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Abstract 

 

Active Galactic Nuclei (AGN) are the most luminous long-lived objects in the universe. 

The phenomenon of the immense luminosities we observe for AGN has interested physicists and 

astronomers for over a century and continues to fascinate scientists today. The work in this thesis 

aims to provide an introductory exploration of this phenomenon. This thesis uses a simple model 

of AGN accretion disks that was developed under the standard disk model proposed by Shakura 

& Sunyev in 1973 under the simplest assumptions. The model accurately demonstrates how 

physical parameters, such as the temperature, radiative flux, luminosity, and spectra, scale 

through an AGN accretion disk. The model is applied for characteristic mass accretion rates and 

masses of the supermassive black holes (SMBH) found at the center of most AGN. The 

dependencies of the disk's luminous power on these parameters are identified. We find that the 

inner regions of an AGN accretion disk are the hottest and therefore emit the greatest share of the 

disk’s luminosity. An accretion disk with a fixed mass accretion rate around a more massive 

SMBH is cooler than for a disk around a less massive one and is more luminous for greater 

accretion rates. The accretion disk spectra of AGN peak at ultraviolet (UV) wavelengths. For a 

fixed disk mass accretion rate, the accretion disks around less massive black holes are hotter and 

therefore have spectra that peak at shorter UV wavelengths and vice versa for spectra of 

accretion disks around more massive black holes. The shorter wavelengths in the observed 

spectrum are largely confined to arise and peak within inner regions of the disk where the 

temperature is hotter, whereas longer wavelengths are emitted from a broader range in the disk 

and peak in the outer disk where the temperature is cooler. We also applied a perturbation to the 

disk temperature through the inner section of the disk from the innermost circular stable orbit to  

r = 400 Rg to simulate with a simple model the highly variable nature of AGN. This model saw 

the shortest wavelengths contributing to the total luminosity of an accretion disk changed in their 

emission the most, as these wavelengths arise most prominently from the inner disk where our 

disk's temperature was perturbed, and the wavelengths which have significant contributions to 

the spectrum outside of r = 400 Rg fluctuated less.    
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1. Introduction  

1.1. Introductory Concepts  

Active Galactic Nuclei (AGN) are the most luminous long-lived objects in the universe. 

Galaxies are hosts to millions of stars and other matter comprised of gas and dust. The galaxy's 

nucleus (or AGN) is the central compact region about which the galaxy's stars, gas, and dust 

orbit. The question of where their immense power comes from has fascinated physicists and 

astronomers for over a century. Below is a brief history of the discovery of AGN and their 

cosmic context. A description of how an accretion disk is formed is also provided.  

 

History and Cosmic Context of AGN 

 The discovery of AGN began in the early 1900s when Edward Fath made the first 

observations of emission lines from galactic nuclei in 1908 (Shields, 1999). Many others 

contributed to additional observations over the following decades, advancing the knowledge of 

emissions from various AGNs. In 1943 Carl Seyfert published a study of six galaxies where he 

named classification categories for AGN dependent on their spectra. There are many 

classification categories of AGN, which developed over years of discovery.  

 One category, quasars, was discovered in the 1960s following a surge of advances in 

radio astronomy in the 1950s (Shields, 1999). Quasars are the most luminous AGNs, with 

luminosities ranging from 1038 W to 1041 W (Carrol & Ostlie, 2018). The typical value of the 

luminosity of a quasar is 1039 W. This project focuses on AGN that fall into the quasar category, 

with luminosities ranging between 1036 W and 1041 W. These immense luminosities observed 

from quasars remain the most luminous objects observed in the universe since their discovery in 

the 1960s. The unknown source of the power of AGN has sparked many years of dedication to 

unveil a complete understanding of AGN. This pursuit continues today. 

Figures 1.1(a) and 1.1(b) show images of two AGN that have been observed. Figure 

1.1(a) is an image of the quasar 3C 273 where the luminosity is so great that the galaxy 

surrounding the AGN cannot be seen on this scale. In comparison, Figure 1.1(a) is an image of 

the AGN NGC 5548, where the luminous power of the AGN scales roughly one-to-one with the 

total luminous power of the galaxy.   
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Through observations and the dedication to understanding these complex objects, it has 

been established that a supermassive black hole (SMBH) is known to lie at the center of all 

AGN. A black hole is an immensely dense region of space whose gravitational field is so strong 

that nothing, including light, can escape its field. A SMBH is a black hole whose mass ranges 

from a million to a billion times the mass of the sun (Carroll & Ostile, 2018), 106 Mʘ to 109 Mʘ - 

where Mʘ is the standard symbolic notation for the mass of the sun whose value can be found in 

Table 7.1.  

Since nothing can escape a black hole, or SMBH, they cannot be observed directly but by 

their influence on surrounding matter. It is generally agreed that AGNs' luminous power and 

energy are produced from matter accreting onto the SMBH, where some fraction of the mass 

accreted is converted into luminous energy and powerful jets of relativistic ions. Figure 1.2 

shows an artist rendition of what physicists think the structure of an AGN might look like; a 

SMBH located at the center with an accretion disk immediately surrounding the SMBH, and a 

surrounding collection of gas and dust from the host galaxy which feeds the accretion disk. 

Figure 1.3 shows the relativistic jet emitted from the AGN of galaxy M87.  

Figure 1.1(a) – An image taken by 

the Hubble Telescope of the quasar 

3C273. Image Credit: (Hille, 2013)  

Figure 1.1(b) – An image taken by the Hubble 

Telescope of the AGN NGC 5548. Image 

Credit: (Supermassive black hole at the heart of 

NGC 5548. (n.d.).)  
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Figure 1.3 – An image taken by the Hubble Telescope of the relativistic jet emitted by 

the AGN of M87, a galaxy located 54 million light years from the Earth (Garner, 2017). 

Image Credit: (Garner, 2017)  

Figure 1.2 – An artist’s rendition of the structure of an AGN. Image Credit: (Chandra: 

Resources: Quasars & agns(Illustrations). (n.d.).)   
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One key characteristic of AGN is that they are highly variable, and the cause of their 

variability is not precisely known. There have, however, been many attempts to theorize the 

mechanisms causing variability; however, they remain only theories. Another aspect of AGN 

that is not well defined is the rotational dependency of the SMBH within AGN. It is known that 

SMBHs within AGN rotate, but the importance of the case of the rotating black hole is not fully 

understood. That is why only the case for the non-rotating black hole will be considered in this 

project. To ensure the details outlined in this paper apply as generally as possible, the parameter 

setting the rotation of the black hole has been left in the derivations of equations.  

Understanding accretion disks and the AGN phenomenon contributes to the general 

exploration and understanding of the evolution of galaxies and the universe. This project uses the 

Shakura & Sunayev standard accretion disk model (1973) under the simplest assumptions. The 

results from this model will be used to describe several characteristics of accretion disks, 

including their temperature, radiative flux, luminosity (total power), and the emitted spectrum. 

We will model four different accretion disks, with varying masses of the SMBH central to the 

AGN accretion disk and varying mass accretion rates (more discussion will follow on these 

parameters).  

 

Formation of an Accretion Disk  

To understand how an accretion disk is formed, we first consider the simplest case: a 

black hole semidetached binary system. The solution to this system follows the solution to the 

Keplerian two-body orbit problem. In this case, mass transfers from the secondary star to the 

primary star (usually a black hole) through the inner Lagrangian point when the secondary star 

has filled its Roche lobe (Carroll & Ostlie, 2018). The Roche lobe is a figure of eight outline 

(Figure 1.4) that defines the points in space with equal effective gravitational potential energy 

per unit mass. The inner Lagrangian point is the crossover point between the primary and 

secondary stars in the figure-of-eight outline. It is a point of equilibrium between the 

gravitational forces experienced by the two stars. As matter from the star falls in through the 

inner Lagrangian point, the orbital motion of the binary system and the angular momentum of the 

mass accreting prevent the transferred mass from falling directly into the black hole. Instead, it 
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falls into an accretion disk that orbits around the black hole while conserving angular 

momentum.   

 

 

Cygnus X-1 is an example of a stellar-mass black hole (21 Mʘ) in a semidetached binary 

system. It is located in our galaxy, the Milky Way, about 6,000 light-years from Earth. (A light 

year is a constant value of the distance that light can travel in one year, and its value can be 

found in Table 7.1). Figure 1.5 shows an artist's rendition of the semidetached binary system that 

hosts Cygnus X-1, which shows mass falling through the inner Lagrangian point from the 

secondary star, forming an accretion disk. The image also shows relativistic jets emitted from 

Cygnus X-1, which were previously discussed in this section.  

Figure 1.4 – An image showing the figure of eight Roche Lobe outline which the 

secondary star (Main-sequency companion) transfers mass through the crossover point 

of the figure of eight, the inner Lagrangian point forming an accretion disk. This image 

uses a white dwarf as the compact object of the primary star, but in the case of black 

hole binary systems, the white dwarf would be replaced with a stellar mass black hole. 

Image Credit: (“Chandra: Educational materials”, n.d.)  
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 For the case of AGN, the process is somewhat different because there is no singular 

source powering the formation of an accretion disk. Nevertheless, gaseous matter from the host 

galaxy finds its way into an accretion disk by falling into the immense gravitational potential 

well of the SMBH. Like the semidetached binary system, the angular momentum of the mass 

accreting into the accretion disk prevents the matter from falling directly into the SMBH. What 

happens once the matter is brought into the accretion disk will be discussed further in Section 

2.1.   

 

1.2. Organization of the paper  

Here, we briefly outline the organization of the paper. Section 2 details the structure of an 

accretion disk, which includes a detailed discussion of the equations used to build the models. 

This section focuses on an accretion disk's temperature, radiated flux, and luminosity.  

Figure 1.5 – An artist rendition of the black hole binary system which hosts the stellar 

mass black hole Cygnus X-1. The image shows the secondary star transporting mass to 

the accretion disk around the black hole. Image Credit: (Anderson & Watzke, 2011)   
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Section 3 details the spectrum of an accretion disk, including a brief exploration of the 

additional equations and principles required to build the model for the disk spectrum. We look at 

the contributions of different wavelengths throughout the disk and the total luminosity spectrum 

produced for accretion disks.  

Section 4 discusses the variability of the luminosity of AGN accretion disks and outlines 

a simple model to represent their variability. The contributions of specific wavelengths to the 

spectrum and the spectrum itself are compared to an unvaried disk, and the impacts on the 

spectrum of the simple variability model are analyzed.  

The final Section of this paper will outline the conclusions from each section.  
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2. Accretion Disk Structure 

2.1 Physical Considerations  

The model devised in the following sections was developed under the Shakura & 

Sunyaev standard accretion disk model (1973). This is a simple model of a geometrically thin, 

optically thick accretion disk, where the structure is dictated by choices in the mass of the 

SMBH, M, the disk mass-accretion rate (the time derivative of mass accretion), Mdot, and the 

ratio, x, of the innermost stable circular orbit (ISCO), Rin, to the gravitational radius (defined in 

Eq. (2.28)), Rg (x = Rin/Rg).  

 

Assumptions 

The simplest assumptions for a simple accretion disk model were used. First, we assume 

that the accretion disk is azimuthally symmetric and approximately cylindrical (Pereyra et al., 

2006). The thickness of the disk is not constant and varies with radial distance; however, under 

our assumption of a thin accretion disk, we assume that the height of the disk h, measured from 

the midplane through the disk, is much less than the radius r at every point in the disk (h << r).  

Optical depth measures the number of times light (across all wavelengths) can travel the 

average distance between collisions before reaching the disk's surface (Carroll & Ostlie, 2018). 

Under our assumption that the accretion disk is optically thick, we assume that over all the 

wavelengths emitted from the disk, the optical depth τ, as measured from the midplane of the 

disk at radius r, is:   

𝜏 = ∫ 𝜅𝜌 𝑑𝑧 ≫ 1, (2.1) 

where z is measured vertically upward from the midplane in the disk, κ is the radiative opacity at 

radius r, and ρ is the mass density at radius r. Under these conditions, the total height of the disk 

is approximately 2h, and the optical depth is approximately 2τ. Figure 2.1 shows the shape of an 

accretion disk under our assumptions. 
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Next, we assume that the gravitational field of the accretion disk is Newtonian (Pereyra et 

al., 2006). This is a fair approximation if the model remains well outside the event horizon of the 

SMBH. The event horizon is the boundary at which nothing can escape the immense 

gravitational pull of the black hole. Non-rotating black holes are governed by the Schwarzschild 

Metric, which defines the event horizon to be (Carroll & Ostlie, 2018):  

Figure 2.1 – An image showing the structure of an accretion disk, which can be seen to be 

azimuthally symmetric and cylindrical in shape, with a total height of 2h. Other parameters 

seen in the figure include: 1) the inner most circular stable orbit ri, 2) the distance between 

two adjacent radial points Δr such that r and r + Δr are adjacent, 3) the orbital speed at the two 

radial points vϕ(r) and vϕ(r + Δr), 4) the quasi-static flow of mass per unit time 𝑀ሶ , 5) the 

inward rate of angular momentum transport j+ at radius r, and 6) the consumption rate of 

angular momentum j- by the SMBH at ri. Image Credit: (“Steady State Accretion Disk 

Model”, n.d.) – with corrections by-hand to notational errors.  
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𝑅𝑠 =
2𝐺𝑀

𝑐2
, (2.2) 

where G is the gravitational constant, c is the speed of light, M is the mass of the SMBH, and Rs 

is the radius of the event horizon, also known as the Schwarzschild radius. For the duration of 

this model, we consider a non-rotating SMBH with an ISCO of 3Rs. For a SMBH of mass 108 

Mʘ, this ISCO is approximately 6 AU, where 1 AU (Astronomical Unit) is the average distance 

from the Sun to the Earth. Thus, the assumption of the gravitational field governing the accretion 

disk being Newtonian is valid.   

 The mass of the accretion disk must be negligible compared to the SMBH's, such that the 

matter accreting onto the SMBH only experiences the gravitational pull from the black hole 

(Pereyra et al., 2006). If this is the case, the path of matter accreting onto the SMBH is assumed 

to follow circular Keplerian orbits. This assumption is only approximately true. That is, if the 

matter were truly following a Keplerian orbit, it would not be accreting but remaining at a fixed 

radius.   

The accretion disk is also considered steady, with a constant amount of mass entering and 

leaving the disk and no mass build up (Pereyra et al., 2006). We assume the outermost stable 

orbit, Rout is much greater than the ISCO Rin, and shear stress is responsible for transporting mass 

from Rout to Rin. Shear stress is a friction force that acts between the layers of accreting matter, 

shown by arrows in Figure 2.1 labeled as fϕ. Shakura and Sunyaev (1973), who referred to the 

shear stress as viscosity, suggested that the shear stress fϕ was directly proportional to the local 

gas pressure Pgas since the frictional force acts against the flow of the gas at radius r. This 

relationship is, therefore:  

𝑓𝜙 = 𝛼𝑃𝑔𝑎𝑠, (2.3) 

where α is a dimensionless constant, and shear stress has units of N m-2, (Newton per square 

meter). This shear stress creates a torque W at each radius r, given by (“Steady State Accretion 

Disk Model”, n.d.):  

W = 2𝜋𝑟2𝐻𝑓𝜙, (2.4) 

where H is the full height of the disk, and torque has units of N m, (Newton meter). The torque 

W is responsible for removing the angular momentum or mass at each radius, allowing the mass 
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to accrete into the inner regions of the disk. We assume that conservation of angular momentum 

holds as shear stresses cause the matter in the disk to accrete and that Rin is the last stable orbit of 

the accretion disk, and at this radius, the shear stress is equal to zero. 

The final two assumptions we invoke are that conservation of energy holds as matter 

accretes and loses gravitational potential energy, which is converted into radiation (Pereyra et al., 

2006). Finally, we assume that the local surface emission of the accretion disk is blackbody.   

 

Blackbody Radiation  

As previously mentioned, we assume that the local surface emission is blackbody. 

Blackbody radiation is emitted from an 'ideal emitter,' also known as a blackbody (Carroll & 

Ostlie, 2018). A blackbody has a temperature above absolute zero (0 K) and emits and absorbs 

light across all wavelengths at maximum efficiency. An ideal emitter with maximum efficiency 

must absorb all incident light and radiate all the energy absorbed as a characteristic spectrum.  

Stars and planets are approximated to be blackbodies; however, they are not ideal 

blackbodies. This means we find their effective temperature, the temperature of an ideal 

blackbody emitting the same amount of electromagnetic radiation. The characteristic spectrum of 

a blackbody at temperature T is a function of wavelength as given by (Carroll & Ostlie, 2018):  

𝐵𝜆(𝑇) = (
2ℎ𝑐2

𝜆5
) (

1

𝑒
ℎ𝑐

𝜆𝑘𝑇 − 1

) , (2.5) 

where Bλ(T) is known as Planck's function, h is Planck's constant, and k is the Boltzmann 

constant. The values of both constants can be found in Table 7.1. This function of specific 

intensity has units of W m-2 nm-1 sr-1, (Watts per square meter per nanometer per steradian), 

where a nanometer, nm = 10-9 m, is the unit of the wavelength of light.  

From Planck's function at wavelength λ, the radiative energy flux of a blackbody source 

can be found. Radiative energy flux is the net flow of surface emission per unit area, which we 

find by integrating over the solid angle which is given as:  

𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜑, (2.6) 
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where θ is the angle measured from the normal of the emitting surface, and φ is the horizontal 

angle. We assume that each patch of surface area, dA emits blackbody radiation equally in all 

directions onto an outward hemisphere and we assume there is no radiation incident on the 

surface, which allows us to consider only the outward radiation. The disks specific surface flux 

Fλ, in units of W m-2 nm-2, over 2π steradians of the solid angle for the outward hemisphere is 

(Carroll & Ostlie, 2018):  

𝐹𝜆 = ∫ ∫ 𝐵𝜆(𝑇) cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜑

𝜋
2

0

2𝜋

0

= 𝜋𝐵𝜆(𝑇). (2.7) 

The total flux emitted across all wavelengths F, in units of W m-2, is then found:  

𝐹 = ∫ 𝐹𝜆 𝑑𝜆.

∞

0

 (2.8) 

Using Eq. (2.5) and performing the integrations, the total outward surface flux emitted by a 

blackbody is:  

𝐹 =
2𝜋5𝑘4

15𝑐2ℎ3
𝑇4 = 𝜎𝑆𝐵𝑇4, (2.9) 

where σSB is the Stefan-Boltzmann constant, a combination of the constants shown in Eq. (2.9) 

whose value can be found in Table 7.1.  

The radiation emitted from a blackbody of effective temperature T is a continuous 

spectrum with energy contributions at all wavelengths. Figure 2.2 is a graph of Bλ(T) vs. λ for 

three characteristic effective temperatures found in AGN accretion disks modeled in this paper.  
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Figure 2.2 demonstrates how a hotter blackbody emits a greater radiative flux than a 

cooler blackbody as shown by the difference in the area under each of the three curves. The 

shape of the curves, a result of Plank’s function, shows that not all wavelengths contribute 

equally to the total radiative flux emitted from a blackbody. In fact, the peak of the blackbody 

function moves to shorter wavelengths for a hotter emitter. The relationship between the 

effective temperature of a blackbody and the wavelength at which that blackbody function peaks 

at is given by Wien’s Law, which is found by taking the derivative of the function Bλ(T) with 

respect to λ at a constant temperature and setting it equal to zero:  

𝜕𝐵𝜆

𝜕𝜆
|

𝑇
= 0. (2.10) 

Figure 2.2 – A graph of the specific radiative flux vs. wavelength for three different effective 

blackbody temperatures that are representative of temperatures we find throughout AGN 

Accretion Disks.   
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This gives:  

ℎ𝑐

𝜆𝑚𝑎𝑥
= 4.96511𝑘𝑇, (2.11) 

where λmax is the wavelength at which the blackbody spectrum peaks. Substituting the values of 

the constants into and rearranging Eq. (2.11) gives: 

𝜆𝑚𝑎𝑥 =
2.897771955 × 106

𝑇
 𝑛𝑚, (2.12) 

where T is in units of Kelvin (K). These equations, (2.11) and (2.12), are known as Wien's Law. 

Wien's Law shows that as the temperature of the blackbody increases, λmax becomes shorter. The 

Stefan-Boltzmann Law, given by Eq. (2.9), shows that over all wavelengths, a hotter blackbody 

emits more energy per second per unit area. This can be seen in Figure 2.2, where the blackbody 

with the higher effective temperature peaks at a shorter wavelength and higher intensity. 

  

Mechanical Energy of the Disk 

We consider an accretion disk around a SMBH to be a bound system in equilibrium and 

therefore governed by the virial theorem. The virial theorem equates the time-averaged, total 

kinetic, and gravitational potential energy of the system and is given by (Carroll & Ostlie, 2018):  

2𝐾 + Ω𝑔𝑟 = 0, (2.13) 

where K is the kinetic energy, and Ωgr is the gravitational potential energy. From this theorem, 

the average kinetic energy of the system is given by: 

𝐾 = −
1

2
Ω𝑔𝑟 . (2.14) 

 We assume the gravitational field which hosts the accretion disk to be Newtonian 

(Pereyra et al., 2006). Therefore, the average gravitational potential energy of the system for a 

mass m, located in a gravitational field created by a SMBH of mass M, at a distance r from the 

SMBH is given by:   

Ω𝑔𝑟 = −
𝐺𝑀𝑚

𝑟
. (2.15) 
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The total mechanical energy of the accretion disk E is the sum of the average kinetic and 

gravitational potential energy of the system and is therefore given by:   

𝐸 = 𝐾 + Ω𝑔𝑟 =
1

2
Ω𝑔𝑟 = −

𝐺𝑀𝑚

2𝑟
. (2.16) 

 Another assumption we make is that the mass of the disk remains constant. That is that 

the disk is a steady-state mass-accretion disk (Pereyra et al., 2006). Given this assumption, the 

rate at which mass m enters and leaves the accretion disk is given by:  

𝑚 = 𝑀𝑑𝑜𝑡Δ𝑡, (2.17) 

where Δt is the time integral over which the total gravitational potential energy of the system 

changes, and Mdot is the mass-accretion rate in the disk. Substituting this into Eq. (2.17) reveals 

that the total mechanical energy of the disk is given by: 

𝐸 = −
𝐺𝑀𝑀𝑑𝑜𝑡Δ𝑡

2𝑟
. (2.18) 

 

The Temperature of the Disk 

To find the temperature of the accretion disk, we invoke the assumption that conservation 

of energy holds as the loss in the gravitational potential energy of the mass within the disk is 

converted to radiation (Pereyra et al., 2006).   

𝑑𝐸𝑟𝑎𝑑 =
𝑑𝐸

𝑑𝑟
𝑑𝑟 =

𝑑

𝑑𝑟
(−

𝐺𝑀𝑀𝑑𝑜𝑡Δ𝑡

2𝑟
) 𝑑𝑟 =

𝐺𝑀𝑀𝑑𝑜𝑡Δ𝑡

2𝑟2
𝑑𝑟, (2.19) 

where dErad is the energy radiated away from the disk at radius r over the time interval Δt. 

Through dimensional analysis, the luminosity of the disk, defined as the amount of 

electromagnetic radiation radiated away from the disk per unit time (the rate of change of 

radiative flux), at radius r (dLring), is then:  

𝑑𝐿𝑟𝑖𝑛𝑔(𝑟) =
𝑑𝐸𝑟𝑎𝑑

Δ𝑡
=

𝐺𝑀𝑀𝑑𝑜𝑡

2𝑟2
𝑑𝑟. (2.20) 

To relate the luminosity of the disk, as written above, to the disk's temperature, we 

assume that at radius r, the disk's surface emission is locally blackbody. The total surface flux 
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emitted from a blackbody, the Stefan-Boltzmann Law, was previously outlined and given by Eq. 

(2.9). This law also gives the luminosity of the disk at radius r, under the assumption stated to be:  

𝐿𝑟𝑖𝑛𝑔(𝑟) = 𝐴𝑟𝑖𝑛𝑔(𝑟)𝜎𝑆𝐵𝑇𝑒𝑓𝑓(𝑟)4, (2.21) 

where Teff(r) is the effective temperature of the disk at radius r, and Aring(r) is the surface area of 

the two-sided accretion disk at radius r, which is: 

𝑑𝐴𝑟𝑖𝑛𝑔(𝑟) = 2 × 2𝜋𝑟𝑑𝑟. (2.22) 

Combining the Stefan-Boltzmann equation, given by Eq. (2.21), and the derived surface area of 

the two-sided accretion disk, the luminosity of the disk at radius r, is then:   

𝑑𝐿𝑟𝑖𝑛𝑔(𝑟) = 4𝜋𝑟𝜎𝑆𝐵𝑇𝑒𝑓𝑓(𝑟)4𝑑𝑟. (2.23) 

Equating this equation, Eq. (2.23), to the equation for the luminosity of the disk at radius r 

derived from the conservation of energy, Eq. (2.20), the effective temperature of the disk can be 

expressed as:  

𝑇𝑒𝑓𝑓(𝑟) = (
𝐺𝑀𝑀𝑑𝑜𝑡

8𝜋𝜎𝑆𝐵𝑟3
)

1
4

. (2.24) 

The ISCO, Rin, is a crucial parameter of accretion disks. The effective temperature of an 

accretion disk can be expressed in terms of Rin and is then:  

𝑇𝑒𝑓𝑓(𝑟) = (
𝐺𝑀𝑀𝑑𝑜𝑡

8𝜋𝜎𝑆𝐵𝑅𝑖𝑛
3)

1
4

(
𝑅𝑖𝑛

𝑟
)

3
4

. (2.25) 

A better estimate given by Shakura and Sunyaev (1973) in their outline of the standard disk 

model gives Eq. (2.25) to be: 

𝑇𝑒𝑓𝑓(𝑟) = (
3𝐺𝑀𝑀𝑑𝑜𝑡

8𝜋𝜎𝑆𝐵𝑅𝑖𝑛
3)

1
4

(
𝑅𝑖𝑛

𝑟
)

3
4

(1 − √
𝑅𝑖𝑛

𝑟
)

1
4

. (2.26) 

It is important to note the two changes seen in Eq. (2.26) from Eq. (2.25). The first 

change is the addition of the final parenthesis, which is a result of the inner boundary condition 

where there is no torque present at the ISCO. This factor provides a mathematical solution to 
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account for the decrease in dissipation from the maximum to the ISCO where no dissipation 

occurs. Without this factor, the temperature would continue to grow until reaching the ISCO 

when it would suddenly drop to zero because there is no torque, and therefore no dissipation. To 

avoid this discontinuity, this factor is imposed to provide a more physical representation of how 

the temperature changes as we approach the ISCO of the disk.  

The second change is the appearance of the factor of three in the first parenthesis. This 

arises due to the transfer of angular momentum (Zdziarski et al., 2022). The factor of one in this 

parenthesis in Eq. (2.25) is a result of only considering the locally released gravitational potential 

energy, however, as previously noted that the transfer or angular momentum is responsible for 

the formation of an accretion disk, it is important to consider this factor in this model.    

Additionally, the first parenthesis of Eq. (2.26) contains only physical constants and 

parameters that remain constant for a particular disk. Therefore, this factor sets a scale for the 

temperature of the accretion disk, however, is commonly defined and known as the characteristic 

disk temperature (Tdisk). Tdisk is then:  

𝑇𝑑𝑖𝑠𝑘 = (
3𝐺𝑀𝑀𝑑𝑜𝑡

8𝜋𝜎𝑆𝐵𝑅𝑖𝑛
3)

1
4

. (2.27) 

The standard definition of Tdisk as ‘the characteristic disk temperature’ can be misleading and is 

better defined as the temperature scale of the accretion disk. This defines the role Tdisk plays in 

determining the temperature of an accretion disk at a particular radial point better because every 

temperature of the disk (at different radial points) scales directly from this number.    

At the beginning of this section, it was mentioned that one of the key input parameters for 

a standard model accretion disk is the ratio between the ISCO, Rin, and the gravitational radius, 

Rg. The ISCO is therefore defined by these two parameters, as stated below: 

𝑅𝑖𝑛 = 𝑥𝑅𝑔, (2.28) 

where x is the ratio between Rin and Rg, which for non-rotating black holes, has a fixed value of 

x = 6. The gravitational radius, Rg, is defined to be:  

𝑅𝑔 =
𝐺𝑀

𝑐2
= 1.4766 × 1011  (

𝑀

𝑀8
) (𝑚𝑒𝑡𝑒𝑟𝑠), (2.29) 
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where M8 = 108 Mʘ which is a characteristic mass of a SMBH found in an AGN. For a non-

rotating black hole, the ISCO orbit is therefore only dependent on the mass of the black hole; 

however, the parameter x will continue to be discussed so that the model can be applied more 

generally. By substituting Eq. (2.28) and Eq. (2.29) into Eq. (2.27), the characteristic temperature 

of the disk is then: 

𝑇𝑑𝑖𝑠𝑘 = (
3𝑀𝑑𝑜𝑡

8𝜋𝜎𝑆𝐵𝐺2𝑀2𝑥3
)

1
4

. (2.30) 

 The temperature of the disk has been shown to vary throughout the disk. Therefore, a 

maximum temperature occurs at some annulus at a point r/Rin. To find the maximum temperature 

and the position through the disk where the maximum temperature occurs, we invoke a new 

parameter U which we define to be:  

𝑈 =
𝑅𝑖𝑛

𝑟
. (2.31) 

Substituting this parameter into Eq. (2.26) gives it to be: 

𝑇𝑒𝑓𝑓(𝑈) = 𝑇𝑑𝑖𝑠𝑘(𝑈)
3
4(1 − √𝑈)

1
4. (2.32) 

We are now able to find the maximum temperature by taking the first derivative and setting it 

equal to zero: 

𝑑𝑇𝑒𝑓𝑓(𝑈)

𝑑𝑈
= 0 = 3𝑈−

1
4(1 − √𝑈)

1
4 − 𝑈

3
4(1 − √𝑈)

−
3
4 (

1

2√𝑈
) . (2.33) 

Rearranging Eq. (2.33), the value of U is found to be: 

𝑈 =
𝑅𝑖𝑛

𝑟
=

36

49
. (2.34) 

This equation is rearranged to give the point through the disk where the maximum temperature 

occurs and is found to be at r ≈ 8.16Rg. Substituting the value given in Eq. (2.34) into Eq. (2.32) 

and solving, the maximum temperature of the disk (Tmax) is found to be: 
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𝑇𝑚𝑎𝑥 = 𝑇𝑑𝑖𝑠𝑘 (
36

49
)

3
4

(1 − √
36

49
)

1
4

= 0.48787𝑇𝑑𝑖𝑠𝑘. (2.35) 

Therefore, the maximum temperature of the disk is approximately half of the characteristic 

temperature of the disk, Tdisk. It is therefore important to note that there is no point through the 

disk where the temperature equals Tdisk, reinforcing our discussion that Tdisk sets the scale of the 

run of effective temperature with radius through the accretion disk.   

 

The Luminosity of the Disk 

 The luminosity of the disk is derived by integrating the Stefan-Boltzmann Equation, Eq. 

(2.23), from the ISCO to the outer radius, (r = Rin to r = Rout). The result of this integration is 

shown below:  

𝐿𝑑𝑖𝑠𝑘 = ∫ 4𝜋𝑟𝜎𝑆𝐵𝑇𝑒𝑓𝑓(𝑟)4 𝑑𝑟
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

=
4

3
𝜋𝜎𝑆𝐵𝑅𝑖𝑛

2𝑇𝑑𝑖𝑠𝑘
4 [1 − 3 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − 2 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)

3
2

] . (2.36) 

In the case of the infinite disk, or when the outer radius is much greater than the ISCO,  
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
 

becomes negligible, and so Eq. (2.36) becomes:  

𝐿𝑑𝑖𝑠𝑘 ≈ 𝐿𝑑𝑖𝑠𝑘 ∞ =
4

3
𝜋𝑅𝑖𝑛

2𝜎𝑆𝐵𝑇𝑑𝑖𝑠𝑘
4. (2.37) 

Substituting in the equation for Tdisk, given by Eq. (2.27), for the fully integrated luminosity of a 

finite disk is then:  

𝐿𝑑𝑖𝑠𝑘 =
𝐺𝑀𝑀𝑑𝑜𝑡

2𝑅𝑖𝑛
 [1 − 3 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − 2 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)

3
2

] , (2.38) 

where for an infinite disk, Eq. (2.38) becomes:  

𝐿𝑑𝑖𝑠𝑘 ∞ =
𝐺𝑀𝑀𝑑𝑜𝑡

2𝑅𝑖𝑛
. (2.39) 
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Considering Eq. (2.39), the disk's luminosity depends on the disk's mass accretion rate. 

The equations deceivingly look like they are also mass dependent; however, by considering the 

definition of the ISCO, Rin, given by Eq. (2.28), and the definition of Rg, Eq. (2.29), there is no 

mass dependency, but the luminosity does depend on the parameter x.  

 

The Efficiency of the Disk 

 In this section, we look to determine the efficiency of an accretion disk in the case of an 

infinite disk. Eq. (2.38) gives the total luminosity of an accretion disk. By substituting in the 

value of Rin, defined by Eq. (2.28), another way of expressing this luminosity is then:  

𝐿𝑑𝑖𝑠𝑘 =
𝐺𝑀𝑀𝑑𝑜𝑡

2 (
𝐺𝑀
𝑐2 )

[1 − 3 (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − 2 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)

3
2

] =
𝑀𝑑𝑜𝑡𝑐2 

2𝑥
[1 − 3 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − 2 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)

3
2

] . (2.40) 

By introducing a new parameter, η, for the accreted mass-to-energy efficiency of an accretion 

disk, we find η to be: 

𝜂 =
1

2𝑥
[1 − 3 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − 2 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)

3
2

] , (2.41) 

where for the case of the infinite disk, η becomes:  

𝜂 =
1

2𝑥
, (2.42) 

 so that the total luminosity of an infinite disk is:   

𝐿𝑑𝑖𝑠𝑘 ∞ = 𝜂𝑀𝑑𝑜𝑡𝑐2. (2.43) 

The efficiency of the disk η is inversely proportional to x, which was earlier defined as 

the ratio between the ISCO and the gravitational radius of the disk. This ratio depends on 

whether the SMBH is rotating. Since we only consider the case for a non-rotating SMBH, this 

ratio is fixed with x = 6. Substituting this into the equation for η shows the efficiency to be:  

𝜂 =
1

2(6)
≈ 0.083. (2.44) 
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Since this is constant for the case of a non-rotating SMBH, the luminosity of an infinite accretion 

disk is only dependent on the mass accretion rate, Mdot, as shown below:  

𝐿𝑑𝑖𝑠𝑘 ∝ 𝑀𝑑𝑜𝑡. (2.45) 

 

Eddington Luminosity 

 Here, we introduce Eddington's Luminosity for an accretion disk. The Eddington 

Luminosity is the maximum luminosity an accretion disk can take while remaining in hydrostatic 

equilibrium. To derive the Eddington Luminosity, we begin with the radiation pressure gradient 

under the conditions of blackbody radiation and local thermodynamic equilibrium (LTE) over all 

emitted wavelengths (Carroll & Ostlie, 2018):    

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜅̅𝜌

𝑐
𝐹𝑟𝑎𝑑, (2.46) 

where Prad is the radiation pressure, Frad is the radiative energy flux defined by Eq. (2.47), and 𝜅̅ 

is an approximately wavelength-averaged opacity. Opacity measures a medium's ability to 

absorb electromagnetic radiation of wavelength λ per unit mass of the medium (Carroll & Ostlie, 

2018). In this case, the medium is an accretion disk since the emitted light must pass through the 

disk to be seen by the observer, and the opacity units are m2 km-1. From Eq. (2.21) and the 

Stefan-Boltzmann Law, the radiative energy flux is then:    

𝐹𝑟𝑎𝑑 =
𝐿

4𝜋𝑟2
, (2.47) 

where L is the total luminosity emitted from the matter or the accretion disk. Substituting this 

definition for Frad into Eq. (2.46), the radiation pressure gradient is then:  

𝑑𝑃𝑟𝑎𝑑

𝑑𝑟
= −

𝜅̅𝜌

𝑐

𝐿

4𝜋𝑟2
. (2.48) 

Under the conditions of hydrostatic equilibrium, the pressure gradient required to 

counteract the gravitational force is (Carroll & Ostlie, 2018): 

𝑑𝑃

𝑑𝑟
= −

𝐺𝑀𝜌

𝑟2
. (2.49) 
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To find the Eddington luminosity, we equate the pressure gradient required under the conditions 

for hydrostatic equilibrium and the radiation pressure gradient defined in Eq. (2.48). The 

luminosity L is now set to give the Eddington Luminosity Ledd, which is then:  

𝐿𝑒𝑑𝑑 =
4𝜋𝐺𝑀𝑐

𝜅̅
. (2.50) 

  Returning to the discussion of opacity, we now discuss the interactions of light with the 

gas that forms the accretion disk. When light interacts with the particles in the disk, there are 

four possible types of interactions: 1) bound-bound transitions, 2) bound-free absorption, 3) free-

free absorption, and 4) electron scattering (Carroll & Ostlie, 2018). For suitably high 

temperatures, the gas of the accretion disk, assumed to be comprised predominantly of hydrogen 

and helium, is ionized; therefore, electron scattering becomes the primary source of opacity. 

From Eq. (2.50) the maximum value of Ledd will occur for the smallest value of 𝜅̅. By setting  

𝜅̅ =  𝜅𝑒𝑠 gives the smallest opacity possible for ionized gas, yielding the maximum value in Ledd 

for a given mass M of the SMBH. 

The electron scattering opacity κes for our accretion disk is then:   

𝜅𝑒𝑠 =
𝜎𝑒𝑠

𝜇𝑒𝑚𝐻
, (2.51) 

where σes is the electron scattering cross-section (defined by Eq. (2.58), with the discussion to 

follow), μe is the mean molecular weight per electron, and mH is the mass of a hydrogen atom, 

whose value can be found in Table 7.1. The values of μe and σes used in this work are detailed 

below. The mean molecular weight per electron can be approximated as (Carroll & Ostlie, 2018): 

𝜇𝑒 ≈
2

1 + 𝑋
≈ 1.2, (2.52) 

where X = Hydrogen mass fraction, where in this paper, we use the approximated value of the 

hydrogen mass fraction to be X ≈ 0.7. The electron scattering cross-section is then given by: 

𝜎𝑒𝑠 =
8𝜋

3
(

1

4𝜋𝜀0
)

2

(
𝑒2

𝑚𝑒𝑐2
)

2

= 6.65246 × 10−29 𝑚2, (2.53) 

where ε0 is the permittivity of free space, me is the mass of an electron, and e is the electronic 

charge. All three values can be found in Table 7.1.  
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Then by substituting Eq. (2.51) into Eq. (2.50), the Eddington luminosity can now be 

expressed as:  

𝐿𝑒𝑑𝑑 =
4𝜋𝐺𝑀𝑐(𝜇𝑒𝑚𝐻)

𝜎𝑒𝑠
. (2.54) 

 One beneficial application of the Eddington luminosity is the ratio between the total disk 

luminosity and the Eddington luminosity. For simplicity, we use the total luminosity of an 

infinite disk in the form of Eq. (2.43), such that the Eddington luminosity ratio is then: 

𝐿

𝐿𝑒𝑑𝑑
=

𝐿𝑑𝑖𝑠𝑘 (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒)

𝐿𝑒𝑑𝑑
=

𝜂𝑀𝑑𝑜𝑡𝑐𝜎𝑒𝑠

4𝜋𝐺𝑀𝜇𝑒𝑚𝐻
. (2.55) 

This ratio is used as a limiting factor for models of accretion disks where the upper and 

lower bounds of the limit are 1 and 0.01, respectively. Outside of both bounds, the accretion 

mode, structure, radiative properties, and the structure of the accretion are expected to change 

radically compared to the model we are exploring here.  

 

2.2 The Model  

A Brief Description of the Model  

We used a Microsoft Excel ® spreadsheet to compute the fundamental properties of an 

accretion disk. The model requires the user to set specific input parameters. It then computes the 

fundamental properties, such as the disk's temperature, radiative flux, and luminosity, as just a 

few examples.  

The model is scaled against the radial position in the disk, r. The scale was built using the 

outer radius corresponding to a fixed minimum temperature to set the step size, 𝑑 log10 (
𝑟

𝑅𝑖𝑛
). 

The model then used the equations derived in the previous section to build graphs that contain 

the key information of an accretion disk under the standard model assumptions previously stated, 

most of which were plotted vs. the radial position in the disk. These results will be analyzed in 

the following sections and discussed.  
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Input and Output Parameters 

The model requires the user to set specific input parameters for the disk, which are: 1) the 

mass of the SMBH M, 2) the mass accretion rate of the accretion disk Mdot, 3) the Eddington 

Luminosity Ratio L/Ledd, 4) the ratio between the ISCO and the gravitational radius x, and 5) the 

outer radius of the disk (defined as the point at which the temperature in the disk reaches 2000 

K).  

Four models with pre-selected input values have been chosen and are outlined in Table 

2.1. For each of the four models (A, B, C, and D), there are several calculated output values of 

interest in addition to the input parameters described above. These output values have also been 

included in Table 2.1 and are listed below with reference to the appropriate derived equation(s).  

• The gravitational radius, Rg: Eq. (2.29)  

• The ISCO, Rin: Eq. (2.28), which in this model essentially sets the disk efficiency, η: Eq. 

(2.42)  

• The characteristic temperature of the disk, Tdisk: Eq. (2.30)  

• The maximum temperature of the disk Tmax: Eq. (2.35)  

• The fully integrated finite luminosity of the disk, Ldisk: Eq. (2.38)  

• The fully integrated infinite luminosity of the disk Ldisk (infinite): Eq. (2.39)  

• The Eddington luminosity Ledd: Eq. (2.54)  

Additionally, two parameters were also collected from the disk itself. Those were the disk's 

maximum temperature and the disk's total luminosity. The total luminosity of the disk is 

comparable to the analytical finite disk luminosity found by performing a Riemann Sum over the 

entire disk. Both parameters are given in Table 2.1 for each of the four models.  
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 Parameter Units A B C D 

Input 

Parameters 

M 108 Mʘ 1 10 1 3 

L

Ledd
 

 0.1 0.1 0.3 0.03ሶ  

Mdot Mʘ yr-1 0.314 3.14 0.941 0.314 

Rout (T=2000K) 1014 m 3.26 15.1 4.69 4.69 

x 
𝑟

𝑅𝑔
  6 6 6 6 

Calculated 

Output Values 

Rg 1011 m 1.48 14.8 1.48 4.43 

Rin 1011 m 8.86 88.6 8.86 2.66 

η  0.0833 0.0833 0.0833 0.0833 

Tdisk 105 K 1.6785 0.94386 2.2090 0.96905 

Tmax 104 K 8.189 4.605 10.78 4.728 

Ldisk 1038 W 1.4689 14.577 4.4162 1.4584 

Ldisk (infinite)  1038 W 1.4797 14.797 4.4391 1.4797 

Ledd  1038 W 14.797 147.97 14.797 44.391 

Collected 

Output Values 

Tmax 104 K 8.189 4.605 10.78 4.728 

Ldisk  

(Riemann Sum)   

1038 W 1.4681 14.551 4.4148 1.4559 

 

 

 

 

 

 

 

 

 

Table 2.1 – A table of the input parameters, calculated output values, and collected output 

values for each of the four models (A, B, C, and D) that will be analyzed in this paper. 

Each parameter is color coded to match the graphs to be shown in the coming sections.  
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2.3 Results  

Discussion of Output Values  

 Here we will analyze the collected output parameters with the calculated output 

parameters for the four models. The values are given in Table 2.1, and for the purposes of this 

analysis and further discussions, we will consider model A to be the standard model on which we 

base our comparisons. First, we will compare the output values for the maximum temperature of 

the disks and, second, the different output values relating to the luminosity of the disk.  

   Comparing the values of Tmax collected from the model to those calculated, we find that 

the two values for each of the four models agree. Equation (2.35) shows that the maximum 

temperature of the disk is approximately half the characteristic temperature of the disk. 

Observing the values state in Table 2.1 for the characteristic temperature of the disk shows this 

to be true for each of the four models. Additionally, comparing the values for the four models, 

the maximum temperature varies with a change in mass M, and mass accretion rate Mdot as:  

𝑇𝑚𝑎𝑥 ∝ 𝑇𝑑𝑖𝑠𝑘 ∝
𝑀𝑑𝑜𝑡

1
4

𝑀
1
2

. (2.56) 

These relationships are observed in the values of Tdisk and Tmax, in that Models B and D, which 

have more massive SMBHs than Model A, have cooler accretion disks (calculated values of Tdisk 

and Tmax). Model B experiences two competing functions, with an increase in mass but also an 

increase in mass accretion rate; however, the change in mass has a more significant impact. 

Model C has the highest maximum temperature since the mass was not changed from Model A's, 

but the mass accretion rate was increased.  

 There were four different luminosities detailed in Table 2.1. Three were calculated: the 

total luminosity of a finite disk, an infinite disk, and the Eddington luminosity. The total 

luminosity of each disk model was also collected by performing a Riemann Sum over the 

luminosity at every annulus. As expected, the infinite disk luminosity calculated is larger than 

the finite disk luminosities (Ldisk and Ldisk (Riemann Sum)) by a small factor. It will be shown in the 

following graphs that the inner region of the accretion disk contributes the most to the total 
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luminosity of the accretion disk; therefore, we expect the difference in total luminosity from the 

finite disk to the infinite disk to be small.    

 The two values for the fully integrated luminosity of a finite disk (Ldisk and Ldisk (Riemann 

Sum)) agree within three significant figures across all four models; therefore, the difference is 

almost negligible. The luminosity given by performing a Riemann Sum over the disk is 

consistently lower than the calculated luminosity for each of the four models. This difference can 

be explained since the Riemann Sum is only an approximation, and without an infinitely small 

step size, it is expected there to be some discrepancy between the calculated and estimated 

values.  

 

Presentation of Findings 

 In this section, five graphs are presented that outline the fundamental properties of the 

structure of standard model accretion disks. On each graph are plotted the four models whose 

input parameters are defined in Table 2.1. As mentioned, model A will be taken as the standard 

model, of which the other models will be compared. The graphs, which are plotted as functions 

of radius, have been plotted against the radial position defined by the ratio of the physical radius 

r to the gravitational radius Rg: r/Rg. This choice was made so that each of the four models could 

be easily compared on the same scale. The physical position of the ISCO depends on the 

SMBH's mass around which the accretion disk is located shown by Eq. (2.28) and Eq. (2.29). 

Therefore, changing the SMBH mass will shift that model's position on the graph, making it 

difficult to compare to other models. We chose to remove this additional factor and complication 

by presenting the results on a dimensionless scale, r/Rg.  

 Figure 2.3 is a graph of the fully integrated luminosity of a finite disk vs. the ratio of the 

fully integrated infinite disk luminosity and the Eddington luminosity ratio. This graph shows the 

range of disk luminosities possible for three characteristic masses of SMBHs in AGN (107 Mʘ, 

108 Mʘ, and 109 Mʘ), between the bounds of the Eddington luminosity ratio, is 1036 W and 1040 

W. Three straight lines represent these ranges since both the infinite and finite disk luminosities 

are independent of the mass, and the Eddington luminosity scales directly to M, as can be seen in 

Eq. (2.54). The graph also displays the four models being considered in this paper. Their fully 
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integrated disk luminosities can be determined, and they all lie well within the boundaries of the 

Eddington luminosity ratio.  

 Figure 2.4 is a graph of the effective temperature of the disk vs. the dimensionless radius 

scale, r/Rg for the four models, A, B, C, and D. The equation for the effective temperature is 

given by Eq. (2.26), which shows the following power relations for the mass of the SMBH, the 

mass accretion rate, and the radial component, for the case that r >> Rin, to be: 

𝑇𝑒𝑓𝑓(𝑟) ∝
𝑀𝑑𝑜𝑡

1
4

𝑀
1
2

(
𝑅𝑖𝑛

𝑟
)

3
4

. (2.57) 

We, therefore, observe that for a fixed mass but a change in Mdot, and by default, a change in 

L/Ledd, the temperature scales to Mdot
1/4. This can be observed in the difference between the 

graph for Model A, and C. Model C has a higher mass accretion rate and, therefore, a higher 

effective temperature. It, in fact, has the hottest disk of the four models because it also has the 

lowest mass. Eq. (2.57) shows that for a fixed Mdot, the effective temperature scales to M -1/2; 

therefore, the more massive the SMBH, the cooler the accretion disk (within the limits of L/Ledd 

for the mass accretion rate). This can be seen in Figure 2.4, where the plots for Models B and D 

lie below the less massive Models (A and C). It can also be seen from Model B, which in 

comparison to Model A, experiences both a change in M and Mdot, that these two parameters act 

as competing functions.  

 Other observations from Figure 2.4 include that the inner region of the disk is the main 

contributor to the disk's temperature, with the temperature increasing initially, until reaching the 

point in the disk where r = 49/6 Rg. This is the point at which the maximum temperature of the 

disk is located. The temperature then decreases with radius as r -3/4, as shown in Eq. (2.57). This 

power law is only an approximation for the fall-off rate of the effective temperature because the 

disk does not extend to an infinite radius. At very small values of Rin/r, the power law very 

nearly approaches the value of -3/4, but only a disk at an infinite radius would ever equal this 

value. This power law is, therefore, an asymptotic relation. The final observation to be made is 

that Figure 2.4 demonstrates that the minimum temperature of the disk is fixed to a value of ~ 

2000K, which is responsible for setting the outer radius of the disk.    
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   Figure 2.5 is a graph of the radiative flux of the disk vs. the dimensionless radius scale, 

r/Rg for the four models of accretion disks outlined in Table 2.1. Since, by Eq. (2.9), the radiative 

flux is directly proportional to the effective temperature to the fourth power (Teff(r)
4), this graph 

varies with the input parameters as described in Figure 2.4, but with the following power 

relations to the mass of the SMBH, the mass accretion rate, and the radial component, for the 

case that r >> Rin: 

𝐹 ∝
𝑀𝑑𝑜𝑡

𝑀2
(

𝑅𝑖𝑛

𝑟
)

3

. (2.58) 

Additionally, the graph shows the ranges of radiative flux from the different models and that the 

main contribution is from the inner regions of the disk. From the point of maximum radiative 

flux, the amount of radiative flux falls off approximately at a rate of radius to the negative third 

power (r -3). As mentioned for the fall-off rate of the effective temperature of the disk, the power 

relation is only an approximate estimation because the slope of the line on the log-log plot would 

only ever reach r -3 power for the case of an infinite disk and is, therefore an asymptotic relation.  

 Figure 2.6 is a graph of the differential disk luminosity vs. the dimensionless radius scale, 

r/Rg for the four models (A, B, C, and D) with input values defined in Table 2.1. The equation 

for the differential luminosity of the disk is given by Eq. (2.23), which, when the values of Teff 

and Tdisk are substituted into the equation, shows the following power relations for the mass 

accretion rate, and the radial component, for the case that r >> Rin, to be: 

𝑑𝐿(𝑟) ∝
𝑀𝑑𝑜𝑡

𝑟
. (2.59) 

The direct proportionality to the mass accretion rate is demonstrated in Figure 2.6 by the 

difference in the four models where Model B, which has the highest Mdot value, is also the most 

luminous disk. This is true for the other models as well; however, it can be seen that although 

Model A and Model D have the same value for Mdot, their graphs look very slightly different. 

Because they have the same value of Mdot, their total disk luminosities will remain the same; 

however, due to their difference in mass, the position of the contributions to the luminosity of the 

disk will differ. Figure 2.6 also shows that the main contribution to the luminosity of the disk is 

the inner region of the disk. After the maximum luminosity is reached, the luminosity decreases 

with radius as shown in Eq. (2.59).  
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 Figure 2.7 is a graph of the ratio between the cumulative luminosity at each annulus r and 

the fully integrated luminosity of the disk gathered by performing a Riemann Sum vs. the 

dimensionless radius scale, r/Rg. The four models are graphed; however, they follow the same 

path, so the graph can be seen to overlap. The only changes between the four modes are the value 

of the ratio at the ISCO and the final position in r/Rg space. The most interesting information that 

can be gained from this plot is where most of the power in an accretion disk is located. The very 

steep initial increase in this ratio signifies that the inner region of the disk contributes a 

significant fraction of the power of AGN accretion disks (for a variety of input parameters). 

Approximately 90% of the total power from an accretion disk comes from within r = 100 Rg, 

demonstrating that the contributions from the outer portion of the disk are minimal.  
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Figure 2.3 – This is a graph of the fully integrated luminosity of an accretion disk vs. the 

Eddington luminosity ratio. This demonstrates the range in possible fully integrated 

luminosities for three typical masses of SMBHs in AGN accretion disks (107 Mʘ, 108 Mʘ, 

and 109 Mʘ - denoted in the legend as M8 = 0.1, 1, and 10 respectively). The four models 

evaluated throughout this paper are shown to lie well within the bounds for the Eddington 

luminosity ratio.   
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Figure 2.4 – This is a graph of the effective temperature of the disk vs. disk radius in units 

of r/Rg. The graph shows that the main contribution to the temperature of the disk comes 

from the disk’s inner region, and that after the maximum temperature is reached, the 

temperature decreases with radius until reaching the minimum temperature (T = 2000 K) 

defining the outer radius of the disk. Note that Models B and D are nearly coincident.  
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Figure 2.5 – This is a graph of the radiative flux of the disk vs. disk radius in units of r/Rg. 

Eq. (2.9) demonstrates how the radiative flux scales with temperature to the fourth power 

through the accretion disk.   
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Figure 2.6 – This is a graph of the differential luminosity at each annulus of the disk vs. 

disk radius in units of r/Rg. The graph shows the main contribution to the luminosity of the 

disk is from the inner region (see Eq. (2.23) for the relation between the differential 

luminosity and the effective temperature).  
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Figure 2.7 – This is a graph of the ratio of the disk’s cumulative luminosity, as integrated 

outward from the ISCO, to the total luminosity of the disk vs. the disk’s radius in units of 

r/Rg. This demonstrates that most of the power emitted from AGN accretion disks are 

located in the inner few 10s of gravitational radii, with approximately 90% emerging from 

the inner 100 Rg.   
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3. Accretion Disk Spectrum  

3.1. Physical Considerations  

This section continues from Section 2.1, where the necessary derivations for blackbody 

radiation, temperature, radiative flux, and luminosity were derived. Here we will discuss the 

additional derivations required to model the spectrum of a standard model accretion disk.  

 

The Spectrum Lλ vs. λ 

To obtain a spectrum of the standard model accretion disk under the assumptions 

discussed previously, we find the specific luminosity per unit wavelength Lλ by summing over 

the contributions from all annuli in the disk for wavelengths spanning 1 nm to 104 nm. Recalling 

from Eq. (2.21) and the Stefan-Boltzmann Law, the differential specific luminosity can be 

written as:  

𝑑𝐿𝜆 = 𝐹𝜆𝑑𝐴, (3.1) 

where dA is the differential surface area of the two-sided accretion disk given by Eq. (2.22), and 

Fλ is the surface specific flux per unit wavelength, given by Eq. (2.7) for the outward 

hemisphere. Since the accretion disk is two-sided, the total surface flux is twice that of Eq. (2.7), 

and hence by evaluating the integral given in Eq. (2.7), Fλ is then: 

𝐹𝜆 = 𝜋𝐵𝜆(𝑇), (3.2) 

where Bλ(T) is Planck's function for blackbody radiation at radius r given by Eq. (2.5). To find 

the specific luminosity at each annulus, dLλ, we substitute Eq. (3.2) and Eq. (2.22) into Eq. (3.1) 

which is then:  

𝑑𝐿𝜆 = 4𝜋2𝑟𝐵𝜆(𝑇)𝑑𝑟. (3.3) 

The area integrated specific luminosity is then:  

𝐿𝜆 = 4𝜋2 ∫ 𝑟𝐵𝜆(𝑇)𝑑𝑟

𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

, (3.4) 

where Rin and Rout are the ISCO and the outermost radius, respectively. In computing the 

spectrum Lλ, we consider wavelengths spanning 1 𝑛𝑚 ≤ 𝜆 ≤ 104 𝑛𝑚 which was deemed to be 
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an appropriate range to cover the wavelengths that contribute with any significance to the 

observed spectrum fo AGN, and in consideration of the values of the disk temperature 

considered here: 2000 ≤ T(K) ≤ 200,000.  

 

Rayleigh-Jeans Tail Approximation 

Rayleigh-Jeans law (Eq. 3.5) was first proposed before establishing the Planck function 

for blackbody radiation (Carroll & Ostlie, 2018). Lord Rayleigh sought an expression that 

accounted for the blackbody radiation curve; however, what he found is now known as the 

'ultraviolet catastrophe' because the function would approach infinity for very short wavelengths 

as can be seen by the following equation which gives Rayleigh-Jeans law:  

𝐹𝜆 =
𝜋ℎ𝑐𝑘𝑇

𝜆4
. (3.5) 

His result, however, is in excellent agreement with the tail of the blackbody function at long 

wavelengths, where:  

ℎ𝑐

𝜆
≪ 𝑘𝑇. (3.6) 

Therefore, we have used the result from Rayleigh-Jeans law to approximate the remainder term 

of the total luminosity of the disk when a Riemann sum was found over the spectrum of the disk. 

A correction is necessary because our model only evaluates the wavelengths within the range 

1 𝑛𝑚 ≤ 𝜆 ≤ 104 𝑛𝑚, but the fully integrated luminosity of the disk Ldisk is found by integrating 

over all wavelengths:  

𝐿𝑑𝑖𝑠𝑘 = ∫ 𝐿𝜆 𝑑𝜆

∞

0

, (3.7) 

The last point in our spectrum Lλ as summed over all annuli, is well approximated to lie on the 

Rayleigh-Jeans tail. Since our model does not extend to λ → ∞, only to λ = 104 nm, there is non-

negligible light that lies within the Rayleigh-Jeans tails of the cooler blackbodies in our disk that 

extend beyond 104 nm. To account for this discrepancy, the following approximation was then 

added to the result of the Riemann sum over Lλ (1 – 104 nm) to obtain Ldisk:  
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𝐿𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ≈
1

3
[ 𝜆𝐿𝜆(104 𝑛𝑚)]. (3.8) 

 

3.2. The Model  

A Brief Description of the Model 

We molded the accretion disk spectrum in a spreadsheet to model the spectrum, where 

the user sets several input parameters, similar to the disk structure model previously discussed. 

The radial position scale was used directly from the disk structure model, as were the effective 

temperature and area elements needed to build the spectrum. The initial and final wavelengths 

considered in computing the spectrum were 1 nm and 104 nm respectively, and the step size in 

wavelength, dlogλ, was chosen to be 0.0025. The results of this model will be outlined and 

discussed in the following sections.  

 

Input and Output Parameters  

The input parameters required for this model are the same as those previously discussed 

in Section 2.2 for the disk structure model. The analysis of the results in this section use the same 

four models (A, B, C, and D) discussed in Section 2 will also be applied to the results here. Their 

input values were previously stated in Table 2.1; however, they will be restated in Table 3.1.  

The output parameters found from the model for the spectrum of the disk are: 1) the total 

luminosity of the disk Ldisk Riemann Sum, 2) the luminosity of the disk integration over 1 nm to 91.20 

nm which will be referred to as Ldisk ion, and 3) the wavelength of maximum blackbody intensity 

for the highest temperature in the disk λmax (Tmax). The total luminosity of the disk was found by 

performing a Riemann Sum over the total contributions over all wavelengths as shown above. 

The hydrogen Lyman-Limit is the ionization energy required to remove an electron from the 

ground state of hydrogen. The ionization energy is 13.6 eV which corresponds to a photon of 

wavelength ~ 91.20 nm (Carrol & Ostlie, 2018). A Riemann Sum was performed from the initial 

wavelength (1 nm for this model) up to the Lyman-Limit wavelength to acquire the output values 

of Ldisk ion for each of the four models. Finally, Wien's law, given by Eq. (2.11), was used to find 

the wavelength at the peak of the blackbody function for the highest temperature in the disk.  
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 Parameter Units A B C D 

Input 

Parameters 

M 108 Mʘ 1 10 1 3 

L

Ledd
 

 0.1 0.1 0.3 0.03ሶ  

Mdot Mʘ yr-1 0.314 3.14 0.941 0.314 

Rout (T=2000K) 1014 m 3.26 15.1 4.69 4.69 

x 
𝑅𝑖𝑛

𝑅𝑔
  6 6 6 6 

Output 

Parameters  

Ldisk  

Riemann Sum 

1038 W 1.4681 14.551 4.4148 1.4559 

Ldisk ion 1038 W 0.71477 3.1354 2.6709 0.33061 

λmax (Tmax) nm 35.39 62.93 26.89 61.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 – A table of the input parameters and output values for each of the four 

parameters that will be analyzed in this paper. Each parameter is color coded to match the 

graphs to be shown in the coming sections.  
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3.3. Results  

Discussion of Output Values  

 Here we will analyze the collected output parameters detailed in Table 3.1 for the four 

models. The total luminosity of the disk given by the Riemann Sum over the spectrum of the disk 

is found to equal the Riemann Sum found from the model of the disk structure. That is, when 

comparing the values of the Ldisk Riemann Sum from Table 3.1 with the values from Table 2.1 for the 

four models, they are found to be equal.  

 The contribution to the luminosity from the disk wavelengths shorter than the Lyman-

Limit is detailed in Table 3.1. The total contributions vary from approximately 20% to 60% of 

the total luminosity of the disk given by the Riemann Sum. The percentage of the total 

contribution from the shorter wavelengths is greater for hotter disks, with the contribution for 

Model C, the hottest of the four disks considered, to be approximately 60%. Finally, we list the 

values of the wavelength λmax (Tmax), where the blackbody function peaks for the maximum 

temperature in the disk.   

 

Presentation of Findings 

 This section presents two graphs and a table of values from the second graph, which 

describe the contributions to the spectrum from the disk and the spectra for our four model 

accretion disks.   

Figure 3.1 illustrates the contribution functions to the specific luminosity Lλ in the disk 

for ten different wavelengths: a graph of the differential specific luminosity, dLλ, and the 

dimensionless radius scale, r/Rg for Model A. The ten selected wavelengths were chosen as 

multiples of the wavelength corresponding to the Hydrogen Lyman-Limit (91.20 nm), to show a 

variety of wavelengths considered in the spectrum. Since our model grid contains a finite number 

of steps in wavelength, the wavelength values listed in Figure 3.1 are the closest values possible 

to the multiples of 91.20 nm. The graphs of dLλ vs. r/Rg corresponding to Models B, C, and D 

can be found in the Appendix (Figure 7.1, 7.2, and 7.3, respectively).    
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As demonstrated in Figure 2.4 the effective temperature of an AGN accretion disk 

reaches a maximum near a radius of about 8Rg and then decreases with radius. From our 

discussion on blackbody radiation in Section 2.1, we know that a hotter blackbody emits a 

greater radiative flux and peaks at shorter wavelengths. Figure 2.2 demonstrates that blackbodies 

emit very little light shortward of their wavelengths of maximum intensity. We see in Figure 3.1 

that the shorter wavelengths in the observed spectrum are largely confined to arise and peak 

within inner regions of the disk where the temperature is hotter, whereas longer wavelengths are 

emitted from a broader range in the disk and peak in their contributions from the outer disk 

where the temperature is cooler.  

 Figure 3.2 shows the spectra for the four disk models (A, B, C, and D) for input 

parameters defined in Table 3.1. The spectrum is a sum over the contributions (see Figure 3.1) 

from all the radii in the disk, and here we plot the quantity λLλ vs. λ (rather than Lλ) to identify 

where most of the power in the spectrum resides. For example, any two spectra with the same 

maximum value in λLλ will have the same luminosities Ldisk. Models A and D share this 

characteristic, but Model D has a higher mass and thus a cooler disk so its spectrum peaks at a 

longer wavelength than that arising from Model A. Model B has the same Tdisk as Model D and 

shows a similar shaped spectrum, but has a larger Mdot, and so is more luminous. Model C has a 

lower mass and a higher Mdot and so a greater Tdisk than Model A. Thus, Model C is both more 

luminous and has a spectrum that peaks at shorter wavelengths than Model A. Table 3.1 gives 

the values in λLλ for the ten wavelengths plotted in Figure 3.1 for each of the four models.  
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Figure 3.1 – A graph of the wavelength specific luminosity contributions over the disk for 

each of the ten wavelengths selected as scale factors of the Ionization Lyman-Limit for 

hydrogen at 91.20 nm. The graph is plotted for the input parameters for Model A only.  
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Figure 3.2 – A graph of the wavelength-multiplied specific luminosity vs. wavelength 

producing the spectrum of four accretion disks. The spectra plotted show the range of 

wavelengths contributing the most to the fully integrated luminosity in the disk.  
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λ (nm) 

A 

 λLλ (1038 W) 

B 

 λLλ (1038 W) 

C 

 λLλ (1038 W) 

D 

 λLλ (1038 W) 

91.20 0.68230 6.4047 1.7749 0.65232 

181.97 0.42427 6.4890 0.97264 0.64016 

273.84 0.28155 4.9120 0.62319 0.48047 

363.08 0.20598 3.8045 0.44884 0.37078 

457.09 0.15768 3.0116 0.34037 0.29289 

546.39 0.12745 2.4839 0.27354 0.24126 

638.26 0.10552 2.0862 0.22551 0.20245 

728.62 0.089594 1.7898 0.19090 0.17358 

822.24 0.076957 1.5500 0.16358 0.15024 

912.01 0.067368 1.3653 0.14293 0.13229 

Table 3.2 – A table of values in λLλ at particular wavelengths for the AGN disk spectra 

appearing in Figure 3.2. The models are color coded to match Table 3.1 and Figure 3.2.  
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4. Emission Disk Variability  

4.1. Conceptual Discussion  

A key characteristic of AGN accretion disks is that they are highly variable. There have 

been many attempts to formulate models which accurately explain their variability. However, 

there is no one model which fulfills every component of their variability. Formulating such a 

model is well beyond this project's scope; however, to acknowledge the highly variable nature of 

AGN, we discuss one of the many proposed models for variability and briefly discuss its theory.  

 Sun et al. (2020) propose a hot corona extending into the X-ray and far-UV range of the 

accretion disk. This corona is believed to produce magnetic fields which connect the thin 

accretion disk with the corona. Therefore, as the magnetic field produced by the corona 

fluctuates, these fluctuations propagate through the thin accretion disk, which drives temperature 

fluctuations within the disk. Figure 4.1 is an image of this model, presented in the Sun et al. 

paper (2020). We refer the reader to the original paper for a more detailed description and 

discussion of this model.  

 

 

Figure 4.1 – A image of the model of AGN variability proposed by Sun et.al. The image 

shows the hot corona extending into the X-ray and far-UV range of the thin accretion disk 

around a SMBH. Magnetic fields produced by the corona are also depicted and show 

fluctuations occurring within the disk which are proposed to cause temperature 

fluctuations. Image Credit: (Sun et al., 2020) 
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4.2. The Model  

 

A Brief Description of the Model 

 To simulate the variability of an accretion disk, we applied a simple condition to adjust 

the temperature distribution within the disk. A scale factor (Tfactor) can be changed so that the 

effective temperature retrieved from the model of the disk structure is adjusted appropriately. 

This is a simple multiplicative factor, and the user sets how much of the disk this factor affects.  

 

Input and Output Parameters  

 The input parameters additional to those required by the structure and spectrum models 

are: 1) the scale factor (Tfactor) and 2) the outer boundary under which the scale factor is applied 

(Perturbation outer boundary). For the results discussed below, we perturbed the disk from the 

ISCO out to r = 400 Rg. The results below are for our standard chosen model (Model A) only and 

show the change in output values and the disk spectrum adjusted for the variability, identified as 

perturbed, and the standard values stated in Section 3.3, identified as unperturbed. Table 3.1 

should be referenced for the input parameters specific to Model A.   

 

 

   Model A 

 Parameter  Units Perturbed  Unperturbed  

Input 

Parameters 

Tfactor  1.2  

Perturbation outer 

boundary  

𝑟

𝑅𝑔
  

400 

Output 

Parameters 

Ldisk Riemann Sum   1038 W 2.9910 1.4681 

Ldisk ion  1038 W 1.7297 0.71477 

λmax (Tmax)  nm 29.49 35.39 

 

 

 

 

 

Table 4.1 – A table of the input parameters and output values for the perturbed and 

unperturbed disks for Model A only. The text is color coded to match Figure 4.3 in the 

results section below.  
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4.3. Results  

Discussion of Output Values  

Here we will analyze the collected output parameters detailed in Table 4.1. The total 

luminosity of the disk is greater for the perturbed disk (for a 20% increase in temperature for       

r ≤ 400Rg) than the unperturbed disk as we would expect, since the wavelength-specific 

luminosity over the disk depends on the blackbody function Bλ(T), which is greater for greater 

temperatures. Specifically, Ldisk is approximately 2 times greater for the perturbed disk than the 

unperturbed disk. The contributions to the luminosity from wavelengths shorter than the Lyman-

Limit also increases but is approximately 2.4 times greater for the perturbed disk demonstrating 

that the inner hotter regions of the disk are most responsible for emitting the shorter wavelengths 

of light in the spectrum of an AGN.  

 

Presentation of Findings 

 This section presents two graphs and a table of values representing the impact on the 

spectrum after varying the temperature scale through the disk.  

 Figure 4.2 shows how the wavelength specific luminosity contribution functions are 

affected from perturbing the disk by increasing the temperature by 20% from the ISCO to            

r = 400 Rg. The graph shows how within r = 400 Rg, the wavelength specific luminosity 

contributions increase with the perturbation for all wavelengths and then drop back to the 

contribution functions shown in Figure 3.1 beyond r = 400 Rg.  

 Figure 4.3 shows the spectrum of the perturbed and unperturbed disks. It can be seen that 

at longer wavelengths, the two spectra agree; however, at shorter wavelengths, the two spectra 

begin to deviate. By perturbing the disk, we simulated an increase in the dissipation locally in the 

disk, which increased the temperature, the flux and total power in the disk. The increase in 

temperature through the inner region of the disk (ISCO to r = 400 Rg) mainly affects shorter 

wavelengths which are emitted from inner regions of AGN accretion disks. Consequently, we 

observe that the perturbed spectrum is increased in brightness and peaks at shorter wavelengths.  
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Table 4.2 gives the values in λLλ at particular wavelengths depicted in Figure 4.2. The 

values in this table show that the model affects shorter wavelengths more than the longer 

wavelengths recorded. Specifically, the fractional difference noted in the table between the 

perturbed and unperturbed values in λLλ, highlights that for λ = 91.20nm, there is a 90% increase 

in the spectral value, but only a 40% increase for λ = 546.39nm, and 20% increase for                 

λ = 912.0nm. This is because they contribute primarily to the inner region of the disk where the 

temperature is affected by the model. It can also be seen that where the longer wavelengths 

contribute most lies close to or outside of positions in the disk greater than r = 400 Rg boundary 

imposed by the model. It is therefore expected that they will be impacted the least. Additionally, 

our observation that the spectra are impacted the most at short wavelengths explains why we 

observe AGN to become bluer as they become brighter, and redder as they become dimmer.   
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Figure 4.2 – A graph of the wavelength specific luminosity contributions over the disk for 

each of the ten wavelengths selected based off the Lyman-Limit for hydrogen. The graph is 

plotted for the input parameters for Model A and only shows the perturbed disk result from 

applying a 20% increase in the temperature at every point in the disk from the ISCO to           

r = 400 Rg, at which point the temperature was returned to its original scale.   
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Figure 4.3 – A graph of the luminosity vs. wavelength producing the spectrum of the 

perturbed and unperturbed disks. The graph shows how the two spectra deviate at shorter 

wavelengths due to the increase in temperature by the model, and that the spectra agree at 

longer wavelengths.  



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Model A 

λ (nm) 

Perturbed  

λLλ (1038 W) 

Unperturbed  

λLλ (1038 W) 

Fractional Difference of 

Unperturbed and Perturbed λLλ  

91.20 1.2980 0.68230 0.902 

181.97 0.73659 0.42427 0.736 

273.84 0.46620 0.28155 0.656 

363.08 0.32262 0.20598 0.566 

457.09 0.23216 0.15768 0.472 

546.39 0.17780 0.12745 0.395 

638.26 0.14034 0.10552 0.330 

728.62 0.11460 0.089594 0.279 

822.24 0.095229 0.076957 0.237 

912.01 0.081226 0.067368 0.215 

Table 4.2 – A table of values in λLλ at particular wavelengths for the perturbed and 

unperturbed AGN disk spectra appearing in Figure 4.2. The models are color coded to match 

Table 4.1 and Figure 4.2.  
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5. Final Conclusions  

 The first section of this paper discussed the structure of an accretion disk and its 

critical features, including temperature, radiative flux, and luminosity. We discussed that as 

matter is accreted onto the accretion disk, and viscous forces transport the matter further into the 

potential well, the loss in gravitational potential energy is converted into thermal energy and 

radiated away, creating the immense luminous power we observe from AGNs. We also discuss 

the Eddington Luminosity for our model to give the limiting bounds for which the accretion 

mode, structure, radiative properties, and the structure of accretion remain similar to our standard 

model.  

Our results show that the inner region of an accretion disk is the hottest and emits the 

greatest share of the disks luminous power. An accretion disk with a fixed mass accretion rate 

around a more massive SMBH is cooler than for a disk around a less massive one and is more 

luminous for greater accretion rates. Specifically, the luminosity at each annulus of radius r in 

the disk depends on that radius's effective temperature scaled to the fourth power. The disk's 

local temperature depends on two parameters, the mass of the SMBH and the mass accretion 

rate. The temperature scales to the fourth root of the mass accretion rate Mdot, which is why for a 

fixed mass of the SMBH, a greater mass accretion rate results in a hotter and more luminous 

disk. The temperature also scales inversely to the square root of the mass, so for a fixed mass 

accretion rate a more massive SMBH has a cooler yet equally luminous accretion disk.  

 The second section of this paper discussed the emitted spectrum of an accretion disk, 

observing the dependence and contributions of selected wavelengths on the total luminosity and 

spectrum of the disk. The results show that the accretion disk spectra of AGN peak at ultraviolet 

(UV) wavelengths and for a fixed disk mass accretion rate, the accretion disks around less 

massive black holes are hotter and therefore have spectra that peak at shorter UV wavelengths 

and vice versa for spectra of accretion disks around more massive black holes. The shorter 

wavelengths in the observed spectrum are largely confined to arise and peak within inner regions 

of the disk where the temperature is hotter, whereas longer wavelengths are emitted from a 

broader range in the disk and peak in the outer disk where the temperature is cooler.  

Finally, the characteristic variability of AGN accretion disks was discussed, and a simple 

temperature scale model was applied to the spectrum of the disks. Our results and model were 
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based on the proposal that a hot corona produces magnetic fields which fluctuate in the disk, 

causing local temperature fluctuations. As our model increased the temperature of the inner 

region of the disk from the ISCO to r = 400 Rg by 20%, the total luminous power of the accretion 

disk doubled approximately, with the luminous power contributions from wavelengths shortward 

of 91.20 nm increasing approximately by a factor of 2.4. This demonstrates that the shortest 

wavelengths contributing to the total luminosity of an accretion disk changed in their emission 

the most, as these wavelengths arise most prominently from the inner disk where our disk's 

temperature was perturbed, and the wavelengths which have significant contributions to the 

spectrum outside of r = 400 Rg fluctuated less.    
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7. Appendix  

 

Name Symbol Value Unit 

Solar Mass Mʘ 1.98841×1030 kg 

Solar Luminosity Lʘ 3.8419×1026 W 

Astronomical Unit AU 1.49597870700×1011 m 

Julian Light Year  ly 9.460730472×1015 m 

Julian Year  yr  3.1557600×107 s 

Gravitational Constant G 6.67430×10-11 N m2 kg-2  

Speed of Light in a 

Vacuum  

c 2.99792458×108 m s-1 

Stefan-Boltzmann 

Constant 

σSB 5.670374419×10-8 W m-2 K-4  

Boltzmann Constant k  1.160451812×104 K eV-1 

Planck’s Constant h 6.62607015×10-34 J s 

Permittivity of Free 

Space 

ε0 8.8541878128×10-12 F m-1 

Electron Mass me 9.1093837015×10-31  kg 

Hydrogen Mass mH  1.673532838×10-27 kg 

 

 

 

 

 

 

 

 

Table 7.1 – A list of physical and astronomical constants  
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Figure 7.1 – A graph of differential wavelength specific luminosity vs. r/Rg for Model B.   
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Figure 7.2 – A graph of differential wavelength specific luminosity vs. r/Rg for Model C.   
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Figure 7.3 – A graph of differential wavelength specific luminosity vs. r/Rg for Model D.   
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