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The Gravity Recovery and Climate Experiment (GRACE) has been successfully used to monitor 

variations in terrestrial water storage (GRACETWS ) and groundwater storage (GRACEGWS) across the 

globe, yet such applications are hindered on local scales by the limited spatial resolution of GRACE 

data. Using the Lower Peninsula of Michigan as a test site, I developed optimum procedures to 

downscale GRACE Release-06 monthly mascon solutions. A four-fold exercise is conducted. Cluster 

analysis is performed to identify the optimum number and distribution of clusters (areas) of contiguous 

pixels of similar geophysical signals (GRACETWS time series); three clusters are identified (cluster 1: 

13,700 km2; cluster 2: 59,200 km2; cluster 3: 33,100 km2; Step I). Variables (total precipitation, 

normalized difference vegetation index [NDVI], snow cover, Lake Michigan level, Lake Huron level, 

land surface temperature, soil moisture, air temperature, and evapotranspiration [ET])  which could 

potentially contribute to, or correlate with, GRACETWS over the test site are identified, and the dataset 

are randomly partitioned into training (80%) and testing (20%) datasets (Step II). Multivariate 

regression, artificial neural network, and extreme gradient boosting techniques are applied on the 

training dataset for each of the identified clusters to extract relationships between the identified hydro-

climatic variables and GRACETWS solutions on a coarser scale (13,700 – 33,100 km2) and are used to 

estimate GRACETWS at a spatial resolution matching that of the fine-scale (0.125º × 0.125º or 120 km2) 

inputs. The statistical models were evaluated by comparing the observed and modeled GRACETWS 

values using the R-squared, the Nash-Sutcliffe model efficiency coefficient (NSE), and the normalized 

root-mean-square error (NRMSE; Step III). Lastly, temporal variations in GRACEGWS are extracted 



using outputs of land surface models and those of the optimum downscaling methodology (downscaled 

GRACETWS) (Step IV). Findings demonstrate that (1) consideration should be given to the cluster-based 

extreme gradient boosting technique in downscaling GRACETWS for local applications given their 

apparent enhanced performance (average value: R-squared: 0.81; NRMSE 0.46; NSE 0.77) over the 

multivariate regression (R-squared: 0.69; NRMSE 0.60; NSE 0.62) and artificial neural network (R-

squared: 0.72; NRMSE 0.53; NSE 0.70) methods; and (2) identifying local hydrologic variables and the 

optimum downscaling approach for individual clusters is critical to implementing this method. The 

adopted method could potentially be used for groundwater management purposes on local scales in the 

study area and in similar settings elsewhere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

ACKNOWLEDGMENTS 

I would like to express my deepest appreciation and sincere gratitude to my advisor Dr. 

Mohamed Sultan, for his advice, encouragement, and his unconditional help and support during my 

academic journey as a Ph.D. student. I would also like to express my appreciation to my committee 

members, Dr. Alan Kehew, from the Geological and Environmental Science Department of Western 

Michigan University, and Dr. Richard Becker from the University of Toledo for their constructive 

comments and review. 

Additionally, I would like to thank the institutions, administrations, and organizations that 

provided financial assistance for this research. In particular, I would like to thank NASA Earth 

Science Division (grants numbers NNX12AJ94G and 80NSSC18K1681), the Earth Remote Sensing 

Laboratory of the Western Michigan University, and the Michigan Geological Survey. 

Finally, I would like to thank my parents for their unconditional love and support throughout 

my life and for their encouragement to pursue my academic and scientific ambitions. 

Hossein Sahour 



iii 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS  ................................................................................................................. ii 

   LIST OF TABLES .............................................................................................................................. v 

LIST OF FIGURES ......................................................................................................................... vi 

CHAPTER 

1. INTRODUCTION ................................................................................................................... 1 

1.1 Background  ....................................................................................................................... 1 

1.2 Objectives  .......................................................................................................................... 5 

2. OVERVIEW OF THE STUDY AREA  .................................................................................. 7 

2.1 Lower Peninsula of Michigan   ......................................................................................... 7 

3. METHODOLOGY ................................................................................................................ 11 

3.1 Introduction ...................................................................................................................... 11 

3.2 Cluster Analysis ............................................................................................................... 13 

3.3 Identification of Variables that Correlate with and/or Control GRACETWS  ................... 14 

3.4 Construction, Evaluation, and Selection of Optimum Model for Downscaling  ............. 21 

3.5 Extraction of Temporal GW Storage Using Outputs of Land Surface Models  .............. 29 

3.6 Sources and Propagation of Errors  .................................................................................. 31 

4. RESULTS .............................................................................................................................. 33 

4.1 Cluster Analysis  .............................................................................................................. 33 

4.2 Evaluation and Comparison of the Models  ..................................................................... 35 



iv 

Table of Contents - Continued 

4.3 Factors Controlling the TWS and GWS Variations over the Study Area  ....................... 38 

5. DISCUSSION AND IMPLICATIONS  ................................................................................ 42 

5.1 Introduction  ..................................................................................................................... 42 

5.2 Inspection of Trends  ........................................................................................................ 42 

6. SUMMARY AND CONCLUSION  ..................................................................................... 50 

REFERENCES  ........................................................................................................................... 53 

      APPENDIX  ................................................................................................................................ 65 



v 

LIST OF TABLES 

1. Initial input variables for the statistical models………………………………………15 

2. Secular trends for GRACETWS and GRACEGWS from 2002 to 2016……..…..………18 

3. Performance of the applied models…………………..………………………………22 

4. Correlation matrix for GRACETWS values over land (three clusters)  and Lake

Michigan water levels………………………….……………………………………..34 

5. Statistical coefficients (R-squared, NRMSE, and NSE) for each of the examined

models (Extreme Gradient Boosting, Multivariate Regression, and Artificial Neural

Network) over clusters 1, 2, and 3 and calculated

uncertainties…………………………………….…………………………………….35 

6. Percent contribution of each variable in the outputs of the XGBoost models and 

their optimum lag times……………….……………………………………...........…39 



vi 

LIST OF FIGURES 

1. Location map showing the distribution of the three clusters (1, 2, and 3), the Holland

and Harbor Beach lake level measuring stations, stream gauges, and

monitoring……….................................................................................................................9 

2. Estimated yield in glacial deposits in gallons/minute (gpm) and hydrological provinces

(1 through 9) of the LP...……………………..…………………….……………...………10 

3. Flow chart showing the three main steps that were used to downscale GRACETWS 

from 12,000 km2 to 120 km2 and to extract fine-resolution (120 km2) GRACEGWS…...…12 

4. Configurations of the GRACE satellite mission…………..………………………………16 

5. Schematic diagram of  tree-based gradient boosting method……………….………..……27 

6. Secular GRACETWS and GRACEGWS trend images (mm/year) over the LP for the

period 2002 to 2016……………………………………………………….…………….…30 

7. Comparison of the time series of GRACETWS over land (cluster 3) and Michigan lake

level……………………………………………………..…………………………………34 

8. Scatter plots of the GRACETWS predicted values (using XGBoost models) versus

observed values (from testing subsets) GRACETWS values for the three

clusters………………..………………………………………………………….………...37 

9. The estimated total error rate for three arbitrary pixels (1, 2, and 3)……………….……..38 

10. GRACETWS and GRACEGWS trend images and time series for downscaled data….….......43 

11. Average annual rainfall and snow water equivalent for periods I (2002-2012) and II

(2013-2016).........................................................…………………………………..….…..46 

12. Comparison between the downscaled GRACEGWS data for three pixels and

groundwater levels from monitoring wells within each of the three GRACE

pixels in Kalamazoo (well A) and Lansing (wells B and C)………………………….…...48 

13. Comparison between the downscaled GRACETWS data for two pixels and two inland

lakes, namely Otsego Lake and Austin Lake ……………………………….…………….49 



1  

CHAPTER 1 

INTRODUCTION 

1.1 Background 

 

 

The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission 

that was jointly implemented by the National Aeronautics and Space Administration 

(NASA) in the United States and the Deutschen Zentrum für Luftund Raumfahrt (DLR) 

in Germany to map the temporal variations in the global gravity field (Tapley et al, 

2004). The GRACE satellites were launched in March 2002, and the GRACE Follow-

On (GRACE-FO) mission was launched in May 2018. Since then, the application of 

GRACE has resulted in advances of hydrologic sciences in the assessment and 

monitoring of spatial and temporal variations in groundwater storage (GWS) in many 

parts of the world including Africa (Ahmed et al., 2014; Sultan et al., 2019); the Middle 

East (Othman et al., 2018; Sultan et al., 2019) China (Feng et al., 2013), India (Rodell 

et al., 2009), California (Scanclon et al., 2012), and Mexico (Castellazzi et al., 2018). 

However, such applications are hampered by the relatively low horizontal resolution of 

GRACE data and the fact that GRACE does not have vertical resolution (wahr et al, 

2004). In other words, GRACE cannot determine in which compartment (e.g., surface 

water, groundwater, or soil moisture) the observed mass variations are occurring. 

Many studies utilizing GRACE data for hydrological research and applications 

(e.g., Rodell et al., 2004; Chen et al.,  2005) target large aquifers and watersheds (areas 

of 450 × 103 to 6 × 106 km2). However, the majority of the world’s aquifers and 

watersheds are much smaller; even for the larger ones, one often needs to understand 
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the partitioning of water on the sub-basin level. A finer resolution of GRACE solutions 

would be a useful tool for tracking the changes in GWS (GRACEGWS) on local scales, 

especially for regions that do not have sufficient in-situ monitoring sites.  

Downscaling techniques allow predictions to be made at a finer spatial 

resolution than that of the original dataset (Atkinson, 2013). Downscaling approaches, 

especially those developed for climate models and later applied to remotely acquired 

data, can be classified into two main groups: dynamic downscaling and statistical 

downscaling (Atkinson, 2013). The former approach has been successfully applied to 

downscale global climate models (GCMs) over regions of interest by integrating GCM 

outputs with the physical characteristics of Earth’s surface in the area of interest. 

Monthly GRACE terrestrial water storage (GRACETWS) solutions from Center for 

Space Research (CSR), Jet Propulsion Laboratory (JPL), and Deutsches 

GeoForschungsZentrum (GFZ) (spatial resolution: 150,000 km2) were assimilated into 

a land surface model to generate high-resolution water storage changes within the 

major watersheds of the Mississippi River (Zaitchik et al., 2008). GRACETWS derived 

from spherical harmonic (SH) solutions were assimilated into the Catchment Land 

Surface Model to extract GRACE-based drought indicators (spatial resolution: 1º × 

1.25º) for North America (Houborg et al., 2012). Gridded (25 km2) Advanced 

Microwave Scanning Radiometer—Earth Observing System (AMSR-E) data were 

assimilated into a fine-scale (1 km2) NOAH land surface model using three-

dimensional and one-dimensional Kalman filters (Sahoo et al., 2013). The JPL 

GRACETWS mascon solutions (3.0º × 3.0º) were assimilated into the fine resolution 

(0.05º × 0.05º) hydrologic models (Shokri et al., 2019). The scale factor was used to 

minimize the leakage errors and to improve the spatial resolution of the JPL spherical 
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harmonics solutions (Landerer and Swenson, 2012). Such applications often require 

extensive computing time and resources that are not available for many researchers 

(Schoof, 2013a). Also, many of the above-mentioned procedures depend on the 

selected hydrological model, some of which are lacking surface or groundwater 

components. 

Statistical downscaling, on the other hand, does not require these resources. 

Statistical downscaling evaluates observed spatial and temporal relationships between 

inputs (independent variables) and outputs (dependent variables) using coarse-scale 

datasets (inputs and outputs) and applies the extracted relationships to produce the 

dependent variables at a spatial resolution matching that of the fine-scale inputs (Le 

Roux et al., 2018). A variety of statistical methods have been applied to downscale 

remote sensing or ground-based data, including Markov chains and support-vector 

machines (Hou et al., 2017), regression-kriging (Wang et al., 2018), neural networks 

(Miro and  Famiglietti, 2018), and stochastic models (So et al., 2017). Stepwise 

regression was successfully applied to downscale satellite-based precipitation data 

(TRMM3B43 products) and average daily precipitation and air temperature data from 

weather stations (Joshi et al., 2015; Ezzine et al., 2017). Artificial neural networks 

(ANN) were used to downscale GCM outputs (Chadwick et al,  2011) and rainfall ( Vu 

et al., 2016). The major limitation of the statistical approaches comes from the 

assumption of stationarity between the coarse- and fine-scale dynamics and from the 

uncertainty and probability associated with this assumption (Schoof, 2013b). 

Statistical approaches were successfully used to downscale GRACE data to a 

high-resolution (~16 km2) dataset of groundwater storage changes over a portion of 

California’s Central Valley using ANN techniques (Miro and Famiglietti, 2018). In that 
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study, temporal GRACETWS and a series of widely available hydrologic variables were 

used as model inputs, and target data were extracted from groundwater storage changes 

that were estimated from an extensive well network dataset (2189 wells). Similarly, 

variations in GWS were extracted and tested against temporal variations in 

groundwater levels in Texas, Nebraska, and Illinois (Sun, 2013) by using coarse-

resolution (3º × 3º) GRACETWS JPL Release-05 monthly mass concentration (mascons; 

JPL RL-05M) and high-resolution hydrologic variables and applying ANN techniques. 

Statistical downscaling was also used to successfully downscale GWS anomalies from 

110 to 2 km in the North China Plain on both interannual and monthly scales in areas 

where a strong relationship between GWS and ET was detected and where the 

relationship was established under different spatial resolutions (Hu et al., 2018). The 

successful applications in the first two examples (in California’s Central Valley, Texas, 

Nebraska, and Illinois) relies heavily on the availability of temporal head data from 

dense networks of wells, and for the latter (North China Plain) on the presence of a 

strong relationship between GWS and ET—conditions that are not necessarily 

available in many of the basins worldwide. In a fourth study, temporal GRACETWS 

solutions and land surface and hydro-climatic variables were used to predict 

groundwater level anomaly (GWLA). A network of 32 wells (21 wells for training and 

11 wells for testing) was used to establish and test the relationship between GRACETWS 

and hydro-climatic variables as input and GWLA as the response variable using a 

downscaling algorithm based on machine learning (ML) (Seyoum et al., 2019). In many 

of the applied statistical downscaling approaches, including the latter study, a dense 

network of wells is required to establish a relationship between hydrological variables 

and groundwater anomalies extracted from the well data. Those methods cannot be 
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applied in many parts of the world with limited monitoring well sites.  

In this study, I applied statistical techniques to extract relationships between 

coarse-resolution GRACE solutions (target data) and hydrologic variables (total 

precipitation, normalized difference vegetation index [NDVI], snow cover, Lake 

Michigan level, Lake Huron level, land surface temperature, soil moisture, air 

temperature, and evapotranspiration [ET]). These variables could potentially correlate 

with, or contribute to, the temporal variations of GRACETWS. I used those relationships, 

and high-resolution hydrologic variables to generate high-resolution, modeled monthly 

GRACE solutions. The Lower Peninsula (LP) of Michigan was used as a test site. I 

applied, and compared the findings from three statistical methods—stepwise 

multivariate regression (MR) models, ANN, and extreme gradient boosting 

(XGBoost)—to downscale GRACE data and to fill the temporal gaps in the time series 

data over the LP throughout the investigated period (2002–2016). 

 

1.2 Objectives 

 

There are two major shortcomings associated with GRACE-derived products. 

First, the coarse spatial resolution of the GRACE-derived product that makes them 

difficult to use for local investigations, and second, the gaps in the time series resulted 

from battery failure during the first GRACE mission. The main objective of this study 

was to address the above-mentioned shortcomings using statistical downscaling 

techniques and extracting information from newly produced GRACE-derived data. The 

objectives of the study can be summarized as follows.  

 To enhance the spatial resolution of the GRACETWS from 12,000 km2 to 120 

km2 
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 To fill the temporal gaps in GRACE-derived TWS 

 To extract the trend in TWS using downscaled GRACETWS in the study period  

 To extract the trend in GWS using downscaled GRACETWS and outputs of land 

surface models. 
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CHAPTER 2 

 

OVERVIEW OF THE STUDY AREA 

 

 

 

2.1 Lower Peninsula of Michigan 

 

The LP (Fig. 1) depends heavily on its groundwater resources to support a 

population of 10 million citizens, its agricultural sector (35% of its area is agricultural 

land (Tayyebi et al., 2017), and its industry. The area in general, and the local 

communities, in particular, can benefit from reliable datasets that show spatial and 

temporal variations in GWS at the local scale. This is especially true for the southern 

counties of the LP where intensive agricultural activities are established, and 

groundwater withdrawal rates (30 to 90 million gallons/day (Grannemann et al., 2000) 

are the highest in the state. 

Groundwater availability differs from one place to another in the LP; it is 

plentiful in some regions (e.g., the southwest) and less so in other areas (e.g., the 

southeast) (Rheaume, 1991). The major aquifers in Michigan are largely found in (1) 

glacial deposits, where yields are mostly from outwash and glacio-fluvial deposits, and 

(2) sedimentary bedrock units, where yields come largely from the Mississippian and 

Pennsylvanian rocks (Rheaume, 1991). The surface and groundwater in the area drain 

into the Great Lakes (Lake Michigan, Lake Huron, and Lake Erie) (Vugrinovich, 

1986). 

Nine hydrologic provinces with varying sedimentary deposits and aquifer 

thicknesses (Fig. 2) were identified in the LP (Rheaume, 1991). Province 1 has a 

relatively thin (1 to 60 m) glacial-lacustrine sand unit that overlies Silurian and 

Devonian limestone and dolomite. Aquifers in Silurian and Devonian rocks are the 
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main source of groundwater in the area. Province 2 is largely covered by thick (>300 

m in some areas), coarse-grained, sandy glacial deposits, whereas Province 3 is 

characterized by variable thicknesses (15 to 75 m), low-yield lacustrine deposits that 

overlie the Mississippian bedrocks. Province 4 is in the southern sections of the LP and 

is characterized by thick (30 to 180 m), coarse-grained glacial deposits that overlie the 

low-yield Mississippian rocks; it is the main source for groundwater in the area. 

Province 5 glacial deposits vary in thickness (7 to 150 m) and overlie the high-yield 

Pennsylvanian aquifers. In this province, the thickness of the glacial aquifer thins to the 

south and groundwater is largely extracted from the Pennsylvanian sandstone. Province 

6 is characterized by thin to moderate glacial drift that overlies high-yield Mississippian 

bedrock aquifers. The latter is largely composed of the Marshall Sandstone, whereas 

the glacial deposits are absent in some areas but thicken (up to 120 m) in others. 

Province 7 is characterized by thin glacial deposits (<10 m in most areas) that overlie 

moderate-yield Silurian and Devonian limestone and dolomite intercalated with sand 

and shale layers. Province 8 is characterized by low-yield, moderate to thick (15 to 120 

m), lacustrine clay deposits that overlie low-yield Devonian and Mississippian 

sandstone. Lastly, Province 9 consists of featureless lacustrine and low-yield glacial 

sand and clay deposits of variable thickness (7 to 90 m) that overlie Pennsylvanian and 

Mississippian sandstone aquifers (Rheaume, 1991). In general, the vertical hydraulic 

conductivity of the glacial aquifer is high (9.64 × 10−7 to 3.8 × 10−5 m/day) in the 

southern sections compared to the northern sections (3.8 × 10−5 to 0.45 m/day).  
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Figure 1. Location map showing the distribution  of the three clusters (1, 2, and 3), the 

Holland and Harbor Beach lake level measuring stations, and monitoring wells in 

Kalamazoo (well A: site name 02S 11W 22CDBB 01) and Lansing (well B: site name 04N 

02W 26BBDB 01 and well C: site name: 04N 02W 16DAAA 01). Inset shows location of 

study area in the USA. 
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Figure 2. Estimated yield in glacial deposits in gallons/minute (gpm) and hydrological 

provinces (1 through 9) of the LP modified from (Vugrinovich, 1986). 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

 

A four-fold exercise was conducted to accomplish the statistical downscaling 

of GRACETWS (Fig. 3). First, clustering analysis was conducted on GRACETWS data 

over the LP to identify clusters of pixels, where pixels within each cluster have similar 

GRACETWS values yet are statistically different from those of neighboring clusters 

(Step I). Variables that correlate with and/or control GRACETWS were then identified 

(Step II). In Step III, for each cluster, relationships between coarse-scale inputs 

(independent variables) and outputs (GRACETWS; dependent variables or target) were 

extracted using three statistical approaches—MR, ANN, and XGBoost—to produce the 

dependent variables at a spatial resolution matching that of the fine-scale inputs (0.125º 

× 0.125º or 120 km2). In doing so, we assumed that the extracted statistical relationship 

between the input variables and the target applies at the finer scales as well. In this step, 

the adopted statistical models were compared and evaluated to select the optimum 

methodology. Finally, GWS variations were extracted using outputs of the applied land 

surface model and outputs of the optimum downscaling method (downscaled 

GRACETWS) (Step IV).  
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Figure 3. Flow chart showing the three main steps that were used to downscale GRACETWS 

from 12,000 km2 to 120 km2 and to extract fine-resolution (120 km2) GRACEGWS. 

 

Initially, we selected 11 variables that could correlate with, or contribute to, the 

temporal variations of GRACETWS. All input variables listed below (section 3.2) are 

available at a spatial resolution ranging from 0.05º × 0.05º to 0.125º × 0.125º, and the 

output target values for each of the identified clusters were calculated from the gridded 

values within each of the clusters. Input variables were resampled to the size of their 

corresponding clusters for the step I and resampled to 0.125º × 0.125º (120 km2) for 
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the step III.  

We adopted three statistical approaches to model the relationships between the 

11 variables and GRACETWS, namely, the MR, ANN, and XGboost approaches for 

each cluster. For each of the three approaches, the data were randomly partitioned into 

two subsets, training and testing. The training subset comprised 80% of the data points 

(percentage of the months in the time series data) and was used to construct the model, 

whereas the remaining 20% were used to evaluate the performance of the model. This 

approach was applied to each of the identified clusters.  

 

 

3.2 Cluster Analysis  

 

Working with small areas (individual pixels) introduces significant leakages 

from neighboring pixels. I adopted cluster analysis to identify larger areas (contiguous 

pixels) with similar geophysical signatures (GRACETWS time series) and hence reduce 

leakage errors. Clustering is the partitioning of the set of objects into groups in such a 

way that the objects within a group are more similar to each other than those in other 

groups. I applied K-means, one of the most popular methods for clustering analysis to 

the monthly GRACE Release-06 (CSR RL06) solutions over the study area. In this 

method (K-means), the dataset is partitioned into K clusters in which each observation 

belongs to the cluster with the nearest mean, serving as a prototype of the cluster 

(Dhanachandra et al., 2015) The optimum number of clusters was estimated, and the 

area was partitioned into the identified number of clusters. The monthly values of a 

variable for each cluster represents the average values of all pixels within that cluster 

in the investigated month.    
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The optimal number of clusters was determined using the gap statistic 

implementation (Tibshirani et al., 2001), where three steps are undertaken:  

Step 1: Estimate the gap statistic using equation 1. 

Gap (k) =
1

𝐵
∑(log 𝑊𝑘𝑏 − log 𝑊𝑘)

𝐵

𝑏=1

 

(

1

) 

 

In which k is the number of clusters,  B is the number of reference datasets 

generated using a uniform prescription, Wkb is the within-dispersion measures, and 

Wk is the within-cluster dispersion. 

Step 2: Compute the standard deviation.  

𝑠𝑑𝑘 = [(
1

𝐵
) ∑{log(𝑊𝑘𝑏) − 𝑙}̅2

𝑏

]

1
2

 

 

Where                                      𝑙 ̅ = (
1

𝐵
) ∑ log(𝑊𝑘𝑏)𝑏 . 

Step 3: Define 𝑠𝑘 = 𝑠𝑑𝑘√1 +
1

𝐵
 and choose the number of clusters via 

�̂� = smallest k such that Gap (k) ≥  Gap (k + 1) − s𝑘+1. 

 

3.3. Identification of Variables that Correlate with and/or Control GRACETWS  

In this section, I briefly describe the variables and target data for the MR, ANN, 

and XGboost models. I selected the input variables (total precipitation, normalized 

difference vegetation index [NDVI], snow cover, Lake Michigan level, Lake Huron 

level, land surface temperature, soil moisture, air temperature, and evapotranspiration 
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[ET]) based on their probable correlation and/or contribution to the target 

(GRACETWS). The spatial resolution, format, and sources of these datasets are given in 

Table 1. A number of these variables (e.g., soil moisture, NDVI, and 

evapotranspiration) may be related to, or affected by, the soil characteristics and the 

underlying glacial aquifer parameters. 

 

 

Table 1. Initial input variables for the statistical models 

 

 GRACE-derived TWS 

The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-

On (GRACE-FO) is a continuing joint satellite mission between the National 

Aeronautics and Space Administration (NASA) in the United States and the German 

Aerospace Center (DLR) in Germany. GRACE satellite comprises two parts (GRACE 

A and GRACE B) that rotate the Earth close to each other. The twin satellites were 

launched in March 2002 from Plesetsk Cosmodrome in Russia. The two satellites orbit 

the Earth, one in front of the other, rotating in a polar orbit with an approximate 

Variable Name Format Resolution Source 

NDVI raster (0.05º × 0.05º)  MODIS 

Snow Cover raster (0.05º × 0.05º)  MODIS 

Land surface Temperature raster (0.05º × 0.05º)  MODIS 

Total precipitation raster 
(0.125º × 

0.125º) 
NLDAS 

Air temperature raster 
(0.125º × 

0.125º) 
NLDAS 

Soil moisture raster 
(0.125º × 

0.125º) 
NLDAS 

Lakes Level numerical N/A NOAA 

Evapotranspiration raster 
(0.125º × 

0.125º) 
NLDAS 
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separation of 200 km, and an inclination of 89.5° and an altitude of 500 km. (Tapley et 

al., 2004). The two satellites keep the same distance, speed, and altitude until a gravity 

anomaly is recognized. Mass anomalies are identified as disturbances in the distance 

between the two satellites that are used to measure temporal variations in the global 

earth gravity field (Fig. 4) (Tapley et al., 2004). The temporal variations in the gravity 

field within the investigated short time periods (months, years) are mostly related to 

mass variations in hydrologic systems ( e.g., groundwater, surface water, and oceans).  

 

 

Figure 4. The configuration of the GRACE satellite mission. Source of 

image : http://www.csr.utexas.edu/grace/. 

 

Three communal GRACE mascon solutions (from April 2002 through June 

http://www.csr.utexas.edu/grace/
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2016) were applied in this study and reported relative to a 2004–2009 mean baseline.  

The first is the GRACE CSR-RL06M solutions provided by the University of Texas 

Center for Space Research (UT-CSR); they were derived using Tikhonov 

regularization (Save et al, 2016), and resolved on a geodesic grid (grid size: 12,000 

km2) (Save et al., 2012; Save et al., 2016). The second is the mascon solutions from the 

Jet Propulsion Laboratory (Watkins et al., 2015) (available at JPL website, JPL;L06M;  

ftp://podaacftp.jpl.nasa.gov/allData/tellus/L3/mascon/RL06/JPL/CRI/netcdf/) and the 

third is the mascon solution from  NASA Goddard Space Flight Center (GSFC- 

Mascon; https://earth.gsfc.nasa.gov/geo/data/grace-mascons) (Luthcke et al., 2013). 

The CSR-RL06M solutions were selected as the initial mascon solutions for 

extracting trends and time series over the investigated areas.  The uncertainty associated 

with the calculated trend values were calculated from the differences in trend values 

extracted from the three solutions (CSR-RL06M, JPL-RL06M, and GSFC-M) ( Rodell 

et al., 2018; Scanlon et al., 2018) (Table 2). No post-processing and/or filtering or 

application of empirical scaling factors were applied (Luthcke et al., 2006; Save et al., 

2016; Watkins et al., 2015). SH solutions of GRACE data have been successfully 

applied in many studies to monitor variations in TWS in large scales (Ahmed, Sultan, 

Wahr, & Yan, 2014; Ahmed et al., 2011); however, its application on local scales was 

hindered by its coarse spatial resolution (>125,000 km2), leakage problems from 

adjacent pixels, and the required complex post-processing steps (Scanlon et al., 2016). 

Compared to SH, the GRACE RL06 mascon solutions have a higher signal-to-noise 

ratio, higher spatial resolution, and reduced leakage from neighboring mascons that are 

in separate constraint regions (Scanlon et al., 2016).  The extracted trends and 

associated uncertainties for each of the investigated clusters are given in Table 2.  

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
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Table 2. Secular trends for GRACETWS and GRACEGWS from 2002 to 2016. 

Clu

ster 

ΔTWS 

(mm/year) 

ΔSMS 

(mm/year) 

ΔSWE 

(mm/year) 

ΔGWS 

(mm/year) 

1 16.2 ± 5 0.3 ± 0.0 0.1 ± 0.0 15.8 ± 5 

2 14.4 ± 5.2 0.0 ± 0.0 0.7 ± 0.0 13.7 ± 5.2 

3 8.8 ± 3.4 −0.7 ± 0.0 0.1 ± 0.0 9.5 ± 3.4 

 

Locations for clusters are shown in Figure 1.  

ΔTWS: Change in terrestrial water storage. The values are based on original GRACETWS 

before gap filling for missing months.  

ΔSMS: Change in soil moisture storage. 

ΔSWE: Change in snow water equivalent. 

ΔGWS: Change in groundwater storage. 

ΔCWS: Change in canopy water storage for each of the three clusters was found to be negligible 

(0.0) and was ignored in estimating ΔGWS. 

 

 

 

 

NDVI 

I used NDVI products derived from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) as one of the variables. NDVI uses the red and near-

infrared bands which are sensitive to healthy vegetation. The data consists of global 

monthly NDVI values reported at a 0.05º × 0.05º spatial resolution downloaded from 

Land Processes Distributed Active Archive Center’s website 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table). The 

uncertainties  associated with MODIS NDVI products was estimated by comparing the 

NDVI products with that extracted from the Advanced Very-High-Resolution 

Radiometer (AVHRR) and from the Visible Infrared Imaging Radiometer Suite (VIRS) 

(Van Leeuwen and Herrmann, 2006). The reported statistical coefficients between the 

NDVI products of MODIS and each of the AVHRR (R-square 0.99) and VIRS (R-

square 0.99) indicate high consistency of the NDVI values extracted from different 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
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sensors (Van Leeuwen et al., 2006). 

Snow Cover (SC) 

The monthly average snow cover (spatial resolution: 0.05º × 0.05º) values were 

computed from daily snow cover observations extracted from the MODIS/Terra Snow 

Cover Daily L3 Global 0.05Deg Climate Modeling Grid dataset. The normalized 

difference snow index—an index that is sensitive to the high reflectance over snow 

covered lands in the visible wavelength region and low reflectance in the shortwave 

infrared regions—was used to identify snow-covered land. The monthly averages are 

calculated from the corresponding 28 to 31 days of observations in the daily maximum 

snow cover extent data. The MODIS monthly snow cover data were downloaded from 

NSIDC’s website (https://nsidc.org/data/MOD10CM/versions/6). 

 

Lake Levels (LL) 

Average monthly water level data for Lake Michigan and Lake Huron were 

obtained from the NOAA's Center for Operational Oceanographic Products and 

Services. The Lake Michigan water levels were obtained from the Holland station and 

the Lake Huron levels from the Harbor Beach station. The former station is located 

along Lake Michigan’s eastern shoreline and the latter along Lake Huron’s 

southwestern shoreline (Fig. 1). At both stations, water levels are measured every six 

minutes. The average monthly water level data were downloaded from NOAA’s 

website (https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels). 

Land Surface Temperature (LST) 

The monthly MODIS/Terra land surface temperature (LST) is derived by 

averaging the daily values of MOD11C3 products. These products have been validated 

https://nsidc.org/data/MOD10CM/versions/6
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels


20  

through a series of field studies by the MODIS land team [(“MODIS/Aqua Land-

Surface Temperature/Emissivity Monthly Global 0.05Deg CMG - LAADS DAAC,” 

n.d.)]. The spatial resolution of the monthly LST is 0.05º × 0.05º, and the data were 

obtained from the NASA's Earth Science Data Systems available at 

https://earthdata.nasa.gov/. The performance of the MODIS LST product was 

evaluated in several locations in the USA; results showed a good correspondence 

(absolute biases < 0.8 °C and RMSEs < than 1.7 °C) between the in-situ measurements 

and MODIS LST products (Wang and Meyers, 2008). 

 

Rainfall, Snow Water Equivalent, Soil Moisture, Air Temperature, and 

Evapotranspiration 

The NASA’s North American Land Data Assimilation System (NLDAS) 

NOAH model outputs (total monthly rainfall, snow water equivalent [SWE], soil 

moisture [SMS], air temperature [AT], and evapotranspiration [ET]; spatial resolution: 

0.125º × 0.125º) were used as inputs to our models. These data are produced from a 

daily ground-based precipitation analysis, bias-corrected shortwave radiation, and 

surface meteorology re-analyses to drive land surface models (Mitchell et al., 2004). 

The average monthly data used in this research were downloaded from NASA Goddard 

Earth Sciences Data and Information Services Center’s website at 

https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS. The monthly total precipitation 

was computed from the sum of the monthly SWE and rainfall. The outputs of NLDAS 

products have been validated and enhanced through several research works  (Xu et al., 

2019; Xia, et al., 2012). The accuracy of the NLDAS products varies from one product 

to another and from one location to another. For instance, the uncertainty for ET 

https://earthdata.nasa.gov/
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
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products was reported to be 4-8 mm per month over the contiguous United States (Xu 

et al., 2019). Comparing the NLDAS products with in-situ measurements showed that 

the performance of the soil moisture product over the contiguous United States was 

very high (RMSE= 0.02 to 0.11) (Xia et al., 2014). The uncertainty of the NLDAS 

snow water equivalent is less than 20% based on comparisons with IMS (MultiSensor 

Snow and Ice Mapping System) observations (Xia et al., 2012). The uncertainties in air 

temperature over Michigan were estimated by comparing the monthly mean values 

between NLDAS and the National Centers for Environmental Prediction [NCEP] 

products. The reported difference was < 0.4 °C (Mo et al., 2012). The NLDAS 

precipitation data were compared with five other available datasets over the western 

United States, and the mean relative difference between them ranged from 11 to 18% 

(Henn et al, 2018). 

 

3.4. Construction, Evaluation, and Selection of Optimum Model for Downscaling  

For each cluster, all datasets (variables and targets) were randomly partitioned 

into two groups: training (80% of the time series for each cluster) and testing (20% of 

the time series for each cluster). I constructed and applied three statistical models (MR, 

ANN, and XGBoost) to establish the relationships between the variables (predictors) 

and GRACE (the target) for each of the investigated clusters. The performance of each 

model was compared and evaluated. The evaluation of the models was carried out by 

comparison between observed values (testing subset) and predicted values using the 

coefficient of determination (R-squared), the normalized root-mean-square error 

(NRMSE), and the Nash-Sutcliffe model efficiency coefficient (NSE) (Table 3) (Nash 

and  Sutcliffe, 1970). The R-squared values range from 0 to 1; those for the NRMSE 
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and NSE indices range from 0 to 1. The predictive power of the models increases with 

increasing R-squared and NSE values and with decreasing NRMSE values. The rate of 

the performance for each approach was based on classifications adopted by (Moriasi et 

al., 2007). Following the identification of the statistical model that yielded the highest 

performance, I used the selected model to downscale the GRACE solutions for each of 

the clusters to 0.125º × 0.125º throughout the investigated period. 

Table 3. Performance of the applied models modified from ( Moriasi et al., 2007). 

Performance Rating NSE NRMSE 

Very Good NSE ≥ 0.75 NRMSE ≤ 0.5 

Good 
NSE ≥ 0.65 and < 

0.75 
NRMSE > 0.50 and ≤ 0.60 

Satisfactory 
NSE ≥ 0.50 and < 

0.65 
NRMSE > 0.60 and ≤ 0.70 

Unsatisfactory NSE < 0.5 NRMSE > 0.70 

 

 

MR Models 

The MR, or multiple linear regression method, derives patterns in the data and 

establishes the best fitting multivariate linear relationships between two or more 

independent variables and the target (GRACETWS). As described earlier, I applied a 

stepwise MR method in which the selection of variables is carried out by addition to, 

or subtraction from, a set of dependent variables using some pre-specified coefficients 

such as the F-test, the t-test, and the coefficient of partial determination. In an MR 

model, every value of the independent variable X is associated with a value of the target 

variable Y. The regression line for n independent variables X1, X2,…, Xn  can be 

explained as follows. 
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Y= B0 + B1X1 + B2X2 +…+ BnXn              , 

(

2

) 

Where Y is the predicted value of the target variable, B0 is the value of Y when 

all of the independent variables are equal to zero,  X1 through Xn are independent 

variables, and B1 through Bn are the estimated regression coefficients. In multivariate 

linear regression, the response variable Y (GRACETWS in our work) is assumed to be 

linearly related to a set of n explanatory independent variables X1, X2,…, Xn, and the 

independent variables are not highly correlated with each other. Observations are 

selected independently and randomly from the population. Also, residuals assumed to 

be normally distributed with a mean value of 0. 

The parameters are trained in such a way to achieve the highest similarity 

between the modeled and observed values in the training data set. One optimization 

model is employed to minimize the sum of the squares of the vertical deviations from 

each data point to the regression equation. The ideal case is a model in which a data 

point lies completely on the fitted line (i.e., vertical deviation = zero). 

I applied a stepwise multivariate regression approach. Stepwise regression fits 

the multivariate regression several times, each time removing the least correlated 

variable until the statistically significant variables are left. For a full description of 

variable selection in the stepwise method, see (Hocking, 1976). MR models were first 

developed for each of the identified clusters to establish linear relationships between 

coarse-resolution inputs (variables) and target (GRACETWS) values for each of the 

identified clusters.   
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All input variables were available in both coarse and fine resolutions, whereas 

GRACETWS values were available in coarse resolution only. The variables were 

resampled to the size of each cluster using bilinear resampling techniques. 

 

ANN 

The ANN method establishes empirical, possibly non-linear, relationships 

between a set of “input” variables and corresponding “target” variables. An ANN is 

based on a series of connected units or neurons which are intended to replicate the 

functions of neurons in animal or human brains; they pass information between one 

another, a structure that enables ANNs to be trained and learn. The ANN method used 

in this study is known as a multilayer perceptron (MLP). An MLP consists of units 

called perceptrons. Perceptrons have one or more inputs, an activation function, and an 

output. An MLP model is built up by combining perceptrons in structured layers. The 

perceptrons in a given layer are independent of each other, but each connects to all of 

the perceptrons in the following layer. Each layer is composed of a set of neurons and 

is trained with a backpropagation algorithm.  

Backpropagation is one of the most extensively used algorithms for supervised 

training of multilayered neural networks (Mohaghegi et al, 2005; Sahour et al, 2020; 

Alshehri et al, 2020). Backpropagation works by approximating the non-linear 

relationship between the input and the target by altering the weight values internally. 

The processes of the Backpropagation can be divided into two stages: feedforward and 

Backpropagation. In the feedforward step, a pattern is applied to the input layer, and its 

effect propagates, layer by layer, through the network until the output is generated. The 

network's sample output value is then compared to the anticipated value for a given 
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input, and an error signal is estimated for each of the output neurons. Since all neurons 

within the hidden layer contributed to the signal errors in the output layer, the output 

errors are transmitted backward from the output layer to each neuron within the hidden 

layer that contributed to the output layer. This process is then reiterated, layer by layer, 

until each neuron in the network has received an error signal that represents its relative 

contribution to the total error. Once the error signal for each neuron has been computed, 

the errors are then applied by the neuron to adjust the values for each connection 

weights. The goal is to minimize the value of the error function in weight space. The 

weights with minimum error functions are then considered to be a solution to the 

learning problem. In an ANN, hyperparameter is a parameter whose value is set before 

the learning process begins, and it controls the model structure (e.g., number of layers, 

number of hidden neurons, number of epochs). Additional information about the theory 

behind ANN applications can be found in (Rumelhart et al, 1986).    

 

In our study, I applied a trial and error technique to determine the optimal 

number of hyperparameters where the numbers were added gradually until the 

predicted, and observed values start to match by evaluating the model performance 

using the Mean squared normalized error (MSE) performance function. In our study, 

individual ANNs were constructed for each cluster. In all three clusters, the ANNs 

consist of one input layer, one hidden layer, and one output layer.  The number of 

hidden neurons in our study ranged from 12 to 18. The number of epochs is the number 

of times the entire training data are used to update the weights. In other words, it is the 

number of times that the backpropagation algorithm works through the entire training 

dataset. The number of epochs ranged from 350 to 500. 
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The final model evaluation was carried out by the comparison between 

observed and predicted values on testing data (out of sample data set) using the above-

mentioned statistical coefficients (NRMSE, and NSE). 

XGBoost 

Gradient boosting was used with decision trees. Decision tree learning is a 

predictive modeling approach in machine learning that uses a tree-like model to go 

from observations of predictors (branches of the tree) to the prediction of the target 

value (leaves of the tree). The goal of our study was to create a model to predict the 

GRACETWS values from sets of input variables for each month. Using trees has several 

advantages, including, but not limited to, the ability to handle various types of target 

variables (e.g., numerical, categorical, and multivariate), modeling complex 

interactions, and managing missing values with minimal loss of information (De’ath, 

2007). However, there are two main limitations with trees: weakness of prediction and 

difficulty in the interpretation of large trees (De’ath, 2007). To overcome these 

limitations gradient boosting algorithm was introduced by (Friedman, 2001) and 

developed by many others (Mason et al., 2000; Chen et al.,2016) 

In gradient boosting, the goal is to use a set of predictors (X1,…, Xn) to predict 

a set of target data (Y1,…,Yn) by fitting a model 𝐹(𝑋) → 𝑌 and minimize the sum of the 

loss function 𝐽 = ∑ 𝐿(𝑌𝑖, 𝐹(𝑋𝑖))𝑛
𝑖=1  by improving the model F(X) (in our work the loss 

function 𝐿(𝑥, 𝑦) =  (𝑥 − 𝑦)2). Then the following iteration is performed: 

1. Calculate the negative gradients of J with respect to F(Xi),  which is −
𝜕𝐽

𝜕𝐹(𝑋𝑖)
. 

2. Fit a regression tree ℎ to negative gradients −
𝜕𝐽

𝜕𝐹(𝑋𝑖)
. 

3. Let our new F(Xi) to be F(Xi)+𝛾ℎ, where 𝛾 is the step size in our algorithm to reach 
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the estimated minimum of 𝐽. 

As a significant improvement over gradient boosting, in XGBoost I start with a 

loss function 𝐿(𝑌𝑖, 𝐹(𝑋𝑖) + ℎ) and minimize 𝐽 = ∑ 𝐿(𝑌𝑖, 𝐹(𝑋𝑖) + ℎ) + Ω(ℎ)𝑛
𝑖=1 , where 

Ω(ℎ) = 𝛾𝑇 +
1

2
𝜆||𝑤||2. Here 𝑇 is the number of leaves in the tree and 𝑤 is the leaf 

weights. Fig. 5 shows a schematic diagram of gradient boosting method. 

 

 

 

 

Figure 5. Schematic diagram of a tree-based gradient boosting method. 
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Selection of optimum statistical model and Gap Filling  

The performance of each of the three models was evaluated by comparing the 

predicted values with observed values on the testing subset using R-squared, 

Normalized Root Mean Squared Error (NRMSE) ( Eq.3, Eq.4) and Nash-Sutcliffe 

efficiency (NSE) (Eq.5) as follows.  

 

 

RMSE=√∑
(𝑌𝑜−Ŷ𝑝)

2

𝑛

𝑛

𝑖=1

  

 

 

                                                                                                  

 

        (3) 

 

where 𝑌𝑜   is the observed value, Ŷ𝑝 is the predicted value, n is the number of 

observations, and �̅�𝑜𝑖 is the mean of observed data.  

 

The model that produced the highest R-squared and NSE and the lowest 

NRMSE value was selected. Using the optimum model, the relationships were 

established between input variables (total precipitation, NDVI, snow cover, Lake 

Michigan level, Lake Huron level, soil moisture, air temperature, LST, and ET) and 

GRACETWS as the target variable. These relationships were used to estimate the 

NSE= 1 −
∑ (Ŷ𝑝−𝑌𝑜)

2𝑛
𝑖=1

∑ (𝑌𝑜−�̅�𝑜𝑖 )2𝑛
𝑖=1

                                                     
(5)                                                                         

          𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�𝑜𝑖 
 

             

 (4)                                                                          
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missing GRACETWS months. 

 

3.5. Extraction of Temporal Groundwater Storage Using Outputs of Land 

Surface Models  

I used the downscaled GRACE data to extract for each of the 0.125º × 0.125º 

pixels the changes in GRACETWS (∆GRACETWS) and the secular trend for each of these 

pixels (Fig. 6). Then, changes in groundwater storage (∆GWS) were calculated using 

the downscaled ∆GRACETWS and outputs of land surface models (NLDAS NOAH) 

and applying the following equation (Eq. 6): 

∆GWS = ∆GRACETWS − (∆SMSNLDAS + ∆CWSNLDAS+ ∆SWENLDAS), 

(

6

) 

Where ∆SMSNLDAS, ∆CWSNLDAS, and ∆SWENLDAS are the changes in soil 

moisture, canopy water storage, and snow water equivalent, respectively, as extracted 

from the NLDAS model. All these data are provided in a spatial resolution of 0.125º × 

0.125º (~120 km2).   
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Figure 6. Secular GRACETWS and GRACEGWS trend images (mm/year) over the LP for the 

period 2002 to 2016. The trend from the GRACETWS data prior to gap-filling and associated 

uncertainty for each cluster is presented in Table 2. (A) Secular GRACETWS trend extracted 

from GRACE mascon data after filling the gaps for missing months. (B) Secular 

GRACETWS trend image extracted from the downscaled GRACE solutions (120 km2) after 

filling the gaps for the missing months. (C) Secular GRACEGWS trend image extracted from 

downscaled GRACETWS and NLDAS NOAH land surface model outputs. The uncertainties 

for the fine-resolution GRACETWS (120 km2) pixels ranged from 0.6 mm/year to 1.68 

mm/year. 

 

3.6  Sources and Propagation of Errors 

The uncertainties in the GRACETWS trends reflect the variations between trend 

values that were extracted from three GRACE solutions (CSR-RL06M, JPL-RL06M, 

and GSFC-M) (Table 2; (Scanlon et al., 2018)). 

 

The uncertainties in the downscaled GRACETWS are related to (1) uncertainties 

in the variables (remote sensing-based and land surface model-based) that were used 

as inputs to the statistical models, and (2) errors introduced by the applied statistical 

models. The statistical coefficients (R-square, NSE, and NRMSE) describe the 
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accuracy of the extracted model, namely the degree to which the extracted statistical 

model can, or cannot predict the target (GRACETWS in our case). Statistical models that 

have R-square, NSE, and NRMSE values of 0.9, 0.9, and 0.1, respectively can predict 

the target with an accuracy of 90%. Since the reported accuracy of the models was 

estimated by comparing the modeled and observed GRACETWS values in the test 

dataset, the reported model errors incorporate the errors associated with the individual 

variables as well. In this respect, the coefficients could be used to estimate the errors 

introduced by both the variables and the statistical models (Seyoum et al., 2019).  

 

I assumed that the model-based accuracy of GRACETWS in area A applies to all 

downscaled pixels within this area. Similarly, the GRACETWS of the downscaled pixels 

within areas B and C will inherit the estimated accuracy for areas B and C, respectively.  

These are reasonable assumptions given that all of the CSR06M pixels within each of 

areas A, B, and C have similar geophysical signals. 

 

The errors (uncertainties) associated with the estimated downscaled 

GRACEGWS values were propagated from the estimated errors in the GRACETWS and 

in the land surface model outputs (SMSNLDAS, CWSNLDAS, and SWENLDAS) were used 

in calculating changes in groundwater storage (eq. 7).  The errors in each of these land 

surface model outputs were calculated as the standard deviation of the values extracted 

from the three NLDAS simulations (NOAH, VIC, and Mosaic (Castle et al., 2014) 

(Voss et al., 2013). The errors in the estimated GWS (σGWS) was calculated by adding, 

in quadrature, the uncertainties related to GRACETWS, SMSNLDAS, CWSNLDAS, and 

SWENLDAS values (Eq. 7).  
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Where σ𝑇𝑊𝑆 , σ𝑆𝑀𝑆, σ𝑆𝑊𝐸, and σ𝐶𝑊𝑆 are the uncertainties related to terrestrial water 

storage, soil moisture, snow water equivalent, and canopy water storage, respectively. 

σ𝐺𝑊𝑆 = √(σ𝑇𝑊𝑆)2 + (σ𝑆𝑀𝑆)2 + (σ𝑆𝑊𝐸)2 + (σ𝐶𝑊𝑆)2                      (7)                                                                      
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CHAPTER 4 

 

RESULTS 

4.1. Cluster Analysis 

The optimum number of clusters was estimated at 3. Three clusters were 

identified (cluster 1 area: 13,700 km2, cluster 2 area: 59,200 km2, cluster 3 area: 

33,100 km2; Fig.1). The correlation coefficients of the GRACE time series 

between clusters were evaluated through the construction of a correlation matrix 

(Table 4). The correlation coefficients of the GRACE time series between clusters 

varies from 0.41 to 0.66, and those between clusters and the Michigan lake level 

varies from 0.43 to 0.74. In the generation of the correlation matrix, the secular 

trends and seasonal cycles were removed from the time series. Although I cannot 

rule out leakage from the adjacent water bodies and areas, I suggest that there are 

significant geophysical signals in each of the investigated areas, as evidenced by 

the following observations. First, higher correlation coefficients than those 

observed (0.41–0.66) are to be expected between GRACETWS over areas 1, 2, and 

3 if the leakage was significant. Second, lake levels lag behind GRACETWS by 1 

to 2 months for areas 1, 2, and 3 (Fig. 7).  
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Table 4. Correlation matrix for GRACETWS values over land (three clusters) and 

Lake Michigan water levels. The values are presented after the removal of the 

seasonal cycle and secular trends. 

 Cluster

1 

Cluster

2 

Cluster

3 

Lake 

Level 

Cluster1 1    

Cluster2 0.41 1   

Cluster3 0.66 0.56 1  

Lake 

Level 
0.74 0.43 0.58 1 

 

Figure 7. Comparison of the time series of GRACETWS over land (cluster 3) and 

Michigan lake level. The time series for the lake levels lagged by two months. 

 

4.2. Evaluation and Comparison of the Models 

Comparison of the performance of the three models revealed that, in 

general, the XGBoost models perform better than the other two models (Table 5) 

as indicated by their lower NRMSE values and their higher NSE and R-squared 

values and ranking. For example, the R-squared, NRMSE and NSE values for the 
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XGBoost models ranged from 0.45 to 0.47 (average: 0.46), 0.76 to 0.78 (average: 

0.46), and 0.76 to 0.78 (average: 0.77), respectively; those for the ANN models 

ranged from 0.66 to 0.75 (average: 0.72), 0.51 to 0.53 (average: 0.52) and from 

0.68 to 0.72 (average: 0.70), respectively, and those for the MR models from 0.63 

to 0.74 (average: 0.69), 0.53 to 0.71 (average: 0.62) and from 0.53 to 0.67 

(average: 0.60), respectively. The performance of the XGBoost is high (clusters 

1, 2, and 3: Very Good), compared to that for MR models (clusters 2 and 3: Very 

Good; cluster 1: Good) and for the unified ANN model (clusters 2 and 3: Very 

Good; cluster 1: Unsatisfactory). One plausible explanation for the enhanced 

performance of the XGBoost models over the ANN and MR models is that it can 

better account for the specific characteristics or significant variables that control, 

or relate to, the observed temporal GRACE solutions in each cluster. It is flexible 

and performs well with categorical and numerical values [(T. Chen & Guestrin, 

2016)], as is the case with our datasets (Fig. 8).  

 

Table 5. Statistical coefficients (R-squared, NRMSE, and NSE) for each of the 

examined models (Extreme Gradient Boosting, Multivariate Regression, and Artificial 

Neural Network) over clusters 1, 2, and 3 and calculated uncertainties. 

Method   Cluster1 Cluster2 Cluster3 

Extreme 

Gradient Boosting 

Rsquared 0.80 0.81 0.81 

NSE 0.75 0.76 0.78 

NRMSE 0.45 0.47 0.46 

Average    

Uncertainty (%) 
30 30 29 

Ranking* VG VG VG 

Artificial 

Neural Networks 

Rsquared 0.66 0.74 0.75 

NSE 0.68 0.71 0.72 

NRMSE 0.53 0.53 0.51 

Average 

Uncertainty (%) 
42.3 36 34.7 
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Table 5- continued 

 Ranking G G G 

Multivariate 

Regression 

Rsquared 0.63 0.72 0.74 

NSE 0.53 0.63 0.71 

NRMSE 0.67 0.59 0.53 

Average 

Uncertainty (%) 
50 48 36 

Ranking* S S G 

*VG: Very Good; G: Good; S: Satisfactory; US: Unsatisfactory. 
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Figure 8. Scatter plots of the GRACETWS predicted values (using XGBoost models) 

versus observed (from testing subsets) GRACETWS values for the three clusters. 

 

The combined errors were estimated by averaging the three coefficients 

and were presented in table 4 as percent uncertainty of the output (GRACETWS). 

The estimated total error rate for fine-scale GWS in three arbitrary pixels 

(location given in Fig. 1) is presented in figure 9. 
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Figure 9. The estimated total error rate for three arbitrary pixels (1,2, and 3). The 

locations of the pixels are shown in figure 1. 

 

 

4.3. Factors Controlling the TWS and GWS Variations over the Study Area 

Six out of 11 variables showed statistical significance with the 

GRACETWS values in XGboost models (Table 6). They were used for the 

downscaling process based on cluster-based XGBoost models. Those variables 
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are ET, air temperature, NDVI, total precipitation, soil moisture, and Lake 

Michigan water level. The significance of the variables is determined by their p-

values. The insignificant variables were omitted due to their high p-value 

(probability value). The p-value represents the probability of the occurrence of a 

given event and helps determine the significance of the results. The higher p-

values (typically >0.05) indicate weak evidence against the null hypothesis (i.e., 

there is no significant relationship between the independent variable and the 

target, and therefore the variable is insignificant (Fisher, 1992)). The smaller p-

values (typically ≤0.05) indicate the opposite: there is strong evidence in favor of 

the alternative hypothesis, and there is a significant relationship between the 

independent variable and the target. The percent contribution of variables was 

determined using the variable importance (VI) technique in the XGBoost model 

(Table 6). The average values of the variables were presented in apendix1. 

Table 6. Percent contribution of each variable in the outputs of the XGBoost models and their 

optimum lag times. 

    
Va

riables 
  

C

lusters 

Total 

Precipitation 

Te

mperature 

N

DVI 

Soi

l Moisture 

Lake 

Michigan 

Level 

Evap

otranspiratio

n 

1 
6.1 

(1)* 

1.

2 

4

.1 (1) 

18.

3 (2) 

69.1 

(1) 

1.2 

(2) 

2 
1.3 

(3) 

16

.2 (3) 

1

3.5 

8.4 

(1) 

34.1 

(2) 

26.5 

(2) 

3 
4.6 

(1) 

2.

9 

2

.4 (2) 

51.

1 (1) 

37.6 

(2) 
1.4 

*The number in parentheses shows the optimum lag time (in months) for each variable. 

 

 

Multicollinearity, a condition in which two or more predictors are highly 

correlated with one another in linear regression models, was addressed using 
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variance inflation factor (VIF). Multicollinearity makes it difficult to determine 

the effect of the individual predictors on the response and to identify the variables 

to be included in the model. VIF is one of the most widely used diagnostic indices 

for multicollinearity (Alin, 2010). It estimates how much the variance of a 

coefficient is “inflated” because of linear dependences with other predictors 

(Alin, 2010). Using a VIF value of 11 in this study, one of two variables (Lake 

Michigan and Lake Huron water levels) that show multicollinearity was omitted. 

Lake Huron lake level was automatically removed from the set of individual 

variables in the stepwise procedure and was not used in our models. Five lag times 

(months 1 through 5) were assigned to each of the investigated variables to 

identify the optimum lag time for the individual variables. Four of the examined 

variables (total precipitation, temperature, ET, and NDVI) were found to have 

optimum lag times ranging from 1 to 3 months; none exceeded 3 months, and the 

remaining variables had no lag times (Table 6). The optimal lag time was found 

to vary from one cluster to another; for example, the lag in total precipitation 

varied from 1 month in cluster 1 to 3 months in cluster 2. Again, less significant 

lag times for an individual variable were automatically removed throughout the 

application of the stepwise regression.  

The significant variables are the ones that correlate well with, respond 

fairly quickly to, and either drive or are driven by the variations in GRACETWS. 

An increase in soil moisture over a cluster will increase its GRACETWS  values, 

whereas an increase in land surface temperature or ET will probably decrease its 

TWS values. Interestingly, lake levels correlated well with GRACETWS, which is 

to be expected given that both the land (clusters 1–3) and surrounding water 
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bodies (Lakes Michigan and Huron) receive added water contributions 

(precipitation and SWE) which will increase the water levels in the lakes and 

increase the GRACETWS over the land. However, the lake water levels lagged 

behind GRACETWS by 1 to 2 months. I suspect that this lag time is related to the 

time period it takes for runoff to reach the lake. Starting in 2013, there has been 

an increase in water levels in both Lake Huron and Lake Michigan. A thorough 

investigation revealed that the recent rise in water level in Lake Michigan-Huron 

is due to above-average spring runoff, which drains into the lakes and excess 

precipitation over the lake as well (Gronewold et al., 2016). 
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CHAPTER 5 

DISCUSSION AND IMPLICATIONS 

 

5.1 Introduction 

 

The original size of the pixels over the LP (irregular grid, pixel size ~12000 km2) is 

coarse for monitoring TWS and GWS on the county scales (size range: 500 km2 [e.g., St. Joseph 

County] to 850 km2 [e.g., Kent County]). The adopted downscaling technique addresses this 

issue through the generation of downscaled GRACETWS and GRACEGWS (spatial resolution: 

0.125º × 0.125º; 10 × 14 km = 140 km2). 

5.2 Inspection of Trends 

Inspection of the secular trends in GRACETWS and GRACEGWS revealed two general 

patterns, a near–steady-state in GRACETWS and GRACEGWS (−1 to +1 mm/year) for an earlier 

period (2002 to 2012), hereafter referred to as period I, followed by an increase in GRACETWS 

(28 to 120 mm/year) and GRACEGWS  (10 to 130 mm/year) for a later period (2013 to 2016), 

hereafter referred to as period II (Fig. 10).  

The breakpoints were identified using the regime shift detection method with a 95% 

confidence (Andersen et al., 2009). The two above-mentioned general patterns were observed 

throughout the entire investigated area. For all of the downscaled pixels, no major differences 

in GRACETWS and GRACEGWS trends were observed during Period I, all of which show near-

steady trends. However, distinct variations in GRACETWS and GRACEGWS trend values are 

observed in Period II between the three clusters (Fig. 10). 
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Figure 10. GRACETWS and GRACEGWS trend images and time series for downscaled 

data. (A) GRACETWS trend image for period II (2013 to 2016). (B) GRACETWS time 

series (2012–2016) over four locations. (C) GRACEGWS trend image for period II. (D) 

GRACEGWS time series (2012–2016) over four locations. 

 

Cluster 1 (represented by point 1; Fig. 10) has the highest GRACETWS (103 to 122 
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mm/year) and GRACEGWS (100 to 130 mm/year) trends, followed by cluster 2 (represented by 

point 2) with a TWS trend of 50 to 57 mm/year and GWS trend of 45 to 70 mm/year. Groups 

1 and 2 are located within areas characterized by the highest average SWE (60 to 190 mm/year) 

and the highest average annual rainfall (800 to 1043 mm/year), respectively. Cluster 3 is located 

in the southern and southwestern parts of the LP, areas that are characterized by high 

groundwater extraction. This cluster (represented by point 3) shows a TWS trend of 28 to 55 

mm/year and a GWS trend of 10 to 55 mm/year.  

The glacial aquifers are widely distributed, they overlie all other aquifers, and crop out 

across large sectors in the State, and thus one would expect that the observed variations in 

GRACEGWS are largely controlled by variations in glacial aquifer storage. Clusters 1 and 2 are 

located in the northern and central sections of the province 2 (Figs 1, 2) where the glacial 

deposit is relatively thick, whereas cluster 3 is located in the southwestern section of the LP, 

an area characterized by high groundwater withdrawal for agricultural activities (Fig. 1). The 

eastern part of cluster 3 is located in an area characterized by low yield (Fig. 2) and thin to 

moderate glacial deposits (refer to section 2). Also, in general, the northern, but not the southern 

sections, of the LP have high vertical conductivity and low groundwater extraction rates. The 

average annual rainfall over the entire LP increased from 774 mm/year (period I) to 783 

mm/year (period II), and the average annual SWE increased from 50 mm/year (period I) to 55 

mm/year (period II) (Fig. 11). For cluster 1, the average annual rainfall increased from 689 

mm/year (period I) to 723 mm/year (period II), and the average annual SWE increased from 44 

mm/year to 75 mm/year. Similarly, for cluster 2, the average annual rainfall increased from 

761 mm/year (period I) to 785 mm/year (period II), and the average annual SWE increased 

from 52 mm/year to 56 mm/year in periods I and II, respectively. For cluster 3, the average 

annual SWE increased from 36 mm/year (period I) to 44 mm/year (period II), but the average 
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annual rainfall decreased from  834 mm/year (period I) to 823 mm/year (period II). These 

collective observations suggest that the observed steep GRACETWS and GRACEGWS trends 

over the northern sections of the LP during period II could be related to one or more of these 

factors: (1) thickened glacial deposit, (2) high precipitation and/or snowfall rates, (3) high 

vertical conductivity and (4) low extraction rates.  
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Figure 11. Average annual rainfall and snow water equivalent for periods I (2002–

2012 and II (2013–2016). (A) Average annual rainfall (mm/year) for period I. (B) 

Average annual rainfall for period II. (C) Average annual snow water equivalent for 

period I. (D) Average annual snow water equivalent for period II. 

 

One would expect the above-mentioned temporal variations in precipitation and SWE 
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to be reflected in the downscaled GRACEGWS and groundwater levels. Figure 12 shows an 

overall correspondence between the downscaled GRACEGWS data and groundwater levels from 

three monitoring wells (well A: site name 02S 11W 22CDBB 01, location Kalamazoo; well B: 

site name 04N 02W 26BBDB 01, location Lansing; and well C: site name 04N 02W 16DAAA 

01, location Lansing; Fig. 1) within each of the downscaled GRACEGWS pixels. One should not 

expect a one to one correspondence between the two datasets. The groundwater levels, but not 

the GWS, is affected by groundwater withdrawal and by the lag time (between precipitation 

and recharge).  Unfortunately, only a few of the monitoring wells, all located in Kalamazoo 

and Lansing, have continuous measurements throughout the investigated period and across the 

study area, and none of which are located in the central or northern LP (Fig. 1). The correlation 

coefficients between the downscaled GWS (0.125º × 0.125º) and the observed groundwater 

level in wells A, B, and C were calculated at 0.4, 0.55, and 0.32, respectively, higher than those 

between the original GRACEGWS and the wells (A: 0.14; B: 0.36; and C: 0.05).   

I also compared the time series for surface water levels from two inland lakes (Otsego 

lake in northern LP and Austin lake in southern LP; Fig. 1) to downscaled GRACETWS time 

series in areas (pixels) proximal to these lakes (Fig. 13). The surface water lake levels 

approximate the groundwater table in the surrounding areas, and thus, the changes in lake level 

should be indicative of the temporal variations in GRACEGWS as it was reported in previous 

studies (Krabbenhoft et al., 1990; Krabbenhoft and Webster, 1995). Fig. 13, shows a good 

correspondence between the downscaled GRACEGWS and Otsego lake level (correlation 

coefficient: 0.73) and Austin lake level (correlation coefficient: 0.75), an observation that 

further validates the adopted downscaling procedures. 



48  

 

Figure 12. Comparison between the downscaled GRACEGWS data for three pixels and 

groundwater levels from monitoring wells within each of the three GRACE pixels in 

Kalamazoo (well A) and Lansing (wells B and C) (see locations in Fig. 1). 

Groundwater level elevations are given in elevation above mean sea level (cm). 
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Figure 13. Comparison between the downscaled GRACETWS data for two pixels and 

two inland lakes, namely Otsego lake and Austin lake (see locations in Fig. 1). The 

discontinuity in the figure is due to temporal gaps in the original data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50  

CHAPTER 6 

SUMMARY AND CONCLUSION 

 

 

The GRACE data has been widely used to monitor the temporal and spatial variations 

in TWS and GWS on large scales. However, such applications remained limited on the local 

scales due to the poor spatial resolution (irregular grid of 12000 km2) of the GRACE data. The 

objective of this study was to address this shortcoming by downscaling the CSR mascon 

solutions to a finer resolution (0.125º × 0.125º) to enable the monitoring of GRACETWS and 

GRACEGWS on county scales and fill the gaps for missing months in GRACE time series over 

the study area. Using cluster analysis, areas of similar GRACETWS patterns within the study 

area were first identified. For each of the identified clusters, variables (total precipitation, 

NDVI, snow cover,  Lake Michigan water level, Lake Huron water level, soil moisture, land 

surface temperature, and ET) that presumably contributed to, or were correlated with, the 

GRACE data were identified and collected on a monthly basis over the investigated period 

(2002 to 2016). The data sets were randomly partitioned into two groups: training data (80%) 

and testing data (20%). XGBoost, MR, and ANN methods were applied to extract statistical 

relationships between the independent variables and the GRACETWS (dependent variable).  

The comparisons of the observed GRACETWS (training dataset) versus the modeled 

GRACETWS values showed that the XGBoost method outperformed the other two methods as 

indicated by their lower NRMSE and higher NSE values compared to those obtained from the 

MR and ANN models. The unified approaches have the advantage of providing adequate 

overall downscaling results over large areas, yet one would expect the performance of the 

model to vary from one area to another given that the selected variables and/or their 

significance is likely to vary across the investigated area. I suggest that if statistical 
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downscaling methods were selected for downscaling GRACETWS values on local scales, 

preference should be given to cluster-based approaches over the commonly used unified 

approaches.  

The XGBoost model was used to downscale (12,000 km2 to 120 km2) GRACETWS, 

given the high performance of this model over all other models (ANN and MR) and its ability 

to estimate the contributions of the independent variables towards the response variable and to 

forecast missing months within the GRACE’s time series data. Although the XGBoost model 

outperformed the ANN method in all three clusters in our study area, that might not necessarily 

be the case over other locations. I suggest that one should explore the use of multiple statistical 

approaches and select the one that performs the best over each of the investigated areas 

(clusters). 

Since the individual variables and the degree to which they correlate with GRACETWS 

vary from one cluster to another, it is recommended to identify the local hydrologic components 

that are specific to the investigated area and to select the optimum cluster-based model to 

improve the accuracy of the downscaled GRACETWS values. The accuracy of the derived 

downscaled GRACEGWS will largely depend on the accuracy of the land surface model outputs 

that were used in calculating GRACEGWS, namely the SMSNLDAS and SWENLDAS in our case. 

Unfortunately, the State of Michigan lacks a comprehensive groundwater monitoring program 

to adequately validate the downscaled  GRACEGWS data.  

As discussed earlier, I cannot rule out leakage from the adjacent water bodies and/or 

areas, but I suggest that there are significant geophysical signals from each of the investigated 

areas (clusters) as evidenced by the modest correlation coefficients between the time series of 

areas 1, 2, and 3 and by the lag of lake levels by 1-2 months behind the GRACETWS over the 

land areas. Currently, efforts are underway to generate GRACETWS of higher spatial resolution 
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(1° x 1°) by NASA JPL, by combining satellite gravimetery and in-situ GNSS measurements 

[89]. If and when such data become available, I can apply the proposed methodologies on the 

individual pixels without worrying about the leakage from their surroundings.     

 developed a straightforward methodology that could be used to monitor temporal 

variations in GRACETWS and GRACEGWS on local scales (county levels). The methodology 

takes advantage of readily available remote sensing datasets and outputs of land surface models 

that are of global nature, both of which come at no cost to users.  These methodologies could 

be used by local communities and decision-makers for water management purposes in the State 

of Michigan. They can also provide a replicable model for local applications across the 

continental USA and possibly in similar settings worldwide as well. The performance of the 

statistical models can be enhanced by identifying and including local variables that control, or 

correlate with, the GRACETWS solutions over the investigated areas. 
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APPENDIX 

Average values of the variables 

1. Average soil moisture
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2. Average annual ET 
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3. Average NDVI 
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4. Average rainfall 
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5. Average annual snow water equivalent (SWE) 
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6. Average monthly air temperature 
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7.  Standard deviation of monthly NDVI 
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8. Standard deviation of monthly snow water equivalent 
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9. Standard deviation of monthly precipitation 
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10. Standard deviation of monthly soil moisture 
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11. Standard deviation of monthly evapotranspiration 
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12. Standard deviation of monthly temperature 
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