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ON SIMES’S SECOND CONJECTURE: AN EXTENDED SINGLE-STEP SIMES TEST
PROCEDURE FOR MULTIPLE TESTING

Matthew G Hudson, Ph.D.

Western Michigan University, 2020

One of the major concerns with multiple tests of significance is controlling the family wise

error rate. Various methods have been developed to ensure that the false positive rate be

maintained at some prespecified level. One of the most well know being the Bonferroni

procedure. Simes presented an improved Bonferroni procedure for testing the global hy-

pothesis that is more powerful and less conservative, especially with positively correlated

tests. While Simes’s procedure is more powerful, it does not allow for making inferences

on the individual hypotheses. However, the Simes procedure has since become the foun-

dation of many p-value based multiple testing procedures. Hochberg and Hommel are two

examples of procedures that have extended the Simes procedure to make inferences on

individual hypotheses. Though the procedures by Hochberg and Hommel are based on the

Simes procedure, they are conservative as they may not be able to reject any of the indi-

vidual hypotheses when Simes’s test rejects the global null hypothesis. It is this disconnect

between the global test and tests for the individual hypotheses where improvements may

be made on the power to reject at least one individual hypothesis. Simes second conjecture

was to reject the individual hypotheses H(1), ..., H(j), where j = max{j : P(j) ≤ jα/m}.

It can easily be shown that this method would not control the family wise error rate even



for independent tests. An extended single-step Simes testing procedure is presented that

rejects a subset of the hypotheses rejected in Simes’s second conjecture. This new proce-

dure rejects at least one hypothesis when the Simes global test rejects, making it the most

powerful Simes based procedure for the rejection of at least one hypothesis. This procedure

is shown to have strong control of the family wise error for three non-negatively correlated

normals with the MTP2 property. Further, simulation studies conducted show that the

procedure may control the family wise error rate for as many as thirty or more hypotheses

for non-negatively correlated normals with the MTP2 property as well as non-negatively

correlated chi-square and T test statistics.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the major concerns with multiple tests of significance is controlling the family

wise error rate. Various methods have been developed to ensure that the false positive rate

be maintained at some prespecified level. One of the most well know being the Bonferroni

procedure. While this procedure is distribution free and easy to implement, it is known to

be conservative especially with positively correlated tests.

Simes presented an improved Bonferroni method [Simes, 1986] for testing the global

null hypothesis that all tests are true. In his paper, Simes proved that his test controls the

type 1 error rate for independent tests. However, it does not hold for all conditions and

distributions. Simes’s first conjecture was that his method may hold for some dependent

statistics with certain multivariate distributions. To that end, Simes provided simulations

for normal and multiple chi-square distributions under independent and multiple levels of

positively correlated test statistics. The simulation results suggest that the type 1 error

rate may be controlled for these specific distributions. In comparison, the type 1 error

rates between the Bonferroni and Simes global tests are similar when the test statistics are

1



2

independent, but the Bonferroni test is considerably more conservative than the Simes test

for highly positively correlated tests. That said, the Bonferroni test may be preferred when

non-negatively correlated statistics cannot be assumed.

To address Simes’s first conjecture, it has since been shown [Hochberg and Rom, 1995,

Samuel-Cahn, 1996, Sarkar and Chang, 1997, Block et al., 2013] that, in general, the Simes

global test has control of the one-sided type 1 error for positively dependent statistics,

but may inflate the type 1 error for negatively dependent statistics. However, Hochberg

and Rom [1995] gave an upper bound for the type 1 error for negatively correlated normal

statistics.

While the Simes test is more powerful than the Bonferroni test for the global null

hypothesis, it does not allow for making inferences on the individual hypotheses. However,

the Simes global test has since become the foundation of many p-value based multiple

testing procedures. Hochberg [1988] and Hommel [1988] are two examples of procedures

that have extended the Simes global test to make inferences on individual hypotheses.

Assuming the Simes global test has a type 1 error rate less than or equal to alpha, both

procedures have strong control of the family wise error rate as defined, for example, by

Hochberg and Tamhane [1987].

Though the procedures by Hochberg and Hommel are based on the Simes global test,

they are conservative as they may not be able to reject any of the individual hypotheses

when Simes’s test rejects the global null hypothesis. It is this disconnect between the global

test and tests for the individual hypotheses where improvements may be made on the power

to reject at least one individual hypothesis.

In the discussion section of his paper, Simes asked the question of what statements

about individual hypotheses may be made using his modified global test procedure. His

second conjecture was that one possibility is to reject the individual hypotheses H(1), ...,

H(j), where j = max{j : P(j) ≤ jα/m}. However, it can easily be shown that this method
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would not control the family wise error rate even for independent tests. In this dissertation,

an extended single-step Simes testing procedure is presented that rejects a subset of the

hypotheses rejected in Simes’s second conjecture. This new procedure rejects at least one

hypothesis when the Simes global test rejects, making it the most powerful Simes based

procedure for the rejection of at least one hypothesis. This procedure is shown to have

strong control of the family wise error for three non-negatively correlated normals with the

MTP2 property.

Simulation studies conducted suggest that while the extended single-step Simes pro-

cedure does not control the type 1 error rate for any number of hypotheses, that it may

control the type 1 error rate for as many as 30 or more hypotheses when the test statistics

are non-negatively correlated normals with the MTP2 property. Further simulations sug-

gest that the procedure may also control the type 1 error rate for as many as 30 or more

hypotheses for non-negatively correlated chi-square and t test statistics.

1.2 Concepts of Controlling for False Positives

Two of the more common concepts for the controlling of false positives are the family

wise error rate (FWER) and the false discovery rate (FDR). The FWER is the probability

of rejecting at least one true hypothesis, whereas the FDR is the expected proportion of

true hypotheses rejected out of all hypotheses rejected. When all hypotheses are true, the

FDR and FWER are equivalent. When there are one or more false hypotheses, the FDR

is less than or equal to the FWER. Procedures that control the FWER also control the

FDR. Procedures designed to control the FDR may not control the FWER, but as a result,

are less stringent and may have an increase in power over FWER controlling procedures

[Benjamini and Hochberg, 1995]. From Table 1.1, FWER = P(V≥1) and FDR = Qe =

E[Q] = E[V/(V+S)].
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Table 1.1: Number of Errors Committed When Testing m Null Hypotheses

Test Declared
Non-Significant

Test Declared
Significant

Total

True Null Hypotheses U V m0

Non-True Null Hypotheses T S m - m0

m - R R m

NOTE: From Benjamini and Hochberg [1995].

Procedures designed to control the FWER as well as procedures designed to control

the FDR are both widely used in industry. Their use depends on the research area and

any relevant guidance. Certain research areas allow for the increase in power achieved by

FDR controlling procedures at the expense of an increase in the FWER, whereas other

areas require the more stringent methods designed to control the FWER. The methods

discussed in this dissertation are developed with confirmatory clinical trials in mind, for

which regulatory agencies require control of the FWER. More specifically, they require

strong control of the FWER (see Section 3.2).



Chapter 2

Current and New Methods

2.1 Bonferroni Test

Consider m test statistics T1, ..., Tm for testing hypotheses H1, ..., Hm with associated

p-values P1, ..., Pm. The global null that all hypotheses are true is represented by:

H0 = {H1, ..., Hm}. (2.1)

The Bonferroni test rejects the global null hypothesis if any Pj ≤ α/m, for j = 1, ...,m.

This test is simple to apply and requires no assumptions on the distribution of the test

statistics. However, the test is conservative, especially for correlated tests.

2.2 Simes Global Test

Consider m test statistics T1, ..., Tm for testing hypotheses H1, ..., Hm with associated

p-values P1, ..., Pm. Let P(1), ..., P(m) be the ordered p-values for testing the hypotheses

H(1), ..., H(m). Let H0 = {H(1), ..., H(m)} be the intersection of these m hypotheses. The

Simes Global Test [Simes, 1986] rejects H0 if P(j) ≤ jα/m for any j = 1, ...,m.

5
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2.3 Hochberg Procedure

Consider m test statistics T1, ..., Tm for testing hypotheses H1, ..., Hm with associated

p-values P1, ..., Pm. Let P(1), ..., P(m) be the ordered p-values for testing the hypotheses

H(1), ..., H(m). Assuming that the Simes global test is an alpha level test, the Hochberg

[1988] procedure is:

For j = m,m− 1, ..., 1, if P(j) ≤ α/(m− j + 1), then reject all H(j′) where j′ ≤ j.

2.4 Hommel Procedure

Consider m test statistics T1, ..., Tm for testing hypotheses H1, ..., Hm with associated

p-values P1, ..., Pm. Let P(1), ..., P(m) be the ordered p-values for testing the hypotheses

H(1), ..., H(m). Assuming that the Simes global test is an alpha level test, the Hommel

[1988] procedure is:

• Compute: j = max
{
i ∈ (1, ..., m) : P(m−i+k) >

kα

i
for k = 1, ..., i

}

• If the maximum does not exist, then reject all Hi, i = 1, ...,m

• Otherwise reject all Hi with Pi ≤ α/j

2.5 Extended Single-Step Simes Procedure

Consider m test statistics T1, ..., Tm for testing hypotheses H1, ..., Hm with associated

p-values P1, ..., Pm. Let P(1), ..., P(m) be the ordered p-values for testing the hypotheses

H(1), ..., H(m). If P(j) ≤ jα/m for any j = 1, ...,m, then the single-step Simes procedure

rejects:

• H(1)
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• Hi such that Pi ≤ α/m

• All Hi if H(m) ≤ α



Chapter 3

Relevant Properties and Definitions

3.1 The Closure Principle

A set of hypotheses and all intersections of those hypotheses is considered a closed

family under intersection. For example, consider the hypotheses H1, H2, and H3. The

closed family of hypotheses under intersection then consists of H1, H2, H3, H1 ∩ H2, H1 ∩

H3, H2 ∩ H3, and H1 ∩ H2 ∩ H3.

Consider an analysis of variance setting with four means and we wish to test all pairwise

comparisons. The pairwise hypotheses are then: H1,2: µ1 = µ2, H1,3: µ1 = µ3, H1,4:

µ1 = µ4, H2,3: µ2 = µ3, and H3,4: µ3 = µ4. The intersections of the pairwise comparisons

are as follows. Note that the same intersection hypothesis may result from the intersection

of more than one pair of hypotheses as is the case with the first four bullets.

• H1,2 ∩ H1,3 = H1,2 ∩ H2,3 = H1,3 ∩ H2,3 = H1,2,3: µ1 = µ2 = µ3

• H1,2 ∩ H1,4 = H1,2 ∩ H2,4 = H1,4 ∩ H2,4 = H1,2,4: µ1 = µ2 = µ4

• H1,3 ∩ H1,4 = H1,3 ∩ H3,4 = H1,4 ∩ H3,4 = H1,3,4: µ1 = µ3 = µ4

• H2,3 ∩ H2,4 = H2,3 ∩ H3,4 = H2,4 ∩ H3,4 = H2,3,4: µ2 = µ3 = µ4

8
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• H1,2 ∩ H3,4 = H1,2∩3,4: µ1 = µ2 and µ3 = µ4

• H1,3 ∩ H2,4 = H1,3∩2,4: µ1 = µ3 and µ2 = µ4

• H1,4 ∩ H2,3 = H1,4∩2,3: µ1 = µ4 and µ2 = µ3

The intersection of any two of the above intersection hypotheses is: H1,2,3,4: µ1 = µ2 =

µ3 = µ4. A diagram of the closed family of hypotheses under intersection for the pairwise

tests of four means is displayed in Figure 3.1. The global null hypothesis that all means

are equal at the top implies all hypotheses below. That is, if the global null hypotheses

H1,2,3,4 is true, then all hypotheses below must also be true. Similarly, H1,2,3 implies H1,2,

H1,3, and H2,3 and H1,2∩3,4 implies H1,2 and H3,4.

Figure 3.1: Closed Family of Hypotheses Under Intersection for Four Pairwise Comparisons

The closure principle [Marcus et al., 1976] states:

Let X be a random variable with distribution Pθ(θ ∈ Ω). Let W = {ωβ} be

a set of null hypotheses, i.e., a set of subsets of Ω, closed under intersection:
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ωi, ωj ∈ W implies ωi ∩ ωj ∈ W . For each ωβ, let φβ(X) be a level α test, that

is Pθ(φβ(X)=1) ≤ α for all θ ∈ ωβ. Now consider the following procedure.

Any null hypothesis ωβ is tested by means of φβ(X) if and only if all hypotheses

ω that are included in ωβ(ω ⊂ ωβ) and belonging toW (ω ∈ W ) have been tested

and rejected. The probability of making no type 1 error with this procedure is

at least 1 - α.

Therefore, under the closure principle, you may test H1,2: µ1=µ2, for example, with a valid

α level test only if all hypotheses that imply H1,2 have been tested and rejected with valid

α level tests. That is, H1,2,3,4, H1,2,3, H1,2,4, and H1,2∩3,4 must have been tested and rejected.

3.2 Strong Control of the Family Wise Error Rate

A procedure has strong control of the family wise error rate, as defined by Hochberg

and Tamhane [1987], if the probability of committing at least one type 1 error is less than

or equal to α for all configurations of true and false hypotheses. For example, the possible

combinations for the case of three tests are:

1. all three hypotheses are true,

2. two true hypotheses and one false hypothesis, and

3. one true hypothesis and two false hypotheses.

To further understand, lets also define a procedure as having weak control of the family

wise error rate [Hochberg and Tamhane, 1987] as one that has a probability of committing

a type 1 error that is less than or equal to α under the global null hypothesis (all hypotheses

true).

To illustrate, again consider an analysis of variance setting with four means and we wish

to test all pairwise comparisons using Fisher’s protected least significant difference (LSD)
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[Fisher, 1966]. Fisher’s protected LSD first tests the global null hypothesis that all means

are equal using an α level F-test. If non-significant, then all means are declared equal. If

significant, then each pairwise comparison of means is tested at level α with a t-test. A

diagram of Fisher’s protected LSD is displayed in Figure 3.2.

Figure 3.2: Fisher’s Protected LSD: Pairwise Comparisons of Four Means

Under the global null hypothesis that all four means are equal, it is well known that

Fisher’s protected LSD has a family wise error rate less than or equal to α. The reason

being that the test of the global null hypothesis "protects" the family wise error rate from

inflating due to multiplicity of testing all pairwise comparisons. This is because the pairwise

comparisons are only tested if the global rejects, which is less than or equal to α under the

global null hypothesis, so the probability of at least one type 1 error among the hypotheses

cannot exceed α. However, it is also well documented that Fisher’s protected LSD only

has weak control of the family wise error rate [Westfall et al., 2011].

To demonstrate, let’s assume that our four means represent four dose levels, two low

doses (µ1, µ2) and two high doses (µ3, µ4), such that the two low doses have the same

treatment effect (µ1=µ2) and the two high doses have the same treatment effect (µ3=µ4),
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but the low dose effect is significantly different from that of the high dose with probability

near 1. Under this scenario, the global null hypothesis H1,2,3,4 is false and is rejected with

probability near 1. Similarly, H1,3, H1,4, H2,3, and H2,4 are also all false. However, note

that two true pairwise comparisons are tested with probability near 1. That is, the two

true null hypotheses are always tested at level α. The test of the global null hypothesis

does not protect against inflating the type 1 error under this configuration. Figure 3.3

shows Fisher’s protected LSD with the false hypotheses highlighted. i.e., the hypotheses

that reject with probability near 1. Since the two true hypotheses (H1,2, H2,4) are always

tested at level α, then the probability of rejecting at least one of these true hypotheses is

greater than α. Fisher’s protected LSD does not have strong control of the family wise

error rate, since it doesn’t control the type 1 error rate under all configurations of true and

false hypotheses.

Figure 3.3: Fisher’s Protected LSD: Pairwise Comparisons of Four Means (µ1 = µ2, µ3 =
µ4)

Unlike Fisher’s protected LSD, which bypasses the intermediate intersection hypotheses,

testing based on the closure principle does have strong control of the family wise error

rate. Recall Figure 3.1, which shows the closed family of hypotheses under intersection.
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Figure 3.4 shows the same diagram except with the false hypotheses highlighted. i.e.,

the hypotheses that reject with probability near 1. Under the closure principle, the true

hypotheses H1,2 and H3,4 may only be tested if all hypotheses that imply it are tested and

rejected using valid α level tests. All of which reject with probability near 1 except for the

test of H1,2∩3,4. Under this configuration, the true hypothesis H1,2∩3,4 would be rejected

with probability less than or equal to α. If it is not rejected, then H1,2 and H3,4 are not

tested. Therefore, a true hypothesis is rejected at most with probability α. That is, the

family wise error rate is protected. In general, hypothesis testing based on the closure

principle may be thought of as having "complete protection" of the family wise error rate.

Figure 3.4: Closed Family of Hypotheses Under Intersection for Four Pairwise Comparisons
(µ1 = µ2, µ3 = µ4)

3.3 Multivariate Totally Positive of Order 2 (MTP2)

An n-dimensional random vector x = (x1, ..., xn)’ is said to have an MTP2 distribution

if the corresponding probability density, f(x), satisfies the following condition:
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f(x ∨ y)f(x ∧ y) ≥ f(x)f(y) for all x, y ∈ <n,

where, with x = (x1, ..., xn)’ and y = (y1, ..., yn)’, x ∨ y = (max(x1,y1), ..., max(xn,yn))

and x ∧ y = (min(x1,y1), ..., min(xn,yn)) [Sarkar, 1998]. Further, the density x = (x1, ...,

xn) ∼ N(0,Σ) (multivariate normally distributed with covariance Σ) is MTP2 if and only

if Σ−1 exhibits non-positive off diagonals [Karlin and Rinnot, 1980].



Chapter 4

Extended Single-Step Simes

Procedure for Three Normal Test

Statistics

Consider three statistics Z1, Z2, and Z3 for testing hypotheses H1, H2, and H3 with

associated p-values P1, P2, and P3. Assume that each hypothesis is testing that µi = 0

versus the alternative that µi > 0, for i = 1, 2, 3. Let P(1), P(2), and P(3) be the ordered

p-values with associated hypotheses H(1), H(2), and H(3). The extended single-step Simes

procedure rejects at least one hypothesis if P(j) ≤ jα/3 for any j = 1, 2, 3. Figure 4.1 is a

3-dimensional representation of this rejection region.

15
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Figure 4.1: Simes Global Test Rejection Region

Rejection due to the yellow region occurs when Pj ≤ α/3 for j = 1, 2, or 3. Rejection

due to the blue region occurs when all three p-values are less than α. Without loss of

generality, rejection due to the green region occurs when α/3 ≤ P1, P2 ≤ 2α/3 and P3 > α.

The closed family of hypotheses under intersection for three tests is presented in Section

3.1. If each test can be shown to have a type 1 error rate ≤ α under all configurations of

true and false hypotheses, then per the closure principle [Marcus et al., 1976], the extended

single-step Simes testing procedure will have strong control of the family wise error rate

[Hochberg and Tamhane, 1987] for three test statistics.

If all three hypotheses are true, then we are under the global null hypothesis. Simes

global test has a type 1 error rate ≤ α. Therefore, the extended single-step Simes procedure
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is protected and has a family wise error rate ≤ α when all three hypotheses are true. If two

of the hypotheses are false, then all intersection hypotheses are false since they contain at

least one false hypothesis. The only true hypothesis in the family is the one remaining single

hypothesis. Under the extended single-step Simes procedure, an individual hypothesis could

potentially be rejected only if its associated p-value is ≤ α. Therefore, the family wise error

rate is ≤ α when two of the hypotheses are false.

Without loss of generality, consider that H3 is false (i.e., µ3 > 0) and H1 and H2 are

true. We now explore the probability of committing a type 1 error under this configuration.

Again, a type 1 error is committed when one or more of the true hypotheses in the family

are rejected. Under this configuration, the intersection of all three hypotheses, pairwise

intersections with H3, and the individual hypothesis H3 are all false. The remaining true

hypotheses consists of the intersection of H1 and H2 and the individual hypotheses H1 and

H2. As mentioned above, the individual hypothesis cannot be rejected unless its associated

p-value is ≤ α. Therefore, to show that the extended single-step Simes procedure has strong

control of the family wise error rate for three test statistics, we must show the following:

P(reject H1 ∩H2) ≤ α. (4.1)

The above is rejected if either or both H1 and H2 are rejected. H1 is rejected if Simes

global test rejects and P1 ≤ α/3, P1 < min(P2, P3), or max(P1, P2, P3) ≤ α. Similar for

rejecting H2. This corresponds to the yellow areas to the back and right, the blue area and

the area directly below it, and the red areas in Figure 4.2.
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Figure 4.2: Simes Global Test Rejection Region H1 ∩ H2

4.1 Three Independent Normal Statistics

Theorem 1. Let Z1, Z2, and Z3 be independent standard normal test statistics for testing

the hypotheses H1, H2, and H3, then the extended single-step Simes procedure has strong

control of the family wise error rate.

Proof :

Assume that the three normal test statistics Z1, Z2, and Z3 are independent. Let’s

compare the rejection region of H1 ∩ H2 for the extended single-step Simes procedure

shown in Figure 4.2 to that of the Hochberg procedure for three hypotheses. The Hochberg

procedure rejection region includes the yellow and blue regions as well as the areas indicated
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by the dashed lines in Figure 4.3.

Figure 4.3: Simes Global Test Rejection Region H1 ∩ H2 with Hochberg Procedure for
Three Hypotheses Overlaid

The probability of being within this Hochberg rejection region for H1 ∩ H2 for three

hypotheses is known to be ≤ α. It is also true that the probability to reject H1 ∩ H2

when both are true using the Hochberg procedure for two tests is also ≤ α. If we instead

overlay the rejection region of H1 ∩ H2 for the Hochberg procedure for two hypotheses, the

rejection region includes the yellow and blue areas as before as well as the areas indicated

by the dashed lines in Figure 4.3 below.



20

Figure 4.4: Simes Global Test Rejection Region H1 ∩ H2 with Hochberg Procedure for Two
Hypotheses Overlaid

From this figure, one can see that the rejection region of H1 ∩ H2 for the Hochberg

procedure contains the entire rejection region for the extended single-step Simes procedure

except for a portion of each of the red triangular prisms. Also note that below each of the

red triangular prisms is a triangular prism belonging to the Hochberg rejection region that

is not part of the extended single-step Simes procedure’s rejection region.
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Figure 4.5: Difference Between Rejection Regions of H1 for Simes Single-Step and Hochberg
for a fixed α < P2 ≤ 1 (P-values)

Since P2 is independent of P1 and P3, every 2-dimensional slice in P1 and P3 at a fixed

α < P2 ≤ 1, is identical. Figure 4.5 represents one of these slices. The red triangle is the

region where H1 is rejected by the extended single-step Simes procedure, but is not rejected

by the Hochberg procedure. The blue triangle is the region where H1 is rejected by the

Hochberg procedure, but not the extended single-step Simes procedure. Under the global

null hypothesis, the p-values are uniformly distributed from 0 to 1. It is easily shown that

the probability of these two areas is equal under the global null hypothesis. Figure 4.6 is

the same plot except on the Z-scale, where Z1 is N(0,1) and Z3 is N(µ3 >0,1).
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Figure 4.6: Difference Between Rejection Regions of H1 for Simes Single-Step and Hochberg
for a fixed α < P2 ≤ 1 (Z values)

If it can be shown that the P(red region) ≤ P(blue region) under the alternative (µ3 >

0), then without loss of generality, the P(reject H1 ∩ H2) for the extended single-step Simes

procedure is ≤ P(reject H1 ∩ H2) for the Hochberg procedure. If that is the case, then the

extended single-step Simes procedure will have strong control of the family wise error rate

for three independent normals.

Let g represent the distribution of Z1, Z2, and/or Z3 under the global null hypothesis

and h represent the distribution under the alternative (µ3 >0) and:

• (x11, x31) = lower left corner of the new procedure region

• (x12, x32) = a point in the new procedure region
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• (x13, x33) = point where the two methods meet

• (x14, x34) = a point in the Hochberg region

• (x15, x35) = upper right corner of the Hochberg region

The normal distribution exhibits the monotone likelihood ratio property. Therefore:

gZ3(x32)
gZ3(x34) ≥

hZ3(x32)
hZ3(x34)

Multiplying each side by gZ1(x12).

gZ3(x32)gZ1(x12)
gZ3(x34) ≥ hZ3(x32)gZ1(x12)

hZ3(x34)

This is true for all x32 from x31 to x12.

∫ x12
x31

gZ3(z)gZ1(x12)dz
gZ3(x34) ≥

∫ x12
x31

hZ3(z)gZ1(x12)dz
hZ3(x34)

This is true for all x12 from x11 to x13.

∫ x13
x11

∫ y
x31
gZ3(z)gZ1(y)dzdy
gZ3(x34) ≥

∫ x13
x11

∫ y
x31
hZ3(z)gZ1(y)dzdy
hZ3(x34)

Since the test statistics are independent.

∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy
gZ3(x34) ≥

∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy
hZ3(x34)

Equivalently:

gZ3(x34)∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

hZ3(x34)∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy
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Multiplying each side by gZ1(x14).

gZ3(x34)gZ1(x14)∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

hZ3(x34)gZ1(x14)∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy

This is true for all x34 from x14 to x35.

∫ x35
x14

gZ3(z)gZ1(x14)dz∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x35
x14

hZ3(z)gZ1(x14)dz∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy

This is true for all X14 from X13 to X15.

∫ x15
x13

∫ x35
y gZ3(z)gZ1(y)dzdy∫ x13

x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x15
x13

∫ x35
y hZ3(z)gZ1(y)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy

Since the test statistics are independent.

∫ x15
x13

∫ x35
y gZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x15
x13

∫ x35
y hZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy

The left side is the ratio of the two areas under the null. As stated previously, this is equal

to 1.

1 ≤
∫ x15
x13

∫ x35
y hZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy (4.2)

The right side of the inequality 4.2 is the area of the Hochberg region over the area

of the extended single-step Simes procedure when µ1 = 0 and µ3 > 0. The Hochberg

procedure has a type 1 error rate ≤ α. The P(reject H1 ∩ H2) ≤ α for the extended

single-step Simes since it never exceeds that of the Hochberg procedure. Therefore, the

extended single-step Simes procedure has strong control of the family wise error rate for

three independent standard normal test statistics.
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4.2 Trivariate MTP2 Normal Statistics

Proposition 2. Let X1 and X2 be distributed as a standard bivariate normal distribution

with correlation ρ and:

PX1,X2(a ≤ x1 ≤ b) = PX1,X2(b ≤ x1 ≤ c) = PX1,X2(a ≤ x2 ≤ b) = PX1,X2(b ≤ x2 ≤ c)

for 0 ≤ a ≤ b ≤ c.

Then:

PX1,X2(a ≤ x1 ≤ b,a ≤ x2 ≤ b) ≤ PX1,X2(b ≤ x1 ≤ c,b ≤ x2 ≤ c) for any 0 ≤ ρ ≤ 1.

Note the following properties of the standard univariate and standard bivariate normal

with correlation ρ that are well established:

1. For the (marginal) standard normal distributions, (a+c)/2 > b.

2. The joint distribution is symmetric about x1 = x2.

3. The conditional distribution X2 given X1 is:

fX2|X1 ∼ N [ρx1,(1-ρ2)]

4. It follows that the variance of X2|X1 is not a function of X1, and that the conditional

mean of X2 increases in X1.

5. For any 0< ρ <1 and (x11, x12), PX2|X1=x11(a ≤ x2 ≤ c) ≤ PX2|X1=x12(a ≤ x2 ≤ c) if

and only if |x11 ∗ ρ-(a+c)/2| ≥ |x12 ∗ ρ-(a+c)/2|. i.e., the probability is greater the

closer the conditional mean is to (a+c)/2.

Proof :

Case 1: Consider the case when c = ∞. The proof of this has been presented in Hochberg

and Rom [1995] and Samuel-Cahn [1996] based on various properties of the standard bi-

variate normal.
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Case 2: Consider Figure 4.7 for c <∞ and 0 < ρ < 1. Squares 2 and 3 represent the areas

of comparison. The horizontal red line is at the midpoint of a and c. i.e., (a+c)/2, which

is always > b. The diagonal dashed black line represents X1 = X2. The diagonal dashed

red line represents the conditional mean of X2|X1.

Figure 4.7: Standard Bivariate Normal with Correlation 0 < ρ < 1 (c<∞)

Define U(x1) = 1 - P(X≥x1), then Figure 4.7 with transformed X1 becomes Figure 4.8.
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Figure 4.8: Standard Bivariate Normal with X1 Transformed to Uniform

Since X1 and X2 have the same distribution, U(x1) is the cumulative distribution func-

tion (CDF) of X2. Recall that the black dashed line is U(x1) vs. X2, where X1 = X2, so

it is equivalent to U(x2) vs. X2. Therefore, the black dashed line is the plot of X2 vs. it’s

CDF.

The second derivative of the standard normal CDF is: −x√
2π

e
−
x2

2 . Setting this equal to

0 yields a single inflection point at x = 0. To the right of this inflection point, the second

derivative is negative, so when plotting X2 on the x-axis and the CDF on the y-axis, to the

right of X2 = 0, the CDF is concave downward. However, we have the axes reversed in the

plot above, so the CDF is concave upward for X2 > 0 or, equivalently, for X1 > 0.

Figure 4.9 is the same plot, but with a line drawn connecting the lower left corner of
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box 3 and the upper right corner of box 2. After the transformation, the two boxes above

the horizontal dashed red line up to c and below the horizontal red dashed line down to

a all have the same dimensions, therefore this new line crosses U(x1) = U(b) at the same

spot as the horizontal dashed red line.

Figure 4.9: Standard Bivariate Normal with X1 Transformed to Uniform with Dividing
Line

Since the dashed black line is concave upward it is on or below the line connecting the

lower left corner of box 3 and the upper right corner of box 2 for all U(x1) such that U(a)

≤ U(x1) ≤ U(c).

Define u11, u12 as u11 = U(b) - ε and u12 = U(b) + ε for ε > 0 such that U(a) ≤

u11 ≤ U(b) and U(b) ≤ u12 ≤ U(c). u11 and u12 are then equidistant from U(b). The

vertical distance in X2 from (a+c)/2 to the diagonal solid black line at these two points is
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equivalent. Note that the conditional mean of X2 at u11 will always be less than (a+c)/2.

If the conditional mean of X2 at u12 is less than or equal to (a+c)/2, since the conditional

mean of X2 at u12 is greater than the conditional mean of X2 at u11, then it will be closer

to (a+c)/2. Therefore, PX2|X1=U−1(u11)(a ≤ x2 ≤ c) ≤ PX2|X1=U−1(u12)(a ≤ x2 ≤ c), when

the conditional mean of x2|x1 = u12 ≤ (a+c)/2.

Note that the conditional mean of X2 is bounded above by the concave upward dashed

line of U(x1) = x2. This line and the line representing the conditional mean of X2 never

cross for X1 > 0 and 0 < ρ < 1 and the lines are the same only for the degenerate conditional

distribution when ρ = 1.

Let d11 and d12 represent the vertical distance from x2 = (a+c)/2 to the diagonal black

line dividing boxes 2 and 3 at u11 and u12, respectively. As noted above, d11 = d12. When

the conditional mean of X2 at u12 is greater than (a+c)/2, the distance the conditional

mean of X2 from (a+c)/2 is less than or equal to d12. At the corresponding point u11,

the distance the conditional mean of X2 is from (a+c)/2 is greater than or equal to d11.

Therefore, the conditional mean of X2 at u12 is no farther away from (a+c)/2 than the

conditional mean of x2 at u11. Thus, PX2|X1=U−1(u11)(a ≤ x2 ≤ c) ≤ PX2|X1=U−1(u12)(a ≤

x2 ≤ c), when the conditional mean of X2|X1 = u12 > (a+c)/2. Therefore, the inequality

holds for any 0 < ρ < 1. i.e.:

∫ c

a
fX2|X1=U−1(u11)(y)dy ≤

∫ c

a
fX2|X1=U−1(u12)(y)dy

This inequality is true for all pairs u11 and u12, U(a) ≤ u11 ≤ U(b) ≤ u12 ≤ U(c),

and, therefore, true for their corresponding values in x1. i.e., the inequality is true for all

x11=U−1(u11) and x12=U−1(u12), a ≤ x11 ≤ b ≤ x12 ≤ c. We can then obtain the total

probabilities of boxes 1 + 3 and 2 + 4 by integrating over U’(x1)=u(x1).
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∫ U(b)

U(a)

∫ c

a
uX1(y)fX2|X1(z)dydz ≤

∫ U(c)

U(b)

∫ c

a
uX1(y)fX2|X1(z)dydz

Back-transforming, we have:

∫ b

a

∫ c

a
fX1(y)fX2|X1(z)dydz ≤

∫ c

b

∫ c

a
fX1(y)fX2|X1(z)dydz

Which is equivalent to:

∫ b

a

∫ c

a
fX1,X2(y, z)dydz ≤

∫ c

b

∫ c

a
fX1,X2(y, z)dydz

This means that the probability of boxes 1 + 3 is less than or equal to the probability

of boxes 2 + 4 when 0 < ρ < 1. Due to symmetry, boxes 1 and 4 have the same probability.

Removing these two regions from the integrals, the inequality above becomes:

∫ b

a

∫ b

a
fX1,X2(y, z)dydz ≤

∫ c

b

∫ c

b
fX1,X2(y, z)dydz (4.3)

Therefore, the probability of box 3 is less than or equal to the probability of box 2. That

is:

PX1,X2(a ≤ x1 ≤ b,a ≤ x2 ≤ b) ≤ PX1,X2(b ≤ x1 ≤ c,b ≤ x2 ≤ c) for any 0 ≤ ρ ≤ 1.

Theorem 3. Let Z1, Z2, and Z3 be standard trivariate normal test statistics for testing hy-

potheses H1, H2, and H3 whose joint distribution has the MTP2 property, then the extended

single-step Simes procedure has strong control of the family wise error rate.

Proof :

Assume that the three normal test statistics Z1, Z2, and Z3 are positively correlated

and that their trivariate normal distribution has the MTP2 property with cov(Zi,Zj)=σij,
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i 6= j. Under the null, µi = 0, for i = 1, 2, 3. The conditional distribution of Z2 given Z1

= a and Z3 = c is then normal with mean (µ∗2) and variance (E∗2):

µ∗2 = (σ12 − σ13σ23)a+ (σ23 − σ12σ13)c
1− σ2

13

E∗2 = 1− σ2
12 − 2σ12σ13σ23 + σ2

23
1− σ2

13

Since we assumed that the trivariate density of Z1, Z2, and Z3 is MTP2, the inverse

of the covariance matrix is an M-matrix [Karlin and Rinnot, 1980]. The inverse of the

covariance matrix is:

1
1 + 2σ12σ13σ23 − σ2

12 − σ2
13 − σ2

23


1− σ2

23 σ13σ23 − σ12 σ12σ23 − σ13

σ13σ23 − σ12 1− σ2
13 σ12σ13 − σ23

σ12σ23 − σ13 σ12σ13 − σ23 1− σ2
12



The off-diagonal elements of an M-matrix are all ≤ 0. Therefore, the quantities σ12 −

σ13σ23 and σ23 − σ12σ13 in the conditional mean are both positive. Thus, the conditional

mean of Z2 given Z1 and Z3 increases as Z1=a increases and increases as Z3=c increases.

Now consider again Figure 4.6. The conditional mean of Z2 for any Z1=a1 and Z3=c1 in

the red area is less than the conditional mean of Z2 for any Z1=a2 and Z3=c2 in the blue

area.

For these given points in Z1 and Z3, we can compare the probabilities in Z2 for the

extended single-step Simes procedure to that of the Hochberg procedure. Due to the

stochastic ordering of the normal distribution:
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PZ2|Z1=a1,Z3=c1(Φ−1(α) ≤ z2 ≤ ∞) ≤ PZ2|Z1=a2,Z3=c2(Φ−1(α) ≤ z2 ≤ ∞)

Where Φ−1 is the inverse of the standard normal distribution. Or equivalently, letting g

represent the probability density function (PDF) of Z1, Z2, and/or Z3 under the global null

hypothesis and associated cumulative distribution function (CDF) G:

∫ ∞
G−1

(α)

gZ2|Z1=a1,Z2=c1(x2)dx2 ≤
∫ ∞
G−1

(α)

gZ2|Z1=a2,Z2=c2(x2)dx2 (4.4)

Under the global null hypothesis, using x11, x13, x15, x31, x33, and x35 as defined in

Section 4.1, by Proposition 2 we can rewrite inequality 4.3 as:

∫ x13

x11

∫ x33

x31
gZ1,Z3(y, z)dzdy ≤

∫ x15

x13

∫ x35

x33
gZ1,Z3(y, z)dzdy (4.5)

The box represented on the left side of the inequality is the box containing the red

triangle in Figure 4.6 and the right side of the inequality is the box containing the blue

triangle in Figure 4.6. Consider the diagonal line where Z1 = Z3. This line divides the

boxes in half. Additionally, the red box is below the diagonal and the blue box is above the

diagonal. Under the global null hypothesis, Z1 and Z3 have the same marginal distribu-

tions, N(0,1). i.e., gZ1(a) = gZ3(a). Now consider their joint bivariate normal distribution

gZ1,Z3 . Since Z1 and Z3 have the same distribution, they are interchangeable in the joint

distribution. That is, gZ1,Z3(a,b) = gZ1,Z3(b,a). Consider the point (a,b) on one side of the

diagonal within one of the boxes. It’s corresponding point symmetric across the diagonal

is (b,a). As noted above gZ1,Z3(a,b) = gZ1,Z3(b,a). For each point in one of the boxes above

the diagonal is a corresponding point below the diagonal. Therefore, the joint bivariate

normal distribution of Z1 and Z3 is symmetric about the diagonal. That is, within each
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box, the probability of the triangle above the diagonal is equal to the probability of the

triangle below the diagonal. Therefore, the left side of inequality 4.5 can be rewritten as

twice the area of the red triangle corresponding to the extended single-step Simes region

and the right side of the inequality can be rewritten as twice the area of the blue triangle

corresponding to the Hochberg region. That is:

2
∫ x13

x11

∫ y

x31
gZ1,Z3(y, z)dzdy ≤ 2

∫ x15

x13

∫ x35

y
gZ1,Z3(y, z)dzdy (4.6)

Or equivalently:

∫ x13

x11

∫ y

x31
gZ1,Z3(y, z)dzdy ≤

∫ x15

x13

∫ x35

y
gZ1,Z3(y, z)dzdy (4.7)

Thus, the probability of the extended single-step Simes region in Z1 and Z3 is less than

or equal to that of the Hochberg region under the global null. Multiplying the inequalities

4.4 and 4.7, we have:

∫ x13

x11

∫ y

x31

∫ ∞
G−1

(α)

gZ2|Z1,Z3(w)gZ1,Z3(y, z)dwdzdy ≤
∫ x15

x13

∫ x35

y

∫ ∞
G−1

(α)

gZ2|Z1,Z3(w)gZ1,Z3(y, z)dwdzdy

or equivalently:

∫ x13

x11

∫ y

x31

∫ ∞
G−1

(α)

gZ1,Z2,Z3(y, w, z)dwdzdy ≤
∫ x15

x13

∫ x35

y

∫ ∞
G−1

(α)

gZ1,Z2,Z3(y, w, z)dwdzdy (4.8)

The left side of the inequality is the probability associated with the triangular prism

belonging only to the extended single-step Simes procedure and the right side of the inequal-
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ity is the probability associated with the triangular prism belonging only to the Hochberg

procedure.

Again let g and h, with associated CDFs G and H, represent the distributions of Z1,

Z2, and/or Z3 under the global null hypothesis and alternatives hypothesis, respectively.

Since the univariate conditional distributions and univariate marginal distributions are

normal, they exhibit the monotone likelihood ratio property. Therefore, the following two

inequalities are both true:

gZ3|Z1(x32)
gZ3|Z1(x34) ≥

hZ3|Z1(x32)
hZ3|Z1(x34)

gZ1(x12)
gZ1(x14) ≥

hZ1(x12)
hZ1(x14)

Multiplying the two inequalities together:

gZ3|Z1(x32)gZ1(x12)
gZ3|Z1(x34)gZ1(x14) ≥

hZ3|Z1(x32)hZ1(x12)
hZ3|Z1(x34)hZ1(x14)

This is true for all x32 from x31 to x12.

∫ x12
x31

gZ3|Z1(z)gZ1(x12)dz
gZ3|Z1(x34)gZ1(x14) ≥

∫ x12
x31

hZ3|Z1(z)hZ1(x12)dz
hZ3|Z1(x34)hZ1(x14)

This is true for all x12 from x11 to x13.

∫ x13
x11

∫ y
x31
gZ3|Z1(z)gZ1(y)dzdy

gZ3|Z1(x34)gZ1(x14) ≥
∫ x13
x11

∫ y
x31
hZ3|Z1(z)hZ1(y)dzdy

hZ3|Z1(x34)hZ1(x14)

Multiplying the distributions together:
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∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy

gZ3|Z1(x34)gZ1(x14) ≥
∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy

hZ3|Z1(x34)hZ1(x14)

Inverting:

gZ3|Z1(x34)gZ1(x14)∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

hZ3|Z1(x34)hZ1(x14)∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy

This is true for all x34 from x14 to x35.

∫ x35
x14

gZ3|Z1(z)gZ1(x14)dz∫ x13
x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x35
x14

hZ3|Z1(z)hZ1(x14)dz∫ x13
x11

∫ y
x31
hZ1,Z3(y, z)dzdy

This is true for all x14 from x13 to x15.

∫ x15
x13

∫ x35
y gZ3|Z1(z)gZ1(y)dzdy∫ x13

x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x15
x13

∫ x35
y hZ3|Z1(z)hZ1(y)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy

Multiplying the distributions together:

∫ x15
x13

∫ x35
y gZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
gZ1,Z3(y, z)dzdy ≤

∫ x15
x13

∫ x35
y hZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy

As with above, by Proposition 2 and symmetry of the joint distribution of Z1 and

Z3 about the line Z1=Z3, the left side of the inequality is ≥ 1. Therefore, the following

inequality must also be true:

1 ≤
∫ x15
x13

∫ x35
y hZ1,Z3(y, z)dzdy∫ x13

x11

∫ y
x31
hZ1,Z3(y, z)dzdy

Or equivalently:
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∫ x13

x11

∫ y

x31
hZ1,Z3(y, z)dzdy ≤

∫ x15

x13

∫ x35

y
hZ1,Z3(y, z)dzdy (4.9)

Under the alternative, the conditional distribution of Z2 given Z1 = a and Z3 = c is

normal with mean (µ∗∗2 ) and variance equal to the variance under the null:

µ∗∗2 = (σ12 − σ13σ23)a+ (σ23 − σ12σ13)(c− µ3)
1− σ2

13

As above under the global null hypothesis, the conditional mean of Z2 given Z1 and Z3

under the alternative increases as Z1=a increases and increases as Z3=c increases. Stochas-

tic ordering between the red and blue areas in Figure 4.6 is therefore preserved under the

alternative. Thus, the inequality 4.4 is true under the alternative as well. i.e.,:

∫ ∞
H−1

(α)

hZ2|Z1=a1,Z2=c1(x2)dx2 ≤
∫ ∞
H−1

(α)

hZ2|Z1=a2,Z2=c2(x2)dx2 (4.10)

Multiplying the inequalities 4.9 and 4.10 we have the following:

∫ x13

x11

∫ y

x31

∫ ∞
H−1

(α)

hZ2|Z1,Z3(w)hZ1,Z3(y, z)dwdzdy ≤
∫ x15

x13

∫ x35

y

∫ ∞
H−1

(α)

hZ2|Z1,Z3(w)hZ1,Z3(y, z)dwdzdy

Or equivalently:

∫ x13

x11

∫ y

x31

∫ ∞
H−1

(α)

hZ1,Z2,Z3(y, w, z)dwdzdy ≤
∫ x15

x13

∫ x35

y

∫ ∞
H−1

(α)

hZ1,Z2,Z3(y, w, z)dwdzdy (4.11)

The left side of the inequality 4.11 is the probability associated with the triangular prism

belonging only to the extended single-step Simes procedure under the alternative and the
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right side of the inequality is the probability associated with the triangular prism belonging

only to the Hochberg procedure. Since the probability of the extended single-step Simes is

no more than that of the Hochberg, we can say, without loss of generality, that the P(reject

H1 ∩ H2) ≤ α. Therefore, the extended single-step Simes procedure has strong control of

the family wise error rate for three standard correlated normal test statistics whose joint

distribution has the MTP2 property.



Chapter 5

Simulations

Simulations for various distributions and number of test statistics for a number of

configurations are provided. 10 million simulations were generated for each set of conditions

using a one-sided type 1 error rate of α=0.05.

5.1 Corroborative Results

5.1.1 Three Independent Normal Statistics

Independent normals were generated using the SAS® function RANNOR.

Table 5.1 shows simulations results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing three independent

normal statistics with one false hypothesis, whereas Table 5.2 shows the power to reject at

least one, at least two, and all three of the hypotheses for each of the procedures.

38



39

Table 5.1: Three Independent Normal Test Statistics with 1 False Hypothesis (Type 1
Error Rates)

Mean False
Hypothesis

S HB HM

0.5 0.0340 0.0344 0.0348
1 0.0347 0.0361 0.0368
1.5 0.0352 0.0387 0.0395
2 0.0355 0.0419 0.0427
2.5 0.0355 0.0451 0.0458
3 0.0350 0.0475 0.0479
3.5 0.0346 0.0490 0.0492

Table 5.2: Three Independent Normal Test Statistics with 1 False Hypothesis (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Mean
False
Hypothesis

1 2 3 1 2 3 1 2 3

0.5 0.0847 0.0022 0.0003 0.0836 0.0043 0.0003 0.0843 0.0043 0.0003
1 0.1611 0.0050 0.0006 0.1593 0.0092 0.0006 0.1605 0.0092 0.0006
1.5 0.2927 0.0096 0.0011 0.2902 0.0167 0.0011 0.2919 0.0167 0.0011
2 0.4713 0.0159 0.0016 0.4685 0.0263 0.0016 0.4704 0.0263 0.0016
2.5 0.6603 0.0226 0.0020 0.6580 0.0356 0.0020 0.6597 0.0356 0.0020
3 0.8170 0.0279 0.0023 0.8155 0.0427 0.0023 0.8166 0.0427 0.0023
3.5 0.9190 0.0314 0.0024 0.9181 0.0470 0.0024 0.9187 0.0470 0.0024

Type 1 error rates for all three procedures were controlled at level α=0.05. The ex-

tended single-step Simes produced lower type 1 error rates than the Hochberg and Hommel

procedures. This was especially true as the mean associated with the false hypothesis in-

creased. The Hochberg and Hommel procedure type 1 error rates approached α as the

mean associated with the false hypothesis increased, whereas the type 1 error rate for the
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extended single-step Simes remained close to 70% of α for all configurations.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures. The

Hochberg and Hommel procedures perform better for the rejection of at least two hypothe-

ses. All three methods are equivalent for the rejection of all three hypotheses.

5.1.2 Trivariate MTP2 Normal Statistics

Trivariate MTP2 normal statistics were generated by first generating a vector of indepen-

dent normals and then multiplying that by the Cholesky decomposition of the covariance

matrix.

Table 5.3 shows simulations results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (B), and Hommel (M) procedures for testing three MTP2 corre-

lated normal statistics with one false hypothesis. Table 5.4 shows the power to reject at

least one, at least two, and all three hypotheses for each of the procedures.

Table 5.3: Three MTP2 Normal Test Statistics with 1 False
Hypothesis1 (Type 1 Error Rates)

Correlations2 S HB HM
0.1, 0.1, 0.1 0.0354 0.0461 0.0467
0.3, 0.3, 0.3 0.0353 0.0471 0.0475
0.5, 0.5, 0.5 0.0350 0.0468 0.0470
0.7, 0.7, 0.7 0.0347 0.0449 0.0449
0.1, 0.2, 0.3 0.0353 0.0475 0.0480
0.1, 0.3, 0.5 0.0349 0.0485 0.0487
0.1, 0.4, 0.7 0.0347 0.0492 0.0494
1 False mean = 2.5 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.
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Table 5.4: Three MTP2 Normal Test Statistics with 1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
0.1, 0.1, 0.1 0.6568 0.0257 0.0033 0.6548 0.0392 0.0033 0.6562 0.0392 0.0033
0.3, 0.3, 0.3 0.6512 0.0308 0.0070 0.6498 0.0443 0.0070 0.6508 0.0443 0.0070
0.5, 0.5, 0.5 0.6470 0.0336 0.0121 0.6463 0.0462 0.0121 0.6468 0.0462 0.0121
0.7, 0.7, 0.7 0.6454 0.0346 0.0195 0.6453 0.0449 0.0195 0.6454 0.0449 0.0195
0.1, 0.2, 0.3 0.6526 0.0293 0.0036 0.6511 0.0437 0.0036 0.6522 0.0437 0.0036
0.1, 0.3, 0.5 0.6491 0.0317 0.0037 0.6480 0.0466 0.0037 0.6488 0.0466 0.0037
0.1, 0.4, 0.7 0.6470 0.0332 0.0037 0.6464 0.0484 0.0037 0.6469 0.0484 0.0037
1 False mean = 2.5 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.

Type 1 error rates for all three procedures were controlled at level α=0.05. The ex-

tended single-step Simes produced lower type 1 error rates than the Hochberg and Hommel

procedures. This was especially true as the mean associated with the false hypothesis in-

creased. Similar to three independent normals, the Hochberg and Hommel procedure type

1 error rates approached α as the mean associated with the false hypothesis increased,

whereas the type 1 error rate for the extended single-step Simes remained close to 70% of

α for all configurations.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

all configurations tested. The Hochberg and Hommel procedures perform better for the

rejection of at least two hypotheses. All three methods are equivalent for the rejection of

all three hypotheses.
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5.2 Exploratory Configurations and Distributions

5.2.1 More Than Three Independent Normal Statistics

Table 5.5 shows simulations results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing more than three

independent normal statistics with one false hypothesis, whereas Table 5.6 shows the power

to reject at least one, at least two, and at least three of the hypotheses for each of the

procedures.

Table 5.5: More Than Three Independent Normal Test Statistics
with 1 False Hypothesis1 (Type 1 Error Rates)

Number of
Hypotheses

S HB HM

30 0.049753 0.047764 0.047970
31 0.049785 0.047750 0.047955
32 0.049821 0.047792 0.047982
33 0.049856 0.047792 0.047975
34 0.050042 0.047962 0.048145
35 0.049885 0.047781 0.047963
36 0.049998 0.047932 0.048100
37 0.049931 0.047826 0.047993
38 0.049933 0.047857 0.048020
39 0.050130 0.047974 0.048134
40 0.049941 0.047842 0.047990
50 0.050339 0.048144 0.048260
60 0.050382 0.048128 0.048222
70 0.050450 0.048219 0.048296
80 0.050604 0.048388 0.048461
90 0.050671 0.048423 0.048482
100 0.050645 0.048401 0.048455
1 False mean = 2.5 for all simulations.
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Table 5.6: More Than Three Independent Normal Test Statistics with 1 False Hypothesis1

(Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Number of
Hypotheses

1 2 3 1 2 3 1 2 3

30 0.3679 0.0164 0.0004 0.3632 0.0171 0.0004 0.3635 0.0172 0.0004
31 0.3645 0.0163 0.0004 0.3598 0.0170 0.0004 0.3602 0.0170 0.0004
32 0.3612 0.0161 0.0004 0.3565 0.0168 0.0004 0.3569 0.0168 0.0004
33 0.3580 0.0160 0.0004 0.3533 0.0166 0.0004 0.3536 0.0167 0.0004
34 0.3548 0.0159 0.0004 0.3502 0.0165 0.0004 0.3505 0.0165 0.0004
35 0.3515 0.0157 0.0004 0.3468 0.0163 0.0004 0.3471 0.0163 0.0004
36 0.3489 0.0156 0.0004 0.3443 0.0162 0.0004 0.3446 0.0162 0.0004
37 0.3461 0.0154 0.0004 0.3415 0.0159 0.0004 0.3418 0.0160 0.0004
38 0.3433 0.0153 0.0004 0.3387 0.0158 0.0004 0.3390 0.0159 0.0004
39 0.3408 0.0152 0.0004 0.3362 0.0158 0.0004 0.3365 0.0158 0.0004
40 0.3381 0.0150 0.0003 0.3336 0.0155 0.0004 0.3338 0.0155 0.0004
50 0.3166 0.0141 0.0003 0.3121 0.0145 0.0004 0.3123 0.0145 0.0004
60 0.2994 0.0133 0.0003 0.2951 0.0136 0.0003 0.2952 0.0136 0.0003
70 0.2858 0.0127 0.0003 0.2816 0.0129 0.0003 0.2817 0.0129 0.0003
80 0.2746 0.0122 0.0003 0.2705 0.0124 0.0003 0.2707 0.0124 0.0003
90 0.2649 0.0117 0.0003 0.2608 0.0119 0.0003 0.2609 0.0119 0.0003
100 0.2564 0.0113 0.0003 0.2524 0.0115 0.0003 0.2525 0.0115 0.0003
1 False mean = 2.5 for all simulations.

The extended single-step Simes procedure did not control the type 1 error rate for all

numbers of hypotheses tested. The type 1 error rate first exceeded α=0.05 at 34 hypotheses.

However, those that failed to control the type 1 error rate only exceeded α by a small margin

(<1.5% of α for all configurations).

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures. The

Hochberg and Hommel procedures perform better for the rejection of at least two and at

least three hypotheses.
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5.2.2 More Than Three MTP2 Normal Statistics

Table 5.7 shows simulations results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing more than three

MTP2 correlated normal statistics with one false hypothesis, whereas Table 5.8 shows the

power to reject at least one, at least two, and at least three of the hypotheses for each of

the procedures.

Table 5.7: More Than Three MTP2
1 Normal Test Statistics with

1 False Hypothesis2 (Type 1 Error Rates)

Number of
Hypotheses

S HB HM

10 0.0345 0.0368 0.0382
20 0.0325 0.0328 0.0336
30 0.0313 0.0309 0.0316
40 0.0302 0.0295 0.0300
50 0.0294 0.0285 0.0289
60 0.0286 0.0276 0.0280
70 0.0282 0.0271 0.0274
80 0.0277 0.0264 0.0267
90 0.0272 0.0259 0.0262
100 0.0268 0.0254 0.0257
1 0.5 used for all correlations.
2 False mean = 2.5 for all simulations.
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Table 5.8: More Than Three MTP2
1 Normal Test Statistics with 1 False Hypothesis2 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Number of
Hypotheses

1 2 3 1 2 3 1 2 3

10 0.4741 0.0313 0.0074 0.4723 0.0346 0.0097 0.4727 0.0360 0.0109
20 0.3849 0.0285 0.0082 0.3828 0.0299 0.0093 0.3830 0.0307 0.0101
30 0.3378 0.0267 0.0084 0.3355 0.0276 0.0090 0.3357 0.0282 0.0097
40 0.3068 0.0253 0.0084 0.3044 0.0258 0.0089 0.3045 0.0263 0.0095
50 0.2844 0.0242 0.0083 0.2819 0.0247 0.0087 0.2820 0.0251 0.0092
60 0.2668 0.0233 0.0082 0.2643 0.0236 0.0085 0.2644 0.0240 0.0090
70 0.2529 0.0227 0.0082 0.2503 0.0229 0.0085 0.2505 0.0233 0.0089
80 0.2413 0.0220 0.0081 0.2386 0.0222 0.0083 0.2387 0.0225 0.0088
90 0.2311 0.0214 0.0080 0.2284 0.0216 0.0082 0.2285 0.0219 0.0086
100 0.2223 0.0209 0.0080 0.2196 0.0211 0.0081 0.2197 0.0214 0.0085
1 0.5 used for all correlations.
2 False mean = 2.5 for all simulations.

Type 1 error rates for all three procedures were considerably below α=0.05 for all

configurations tested. Type 1 error rates were similar for the three procedures with the

Hochberg procedure producing slightly lower rates. The Type 1 error rates decreased for all

procedures as the number of hypotheses increased. All type 1 error rates for the extended

single-step Simes procedure were less than 65% of α for the configurations tested.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

all configurations tested. The Hochberg and Hommel procedures perform better for the

rejection of at least two and at least three hypotheses.

5.2.3 Three Independent Chi-Square Statistics

Independent central chi-square statistics with 1 degree of freedom were generated by

squaring randomly generated independent standard normals. 1 degree of freedom non-
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central chi-square statistics under the alternative were generated by first generating cen-

tral chi-square statistics, then calculating the associated p-value using the SAS® function

PROBCHI, and finally calculating the 1 degree of freedom non-central chi-square statistic

associated with the p-value for the specified non-centrality parameter using the SAS® func-

tion CINV. Independent chi-square statistics with 5 degrees of freedom were generated by

first generating independent chi-square statistics with 1 degree of freedom, then calculat-

ing the associated p-value, and finally calculating the 5 degree of freedom central (null) or

non-central (alternative) chi-square statistics associated with the p-value for the specified

non-centrality parameter, if under the alternative.

Table 5.9 and Table 5.11 show simulations results comparing type 1 error rates for the

extended single-step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing

three independent 1 and 5 degree of freedom chi-square statistics, respectively, with one

false hypothesis, whereas Table 5.10 and Table 5.12 show the power to reject at least one,

at least two, and all three of the hypotheses for each of the procedures.

Table 5.9: Three Independent 1 Degree of Freedom Chi-Square Test Statistics with 1 False
Hypothesis (Type 1 Error Rates)

Non-Centrality
Parameter False
Hypothesis

S HB HM

1 0.0341 0.0350 0.0354
3.375 0.0351 0.0390 0.0398
4 0.0353 0.0401 0.0409
6.25 0.0353 0.0433 0.0440
9 0.0351 0.0462 0.0468
12.25 0.0348 0.0483 0.0486



47

Table 5.10: Three Independent 1 Degree of Freedom Chi-Square Test Statistics with 1 False
Hypothesis (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Non-
Centrality
Parameter
False
Hypothesis

1 2 3 1 2 3 1 2 3

1 0.1141 0.0033 0.0004 0.1128 0.0061 0.0004 0.1137 0.0061 0.0004
3.375 0.3158 0.0104 0.0011 0.3135 0.0177 0.0011 0.3151 0.0177 0.0011
4 0.3719 0.0124 0.0013 0.3694 0.0208 0.0013 0.3712 0.0208 0.0013
6.25 0.5609 0.0190 0.0018 0.5585 0.0304 0.0018 0.5602 0.0304 0.0018
9 0.7394 0.0252 0.0021 0.7376 0.0390 0.0021 0.7389 0.0390 0.0021
12.25 0.8716 0.0298 0.0023 0.8705 0.0449 0.0023 0.8713 0.0449 0.0023

Table 5.11: Three Independent 5 Degree of Freedom Chi-Square Test Statistics with 1 False
Hypothesis (Type 1 Error Rates)

Non-Centrality
Parameter False
Hypothesis

S HB HM

1 0.0339 0.0341 0.0344
3.375 0.0346 0.0361 0.0366
4 0.0348 0.0367 0.0374
6.25 0.0352 0.0391 0.0398
9 0.0355 0.0420 0.0428
12.25 0.0353 0.0449 0.0455



48

Table 5.12: Three Independent 5 Degree of Freedom Chi-Square Test Statistics with 1 False
Hypothesis (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Non-
Centrality
Parameter
False
Hypothesis

1 2 3 1 2 3 1 2 3

1 0.0730 0.0017 0.0002 0.0721 0.0034 0.0002 0.0727 0.0034 0.0002
3.375 0.1617 0.0050 0.0006 0.1600 0.0090 0.0006 0.1611 0.0090 0.0006
4 0.1919 0.0060 0.0007 0.1900 0.0108 0.0007 0.1913 0.0108 0.0007
6.25 0.3147 0.0104 0.0011 0.3124 0.0177 0.0011 0.3140 0.0177 0.0011
9 0.4762 0.0160 0.0016 0.4738 0.0262 0.0016 0.4755 0.0262 0.0016
12.25 0.6487 0.0221 0.0020 0.6466 0.0348 0.0020 0.6481 0.0348 0.0020

Type 1 error rates for all three procedures were controlled at level α=0.05. The extended

single-step Simes procedure produced lower type 1 error rates than the Hochberg and

Hommel procedures for both 1 and 5 degree of freedom independent chi-square tests. This

was especially true as the non-centrality parameter associated with the false hypothesis

increased. The Hochberg and Hommel procedure type 1 error rates approached α as the

non-centrality parameter associated with the false hypothesis increased. This was more

apparent with the 1 degree of freedom test statistics as compared to the 5 degree of freedom

test statistics. However, the type 1 error rate for the extended single-step Simes remained

close to 70% of α for all configurations.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

both 1 and 5 degree of freedom chi-square test statistics. The Hochberg and Hommel

procedures perform better for the rejection of at least two hypotheses. All three methods

are equivalent for the rejection of all three hypotheses.
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5.2.4 Three Positively Correlated Chi-Square Statistics

Positively correlated central chi-square statistics were generated by first generating pos-

itively correlated normal statistics with correlations equal to the square root of the desired

correlations. These correlated normal statistics were squared to create 1 degree of freedom

central chi-square statistics with the desired correlation structure. Positively correlated 5

degree of freedom central chi-square statistics were generated by summing 5 independently

generated sets of positively correlated 1 degree of freedom central chi-square statistics. For

each, the non-central chi-square statistic under the alternative was generated by calculating

the p-value associated with the central chi-square statistic and its degrees of freedom us-

ing the SAS® function PROBCHI and then calculating the non-central chi-square statistic

associated with that p-value with the same degrees of freedom and specified non-centrality

parameter using the SAS® function CINV.

Table 5.13 and Table 5.15 show simulations results comparing type 1 error rates for the

extended single-step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing

three positively correlated 1 and 5 degree of freedom chi-square statistics, respectively, with

one false hypothesis, whereas Table 5.14 and Table 5.16 show the power to reject at least

one, at least two, and all three of the hypotheses for each of the procedures.
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Table 5.13: Three Positively Correlated 1 Degree of Freedom Chi-
Square Test Statistics with 1 False Hypothesis1 (Type 1 Error Rates)

Correlations2 S HB HM
0.1, 0.1, 0.1 0.0352 0.0440 0.0446
0.3, 0.3, 0.3 0.0348 0.0447 0.0450
0.5, 0.5, 0.5 0.0346 0.0446 0.0447
0.7, 0.7, 0.7 0.0346 0.0431 0.0431
0.1, 0.2, 0.3 0.0350 0.0457 0.0461
0.1, 0.3, 0.5 0.0348 0.0474 0.0477
0.1, 0.4, 0.7 0.0346 0.0484 0.0485
1 Non-centrality parameter = 6.25 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.

Table 5.14: Three Positively Correlated 1 Degree of Freedom Chi-Square Test Statistics with
1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
0.1, 0.1, 0.1 0.5559 0.0234 0.0044 0.5539 0.0350 0.0044 0.5553 0.0350 0.0044
0.3, 0.3, 0.3 0.5487 0.0296 0.0102 0.5474 0.0410 0.0102 0.5483 0.0410 0.0102
0.5, 0.5, 0.5 0.5445 0.0331 0.0168 0.5439 0.0438 0.0168 0.5443 0.0438 0.0168
0.7, 0.7, 0.7 0.5428 0.0344 0.0244 0.5427 0.0430 0.0244 0.5428 0.0430 0.0244
0.1, 0.2, 0.3 0.5508 0.0281 0.0049 0.5493 0.0407 0.0049 0.5504 0.0407 0.0049
0.1, 0.3, 0.5 0.5469 0.0313 0.0051 0.5459 0.0450 0.0051 0.5466 0.0450 0.0051
0.1, 0.4, 0.7 0.5442 0.0330 0.0051 0.5436 0.0473 0.0051 0.5440 0.0473 0.0051
1 Non-centrality parameter = 6.25 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.
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Table 5.15: Three Positively Correlated 5 Degree of Freedom Chi-
Square Test Statistics with 1 False Hypothesis1 (Type 1 Error Rates)

Correlations2 S HB HM
0.1, 0.1, 0.1 0.0353 0.0403 0.0410
0.3, 0.3, 0.3 0.0353 0.0422 0.0428
0.5, 0.5, 0.5 0.0352 0.0431 0.0436
0.7, 0.7, 0.7 0.0349 0.0431 0.0433
0.1, 0.2, 0.3 0.0355 0.0426 0.0433
0.1, 0.3, 0.5 0.0356 0.0449 0.0455
0.1, 0.4, 0.7 0.0353 0.0468 0.0472
1 Non-centrality parameter = 6.25 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.

Table 5.16: Three Positively Correlated 5 Degree of Freedom Chi-Square Test Statistics with
1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
0.1, 0.1, 0.1 0.3104 0.0151 0.0029 0.3080 0.0235 0.0029 0.3096 0.0235 0.0029
0.3, 0.3, 0.3 0.3026 0.0232 0.0078 0.3004 0.0331 0.0078 0.3020 0.0331 0.0078
0.5, 0.5, 0.5 0.2958 0.0296 0.0143 0.2940 0.0396 0.0143 0.2952 0.0396 0.0143
0.7, 0.7, 0.7 0.2904 0.0336 0.0223 0.2894 0.0425 0.0223 0.2901 0.0425 0.0223
0.1, 0.2, 0.3 0.3044 0.0209 0.0038 0.3021 0.0312 0.0038 0.3037 0.0312 0.0038
0.1, 0.3, 0.5 0.2994 0.0259 0.0043 0.2972 0.0380 0.0043 0.2987 0.0380 0.0043
0.1, 0.4, 0.7 0.2947 0.0297 0.0044 0.2930 0.0431 0.0044 0.2942 0.0431 0.0044
1 Non-centrality parameter = 6.25 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.

Type 1 error rates for all three procedures were controlled at level α=0.05. The ex-

tended single-step Simes produced lower type 1 error rates than the Hochberg and Hommel

procedures for both 1 and 5 degree of freedom positively correlated chi-square tests. This

was especially true as the non-centrality parameter associated with the false hypothesis

increased. The Hochberg and Hommel procedure type 1 error rates approached α as the
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non-centrality parameter associated with the false hypothesis increased. This was more ap-

parent with the 1 degree of freedom test statistics as compared to the 5 degree of freedom

test statistics. However, the type 1 error rate for the extended single-step Simes remained

close to 70% of α for all configurations.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

both 1 and 5 degree of freedom chi-square test statistics. The Hochberg and Hommel

procedures perform better for the rejection of at least two hypotheses. All three methods

are equivalent for the rejection of all three hypotheses.

5.2.5 More Than Three Independent Chi-Square Statistics

Table 5.17 and Table 5.19 show simulations results comparing type 1 error rates for the

extended single-step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing

more than three independent 1 and 5 degree of freedom chi-square statistics, respectively,

with one false hypothesis, whereas Table 5.18 and Table 5.20 show the power to reject at

least one, at least two, and at least three of the hypotheses for each of the procedures.
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Table 5.17: More Than Three Independent 1 Degree of Freedom
Chi-Square Test Statistics with 1 False Hypothesis1 (Type 1 Error
Rates)

Number of
Hypotheses

S HB HM

35 0.04987 0.04785 0.04801
36 0.04989 0.04788 0.04803
37 0.04993 0.04789 0.04804
38 0.04985 0.04783 0.04798
39 0.04986 0.04783 0.04797
40 0.04998 0.04793 0.04807
41 0.04998 0.04792 0.04805
42 0.04992 0.04785 0.04798
43 0.04997 0.04789 0.04802
44 0.05005 0.04799 0.04812
45 0.05008 0.04800 0.04812
50 0.05016 0.04805 0.04815
60 0.05030 0.04823 0.04831
70 0.05034 0.04826 0.04833
80 0.05034 0.04829 0.04836
90 0.05043 0.04836 0.04841
100 0.05037 0.04829 0.04835
1 Non-centrality parameter = 6.25 for all simulations.
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Table 5.18: More Than Three Independent 1 Degree of Freedom Chi-Square Test Statistics
with 1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Number of
Hypotheses

1 2 3 1 2 3 1 2 3

35 0.2855 0.0125 0.0003 0.2814 0.0130 0.0003 0.2817 0.0131 0.0003
36 0.2829 0.0124 0.0003 0.2789 0.0129 0.0003 0.2791 0.0129 0.0003
37 0.2806 0.0123 0.0003 0.2765 0.0128 0.0003 0.2767 0.0128 0.0003
38 0.2782 0.0122 0.0003 0.2741 0.0126 0.0003 0.2744 0.0127 0.0003
39 0.2763 0.0121 0.0003 0.2722 0.0125 0.0003 0.2725 0.0126 0.0003
40 0.2739 0.0120 0.0003 0.2698 0.0125 0.0003 0.2701 0.0125 0.0003
41 0.2722 0.0119 0.0003 0.2682 0.0123 0.0003 0.2684 0.0123 0.0003
42 0.2702 0.0118 0.0003 0.2661 0.0122 0.0003 0.2664 0.0122 0.0003
43 0.2681 0.0117 0.0003 0.2641 0.0121 0.0003 0.2643 0.0121 0.0003
44 0.2662 0.0116 0.0003 0.2622 0.0120 0.0003 0.2624 0.0120 0.0003
45 0.2646 0.0115 0.0003 0.2606 0.0119 0.0003 0.2608 0.0119 0.0003
50 0.2562 0.0112 0.0003 0.2523 0.0115 0.0003 0.2525 0.0115 0.0003
60 0.2423 0.0105 0.0002 0.2385 0.0108 0.0003 0.2387 0.0108 0.0003
70 0.2312 0.0100 0.0002 0.2275 0.0102 0.0002 0.2276 0.0102 0.0002
80 0.2219 0.0096 0.0002 0.2183 0.0097 0.0002 0.2184 0.0098 0.0002
90 0.2142 0.0092 0.0002 0.2106 0.0093 0.0002 0.2107 0.0093 0.0002
100 0.2071 0.0089 0.0002 0.2036 0.0090 0.0002 0.2037 0.0090 0.0002
1 Non-centrality parameter = 6.25 for all simulations.
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Table 5.19: More Than Three Independent 5 Degree of Freedom
Chi-Square Test Statistics with 1 False Hypothesis1 (Type 1 Error
Rates)

Number of
Hypotheses

S HB HM

35 0.04937 0.04765 0.04777
36 0.04923 0.04749 0.04760
37 0.04936 0.04762 0.04774
38 0.04940 0.04769 0.04779
39 0.04954 0.04782 0.04792
40 0.04941 0.04765 0.04775
41 0.04954 0.04778 0.04788
42 0.04949 0.04777 0.04786
43 0.04941 0.04769 0.04778
44 0.04943 0.04771 0.04780
45 0.04957 0.04784 0.04792
50 0.04965 0.04793 0.04801
60 0.04978 0.04806 0.04812
70 0.04983 0.04814 0.04819
80 0.04995 0.04830 0.04834
90 0.04997 0.04832 0.04836
100 0.04996 0.04833 0.04836
1 Non-centrality parameter = 6.25 for all simulations.
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Table 5.20: More Than Three Independent 5 Degree of Freedom Chi-Square Test Statistics
with 1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Number of
Hypotheses

1 2 3 1 2 3 1 2 3

35 0.1363 0.0053 0.0001 0.1335 0.0055 0.0001 0.1337 0.0056 0.0001
36 0.1349 0.0053 0.0001 0.1321 0.0055 0.0001 0.1323 0.0055 0.0001
37 0.1339 0.0052 0.0001 0.1311 0.0054 0.0001 0.1313 0.0054 0.0001
38 0.1328 0.0051 0.0001 0.1300 0.0054 0.0001 0.1302 0.0054 0.0001
39 0.1318 0.0052 0.0001 0.1291 0.0054 0.0001 0.1292 0.0054 0.0001
40 0.1306 0.0051 0.0001 0.1278 0.0053 0.0001 0.1280 0.0053 0.0001
41 0.1296 0.0050 0.0001 0.1269 0.0052 0.0001 0.1270 0.0052 0.0001
42 0.1287 0.0050 0.0001 0.1260 0.0052 0.0001 0.1262 0.0052 0.0001
43 0.1276 0.0049 0.0001 0.1250 0.0051 0.0001 0.1251 0.0051 0.0001
44 0.1266 0.0049 0.0001 0.1239 0.0051 0.0001 0.1241 0.0051 0.0001
45 0.1258 0.0049 0.0001 0.1232 0.0051 0.0001 0.1233 0.0051 0.0001
50 0.1221 0.0047 0.0001 0.1195 0.0048 0.0001 0.1196 0.0048 0.0001
60 0.1158 0.0044 0.0001 0.1132 0.0045 0.0001 0.1133 0.0045 0.0001
70 0.1106 0.0041 0.0001 0.1081 0.0043 0.0001 0.1082 0.0043 0.0001
80 0.1066 0.0039 0.0001 0.1043 0.0040 0.0001 0.1043 0.0040 0.0001
90 0.1032 0.0038 0.0001 0.1009 0.0039 0.0001 0.1010 0.0039 0.0001
100 0.1002 0.0037 0.0001 0.0979 0.0037 0.0001 0.0980 0.0037 0.0001
1 Non-centrality parameter = 6.25 for all simulations.

The extended single-step Simes procedure did not control the type 1 error rate for

all numbers of hypotheses tested for chi-square tests with 1 degree of freedom. None of

the 5 degree of freedom simulations resulted in a type 1 error rate that exceeded α. For

the 1 degree of freedom simulations, the type 1 error rate first exceeded α=0.05 at 44

hypotheses. However, those that failed to control the type 1 error rate only exceeded α by

a small margin.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures. The
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Hochberg and Hommel procedures perform better for the rejection of at least two and at

least three hypotheses.

5.2.6 More Than Three Positively Correlated Chi-Square Statis-

tics

Table 5.21 and Table 5.23 show simulations results comparing type 1 error rates for

the extended single-step Simes (S), Hochberg (HB), and Hommel (HM) procedures for

testing more than three positively correlated 1 and 5 degree of freedom chi-square statistics,

respectively, with one false hypothesis, whereas Table 5.22 and Table 5.24 show the power

to reject at least one, at least two, and at least three of the hypotheses for each of the

procedures.

Table 5.21: More Than Three Positively Correlated 1 Degree of Free-
dom Chi-Square Test Statistics with 1 False Hypothesis1 (Type 1
Error Rates)

Correlations2 S HB HM
10 0.0277 0.0296 0.0315
20 0.0240 0.0243 0.0255
30 0.0219 0.0217 0.0227
40 0.0204 0.0201 0.0209
50 0.0193 0.0188 0.0196
60 0.0183 0.0178 0.0185
70 0.0178 0.0171 0.0178
80 0.0171 0.0164 0.0171
90 0.0166 0.0159 0.0166
100 0.0163 0.0155 0.0161
1 Non-centrality parameter = 6.25 for all simulations.
2 0.5 used for all correlations.
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Table 5.22: More Than Three Positively Correlated 1 Degree of Freedom Chi-Square Test
Statistics with 1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
10 0.3821 0.0257 0.0091 0.3808 0.0284 0.0116 0.3812 0.0301 0.0135
20 0.3031 0.0219 0.0088 0.3018 0.0229 0.0098 0.3020 0.0242 0.0113
30 0.2627 0.0198 0.0084 0.2613 0.0204 0.0090 0.2614 0.0213 0.0103
40 0.2368 0.0183 0.0080 0.2353 0.0187 0.0085 0.2355 0.0195 0.0097
50 0.2178 0.0171 0.0078 0.2163 0.0174 0.0081 0.2164 0.0182 0.0092
60 0.2031 0.0162 0.0075 0.2016 0.0164 0.0077 0.2017 0.0171 0.0088
70 0.1916 0.0155 0.0073 0.1901 0.0157 0.0075 0.1902 0.0164 0.0085
80 0.1818 0.0149 0.0070 0.1802 0.0150 0.0072 0.1803 0.0157 0.0082
90 0.1737 0.0144 0.0069 0.1722 0.0145 0.0070 0.1722 0.0152 0.0080
100 0.1665 0.0140 0.0067 0.1649 0.0141 0.0069 0.1650 0.0148 0.0079
1 Non-centrality parameter = 6.25 for all simulations.
2 0.5 used for all correlations.

Table 5.23: More Than Three Positively Correlated 5 Degree of Free-
dom Chi-Square Test Statistics with 1 False Hypothesis1 (Type 1
Error Rates)

Correlations2 S HB HM
10 0.0318 0.0316 0.0335
20 0.0290 0.0271 0.0282
30 0.0270 0.0247 0.0255
40 0.0257 0.0231 0.0238
50 0.0247 0.0219 0.0225
60 0.0239 0.0210 0.0215
70 0.0232 0.0202 0.0207
80 0.0226 0.0196 0.0201
90 0.0222 0.0191 0.0196
100 0.0217 0.0185 0.0190
1 Non-centrality parameter = 6.25 for all simulations.
2 0.5 used for all correlations.
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Table 5.24: More Than Three Positively Correlated 5 Degree of Freedom Chi-Square Test
Statistics with 1 False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
10 0.1785 0.0230 0.0080 0.1745 0.0255 0.0103 0.1756 0.0272 0.0118
20 0.1317 0.0196 0.0080 0.1275 0.0205 0.0089 0.1281 0.0216 0.0101
30 0.1100 0.0175 0.0077 0.1057 0.0181 0.0083 0.1061 0.0190 0.0093
40 0.0969 0.0163 0.0074 0.0925 0.0166 0.0079 0.0929 0.0174 0.0088
50 0.0879 0.0152 0.0072 0.0835 0.0155 0.0075 0.0838 0.0162 0.0084
60 0.0811 0.0144 0.0070 0.0766 0.0146 0.0072 0.0769 0.0153 0.0080
70 0.0758 0.0138 0.0068 0.0714 0.0139 0.0070 0.0716 0.0145 0.0078
80 0.0715 0.0132 0.0066 0.0670 0.0133 0.0068 0.0673 0.0139 0.0076
90 0.0679 0.0129 0.0065 0.0635 0.0130 0.0067 0.0637 0.0135 0.0074
100 0.0648 0.0124 0.0064 0.0604 0.0125 0.0065 0.0606 0.0131 0.0073
1 Non-centrality parameter = 6.25 for all simulations.
2 0.5 used for all correlations.

Type 1 error rates for all three procedures were considerably below α=0.05 for all

simulations. Type 1 error rates were similar for the three procedures with the Hochberg

procedure producing slightly lower rates. The Type 1 error rates decreased for all proce-

dures as the number of hypotheses increased. All type 1 error rates were less than 60% of

α for the configurations tested except for the type 1 error rate for 10 hypotheses, which

was slightly higher.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

all configurations tested. The Hochberg and Hommel procedures perform better for the

rejection of at least two and at least three hypotheses.
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5.2.7 Three Independent t Statistics

Independent central t statistics were generated by dividing a randomly generated stan-

dard normal by the square root of an independent randomly generated central chi-square

with the desired degrees of freedom, divided by the degrees of freedom. Non-central t

statistics under the alternative were created by adding the non-centrality parameter to the

standard normal prior to dividing.

Table 5.25 shows simulation results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (HB), and Hommel (HM) procedures for testing three independent

30 degree of freedom t statistics with one false hypothesis, whereas Table 5.26 shows the

power to reject at least one, at least two, and all three of the hypotheses for each of the

procedures.

Table 5.25: Three Independent 30 Degree of Freedom t Test Statistics with 1 False Hy-
pothesis (Type 1 Error Rates)

Non-Centrality
Parameter False
Hypothesis

S HB HM

0.5 0.0340 0.0343 0.0348
1 0.0347 0.0360 0.0367
1.5 0.0353 0.0384 0.0393
2 0.0355 0.0415 0.0424
2.5 0.0356 0.0447 0.0455
3 0.0353 0.0472 0.0477
3.5 0.0348 0.0488 0.0491
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Table 5.26: Three Independent 30 Degree of Freedom t Test Statistics with 1 False Hy-
pothesis (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Non-
Centrality
Parameter
False
Hypothesis

1 2 3 1 2 3 1 2 3

0.5 0.0828 0.0021 0.0003 0.0817 0.0042 0.0003 0.0824 0.0042 0.0003
1 0.1536 0.0047 0.0006 0.1518 0.0087 0.0006 0.1530 0.0087 0.0006
1.5 0.2753 0.0091 0.0011 0.2727 0.0159 0.0011 0.2745 0.0159 0.0011
2 0.4425 0.0149 0.0016 0.4396 0.0251 0.0016 0.4416 0.0251 0.0016
2.5 0.6258 0.0214 0.0020 0.6232 0.0343 0.0020 0.6250 0.0343 0.0020
3 0.7857 0.0269 0.0023 0.7838 0.0416 0.0023 0.7852 0.0416 0.0023
3.5 0.8973 0.0307 0.0024 0.8962 0.0463 0.0024 0.8970 0.0463 0.0024

Type 1 error rates for all three procedures were controlled at level α=0.05. The extended

single-step Simes procedure produced lower type 1 error rates than the Hochberg and

Hommel procedures. This was especially true as the non-centrality parameter associated

with the false hypothesis increased. The Hochberg and Hommel procedure type 1 error

rates approached α as the non-centrality parameter associated with the false hypothesis

increased, whereas the type 1 error rate for the extended single-step Simes remained close

to 70% of α for all configurations.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures. The

Hochberg and Hommel procedures perform better for the rejection of at least two hypothe-

ses. All three methods are equivalent for the rejection of all three hypotheses.
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5.2.8 Three Positively Correlated t Statistics

Positively correlated central t statistics were generated by first generating positively

correlated standard normal statistics. A single independent central chi-square statistic

with the desired degrees of freedom (30) was also generated. The positively correlated

central t statistics were then created by dividing each of the correlated standard normal

statistics by the square root of the one independent central chi-square statistic divided by

its degrees of freedom. The non-central t statistic under the alternative was generated

by calculating the p-value associated with the central t statistic under the null using the

SAS® function PROBT for the given number of degrees of freedom and then calculating

the non-central t statistic associated with that p-value with the same degrees of freedom

and specified non-centrality parameter using the SAS® function TINV.

Table 5.27 shows simulation results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (B), and Hommel (M) procedures for testing three positively

correlated 30 degree of freedom t statistics with one false hypothesis, whereas Table 5.28

shows the power to reject at least one, at least two, and all three hypotheses for each of

the procedures.

Table 5.27: Three Positively Correlated 30 Degree of Freedom t Test
Statistics with 1 False Hypothesis1 (Type 1 Error Rates)

Correlations2 S HB HM
0.1, 0.1, 0.1 0.0354 0.0453 0.0459
0.3, 0.3, 0.3 0.0353 0.0464 0.0468
0.5, 0.5, 0.5 0.0350 0.0464 0.0466
0.7, 0.7, 0.7 0.0346 0.0445 0.0446
0.1, 0.2, 0.3 0.0353 0.0468 0.0473
0.1, 0.3, 0.5 0.0349 0.0479 0.0482
0.1, 0.4, 0.7 0.0347 0.0487 0.0489
1 Non-centrality parameter = 2.5 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.
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Table 5.28: Three Positively Correlated 30 Degree of Freedom t Test Statistics with 1 False
Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
0.1, 0.1, 0.1 0.6227 0.0243 0.0037 0.6205 0.0373 0.0037 0.6221 0.0373 0.0037
0.3, 0.3, 0.3 0.6166 0.0296 0.0075 0.6150 0.0427 0.0075 0.6162 0.0427 0.0075
0.5, 0.5, 0.5 0.6120 0.0330 0.0128 0.6112 0.0453 0.0128 0.6118 0.0453 0.0128
0.7, 0.7, 0.7 0.6101 0.0344 0.0202 0.6099 0.0444 0.0202 0.6100 0.0444 0.0202
0.1, 0.2, 0.3 0.6185 0.0281 0.0041 0.6167 0.0420 0.0041 0.6180 0.0420 0.0041
0.1, 0.3, 0.5 0.6146 0.0308 0.0043 0.6133 0.0453 0.0043 0.6143 0.0453 0.0043
0.1, 0.4, 0.7 0.6117 0.0325 0.0042 0.6109 0.0475 0.0042 0.6115 0.0475 0.0042
1 Non-centrality parameter = 2.5 for all simulations.
2 Correlations are ρ12, ρ13, and ρ23.

Type 1 error rates for all three procedures were controlled at level α=0.05. While the

Hochberg and Hommel procedures produced type 1 error rates relatively close to α, type

1 error rates for the extended single-step Simes Procedure were close to 70% of α for all

configurations and varied less from one configuration to the next than did the Hochberg

and Hommel procedures.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

all configurations tested. The Hochberg and Hommel procedures perform better for the

rejection of at least two hypotheses. All three methods are equivalent for the rejection of

all three hypotheses.

5.2.9 More Than Three Independent t Statistics

Table 5.29 shows simulation results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (B), and Hommel (M) procedures for testing more than three

independent 30 degree of freedom t statistics with one false hypothesis, whereas Table 5.30
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shows the power to reject at least one, at least two, and at least three hypotheses for each

of the procedures.

Table 5.29: More Than Three Independent 30 Degree of Freedom
t Test Statistics with 1 False Hypothesis1 (Type 1 Error Rates)

Number of
Hypotheses

S HB HM

25 0.049760 0.047592 0.047857
26 0.049610 0.047454 0.047707
27 0.049775 0.047553 0.047790
28 0.049846 0.047611 0.047843
29 0.049933 0.047701 0.047919
30 0.049940 0.047692 0.047903
31 0.050017 0.047719 0.047927
32 0.050003 0.047679 0.047873
33 0.049956 0.047658 0.047849
34 0.050069 0.047792 0.047973
35 0.050154 0.047844 0.048023
40 0.050248 0.047878 0.048031
50 0.050453 0.048106 0.048224
60 0.050646 0.048270 0.048369
70 0.050774 0.048420 0.048498
80 0.050648 0.048310 0.048380
90 0.050712 0.048419 0.048478
100 0.050566 0.048278 0.048329
1 Non-centrality parameter = 2.5 for all simulations.
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Table 5.30: More Than Three Independent 30 Degree of Freedom t Test Statistics with 1
False Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Number of
Hypotheses

1 2 3 1 2 3 1 2 3

25 0.3303 0.0145 0.0003 0.3253 0.0154 0.0004 0.3257 0.0154 0.0004
26 0.3254 0.0143 0.0003 0.3204 0.0151 0.0004 0.3209 0.0151 0.0004
27 0.3213 0.0140 0.0003 0.3163 0.0148 0.0004 0.3167 0.0149 0.0004
28 0.3174 0.0139 0.0003 0.3124 0.0146 0.0004 0.3128 0.0147 0.0004
29 0.3131 0.0138 0.0003 0.3082 0.0145 0.0004 0.3085 0.0145 0.0004
30 0.3097 0.0136 0.0003 0.3048 0.0143 0.0004 0.3051 0.0143 0.0004
31 0.3060 0.0134 0.0003 0.3011 0.0140 0.0004 0.3015 0.0140 0.0004
32 0.3024 0.0132 0.0003 0.2975 0.0138 0.0004 0.2979 0.0139 0.0004
33 0.2995 0.0131 0.0003 0.2946 0.0137 0.0003 0.2949 0.0137 0.0003
34 0.2961 0.0130 0.0003 0.2914 0.0135 0.0004 0.2917 0.0136 0.0004
35 0.2934 0.0128 0.0003 0.2886 0.0134 0.0003 0.2889 0.0134 0.0003
40 0.2799 0.0122 0.0003 0.2751 0.0127 0.0003 0.2754 0.0127 0.0003
50 0.2582 0.0112 0.0003 0.2537 0.0116 0.0003 0.2539 0.0116 0.0003
60 0.2417 0.0105 0.0002 0.2374 0.0107 0.0003 0.2375 0.0107 0.0003
70 0.2286 0.0099 0.0002 0.2243 0.0101 0.0002 0.2245 0.0101 0.0002
80 0.2178 0.0094 0.0002 0.2137 0.0095 0.0002 0.2138 0.0096 0.0002
90 0.2087 0.0089 0.0002 0.2047 0.0091 0.0002 0.2048 0.0091 0.0002
100 0.2007 0.0085 0.0002 0.1968 0.0087 0.0002 0.1969 0.0087 0.0002
1 Non-centrality parameter = 2.5 for all simulations.

The extended single-step Simes procedure did not control the type 1 error rate for all

numbers of hypotheses tested. The type 1 error rate first exceeded α=0.05 at 31 hypotheses.

However, those that failed to control the type 1 error rate only exceeded α by a small margin

(<1.6% of α for all configurations).

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures. The

Hochberg and Hommel procedures perform better for the rejection of at least two and at
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least three hypotheses.

5.2.10 More Than Three Positively Correlated t Statistics

Table 5.31 shows simulation results comparing type 1 error rates for the extended single-

step Simes (S), Hochberg (B), and Hommel (M) procedures for testing more than three

positively correlated 30 degree of freedom t statistics with one false hypothesis, whereas

Table 5.32 shows the power to reject at least one, at least two, and at least three hypotheses

for each of the procedures.

Table 5.31: More Than Three Positively Correlated 30 Degree of
Freedom t Test Statistics with 1 False Hypothesis1 (Type 1 Error
Rates)

Correlations2 S HB HM
10 0.0327 0.0345 0.0361
20 0.0301 0.0298 0.0309
30 0.0283 0.0273 0.0281
40 0.0268 0.0256 0.0262
50 0.0258 0.0243 0.0249
60 0.0249 0.0233 0.0238
70 0.0241 0.0224 0.0229
80 0.0236 0.0218 0.0222
90 0.0231 0.0212 0.0216
100 0.0225 0.0206 0.0210
1 Non-centrality parameter = 2.5 for all simulations.
2 0.5 used for all correlations.
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Table 5.32: Three Positively Correlated 30 Degree of Freedom t Test Statistics with 1 False
Hypothesis1 (Power)

S - Reject at Least HB - Reject at Least HM - Reject at Least
Correlations2 1 2 3 1 2 3 1 2 3
10 0.4215 0.0284 0.0078 0.4193 0.0315 0.0102 0.4199 0.0330 0.0115
20 0.3265 0.0248 0.0084 0.3239 0.0260 0.0094 0.3242 0.0270 0.0104
30 0.2781 0.0225 0.0083 0.2752 0.0232 0.0089 0.2755 0.0239 0.0097
40 0.2469 0.0208 0.0081 0.2440 0.0213 0.0086 0.2442 0.0219 0.0093
50 0.2245 0.0196 0.0080 0.2215 0.0200 0.0083 0.2217 0.0205 0.0090
60 0.2080 0.0186 0.0078 0.2049 0.0189 0.0081 0.2050 0.0194 0.0087
70 0.1940 0.0178 0.0076 0.1908 0.0180 0.0079 0.1910 0.0185 0.0085
80 0.1830 0.0172 0.0075 0.1798 0.0173 0.0077 0.1800 0.0178 0.0083
90 0.1735 0.0165 0.0074 0.1703 0.0167 0.0075 0.1704 0.0171 0.0081
100 0.1656 0.0160 0.0072 0.1623 0.0161 0.0074 0.1625 0.0165 0.0079
1 Non-centrality parameter = 2.5 for all simulations.
2 0.5 used for all correlations.

Type 1 error rates for all three procedures were considerably below α=0.05 for all

simulations. Type 1 error rates were similar for the three procedures with the Hochberg

procedure producing slightly lower rates. The Type 1 error rates decreased for all proce-

dures as the number of hypotheses increased. All type 1 error rates were less than 60% of

α for the configurations tested.

The extended single-step Simes procedure showed improvement in the probability to

reject at least one hypothesis as compared to the Hochberg and Hommel procedures for

all configurations tested. The Hochberg and Hommel procedures perform better for the

rejection of at least two and at least three hypotheses.



Chapter 6

Conclusion and Future Research

Simes’s improved Bonferroni method for testing the global null hypothesis offers im-

proved power over the traditionally Bonferroni procedure. While Simes proved his method

controls the type 1 error rate for independent tests, it does not hold for all conditions and

distributions. Simes first conjecture was that his method may hold for some dependent

statistics with certain multivariate distributions. Simes’s global test does not allow for

making statements about individual hypotheses. His second conjecture was to reject the

individual hypotheses H(1), ..., H(j), where j = max{j : P(j) ≤ jα/m}.

To address Simes’s first conjecture, it has since been shown that, in general, the Simes

global test has control of the one-sided type 1 error for positively dependent statistics, but

may inflate the type 1 error for negatively dependent statistics. However, Hochberg and

Rom gave an upper bound for the type 1 error for negatively correlated normal statistics.

As for Simes’s second conjecture, it can easily be shown that his proposed method

does not control the family wise error rate. That said, the Simes global test has since

become the foundation of many p-value based multiple testing procedures that do control

the family wise error rate. Hochberg and Hommel are two examples of procedures that

have extended the Simes global test to make inferences on individual hypotheses. However,

68
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though the procedures by Hochberg and Hommel are based on the Simes global test, they

are conservative as they may not be able to reject any of the individual hypotheses when

Simes’s test rejects the global null hypothesis. The extended single-step Simes procedure

presented here rejects a subset of the hypotheses proposed by Simes and fills this void by

rejecting at least one hypothesis when the Simes global test rejects making it the most

powerful Simes based procedure for the rejection of at least one hypothesis.

The extended single-step Simes procedure controls the family wise error rate for three

independent normal test statistics as well as trivariate normal test statistics whose joint

distribution has the MTP2 property. Simulations show that the procedure doesn’t con-

trol the type 1 error rate for all distributions and configurations for certain numbers of

hypotheses. However, type 1 error rates were only slightly inflated above α in the simula-

tions. Simulations did suggest that the extended single-step Simes procedure may control

the type 1 error rate for as many as 30 or more hypotheses when the test statistics are

non-negatively correlated normals with the MTP2 property. Further simulations suggest

that the procedure may control the type 1 error rate for as many as 30 or more hypotheses

for non-negatively correlated chi-square and t test statistics.

For future research, formal proofs showing that the extended single-step Simes proce-

dure controls the family wise error rate for more than three hypotheses or for additional

distributions may be of interest. Additionally, as previously stated, the extended single-

step Simes procedure does not control the family wise error rate for any number of normal

test statistics. If an upper bound for the family wise error rate could be determined, then

adjustments could be made in order to control the family wise error rate.
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