values in tens and noticed that raising R more

is not interested since the performance of all algorithms converges as explained later. Setting

r1 to one is a must since we need to select the first best candidate client. Additionally, we

noticed that raising the value of r2 to more than 5 will results in a very low α∗ especially

when N is 100. In other words, setting r2 to higher numbers will reduce the search size to

zero candidate clients since α∗ will be close to zero.

4.8. Result Discussion

Since we cannot present all values and figures of the 125 experiments. In each case, we

fixed 2 of the variables (i.e., N , R, and r2) and show the results for changing the third

variable. Also, for each case, we present 3 figures: the first represents the general accuracy

of the system; the second for the average accuracy of selected candidate clients, which is

91

used to indicate the contribution of individual candidate clients toward the general accuracy

of the system; and finally, the percentage of the accepted Fat clients, which is useful for

investigating if more Fat clients lead to higher accuracy.

4.8.1. Experimenting with Different Values of r2

The results illustrated in Fig. 4.5 support the discussion in Section 4.6. Increasing the

value of r2 while fixing r1 to 1 reduces the value of α∗ and thus increases the probability of

finding the best candidate clients as shown in Fig. 4.5a. Furthermore, Fig. 4.5b and Fig.

4.5b confirms the fact that increasing the value of r2 leads to accepting more fat candidate

clients with higher accuracy.

4.8.2. Experimenting with Different Values of R

Fig. 4.6 shows that the proposed heuristic is more competitive when the number of se-

lected candidate clients (i.e., R) is low. However, as R goes up, the accuracy of all algorithms

converges as indicated in Fig. 4.6a. As the number of selected candidate clients increases,

all algorithms will have a good portion of the dataset and will be able to converge to high

accuracy in less time. As a result, there is no problem to solve for high values of R. Besides,

sometimes it is not feasible to contact many candidate clients since some of them are not

available. Figures 4.6b and 4.6c show that the accuracy of the system increases regardless

of the accuracy of individual candidate clients and the number of fat nodes.

4.8.3. Experimenting with Different Values of N

The performance of the proposed heuristic is almost stable when the total number of

candidate clients is increased while fixing R to 30 as illustrated in Fig. 4.7. The accuracy

92

1 2 3 4 5
r2

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

Best
Rand
Prop r2=1
Prop r2=2
Prop r2=3
Prop r2=4
Prop r2=5

(a) Test Accuracy.

1 2 3 4 5
r2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Ac
cu

ra
cy

 P
er

 S
el

ec
te

d
Cl

ie
nt

Best
Rand
Prop r2=1
Prop r2=2
Prop r2=3
Prop r2=4
Prop r2=5

(b) Average Accuracy Per Selected Client.

1 2 3 4 5
r2

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

at
 C

lie
nt

s

Best
Rand
Prop r2=1
Prop r2=2
Prop r2=3
Prop r2=4
Prop r2=5

(c) % Fat Clients.

Figure 4.5: Performance of algorithms for different r2 values (1, 2, 3, 4, 5)
while fixing N , number of clients, to 400 and R, number of selected clients,
to 20. Our proposed algorithm performs better than the random algorithm

approaching the performance of the best algorithm as r2 is increased.

93

10 20 30 40 50
Number of Selected Clients (R)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Best Rand Prop

(a) Test Accuracy.

10 20 30 40 50
Number of Selected Clients (R)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Ac
cu

ra
cy

 P
er

 S
el

ec
te

d
Cl

ie
nt Best Rand Prop

(b) Average Accuracy Per Selected Client.

10 20 30 40 50
Number of Selected Clients (R)

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

at
 C

lie
nt

s

Best Rand Prop

(c) % Fat Clients.

Figure 4.6: Performance of algorithms for different R, number of selected
clients, values (10, 20, 30, 40, 50) while fixing N , number of clients, to 400
and r2 to 4 (α∗ is 43). Our proposed algorithm is more competitive for smaller
values of R and as R is increased, the performance of algorithms converges.

94

100 200 400 800 1600
Total Number of Clients (N)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Best Rand Prop

(a) Test Accuracy.

100 200 400 800 1600
Total Number of Clients (N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Ac
cu

ra
cy

 P
er

 S
el

ec
te

d
Cl

ie
nt Best Rand Prop

(b) Average Accuracy Per Selected Client.

100 200 400 800 1600
Total Number of Clients (N)

0.0

0.2

0.4

0.6

0.8

1.0

%
 F

at
 C

lie
nt

s

Best Rand Prop

(c) % Fat Clients.

Figure 4.7: Performance of algorithms for differentN , number of clients, values
(100, 200, 400, 800, and 1600) while fixing R, number of selected clients, to 30
and r2 to 4 (different α per N value). Our proposed algorithm performs better
than the random algorithm approaching the performance of the best algorithm

regardless of the value of N .

95

of the proposed heuristic is almost 80% for different values of N as shown in Fig. 4.7a.

Additionally, Fig. 4.7b and Fig. 4.7c support this argument.

4.8.4. Lessons Learned

We can conclude the lessons learned in this paper based on the presented results as

follows:

• The performance of the proposed online heuristic is stable regardless of the number of

total clients N , as illustrated in Fig. 4.7.

• The accuracy of the proposed heuristic increases as the number of selected candidate

clients R increases. However, as R goes up, the performance of the proposed online

heuristic, the online random algorithm, and the offline best algorithm tends to converge

as indicated in Fig. 4.6. This is because, with more candidate clients, algorithms have

access to a larger portion of the overall dataset.

• As the number of best candidate clients (r2) is increased, the performance of the

proposed online heuristic is enhanced since better candidate clients are used as shown

in Fig. 4.5.

4.9. Conclusions and Future Work

In this paper, the problem of optimizing accuracy in stateful federated learning by se-

lecting the best candidate clients based on test accuracy is considered. Then, the problem of

maximizing the probability of selecting the best candidate clients based on accuracy is formu-

lated as a secretary problem and performance analysis is presented along with proofs. Based

on the formulation, an online stateful federated learning heuristic is proposed to find the best

96

candidate clients. In addition, an IoT client alarm application is proposed that utilizes the

proposed heuristic along with IoT device classification to identify unauthorized IoT devices

and alert clients. To test the efficiency of the proposed heuristic, we run many experiments

using a real IoT dataset and the performance of the online random algorithm and the offline

best algorithm are compared against the performance of the proposed heuristic. Results

show that the proposed heuristic performs better than the two state-of-the-art algorithms.

Additionally, we notice the stability in the performance of the proposed heuristic compared

against the performance of the other two algorithms regardless of the number of participating

candidate clients. We also notice that when increasing the number of best selected candidate

clients, the proposed heuristic becomes less competitive. This is because with more clients

comes more data and thus the performance of algorithms converges regardless of how bad

an algorithm in selecting candidate clients.

In the future, we plan to devise different variations of the secretary problem and provide

performance analysis along with proofs for each. We also intend to run several experiments

using a real dataset to evaluate those variations and compare their performance with the

performance of the proposed heuristic.

97

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter concludes the presented work and list ideas for future research.

5.1. Conclusion

In this work, we present three solutions in terms of real-time and online algorithms to

optimize the use of resources in IoT applications. The main concluded points are listed as

follows:

• In response to the strict quality of service (QoS) requirements in vehicular networks

(VANETs), we propose a generic real-time heuristic that provides differentiated services

based on a given set of flows and their corresponding severity metric. We show that

our proposed heuristic can be used to offer differentiated services and improve QoS in

VANETs. Additionally, we find out that the proposed prioritized processing heuristic is

superior and provides better performance only when the system is under higher loads.

• We proposed to use vehicles as data ferries to transport data in smart communities

as an alternative solution for the substantial infrastructural cost of setting up smart

cities. Also, we proposed an online algorithm based on an ensemble of four online

algorithms that strives to select the best vehicles in terms of waiting and delivery

delays. Moreover, we note that the proposed algorithm outperforms other baseline

algorithms by either performing better on the waiting time or on the delivery time,

but not both.

98

• We optimize the accuracy of stateful federated learning by proposing an online algo-

rithm inspired by the solution of the secretary problem to select the best candidate

clients in terms of test accuracy to participate in training the global model. The per-

formance of the proposed algorithm is stable regardless of the number of participating

clients. Also, we notice that as the number of best clients increases, the proposed

algorithm becomes less competitive compared against state-of-the-art algorithms.

5.2. Future Work

Resource management in IoT applications and especially in smart cities and smart vehi-

cles is a very important research topic with more room for improvement. I’m planning to

keep searching in this area to cover many gaps and come up with intelligent algorithms that

lead to better results in terms of computation and communication. The following is a list of

ideas inspired by the current research:

• Utilize the algorithm we develop for improving QoS in VANETs in a realistic scenario

with a quality of service less than 10 ms.

• Develop an online algorithm to organize search and rescue operations using unmanned

aerial vehicles such as drones during natural disasters. Actually, designing better

algorithms leads to saving more lives.

• Study the pros and cons of variations of the online secretary problem when used to

optimize the selection of resources in different IoT applications.

99

BIBLIOGRAPHY

[1] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of things
(iot) for next-generation smart systems: A review of current challenges, future trends
and prospects for emerging 5g-iot scenarios”, IEEE Access, vol. 8, pp. 23 022–23 040,
Jan. 2020.

[2] A. López-Vargas, M. Fuentes, and M. Vivar, “Challenges and opportunities of the
internet of things for global development to achieve the united nations sustainable
development goals”, IEEE Access, vol. 8, pp. 37 202–37 213, Feb. 2020.

[3] K. L. Ang and J. K. P. Seng, “Application specific internet of things (asiots): Taxon-
omy, applications, use case and future directions”, IEEE Access, vol. 7, pp. 56 577–
56 590, May 2019.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Inter-
net of things: A survey on enabling technologies, protocols, and applications”, IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, Jun. 2015.

[5] Y. L. Morgan, “Notes on dsrc & wave standards suite: Its architecture, design, and
characteristics”, IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 504–
518, 2010.

[6] “Ieee standard for wireless access in vehicular environments (wave) – multi-channel
operation - redline”, IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-2010) -
Redline, pp. 1–206, Mar. 2016.

[7] Y. Liu, 802.11 enhanced distributed channel access, US Patent 9,155,027, Oct. 2015.
[8] N. Gupta, A. Prakash, and R. Tripathi, “Medium access control protocols for safety

applications in vehicular ad-hoc network: A classification and comprehensive survey”,
Vehicular Communications, vol. 2, no. 4, pp. 223 –237, 2015, issn: 2214-2096. doi:
http : / / dx . doi . org / 10 . 1016 / j . vehcom . 2015 . 10 . 001. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S2214209615000546.

[9] Y. J. Li, “An overview of the dsrc/wave technology”, in Quality, Reliability, Se-
curity and Robustness in Heterogeneous Networks: 7th International Conference on
Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine
2010, and Dedicated Short Range Communications Workshop, DSRC 2010, Hous-
ton, TX, USA, November 17-19, 2010, Revised Selected Papers, X. Zhang and D.
Qiao, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 544–558, isbn:
978-3-642-29222-4. doi: 10.1007/978- 3- 642- 29222- 4_38. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29222-4_38.

[10] “Ieee guide for wireless access in vehicular environments (wave) - architecture”, IEEE
Std 1609.0-2013, pp. 1–78, Mar. 2014. doi: 10.1109/IEEESTD.2014.6755433.

100

https://doi.org/http://dx.doi.org/10.1016/j.vehcom.2015.10.001
//www.sciencedirect.com/science/article/pii/S2214209615000546
https://doi.org/10.1007/978-3-642-29222-4_38
http://dx.doi.org/10.1007/978-3-642-29222-4_38
https://doi.org/10.1109/IEEESTD.2014.6755433

[11] M. B. Brahim, E. B. Hamida, F. Filali, and N. Hamdi, “Performance impact of
security on cooperative awareness in dense urban vehicular networks”, in 2015 IEEE
11th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Oct. 2015, pp. 268–274. doi: 10.1109/WiMOB.2015.
7347971.

[12] E. B. Hamida and M. A. Javed, “Channel-aware ecdsa signature verification of ba-
sic safety messages with k-means clustering in vanets”, in 2016 IEEE 30th Interna-
tional Conference on Advanced Information Networking and Applications (AINA),
Mar. 2016, pp. 603–610. doi: 10.1109/AINA.2016.51.

[13] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive
survey on vehicular ad hoc network”, Journal of Network and Computer Applications,
vol. 37, pp. 380 –392, 2014, issn: 1084-8045. doi: http://dx.doi.org/10.1016/
j.jnca.2013.02.036. [Online]. Available: //www.sciencedirect.com/science/
article/pii/S108480451300074X.

[14] M. A. Javed, E. Ben Hamida, andW. Znaidi, “Security in intelligent transport systems
for smart cities: From theory to practice”, Sensors, vol. 16, no. 6, p. 879, 2016, issn:
1424-8220. doi: 10.3390/s16060879. [Online]. Available: http://www.mdpi.com/
1424-8220/16/6/879.

[15] M. A. Javed and E. B. Hamida, “Adaptive security mechanisms for safety applications
in internet of vehicles”, in 2016 IEEE 12th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Oct. 2016, pp. 1–6.
doi: 10.1109/WiMOB.2016.7763268.

[16] M. Timmers, S. Pollin, A. Dejonghe, L. V. der Perre, and F. Catthoor, “A distributed
multichannel mac protocol for multihop cognitive radio networks”, IEEE Transactions
on Vehicular Technology, vol. 59, no. 1, pp. 446–459, Jan. 2010, issn: 0018-9545. doi:
10.1109/TVT.2009.2029552.

[17] H. El Ajaltouni, A. Boukerche, and A. Mammeri, “A multichannel qos mac with
dynamic transmit opportunity for vanets”, Mobile Networks and Applications, vol. 18,
no. 6, pp. 814–830, 2013. doi: 10.1007/s11036-013-0475-6. [Online]. Available:
http://dx.doi.org/10.1007/s11036-013-0475-6.

[18] J. M.-Y. Lim, Y. C. Chang, M. Y. Alias, and J. Loo, “Cognitive vanet with enhanced
priority scheme”, in 2014 International Conference on Telecommunications and Mul-
timedia (TEMU), Jul. 2014, pp. 116–121. doi: 10.1109/TEMU.2014.6917746.

[19] D. Lee, S. H. Ahmed, D. Kim, J. Copeland, and Y. Chang, “Distributed sch selection
for concurrent transmissions in ieee 1609.4 multi-channel vanets”, in Communications
(ICC), 2017 IEEE International Conference on, IEEE, 2017, pp. 1–6.

101

https://doi.org/10.1109/WiMOB.2015.7347971
https://doi.org/10.1109/WiMOB.2015.7347971
https://doi.org/10.1109/AINA.2016.51
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2013.02.036
//www.sciencedirect.com/science/article/pii/S108480451300074X
//www.sciencedirect.com/science/article/pii/S108480451300074X
https://doi.org/10.3390/s16060879
http://www.mdpi.com/1424-8220/16/6/879
http://www.mdpi.com/1424-8220/16/6/879
https://doi.org/10.1109/WiMOB.2016.7763268
https://doi.org/10.1109/TVT.2009.2029552
https://doi.org/10.1007/s11036-013-0475-6
http://dx.doi.org/10.1007/s11036-013-0475-6
https://doi.org/10.1109/TEMU.2014.6917746

[20] ——, “An efficient sch utilization scheme for ieee 1609.4 multi-channel environments
in vanets”, in Communications (ICC), 2016 IEEE International Conference on, IEEE,
2016, pp. 1–6.

[21] D. B. Rawat, D. C. Popescu, G. Yan, and S. Olariu, “Enhancing vanet performance
by joint adaptation of transmission power and contention window size”, IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 9, pp. 1528–1535, 2011.

[22] R. Baldessari, D. Scanferla, L. Le, W. Zhang, and A. Festag, “Joining forces for
vanets: A combined transmit power and rate control algorithm”, in 6th international
workshop on intelligent transportation (WIT), 2010.

[23] M. Amadeo, C. Campolo, and A. Molinaro, “Enhancing {ieee} 802.11p/wave to pro-
vide infotainment applications in {vanets}”, Ad Hoc Networks, vol. 10, no. 2, pp. 253
–269, 2012, Recent Advances in Analysis and Deployment of {IEEE} 802.11e and
{IEEE} 802.11p Protocol Families, issn: 1570-8705. doi: http://dx.doi.org/10.
1016/j.adhoc.2010.09.013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1570870510001538.

[24] L. Urquiza-Aguiar, A. Vázquez-Rodas, C. Tripp-Barba, M. A. Igartua, L. J. de la
Cruz Llopis, and E. S. Gargallo, “Max-min based buffer allocation for vanets”, in 2014
IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC
2014), Sep. 2014, pp. 1–5. doi: 10.1109/WIVEC.2014.6953231.

[25] C. Y. Chang, H. C. Yen, and D. J. Deng, “V2v qos guaranteed channel access in ieee
802.11p vanets”, IEEE Transactions on Dependable and Secure Computing, vol. 13,
no. 1, pp. 5–17, Jan. 2016, issn: 1545-5971. doi: 10.1109/TDSC.2015.2399912.

[26] Q. Wang, S. Leng, Y. Zhang, and H. Fu, “A qos supported multi-channel mac for
vehicular ad hoc networks”, in Vehicular Technology Conference (VTC Spring), 2011
IEEE 73rd, IEEE, 2011, pp. 1–5.

[27] H. T. Cheng, H. Shan, and W. Zhuang, “Infotainment and road safety service support
in vehicular networking: From a communication perspective”, Mechanical Systems
and Signal Processing, vol. 25, no. 6, pp. 2020 –2038, 2011, Interdisciplinary Aspects
of Vehicle Dynamics, issn: 0888-3270. doi: http://dx.doi.org/10.1016/j.ymssp.
2010.11.009. [Online]. Available: //www.sciencedirect.com/science/article/
pii/S0888327010004127.

[28] D. T. Tuan, S. Sakata, and N. Komuro, “Priority and admission control for assuring
quality of i2v emergency services in vanets integrated with wireless lan mesh net-
works”, in 2012 Fourth International Conference on Communications and Electronics
(ICCE), Aug. 2012, pp. 91–96. doi: 10.1109/CCE.2012.6315877.

102

https://doi.org/http://dx.doi.org/10.1016/j.adhoc.2010.09.013
https://doi.org/http://dx.doi.org/10.1016/j.adhoc.2010.09.013
http://www.sciencedirect.com/science/article/pii/S1570870510001538
http://www.sciencedirect.com/science/article/pii/S1570870510001538
https://doi.org/10.1109/WIVEC.2014.6953231
https://doi.org/10.1109/TDSC.2015.2399912
https://doi.org/http://dx.doi.org/10.1016/j.ymssp.2010.11.009
https://doi.org/http://dx.doi.org/10.1016/j.ymssp.2010.11.009
//www.sciencedirect.com/science/article/pii/S0888327010004127
//www.sciencedirect.com/science/article/pii/S0888327010004127
https://doi.org/10.1109/CCE.2012.6315877

[29] C. Chrysostomou, C. Djouvas, and L. Lambrinos, “Dynamically adjusting the min-
max contention window for providing quality of service in vehicular networks”, in
2012 The 11th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),
Jun. 2012, pp. 16–23. doi: 10.1109/MedHocNet.2012.6257117.

[30] W. Alasmary and W. Zhuang, “Mobility impact in {ieee} 802.11p infrastructureless
vehicular networks”, Ad Hoc Networks, vol. 10, no. 2, pp. 222 –230, 2012, Recent
Advances in Analysis and Deployment of {IEEE} 802.11e and {IEEE} 802.11p Pro-
tocol Families, issn: 1570-8705. doi: http://dx.doi.org/10.1016/j.adhoc.2010.
06.006. [Online]. Available: //www.sciencedirect.com/science/article/pii/
S1570870510000703.

[31] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Exploiting context severity to
achieve opportunistic service differentiation in vehicular ad hoc networks”, IEEE
Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2901–2915, 2014.

[32] M. A. Salahuddin, A. Al-Fuqaha, F. Jacquelin, and Y. Shim, “Context severity based
opportunistic service reprioritization for ieee 802.11 p vanets”, in 2013 9th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC),
IEEE, 2013, pp. 1623–1628.

[33] S. Banani and S. Gordon, “Selecting basic safety messages to verify in vanets using
zone priority”, in The 20th Asia-Pacific Conference on Communication (APCC2014),
Oct. 2014, pp. 423–428. doi: 10.1109/APCC.2014.7092849.

[34] S. Biswas and J. Mišić, “Relevance-based verification of vanet safety messages”, in
2012 IEEE International Conference on Communications (ICC), Jun. 2012, pp. 5124–
5128. doi: 10.1109/ICC.2012.6364399.

[35] J. Y. L. Boudec and P. Thiran, “A short tutorial on network calculus. i. fundamental
bounds in communication networks”, in Circuits and Systems, 2000. Proceedings.
ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol. 4, 2000, 93–
96 vol.4. doi: 10.1109/ISCAS.2000.858696.

[36] A. Ceselli and G. Righini, “An optimization algorithm for a penalized knapsack
problem”, en, Operations Research Letters, vol. 34, no. 4, pp. 394–404, Jul. 2006,
issn: 01676377. doi: 10.1016/j.orl.2005.06.001. [Online]. Available: http:
/ / linkinghub . elsevier . com / retrieve / pii / S0167637705000751 (visited on
09/16/2016).

[37] L. Bedogni, M. Gramaglia, A. Vesco, M. Fiore, J. Härri, and F. Ferrero, “The bologna
ringway dataset: Improving road network conversion in sumo and validating ur-
ban mobility via navigation services”, IEEE Transactions on Vehicular Technology,
vol. 64, no. 12, pp. 5464–5476, 2015.

103

https://doi.org/10.1109/MedHocNet.2012.6257117
https://doi.org/http://dx.doi.org/10.1016/j.adhoc.2010.06.006
https://doi.org/http://dx.doi.org/10.1016/j.adhoc.2010.06.006
//www.sciencedirect.com/science/article/pii/S1570870510000703
//www.sciencedirect.com/science/article/pii/S1570870510000703
https://doi.org/10.1109/APCC.2014.7092849
https://doi.org/10.1109/ICC.2012.6364399
https://doi.org/10.1109/ISCAS.2000.858696
https://doi.org/10.1016/j.orl.2005.06.001
http://linkinghub.elsevier.com/retrieve/pii/S0167637705000751
http://linkinghub.elsevier.com/retrieve/pii/S0167637705000751

[38] H. Rakouth, P. Alexander, A. J. Brown, W. Kosiak, M. Fukushima, L. Ghosh, C.
Hedges, H. Kong, S. Kopetzki, R. Siripurapu, and J. Shen, “V2x communication
technology: Field experience and comparative analysis”, in Proceedings of the FISITA
2012 World Automotive Congress: Volume 12: Intelligent Transport SystemITS &
Internet of Vehicles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 113–
129, isbn: 978-3-642-33838-0. doi: 10.1007/978- 3- 642- 33838- 0_10. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33838-0_10.

[39] VLC media player. [Online]. Available: http://www.videolan.org/.
[40] Wireshark - network protocol analyzer. [Online]. Available: https://www.wireshark.

org/.
[41] United Nations Population Division, Data booklet - the world’s cities in 2016, 2016.

[Online]. Available: http://tinyurl.com/WorldCities2016.
[42] S. Tabatabai, I. Mohammed, A. Al-Fuqaha, and M. A. Salahuddin, “Managing a

cluster of IoT brokers in support of smart city applications”, in IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Oct. 2017, pp. 1–6. doi: 10.1109/PIMRC.2017.8292620.

[43] I. Jawhar, N. Mohamed, and J. Al-Jaroodi, “Networking and communication for smart
city systems”, in IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation, Aug. 2017, pp. 1–7. doi: 10.1109/UIC-
ATC.2017.8397563.

[44] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil, M. Guizani,
and A. Al-Fuqaha, “Smart cities: A survey on data management, security, and en-
abling technologies”, IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2456–2501, 2017, issn: 1553-877X. doi: 10.1109/COMST.2017.2736886.

[45] Z. Su, Y. Hui, and Q. Yang, “The next generation vehicular networks: A content-
centric framework”, IEEE Wireless Communications, vol. 24, no. 1, pp. 60–66, Feb.
2017, issn: 1536-1284. doi: 10.1109/MWC.2017.1600195WC.

[46] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data deliv-
ery in sparse mobile ad hoc networks”, in Proceedings of the 5th ACM international
symposium on Mobile ad hoc networking and computing, ACM, 2004, pp. 187–198.

[47] J. Paradells, C. Gomez, I. Demirkol, J. Oller, and M. Catalan, “Infrastructureless
smart cities. use cases and performance”, in International Conference on Smart Com-
munications in Network Technologies (SaCoNeT), Jun. 2014, pp. 1–6. doi: 10.1109/
SaCoNeT.2014.6867772.

104

https://doi.org/10.1007/978-3-642-33838-0_10
http://dx.doi.org/10.1007/978-3-642-33838-0_10
http://www.videolan.org/
https://www.wireshark.org/
https://www.wireshark.org/
http://tinyurl.com/WorldCities2016
https://doi.org/10.1109/PIMRC.2017.8292620
https://doi.org/10.1109/UIC-ATC.2017.8397563
https://doi.org/10.1109/UIC-ATC.2017.8397563
https://doi.org/10.1109/COMST.2017.2736886
https://doi.org/10.1109/MWC.2017.1600195WC
https://doi.org/10.1109/SaCoNeT.2014.6867772
https://doi.org/10.1109/SaCoNeT.2014.6867772

[48] A. Bouroumine, M. Zekraoui, and M. Abdelilah, “The influence of the opportunistic
vehicular networks on smart cities management study case on Agdal district in Rabat
city”, in 4th IEEE International Colloquium on Information Science and Technology
(CiSt), Oct. 2016, pp. 830–834. doi: 10.1109/CIST.2016.7805002.

[49] M. Aloqaily, I. A. Ridhawi, B. Kantraci, and H. T. Mouftah, “Vehicle as a resource
for continuous service availability in smart cities”, in IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Oct.
2017, pp. 1–6. doi: 10.1109/PIMRC.2017.8292752.

[50] F. Hagenauer, C. Sommer, R. Onishi, M. Wilhelm, F. Dressler, and O. Altintas,
“Interconnecting smart cities by vehicles: How feasible is it?”, in IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 788–
793. doi: 10.1109/INFCOMW.2016.7562184.

[51] M. A. Khan, S. Sargento, and M. Luis, “Data collection from smart-city sensors
through large-scale urban vehicular networks”, in IEEE 86th Vehicular Technology
Conference (VTC-Fall), Sep. 2017, pp. 1–6. doi: 10.1109/VTCFall.2017.8288308.

[52] C. Giannini, P. Calegari, C. Buratti, and R. Verdone, “Delay tolerant network for
smart city: Exploiting bus mobility”, inAEIT International Annual Conference (AEIT),
Oct. 2016, pp. 1–6. doi: 10.23919/AEIT.2016.7892779.

[53] M. Otomo, K. Hashimoto, N. Uchida, and Y. Shibata, “Mobile cloud computing
usage for onboard vehicle servers in collecting disaster data information”, in IEEE
8th International Conference on Awareness Science and Technology (iCAST), Nov.
2017, pp. 475–480. doi: 10.1109/ICAwST.2017.8256504.

[54] M. Bonola, L. Bracciale, P. Loreti, R. Amici, A. Rabuffi, and G. Bianchi, “Oppor-
tunistic communication in smart city: Experimental insight with small-scale taxi fleets
as data carriers”, Ad Hoc Networks, vol. 43, pp. 43 –55, 2016, issn: 1570-8705. doi:
https://doi.org/10.1016/j.adhoc.2016.02.002.

[55] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, “A cooperative caching scheme based
on mobility prediction in vehicular content centric networks”, IEEE Transactions on
Vehicular Technology, vol. 67, no. 6, pp. 5435–5444, Jun. 2018, issn: 0018-9545. doi:
10.1109/TVT.2017.2784562.

[56] P. C. Besse, B. Guillouet, J. Loubes, and F. Royer, “Destination prediction by trajec-
tory distribution-based model”, IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 19, no. 8, Aug. 2018, issn: 1524-9050. doi: 10.1109/TITS.2017.2749413.

[57] X. Wang, W. Wu, and D. Qi, “Mobility-aware participant recruitment for vehicle-
based mobile crowdsensing”, IEEE Transactions on Vehicular Technology, vol. 67,
no. 5, pp. 4415–4426, May 2018, issn: 0018-9545. doi: 10.1109/TVT.2017.2787750.

105

https://doi.org/10.1109/CIST.2016.7805002
https://doi.org/10.1109/PIMRC.2017.8292752
https://doi.org/10.1109/INFCOMW.2016.7562184
https://doi.org/10.1109/VTCFall.2017.8288308
https://doi.org/10.23919/AEIT.2016.7892779
https://doi.org/10.1109/ICAwST.2017.8256504
https://doi.org/https://doi.org/10.1016/j.adhoc.2016.02.002
https://doi.org/10.1109/TVT.2017.2784562
https://doi.org/10.1109/TITS.2017.2749413
https://doi.org/10.1109/TVT.2017.2787750

[58] A. Narayanan, N. Mitrovic, M. T. Asif, J. Dauwels, and P. Jaillet, “Travel time esti-
mation using speed predictions”, in IEEE 18th International Conference on Intelligent
Transportation Systems, Sep. 2015, pp. 2256–2261. doi: 10.1109/ITSC.2015.364.

[59] A. Broder, A. Kirsch, R. Kumar, M. Mitzenmacher, E. Upfal, and S. Vassilvitskii,
“The hiring problem and lake wobegon strategies”, SIAM Journal on Computing,
vol. 39, no. 4, pp. 1233–1255, 2010. doi: 10.1137/07070629X. eprint: https://
doi.org/10.1137/07070629X. [Online]. Available: https://doi.org/10.1137/
07070629X.

[60] S. Vassilvitskii, A. Broder, A. Kirsch, R. Kumar, M. Mitzenmacher, and E. Upfal, The
hiring problem: Going beyond secretaries, 2007. [Online]. Available: http://theory.
stanford.edu/~sergei/slides/hiring-dagstuhl.pdf.

[61] H. Zhu and M. Li, Studies on Urban Vehicular Ad-hoc Networks, ser. SpringerBriefs in
Computer Science. New York, NY: Springer New York, 2013, isbn: 978-1-4614-8047-
1. doi: 10.1007/978-1-4614-8048-8. [Online]. Available: http://link.springer.
com/10.1007/978-1-4614-8048-8.

[62] R. Moussalli, M. Srivatsa, and S. Asaad, “Fast and flexible conversion of geohash codes
to and from latitude/longitude coordinates”, in 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, May 2015, pp. 179–
186. doi: 10.1109/FCCM.2015.18.

[63] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-enhanced
federated learning for industrial artificial intelligence”, IEEE Transactions on Indus-
trial Informatics, pp. 1–1, Oct. 2019, issn: 1941-0050. doi: 10.1109/TII.2019.
2945367.

[64] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating devices:
A consensus approach for massive IoT networks”, IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4641–4654, May 2020, issn: 2372-2541. doi: 10.1109/JIOT.2020.
2964162.

[65] J. Jeon, J. Kim, J. Huh, H. Kim, and S. Cho, “Overview of distributed federated learn-
ing: Research issues, challenges, and biomedical applications”, in 2019 International
Conference on Information and Communication Technology Convergence (ICTC),
Jeju Island, Korea (South), Oct. 2019, pp. 1426–1427. doi: 10.1109/ICTC46691.
2019.8939954.

[66] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-preserving
federated deep learning”, in 2019 IEEE International Conference on Communications
(ICC), Shanghai, China, May 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761267.

106

https://doi.org/10.1109/ITSC.2015.364
https://doi.org/10.1137/07070629X
https://doi.org/10.1137/07070629X
https://doi.org/10.1137/07070629X
https://doi.org/10.1137/07070629X
https://doi.org/10.1137/07070629X
http://theory.stanford.edu/~sergei/slides/hiring-dagstuhl.pdf
http://theory.stanford.edu/~sergei/slides/hiring-dagstuhl.pdf
https://doi.org/10.1007/978-1-4614-8048-8
http://link.springer.com/10.1007/978-1-4614-8048-8
http://link.springer.com/10.1007/978-1-4614-8048-8
https://doi.org/10.1109/FCCM.2015.18
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/JIOT.2020.2964162
https://doi.org/10.1109/JIOT.2020.2964162
https://doi.org/10.1109/ICTC46691.2019.8939954
https://doi.org/10.1109/ICTC46691.2019.8939954
https://doi.org/10.1109/ICC.2019.8761267

[67] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and
applications”, ACM Transactions on Intelligent Systems and Technology, vol. 10,
no. 2, Jan. 2019, issn: 2157-6904. doi: 10.1145/3298981. [Online]. Available: https:
//doi.org/10.1145/3298981.

[68] Q. Li, Z. Wen, and B. He, “A survey on federated learning systems: Vision, hype and
reality for data privacy and protection”, ArXiv, vol. abs/1907.09693, 2019. [Online].
Available: http://arxiv.org/abs/1907.09693.

[69] D. Liu, T. Miller, R. Sayeed, and K. Mandl, “FADL: federated-autonomous deep
learning for distributed electronic health record”, ArXiv, vol. abs/1811.11400, 2018.
[Online]. Available: http://arxiv.org/abs/1811.11400.

[70] D. Conway-Jones, T. Tuor, S. Wang, and K. Leung, “Demonstration of federated
learning in a resource-constrained networked environment”, in 2019 IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP), Washington, DC, USA,
Jun. 2019, pp. 484–486. doi: 10.1109/SMARTCOMP.2019.00095.

[71] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular edge computing:
A selective model aggregation approach”, IEEE Access, vol. 8, pp. 23 920–23 935, Jan.
2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.2968399.

[72] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas, “Communication-
Efficient Learning of Deep Networks from Decentralized Data”, in Proceedings of the
20th International Conference on Artificial Intelligence and Statistics (AISTATS),
A. Singh and J. Zhu, Eds., ser. Proceedings of Machine Learning Research, vol. 54,
Fort Lauderdale, FL, USA: PMLR, Apr. 2017, pp. 1273–1282. [Online]. Available:
http://proceedings.mlr.press/v54/mcmahan17a.html.

[73] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions”, IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50–60, 2020.

[74] P. Kairouz, H. McMahan, B. Avent, A. Bellet, M. Bennis, A. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R.D’Oliveira, S. E. Rouayheb, D. Evans, J.
Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. Gibbons, M. Gruteser, Z. Harchaoui, C.
He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak,
J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal,
M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar,
D. Song, W. Song, S. Stich, Z. Sun, A. Suresh, F. Tramèr, P. Vepakomma, J. Wang,
L. Xiong, Z. Xu, Q. Yang, F. Yu, H. Yu, and S. Zhao, “Advances and open problems
in federated learning”, ArXiv, vol. abs/1912.04977, 2019. [Online]. Available: http:
//arxiv.org/abs/1912.04977.

[75] V. Selis and A. Marshall, “A classification-based algorithm to detect forged embedded
machines in IoT environments”, IEEE Systems Journal, vol. 13, no. 1, pp. 389–399,
Mar. 2019.

107

https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
http://arxiv.org/abs/1907.09693
http://arxiv.org/abs/1811.11400
https://doi.org/10.1109/SMARTCOMP.2019.00095
https://doi.org/10.1109/ACCESS.2020.2968399
http://proceedings.mlr.press/v54/mcmahan17a.html
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977

[76] W. Lim, N. Luong, D. Hoang, Y. Jiao, Y. Liang, Q. Yang, D. Niyato, and C. Miao,
“Federated learning in mobile edge networks: A comprehensive survey”,ArXiv, vol. abs/1909.11875,
2019. [Online]. Available: http://arxiv.org/abs/1909.11875.

[77] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-
don, J. Konecný, S. Mazzocchi, H. McMahan, T. Overveldt, D. Petrou, D. Ram-
age, and J. Roselander, “Towards federated learning at scale: System design”, ArXiv,
vol. abs/1902.01046, 2019. [Online]. Available: http://arxiv.org/abs/1902.01046.

[78] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing systems”, IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221, Jun.
2019, issn: 1558-0008. doi: 10.1109/JSAC.2019.2904348.

[79] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning for wireless
edge intelligence in IoT”, IEEE Internet of Things Journal, pp. 1–1, Nov. 2019.

[80] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning”, IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1310–1322, Apr.
2020.

[81] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning via mo-
mentum gradient descent”, IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1754–1766, Feb. 2020.

[82] Y. Liu, Y. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong, and Q. Yang, “A
communication efficient collaborative learning framework for distributed features”,
ArXiv, vol. abs/1912.11187, 2020. [Online]. Available: http : / / arxiv . org / abs /
1912.11187.

[83] X. Yao, C. Huang, and L. Sun, “Two-stream federated learning: Reduce the commu-
nication costs”, in 2018 IEEE Visual Communications and Image Processing (VCIP),
Dec. 2018, pp. 1–4.

[84] L. Liu, J. Zhang, S. Song, and K. Letaief, “Client-edge-cloud hierarchical federated
learning”, ArXiv, vol. abs/1905.06641, 2019. [Online]. Available: http://arxiv.org/
abs/1905.06641.

[85] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-based compu-
tation offloading optimization in edge computing-supported internet of things”, IEEE
Access, vol. 7, pp. 69 194–69 201, Jun. 2019.

[86] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “Performance optimiza-
tion of federated learning over wireless networks”, in 2019 IEEE Global Communica-
tions Conference (GLOBECOM), Dec. 2019, pp. 1–6.

[87] T. Nishio and R. Yonetani, “Client selection for federated learning with heterogeneous
resources in mobile edge”, in 2019 IEEE International Conference on Communica-
tions (ICC), May 2019, pp. 1–7. doi: 10.1109/ICC.2019.8761315.

108

http://arxiv.org/abs/1909.11875
http://arxiv.org/abs/1902.01046
https://doi.org/10.1109/JSAC.2019.2904348
http://arxiv.org/abs/1912.11187
http://arxiv.org/abs/1912.11187
http://arxiv.org/abs/1905.06641
http://arxiv.org/abs/1905.06641
https://doi.org/10.1109/ICC.2019.8761315

[88] L. WANG, W. WANG, and B. LI, “Cmfl: Mitigating communication overhead for
federated learning”, in 2019 IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS), Jul. 2019, pp. 954–964. doi: 10.1109/ICDCS.2019.00099.

[89] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L. Wang, “Efficient training
management for mobile crowd-machine learning: A deep reinforcement learning ap-
proach”, IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1345–1348, May
2019.

[90] H. Nguyen, N. Luong, J. Zhao, C. Yuen, and D. Niyato, “Resource allocation in
mobility-aware federated learning networks: A deep reinforcement learning approach”,
ArXiv, vol. abs/1910.09172, 2019. [Online]. Available: http://arxiv.org/abs/1910.
09172.

[91] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani, “Hybrid-fl
for wireless networks: Cooperative learning mechanism using non-iid data”, arXiv,
vol. abs/1905.07210, 2019. [Online]. Available: http://arxiv.org/abs/1905.07210.

[92] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and communication-
efficient federated learning from non-i.i.d. data”, IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1–14, Nov. 2019.

[93] J. Konecný, H. McMahan, F. Yu, P. Richtárik, A. Suresh, and D. Bacon, “Federated
learning: Strategies for improving communication efficiency”, ArXiv, vol. abs/1610.05492,
2017. [Online]. Available: http://arxiv.org/abs/1610.05492.

[94] S. Caldas, J. Konecný, H. McMahan, and A. Talwalkar, “Expanding the reach of fed-
erated learning by reducing client resource requirements”, ArXiv, vol. abs/1812.07210,
2018. [Online]. Available: http://arxiv.org/abs/1812.07210.

[95] T. Ferguson, “Who solved the secretary problem”, Statistical Science, vol. 4, no. 2,
pp. 282–289, 1989.

[96] L. Bayón, P. Fortuny, J. Grau, A. Oller-Marcén, and M. Ruiz, “The best-or-worst and
the postdoc problems with random number of candidates”, Journal of Combinatorial
Optimization, vol. 38, pp. 86–110, Jul. 2019.

[97] P. Freeman, “The secretary problem and its extensions: A review”, International
Statistical Review, vol. 51, pp. 189–206, Aug. 1983.

[98] J. Gilbert and F. Mosteller, “Recognizing the maximum of a sequence”, Journal of
the American Statistical Association, vol. 61, no. 313, pp. 35–73, 1966. doi: 10.1080/
01621459.1966.10502008. [Online]. Available: https://amstat.tandfonline.com/
doi/abs/10.1080/01621459.1966.10502008.

[99] R. Kleinberg, “A multiple-choice secretary algorithm with applications to online auc-
tions”, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’05, Vancouver, British Columbia, Canada: Society for Indus-
trial and Applied Mathematics, Jan. 2005, 630–631, isbn: 0898715857.

109

https://doi.org/10.1109/ICDCS.2019.00099
http://arxiv.org/abs/1910.09172
http://arxiv.org/abs/1910.09172
http://arxiv.org/abs/1905.07210
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1812.07210
https://doi.org/10.1080/01621459.1966.10502008
https://doi.org/10.1080/01621459.1966.10502008
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1966.10502008
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1966.10502008

[100] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “Online auctions and gen-
eralized secretary problems”, SIGecom Exch., vol. 7, no. 2, Jun. 2008. doi: 10.1145/
1399589 . 1399596. [Online]. Available: https : / / doi . org / 10 . 1145 / 1399589 .
1399596.

[101] L. Guo and I. Matta, “The war between mice and elephants”, in Proceedings Ninth
International Conference on Network Protocols. ICNP 2001, Riverside, CA, USA,
Nov. 2001, pp. 180–188. doi: 10.1109/ICNP.2001.992898.

[102] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “Online auctions and gen-
eralized secretary problems”, SIGecom Exch., vol. 7, no. 2, Jun. 2008. doi: 10.1145/
1399589 . 1399596. [Online]. Available: https : / / doi . org / 10 . 1145 / 1399589 .
1399596.

[103] R. Vaze, “Competitive ratio analysis of online algorithms to minimize packet trans-
mission time in energy harvesting communication system”, in 2013 Proceedings IEEE
INFOCOM, Turin, Italy, Apr. 2013, pp. 115–1123.

[104] M. Shahid, G. Blanc, Z. Zhang, and H. Debar, “IoT devices recognition through
network traffic analysis”, in 2018 IEEE International Conference on Big Data (Big
Data), Seattle, WA, USA, 2018, pp. 5187–5192.

[105] M. Santos, R. Andrade, D. Gomes, and A. Callado, “An efficient approach for device
identification and traffic classification in IoT ecosystems”, in 2018 IEEE Symposium
on Computers and Communications (ISCC), Natal, Brazil, Jun. 2018, pp. 304–309.

[106] J. Bugeja, P. Davidsson, and A. Jacobsson, “Functional classification and quantitative
analysis of smart connected home devices”, in 2018 Global Internet of Things Summit
(GIoTS), Bilbao, Spain, Jun. 2018, pp. 1–6.

[107] B. Desai, D. Divakaran, I. Nevat, G. Peter, and M. Gurusamy, “A feature-ranking
framework for IoT device classification”, in 2019 11th International Conference on
Communication Systems Networks (COMSNETS), Bengaluru, India, India, Jan. 2019,
pp. 64–71.

[108] F. Shaikh, E. Bou-Harb, J. Crichigno, and N. Ghani, “A machine learning model
for classifying unsolicited IoT devices by observing network telescopes”, in 2018 14th
International Wireless Communications Mobile Computing Conference (IWCMC),
Limassol, Cyprus, Jun. 2018, pp. 938–943.

[109] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and S. Tarkoma, “IoT
SENTINEL: Automated device-type identification for security enforcement in IoT”, in
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS),
Atlanta, GA, USA, Jun. 2017, pp. 2177–2184.

110

https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1109/ICNP.2001.992898
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596
https://doi.org/10.1145/1399589.1399596

[110] A. Sivanathan, D. Sherratt, H. Gharakheili, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman, “Characterizing and classifying IoT traffic in smart cities
and campuses”, in 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, May 2017, pp. 559–564.

[111] Y. Meidan, M. Bohadana, A. Shabtai, J. Guarnizo, M. Ochoa, N. Tippenhauer, and
Y. Elovici, “Profiliot: A machine learning approach for IoT device identification based
on network traffic analysis”, in Proceedings of the Symposium on Applied Computing,
ser. SAC ’17, Marrakech, Morocco: Association for Computing Machinery, Apr. 2017,
506–509, isbn: 9781450344869. doi: 10.1145/3019612.3019878. [Online]. Available:
https://doi.org/10.1145/3019612.3019878.

[112] A. Sivanathan, H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath,
and V. Sivaraman, “Classifying IoT devices in smart environments using network traf-
fic characteristics”, IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1745–
1759, Aug. 2019.

[113] P. Perricone, B. Hudson, B. Anderson, B. Long, and D. McGrew, Joy a package for
capturing and analyzing network data features, 2nd ed., Cisco Systems, Jan. 2018.

[114] I. Mohammed, Federated IoT classification, https : / / github . com / IhabMoha /
Federated-IoT-Classification, 2020.

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python”,
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, Oct. 2011.

111

https://doi.org/10.1145/3019612.3019878
https://doi.org/10.1145/3019612.3019878
https://github.com/IhabMoha/Federated-IoT-Classification
https://github.com/IhabMoha/Federated-IoT-Classification

	Resource Optimization in Support of IoT Applications
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Introduction
	Statement of the Problem
	Purpose of the Research
	Significance of the Study
	Contributions
	Structure of the Dissertation

	Severity-Based Prioritized Processing of Packets with Application in VANETs
	Introduction
	Motivation
	Contributions
	Examples of Applications
	Organization

	Related Work
	System Model
	Prioritization Model
	System Parameters

	Delay Upper-Bounds
	Problem Formulation
	Derivation of the Delay Constraints
	PMKP Formulation
	Proof of NP-Hardness

	Heuristic Solution
	Lower Bound Solution
	Upper Bound Solution
	Fixing Upper Bound Solution
	Upper Bound Solution Proof

	Experimental Results
	VANET Traffic Characterization
	Simulation Settings
	Comparison Study: Proposed Heuristic Versus PMKP
	Comparison Study: Proposed Heuristic Versus Non-Prioritized Processing

	Future Directions and Conclusion
	Acknowledgment

	Opportunistic Data Ferrying in Areas with Limited Information and Communications Infrastructure
	Introduction
	Related Work
	System Model
	Online Hiring Algorithms
	Heuristic Solution
	Illustrative Example
	Experimental Results
	Dataset & Experimental Settings
	Results Discussion

	Conclusions and Future Work

	Budgeted Online Selection of Candidate Clients to Participate in Federated Learning
	Introduction
	Background
	Related Work
	Algorithm Optimization
	Selective Updates
	Model Compression
	Secretary Problem

	System Model
	Proposed Client Selection Solution
	Proposed Algorithm
	Toy Illustrative Example

	Performance Analysis
	Optimal Value for Lg
	Worst-Case Analysis (Competitive Ratio Analysis)

	Experimental Settings
	Use Case: IoT Device Classification
	Dataset Details and Preprocessing Phases
	Experiments

	Result Discussion
	Experimenting with Different Values of Lg
	Experimenting with Different Values of Lg
	Experimenting with Different Values of Lg
	Lessons Learned

	Conclusions and Future Work

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	BIBLIOGRAPHY

